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Abstract – The Gaussian Mixture Cardinalized PHD
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was applied to the TNO dataset only. The tracking results
(plots and MOPs) are given.
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1 Introduction
The new TNO-Blind dataset was created by Dr. Pascal

de Theije for the MSTWG, and presents the challenge of
discovering the number of targets present in the interest
region and their tracks. The SEABAR07 datasets, also
the subject of study by many members of the MSTWG,
present the challenge of real sonar data obtained in a sea
trial that took place in October 2007 on the Malta Plateau.
In this paper we present some results of the application of
the GM-CPHD tracker to both, and, since it is a new effort
just beginning, of the MLPDA tracker to the former.

2 GM-CPHD
The Cardinalized Probability Hypothesis filter is a recur-
sive filter that propagates both the posterior likelihood of
(an unlabeled) target state and the posterior cardinality
density (probability mass function of the number of tar-
gets) [8]. Under linear Gaussian dynamics and the as-
sumption of state independence for the probability of de-
tection and the probability of survival, closed form filter
equations are given in [11]. In that work, the posterior
PHD surface is approximated by a Gaussian Mixture and
is shown to remain a Gaussian Mixture after the update
step, hence the propagation of the whole surface can be re-
placed by the propagation of the weight, mean and covari-
ance of each mode in the mixture. In common with other

similar trackers such as the MHT, the number of Gaussian
“modes” could increase exponentially with the number of
scans, and as such track-management (pruning, merging,
etc.) is necessary to make the approach practical.

In our analysis, we employ the GM-CPHD filter with a
linear motion model and a nonlinear measurement model
in which range, bearing and range rate (when available)
form the measurement. Our implementation is thus ca-
pable of processing both Doppler sensitive (i.e., a constant
frequency pulse - CW) and Doppler insensitive waveforms
(i.e., a linear frequency modulated pulse - LFM). For LFM
waveforms, the range rate measurement (ṙ) is not signif-
icant and hence ignored. In its original form the GM-
CPHD filter is not able to provide scoreable tracks, so a
track management scheme was devised in [5, 9]. This is a
set of policies dealing with events such as track initiation,
update, merging, spawning and deletion.

At present, we feed into the tracker only the top
10 (highest amplitude) contacts per waveform/receiver at
each scan; this is perhaps a weakness of our GM imple-
mentation of the PHD filters, one that deserves further at-
tention. The issue is that the number of sonar contacts per
scan can be in the hundreds, and in principle each deserves
to be explored with its own mode – for a manageable num-
ber of modes we require relatively few contacts per scan.
The parameters of the GM-CPHD tracker were set as in
the following:

• Probability of detection of target, Pd = 0.7.

• Probability of death of target, Pdeath = 0.05.

• Birth probability = 0.001.

• Process noise variance = 0.00005 m2/s2.

• Two-dimensional position/velocity kinematic model.

• Track initiation weight threshold = 0.85.

• Tracks merging weight threshold = 1.7.

• Maximum number of targets = 30.
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Adjustments were made when deemed necessary. For a
detailed explanation of the above parameters, please refer
to [11].

3 MLPDA
A wide filter bandwidth is good in the sense that it offers

robustness; however, a large bandwidth allows noise to en-
ter, and in target tracking this noise is usually in the form
of clutter. As such, the maximum-likelihood probabilistic
data association (MLPDA) estimator – perhaps the ulti-
mate approach to finding targets that are buried deeply in
clutter [2] (successful tracking at less than 6dB post-signal
processing SNR) – dials the bandwidth as low as it can
by searching only for target trajectories that are parametri-
cally defined: for us, that means straight-line trajectories.
With the set of measurements Z = {Zi} = {Zij} for the
jth contact Zij of the ith ping, we have the conditional
likelihood

ph(Z|x) =
∏

i

pk(Zi|x) (1)

in which k ∈ 0, 1 depending on whether or not a target is
present. Moreover, assuming that we have Poisson clutter
(each clutter contact has a uniform pdf, and the number of
clutter points for the ith ping has a Poisson pmf ρ(·) with
mean λV , in which V is the surveillance volume). One’s
MLPDA task is to maximize (1) with respect to x. It is
usually simpler to maximize the likelihood ratio (defined
according to [10]):

p1(Zi|x)
p0(Zi|x)

= (2)

(1 − Pd) +
Pd

λ

mi∑

j=1

N (Zij |Hijx; Σij)
f1(aij)
f0(aij)

in which λ is the clutter density, Pd is the probability of
detection, and the last term is the likelihood ratio of the
amplitude return conditioned on a threshold exceedance.
The MLPDA technique seems first to have appeared in
[6], and to have been refined – particularly, to use fea-
tures – in [7]. It was previously applied to NURC data
in [12]. A multi-target MLPDA was developed in [1]; our
formulation here looks sequentially for single targets, with
previously-associated measurements excised, and with the
process stopped when a discovered track does not exceed
the likelihood threshold.

