
MULTI-TOUCH INTERACTION FOR

ROBOT COMMAND AND CONTROL

BY

MARK JOHN MICIRE
B.S. UNIVERSITY OF SOUTH FLORIDA (1999)
M.S. UNIVERSITY OF SOUTH FLORIDA (2003)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

UNIVERSITY OF MASSACHUSETTS LOWELL

Author: ... !f</\^^/y^r7... .«<1^<p.-^'7Tr'............. Date: December, 2010

Dissertation Chair

Dr. Holly A. Yanco

Committee Member: . <

Dr. Jill Drury

Committee Member: .uwiwi.. ttk*^\.TI^A/^..
Dr. Terry Fong

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Multi-Touch Interaction for Robot Command and Control

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Massachusetts, Lowell,Department of Computer
Science,Lowell,MA,01854

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In emergency response, gathering intelligence is still largely a manual process despite advances in mobile
computing and multi-touch interaction. The laborintensive nature of this process means that the
information digested by personnel going into the eld is typically an operational period old. In a day where
satellite photography and mobile connectivity is becoming ubiquitous in our digital lives, it is alarming to
nd this is the state of the practice for most disciplines of emergency response. Recent advances in robotics,
mobile communication, and multi-touch tabletop displays are bridging this technological gap and
providing enhanced network centric operation and increased mission e ectiveness. Our work focuses on
closing the gap between the personnel in the eld and the command hierarchy supporting those teams. Our
research in human-computer interaction leverages these technologies for robot control through a
collaborative tabletop multi-touch display. A single-robot operator control unit and a multi-robot
command and control interface has been created. Users command individual or multiple robots through a
gesture set designed to maximize ease of learning. Users can pan and zoom on any area, and the interface
can integrate video feeds from individual robots so the users can see things from the robot’s perspective.
Manual robot control is achieved by using the DREAM (Dynamically Resizing Ergonomic and
Multi-touch) Controller. The controller is painted on the screen beneath the user’s hands, changing its size
and orientation according to our newly designed algorithm for fast hand detection, nger registration, and
handedness registration. In addition to robot control, the DREAM Controller and hand detection
algorithms have a wide number of applications in general human-computer interaction such as keyboard
emulation and multi-touch user interface design.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

224

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

MULTI-TOUCH INTERACTION FOR

ROBOT COMMAND AND CONTROL

BY
MARK JOHN MICIRE

ABSTRACT OF A DISSERTATION SUBMITTED TO THE FACULTY OF
THE DEPARTMENT OF COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE
UNIVERSITY OF MASSACHUSETTS LOWELL

DECEMBER, 2010

Dissertation Supervisor: Holly A. Yanco, Ph.D.

Associate Professor, Department of Computer Science

Abstract

In emergency response, gathering intelligence is still largely a manual process
despite advances in mobile computing and multi-touch interaction. The labor-
intensive nature of this process means that the information digested by personnel
going into the field is typically an operational period old. In a day where satellite
photography and mobile connectivity is becoming ubiquitous in our digital lives, it
is alarming to find this is the state of the practice for most disciplines of emergency
response. Recent advances in robotics, mobile communication, and multi-touch
tabletop displays are bridging this technological gap and providing enhanced
network centric operation and increased mission effectiveness. Our work focuses
on closing the gap between the personnel in the field and the command hierarchy
supporting those teams. Our research in human-computer interaction leverages
these technologies for robot control through a collaborative tabletop multi-touch
display. A single-robot operator control unit and a multi-robot command and
control interface has been created. Users command individual or multiple robots
through a gesture set designed to maximize ease of learning. Users can pan and
zoom on any area, and the interface can integrate video feeds from individual
robots so the users can see things from the robot’s perspective. Manual robot
control is achieved by using the DREAM (Dynamically Resizing Ergonomic and
Multi-touch) Controller. The controller is painted on the screen beneath the
user’s hands, changing its size and orientation according to our newly designed
algorithm for fast hand detection, finger registration, and handedness registration.
In addition to robot control, the DREAM Controller and hand detection algorithms
have a wide number of applications in general human-computer interaction such
as keyboard emulation and multi-touch user interface design.

Acknowledgments

I would like to thank my committee, Dr. Holly Yanco, Dr. Jill Drury, and Dr.

Terry Fong, for their guidance and patience through this process. In particular,

I have to thank Holly for providing an environment where creativity is king and

good science is the result. Holly is a catalyst for innovation and protects her

students with the ferocity of a mother bear. She has provided the best qualities of

a mentor, colleague, and friend. Thank you; I am better because of my time here.

Throughout this dissertation, I will use the word “we” often. I have survived

because I have been supported by a wonderful group of people that work in the

two robotics labs and our department staff. Thank you so much to all of you. I

am a big fan of karma, so the all-night coding sessions, user tests, illustrations,

and tireless editing will be remembered whenever the favor can be returned.

My family has tirelessly rallied behind me in all of my crazy adventures. Thank

you to my mom and dad who had the foresight and discipline to make the start of

this journey possible. Thank you to my sister who reminds me that I should keep

running forward like Forest Gump despite all of my doubt and hesitation.

Thank you to Kate Tsui, who has patiently helped me through the good and

bad parts of this academic struggle. Her edits, statistics, and scientific rigor are

on every page of this thesis. She makes me a better scientist and a better person

every day. Thank you. I cannot imagine having done this without you.

Finaly, a thank you to Arnis Mangolds and John Blitch who arguably set me

on this journey into the world of search and rescue robotics. Your humbleness and

Zen-like disposition are constant reminders to focus the products of research in

real applications. Whenever I need to gut-check a problem, I find that I can ask,

“What would Mangold or Blitch do?” The answer is always nearby.

This work has been supported, in part, through grants from the National

Science Foundation (NSF IIS-0415224 and IIS-0546309), Microsoft Research, Na-

tional Institute for Standards and Technology (NIST 70NANB8H8168), and Army

Research Office MURI (W911NF-07-1-0216).

Contents

1 Introduction 19

1.1 Disruptive and Enabling Technologies 21

1.2 Research Focus . 24

1.3 Problem Statement . 25

1.4 Approach . 26

1.5 Thesis Statement and Research Goal 27

1.6 Contributions . 28

1.7 Organization . 29

2 Background 31

2.1 Multi-touch Technology . 31

2.2 Multi-Touch Gestures . 34

2.3 Robot Control . 37

2.4 Multi-Robot Command and Control 39

2.5 3D and Immersive Telepresence . 41

3 Performance Validation 45

3.1 Hypotheses . 46

3.2 Experimental Design . 46

3.2.1 Participants . 48

3.2.2 Procedure and Data Collection 48

3.3 Data Considerations and Results 49

3.3.1 Task Completion Time . 50

6

3.3.2 Accuracy . 51

3.3.3 Performance Models . 52

3.4 Impacts and Implications . 53

4 Multi-Touch Interaction and Robots 55

4.1 Interface Description . 56

4.1.1 Joystick Interface Design 59

4.1.2 Multi-touch Interface Design 60

4.1.3 Hypothesis . 62

4.2 Experiment Design . 63

4.2.1 Participants . 63

4.2.2 Procedure . 64

4.2.3 Data collection . 64

4.3 Results and Discussion . 65

4.3.1 Performance . 67

4.3.2 Subjective Assessment . 69

4.3.3 Learnability Assessment 70

4.4 Interaction Characterization . 71

4.4.1 Participant 1 . 73

4.4.2 Participant 2 . 74

4.4.3 Participant 3 . 75

4.4.4 Participant 4 . 75

4.4.5 Participant 5 . 76

4.4.6 Participant 6 . 77

4.5 Impacts and Implications . 77

5 MultiTouch Joystick Emulation 79

5.1 Design Approach . 81

5.2 Related Works . 83

5.3 Engineering Criteria . 85

5.4 Hand And Finger Registration . 88

7

5.5 Form and Function . 92

5.6 Experiment Design . 96

5.7 Results and Discussion . 99

5.7.1 Hand Position . 100

5.7.2 Board Position . 101

5.7.3 Gender . 102

5.8 Potential for Improvement . 103

5.9 Impacts and Implications . 105

6 Robust Multi-touch Robot Control 107

6.1 Interface Definitions . 109

6.1.1 Surface:Window Interface Description 109

6.1.2 Full Screen Interface Description 113

6.2 DREAM Controller . 115

6.3 Hypotheses . 117

6.4 Experimental Design . 118

6.4.1 Procedure . 119

6.4.2 Data collection . 120

6.4.3 Participants . 120

6.5 Results and Discussion . 121

6.5.1 Task Performance . 121

6.5.2 Usability Performance . 129

6.6 Impacts and Implications . 135

7 User Defined Gestures 139

7.1 Experiment Design . 140

7.1.1 Participants . 141

7.1.2 Procedure . 141

7.1.3 Tasks . 146

7.2 Taxonomy of User Defined Gestures 148

7.3 Results and Discussion . 151

8

7.3.1 Selection . 153

7.3.2 Multi-hand and Multi-finger Gesturing 154

7.3.3 Handwriting . 155

7.3.4 Gesture Usage as a Function of Prior Experience 156

7.4 Impacts and Implications . 158

8 Multi-Touch Multi-Robot Command and Control 160

8.1 Technology Capabilities Assumptions 162

8.2 Gesture Design . 165

8.2.1 Gesture Grammar . 166

8.2.2 Robot Control Grammar 166

8.2.3 View Control . 171

8.2.4 Menu Functions . 172

8.2.5 Stop and Reset Gestures 174

8.2.6 DREAM Controller Integration 174

8.3 Gesture State Machine Implementation 176

8.4 Simulation Design . 178

8.5 Experiment Design . 180

8.5.1 Participants and Procedure 181

8.5.2 Data Collection . 186

8.6 Results and Discussion . 188

8.6.1 Gestures as a function of grammar 188

8.6.2 Gestures as a Function of Assumptions 191

8.6.3 Motivation for Further Improvement 193

8.6.4 Information Fusion and Decision Support 195

8.6.5 Questionnaire Results . 196

8.6.6 User Expectations and Need for Intervention 196

8.7 Impacts and Implications . 199

9 Conclusions and Future Work 200

9.1 Contributions . 203

9

9.2 Future Work . 205

9.3 Limitations of Research . 206

9.4 Generalizations of Research . 207

9.5 Closing Thoughts . 209

A Coding Classifications for Multi-Touch Robot Control 222

A.1 Timed Event Coding Guidelines 222

A.2 Notes that may be of interest: . 224

B Biographical Sketch of Author 225

10

List of Figures

1-1 Information gathered in the field (left) is hand annotated onto maps

and then transcribed with a black marker (center) onto a global

map that is entered into a GIS system and presented to the next

operation period (right). 20

3-1 The Mitsubishi DiamondTouch digital tabletop (left) was evaluated

in regards to task completion time and accuracy. A standard mouse,

shown to the right of the participant, was used for comparison. The

screen shot (right) shows a target presentation. 47

4-1 The UML USAR interface (top) is shown with a participant using

the joystick configuration (lower left). This interface allows the user

to operate the iRobot ATRV (lower right) though the NIST USAR

course (shown in Figure 4-4). 57

4-2 Illustration of the flight-style joystick used in the interface design. 59

4-3 Screenshot of the multi-touch interface and guide to gestures that

activate interface features and autonomy modes. 61

4-4 The robot operated in the NIST USAR arena (left) while experi-

menters uses ground truth maps (right) to record specific incidents.

In the ground truth map, “Start” symbols represent the four possi-

ble starting points, “V” represents a victim location, lines represent

the robot path, and circled numbers represent collisions with the

arena walls. 65

11

4-5 Shoulder (left) and close (right) view of the drive control panel,

providing control of translation (vertical) and rotation (horizontal). 71

5-1 The iRobotR© PackbotR© Hand Controller (left front) is an adapted

Sony PlaystationR© style controller. The PackbotR© EOD Operator

Control Unit (left rear) places six degrees of freedom on each hand,

requiring the operator to manage 12 degrees of freedom and 12

context sensitive push buttons for typical operation. The Foster

Miller TALON robot controller (right) is operated through three two

degree of freedom joysticks and a large array of switches, selectors,

and dials. (Photos courtesy of iRobot Corporation and the National

Institute of Standards and Technology.) 80

5-2 A dual-thumb joystick modeled after the Sony PlaystationR© con-

troller (left) was used to inspire the design of a paper prototype

(center) that was selected for the design of the multi-touch DREAM

Controller (right) on the Microsoft Surface. 82

5-3 The hand characteristics and registration heuristics were, in part,

inspired by Henry Dreyfuss’s 1955 book “Designing for People.”

Reproduced with permission. Courtesy of Allworth Press. 89

5-4 Hand and finger registration is accomplished by first ensuring that

the points are within the maximum size for a human hand (top left),

then finding the centroid of the bounding box containing all of the

points (top right), determining the two largest angles (bottom left),

and determining if the angle from the thumb to the index finger is

clockwise or counterclockwise (bottom right). 91

5-5 Users have a wide variety of hand characteristics. The DREAM

Controller adjusts several parameters to tailor the size, orientation,

and position of the controller. This design is intended to maximize

the users’ comfort and performance. 94

12

5-6 Participants in the study were asked to stand in one of eight positions

around the Surface to test the sensitivity of the algorithm to hand

orientation. 97

5-7 Participants were asked to place their hands in three positions. First,

on the tips of their fingers (left) like a pianist or touch typist. Then

in a relaxed position (center) with the pads of their fingers resting

on the surface. Finally, they stretched their hands as far a possible

(right) to demonstrate their maximum contact size. 99

5-8 Annotated images for failed hand and finger recognition of hand

placements (left column) and successful recognition for the other

hand (right column). The center point (c), thumb (t), index finger

(i), and little finger (l) have been labelled. ti is the angle between

the thumb and index finger and is overlaid on the angle tcl as an

arc. When the arc ti extends over the line tc, then the algorithm

failed. In other words, the angle between the thumb and the index

finger must be smaller in order to correctly identify the fingers. . . 104

5-9 Our hand detection algorithm is played back in the Surface Simulator

using the publicly available dataset (left). Additional photographic

data (right) is included in this data set for researchers that wish to

work with the vision system directly. 106

6-1 Surface:Window features and gestures for operating the robot with

on-screen controls. 110

6-2 Surface:FullScreen features and gestures for operating the robot

with on-screen controls. 113

6-3 The DREAM Controller, as configured for the ATRV-Jr robot used

in this study. Illustration shows the controller functionality and

many of the local controls that duplicate on-screen controls. . . . 116

13

6-4 The participant is observed using the multi-touch interfaces (left)

