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EXECUTIVE SUMMARY

In a eooperative research and development agreement, the U.S. Army Edgewood
Chemical Biological Center tested several of NanoSeale Corporation’s (Manhattan, KS)
nanoerystalline reactive sorbents, of varied partiele size and surface area, for decontamination
efficacy of ehemical agents. The eurrently-fielded Sorbent Decon System (SDS) A-200 sorbent
was utilized as a control. Reaction kineties with neat VX, GD, and HD were determined in
addition to efficacy for the surface decontamination of Chemical Agent Resistant Coating
(CARC) painted panels. For VX, the best sorbent was nTiO,, which enabled a half-life for
sorbed VX of less than 2 min. Comparable half-lives for GD (tens of minutes) were observed on
nTiO,, nMgO, and the commercial FAST-ACT" (NanoScale) sorbent. Half-lives of a few to
many hours were observed for HD on nAl,Os, nTiO,, FAST-ACT", and A-200, but only with
sufficient surface hydration. With regard to reaetivity only, A-200 did not perform as well as the
nanoerystalline sorbents, especially for VX and GD. However, all of the sorbents, A-200
ineluded, provided for the eomparable removal of HD and GD from CARC panels, ea. 75 and
87%, respectively. An apparent surface-porosity of 0.8 cc/m” for the CARC paint is presumed
responsible for this low efficacy. Smaller sorbent particle sizes (>5 gm) did not inerease surface
decontamination efficacy for CARC paint, but did exhibit enhaneced GD reaetivity (even though
they possessed lower surface area). High surface arca favored VX reactivity. Reactivity for HD
was not signifieantly enhaneed by either small partiele size or high surface area sorbent versions.
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DECONTAMINATION EFFICACY OF CANDIDATE NANOCRYSTALLINE SORBENTS
WITH COMPARISON TO SDS A-200 SORBENT:
REACTIVITY AND CHEMICAL AGENT RESISTANT COATING PANEL TESTING

s INTRODUCTION

The ehemical warfare agents, VX, GD, and HD, have been well-known to sorb

and react on metal oxides such as alumina for more than a decade.' Indeed, alumina is the active
ingredient (A-200)” contained in the Sorbent Decontamination System (SDS).** Yet, compared
to conventional metal oxides, nanosize metal oxides may afford enhanced reactivity owing to
their larger surface areas, unusual exposed lattice planes, and greater proportions of highly-
reactive edge and corner “defeet” sites.™® Thus, reactions of nanosize MgO, CaO, and alumina
with VX, GD, and HD were undertaken.”*?
Bartram and Lynn'™'" assessed the efficacy of a commercial, nanoerystalline
MgO reactive sorbent, FAST-ACT", and compared it to A-200. In the Phase I study,'® the
efficacy found for the decontamination of VX, GD, and HD on (unpainted) aluminum panels, is
shown in Table 1. For the most part, cxeept for GD at the highest 12.5 sorbent-to-agent ratio,
Bartram and Lynn noted no significant difference between the two sorbents with regard to
surfacc decon for the agents on unpainted aluminum (lower ratios studied showed non-
significant differenee for GD).

Table 1. Results of Bartram and Lynn'® for the Decontamination
of VX, GD, and HD on Unpainted Aluminum Panels’

Sorbent Sorbent:Agent
Sorbent Agent Applied (mg) Ratio % Decon

VX 150 135 ges
FAST-ACT | GD 250 12.5 98 |

; HD 150 75 99.6
L VX 150 75 98.1 |

A-200 GD 208 L5 995

| HD 150 7.5 99.8

' 2 in. diameter panels used. Contamination level 10 g/m". 15 min agent dwell time.”
Three replicate pancls.

" Per EM3-5, NBC Decontamination, DoA, Washington, DC, July 2000, immediate decontamination is
expected to commence within 15 min following deposition of agent. Reaction rate for VX on FAST-ACT
was 17 and 15 h vs. 31 and 17 h, and GD’s reaction rate on FAST-ACT was 1.3 and 2.1 h vs. 4.1 and
21 h.




In Phase 11, Bartram and LynnII followed the reaetion kinetics of VX, GD, and
HD sorbed on FAST-ACT and A-200 by MAS NMR. They found that rubbing the agent into the
sorbent significantly increased the decomposition of VX and GD, but not that of HD, and that the

reaction rates of the agents were not signifieantly different on the two sorbents. These results are
summarized in Table 2.

