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Abstract – This paper introduces a novel method to
score how well proposed fused image quality measures
(FIQMs) indicate the effectiveness of humans to detect
targets of interest in fused imagery. The human de-
tection performance is measured via human perception
experiments. A good FIQM should relate to perception
results in a monotonic fashion. The new method, the
diffuse prior monotonic likelihood ratio (DPMLR) test,
compares the H1 hypothesis that the intrinsic human de-
tection performance is related to the FIQM via a mono-
tonic function to the null hypothesis that the detection
and image quality relationship is random. The paper
discusses many interesting properties of the DPMLR
and demonstrates the effectiveness of the DPMLR test
via Monte Carlo Simulations. Finally, the DPMLR is
used to score FIQMs over 35 scenes implementing var-
ious image fusion algorithms.

Keywords: Image fusion, fused image quality mea-
sures, hypothesis test, monotonic correlation.

1 Introduction
In recent years, image fusion has been attracting a

large amount of attention in a wide variety of applica-
tions such as concealed weapon detection [1], remote
sensing [2], intelligent robots [3], medical diagnosis [4],
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and military surveillance [5]. Image fusion refers to gen-
erating a fused image in which each pixel is determined
from a set of pixels in each source image. The fused im-
age should contain a better view of the scene than do
any of the source images, thus improving computer or
human interpretation. The interested reader is referred
to Chapter 1 of [6] for a survey of various image fusion
algorithms developed in past years.

Measuring the performance of image fusion algo-
rithms is an extremely important task which has re-
ceived past study [7–21]. The performance of image
fusion algorithms is primarily assessed by perceptual
evaluation in the form of subjective human tests [13].
In these tests, human observers are asked to view a
series of fused images and rate them. Although the
subjective tests are typically accurate if performed cor-
rectly, they are inconvenient, expensive and time con-
suming. Hence, we desire an objective performance
measure that can accurately predict human perception.
Note that here we refer to the metrics and features pro-
posed for evaluating the quality of the fused images as
fused image quality measures (FIQMs). In the litera-
ture, there are three broad classes of FIQMs. The first
class requires a reference fused image (or the ground
truth image), while the others don’t. In some special
cases (for instance, the multi-focus image fusion [8]), it
is possible to generate such a reference image. Once the
ground truth image is given, we can use existing quality
metrics such as the mean square error and the peak sig-
nal to noise ratio to compare the experimental fused re-
sults with the reference. However, in many applications
generating the ideal fused image is usually very diffi-
cult. For this reason we do not consider FIQMs which
requre reference image in this paper. Another class of
FIQMs introduced recently have received a lot of atten-
tion [9–12]. These measures, see [14], consider the sum
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of correlations between each source image and the fused
image, which provides a measurement of the amount of
information transferred from the source images to the
fused image. The third class of FIQMs tries to extract
the salient features, such as the structure, texture, con-
trast and edge information, directly from the fused im-
age without regard to the source images [17–21]. Com-
parisons between existing FIQMs have been lacking.

Quantitatively evaluating the image fusion perfor-
mance is a complicated issue because of the lack of
a complete understanding of the human visual system
(HVS), and because of the variety of image fusion ap-
plications [15]. We expect that the FIQM should be
task specific, and the best measure changes from task
to task. Given an image fusion application and many
kinds of proposed FIQMs, we are interested in which
quality measure describes the image fusion performance
better. Clearly, a good FIQM must be related to how a
human would judge the quality of the fused image in a
monotonic fashion. Therefore, a statistic which quan-
tifies how well different FIQMs are consistent to actual
human performance is necessary, which is the focus of
this paper.

In [16], Pearson (or linear) correlation and root
mean squared error (RMSE) are used to score poten-
tial FIQMs. The Pearson correlation is the most com-
mon method to determine whether or not the input and
output sequences are related. It quantifies how well a
straight line fits mapping between the input and out-
put sequences. Unfortunately, when the relationship
between the quality measure and the human perfor-
mance is nonlinear, the value of Pearson correlation
can be small despite the fact that the sequences are
still monotonically related. In essence, a proper statis-
tic needs to determine if the ordering of quality mea-
sures preserve the ordering of the corresponding human
performance measures. A nonlinear correlation coef-
ficient referred to as the monotonic correlation (MC)
has be proposed in [17]. The MC is more general than
the Pearson correlation and exploits the monotonic re-
gression between the quality measures and the human
observations. However, it assumes that the perception
error is Gaussian, which should be fine for a large num-
ber of observers. In this paper, we take a different ap-
proach. We focus on cases where the fused image is to
be used for object detection. Performance is measured
by the probability that a human observer can correctly
detect certain objects of interest in the fused image.
We introduce a new monotonic statistic for the object
detection task where the underlying perception results
should follow a binomial distribution and the number
of observers is small.