4 SEABAR07
4.1 Description

The SEABAR07 scientific sea trial featured the deploy-
able multistatic system (DEMUS) consisting of one source
(BTX) and 3 receiver sonobuoys (RX1, RX2, RX3). The
receivers are able to provide both Doppler-sensitive (CW)
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Figure 1: A01 RX2 Contacts.

and Doppler-insensitive (LFM) contacts. The target was
an echo repeater towed by a NURC research vessel. The
scenarios include maneuvers, target births and in A07, a
moving source. We present results obtained using GM-
CPHD on the SEABAR datasets A01, A05, A06 and A07.
Neither the tagged and SNR-adjusted datasets were avail-
able to us at the time our results were formed, so we report
on the original datasets. These results include an Echo Re-
peater (ER) delay of 2.5sec, which the tracker adjusts for;
however, in some runs (A05-A06), the ER delay under-
went some unexplained transients, and these will be seen
in the accompanying results. Also, please note that the re-
sults presented here are in meters, referenced to the trans-
mitter at the origin.

In the A01 set all 3 receivers worked in this run and the
target performs interesting maneuvers. The top ten con-
tacts coming from the RX2 receiver (FM and CW), differ-
entiated by SNR, are shown in Figure 1. In the un-zoomed
contact plot for the joint run A05/A06, (Figure 2a), it is in-
teresting to observe the indications of some accidental tar-
gets not part of the sea trial such as an oil platform, surface
ships and sea bottom features. This is responsible for the
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Figure 2: A05-A06 RX3 Contacts

high number of false tracks of this dataset. In the zoomed
contact plot (Figure 2b), it is clear that the ER delay fluctu-
ated during A05 (see the “jumps” in the horizontal portion
of the triangle); apparently, the delay remained elevated
for the whole of A06 (witness the offset).

4.2 GM-CPHD Results
Comparing the two parts of Figure 3 it is clear that sen-

sor and waveform fusion significantly improves the track-
ing. All MOPs except the fragmentation indicate better
results in the case of using all available sensors. (In the
interest of space, we present only a few plots; but, for al-
most all other cases, the results are quite good, and in-
deed it is clear that when FM is used all portions of the
track are followed successfully as supported by the mea-
sures of performance reported.) The MOPs (Figure 7(a))
also show that the fusion of the Doppler-sensitive CW with
the highly-resolving (but perhaps overly sensitive to fixed
clutter) FM reduces the number of false tracks. Another in-
ference from the MOPs is that the use of multiple sensors
increases both PD and fragmentation. The latter indicates
that further work on approaches to fusion is necessary.
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Figure 3: A01 results. The tracks are in green, and the
ellipses indicate active Gaussian-mixture modes at the last
scan.

Examples of tracking results for the A05 and A06 runs
are shown in Figures 4 and 5 – there is an offset in the latter
that is known, but we preserve it in this plot so that it can
be noted. In the MOPs (Figures 7(b) and (c)) the important
FAR reduction associated with the addition of CW is again
observed.

The tracking results for the A07 dataset were problem-
atic: the target was tracked only during the midpoint of its
trajectory (Figure 6b). From the examination of the actual
contacts (Figure 6a), the reason for this is clear: there are
none to represent the beginning and the end portions of the
true track. In order to exclude the possibility of this being
an artifact of the limitation to the top ten contacts, we have
attempted to run the GM-CPHD with far more modes and
contacts, and little improvement was observed.

5 TNO-Blind
5.1 Description

The TNO Blind dataset features three sensors in 2D
Cartesian space (Figure 8) with the following character-
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Figure 4: A05 RX3 (FM and CW) results.
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Figure 5: A06 RX3 (FM and CW) results.

istics:

• Sensor 1 is bistatic and an FM sensor, giving 180
pings at a pulse repetition time of 60s.

• Sensor 2 is monostatic and a CW sensor, giving 210
pings at a pulse repetition time of 50s.

• Sensor 3 is bistatic and both an FM and a CW sensor,
giving 113 pings at a pulse repetition time of 90s. The
odd pings are FM contacts, the even pings are CW
contacts.

The top ten contacts available from all the sensors differen-
tiated by SNR can be seen in Figure 9. RMS registration
errors were taken into account for the following parame-
ters: sound speed (2m/s), receiver heading (1o), bearing
estimate (1o), sensor position (20m× 20m), time (0.001s
FM and 0.1s CW) and Doppler (0.5m/s).