Table 2. Results of Bartram and Lynn'I for the Reactions of VX, GD, and HD
on FAST-ACT and A-200

VX t12 GD t HD t,»

Sorbent Initial Final Initial Final Initial Final
(min) (min) (h) (h)
FAST- | Normal® 14 17 h 12 1.3 L4 K 31
ACT 13 15h 20 2l 32 min 25
Rubbed” 11 41 min <5° - 1.6 h 26
=5* - Af - 1.8 h 12
A-200 | Normal® 23 31h 13 4.1 14h 19
10 17 h 8.2 21.0 1.0 h 16
Rubbed” =5 = <4° = 45 min 19
<4° - <4° - 19 min 20

* 4-6 pL agent added to 200-300 mg FAST-ACT or 2-3 pL added to ca. 100 mg
A-200 without rubbing or agitation.
® 200-300 mg FAST-ACT rubbed onto 6 pL agent or 100-300 mg A-200 rubbed onto 4-6 uL
agent contained on unpainted alumina panels.
¢ Agent not detected, upper-limit t,; estimated from first time point.

Davis et al.* performed A-200 decontamination efficacy testing for VX, TGD, and
HD on a variety of surfaees, ineluding Chemical Agent Resistant Coating (CARC) paint; data for

the latter surface are shown in Table 3.

Table 3. Results of Davis et al.* for the Decontamination of VX, TGD, and HD
on CARC-Painted Steel Panels by A-200 at 25 °C*

Recovery Efficiency

Agent CARC Bare Stainless Steel | from Stainless Steel
(%) (%) (%)
VX 97.6 98.0 ST
TGD 72.6 99.1 100.0
HD 94.9 99.8 71.0

" 7 em diameter panels conlaminated with 10 g/m” agent. No agent dwell time. 5 min sorbent
decontamination time. Three replicate panels.

10




These results require further comment because of the complicated nature of the
CARC surface, which is known to be penetrated and softened by the agents.'> Thus, owing to
sorption of agent into CARC, time is of the cssence for its decontamination. The longer one
waits, the smaller is the amount of agent remaining on or near the surface that can be ecasily
removed, especially by a non-penetrating decontaminant such as a solid sorbent. The order of
penetrating/softening ability of the agents is HD >> VX > GD:" therefore, HD tends to be the
most difficult to remove or decon on CARC, followed by VX; GD is by far the easiest.

However, the situation changes for thickened GD (TGD) owing to the nced to
adequately dissolve or otherwise remove the sticky substance from thc surface. This is
especially problematic for CARC due to its dull, matte-finish. Thus, the surface roughness
would tend to cling and grab onto thickened agents more so than a smooth metal or glass surface.

These effects are certainly evident in the results in Table 3 where, considering the
simple liquid agents, less HD (94.9%) is able to be removed from the CARC surface than VX
(97.6%). The low removal of TGD (72.6%) is undoubtedly due to its oozing into the rough-
surface of CARC and the inability of the A-200 sorbent to quickly sorb this viscous, thickened
agent. Indeed, on bare (smooth) stainless steel, TGD removal jumps to 99.1%. 1t is important to
further note that the removal efficiency of VX, and especially that of HD, would be considerably
less had a non-zero (i.e., 15 min) dwell time been employed. The results for TGD would
probably not be so affected by a finite dwell time as the presence of the thickener tends to slow
the sorption of agent into a susceptible surface.'” Finally, the low recoveries of VX and HD
from the stainless steel surface (51.7 and 71.0%, respectively) is probably due to agent running-
off the edge of the coupon (as previously noted by Bartram and Lynn).'" This tends to not be a
problem for TGD, which flows very slowly: thus, the recovery of 100%.

It is the aim of the present study to examinc several nanocrystalline materials to
determine 1f they are supcrior to FAST-ACT and to compare them to the performance of A-200.
Basically, a decontamination sorbent can excel in one or two ways: 1) quickly react with/destroy
sorbed agent (kinetics) and 2) remove/sorb agent from surfaces to lowest possible levels. Some
of the individual sorbents have been varied in terms of particle size and surface area to determine
what impact, if any, these attributes have on reaction kinetics and removal efficicney.

To give the candidate sorbents a chance to demonstratc clear superiority,
purposely-challenging tests were undertaken. The first test, performed by MAS NMR_ assesses
the ability of a sorbent to react with a single, 5 pL. drop of agent without rubbing or any external
agitation. The rationale for this is that such rubbing or agitation would indeed improve any
innate reactivity (as demonstrated by Bartram and Lynn)'' but that a sorbent that can function
without rubbing or mixing is clearly superior to one that cannot. The sccond test assesses the
ability of a sorbent to decontaminate CARC paint using the 15 min dwell time mentioned above
for the immediate decontamination scenario. Thus, a sorbent whose particles are most adept at
slipping into micro-cracks and crevices of non-smooth surfaces to ferret out and sorb micro-
pools of agent will exhibit the best efficacy. Finally, the ability of a sorbent to remain
efficacious in air (air-stability) was assessed by repeating the reactivity test following 24 h
exposure of the sorbent to air.
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2 EXPERIMENTAL PROCEDURES
21 Materials
Sorbent samples were reeeived from NanoScale Corporation (Manhattan, KS) in
sealed plastic jars containing ~1 g. The sorbents were either used as-received or subjected to
24 h air-exposure (see below). For the as-received material, air-exposure was limited by opening
a fresh jar just prior to cach experiment.
Initially, the following five sorbents were examined:
1. NanoActive® Magnesium Oxide Plus, lot # 01-0105 (nMgO #1)
2. NanoActive Magnesium Oxide, lot # 02-0254 (nMgO #2)
3. NanoActive Titanium Oxide, lot # 12-0160 (nTiO, #1)
4. NanoActive Aluminum Oxide Plus, lot # 08-0133 (nAl,05)
S. Guild Alumina (A-200)
The following four sorbents were then additionally examined:
1. NanoActive TiO; 2, lot #1207310801 (nTiO> #2)
2. Modified Magnesium Oxide Plus, lot # 01061908B1 (nMgO #3)
3. FAST-ACT, lot # 15-0166