The paper is organized as follows. Section 2 presents
the perception model and introduces the new mono-
tonic statistic. Section 3 demonstrates the effectiveness
of the new statistic via Monte Carlo simulations. The
statistic is used to score potential FIQMs against ac-

tual perception results for fused image interpretation
in Section 4. Finally, Section 5 provides some conclud-
ing remarks.

2 Monotonic Statistic

2.1 Data Models

This paper considers the detection task so that the
performance of image fusion algorithms is the proba-
bility that a human observer can correctly detect cer-
tain objects of interest in the fused image. A scene
is a realization of F source images, and N fused im-
ages are generated from these F images via N different
algorithms. The existence (or lack) of a monotonic re-
lationship between measured human performance and
computed FIQMs can be inferred over S scenes. To
this end, this subsection provides the data models that
enable this inference.

For a given scene, let the N × 1 vector p denote the
actual performance for all fusion methods, where pi is
the object detection probability associated to the i-th
fused image. The value of p is unobservable. It can only
be inferred via perception experiments that measure
y where yi is the number of observers that correctly
detect the targets in the i-th fusion image. We use oi

to represent the number of observers that participate
in the detection experiment for the i-th fusion image.
It is reasonable to model y as a random vector whose
elements are statistically independent where yi is drawn
from a binomial distribution with parameters oi and pi,
i.e.,

y ∼ f(y|o,p) =
N
∏

i=1

(

oi

yi

)

p
yi

i (1 − pi)
o−yi . (1)

Here we collect (o1 = · · · = oN ) in an N × 1 vector o

for convenience.
Let a given FIQM evaluated over the N images be

denoted as x. The measure value xi is a deterministic
function of the i-th fused image and the F source im-
ages. However, over the ensemble of all possible scenes,
the value of xi can be viewed as a statistical quantity.
The proposed monotonic hypothesis test evaluates how
well a FIQM monotonically relates to human object de-
tection performance. Under the monotonic hypothesis,
there is a monotonic function that maps the measure
value xi associated to the i-th fusion method to the
detection probability pi, i.e.,

pi = g(xi), (2)

where g(x) is a monotonic increasing or decreasing func-
tion of x. For notational convenience, we index the N

image fusion algorithms in ascending order of the cor-
responding measure values, i.e., x1 � x2 � ... � xN .
Thus, we consider two alternative H1 hypotheses: H↑

for ascending pi’s and H↓ for descending pi’s. On the
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other hand, the null hypothesis is that over the ensem-
ble of possible fused imagery, the xi’s are i.i.d. samples.
Thus, the pi’s are in random order where the probabil-
ity of any permutation of the order is equal.

A given scene is a realization from the ensemble of
possible source images. Therefore, we can model the
detection probabilities as being drawn from a random
distribution. We use an uninformative (or diffuse) prior
for the hypotheses. For the H↑, H↓, and H0 hypotheses,
p is uniformly distributed over

P↑ = {p : 0 � p1 � . . . � pN � 1},

P↓ = {p : 1 � p1 � . . . � pN � 0}, and

P0 = {p : 0 � p1, . . . , pN � 1},

(3)

respectively. Over all hypotheses, we model the ps’s for
each scene as statistically independent of each other.

2.2 Diffuse Prior Monotonic Likelihood

Ratio Test

The proposed monotonic statistic leads to a hypoth-
esis test that is designed to work for a small number
of observers. It exploits the binomial distribution of
the perception results by considering the likelihoods for
each of the hypotheses. The ascending and descending
likelihoods are given by (1). Because the ordering of the
elements of y and o are random for the null hypothesis,
the likelihood of p is not dependent on the orderings of
the observations. In short, the hypothesis test distin-
guishes between the three following likelihoods

l(H↑|y,o,p) = f(y|o,p) for p ∈ P↑,

l(H↓|y,o,p) = f(y|o,p) for p ∈ P↓,

l(H0|y,o,p) = 1

N !