5.2 GM-CPHD Results
We submit Figures 10, 11, 12 – the individual sensors’

tracking results – along with fused results in Figures 13
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Figure 6: A07 Results

and 14. It can be seen that the GM-CPHD detects (albeit
intermittently) all 4 of the targets present and is able to
maintain the track when the targets maneuver. However, it
is clear that there is room for improvement, especially in
terms of fragmentation. Presumably there is further devel-
opment work to be done on track management; it is also
clear that fusion of contacts from multiple sensors is not
always an unmitigated benefit to our present incarnation
of the CPHD.

We usually evaluate the tracker’s performance by look-
ing at several MSTWG metrics of performance (MOPs):
fragmentation (FRAG), probability of detection (PD), false
alarm rate (FAR) and distance root mean square error
(RMSE). It should be pointed out that PD calculates the
track detection ratio, i.e., the sum of the durations of all
true tracks divided by the total scenario duration. At
present the MOPs are calculated (see Figure 15) only for
the “given” first target.

The fusion of the Doppler-sensitive CW with the highly-
resolving (but perhaps overly sensitive to fixed clutter) FM
and the use of multiple sensors are beneficial because they
increase both PD, but unfortunately, they also increase
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Figure 7: GM-CPHD SEABAR MOPs.

fragmentation. The latter indicates that further work on
different approaches to fusion is to be done. In order to
exclude the possibility of this being an artifact of the limi-
tation to the top ten contacts, we have attempted to run the
GM-CPHD tracker with far more modes and contacts, and
little improvement was observed.

In Figure 16, we are looking at the SNR of the mea-
surement coming from Sensor 1 that is closest (distance-
wise) at each scan to the true position of target 1 at that
scan. Some of these measurements are very good contacts
and some can be false alarms. The shaded areas corre-
spond to scans for which the GM-CPHD created a track
for the known target (Figure 10). As expected, the con-
tacts with high SNR are likely to come from the target and
the GM-CPHD uses them for the formation of tracks. This
information is to be incorporated into the GM-CPHD in
the future.

Figure 8: Scenario Setup
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Figure 9: Contacts Differentiated by SNR

5.3 MLPDA Results
Some results of applying the MLPDA to the TNO-Blind

challenge dataset are shown in Figures 17 and 18 – the for-
mer uses a high threshold (-70) to declare a track, the latter
ten log-likelihood units lower. All data and all sensors are
used in this work, which is an improvement over the GM-
CPHD results presented previously. With the exception of
the “hairpin” in the lower right, all tracks are well repre-
sented. The reason for the choppy appearance is perhaps
clear from Figure 19: the quantization of the azimuthal
angles does indeed produce such an effect. The MOPs
are included for the lower threshold in Table 1 – these ap-

Target Frag Dup PD RMSE
1 1 6 .92 89.2
2 3 4 .64 175.3
3 1 3 .63 107.0
4 1 13 .92 67.6

Table 1: MOPs for MLPDA on TNO-Blind data, lower
threshold. There were 8 false tracks.
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Figure 10: GM-CPHD Tracks with Sensor 1
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Figure 11: GM-CPHD Tracks with Sensor 2

pear to be extremely promising. Note that although the
MLPDA looks for straight-line trajectories, due to the fi-
nite batch-length that it uses these are in fact only straight
line segments. As such, the MLPDA-derived tracks can
be (or appear) curved, and the absence of a more sophisti-
cated model is felt most strongly only for the challenging
“hairpin” trajectory.

6 Summary
Most treatments of these data have used a “traditional”

MHT target tracker, although we have seen others as well.
A fielded system would probably use the MHT; we do have
an MHT, but we would prefer to offer an alternative and
exploratory perspective, and accordingly have proffered
the MLPDA and GM-CPHD. We are pleased that our re-
sults are competitive, but must note that both GM-CPHD
and MLPDA efforts are ongoing, and more-recent results
with these will be made available on request.

Two GM-CPHD concerns we have identified are track
fragmentation and GM mode-placements for initialization.
As regards the former, present efforts center on incorpo-
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Figure 12: GM-CPHD Tracks with Sensor 3
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Figure 13: GM-CPHD Tracks with Sensors 1 and 3

ration of sensor-ID information for robust mode-linking,
initiation and termination of tracks. Mode placement is a
concern for a GM-CPHD in sonar data: when false alarms
are few it is an easy task to assign a mode to each, but in the
sonar situation, with hundreds of contacts per scan, this is
not an option. Conversely, the MLPDA has no issues at all
with deep clutter, and indeed we feel that it may eventually
become the algorithm of choice for VLO tracking. Present
research on the MLPDA centers on track linkage, and also
on means to adapt its parametric modeling of target motion
– most suite for straight-line tracking – to targets such as
these that execute structured (but not necessarily straight)
trajectories.
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Figure 14: GM-CPHD Tracks with Sensors 1, 2 and 3

Figure 15: MOPs for Known Target
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Figure 18: MLPDA Tracks at lower threshold.
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