to search for victim marker using an ATRV-Jr robot (middle) while

test administrators (right) record video and written documentation

regarding the performance of the run. 119

6-5 Participant performance was measured by counting the number

of victims found (above) and the overall distance traveled in the

arena (below). In the case of the Surface:Window interface, the

participants were able to travel farther and find more victims. . . 123

6-6 Memorability was measured by testing the recall of participants

immediately after the experiment run and then ten days later. The

percentage of correct answers was recorded and compared to assess

the memorability of the robot control mechanisms. 132

7-1 Participants were seated in front of a Mitsubishi DiamondTouch

fastened to a round table where they provided gestures on a static

front projected image. 140

7-2 Participants were presented with a physical ActiveMedia Pioneer

2Dx robot (left) that was iconically depicted in the experiment slides

(right). 141

7-3 Normalized percentages of the gestures expressed by the participants

in each of the classification groups. 152

8-1 An example of the Lasso gesture (left) as dragged on the screen

until the finger was lifted. The result of this lasso is shown by the

yellow highlighted robots (right). 167

8-2 State machine for the grammar showing the basic structure and

state changes for special cases. 169

14

8-3 After selecting the robots, the user pressed and held his or her finger

on the surface for four seconds (left). A menu appeared under the

finger (center) where options could be selected such as Color, Queue,

and Execute. When the user selected the desired color (right) the

finger was lifted and the selected robots were changed. 172

8-4 Illustration of the DREAM Controller configured for dynamically

selected robots in this interface. The left hand controller displays

the data from the laser range finder in a radar-like display and

allows the user to drive the robot chassis. The right hand shows

the video from the robot’s view and controls the pan and tilt of the

camera. 176

8-5 Finite state machine for the gestures in the multi-robot command

and control interface. 177

8-6 An aerial view of the urban simulation environment used to test the

gesture based command and control interface. The three dimentional

city was approximately 2 acres in area and used realistic hardware-

accelerated physics for robot movement and interaction with the

environment. 179

8-7 Circles were drawn around the robots on a transparent layer outside

of the simulation. A selected robot (left) is shown with a yellow

highlight and unselected robot (right). In both cases, the blue

triangle represents the orientation of the robot. 180

8-8 Illustration of the fictional Loop City, Nevada, drawn in the style of

a USGS topographical map showing major features, highways, and

common landmark names. Participants used this map as a reference

while directing search operations with the eight simulated robots. 183

15

8-9 Final task of the scenario required the participant to take manual

control of the robot (center) and use the DREAM Controller to

view the suspect construction vehicle. This screenshot shows the

activated DREAM Controller and positions of the fingers are shown

lightened circles. 187

8-10 Percentages of gestures used, grouped by their position in the

grammar discussed in Section 8.2.2. 190

9-1 Multi-touch technology will be making its way into the field in the

very near future. The UAV (above) provides real-time imagery to

the command staff back at the base of operation while the robot

control unit (below) allows the field technicians to comfortably

control the UGV robot and neutralize the threat. 201

16

List of Tables

2.1 Overview of collaborative tabletop displays in active development. 34

3.1 Mean task completion time (X̄ in ms) and standard deviation (SD)

by target size and input method. Paired t-test result of input

methods shown as (t). 51

3.2 Mean error rate (X̄) and standard deviation (SD) by target size

and input method. Paired t-test result of input methods shown as (t). 51

4.1 Constructive performance in the USAR arena. 67

4.2 Number of destructive incidents in the USAR arena. 68

4.3 Participants’ subjective assessment. 70

5.1 Hand and finger recognition rates by hand 101

5.2 Hand and finger recognition rates by board position 102

5.3 Hand and finger recognition rates by sex 103

6.1 Four versions of the operator control interface. The original joystick

version (top) was compared against the DiamondTouch version

from Chapter 4 (upper-middle) and two newer Surface versions

(lower-middle and bottom). 108

6.2 Area explored including overlap in the USAR arena (in squared feet).122

6.3 Number of destructive incidents per square foot in the USAR arena. 126

6.4 Victims found in the USAR arena. 128

6.5 Participants’ subjective assessment. 130

17

7.1 Illustration and descriptions of some of the 26 tasks performed by

participants. Similar tasks have been omitted from this table due

to size constraints, but full descriptions are given in the text. . . . 143

7.2 Taxonomy of user generated gestures based on 3197 gestures over

31 users and 26 tasks. 149

8.1 Touch gesture reference guide for robot selection, movement, and

execution. Icons based on (Villamor et al., 2010). 170

8.2 Touch gesture reference guide for map movement, menu selection,

and joystick control. 173

8.3 Touch gesture reference guide for map movement, menu selection,

and joystick control. 175

8.4 List of the semantic differential scale questions and the results from

the post experiment interview. 197

18

Chapter 1

Introduction

Hurricane Katrina made landfall near Biloxi, Mississippi, in August 2005. The

resulting disaster response revealed a large technological gap. Although satellite

and aerial information existed, it was not available to or utilized by the search teams.

Instead, state and federal teams were required to use topographical and urban

road maps that were often outdated or incorrect. These maps were distributed

to search personnel in the morning for the daily grid searches. When the teams

returned in the evening, personnel on the night shift integrated updates by hand

based upon search reports (Micire, 2008).

Large-scale responses require the dissemination of information through multiple

law enforcement, search and rescue, and municipal facilities groups. The ability

of the command hierarchy to rapidly digest, discuss, and make decisions based

on new information can mean the difference between mission success and failure.

Coordination and interoperability problems during Hurricane Katrina provided a

catalyst for a significant overhaul in the national search and rescue (SAR) response

system including mandatory adoption of the Incident Command System (ICS)

and National Incident Management System (NIMS). The reorganization of the

command hierarchy and multi-agency interoperability is a positive change, but

unfortunately, the information gathering and planning stages have largely remained

the same. This planning is still largely performed through the use of radios and

paper maps (Committee on Planning for Catastrophe, 2007).

19

Figure 1-1: Information gathered in the field (left) is hand annotated onto maps
and then transcribed with a black marker (center) onto a global map that is entered
into a GIS system and presented to the next operation period (right).

Search and rescue is not the only type of response affected by this problem. In

the summer of 2008 during the California wildfire responses, the aggregations and

correlation of data from the field was largely performed by hand. This manual

process occurred despite the use of ground GPS tracking, digital photography, and

the use of the Ikhana Predator unmanned aerial system. As shown in Figure 1-1,

personnel manually took data from each of these sources and manually correlated

them to a centrally referenced map. Once this map was updated with black pen

markers, the map was entered into a geographical information system (GIS) for

paper printing and then presented to the personnel on the next operation period.

Since this process took an entire operation period to complete, the map shown to

the personnel reflected intelligence from nearly 24 hours ago.

The ICS and NIMS command system is flexible and can accommodate col-

laborative technology, even though in current practice this is far from the case.

To understand problems in the current system, the state of the practice must be

examined. For the most part, information is gathered by the reconnaissance or

response teams in the field. At the end of the operation period, the command is

20

updated on findings, progress, and issues for the next operation period. All of the

information is quickly digested onto paper and laptop computers for map products

and briefings. Several of the problems with this strategy include:

• This information is static and therefore only provides snapshot views of the

progress and goals of the operation.

• The temporal resolution of the operation is typically on the order of 8 to 12

hours.

• Each of the records on maps, papers, and laptops become small “islands” of

information.

• There is no global operational picture until all of the intelligence is manually

gathered and correlated by personnel.

• Planning becomes a rapid and chaotic process since there is very little time

between operation periods.

The next decade will continue to exacerbate these problems since the amount of

data entering the system will increase by orders of magnitude. The new sources of

data such as network enabled responders and robots (discussed in the next section)

will provide higher resolution, location, and temporal information, but there must

be a way to digest this information in a collaborative command environment. Multi-

touch tabletop collaborative displays are a well positioned solution for displaying

and interacting with these new streams of data and intelligence.

1.1 Disruptive and Enabling Technologies

Much like the changes in the late 20th century, the 21st century will prove no

exception to the advancement of command and control (C2). In fact, it represents

the convergence of at least three technologies that will represent a significant

change in the processes and systems of command and control.

21

First, there is the adoption of Network Centric Operation (NCO). NCO leverages

global positioning, distributed network communication, and reachback capabilities

to connect the command hierarchy vertically and laterally for a shared view of

the operations space. The effect for group coordination and awareness can be

dramatic if implemented correctly and reliably. From Alberts and Hayes (2006),

“At the risk of oversimplification, [NCO] is a two-step process: first, achieving

shared awareness, and second, leveraging shared awareness to achieve a greater

degree of self-synchronization, leading to dramatic increases in both agility and

effectiveness. The magic of [NCO] is the emergence of self-synchronizing behavior.”

It has only been in the last decade that the technology to support a robust network-

centric view of operations has been possible. Now that it is reaching maturity and

acceptance among leaders, NCO will quickly become ubiquitous and expected in

any command and control scenario, military, or otherwise.

Second, there has been the significant use of unmanned ground vehicles (UGVs)

and unmanned aerial vehicles (UAVs) in military and domestic operations. Decades

of funding from science and defense agencies are beginning to produce field-worthy

and reliable platforms. Recent technological advances in the DARPA Grand

Challenge and other military funded ground robot research has shown that robots

are quickly maturing and will soon be autonomously performing dangerous tasks

in real and dynamic domains (e.g. (Thrun et al., 2007; Urmson et al., 2007)).

UGV manufacturers have delivered over 12,000 robots to US military and other

government customers in the last five years (Singer, 2009). UAVs have not only

proven their worth and become commonplace in the military, but also they have

begun to replace their human-piloted counterparts. In fact, in 2009, more pilots

were trained for unmanned air vehicles than manned aircraft (Singer, 2009). As

these systems advance, their autonomy will increase and their coordination with

ground forces (manned or unmanned) will need to become more coordinated and

robust. The role of robots in SAR operations is still maturing and changing, but

as robots are adopted, the increase in data and intelligence will only increase the

workload for planning teams.

22

Finally, the use of large multi-touch interactive tabletops or displays has brought

value to the task of command and control through increased interaction and group

collaboration. These tabletop displays have existed for several decades (Buxton,

2007; Krueger, 1983), but it is only recently that they have come into popularity

for viewing geospatial and temporal data for group decision making (TouchTable,

2007; Rowe et al., 2009; Taylor, 2006). A horizontal tabletop view of the task space,

similar to a paper map, helps create a shared workspace that catalyzes group

discussion and decision making. Additionally, multi-touch displays and tabletops

are now being packaged for use in mobile command centers in the field (Tse

et al., 2006). These multi-touch tabletop interfaces significantly benefit operations

because, unlike paper maps, they can be automatically updated and benefit from

the digital information gathering from all of the elements described above in the

NCO and robot assets.

In contrast to the earlier analysis of the manual planning strategy, these three

technologies enable the following improvements:

• Information is dynamic and provides live or slightly delayed views of the

progress and goals of the operation.

• The temporal resolution of the operation is typically on the order of seconds,

minutes, or tens of minutes.

• Each of the records are correlated to a common computing and control

platform that can be collaboratively viewed and discussed.

• There is a global operational picture as data is automatically gathered, and

intelligence can also be manually correlated by personnel.

• Planning becomes informed and iterative since the command hierarchy can

observe progress as teams progress through their operation periods.

23

1.2 Research Focus

Command and control has been developed largely in government and military

domains. SAR borrows from the military’s experience and expertise in this area.

While the end goal is different, the foundation and intermediate steps in these

two domains are very similar. In both, there is a requirement to identify people

(such as enemies or disaster victims), assemble people or equipment to address the

problem (such as weapons or rescue equipment), and provide a solution to the

problem (such as military force or rendering assistance). Both of these domains

require the coordination of large numbers of players and logistical support. The

similarity is not surprising when one considers the large number of former military

personnel that later become trained and utilized in SAR operations.

The research in this dissertation focuses on the SAR domain. SAR can include

many sub-disciplines including urban search and rescue (USAR), wilderness rescue,

wildfire response, and avalanche rescue. Ultimately, if the rescue sub-domain can

benefit from NCO, robots, and multi-touch enabled C2, then this research can be

applied to rescue operations.

This research and dissertation focuses on two fundamental use cases. First,

there is the case of a high level commander requiring a “theater wide” view of

the response space. This view will include the affected area of interest, all of

the tracked assets deployed into the scenario, and all of the agents that can be

tasked, including robots and humans. Additional aids such as threat modeling and

probabilistic search strategies can optionally be viewed at this level of interaction.

The second use case centers on the person responsible for monitoring and

collaboratively interacting with the robots should they require interaction or

corrective measures. In the human-robot interaction literature, this person is

typically termed the “robot operator.” For UAVs and UGVs, it is expected that

a certain level of autonomy will allow the robot to carry out navigation and

basic obstacle avoidance. Regardless of the implementation and reliability of

the autonomy, it should be expected that a human operator will at some point

24

need to control and observe the robot directly. This intervention might include

manual teleoperation of the platform or manipulation of sensors such as cameras.

The interface described in this research provides teleoperation-level “fine grained”

interaction to individual robots.

The overall goal of this research is to bridge these two use cases in a natural

and intuitive manner. The “theater wide view” will show tasking and planning on

a large scale, but the users should then be able to select and zoom in to a robot

of interest and begin manual intervention of the robot’s sensors or manipulators.

With this functionality, the users should feel that they have a unified display and

control interface.

1.3 Problem Statement

As the command staff and hierarchy of emergency response organizations has

strengthened over the years, the effectiveness and execution of each person’s

responsibilities has improved. Roles and responsibilities have been iteratively

tuned to maximize impact and minimize idle personnel. As workload is maximized

in finite time, there may not be the opportunity for in depth training on new

technologies. Lack of advanced training, therefore, leaves gaps in the staff’s ability

to fully utilize these advanced tools and limits their ability to further optimize

their workload. This cycle presents an artificial upper bound that is created by the

efficiency of the human-computer or human-robot interface. It is this demographic

of emergency response managers that represents our target community. More

specifically, the group that will benefit the most from this research are emergency

response managers who have seen their workflow increase due to technological

advancements but still lack an intuitive and collaborative method for interpreting,

digesting, and making informed decisions related to the command and control of

people, equipment, and robot assets.

If multi-touch tools are to be used effectively in SAR, learnability is the most

important key to widespread acceptance and use. In the midst of a disaster

25

response (real or training exercise), support personnel cannot stop the command

staff and say, “We will now have an hour long demonstration of the gesture set

needed to operate the multi-touch C2 board in front of you.” The command staff

must be able to walk up to the apparatus and begin using it with little to no

instruction. The user interface must be intuitive enough and designed to “do the

right thing” with little training.

As the command staff becomes familiar with the interface and the ease of

learning is achieved, efficiency becomes the next most important feature. While

seeking efficiency, we may include smaller or less obvious gestures that would be

analogous to “hotkey” shortcuts in the mouse and keyboard interface domains.

This research explores this basic requirement of learnability and efficiency in

the gesture set for multi-touch command and control interfaces for robots. To this

end, the strategies for multi-touch interaction have been iteratively validated and

tested.

1.4 Approach

This research represents an iterative, bottom-up, user-centered approach to inter-

face design. Our methodology began with validation performance testing using

the multi-touch tabletop compared to a well studied user interface using more

traditional robot control methods such as a joystick to ensure that there was not

a significant degradation of performance measures. The participants’ gestures

and responses to these experiments also provided insightful hints regarding their

expectations of the user interface elements. It is from this data that we derived

the models and guidelines for the next iteration of the interface. We also be-

gan to evaluate learnability by evaluating the number of questions asked by the

participants.

It was from the above experimentation and analysis that we realized that

the gestures used to manipulate the user interface are the key to maximizing

learnability. As humans, we naturally use our hands and arms to provide rich

26

expression. Leveraging these natural tendencies in a software user interface will

provide a wealth of information when compared to traditional input methods. The

key is to ensure that our gestural tendencies (natural or learned) are correctly

captured in the user interface design. In many cases, these gestures may be

subtle and difficult to detect. They may also be borrowed from disparate learned

phenomena such as automobiles or consumer electronics. In some cases, they

may even be mutually exclusive and impossible to implement in a holistic fashion.