4. FAST-ACT 2, lot # 1508080801

The properties of the above materials are listed in Table 4.

12



Table 4. Partiele Size and Surface Area of Studied Samples

Particle Size Distribution (Volume %) Surface Area

Sample <Spm 5-20um 20-50pn >50pum m2/g
nMgO #1 7.65 5351 37.40 1.44 718
nMgO #2 23.34 60.70 14.63 0.84 241
nTiO,; #1 28.08 28.02 15.55 28.35 489
nAlL O, 90.34 8.45 1.21 0.00 304
nTiO, #2 13.79 28.56 50.60 7.06 492
MgO #3 0.00 8 60.54 6.28 771
FAST-ACT 2793 53.53 10.31 8.23 326
FAST-ACT 2 8.36 29.50 55.81 6.33 659
A-200 4.07 1241 51.70 31.82 312

2
39

Air-Exposure

To assess the sensitivity of the sorbents to air, ca. 0.5 g samples of cach sorbent
was spread onto a piece of weighing paper and allowed to stand for 24 h in air. The weight gain
was measured and the exposed sample was subjected to a second agent reactivity test to compare
its performance with the fresh, as-received material.

2.3 Reactivity Testing

Reactivity testing was done by MAS NMR using Varian INOVA 400 or
Unityplus 300 NMR spectrometers equipped with Doty Scientific 7 mm MAS probes. In a
typieal experiment, a 10 pL syringe was used to inject 5 pL neat liquid agent into the middle of a
column of sorbent contained in a 7 mm MAS NMR rotor (Doty Scientifie). The rotor was sealed
with double o-ring endeaps and speetra were taken periodically to monitor the reaction progress
and identify produets. "*C-labeled HD (HD*) was employed to enhance sensitivity as these
reactions were monitored by "C MAS NMR. *'P MAS NMR was employed to monitor the
rcaclionsﬂof VX and GD. Speectra were referenced to TMS (0 ppm. “C) and 85% H;PO,
(0 ppm. " P).

24 Panel Testing

Two inch diameter CARC-painted aluminum coupons were employed (arca
20 em’). Six replicate panels were employed for cach test. Twenty milligrams of agent
(10 g:'mz) was deposited onto each panel by applying 16 uL. HD (d = 1.27 g/cm‘) or 20 uL VX or
GD (both d = 1.0 g/em’) in ca. 2 pL drops. The drops were then manually spread across cach
panel using a piece of parafilm to ensure uniform surface coverage. The panels were covered
with an inverted Petri dish (to prevent undue evaporation of agent) and allowed to stand for
15 min.

At the end of the 15 min agent dwell period, 200 mg of pre-weighed, candidate
sorbent was emptied from a 4 mL serew cap vial onto each panel and evenly-distributed across
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the panel with a microspatula. Then a | kg 2 in. diametcr weight covered with aluminum foil on
the bottom was used in the manncr of Bartram and Lynn'® to rub the sorbent on each pancl: five
clockwise turns followed by five countcrclockwise turns. This process took I min or less. Some
excess sorbent was ejected over the side of the pancl during the rubbing process. The remaining
excess sorbent was immediately scraped off with a micro spatula; however, a fine coating of
powder still invariably clung to the rough CARC surface. No additional action was taken to

remove this finc coating, which would also certainly remain on trcatcd CARC surfaces in the
ficld.

To assess the amount of agent rcmaining, a contact test was first employed: each
panel was placed on a 30 °C slide warmer (to simulatc being touched by a warm, bare hand) and
a 2 in. latex (Dental Dam) disk was placed on top of each panel, followed by a 2 in. aluminum
foil cover (to prcvent agent from migrating past the latex). A 1 kg weight was placed on top of
the aluminum foil cover to excrt pressurc during a contact period of 15 min. At the end of the
15 min contact period, the latex and foil disks were removed from each pancl and extracted in
20 mL chloroform for 1 h. Thc panel itsclf was then extracted in a covered wcighing dish with
10 mL chloroform, also for 1 h, to dctermine the residual agent hazard. The cxtracts were
analyzed by 'H and/or *'P NMR to determine the amount of agent present.