∑N !

j=1
f(Pjy|Pjo,p) for p ∈ P0,

(4)
where Pj is one of the N ! possible N ×N permutation
matrices. The resulting hypothesis tests are not simple
tests because p is not observable. One could resort to a
generalized likelihood ratio, but the resulting test is not
a universally most powerful test. Alternatively, we use
the uninformative model for p as given in Section 2.1
and calculate the expected likelihood via

l̃(Hi|y,o) =

∫

Pi

l(Hi|y,o,p)f(p|Hi) dp, (5)

where i ∈ {↑, ↓, 0} and f(p|Hi) is the uniform proba-
bility density function over Pi:

f(p|Hi) =

{

(

∫

Pi

dp
)−1

for p ∈ Pi,

0 otherwise.
(6)

It is easy to see that

∫

P0

dp = 1, and

∫

P↑

dp =

∫

P↓

dp =
1

N !
. (7)

The diffuse ascending and descending likelihood ra-
tios to test the H↑ and H↓ hypotheses, respectively, are
given by:

λ
↑
N (y,o) =

l̃(H↑|y,o)

l̃(H0|y,o)
, (8)

λ
↓
N (y,o) =

l̃(H↓,y,o)

l̃(H0|y,o)
. (9)

For multiple scenes, the overall likelihood ratios are the
product of the single scene likelihoods due to the unin-
formative model of p given in Section 2.1. The likeli-
hood ratio for the monotonic relationship is

ΛN = max

[

S
∏

s=1

λ
↑
N (ys,os),

S
∏

s=1

λ
↓
N (ys,os)

]

, (10)

where ys and os are the number of correct detections
and observations for the s-th scene, respectively. Unless
it is required, the scene index is implicit for the sake of
notational brevity. We refer to ΛN as the diffuse prior
monotonic likelihood ratio (DPMLR). When ΛN > 1
the evidence in support of the monotonic hypothesis
is greater than that of the null hypothesis where the
FIQM behaves as noise with respect to human perfor-
mance. As ΛN increases, so does the evidence that
the FIQM under test is actually a good measure. The
DPMLR test is simply accepting the monotonic hy-
pothesis if the DPMLR exceeds a given threshold value.
Usually, the threshold is greater than one.

2.3 Recursive Computation

To our knowledge, a closed form expression for (8)
and (9) does not exist. It is possible to calculate the
diffuse likelihood ratios numerically. However, due to
the multiple integration involved in the expression, the
calculation requires large computational cost, especially
when N and the oi’s are large. This subsection provides
a recursion to calculate these diffuse likelihood ratios.

The diffuse likelihood for H0 can be simply expressed
as:

l̃(H0|y,o) =

N
∏

i=1

(

oi

yi

)

β(yi + 1, oi − yi + 1) (11)

where

β(a, b) =

∫ 1

0

za−1(1 − z)b−1 dz (12)

is the Beta function.
Substituting equations (1), (5) and (11) into (8), the

ascending diffuse likelihood ratio can be expressed as:

λ
↑
N(y,o) =

N !
∫

P↑
h(pN ; yN , oN ) . . . h(p1; y1, o1)dp

∏N

i=1
β(yi + 1, oi − yi + 1)

, (13)

where
h(p; y, o) = py(1 − p)o−y. (14)
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By considering the power series expansion of the regu-
larized incomplete Beta function, (13) can be simplified.
Specifically, the regularized incomplete Beta function is
defined as

I(y; a, b) =

∫ y

0
za−1(1 − z)b−1 dz

β(a, b)
, (15)

and the power series expansion for I(y; a, b) is

I(y; a, b) =

=
1

a + b

a+b−1
∑

j=a

1

β(j + 1, a + b − j)
yj(1 − y)a+b−1−j .

(16)

Now (13) can be simplified to:

λ
↑
N

(y, o) =

=
N !

o1 + 2

o1+1
∑

j=y1+1

β(j + y2 + 1, o1 + o2 + 2 − y2 − j)

β(j + 1, o1 + 2 − j)β(y2 + 1, o2 − y2 + 1)
·

∫

1

0
. . .