Regardless of the correctness of the expressed gestures, they are “right” in the

context of learnability if that gesture set is what the users naturally want to use

on the interface.

Identifying a gesture set that all users could begin using immediately and

without instruction would be the “holy grail” of interface learnability. While this

may not be feasible for many of the reasons stated above, a entirely user generated

gesture set is a good place to begin. Towards this end, we presented participants

with specific robot command tasks to complete in a static digital prototype interface

analogous to the paper prototypes used in other human-computer interface studies.

It is the results from this simple but rich data set that we are using to bootstrap

the user-centered iterative design process.

1.5 Thesis Statement and Research Goal

To support the mission effectiveness of emergency response operations, my claim,

which I will prove in this thesis, is that:

Multi-touch interfaces improve human-robot interaction for single

robot teleoperation and multi-robot command and control. This is

particularly valuable for supporting novice users and reducing training

time in domains such as search and rescue.

While the focus of this research is specific to SAR and robot control, the

implications of novice user generated gesture sets as a practice has far reaching

27

applications outside of this particular domain. As multi-touch devices become

more available to the general populous, it would be ideal if software designers

would begin with the users’ expectations of interaction rather than the technology

itself. This user-centered design ensures that the wealth of new interaction options

does not overshadow the need for a succinct and understandable design. Interface

design is more often helped by constraints than freedoms. So it follows that over

the long-term, the design constraints of the users’ natural interaction are more

constructive than new technological freedoms when designing new and useful

interfaces.

Based upon the application domain and the interaction technology explored,

the following research goal was established: Multi-touch is a rich and interactive

method of computer interaction that can provide enhanced learnability in time-

critical and safety-critical domains when implemented correctly. By carefully

studying the biomechanics of the human hand and leveraging the natural responses

of users to multi-touch displays, human-robot interaction can be enhanced for single

and multiple robot control. The goal will be to maximize learnability and therefore

lessen the amount of training time required for proficient control of the robot or

robot teams.

1.6 Contributions

This research has resulted in a complete user interface for single and multi-robot

control. Research contributions include the following:

• Performance model of table-top touch interfaces based on Fitts’s Law.

• Validation of multi-touch human-robot interaction compared to a traditional

joystick-based single robot interface.

• An Algorithm for five-point hand identification and finger registration.

• Interface using the dynamically resizing, ergonomic, and multi-touch (DREAM)

controller for joystick emulation.

28

• A user generated multi-touch gesture set tailored for ease of learning.

• An integrated interface designed specifically for multi-touch interaction that

combines high level command and control of robot teams and individual

control of single robots.

1.7 Organization

The dissertation is organized as follows. In Chapter 2, I explore the previous

work and foundational research upon which this dissertation is based. Where

applicable, I compare, contrast, and examine gaps in this literature relative to the

investigation at hand.

Chapter 3 describes the performance model used to ensure that the multi-touch

interface does not impair user performance for basic tasks. Specifically, Fitts’s

Law is used to test the performance of the multi-touch display compared to classic

mouse-based interaction. Surprisingly, this fundamental performance validation of

multi-touch tabletops was not found in the human-computer interaction literature.

Since mouse-based interfaces are well established for most computer interfaces,

this step becomes necessary to ensure that there is not a baseline decrease in user

performance before metrics for gestures, learnability, and usability are examined.

After establishing comparable performance, Chapter 4 compares a well studied

joystick-based and keyboard-based robot control with a prototype multi-touch

robot control user interface for robot teleoperation. Again, the research goal here

is to ensure that the change in input and output methods does not dramatically

decrease the user performance in an SAR related task. Although quantitative data

is presented in detail, incorrect interface design assumptions provided a wealth of

qualitative information for the next iteration of the robot control interface.

A ground-up redesign of the single robot control interface is described in

Chapter 5 that incorporates a design based on the biomechanics of the hand and

borrows from muscle memory gained through video game usage. In Chapter 6, we

describe how this new joystick design and a new interface approach was tested in

29

an identical experimental setting as Chapter 4 to allow for a four-way comparison.

Chapter 7 explores the usability of a command and control interface from the

perspective of a novice user. Specifically, robot related tasks are presented to the

user to determine the gestures that people would naturally use, rather than the

gestures they would be instructed to use in a pre-designed system. This chapter

presents the details of these findings, a taxonomy of the gesture set, and guidelines

that provide the basis for gesture design for following chapters.

The findings gathered in Chapter 7 are then used to create an interface for

controlling multiple robots in a simulated environment in Chapter 8. A usability test

involving six representatives from a FEMA search and rescue team is discussed along

with findings and recommendations for future command and control interfaces.

Finally, Chapter 9 discusses the broader impact of this research and the barriers

that will need to be overcome for widespread acceptance. This discussion includes

a narrative example of multi-touch used in the field and in the command center

for enhanced operational effectiveness.

30

Chapter 2

Background

This work presents the convergence of three technologies. As discussed in Chapter

1, the combination of multi-touch tables, robots, and command and control is

novel and timely. Interestingly, little research on the confluence of all three of

these topics exists in the literature. As such, this background discussion focuses

around each of these three research areas individually and in cross sections when

applicable.

2.1 Multi-touch Technology

Recent commercial successes such as the iPhone have brought attention to multi-

touch devices. Interestingly, very few people know that this technology actually

goes back to the early 1980s when personal computers were in their infancy. Bill

Buxton (2007) provides one of the most insightful and thorough surveys of touch

technology. He is careful to note that the interest in multi-touch technology and its

seemingly late acceptance is not unlike the computer mouse. Originally developed

in 1965, the mouse was not truly ubiquitous until 1995 with the release of Microsoft

Windows 95. If multi-touch devices are gaining acceptance at the same rate at the

original mouse, then the decade following 2010 may prove to be an excellent time

for multi-touch software development. Buxton’s 2007 survey article and historical

timeline is far too in-depth for this background discussion, but it is important to

31

recognize that the ideas and innovation around multi-touch are not particularly

new. Like personal computers in the early 1980s, multi-touch devices (as a market)

appear to have been looking for the right combination of price, portability, and a

“killer application” to guarantee success.

Some of the first work in rich gesture recognition for screens and tabletops

occurred in 1983, done by Myron Krueger (Krueger, 1983). At this time, the

technology did not yet exist to detect multiple touch points on CRT screens, so

Krueger used computer vision to track hand motions. His system was one of

the first to interact with multiple hands and fingers. Since touch could not be

detected, dwell time was used as a trigger for events. Early videos of this system

and the many papers that followed (including (Krueger et al., 1985; Krueger, 1991))

provide the foundation for many gestures that are now common including pinch

and reverse pinch.

From 1984 to 2000, multi-touch devices were largely a novelty and targeted

specific research applications. Almost two decades later, in 2001, researchers at

Mitsubishi Electric Research Laboratories (MERL) began the development of an

experimental multi-user interface device (Dietz and Leigh, 2001). Several years of

development resulted in the commercially viable DiamondTouch board. Although

low quantity runs of these boards have been created, they were never fully marketed

through Mitsubishi. As of 2008, the DiamondTouch is now developed and marketed

exclusively by Circle Twelve, Inc. (Circle Twelve, 2009). The DiamondTouch

screen uses an array of antennas below the laminated touch surface to transmit

unique signals corresponding to the antennas’ respective x and y position. From

these antennas, a small radio signal is coupled through the user’s finger to a receiver

connected to the user’s body. This receiver can take the form of a wristband, seat

cover, or floor mat. The use of multiple receivers allows for unique identification of

individuals. From these signals, the computer software is able to determine where

the person is touching the interface, who is touching the interface, and in how

many locations each respective person is touching the screen.

Two groups have recently contributed to the multi-touch technology, although

32

their publications are largely design documents and not usability studies. The

first was created at New York University (NYU) by a rear-projected surface that

uses frustrated total internal reflection (FTIR) to create a multi-touch interface

(Han, 2005). In this case, a covered Plexiglas sheet is illuminated at its edges by

infrared (IR) Light Emitting Diodes (LEDs). When touched, an IR filtered camera

in parallel with the projector captures the reflected light. The detection of multiple

touches then becomes an image segmentation process, in which the centroid of each

“blob” created by the finger touches is identified. This process has reportedly allowed

for high frame-rate interaction with the interface and rich gesture recognition.

While elegant in the simplicity and affordability of the mechanical design, this

implementation has not seen any formal evaluation or open software development.

After significant media exposure and commercial interest(Han, 2006), Han founded

the company Perceptive Pixel to commercially develop a product for television and

defense customers. Unfortunately, this new device is very cost prohibitive for most

customers in the emergency response market and is not packaged for field use.

During the same time as Han’s work, Northrup Grumman and Applied Minds

developed an IR based tabletop touch screen (TouchTable, 2007). This system

has two incarnations: a large front projected touch table and a touch screen

covered high definition television. As Northrup Grumman is a defense contractor

to the United States government, there has been very little published about this

interface. We do know, however, that this system only supports single points of

contact despite its large size and collaborative capabilities. It is unclear if rich

user interactions such as gestures are supported in this implementation. The

touch-screen high definition TV is of particular interest to this research because

it is packaged for use in the field by military personnel. Many of these screens

have already been deployed by the US military and are used to coordinate mission

objectives and command resources. While time will tell if this practice becomes

ubiquitous, what this does signify is the need for advanced command and control

collaborative technologies is increasing and tabletop touch screens have been

identified as a worthwhile research investment.

33

Table 2.1: Overview of collaborative tabletop displays in active development.

Research Projection Multi- Simultaneous Identifiable
Name Group Technique Touch Multi-Person Multi-Person

DiamondTouch Mitsubishi (MERL) Front Yes Yes Yes
FTIR New York University Rear Yes Yes No

Touch Table Northrop Grumman Front No No No
Surface Microsoft Rear Yes Yes No

Finally, Microsoft has recently begun manufacturing a diffuse illumination

interface similar in many ways to the NYU interface described above (Microsoft,

2007). Notably, Microsoft only offers this product in a tabletop configuration and

appears to be targeting it for the entertainment and hospitality industries. The

system uses multiple cameras below the projection surface to track multiple points

of contact from multiple people simultaneously. Unlike the DiamondTouch from

Mitsubishi, it cannot uniquely identify the individual interacting with the interface.

Of all the platforms, the Surface is one of the most mature from a software design

architecture standpoint. It has bindings for Windows Presentation Foundation and

XNA Graphics Frameworks, and the software development kit includes a robust

emulation environment.

2.2 Multi-Touch Gestures

Most prior work in multi-touch gesture design has taken the approach of letting

human-computer interaction (HCI) experts design gesture sets, and then conducting

user studies to verify whether these sets are, in fact, natural or easy to use.

Rekimoto (2002) and Tse et al. (2006) are the two most recognized and cited HCI-

expert generated gesture sets. Although this method has been shown to produce

satisfactory results, this method may not produce the most natural gesture set

for novice users. The gesture designers may not necessarily place learnability over

other engineering requirements.

One of the most influential analysis of gesture sets on tabletop devices was by

Wu et al. (2006). This research proposed a systematic procedure for designing

34

multi-touch interaction. They identified three major issues that were not addressed

with previous design attempts: incorporating multi-finger and multi-hand gestures

into an environment which has been traditionally pointer-based, occlusion issues,

and access of areas on the surface which are physically uncomfortable to reach.

They defined gestures as having three phases: registration, relaxation, and reuse.

Gestures would be registered either statically or dynamically, and, after being

registered, the user would not be constrained to maintaining the same hand position

(relaxation). In different contexts or when performing different tasks, users could

reuse a previous gesture to operate differently, perhaps by using some sort of

gestural cue to change tools.

Epps et al. (2006) conducted a similar study, using a combination of multi-touch

and computer vision inputs to allow users to interact with the system while not

in contact with the board. Participants were asked to perform common desktop

computing tasks on the tabletop, but most employed largely off-the-surface, 3D

gestures to accomplish these tasks. The researchers concluded that participants

prefer using their index finger only, and that for more complicated tasks, there is

a strong need for the ability to gesture above the table surface. Epps et al.’s work

is an important data point for this multi-touch research since their participants

had a significant bias toward single finger interaction. This result would tend to

indicate that the participants carry a bias from single pointer user interface (UI)

paradigms or that the index finger is the most natural method for expression.

Although Epps et al. (2006) indicates that 3D off-the-surface gestures are

the most natural for users, this gesturing technique falls outside of the scope

of this study and is prohibitively difficult in the selected application domain.

The current state of the art for off-the-table gestures require range sensing or

camera technologies that are sensitive to ambient light, changes in light, and visual

noise. The complexity of setting up a secondary gesture detection system is also

prohibitive for the field requirements of the command and control domain.

Wang and Ren (2009) conducted a study to determine how hand geometry

and finger properties affect participants’ abilities to convey information to the

35

touch surface. Participants performed a set of pointing and rocking gestures while

various finger properties, such as fingertip position and orientation, were recorded

using an FTIR interface. From this data, they developed a set of design guidelines

for multi-touch widgets with the natural performance of the human hand as the

guiding factor. Their results agree with our findings in Chapter 3 that on-screen

widgets should maintain a certain minimum size and be oriented in a useful way.

Koskinen et al. (2008) examined the possibility of improving power station

control rooms using multi-touch tables, instead of the single-touch displays that

are currently used. Their study investigated the natural gesture space for this

environment by asking participants to demonstrate how they would perform

common mouse-driven tasks on a multi-touch screen. They concluded that, in

general, participants prefer single-hand and single-finger interaction over more

complicated gestures, and that participants preferred gestures that required less

contact with the screen. However, we believe that the study most likely introduced a

bias: when asked to perform a well-known task which involves a mouse, participants

are likely to be biased towards using a single finger.

Wobbrock et al. (2009) conducted a study to create a natural gesture set by

designing around unbiased user input. They presented participants with tasks

to perform with both one and two hands, and no prompting as to what was an

acceptable gesture. They found that participants used an arbitrary number of

fingers to perform many tasks, so differentiating gestures based on the number

of fingers on the tabletop may be a poor choice. Additionally, they found that

participants preferred using one hand rather than two. Their work was focused on

tasks such as word processing and managing documents. As their study confirmed,

this domain is heavily influenced by desktop computing and WIMP (window, icon,

menu, and pointing device) paradigms.

The arguments from Koskinen et al. (2008) and Wobbrock et al. (2009) are

relevant and well formed, but not overly surprising. In both cases, the participants

were asked to create gestures to perform well known tasks that typically involve

using a mouse pointer and keyboard. To find that the participant was significantly

36

biased toward single hand or single finger input is an important user bias to note,

but something that an experienced UI designer would expect.

The task of command and control of robots is fundamentally different in many

ways from desktop tasks. The temporality of the movements of the robots is a good

example. The robots’ movements are not immediate and there is an expectation

that the robots will move at the best pace possible to achieve their individual

goals. There are very few examples of desktop tasks that exhibit this behavior

(outside of video games that are slowed down to emulate the time of the “real

world”). A second difference is the notion that the user will be tasking various

robots to perform different tasks. One robot may scout for information while a

second robot is commanded to stay in place and recharge its batteries. There are

very few examples in the desktop metaphor that require a user to independently

task icons in the user interface.