3 RESULTS AND DISCUSSION
A Reactivity Testing

Observed half-lives for 5 pL VX, GD, and HD addcd to the fresh, as-received
sorbents and the 24 h air-exposed matcrials are given in Table 5 (raw kinetic data and select
MAS NMR spectra Appendices A and B). Owing to previously noted diffusion cffeets,” some
rcactions cxhibited an initial fast reaction followed by a much slower, diffusion-limited reaction;
thus, in these instances, separate half-lives are reported for the two regimes.

3.1.1 nMgO Sorbents

For the nMgO sorbents, GD tendcd to rcact quickest with half-lives on the order
of tens of minutes. That the GD rcactions did not exhibit severe diffusion limitations can be
ascribed to both its rathcr high volatility (compared to VX and HD) and good water solubility
(GD 1s soluble in water, but not misciblc), the latter attribute presumably allowing it to dissolve
and diffuse within surface-bound water layers. Note, however, that despite air-exposure and the
attendant potential water adsorption, some degradation of the GD reactivity occurrcd. This is
easily understood by thc obscrvation that thc nMgO sorbents tended to gain the most weight
upon air-exposurc (upwards of 30%) and that 3C MAS NMR (spectra BS-6 in Appendix B)
showed the formation of carbonate (CO; ) on this matcrial as a result of reaction with ambient
CO; in the air. Such a process would tend to ncutralize the very basic MgO surfacc; thus, the
deletcrious cffect on GD hydrolysis. Note that carbonatc was not detectcd on any of the frcsh
nMgO (speetra B5-7 in Appendix B), which is consistent with good quality control during their
manufacture and packaging to avoid undue air-exposure.

14



VX also tended to reaet more quiekly with fresh nMgO (half-life on the order of
hours) and did not appear to be severely diffusion-limited on nMgO #1, perhaps as a result of
spontaneous wetting of this partieular nMgO. However, air-exposure did eause a major loss in
observed VX reaetivity/diffusion. In its protonated state, VX 1s water soluble. However, with a
pK. of 8.6, VX is most likely “free-based” by the basie MgO surface into the unprotonated
state; thus, it would suffer limited water solubility and, henee, diffusion (barring spontaneous
wetting), within surface water layers.

For HD on nMgO, the reaction appears entirely diffusion-limited (in no small part
due to its water insolubility) - there is no fast, initial reaction. Yet, eonsistent with the very basic
nMgO surfaee, the major reaetion meehanism for HD is elimination to its vinyl and divinyl
produets, varying from 50% on nMgO #1 to 67% on nMgO #2 and >90% on nMgO #3 (the latter
material evidently possesses the highest basieity). Of eourse, as a result of the aforementioned
earbonation/neutralization of surfaee basieity, elimination is curtailed in the air-exposed samples
to <10% in nMgO #1 and 50% in nMgO #2, and the overall reactivity suffers. It is further
interesting to note that air-exposure resulted in greater earbonation of nMgO #2 eompared to
nMgO #1 (as indicated by their *C MAS NMR speetra, B6 and B3, respeetively, Appendix B)
which is eonsistent with the former’s higher apparent basieity. Presumably, the highest basieity
nMgO #3 would have suffered the most earbonation, but 1t was not tested.

Regarding the varied partiele size and surfaee area of the nMgO sorbents studied,
GD tended to reaet quiekest with the fresh sorbent possessing the smaller partiele size
distribution and lower surfaee area, nMgO #2. However, upon air-exposure, nMgO #1 was able
to retain its reactivity better. That this is so is perhaps related to its larger partiele size, which
would tend to reaet slower with ambient CO». This is eonsistent with the somewhat lower
weight gain of the nMgO #2 sorbent during 24 h air-exposure, 25-26 wt % vs. 28-30 wt% for
nMgO #1. HD tended to reaet equally well with the two fresh matenals, but, again, the larger-
particle material tended to retain its reaetivity better during 24 h air-exposure. As for VX, it
tended to reaet better with the larger-particle size, higher-surface area nMgO #1, even after 24 h
alr-exposure.
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Table 5. Half-Lives for VX, GD, and HD Added to Candidate Sorbents

Sorbent Treatment VX GD HD (h)
nMgO #1 fresh 4.2h 24 min 15
air-exposed 9.3/43 h 28 min 24
nMgO #2 fresh 1.3/11 h 15 min 15
air-cxposed 53h 47 min 35
nMgO #3 fresh not done not done 2.3/24
air-exposed not done not done not done
fresh 23 min (run 1) 2.8h 5.4/17
nTiO; #1 23 min (run 2)
air-exposed <2 min (run 1) 29 min 1S/
<2 min (run 2)
nTiO, #2 fresh 36 min 17 min/1.3 h 1.5/31
air-cxposed 8.5 min 9.3 min/23 min 1.5/10
nAl,Os fresh 2.1/32 1 3.0h 6.3/34
air-exposed 2.8/31h 20h 5.7
FAST-ACT fresh 41 min/2.2 h 16 min 4.0/38
air-exposed 26 min/3.9 h 34 min 4.3/14
FAST-ACT?2 fresh 55min/3.3 h 1.2 b 3.4/28
air-exposed 1.5h 24 min 2.3
A-200 fresh 7.4/56 h 1.6/13 h 29
air-cxposed 14/54 h 4.0h 19
312 nTiO;