∫ p3

0
h(pN ; yN , oN ) . . . h(p2; j + y2, o1 + o2 + 1) dp2 . . . dpN

∏N
i=3

β(yi + 1, oi − yi + 1)β(j + y2 + 1, o1 + o2 + 2 − y2 − j)

=
N !

o1 + 2

o1+1
∑

j=y1+1

β(j + y2 + 1, o1 + o2 + 2 − y2 − j)

β(j + 1, o1 + 2 − j)β(y2 + 1, o2 − y2 + 1)
·

λ
↑
N−1

(

[j + y2, y3, . . . , yN ]′, [o1 + o2 + 1, o3, . . . , oN ]′
)

.

(17)

Also note that by definition,

λ
↑
1(y1, o1) = 1. (18)

Thus the ascending diffuse likelihood ratio can be com-
puted numerically via the recursion defined in (17) and
(18). A similar recursion can compute the descending
diffuse likelihood ratio. Alternatively, one can use (17)
and (18) and exploit the fact that

λ
↓
N ([y1, . . . , yN ]′, [o1, . . . , oN ]′) =

= λ
↑

N ([o1 − y1, . . . , oN − yN ]′, [o1, . . . , oN ]′) .
(19)

The symmetric relationship in (19) can be proved by a
simple change of variables in (13).

2.4 Properties

For the common case that the number of observers
in the perception experiment are consistent over the
different fused imagery, i.e., oi = o for 1 � i � N (o =
o1), the diffuse likelihood ratios have some interesting
properties:

1. If y1 = y2 = . . . = yN , then λ
↓

N (y,o) = 1 =

λ
↑

N (y,o).

2. If the yi’s are in ascending (or descending) order

and they are not constant, then λ
↑

N (y,o) > 1 (or

λ
↓

N (y,o) > 1).

3. The product λ
↑
N (y,o)·λ↓

N (y,o) � 1 where equality

occurs if and only if λ
↑
N (y,o) = λ

↓
N (y,o) = 1.

4. λ
↑
N (y,o) � N ! and λ

↓
N (y,o) � N !

The first property states that when all observations
are equal, one can not distinguish between the ascend-
ing, descending, and null hypotheses. This is due to
the fact that all orderings of the observations are indis-
tinguishable. The second property states that as long
as the human performance y is increasing (or decreas-
ing) in concert with x, the diffuse likelihood ratio will
favor the ascending H↑ (or descending H↓) over the
null hypothesis H0. The third property states that the
ascending and descending hypotheses can never both
be favored over the null hypothesis. The last property
states that the upper bound for the diffuse likelihood ra-
tios is given by the number of order permutations. The
bound is easy to confirm by inspection of (13) where
the integral in the numerator is bounded above by the
product of the beta functions in the denominator.

Due to space limitations, this paper omits the formal
proofs for these properties. Note that we have yet to
prove Property 2. Calculations via (17) and (18) for
various values of N and o have yet to identify a counter
example.

3 DPMLR Performance Analy-

sis
In this section, we justify the performance of the pro-

posed DPMLR test. To this end, we generate Monte
Carlo realizations of y, x, and p. Specifically, the pi’s
are generated uniformly over [0, 1]. For the monotonic
hypothesis, xi = (pi)

α. For the null hypothesis, the
xi’s are i.i.d. from a uniform distribution. For either
hypothesis, the yi’s are random realizations of the bi-
nomial distribution (see (1)). For a given hypothesis
and values of o1, N , and α, we generated 10000 real-
izations of y, x, and p, and we computed the associ-
ated DPMLR given one scene, i.e., S = 1. Then we
use the histograms of the DPMLR to generate ROC
curves by varying the acceptance threshold and tabu-
lating the number of acceptances under the monotonic
hypothesis, i.e., probability of detection (Pd), and un-
der the null hypothesis, i.e., probability of false alarms
(Pf ). As a means of comparison, we also compute ROC
curves associated to the Pearson correlation and mono-
tonic correlation [17] in a similar fashion over the same
simulations.

Fig.1 includes ROC curves of the various tests of cor-
relation between x and y for three cases that α = 1, 2
and 6. For each case, N = 10 and o = 5. In these plots,
the thick solid, thin solid, and dotted lines denote the
ROC curves for the DPMLR test, the monotonic cor-
relation test, and the Pearson correlation test, respec-
tively. In Fig.1(a) where α = 1, the Pearson correlation
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performs better than the monotonic diffuse likelihood
ratio. This is explained by the fact that relationship
between x and y is actually linear, and Pearson cor-
relation exploits the actual values of x and not just
the ordering. However, as the g(x) function becomes
more nonlinear, the performance of the Pearson corre-
lation degrades. The performance of the DPMLR test
is robust to the nonlinearity, and this test always out-
performs the monotonic correlation.