Given the above differences, the research related to user defined gesture sets

is certainly taken into consideration, but not taken in its entirety. Chapter 7

experimentally explores this area and determines the extent to which users are

biased to single pointer desktop paradigms when using robots in a command and

control environment.

2.3 Robot Control

Interaction with remote robot systems, such as those used in search and rescue

scenarios, requires a user to be able to obtain situation awareness using the system’s

graphical display. Situation awareness (SA) is defined by Endsley (1988) as “the

perception of the elements in the environment within a volume of time and space,

the comprehension of their meaning, and the projection of their status in the near

future.” Yanco and Drury (2004) have modified this definition for human-robot

interaction (HRI) to be the perception of the robot’s location, surroundings, and

status; the comprehension of their meaning; and the projection of how the robot

will behave in the near future.

37

A robot operator control unit display usually includes a video window and

status information about the robot (Yanco and Drury, 2006). Input devices for

interaction with a remote robot system most often are joysticks, keyboards, or

mice. Other input devices have also been used, including stylus-based interaction

in (Skubic et al., 2002, 2003), and (Beard et al., 2005). While the use of speech

and gestures have been studied for applications where the robot is collocated with

its user (Perzanowski et al., 2001), they do not transfer well to a remote robot

system, as the gesture information is lost without visual contact.

The problem with joysticks, mice, and keyboards is that they add a layer

of indirection to HRI. Due to the distance between the user and the robot, the

interaction already includes a layer of abstraction; the user must be able to interpret

the on-screen information to understand the robot’s current situation. With robot

system manipulation mapped to a joystick or keyboard, the user’s focus moves

away from the need to interpret the video on the screen to the need to understand

how to manipulate the images on the screen with the provided input device. By

removing the joystick, mouse, or keyboard from the interaction, we remove a layer

of interface abstraction and thereby increase interaction by increasing the degree

of direct manipulation (Shneiderman, 1983). In the case of HRI, the lessening of

indirection should allow users to more directly interact with the robot and affect

its behavior.

Despite the recent interest in touch technology, single point touch based displays

are not new. Their original incarnation was in compact personal data assistants

(PDA) and tablet-based personal computers during the late 1980s and early 1990s.

These commercially available devices largely emulated mouse pointer interaction

and provided little in the way of further interaction. It is not surprising that

there have been few successes in HRI using these small, and often computationally

limited, devices.

In (Perzanowski et al., 2001), a PDA is part of the multi-modal robot control;

the user can issue commands from the PDA or select a destination on a map.

Keskinpala et al. (2003) use a PDA with simple compass-style buttons to drive the

38

robot forwards, backwards, left, and right. Fong et al. (2003) use a PDA to drive

a remote robot using waypoint navigation on a video panel or a two-axis velocity

control using a widget. Beard et al. (2005) use a PDA and voice commands to

provide high level flight control of an unmanned air vehicle. Skubic et al. (2002)

also uses a PDA to drive a robot; the user sketches a top-down view map of the

environment and draws a path for the robot to traverse. A tablet has been used to

perform laser laparoscopy using a “what you draw is what you cut” sketch control

scheme of a 4-degree of freedom prototype robot (Tang et al., 2003, 2005).

In all of these cases, the use of the stylus or finger touch is limited to mouse-like

emulation where the user interaction is limited to pressing buttons, moving sliders,

interacting with generated maps, or drawing paths. In most cases the widgets are

standard UI elements where the size and finger occlusions are not optimal. Higher

level control is typically expressed in a “go here” command when coupled with a

map of the area to be explored. Our tests detailed in Chapter 4 and Chapter 6

indicate that we can achieve a much richer experience through the use of gestures

and UI element affordances specifically tailored for touch interaction. Additionally,

we believe that these lessons and design recommendations can directly improve

interfaces regardless of the touch surface size or input method.

2.4 Multi-Robot Command and Control

More recent studies have begin to explore multi-robot control through multi-touch

interaction in various contexts. Kato et al. (2009) investigate using a top-down view

of multiple iRobot Roomba robots in an indoor environment. This implementation

shows the location of each robot, and the user drags their fingers over the multi-

touch surface to manipulate a two dimensional vector field representing the robots’

path. While an interesting implementation of potential fields, this interface only

addressed navigation and does not allow for individual robot tasking or higher level

commands. The gesture space is also limited to drag for modifying the potential

field, and single touch to clear the field.

39

Hayes et al. (2010) uses a tablet laptop with multi-touch capabilities for tasking

simulated robots. These tasks include specifying paths, waypoints, and regions

for the robot to follow and explore. Two versions of the interface were studied:

one with stylus based mouse emulation and the one with full multi-touch input

capabilities. Hayes et al. (2010) conducted a within subjects experiment and

the findings agreed with many of the results detailed in Chapter 3 and Chapter

8. Specifically, scenario completion time, task specification time, and region

specification time were all faster with the multi-touch interaction. Additionally,

Hayes et al. (2010) found that the NASA TLX overall workload and frustration

levels were significantly lower with the multi-touch interface.

As mentioned in Chapter 1, the investment in unmanned systems for the

military has been significant. Generally speaking, UAVs are intended to increase

safety and lower the man-power required to operate the aircraft. In practice, this

is far from the case as detailed in (Taylor, 2006). In this study, an Air Chief

Marshal describes how a “Predator A can orbit for 20 hours and requires 2 crew

who operate for 8 hours each, totaling 6 crew for a single Predator.” To lessen this

personnel burden, the Air Force Research Lab has been developing the Vigilant

Spirit Control Station that is intended to allow a single operator to supervise and

control multiple vehicles (Rowe et al., 2009). Few quantitative testing results have

been released to the public, but an external review in (Taylor, 2006) indicates that

the system currently has the capability to provide “support for air-to-air refueling,

. . . augment operator task engagement, enhance operator situation awareness and

trust in automation . . . , and provide intuitive and integrated pictorial information

to support operator supervision and intervention decision making (Taylor, 2006).”

The Navy has also actively developing systems for single-person heterogeneous

multi-robot command and control since 2001. The Space and Naval Warfare

(SPAWAR) Systems Center Pacific has been developing a Multi-robot Operator

Control Unit (MOCU) with capabilities in the land, air, sea, and undersea robot

domains (Bruch, 2006). This modular architecture allows the MOCU to be modified

depending on the task requirements and robot capabilities. The physical joysticks,

40

buttons, and screen can be field changed and the underlying software will adapt

to the new input methods. Much like the Vigilant Spirit Control Station, little

quantitative testing has been released to the public, but Nguyen et al. (2009)

report that the system in development employs “task management including task

existence and completion status, attention management using visual and auditory

prompts, control-display compatibility employing similar layouts for each vehicle,

and proximity implemented as adjacent or overlaid information including route,

waypoints, vehicle status, and video.”

Although the nature of military development has not allowed quantitative

analysis of the Vigilant Spirit Control Station and MOCU to be publicly released,

screen shots and design requirements provide a wealth of information for the

UI designer. These systems have been in development for many years, so their

evolution and maturity allows one to infer “lessons learned” from design changes

and qualitative reviews as detailed above. While they are not specifically designed

for multi-touch control, their capabilities were considered when forming features

for the multi-touch command and control interface in this dissertation.

2.5 3D and Immersive Telepresence

The argument for augmenting emergency response and robot control with interac-

tive information sources is not new. Before the popularity of multi-touch tabletop

devices, there was a significant interest in the use of three dimensional (3D) or

immersive displays (Barfield and Furness III, 1995; Kalawsky, 2004). Minimally,

these interfaces modeled the world in a 3D simulation that permitted the user to

interact with objects, data sources, and other participating users. Some of the

implementations placed sensors on the user and modeled their body movements

with their virtual representation, or avatar, in an effort to increase the level of direct

manipulation with the environment. Head movement and viewpoint management

could be adjusted through head mounted displays (HMDs) that would coordinate

the user’s head and neck position with the camera view in simulation. Although

41

the use of fully immersive and 3D world metaphors has not been entirely successful

over the last few decades, it is instructive to explore this line of human-computer

and human-robot interaction to ensure that positive and negative lessons can be

captured.

In Gyorfi et al. (2008), the Motorola Corporation developed an application

that modeled incident response in a simulated 3D world called the virtual incident

command center (VICC). The argument was made that the incident command

system (ICS) required all management personnel be in the same location for effective

execution which made ICS vulnerable to failure. If the management personnel had

the opportunity to be remote, then the response was geographically redundant

and less of a threat for attack. To achieve interpersonal communications with

collaborators, the VICC used a 3D command-center room metaphor. Personnel in

the simulation had the ability to share documents, images, and 3D location data.

The participants in the simulation were represented as 2D avatars that floated in

the space of the command center simulation.

Clients connected to this simulation through standard TCP/IP connections

over the Internet or private network connections. Application interfaces included

standard desktop workstations, small handheld devices, and a variety of HMDs.

The researchers noted that “HMDs [created] a more immersive experience, but

[made] interaction more difficult.” They did not explore this limitation in any

detail and there was no accompanying user study to support performance claims

of the prototype. It is interesting to note that the researchers conceded that

with standard video-conferencing and telepresence methods, “The ability to read

body language and gestures is lost. Information sharing is also hampered by

this approach. In the classic ICS methodology, the participants can open up a

map, lay it on the table, draw on it, point to features, and plan with it.” The

interpersonal nature and interactivity of the tabletop paper map is supported

throughout this work, although it is unclear if this implementation provided the

fidelity of interaction supported by the research in this thesis.

Attempts have been made to control robots through 3D interactive display

42

technology (Fong and Thorpe, 2001). Research by Crescenzio et al. (2009) demon-

strated the control and supervision of Unmanned Aerial Vehicles (UAVs) using a

touch screen and 3D stereoscopic virtual display. Although this research focuses

mostly on the aspects of situation awareness and shared control of air vehicles, the

use of the touch screen in a tabletop configuration in addition to the 3D display

makes it relevant to this research. A desktop monitor-sized touch display was

placed in a near-horizontal position facing the user. A map was displayed in the

center of the screen surrounded by buttons representing various functionalities

specific to the control of the UAV. The touch display, in this case, represented the

teleoperation and flight path control of the UAV, while the larger projected 3D

stereoscopic display provided the view from the UAV. The prototype interface was

tested with 12 student pilots, and the researchers found that the “touch screen was

considered a good tool to command the vehicle by means of high level commands.”

One of the most ambitious attempts in the fields of robotics and immersive

telepresence has been the development of NASA’s Robonaut platform. This

humanoid-like robot is extremely complex in an effort to emulate the form and

function of a human torso. The argument was that a sufficiently high fidelity

apparatus that can simulate human characteristics would not only be compatible

with crew spaces on existing spacecraft such as the International Space Station

(ISS) and Space Shuttle Orbiter (STS), but also allow the robot to use tools and

apparatus designed for human astronauts. This robot system is scheduled for

launch via the STS for delivery to the ISS in November of 2010. It has additionally

been considered for teleoperation tasks on the Moon and Mars (Landis, 2008).

As described in (Diftler et al., 2003), the complexity of the arm and hand

and need for fine motion and force-torque control place Robonaut far outside of

traditional joystick-based controller design. The hand, forearm, and upper arm

account for 19 degrees of freedom and 42 sensors for feedback control. To achieve

comparable performance to the robot’s human counterparts and achieve a high ease

of learning, a full telepresence interface was designed that used virtual-reality-based

telepresence gloves and helmet to sense the position of the hand, arms, and neck

43

of the operator. These sensor readings are processed and sent to the Robonaut so

that it may emulate the operator’s pose. It is argued in (Ambrose et al., 2000)

that Robonaut’s pose emulation occurs fast enough that the operator can achieve

high situation awareness and high proficiency in little time.

In general, 3D immersive and telepresence systems have not found the ubiq-

uitous “killer application” that was once hoped. Multi-touch technology seems

to currently exist in the same awkward infancy and time will tell if it can over-

come barriers in acceptance and economies of scale. Regardless, applications like

the command and control of robots will help explore and support the enhanced

interaction capabilities of multi-touch devices.

44

Chapter 3

Performance Validation

One of the first tasks with any new input device is to establish its relative perfor-

mance to other input devices that perform the same function. When surveying

the literature, we were surprised to find that there appeared to be no formal

performance model for large tabletop multi-touch devices. As such, we determined

that this would be a good starting point from a human-computer interaction

standpoint. It is important to ensure that the device and horizontal configuration

will not inhibit the users’ performance. This also establishes an important baseline

of performance for future user interface designs.1

Performance models allow researchers and interface designers to understand

and predict human aiming performance. An example of an aiming task is the

activation of a control in a graphical user interface. The most frequently applied

performance model is Fitts’s Law (Fitts and Deninger, 1954; MacKenzie, 1995;

Zhai, 2004). Fitts’s Law models movement time (MT) as the tradeoff between

speed and accuracy characterized by the ratio of the movement amplitude (A) and

target width (W):

MT = a+ b(ID) (3.1)

where ID is the Index of Difficulty of the movement, defined as

1Portions of this chapter appear in (Micire, Schedlbauer, and Yanco, 2007)

45

ID = log2

(
A

W
+ 1

)
(3.2)

The constants a and b are experimentally derived regression coefficients. Equa-

tion 3.2 presents the formulation of ID proposed by MacKenzie, which is the

generally accepted form (ISO 2000, 1998) (Zhai, 2004) (Soukoreff and MacKenzie,

2004).

The main goals of this study were to assess the performance characteristics

of digital tabletop devices and to determine if Fitts’s Law holds for them. This

chapter specifically explores the hypothesis that target selection is faster and more

accurate on horizontal digital tabletop input devices compared to a mouse.

It should be noted that this study did not explore multi-target touch or multi-

user collaboration. In the interest of establishing a lower bound of performance,

we limited the interaction with the tabletop to the same single point and click

paradigm used by most tabletop mouse hardware.

3.1 Hypotheses

The study sought to determine the validity of the following hypotheses:

H1: Target selection is faster using touch than using a mouse on a tabletop.

H2: Target selection is more accurate using touch than using a mouse on a

tabletop.

H3: Fitts’s law holds for touch selection on a tabletop.

3.2 Experimental Design

The experiments were conducted while standing at a laboratory workbench with a

front projected Mitsubishi DiamondTouch (Dietz and Leigh, 2001) screen surface

92 cm (36.2 in) above the floor. This height was static throughout all participants

and provided a relatively neutral height just above the waist of the participant. As

46

Figure 3-1: The Mitsubishi DiamondTouch digital tabletop (left) was evaluated in
regards to task completion time and accuracy. A standard mouse, shown to the
right of the participant, was used for comparison. The screen shot (right) shows a
target presentation.

seen in Figure 3-1 this placement allowed the participant to comfortable reach to

the extents of the screen. Depending on the height of the individual, this position

and table height provided a 45 degree or greater viewing angle of the screen and

presented targets.

The DiamondTouch tabletop was connected to a Dell Precision 360 (3.0Ghz

CPU, 1GB RAM) and a ceiling mounted Optima EP737 Projector (1024×768

pixel resolution) located directly above the horizontal table top. The projected

screen was at an angle of ninety degrees to the user in a flat tabletop configuration.

The effective screen size on the projected surface was 610 mm (240 in) by 460

mm (181 in). The mouse used for comparison was a Dell optical mouse connected

to the same computer and horizontal tabletop screen. Figure 3-1 illustrates the

testing apparatus.