Although VX may be unprotonated and, thus, possess limited water solubility
within surface water layers on nMgO, this is obviously not the case for nTi10, where the half-life
for VX is an astoundingly short 23 min. Moreover, upon air-exposure, nTiO; picks up 13-16%
water, further enhancing VX diffusion and reaction such that the half life is unbelievably under
2 min! Sueh fast VX rcaetions, where an apparently non-diffusion limited half-life of <30 min
occurs, has previously been seen on nanotubular titania (NTT).'* It is known that the surface
hydroxyls'® of titania (and NTT'®) are more acidic than MgO, and even Al,O; (basic enough to
climinate HD),” thus accounting for the presumed VX protonation and facilitated diffusion
(especially when sufficient hydration layers are present) on nTiO; (and NTT). That the VX half-
lives are a bit longer on nTiO, #2 could be due to fortuitous differences in water content; for
example, upon air-exposure, it picked up only 15.6% weight compared to 20.8% for nTiO; #1.
The effeet of suffieient hydration layers on (water-soluble) agent diffusion is also apparent in the
signifieantly shorter half-life of GD (29 min) on air-exposed nTiO; #1 compared to the fresh
material (2.8 h). For nTiO, #2, the behavior of GD is quite different in that, following an
initially fast rcaction, a diffusion-controlled reaction ensues (albeit still at a faster rate than on
nTiO> #1). It is not elear if these differences are due to particle morphology, surface
characteristics, or hydration effeets. However, the HD results suggest that nTiO, #1 has the
highest initial water eontent as its hydrolysis is fastest on this as received material. But after air-
exposure both nTi0; formulations possess virtually indistinguishable HD-reaction behavior.
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Like nMgO, GD tended to react best with the smaller-particle nTiO, #2, before
and after 24 h air-exposure. Also like nMgO, VX conversely reacted best with the larger-particle
nTiO #1, before and after 24 h air-exposure. Both materials possessed identical surface areas.
Again, HD did not appear to favor one material better than the other.

3.3 nA]:O_} and A-200

For HD on nAl;O3, the air-exposed sample only picks up 1-6% water but this is
evidently enough to reduce thc (diffusion-limited) half-life from 34 to 5.7 h—the shortest
sustained half-life for HD observed on any of the sorbents. Besides hydrolysis, similar but minor
amounts of HD elinunation produets are observed on both fresh and air-exposed material
(surface earbonation of the most basic sites does not seem to oecur as it does with nMgO). The
GD half-life is similarly reduced from 3 to 2 h (yet still slower than on the more basic nMgO
surface). But for VX there is virtually no ehange; it is extremely persistent on both dry and
hydrated materials. The reason for the persisteney of VX on alumina, and MgQO, for that matter,
can be attributed to the tight binding of its hydrolysis product EMPA to these basie surfaces (as
detected by *'P MAS NMRY);"? thus, EMPA is unable to assume its usual role to autoeatalytically
hydrolyze VX."”” EMPA does not bind tightly to the nTiO, (nor to the NTT') surface, so it
remains free to dismantle VX with aplomb.

These observations for nA1:05 also apply to A-200 which tends to pick up even
less water upon air-exposure (1-2%). In a similar manner, VX also remains persistent on both
the fresh and air-exposed materials as EMPA is still sidelined. However, the half-life for GD is
considerably reduced on the air-exposed sample from 13 (diffusion-limited) to 4 h as a result of
simply pieking up 1.8% water. Modest gain is also seen for HD reactivity on the slightly wetter
material, reducing its half-life from 29 to 19 h. As with nALO;, quite similar but minor amounts
of elimination produets are observed on both fresh and wet materials.

3.1.4 FAST-ACT and FAST-ACT 2

VX reacts rather well with both FAST-ACT and FAST-ACT 2, even after air-
exposure, as half-lives do not execed a few hours. GD gives mixed results, having the shortest
half-life on fresh FAST-ACT (16 min), which effectively doubles on the air-exposed material
(34 min) whereas on FAST-ACT 2 the half-life is shorter on the air-exposed (24 min) and quite
long on the fresh (1.2 h) material. HD shows its typically slow, water-starved reactivity on the
dry, fresh sorbents (unlike nMgO, only minor elimination of HD oeeurs) whereas enhanecement
oceurs for the air-exposed, hydrated materials. Typieal weight gains are 18-24% and 22-30%
for air-exposed FAST-ACT and FAST-ACT 2, respectively.