4 Perception Results

Long-wave infrared (LWIR) and image intensified
(II) imagery was collected in a simulated military oper-
ation in an urban terrain (MOUT) environment. The
imagery includes interior and exterior locations, where
there were either none, one, two, or three individuals
in the scenario. The same locations were collected four
times for the cases where 0-3 people are within the field
of view. Individuals who were in the field of view were
typically obscured by objects in the scene, such as door-
ways, windows, furniture, and tables. For each of the
scenarios, a horizontal pan of 150 images was then used
to create a larger mosaic of imagery in both the LWIR
and II bands.

The LWIR and II images were registered, bore-
sighted and fused via 3 different algorithms. These
fusion algorithms include: 1) Contrast Pyramid A
(CONA), 2) Contrast Pyramid B (CONB) [22] and
3) Discrete Wavelet Transform (DWTT) [1,23,24]. The
distinction between CONA and CONB is which im-
age (LWIR or II) populates the coarsest coefficients in
the pyramid. Furthermore, it is instructive to compare
the fused imagery against the source imagery. There-
fore, we consider five fused image displays: 1) CONA,
2) CONB, 3) DWTT, 4) II, and 5) LWIR. Fig. 2 shows
the resulting five image displays for one or the scenar-
ios. In this scenario there are two target persons which
are highlighted by the blue boxes in each image.

A perception test was set up whereby observers were
asked to try to find these target persons in a ”field of
regard” search. An observer’s display was calibrated to
look as though it were seeing a single field of view of a
given scene, and the observer had to navigate across the
scene and detect human targets. Observers could mark
as many as three places on the display as detections
for human targets (as they were told that the images
could contain between zero and three humans hiding
in the scene). At any point an observer could push a
button to indicate that they either did not detect any
targets in the scene or that there were no other targets
in the scene. Even though the observers were not told
to detect the targets as quickly as possible, the time in
which it took them to determine targets and finish the
scene were recorded. In the end, the detection perfor-
mance of the humans were recorded over the five image
displays (three fused images and two source images).
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Figure 1: ROC curves for diffuse likelihood ratio test,
monotonic correlation test and Pearson correlation test:
(a) α = 1, (b) α = 2, and (c) α = 6.
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m Λ1/35 p-value m Λ1/35 p-value m Λ1/35 p-value m Λ1/35 p-value
1 1.0722 0.135023 5 0.5925 0.174093 9 0.0382 0.378940 13 0.0479 0.360684
2 0.0204 0.428441 6 0.3637 0.207319 10 0.0422 0.370878 14 0.0252 0.412048
3 0.0301 0.398212 7 0.0376 0.380294 11 0.0316 0.394350 15 0.0242 0.415028
4 0.0340 0.388389 8 0.0392 0.376840 12 0.0362 0.383343 16 0.0387 0.377822

Table 1: List of geometric means and p-values of DPMLR for all 16 FIQMs .

(a)

(b)

(c)

(d)

(e)

Figure 2: Example of one of the 22 scenario images:
(a) Contrast pyramid A, (b) contrast pyramid B, (c)
DWT, (d) II, and (e) LWIR.

As seen in Fig. 2(e), the human targets stand out
in the LWIR imagery because they are usually hotter
than the background. For the most part, detection per-
formance is best on the LWIR only band because the
search task can often be reduced to simply finding the
white hot object on a grey background. However, the
II band has the potential to add context to the LWIR
band as the objects like tables and chairs are easier
to distinguish in the II band (see Figs. 2(d) and (e)).
Therefore, there can be value in fusing the two bands.

Overall, o = 8 observers evaluated 22 scenarios that
contained 35 human targets. We treat each actual tar-
get location as a scene, where the scene is an image chip
for one of the 22 scenarios. For example, the inside of
the blue boxes in Fig. 2 represent two scenes. Then,
ys is the number of observers that correctly detected
the target located in the s-th scene for s = 1, . . . , 35.
Then, we computed 16 potential FIQMs over each fused
image. These FIQMs are listed in Table 2 with corre-
sponding citations. The first 10 measures are simply
complexity features that do not consider the source im-
ages (the third class according to the classification in
Section 1). The last 6 measures compare how well the
salient features in the two source imagery are trans-
ferred into the fused image (the second class). For the
most part, the distinction between these comparative
measures is in the definition of saliency.