The experiment was conducted using the Movement Time Evaluator (MTE)2

software, an open and configurable platform for Fitts’s experiments written in

Java (Schedlbauer, 2007). The Mitsubishi DiamondTouch SDK software (Esenther

et al., 2002) was used for mouse emulation. The software allowed the participants

to simply tap their fingers to emulate a left click of the mouse. Since the Dia-

2Open source software available under GNU Public License from http://research.cathris.

com/mte.html

47

mondTouch cannot move the mouse cursor through movements above the tabletop,

position and velocity tracking was not compared between the mouse and the

DiamondTouch. This software configuration provide data and analysis for error

rates and task completion time for the two devices.

3.2.1 Participants

Nineteen participants (5 female, 14 male) were recruited from the university. They

did not receive any compensation for their participation. The average age for the

participants was 25 years (SD = 5.4). All participants were experienced computer

users, but had only minor experience in using the digital tabletop interface. They

had normal or corrected-to-normal vision with no other physical impairments

being reported. All participants were right-hand dominant in their daily computer

activities.

3.2.2 Procedure and Data Collection

Before testing, participants were instructed to hit the targets as quickly as possible

while minimizing errors. Any click or tap outside the target area was recorded as

an error. A 1-2 minute rest period was provided between input device changes. A

target acquisition trial consisted of clicking a home region at the center of the screen

which started the timing and caused the home region to be hidden. The participant

then selected the target. Auditory feedback confirmed successful acquisition of

the target or warned of a touch outside the target area. The experiments for

mouse and touch were conducted with the participants standing as shown in Figure

3-1. As the targets were positioned at various angles, a circular target shape was

used in all experiments, which presented the same target width regardless of the

approach angle. The participants were instructed to use only their dominant hand

to eliminate two-handed interactions.

Each participant was presented with four blocks of twenty trials each. Each

block varied the target size, and, within each block distance and angle to the target

48

were randomly assigned. Each participant saw the same sequence of targets in

the same positions for each of the two input devices: mouse and digital tabletop.

Therefore, the independent variables were target size, distance to the target, and

input method. The dependent variables were movement time and error rate.

In keeping with the recommendations by Soukoreff and MacKenzie (2004),

the experiment tested a broad range of ID values (min = 0.5,max = 5,mean =

3, SD = 1). The experiment used a land-on selection strategy, which means that

the tap was recorded as soon as the finger touched the screen. Time measurements

were taken at a resolution of 10 ms, the smallest granularity supported by the

Sun JVM on Microsoft Windows XP (Green, 2008). Amplitudes were calculated

using the Euclidean distance between the starting point and the end point of the

movement. The recorded movement time was not adjusted to remove the initial

reaction time. Therefore, the measured time reflects the total task time (Zhai,

2004).

To ameliorate any latent learning effects, each subject was given a set of warm-

up trials before each experiment. The time of the warm-up trials was not recorded.

After each block, the participants were allowed to rest. The presentation of the

conditions was randomly varied.

3.3 Data Considerations and Results

The collected data contained a few outliers which were not removed from the

data set as it was not clear whether they were due to the complexity of the task

or the characteristics of the input device. The coefficient of determination for

the correlation (R2) was calculated using averaged MT values over 20 ID ranges.

There is considerable debate over whether to use the raw data values in the

correlation calculations or averaged MT values over fixed ID ranges (Thompson

et al., 2004). While the use of the raw data makes the correlation results more

meaningful, a few far outliers can markedly affect the correlation. Averaging the

values attenuates the effect of outliers by bringing them closer to the mean, but it

49

may hide some effects. For instance, for finger touch, the smallest target size had

a much higher selection time. When using averaged MT values, this effect may be

hidden. Therefore, certain factors that significantly affect performance may not

be taken into account. On the other hand, most published studies on Fitts’s law

report correlations based mean MT over a fixed range of ID values, so the use of

the correlations obtained from the averaged data are more appropriate.

Soukoreff and MacKenzie (2004) state that obvious outliers should be removed

from the calculation of ID, which they define as being farther than three standard

deviations from the mean. They attribute the presence of outliers to misfires where

a subject accidentally double-clicks on a target or pauses during the movement.

The outliers observed in this experiment do not fall into any of these categories.

Rather, they appear to be caused by the imprecision of touch input for small targets.

The driver for the DiamondTouch device reports a single coordinate position to

the testing software even though the probe covers much more than a single pixel

on the screen. The reported position is an average of the covered pixels. Therefore,

targets that are smaller than the probe often require repeated attempts before

a successful selection occurs. Consequently, the trial completion time measured

by MT captures the actual difficulty of the task and outliers generally represent

selections of small targets. Because an overall performance model was sought, all

data points were included in the analysis.

3.3.1 Task Completion Time

The average task completion time was 861 ms (SD = 284) for the mouse and 772

ms (SD = 593) for the digital tabletop. A paired t-test showed the difference

of 89 ms to be significant (t1519 = 6.495, p < 0.001). As shown by a one-way

ANOVA, target size is a factor in the task completion time for both devices

(F3,1516 = 270.31, p < 0.001 for the mouse and F3,1516 = 184.78, p < 0.001 for the

tabletop). Interestingly, for the smallest target size of 10 mm, selection on the

tabletop was 182 ms slower compared to the mouse, although for all other target

sizes, tabletop selection was faster. As summarized in Table 5.2, the differences in

50

Table 3.1: Mean task completion time (X̄ in ms) and standard deviation (SD) by
target size and input method. Paired t-test result of input methods shown as (t).

Mouse Tabletop

Target Size (mm) X̄ SD X̄ SD t

10 1094 296 1276 896 -3.97∗

20 941 219 757 371 9.66∗

30 751 214 568 239 14.09∗

40 661 170 488 188 15.99∗

all 861 284 772 593 6.49∗

∗p < 0.001

performance across the four different target sizes were all significant.

3.3.2 Accuracy

The mean error rate across all target sizes for the mouse was 0.041 (SD = 0.214)

compared to an error rate of 0.192 (SD = 0.699) for the digital tabletop, a

significant increase of 370% (t1519 = −8.11, p < 0.001). As illustrated in Table 3.2,

accuracy of the mouse was better for the two smaller target sizes, but essentially

the same for the two larger sizes. The accuracy results for the mouse are consistent

with other published studies such as MacKenzie (1995) and Thompson et al. (2004).

Table 3.2: Mean error rate (X̄) and standard deviation (SD) by target size and
input method. Paired t-test result of input methods shown as (t).

Mouse Tabletop

Target Size (mm) X̄ SD X̄ SD t

10 0.050 0.230 0.595 0.120 -8.51∗

20 0.034 0.196 0.103 0.360 -3.35∗

30 0.037 0.227 0.039 0.243 -0.15†

40 0.042 0.201 0.032 0.190 0.73†

all 0.041 0.214 0.192 0.699 -8.11∗

∗p < 0.001,† p > 0.05

51

The error rate for the digital tabletop was almost 60% for the smallest target

size of 10 mm, but reached a more reasonable rate of 3.9% for the 30 mm target

and 3.2% for the 40 mm target. As illustrated in Table 3.2, the differences between

mouse and digital tabletop accuracy are not statistically significant for the two

larger target sizes (p > 0.05).

Spatial variability (i.e., dispersion) of the selection endpoints about their mean

is another measure of accuracy. It is calculated as the mean least square distance

of the selection end points to the mean selection end point. For the mouse the

mean deviation was 8.81, whereas for the digital tabletop it was 9.86, a statistically

significant increase in the dispersion (t79 = 3.96, p < 0.001). This analysis suggests

that touch selection is overall less precise and that it exhibits more variability

leading to an increase in targeting errors.

3.3.3 Performance Models

The linear correlation between MT and ID has an R2 of 0.98 for the mouse and

0.89 for the tabletop (p < 0.001). Linear regression of MT against ID results in

the following Fitts’s models for task completion time:

MTMouse = 193 + 219× log2

(
A

W
+ 1

)
(3.3)

MTTableTop = −187 + 329× log2

(
A

W
+ 1

)
(3.4)

The regression intercepts are within the range suggested by Soukoreff and

MacKenzie (2004), who have argued that intercepts outside the range of [−200, 400]

should be interpreted with caution as they might point to problems with the

experimental methodology. The increased slope for the tabletop device suggest

that movement time increases more rapidly as the difficulty of the task increases

compared to the mouse, which is evidenced by the high movement times for smaller

targets.

52

The accepted measure of the efficiency of input devices is throughput (TP),

which is defined as the reciprocal of the regression slope and is calculated in bits per

second (bps). ISO 9241-9 proposes that between-study comparisons of input device

evaluation results should be based on throughput rather than task completion

time (ISO 2000, 1998) (Soukoreff and MacKenzie, 2004) (Douglas et al., 1999). In

this study, throughput was found to be 4.57bps for the mouse and 3.04bps for the

digital tabletop, making the mouse more efficient by 1.53bps.

3.4 Impacts and Implications

Fitts’s law was found to be a good predictor of target selection time on a horizontal

digital tabletop operated in a standing posture. Consequently, hypothesis H3

(Fitts’s law holds for touch selection on a tabletop) cannot be rejected. Specifically,

task completion time for the tabletop was faster than the mouse in all targets

except those that had a diameter of 10 mm, leading to a conditional acceptance

of hypothesis H1 (Target selection is faster using touch than using a mouse on a

tabletop). The mean error rate was comparable to the mouse interface for targets

of 30 mm and 40 mm, but substantially higher for target diameters of 20 mm

and smaller, which leads to a rejection of hypothesis H2 (Target selection is more

accurate using touch than using a mouse on a tabletop).

Efficient task completion can be expected only when target elements in the

user interface are larger than approximately 30 mm in size. Furthermore, due

to the increased spatial variability of target selections on the digital tabletop,

user interface controls should be spaced further apart to avoid false selections.

Compensatory techniques can also be investigated in future interfaces, such as

magnifying the anticipated target before selection (e.g. iPhone keypad).

The initial results from in this study indicate that the mouse is overall slightly

more accurate, particularly for smaller targets, and more efficient as measured by

throughput than the digital tabletop. However, this initial study did not address

multi-finger or multi-handed input, an input method not available for the mouse.

53

As such, multi-touch table interaction is a viable alternative to mouse input as

long as appropriate provisions for target size adjustment are made. The following

design considerations will be made for future interfaces on horizontal touch surfaces:

• Target elements in the user interface must be larger than 30 mm in size.

• Task completion time will meet or exceed mouse based performance for the

same tasks. As such, mouse based selection and completion models such as

goals, operators, methods, and selection rules (GOMS) (Card et al., 1983)

can be used to provide an upper bound on task completion.

These findings seem basic, but they are fundamental for moving forward in

this research. Establishing lower and upper constraints on the interface design will

ensure that we do not naively hinder performance at a low level.

54

Chapter 4

Multi-Touch Interaction and

Robots

Regardless of the design of the multi-touch interface, it is difficult to argue against

the enhanced interactivity of such a display. By removing the joystick, mouse,

or keyboard from the interaction, we increase the degree of direct manipula-

tion, thereby increasing interaction by removing a layer of interface abstraction

(Shneiderman, 1983). To our knowledge, our study represents the first use of a

multi-touch table with a physical agent (Micire et al., 2008). Many unexpected

events occur when a system contains a moving, semi-autonomous physical object

that is affecting the world. As such, we must determine if multi-touch interaction

decreases the performance of systems in the real, dynamic, and noisy world.1

A mature and well-studied joystick-based interface formed a baseline for com-

parison (Keyes, 2007)(Yanco et al., 2007). The University of Massachusetts Lowell

(UML) Urban Search and Rescue (USAR) Interface system encompasses a wide

range of robot functionality and autonomous capabilities. While leaving the vi-

sual presentation the same, this system was ported from a joystick and keyboard

interface to a Mitsubishi DiamondTouch (Dietz and Leigh, 2001) with minimal

modification. A description of the original joystick design and multi-touch features

1Portions of this chapter appear in (Micire, Drury, Keyes, Yanco, and Courtemanche, 2008)
and (Micire, Drury, Keyes, and Yanco, 2009b)

55

is provided in Section 4.1. The similarity in design enabled us to test whether we

are impairing performance with the new interaction method.

This study assists in the design process by providing a detailed analysis of users’

varied interaction styles. Our analysis, described in Section 4.4, sheds light on how

users perceive the interface’s affordances (Norman, 1988) and highlights mismatches

between users’ perceptions and the designers’ intentions. These mismatches point

towards design changes to better align users’ expectations and interface realities.

4.1 Interface Description

The UML USAR interface, which has evolved as a result of several usability studies,

was originally designed to test the recommended guidelines produced by Scholtz

et al. (2004) and Yanco and Drury (2004) to improve situation awareness. These

guidelines proposed that all USAR interfaces should include a map of where the

robot has been, more spatial information about the robot in the environment,

indications of the current camera position, and fuse data to lower the cognitive

load on the user (Keyes, 2007).

Video Panel: The interface consists of six panels that make up the interface.

The most frequently used is the main video panel. It is in the center of the interface

and acts as the center of focus for the user. We observed in many studies that all

users rely heavily on the main video screen and very rarely notice other important

information presented on the interface (Yanco and Drury, 2004). For this reason,

all of the important information, such as ranging information, is presented on or

around the main video panel. The main video panel has a cross-hair overlay to

indicate the current pan and tilt orientation of the video camera.

ADR Mode Panel The rear view panel, which displays the video feed from

the robot’s rear camera, is located to the upper right of the main video panel. This

panel is placed in this location to mimic the location of a car’s rear view mirror.

Similarly, the rear camera’s video stream is mirrored to imitate the view seen in a

rear view mirror. The rear view panel is smaller than the main video screen, so the

56

Figure 4-1: The UML USAR interface (top) is shown with a participant using the
joystick configuration (lower left). This interface allows the user to operate the
iRobot ATRV (lower right) though the NIST USAR course (shown in Figure 4-4).

57

operator does not get confused as to which one is the main camera. However, if

the user wants to see a larger view of the rear camera’s video, he/she can switch to

Automatic Direction Reversal (ADR) mode. This mode causes the rear camera’s

video to be displayed in the larger main video panel, while relegating the front

camera’s video to the smaller rear view mirror panel. This act also reverses the

driving commands as well as the ranging information displayed on the distance

panel. This reversal makes driving while looking out the rear camera appear the

same as driving while looking out the front video camera, except the robot is

moving in reverse.

Distance Panel: The distance panel is located directly under the main video

panel. This panel consists of an image of the robot’s chassis, with white lines

displayed around it representing distance readings from the sonar sensors and the

laser range finder. There are also black tick marks on each side of the robot, each

representing 0.25 meters. These markings help to give the user a frame of reference

regarding how close objects may be to the robot. When a user pans the video

camera, this panel rotates in the opposite direction of the pan to line up what the

operator is seeing in the video with the ranging information being displayed. This

panel is rendered in a perspective view by default; the operator can toggle it to a

top down view.

Map Panel: To the left side of the video panel is a map. This map, which

uses a simultaneous localization and mapping (SLAM)-based algorithm (Howard,

2006), is dynamically generated as the robot is maneuvered around an area. The

map shows open space as white space, obstacles are depicted as black lines, and

grey represents unexplored space. The map shows the robot’s location as a green

triangle and its trail is a red line.