Like nMgO, GD reacted best with the fresh, smaller-particle size, lower-surface
arca FAST-ACT, whereas the larger-particle, higher-surface area FAST-ACT2 maintained its
reactivity (actually improving). Also like nMgO, HD reaeted similarly with both particle sizes.
However, unlike nMgO. VX tended to react better with the smaller-particle size, smaller-surface
area FAST-ACT.




3.15 Reactivity Testing Summary

From the reactivity results it is easy to see that nTiO, has the most potential to
afford quick, simultaneous reactivity for all three agents, provided sufficient water is present.
Although current water levels of 16-21% are effective at reducing the VX and GD half-lives to
<2 and 29 min, respectively, the HD half-life is still 11 h, nearly twice as long as that of air-
exposed nAl,O; (5.7 h). However, perhaps even higher water levels could achieve further
reduction in the HD half-life while maintaining, or even further enhancing, its unprecedented VX
and GD reactivity.

With regard to particle size and/or surface area, the smaller particle size versions
of nMgO, nTi10,, and FAST-ACT tended to react fastest with GD, even those with reduced
surface areas. Conversely, VX reacted best with higher-surface area nMgO, FAST-ACT, and
larger-particle size nTi10,. Howecver, for HD, no pronounced particle size and/or surface area
cffeets could be discerned.

Overall, nano-based sorbents were highly superior to A-200, having much shortcr
half-lives, with nTi0; being the most effective. The shortest, sustained half-lives observed for
the agents on the sorbents, either provided by fresh or air-exposed materials, are collected in
Table 6.

Table 6. Shortest, Sustained Half-Lives Exhibited by Sorbents,
Fresh or Air-Exposed, for VX, GD, and HD

Agent nMgO nTiO; nAl,Os (h) FAST-ACT A-200 (h)
VX 4.2 h® <2 min” 31.0° T i 54.0°
GD 15 min® 23 min" T 16 min® 4.0°
HD 575" 11h° 5.7 13 h° 19.0°

* Fresh nMgO #1.

® Air-Exposed nTiO; #1.

¢ Air-Exposed material.

¢ Air-Exposed FAST-ACT?2,
¢ Fresh nMgO #2.

" Air-Exposed nTiO, #2.

¢ Fresh FAST-ACT.

From the shortest, sustained half-lives given in Table 6, rankings of the sorbents
with regard to their ability to react with VX, GD, and HD in the most expeditious manner can be
gleancd. These rankings are shown in Table 7 where half-lives of the same order-of-magnitude
are considered equivalent (minutes > tens of minutes > hours > tens of hours). Notc that, at
present, these rankings should be considered tentative as a comprehensive study of the effect of
water-content on the reaction kinetics, which dramatically impacts the observed half-lives (see
above), has not been done. Nevertheless, this ranking suggests nTiO, as the sorbent possessing
the most potential to provide simultaneous, fast reaction with all three agents, because its
efficacy 1s by far the best for VX; comparable to nMgO and FAST-ACT for GD; and reasonably
close to that of nAl,O; for HD. Moreover, unlike nMgO, nTiO; is not deactivated by air (sec
above), rendering it a more robust choice for use as a reactive sorbent.
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Table 7. Sorbent Reactivity Ranking Based on Obscrved Agent Half-Lives

VX nTi0, >> FAST-ACT = nMgO > nAl,O; > A-200
GD nMgO =~ FAST-ACT = nTiO; > nAl,O; > A-200 |
HD nAl,O; > nTi0; = nMgO = FAST-ACT = A-200

32 Pancl Testing

Results for the decontamination of HD and GD on CARC panels are given in
Tablc 8. Average valucs and standard deviations are shown for the six-panel replicates.
Complete data sets arc given in Appendix C. Illustration of the contact and residual hazard
(extract) tests are shown in the following Figure.

Step 1, Contact Test with Latex Disk

Latex Disk ] R o
Sorption of Surface Liquid into Latex

bt dgsts A h bk 44 K4 Lb A g §d HH*HH‘)
CARC Paint —>

Step 2, Latex Disk Removed

Following Contact, Sub-Surface Agent Remains in Grooves/Crevices/Pores

Surtace Porosity \
T 2T e N o e o o o v s s

Step 3, Panel Extracted in CHCl4

During Extraction, Sub-Surface Agent is
Dissolved Displaced from Grooves/Crevices/Pores

N AN AN NN NN/

L 0 e T Y O O OO S O

(T LI T o BT L

Figure. Illustrations of Contact and Hazard Tests to Determine Residual Agent Present on
CARC Pancls. For blank runs (no sorbent decon), the amount of HD and GD remaining
following the contact test was identical (1.6 pL) indicating a surface porosity of about 0.8 cc/m”
for the CARC panels as depicted.