All but the contrast feature list in Table 2 were also
evaluated in [17] for a recognition task. Furthermore,
the contrast feature is the only FIQM that is not fully
automated. It is very similar to the Fechner-Weber
contrast measure used in [18]. To compute the con-
trast, the human silhouettes were manually segmented
for each scene. We considered this measure because it is
one of the features that is averaged in an automated Na-
tional Imagery Interpretability Ratings Scale (NIIRS)
rating [26]. Furthermore, it is intuitive that contrast
between the target and the background facilitates ease
of detection.

Table 1 provides the DPMLR score over the 35 scenes
for each of the 16 measures as well as the correspond-
ing p-values. Actually, the table provides the geometric
mean of the ascending or descending diffuse likelihood
ratios. The geometric mean provides a convenient way
to normalize the score against the number of scenes.
The DPMLR scores for all but the contrast measure
are significantly less than one. This means that the ev-
idence points to the fact that these potential FIQMs are
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Category
Feature
Number

Feature Description

Contrast 1
|It−Ib|

Ib

where It is the average intensity of the target

and Ib is the average intensity of the background
Saturation [17] 2 Normalized histogram peak

STD 3 Standard deviation
Schmieder Weathersby [19] 4 Block average local standard deviation

FBM [20] 5 Hurst parameter for fBm model
TIR [21] 6 Block average target interference ratio (contrast)

Energy [21] 7 Block average energy of histogram
Entropy [21] 8 Block average entropy of histogram

Homogeneity [21] 9 Block average pixel variation
Block Outlier [21] 10 Block average number of outliers

Universal Quality Index [25] 11
Average Structure SIMilarity (SSIM) index

between fused and reference images
Information

Measures [11]
12

Average mutual information between fused
and reference images (bin size = 16)

Objective Measure [10] 13
Average objective edge information
between fused and reference images

14
Weighted average salient quality index of edge
intensities between fused and reference images

Salient Quality Index [12] 15
Weighted average salient quality index between
fused and reference images

16
Average salient quality index between
fused and reference images

Table 2: List of FIQMs tested in this paper.

viewed as noise with respect to ordering the detection
probabilities of the imagery. For the contrast measure,
the geometric mean DPMLR score is still modest at
1.0722 and the p-value is not very low. In fact, an ideal
FIQM that consistently ordered the number of detec-
tions y over all 35 scenes would provide a DPMLR with
a geometric mean of 9.632. This means that while there
is evidence to reject the null hypothesis, the evidence
to support the monotonic hypothesis is not compelling.
However, the DPMLR score for the contrast measure
is much greater than the scores for the others. Thus,
the contrast feature may be a key aspect to a proper
FIQM.

5 Conclusions

In this paper, we propose the DPMLR to quantify
how well a FIQM matches with the human derived
probability of detection. The paper discusses some in-
teresting properties of the DPMLR, and simulation re-
sults demonstrate the advantages of the DPMLR over
other linear and monotonic correlation methods. Unlike
the monotonic correlation in [17], the DPMLR seam-
lessly accounts for the spread of the human observations
and the number of fused images. It indicates to what
degree the ordering of the human observations by the
FIQM is not by random chance. Finally, the DPMLR
was used to score a number of potential FIQMs using
real image data with a corresponding perception study.

The DMPLR scores reveal that a proper FIQM for
the detection task is not yet available. The comparative
measures may have scored poorly because the salient
features exploited by these measures may not have cap-

tured the context in II imagery that humans exploit for
detection. On the other hand, the contrast measure
does demonstrate some utility based on its DMPLR
score. Future work can focus on the search of a more
appropriate FIQM. Such a measure may incorporate
aspects of the contrast.

While the DPMLR has many interesting properties,
it is based upon some simplifying assumptions. For
instance, it assumes that the observers’ probability of
false alarms are calibrated. Furthermore, the evalua-
tion of the image quality over chips in the larger sce-
nario images ignores some contextual information. Fu-
ture research should focus on statistical scoring mecha-
nisms that account for increasingly realistic data mod-
els.
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