Autonomy Mode Panel: The mode panel is displayed on top of the main

video panel. This panel consists of four buttons that each represent one of the

four autonomy modes of the system. When a mode is selected, the corresponding

button is highlighted, and the background color is changed.

Status Panel: The status panel is located on the bottom right of the interface.

58

Figure 4-2: Illustration of the flight-style joystick used in the interface design.

It is the only panel that does not border the video panel; it contains information

that is not as critical as the video displays and distance information. This panel

contains the current battery level, whether or not the lights are on, and the robot’s

maximum speed indicator.

4.1.1 Joystick Interface Design

The interface uses a ten button joystick, shown in Figure 4-2 that consists of a

trigger, five standard buttons, and a hat sensor (similar to a small joystick) located

on the top of the joystick. To move the robot, the user must press and hold the

trigger, so that if the joystick is accidentally pushed, the robot will not move. The

robot is controlled by pressing the trigger and pushing the directional gimbal on

the joystick in the direction of the desired motion. Full mixing of translation and

rotation is provided. If ADR mode is active, forward and backward is reversed, as

explained in the previous section.

Camera controls occupy all but two of the buttons on the joystick. We decided

that all camera controls should be on the joystick because maneuvering the camera

is the task that takes the most time after navigation. The pan and tilt actions are

59

controlled by the hat sensor on the top of the joystick. Directly beneath the hat

senor on the joystick is a button that will “home” the camera by bringing it back

to its centered position.

On the base of the joystick are four buttons. The left-most button toggles the

ADR mode. The bottom left and bottom right buttons control the zoom feature

of the camera. The button to the right of the handle toggles the robot’s brake.

There is also a scroll wheel on the left side of the handle that adjusts the robot’s

maximum speed.

As the joystick does not have enough buttons to fulfill all the functionality of

the interface, six actions have been relegated to the keyboard. Changing autonomy

modes is set to buttons F1-F4. The lighting system on the robot is toggled on and

off by pressing the caps lock key. Changing the distance panel from its perspective

view to the top down view is accomplished by pressing the F8 key.

4.1.2 Multi-touch Interface Design

We spent a considerable amount of time ensuring that the multi-touch interface was

as visually identical to the above mentioned joystick interface design as possible.

The goal was to duplicate all of the functionality without creating any confounding

issues in presentation or arrangement of display elements. Each of the discrete

interaction elements is shown in Figure 4-3 and described below.

Autonomy Mode Panel: At the top of the interface is a rectangular panel

populated with the four autonomy modes as described above. The user simply needs

to tap the corresponding button to engage the requested autonomy mode. Visual

feedback is provided by changing the background color of the panel depending on

the mode.

ADR Mode Panel: As mentioned in the joystick interface description, the

upper right of the interface shows the view from the rear camera mounted on the

robot. For the multi-touch interface, the mirrored image is also the panel that

selects the ADR mode. The user taps the small video panel, and it switches with

the main video display. While in ADR mode, the drive control panel functions are

60

Tap button
to change autonomy

mode

Tap image to toggle
ADR mode

Tap to toggle brake

Tap image to toggle
top-down view

Tap slider to change
speed and icon to

toggle lightsDouble tap center to
reset camera

Pan
RightZoom

Tilt
Up

Pan
Left

Tilt
Down

Drag within ring for
drive control

Figure 4-3: Screenshot of the multi-touch interface and guide to gestures that
activate interface features and autonomy modes.

inverted so that moving forward in the camera view moves the robot backwards

and vice versa.

Drive Control Panel: The drive control panel is the only visual element that

was not included in the original joystick design. This panel addresses the need

to duplicate the proportional velocity control of the translation and rotation of

the robot. The interface panel is a visual analog to the joystick, from a top-down

view. The user places their finger inside of the ring, and the relative position of

their fingertip within the panel, horizontal and vertical, is translated into rotation

and translation vectors respectively. The panel changes color from red to green

when the user engages the control. This panel is positioned in the lower right hand

corner of the interface to position it near the user and maintain the right-handed

configuration of the original joystick interface. Directly above this panel is a simple

button that engages and disengages the emergency stop mechanism on the robot.

Visual feedback for the brake is provided through the button brightness, “lighting”

and “dimming” as the brake is engaged or disengaged respectively.

Status Panel: Directly below the drive control panel is a group of icons

representing the battery state of the robot, the external light state, and the time

since the start of the run. The user taps the icon for the light to engage or

disengage the lights on the robot. The icon turns yellow or gray relative to the

61

state of the lights. A slider below these icons provided a speed limiting scalar.

The user taps or “slides” the control to the desired top speed for the robot.

Distance Panel: Directly below the main image, the distance panel gives

a combined display of the sonar and laser range readings relative to the robot.

The user can choose between a perspective display (shown in Figure 4-3) or an

overhead display by tapping in the panel.

Camera Control Panel: The camera control panel allows the participant

to affect all of the functions of the pan and tilt zoom cameras on the robot. As

shown in Figure 4-3, the user presses and holds his or her finger on the region of

the screen corresponding to the direction of movement. The left center quadrant

is pressed for pan left, upper center quadrant for tilt up, etc. To zoom in, the user

begins with his or her fingers in the center of the image and then rapidly expands

them diagonally to the corners of the screen. This movement increases the zoom

factor by two times for each motion. The user then can tap twice in the center of

the image to recenter the pan and tilt and reset to a one times zoom factor.

It should be noted that, outside of the drive control panel, we made no visible

changes to the interface. Despite this, the multi-touch interface was immediately

able to provide more functionality that the joystick could alone. For example, the

autonomy mode selection was offloaded to the keyboard in the joystick interface

due to a limited number of buttons. In the case of the multi-touch interface,

the buttons that were already displayed were used for this purpose. This “free

functionality” was also true for the distance panel and light control.

4.1.3 Hypothesis

The study sought to determine the validity of the following hypotheses:

H1: Multi-touch interface does not degrade performance.

H2: Users experienced higher ease of learning with the multi-touch interface

compared to the joystick interface.

62

4.2 Experiment Design

The goal of the experiment was to compare participants’ performance and interac-

tion with two different versions of the same interface: one based on a “traditional”

PC and joystick, and the other based on a multi-touch table. Accordingly, we

designed a within-subjects experiment so that each participant would use both

interfaces.

We conducted the experiment in the Reference Test Arenas for Autonomous

Mobile Robots at the National Institute of Standards and Technology (NIST)

(Schipani and Messina, 2007). We used a portion of the arena that was configured

as a maze of wooden panels. The panels formed corridors that required tight turns

and close attention to the relationship of the robots to the wooden walls. NIST

personnel placed mannequins and baby dolls within the maze to represent victims

of a catastrophe.

4.2.1 Participants

Participants consisted of six people (4 men, 2 women), ranging in age from their

20’s to 60+, who are members of the search and rescue community. All have

used PCs for at least five years. Four considered their computer expertise to

be moderate and two assessed their expertise to be at the expert level. Five

participants have never previously used robots, and the remaining participant had

taken part in an experiment of ours several years ago during which time he used a

much different control interface. Three participants have previously used remote

control cars occasionally or many years ago. Four participants never play video

games and two participants play video games 4 and 8 hours a week, respectively.

Five participants have previously used a joystick, with one of them self-assessing

his joystick expertise as good, three as average, and one as poor.

63

4.2.2 Procedure

After signing a consent form, participants filled out a pre-experiment questionnaire

requesting demographic information and probing their relevant experience with

computers, robots, remote control vehicles, video games, and joysticks. We showed

the participants what the robot looks like (Figure 4-1) and then trained them on

how to control the robot using one of the interfaces. We allowed participants time

to practice using the robot in a location outside the test arena and not within

their line of sight so they could become comfortable with remotely moving the

robot and the cameras. We then moved the robot to the arena and asked them to

maneuver through the area to find as many victims as possible during a 25-minute

period. We asked participants to “think aloud” (Ericsson and Simon, 1980) during

the task so we could determine when participants were having trouble with parts

of the interface and/or had a different mental model of how the interface works

than was intended by the designers. After task completion, an experimenter asked

six semantic differential scale questions. After a break, we then repeated these

steps using the other robot interface.

We counterbalanced the experiment in two ways to avoid confounding factors.

Three of the participants started with the joystick interface and the other three

started with the multi-touch interface. Additionally, we used two different starting

positions (A and B in Figure 4-4) in the arena so that knowledge of the arena

gained from using the first interface would not transfer to the use of the second

interface. The two counterbalancing techniques led to four different combinations

of initial arena entrance and initial interface.

4.2.3 Data collection

We collected four types of data: video, logs, observer notes, and annotated maps.

Besides a video of the robot’s progress through the arena, we videotaped over the

shoulder of each participant to capture his/her interactions, and we mounted a

video recorder pointing down at the multi-touch table. We videotaped a direct

64

Figure 4-4: The robot operated in the NIST USAR arena (left) while experimenters
uses ground truth maps (right) to record specific incidents. In the ground truth
map, “Start” symbols represent the four possible starting points, “V” represents
a victim location, lines represent the robot path, and circled numbers represent
collisions with the arena walls.

output of the PC’s screen to record the state of that interface at all times. Custom

logging software captured each time the participants changed modes, moved the

camera, or activated other controls. An experimenter sat with the participant and

hand-wrote observations. Finally, an experimenter following the robot manually

marked its progress through the maze on a run sheet that also provided space to

note when and where each bump, scrape, or “e-stop” (emergency halting of the

robot) occurred. Figure 4-4 contains a reproduction of the map portion from a

run sheet that shows numbers coded to specific incidents that are enumerated on

the run sheet’s second page.

4.3 Results and Discussion

The two interfaces differ in at least two major ways: in ergonomics and in the

degree of direct manipulation that each attains.

The differences in ergonomics can best be explained by briefly describing

the necessary physical interactions. During one run, participants sat at a table

containing a standard 17 inch LCD monitor, a multi-button joystick, and a

65

keyboard. Using the joystick necessitates pulling a trigger and moving the whole

hand in the desired direction, sometimes while simultaneously activating other

buttons such as the one on the top of the joystick. Participants moved a hand to

the keyboard to activate autonomy mode changes. For the other run, participants

sat in front of the 36 inch multi-touch surface, which was canted up at a slight

angle, and extended their arms over the interface surface to activate the desired

control. Thus, the nature of the movements necessary for the two interfaces differ

substantially. Also, the visual perception of the interfaces differ because the same

number of pixels viewed on a 36 inch table look much less “crisp” than when

viewed on the 17 inch display.

Differences in the degree of direct manipulation (Shneiderman, 1983) – character-

ized by highly-visible, rapid, incremental, and reversible actions – have implications

for the cognitive load required by each interface. A joystick is a pointing device

and thus inserts a layer of indirection between the user and the interface. The

participant must mentally translate from the desired robot movement to the hand

movements necessary to give the commands for those movements. In contrast,

the multi-touch table affords more direct manipulation: to move the camera, for

example, the participant puts a finger on the video display and moves the finger

in the direction of the desired motion.

Since the two interfaces make use of the same graphical elements and provide

the same functionality, we hypothesized that performance using the two interfaces

would be comparable. But because of the differences just described, we could not

be sure. Thus, we tested this hypothesis by measuring the number of victims

found, the amount of new area covered, and the number of destructive incidents

incurred by participants when using each interface. Also, because of the differences

described above, we hypothesized that participants might form different subjective

judgments regarding each interface’s helpfulness, comfort, efficiency, ease of use,

ease of learning, and pleasure/irritation level.

66

Table 4.1: Constructive performance in the USAR arena.

Joystick Interface Multi-touch Interface

New Area Victims New Area Victims
Participant Discovered (sq. ft.) Found Discovered (sq. ft.) Found

1 272 3 304 6
2 288 3 288 2
3 352 3 240 3
4 480 8 480 7
5 384 7 464 6
6 480 6 464 10

X̄ 376 5 373.3 5.7
SD 90.4 2.3 107.4 2.9

4.3.1 Performance

We assessed the positive, or constructive, aspects of performance based on mea-

suring the number of victims found and the amount of new or unique territory

the robot covered while traversing the arena. These measurements are related

because it is difficult to find additional victims if the operator is not successful in

maneuvering the robot into previously unexplored areas. Table 4.1 shows the par-

ticipants explored an average of 376 square feet (SD = 90.4) and found an average

of 5 victims (SD = 7.3) when using the joystick-based interface. The multi-touch

interface shows remarkably similar results: the participants directed robots to

373.3 square feet (SD = 107.4) of territory and found 5.7 victims (SD = 2.9).

Thus, there is no significant difference in the constructive performance of the two

interfaces.

We also assessed the negative, or destructive, aspects of performance. Damage

to the robot may delay or curtail real-life rescue operations, and damage to the

robot’s surroundings may result in causing unstable structural members to fall and

injure trapped victims. We categorized the destructive incidents as pushes (the

robot moves an obstacle away from its normal position), scrapes (some part of the

robot brushes up against an obstacle), bumps (the robot impacts an obstacle),

67

Table 4.2: Number of destructive incidents in the USAR arena.

Joystick Interface Multi-touch Interface

Part. Pushes Scrapes Bumps E-stops Pushes Scrapes Bumps E-stops

1 1 1 1 0 0 0 0 0
2 5 5 20 6 2 0 4 3
3 0 0 1 0 11 0 1 6
4 0 0 0 0 1 1 0 0
5 0 0 0 0 6 2 0 6
6 1 0 1 0 1 0 1 1

Average 1.2 1.0 3.8 1.0 3.5 0.5 1.0 2.7
Std Dev 1.9 2.0 7.9 2.4 4.2 0.8 1.5 2.8

and e-stops (experimenters fear severe damage will occur if operations continue

and so halt the robot).

Table 4.2 contains the numbers of destructive incidents for the joystick and

multi-touch interfaces. Note that the numbers vary widely: the standard deviations

in each case are larger than the average values. While there are more scrapes

and bumps using the joystick interface and more pushes and e-stops with the

multi-touch interface, none of the differences are significant. (Paired, two-tailed

t-tests with five degrees of freedom result in p-values of 0.32, 0.64, 0.33, and 0.31

for pushes, scrapes, bumps, and e-stops, respectively.) Thus, we confirmed that

there was no difference in constructive or destructive performance when using the

two interfaces as they are currently designed.

Note that the interface design was originally developed with the joystick in

mind and has previously gone through multiple iterations as a result of earlier user

testing (see (Keyes, 2007)). Now that we know that performance is not degraded

by the act of porting the interface to the multi-touch table, we can optimize the

design for use with multi-touch interaction based on incorporating what we learn

from participants’ subjective feedback and a detailed understanding of how they

interacted with the interface. Consequently H1 (Multi-touch interface does not

degrade performance) cannot be rejected.

68

4.3.2 Subjective Assessment

To get a first look at participants’ preferences, we asked them six semantic differ-

ential scale questions. Using a scale of one to five, we asked how they would rate

each interface along six dimensions: hindered in performing the task/helped in

performing the task, difficult to learn/easy to learn, difficult to use/easy to use,

irritating to use/pleasant to use, uncomfortable to use/comfortable to use, and

inefficient to use/efficient to use.

Prior to the experiment, we conjectured in H2 that participants would find

the multi-touch interface easier to learn and use and to be more efficient. The

rationale for the ease of learning is that the controls are more dispersed over the

table and incorporated into the areas that they relate to, as opposed to being

clustered on the joystick where users must remember what motions and buttons

are used for what functions. The predictions for ease of use and efficiency spring

from the postulation that an interface with a higher degree of direct manipulation

will be easier and faster to use.