As mentioned in the Introduction, the 15 min agent dwell time has rendered HD

noticcably more difficult to decontaminate on the CARC pancls, so that only 69 to 77% can be
removed compared to 86-87% for the much lcss penctrating/softening GD.  From the
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HD % Decon results it appcars that the nMgO #1 sorbent (69%) may perhaps be slightly less
effective than nMgO #2 (74%), nTiO, (75%), and nAl,O; (76%), all of which, considering the
standard deviation, provide virtually identical results to that of the A-200 (77%).

Table 8. Panel Test Results for Sorbent Decontamination of CARC Paint®

HD GD
Sorbent | Contact | Residual | Total | % Decon | Contact | Residual | Total | % Decon
nMgO 1.8 2.4 4.2 74 1.7 0.95 2.6 87
#1 (0.45) (0.14) | (0.59) (3.8) (0.52) (0.23) | (0.36) (1.6)
nMgO 25 2.4 4.9 69 1.4 1.2 2.8 86
#2 (0.21) (0.23) | (0.40) (3.8) (0.46) (0.17) | (0.39) (2.0)
nTiO, 2.0 1.9° 4,0° o 1.4 12 2.6 87
#1 (0.56) (0.35) |[(0.70) (4.4) (0.098) | (0.27) |[(0.23) (1.2)
nAlLO3 25 1.4 39 76 12 1.4 2.6 87
(0.30) (0.16) | (0.41) (2.4) (0.26) (0.16) | (0.15) (0.75)
A-200 255 1.3 38 Tl 2.0 0.65 2.6 87
(0.44) (0.46) |(0.47) (2.9 (0.24) | (0.093) | (0.24) (1.0)
No 14 1.6 16 98 12 1.6 13 66
Decon (1.5) (0.36) (1.2) (9.3) (1.0) (0.50) (1.2) (5.8)
Control*

a

2 in. diameter panels contaminated with 10 g/m” agent. 16 pg HD or 20 pg GD manually spread
evenly across panel. 15 min agent dwell time. 5 min sorbent decontamination time. Units in micro-
grams ([pg] agent recovered). % Decon is the total percent agent removed from panel. Six replicate
panels. Standard deviation shown in parentheses.
® Average of three replicates.
¢ No sorbent appliced (to determine agent recovery cfficiency).

Regarding particle size and the potential ability of smaller particles to venture into
the presumed small crevices and clefts of the rough CARC surface, nAl;O3 possesses the highest
fraction of the smallest, <5 pm particles (90.34%), yet was statistically no better at removing
imbedded HD or GD than A-200, which possesses the lowest fraction of these small particles
(4.07%). The only hint of a particlc-size effect for agent removal is given by the marginally-
better performance of nMgO #2 compared to nMgO #1, whose fractions of <5 um particles are
23.84 and 7.65%, respectivcly; however, their % Decon, 69 and 74%, are still within
experimental error (£3.8%). Thus, either the surface features of CARC within which agent
abides have openings significantly-smaller than 5 pm, or the sorbent particles able to reach the
secreted agent renders insignificant rcaction/decontamination on the required time-scale
(15 min). Howevecr, whatever the reason, small particles (<5 pm) of the current materials do not
appear to enhance the surface decontamination efficacy of CARC paint.

It is important to note that for the control experiment, thc excellent rccovery of
HD from the CARC panels (98%, in the absence of applied sorbent) shows that the 1 h CHCl;
extraction procedure is sufficient to recover the CARC-sorbed HD. For the GD control
experiment, noticeable loss occurred as some of the GD ran over the sides of the panel during the
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15 min dwell time; thus, explaining the low GD recovery of only 66%. It is further interesting to
note that the extracts of both the GD and HD controls are identical, 1.6 pL. Thus, the same
amount of liquid remained entrained and inaccessible to be sorbed by the latex disk during the
I 5 min contact hazard assessment period (see Figure). This observation suggests that the CARC
paint possesscs a large porosity of about 0.8 cc/m” as depicted in the Figure.

For GD, all the sorbents performed identically. Thus, the panel testing provided
little insight into the truc potential of the candidate sorbents to fully function as effective
decontaminants, to both sorb agent from surfaces and to quickly react with them to complete the
decontamination. It is primarily due to the rather consistent panel test rcsults across the sorbent
candidates that VX panel testing was not done; rather, time and funds were used to do the
additional reactivity testing for the second batch of sorbent candidates.

Regarding the results of Davis et al..* the A-200 sorbent was able to achieve
94.9% removal of HD from their CARC test panels. This high value is certainly due, at least in
part, to the zero agent dwell time employed, i.c., the HD did not have a chance to penetrate/sorb
into the CARC paint. However, another contributing factor could be the true HD resistance of
the actual CARC paint employed as the resistance of different CARC lots to HD
penetration/softening varies widely. Therefore, for CARC panel testing, in particular, it is
important to always employ a control decontaminant so that the relative effectiveness of
decontaminates can be determined with respect to the control, rather than attempting to rely
solely on absolute decontamination levels obtained by experimental methods employing
different agent dwell times and/or CARC surfaces of varying pedigree.