Table 4.3 shows that the multi-touch interface scored the same or higher on

average in all categories, although four of these categories evidenced no statistically

significant difference. We found weak significance using a paired, 1-tailed t-test for

ease of learning (p = 0.088, dof=5) and efficiency (p = 0.055, dof=5), and assert

that it is likely we would have attained true significance if we had had access to

several more participants.

We believe that the scores given the multi-touch interface for ease of use and

irritating/pleasant to use suffered because of several implementation problems.

Sometimes the robot did not receive the “recenter camera” command despite the

fact that the participants were using the correct gesture to send that command,

requiring the participants to frequently repeat the re-centering gesture. At other

times, the participants attempted to send that command by tapping on the very

edge of the region in which that command could be activated, so sometimes the

gesture was effective and at other times it failed; it was difficult and frustrating

69

Table 4.3: Participants’ subjective assessment.

Semantic differential scale Joystick Multi-touch

Scale range 1 / 5 X̄ SD X̄ SD

Hinder / Help 3.7 1.2 4.2 0.4
Difficult / Easy to learn 4.7 0.5 5.0 0.0
Difficult / Easy to use 3.5 1.4 4.2 1.2
Irritating / Pleasant 2.8 1.3 3.7 1.2

Uncomfortable / Comfortable 3.8 1.0 3.83 1.0
Inefficient / Efficient 3.3 1.2 4.33 0.8

for the participants to understand why the failures occurred. Additional visual

feedback may have helped the participants to know if their command gesture

registered or not.

It was not always clear to participants how to form the optimal gestures to direct

the robot’s movement. We discuss what we mean by this and also characterize a

number of gesture styles used by the participants in Section 4.4.

4.3.3 Learnability Assessment

Because differences in semantic differential scale scores for ease of learning were on

the edge of significance, we looked for other supporting or disconfirming evidence.

We noted that participants asked questions about how to activate functions during

the runs, which we interpreted as indication that the participants were still learning

the interface controls despite having been given standardized training. Accordingly,

we investigated the number of questions they asked about each system during

the runs as well as the number of times they showed uncertainty in finding a

particular function such as a different autonomy mode. We found that five of the

six participants asked a total of eight questions about the joystick interface and

one participant asked two questions about the multi-touch interface (p = 0.072,

dof = 5 for paired, 1-tailed t-test). This result, while again being on the edge of

significance due to the small sample size, tends to support the contention that the

multi-touch interface is easier to learn than the joystick interface. Our data appears

70

Figure 4-5: Shoulder (left) and close (right) view of the drive control panel,
providing control of translation (vertical) and rotation (horizontal).

to support H2, but would need more participants for statistical significance.

4.4 Interaction Characterization

We concentrated on the camera and driving controls when characterizing the

approaches participants used with the multi-touch interface. The other controls,

such as to turn the lights on and off, required only simple tapping motions that

were easily mastered by participants. In contrast, the two movement controls

involved more degrees of freedom and, in the case of the moving the robot (versus

the camera), with variable speeds. As described earlier, the camera movement is

controlled by directly touching the main video panel, and the robot movement is

controlled by touching a movement control panel that looks like a cross between a

top-down view of a joystick and a steering wheel. Figure 4-5 depicts a close-up of

this control mechanism.

We then looked for large-scale patterns of movement. We noted that participants

tended to work using one of two mental models. One model holds that movement

and speed are controlled together: the location of the finger with respect to the

origin or center of the movement control panel determines both future direction

and speed, with speed increasing with the distance from the center of the panel.

71

We call this the “proportional velocity” model. The other model, which we call

the “discrete velocity” model, states that the user expects to control direction

of movement independent of speed. There are two major refinements to these

models: when participants confine their gestures to a cross-like area consisting

of up-down and side-to-side motions (which we term “on-axis” movement) and

when they make gestures outside of these x- and y-axes (which we term “off-axis”

movement). Finally, there were two other classes of movement that occurred

sufficiently frequently to warrant their own categories: “trackpad”-type movement

and “ring”-type movement. Trackpad movement is reminiscent of how users work

with trackpads: with short, repetitive motions. Ring movement occurred along

the steering-wheel-like ring that formed the outer circle for the movement control

panel.

Once we identified these patterns, we reviewed the video to broadly characterize

each participants’ interaction with the multi-touch interface (described below).

We noted that three participants had largely orthogonal approaches that, when

taken together, provided a good cross-section of mental models and responses to

the interface. Accordingly, we isolated the data from these participants for further,

more detailed analysis. We prepared for the analysis by further refining the models

of interaction described in the previous paragraph into categories of actions that

were described precisely enough to be able to match instances of participants’

gestures against them to code each of their actions. The detailed rules for coding

each gesture can be found in the Appendix A. To ensure standardization and

reproducibility of the data analysis, we computed Cohen’s Kappa statistic for

two coders and found very good agreement: κ = 0.84 after chance was excluded

(κ = 0.88 if chance was not factored out).

The patterns and coding showed that every participant exposed some base

assumption for which we had not accounted in the interface design. Through the

detailed post-hoc data analysis, we noticed each user seemed to develop his or

her own individual style when interacting with the multi-touch interface. In some

cases, these variations helped the robot move through the course and identify

72

victims. In other cases, the style variants did not hinder their performance enough

for users to notice a degradation of control or interactivity. Regardless, we noted

these “nuggets” of human and robot interaction and analyzed them qualitatively

and quantitatively. To illustrate these user-developed interaction styles, we provide

a narrative of each participants’ interactions.

4.4.1 Participant 1

This participant had a continuous, flowing movement on the drive control panel.

Exclusively using his middle finger on his right hand, he only made use of pro-

portional control. The finger movements can be best described as a continuous

line that began at the origin or middle of the panel and then curved smoothly

throughout the control panel. The participant appeared to grasp the concepts of

proportional and mixed-axis control due to his ability to not only adjust the speed

of the robot’s movements, but also to mix translation and rotation constructively.

Mixed “analog” movements likely indicate an understanding that the drive control

panel was a direct analogy to the joystick. Besides using proportional movement

100% of the time, 55% of his movements were in off-axis areas of the drive control

panel.

Interestingly, the participant insisted on using this continuous motion on

the camera control panel even though an experimenter explained to him at the

beginning of the run that the camera was controlled through discrete grid “buttons”

on the panel, as shown in Figure 4-3. Although the buttons caused discrete

camera movement, the participant held his fingers to the surface and moved them

continuously in the direction of desired motion as he would in a proportional

mode control panel. The participant continued this action throughout the run

even though the camera provided absolutely no proportional control actions as

feedback to the user. Fortunately, this continuous movement did not negatively

affect the camera control buttons, so the participant did not appear to notice

any unanticipated reactions from the robot. This example reinforces the often-

referenced design principle of consistency (see (Nielsen, 1993)): in this case, that

73

the control panels should all adopt the same movement analogy.

4.4.2 Participant 2

The second participant chose several interaction methods throughout her run and

provided the widest variety of unexpected interaction methods. She began her

movements in the center of the control panel and quickly moved to the top or

bottom of the control surface indicating an initial understanding of proportional

acceleration. Interestingly, she never made movements off of the vertical axis until

she was at the top or bottom of the control surface. She would then trace the outer

ring of the control surface with her finger and repeat this action approximately

every two seconds. It was only when she rotated her wrist slightly that we realized

the incorrect assumption she was making. The participant was attempting to

“turn” the outside ring of the control surface like a steering wheel in a automobile.

After approximately five minutes, an experimenter explained that the outer

ring was not a steering wheel and restated that the robot could be rotated by

moving to the left and right components of the control panel. The participant

acknowledged that she understood and placed her finger correctly on the edge of

the control panel to rotate the robot. Rather than holding her finger constantly

on the control surface and moving in a constant motion as before, she began

tapping the control panel rapidly in the desired direction. The tapping became

her preferred mode of interaction for the rest of the run, accounting for 89% of her

drive control velocity movements. These “button” movements were sometimes very

rapid, exceeding four taps per second in some cases. Strangely, this tapping caused

the robot to visibly “bounce” the video image since it was receiving commands to

translate, rotate, and brake in rapid succession. The participant did not appear to

notice this effect.

74

4.4.3 Participant 3

The third participant began his run with concise and deliberate motions on the

drive control panel. He would begin his motions in the center of the movement

control panel and then move in a straight line to the desired translation and rotation

position. In this respect, he seemed to grasp the proportional control aspects of the

interface. Unlike the previous two participants, he would lift his finger immediately

and restart the motion for every subsequent robot movement. This created an

unexpected mix between the proportional velocity control seen in Participant

1 and the discrete control bias seen in Participant 2. After approximately five

minutes, the hybrid proportional and discrete finger movement began to resemble

a “trackpad” movement that one might make with modern laptop mouse control

surfaces. This finger action with a mouse would also be equivalent to directly

translating a map in an application such as Google Maps
TM

or the page surface in

AdobeR© AcrobatR©. In this way, the participant seemed to want to “push” or “drag”

the robot in the desired direction, but in small steps instead of continuous button

presses or proportional control. Similar to Participant 2, this approach created

a noticeable bounce in the video display for the end of every finger movement,

but the participant did not seem to have a negative reaction to this phenomenon.

Even more interestingly, this persistent “trackpad” movement did not manifest

itself in any interaction with the camera pan and tilt control. The participant

pressed very deliberately at the sides of the video control display and interacted

with the video control panel in a way intended by the system designers.

4.4.4 Participant 4

This participant appeared to have a very natural and smooth approach to the drive

control panel. The participant would begin in the center of the panel and then

proportionally accelerate to the desired speed. It was only through the post-hoc

analysis that we noticed a very subtle technique being used. The participant used

multiple fingers, much like a piano player, to shorten the amount of area that his

75

fingertips were required to transverse. For example, if the middle fingertip was

at the top of the control, indicating 100% forward translation and 0% rotation,

and he wanted to switch to a 100% left rotation, he would just lower his index

finger. Upon making contact with his index finger on the left side of the drive

control panel, he would slowly raise his middle finger and allow drive control to

transfer to the index finger. This finger movement had the unintended effect of

providing very smooth transitions in what would otherwise have been a “button”

style non-proportional acceleration. This technique was mixed with standard

proportional mode control, although his fingers were switched at seemingly random

times. Like Participant 1, this participant insisted on using proportional control

of the camera control panel even though discrete control was the only method

described by experimenters and demonstrated by the robot’s pan-tilt unit.

4.4.5 Participant 5

The participant began the run with proportional acceleration but after two minutes

of the run he began pressing the inner directional triangles exclusively. His

interaction with these buttons was a mix of proportional and discrete velocity

control, but one interesting effect emerged. Regardless of the control method, he

never moved outside of the circular boundary created by the outside of the triangular

button images. This artificial boundary meant that the robot never accelerated to

full translation or rotation at any time during his run. Like Participant 4, he used

multiple fingers to activate the drive control panel but maintained very discrete

finger contact with the triangular buttons. He did not perform any of the subtle

“mixing” of multiple fingers used by Participant 4. Although Participant 5 did not

take advantage of the proportional control of the drive control, his discrete button

presses allowed him to interact with the camera control panel without issue.

76

4.4.6 Participant 6

Immediately upon starting her run, the sixth participant established a clear style

that used only the vertical and horizontal axis. She would begin in the center

of the control panel and then quickly and deliberately move to the outer ring,

establishing 100% translation or rotation, but only one at a time. The post-hoc

analysis confirmed this, as she showed 100% of her movements on axis, 76% ended

at the outer ring, and 76% of these were proportional velocity commands. She

would regularly switch fingers, although no pattern could be detected. Her hand

posture was muscularly tight and she held her non-used fingers high like a pianist

or touch typist. Another interesting aspect was her interaction with the camera

control. She would only touch the edge of the image even though she had been

shown that the pan and tilt control buttons were much larger. In fact, there were

many accidental triggers of surrounding panels like ADR mode and the distance

panel view. This finding indirectly reinforces the design criterion that the borders

between panels should minimally be the width of the participant’s fingertips to

avoid accidental interference.

4.5 Impacts and Implications

A joystick interface limits the user to a relatively small set of interaction possibilities.

Digital buttons, analog gimbals, and analog sliders are the three common modes

of input. The multi-touch surface is quite different, allowing for almost limitless

interaction methods on a 2D plane. Where the joystick limits the user through

mechanical and physical constraints, the multi-touch surface serves as the “blank

canvas” on which control surfaces are dynamically created. However, the flexibility

and freedom of the interface also presents a problem for the designer. Namely,

the designer must carefully choose control methods that give extremely clear

affordances and appropriate feedback to the user. Users are accustomed to haptic

feedback, such as spring loaded buttons and gimbals, and auditory feedback, such

as clicks, even from a non-force-feedback joystick controller.

77

In robotics, the term “emergent behavior” is used to describe unintentional or

surprising combinations of behaviors or interactions with the environment. These

emergent behaviors are unintentional artifacts that may or may not contribute to

the desired outcome of the robot’s task. During user testing, we found that the

novelty of the multi-touch surface created a catalyst for many “emergent interac-

tions” that were not planned or anticipated by the system designers. Although

each participant was trained on the interface in the same way, they adopted their

own interaction styles borrowed from various devices in the world. While the

system designers intended the interface to evoke a joystick and button affordance,

the participants also demonstrated motions similar to those they would use with

mouse track-pads, piano keys, touch-typing, and sliders.

The gestures used by our participants tells us that we need to revise the design

to better align perceived affordances and actual functionality. Since it was clear

that participants would bring biases from from disparate learned phenomena such

as automobiles or consumer electronics, the next natural step was to develop a

test to expose these biases so that we can engineer the next interface to maximize

the ease of learning. This user-centered design is described further in Chapter 7.

78

Chapter 5

MultiTouch Joystick Emulation

For robots used for explosive ordinance disposal (EOD) and search and rescue

(SAR), there are several ways to control the movement of the platform and all of

the various sensors, effectors, and lighting. The most common method involves

a mix of a large number of joysticks, switches, and dials that each manage some

degree of freedom or functionality. Operators will often employ a technique called

“chording” to cope with this situation. In the same way that a piano player will

use multiple finger positions to create a harmonic chord consisting of multiple

complimentary notes, the robot operator will, at times, use all fingers available to

manage complex and coordinated movement of the robot.

For example, while using the successful Foster Miller TALON EOD robot

(Foster Miller, 2010), an operator may use his or her right thumb on a two degree

of freedom joystick to drive the robot left, right, forward or backwards. The left

index finger is used to rotate a dial that scales and governs the speed of the robot.

The robot will need to move rapidly when traveling down range, but once it is

close to the bomb or victim, it needs to move very slowly and deliberately. As

seen in Figure 5-1 around the drive controls, several switches are toggled with the

middle, ring, or little finger to control light intensity, laser range sighting, and

other on-board systems. As complex as this arrangement may seem, a cluster of

almost identical controls are situated for the right hand where camera control,

manipulator control, disruptor engagement, and sensors can all be manipulated.

79

Figure 5-1: The iRobotR© PackbotR© Hand Controller (left front) is an adapted Sony
PlaystationR© style controller. The PackbotR© EOD Operator Control Unit (left
rear) places six degrees of freedom on each hand, requiring the operator to manage
12 degrees of freedom and 12 context sensitive push buttons for typical operation.
The Foster Miller TALON robot controller (right) is operated through three two
degree of freedom joysticks and a large array of switches, selectors, and dials.
(Photos courtesy of iRobot Corporation and the National Institute of Standards
and Technology.)