4. CONCLUSIONS

The reactivity testing revealed that nTiO,, by far, possesses the fastest reaction
with VX (half-life <2 min) of any of the other candidates and its reaction rate with GD is
comparable to that of nMgO and FAST-ACT (half-lives of tens of minutes). However, this fast
rate is only secen when nTiO; is sufficiently hydrated. Hydration of nTiO> also increases the
rcaction rates of GD and HD. Yet, the HD half-life on hydrated nTiO; is still on the order of
several hours, comparable, but still nearly twice as long as that of hydrated nAl,O;. Thus, the
full hydration regime of these two sorbents should be explored to determine which actually
provides the best HD reactivity.

The panel test results for HD and GD did not enable a clear distinetion of the
potential efficacy of the sorbent candidates as all tended to provide for nearly identical removal
of HD from the Chemical Agent Resistant Coating (CARC) panels (VX panel testing was not
done because of this). However, for HD, it did appear that nMgO #1, at 69% removal, did not
function quite as well as nMgO #2 (74%), nTiO, (75%), nAl:Osz (76%), and A-200 (77%). the
latter sorbents performing identically within experimental error. For GD, all the sorbents
achieved 87% removal of this agent from CARC.

Finally, regarding particle size and surface area of the sorbents, small particles
tended to provide for the fastest GD reactions whereas higher surface areas and/or larger particle




sizes tended to favor VX reaction. The reaction of HD was quite insensitive to cither particle
size or surface area, tcnding to not favor one over the other. For surface decontamination of
CARC paint, smaller particle sizes, even those under 5 um, did not significantly improve the
removal/reaction/decontamination of GD or HD imbedded within the rough paint surface. Bascd
on the ability of contact hazard testing to remove surface-sorbed agent, the CARC paint appeared
to possess a substantial surface-porosity of about 0.8 cc/m’.
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APPENDIX A
REACTIVITY TEST RAW KINETIC DATA
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PANEL TEST DATA

on CARC Panels by Candidate Sorbents.

Table C1. Panel Test Data for the Decontamination of VX, GD, and HD

HD (16 xL added, six replicates) GD (20 pL added, six replicates)
Sorbent | Contact | Residual | Total Contact | Residual | Total
(uL) («L) (L) | % Decon (uL) (uL) (#L) | % Decon
1.8 24 4.2 74 1.9 0.92 2.8 86
1.2 2.3 3.3 78 2.1 0.79 2.9 85
nMgO#1 1.8 2.4 4.2 74 1.0 Il Dl 89
23 2.6 4.9 69 1.8 0.66 25 87
2.3 2.6 4.9 69 1.0 1.3 2.3 88
1.4 2.3 3.7 7 il 0.92 3.0 85
2.4 2.3 4.7 69 1.4 1.1 2.5 87
23 2.6 4.9 69 1.3 1.2 2.5 87
nMgO#2 2.8 2.7 5.5 63 1.7 1.3 3.0 85
252 2.1 4.3 75 1.1 1.4 2.6 87
25 2.3 4.8 69 2.4 0.92 3.5 82
2.5 2.6 5.1 69 [ 1.1 2.8 86
2.1 1.6 B 77 1.4 0.97 24 88
2.9 1.9 4.8 70 1.4 1.1 2.3 87
nTiO; 1.2 2.3 35 78 1.4 0.85 2.4 88
#1 1.9 - 1.4 1.5 2.9 85
T - - - 1.3 1.5 2.8 86
2.1 — ~ — 1.6 1.2 2.8 86
2.3 1.2 3D 78 1.6 122 2.8 86
2.3 1.4 3.7 q7 1.2 1.2 24 88
nAl,O; o B 1.3 3.8 76 1.3 1.3 2.6 87
3.1 1.6 4.7 71 0.8 1.6 24 88
2.4 1.6 4.0 75 1.3 1.3 2.6 87
2.5 1.4 3.9 76 Jl 18 2.6 87
2.0 1.6 3.6 78 1.8 0.71 23 87
2.4 13 3.7 7 2.3 0.71 3.0 85
A-200 2.5 1.8 4.3 73 1.8 0.53 2.3 88
2.4 0.6 3.0 81 1.9 0.71 2.6 87
33 0.9 42 74 1.9 0.71 2.6 87
Bed 1.6 3.9 76 2.3 0.53 20 86
No 14 1.0 15 94 10 1.1 11 55
Decon 15 1.7 17 110 12 |7 14 70
Control 12 2.0 14 88 11 1.9 13 65
16 1.3 17 110 12 1.2 13 65
13 157 15 94 12 23 14 70
13 Ji/ 15 94 13 1.1 14 70
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