Although there is a large variety of robot configurations and capabilities in the

field, it is not uncommon to see a robot operator managing as many as ten or

more degrees of freedom for a single robot platform.

What is different between this domain and many other multi-touch applications

is that this robot control interface mandates the use of multiple hands and fingers

simultaneously. The application must work reliably and repeatedly because both

EOD and SAR place the interface in a mission critical context where human lives

may hang in the balance. It has only been recently that technological advancements

and economies of scale have allowed multi-touch capable devices to be considered

in these difficult and mission-critical field domains.

In the course of re-evaluating the joystick controller described in Chapter

4 and designing the implementation in Chapter 6, we recognized the need for

a fast and highly robust algorithm for hand detection and finger registration.

Once this algorithm worked sufficiently well for our testing purposes, we then

80

continued building the robot controller described in Chapter 6 that provided

performance and ergonomic characteristics that met or exceeded the performance

of standard physical joystick based controller systems. This chapter explores this

design process and the verification of the performance of the hand detection and

finger registration. We call our system the dynamically resizing, ergonomic, and

multi-touch controller: the “DREAM Controller.”

5.1 Design Approach

One approach to user design is to borrow from outside experiences and interfaces

that the user has already encountered. This design method not only helps with ease

of learning, but may also exploit muscle memory that the user has developed over

time while using the other interfaces. A popular controller paradigm established

in the late 1990’s by the Sony PlaystationR© and the MicrosoftR© XBoxR© for video

games used a dual-thumb joystick design that allowed both of the thumbs to

manipulate four degrees of freedom (two on each thumb) and for various digital

buttons and analog pressure sensitive buttons to be incorporated. A survey of

popular first-person games showed the most common mapping involved placing

camera movement (look) on the right thumb and placing character movement (run

and strafe) on the left thumb. Fortunately, the capabilities of real robots closely

mirror those of virtual game characters: cameras can look left, right, up, and down,

while the robot can drive forward, backward, turn left, and turn right.

Coupling the ergonomics of the hand with the familiarity of the dual-thumb joy-

stick paradigm, we developed several paper prototypes (Snyder, 2003) to determine

the feasibility of function and comfort for the user. After several revisions, the

multi-touch joystick design shown in Figure 5-2 was chosen as the best candidate

for further software development. Rather than forcing the close left and right hand

positions, as in the case of a physical game controller, we decoupled the left and

right hands so that the user could maintain all of the functionality of the original

dual-thumb joystick design while allowing independent hand movement to any

81

Figure 5-2: A dual-thumb joystick modeled after the Sony PlaystationR© controller
(left) was used to inspire the design of a paper prototype (center) that was selected
for the design of the multi-touch DREAM Controller (right) on the Microsoft
Surface.

position on the screen.

A fundamental design goal of this interface was to allow untrained users to

quickly experiment with the touch surface and realize that the interface would

conform to them reliably. Users only needed to place their five fingers on the

tabletop, then the algorithm would then do the difficult task of re-arranging,

re-sizing, and rotating the controller for that individual hand placement.

In his book “Everyware: The Dawning Age of Ubiquitous Computing,” Adam

Greenfield discusses this type of natural interaction and ad-hoc user experimenta-

tion very succinctly.

“People figured out how to do that by themselves, without some

designer having to instruct them in the nuances. . . The more we can

accommodate and not impose, the more successful our designs will be”

(Greenfield, 2006).

This philosophy was adopted very early in the design of the multi-touch

controller. We should allow the user to make mistakes throughout the learning

stages of interaction. Over time, the design should intuitively lead the user to a

working and individually tailored solution for their specific ergonomics and style

of interaction.

82

5.2 Related Works

The algorithms used in most multi-touch interfaces do not consider which finger

is touching the contact surface. For most applications, this design is preferred

since users have been shown to regularly use any finger or combination of fingers

for interface operations like dragging, selection, and zooming (Wobbrock et al.,

2009; Micire et al., 2009a). However, in our design of a multi-touch controller,

registration of the individual fingers and, consequently, the identification of the

hand as a right or left hand was needed. The thumb, index, middle, and little

finger were vital to the position, orientation and sizing of the joystick before any

further interaction occurred.

Agarwal et al. (2007) developed a method of accurately finding fingertips and

detecting touch on regular tablet displays using an overhead stereo camera. In

their paper, they describe a machine learning approach in which a classifier was

trained to identify points at the end of fingers (“tip point”) based on shape and

appearance given overhead images with the backgrounds removed (Agarwal et al.,

2007). Individual finger tips are identified when several tip points are detected

in a cluster. The researchers have also investigated machine learning for hand

poses which does not take into consideration their fingertip detection (Izadi et al.,

2007). While these approaches are robust and able to find fingers using overhead

cameras, it is not clear that if fingers themselves were identified as thumb, index,

etc. The Surface is able to easily find finger tips and return the centroid points, so

the finger tip detection problem was solved for us by the hardware and software

provided with the device. Instead, our algorithm needed to specifically label the

fingers relative to the anatomy of the hand.

Wang et al. (2009) developed an algorithm for detecting orientation of finger

pads for camera-based multi-touch devices. First, an ellipse is fit to the contact

region. The touch is classified as an “oblique touch” (as opposed to a vertical touch

from a finger tip) if the area of the contact region is at least 120mm2 and if the

ratio of the major and minor axes of the ellipse is greater than 120% (Wang et al.,

83

2009). To determine the directed orientation of the contact region, the contact

center is tracked as the user puts his or her finger on the surface. The orientation

is derived from the angle of the vector from the contact center in the previous

frame through the current frame which points away from the user’s palm. This

algorithm has been shown to work well for individual fingers. However, for our

DREAM Controller, we needed to be able to uniquely identify finger types. Finger

orientation for multiple fingers can be used to help determine if the fingers are on

the same hand, but this does not necessarily indicate handedness. Additionally,

people have varying flexibility to spread their fingers (e.g., a pianist or a person

with arthritis), and it is difficult to robustly identify fingers based directly on

contact orientation when this surface area may change dramatically while on the

tips of the fingers.

Dang et al. (2009) developed an algorithm to map fingers to unique hands also

based on ellipses created by fingertip contact regions. As described in the previous

approach, the researchers first detect the individual finger orientations using the

major and minor axes of the ellipse and the angle of orientation of the major axis

vector. Their algorithm then projects the major axis vectors of each of the fingers

backwards towards the palm such that the vectors intersect. Given these finger

orientations and vector intersection points, the algorithm ensures that first the

maximum distance between all points is less than 10.55 inches and adjacent points

must be less than 3.5 inches apart. The algorithm then checks for the intersection

point of two finger’s orientation forward vectors (i.e., parallel in the same direction,

parallel in opposite directions, pointed towards each other, and pointed away from

the other). Next, the algorithm examines the interior angles of fingers’ orientation

backward vectors to ensure that they are less than 45 degrees for adjacent fingers.

To accommodate finger touches on opposite sides of the surface, the line from the

backwards intersection point of two fingers must be less than 14.06 inches. Finally,

the algorithm maintains temporality of finger IDs to allow accurate identification

for when hands move close together. This combination of heuristics allows for

detection of fingers mapped to a unique hand even when not all of the fingers from

84

a given hand are placed on the surface. While this approach is robust in certain

hand positions, the reliance on contact region ellipses makes it a difficult choice

when we expect a portion of our users to use the tips of their fingers while learning

the system’s behaviors.

Matejka et al. (2009) successfully emulated a mouse on a multi-touch platform

using simplistic and elegant heuristics for finger tracking. In their paper, they

describe a method that uses four primary methods for interaction: chording, side,

distance, and gesture. At the foundation of each of these interaction methods, basic

finger tracking was needed to determine if the user was pressing any combination of

three virtual mouse buttons. Rather than performing explicit finger identification,

they constructed a state machine that used timing for registration of the initial

tracking finger or fingers. Once the tracking finger was identified, subsequent finger

contact was measured in pixels to the right or left. For example, the “Distance

Technique” defines a short (< 150 px), medium (150-250 px), and far (> 250

px) distance to the right of the index finger for activating the left, middle, and

right button (Matejka et al., 2009). While this method is not computationally

expensive, it makes the base assumption that the user knows to begin with the

index finger before any subsequent finger contact. It also assumes that the size of

the user’s hands conform to these static offsets. Since explicit finger identification,

handedness, and automatic sizing was needed for our application, the technique in

this research was not appropriate despite other benefits in its design.

5.3 Engineering Criteria

Engineering criteria for the DREAM Controller were as follows: learnability, effi-

ciency, memorability, error prevention and recovery, and satisfaction. These were

derived from Neilsen’s five usability attributes (Nielsen, 1993). Specifically, our

design attempted to deliberately incorporate these characteristics in the following

ways:

85

Learnability: “The system should be easy to learn so that the user can rapidly

start getting some work done with the system” (Nielsen, 1993). As previously

mentioned, the design can exploit learning effects by borrowing from past user

experiences or experiences that the user may have observed in passing. The

ubiquity of the dual-thumb joystick design implies that a large number of users

will already know how to use the DREAM Controller. The controller would also

be labeled explicitly regarding the functions that each of the components provide.

Buttons, sliders, and control surfaces will have each of their function directly

displayed on or near the control itself. This labeling is a positive aspect of the

software-based controller when compared to physical devices that can only generi-

cally label buttons as “A”, “1”, “Start”, or use special iconic characters such as “4.”

Efficiency: “The system should be efficient to use, so that once the user has

learned the system, a high level of productivity is possible” (Nielsen, 1993). The

user is given four degrees of freedom and an array of buttons and sliders to choose

from. Any of these functions can be used sequentially or simultaneously, so effi-

ciency can increase over time. Much like gamers who can achieve very high levels

of efficiency on gaming consoles that use the dual-thumb joystick paradigm, we

believe that this design should afford the same efficiency characteristics.

Memorability:“The system should be easy to remember, so that once the casual

user is able to return after some period of not having used it, without having

to learn everything all over again” (Nielsen, 1993). Since using the left joystick

for robot movement and right joystick for camera movement is ubiquitous in

game design, the users will effectively be training for our system while using

most first person games. This constant reinforcement and coordinated movement

should provide significant reinforcement for recall on the DREAM Controller’s

usage. As mentioned in the discussion of learnability, all of the functions of the con-

troller will also be clearly labeled on the controller graphic for quick recall if needed.

86

Error prevention and recovery: “The system should have a low error rate, so

that users make few errors during the use of the system, and so that if they do

make errors they can easily recover from them. Further, catastrophic errors must

not occur” (Nielsen, 1993). The user only needs to lift his or her hand from the

touch surface to recover from an error. In the case of the robot’s movement, the

robot will stop immediately and set the brakes for safety when the hand is lifted.

Errors related to hand detection and finger registration may also be a problem.

We specifically designed the algorithm for hand detection and finger registration

to be fast and responsive to the user. This algorithm allows the user to rapidly

experiment with different hand and finger configurations to determine what works

best for himself or herself and minimizes errors.

Satisfaction: “The system should be pleasant to use, so that users are subjectively

satisfied when using it; they like it” (Nielsen, 1993). A system designer would be

hard pressed to find a more satisfying source of inspiration than one that is used to

entertain people for hours at a time. Our attempts to model the robot control after

first person game control not only affords all of the characteristics above, but most

users are quick to recognize the similarity and enjoy moving the robot through the

world with as much control and fluidity as they achieve in virtual game play. This

is not to say that the real-world movement of the robot is without the “problems”

of inertia, friction, and other physics, but from the user’s perspective, he or she is

working with a familiar interface that has brought him or her entertainment and

satisfaction in prior experiences.

Ergonomic engineering criteria were also taken into consideration during the

design process. We engineered the controller with a significant respect for the

resting poses for the human arm, wrist, and hand. The paper prototypes in the

early design process helped minimize flexion (decrease of angle), extension (increase

of angle), and pronation (downward rotation) of the muscles in the wrists and

fingers based on recommendations found in Saffer (2008). We also considered

87

that the movements of the thumb, index finger, and little finger have been shown

to have much more individualized movement characteristics than the middle or

ring fingers (Hager-Ross and Schieber, 2000). In particular, the movement of the

thumb for managing the two degrees of freedom for robot movement and camera

positioning must be appropriate for accurate and long-term use.

Two sources of information were important in establishing the ergonomic

requirements of the DREAM Controller. A wealth of ergonomic information

related to gestural interfaces can be found in (Nielsen et al., 2003). In this paper,

the authors suggest six key principles of ergonomics: avoid outer positions, avoid

repetition, relax muscles, relaxed neutral position is in the middle between outer

positions, avoid staying in static position, and avoid internal and external force on

joints and stopping body fluids. Each of these principles dramatically influenced

our design during the prototyping phase.

Another source of anatomical information (and inspiration) was found in the

1955 book by Henry Dreyfuss titled “Designing for People” (Dreyfuss, 1955).

The book contains composite figures of human anatomy gathered from years of

research and data collection. In particular, there is significant commentary on

the ergonomics of the human hand as seen in Figure 5-3. It was through these

illustrations and text that we began decomposing the anatomy of the hand and

recognized that the fingers were limited in their lateral deflection angles. Even in

extreme stretching, there were key characteristics that we could exploit to identify

the components of the hand.

5.4 Hand And Finger Registration

Not only does the system need to have a low error rate, but it also needs to allow

for quick recovery from an error. If an error is made, the user should be able to

quickly realize that something has gone wrong and recover from the error. As such,

hand detection and finger registration became one of the most important aspects

of the interface design. The algorithm not only needed to be fast, but it needed to

88

HAND DATA

hand length

hand breadth

3 d. f inger lg .

dorsum lg .

thumb length

MEN WOMEN CHILDREN

2.5%t i le 50 .%t i le 97 .5%t i le 2 .5%t i le 50 .%t i le 97 .5%t i le 6 yr. 8 yr. 11 yr. 14 yr.

5 .1

2 .3

2 .9

2 .2

1 .8

5 .6

2 .5

3 .2

2 .4

2 .0

6 .3

2 .8

3 .5

2 .8

2 .2

7 .0

—

4.0

3 .0

2 .4

7 .5

3 .1

4 .4

3 .1

2 .6

6 .9

2 .9

4 .0

2 .9

2 .4

6 .2

2 .6

3 .6

2 .6

2 .2

8 .2

3 .8

5 .0

3 .2

3 .0

7 .5

3 .5

4 .5

3 .0

2 .7

6 .8

3 .2

4 .0

2 .8

2 .4

increase 14% when bent

3.5

.4

.2

.2

RIGHT HAND

AV. MAN

profile of

heavy winter

gloves A.A.F.

80
o max.

45o
45o

4.5

3d. finger lg.

.85 av.

1.03 max.

.875 max.

15o±

3.0

dorsum lg.

CL lunate

55
66o

79

15
27o

40
2.7

3.8
4.2 palm lg.
4.7

3.7
4.1
4.5

RIGHT HAND

AV. WOMAN

CL hand grip

2.4

CL lunate

15o±

2.9

4.0

6.9

2.9
finger nails vary

HAND MEASUREMENTS OF MEN, WOMEN AND CHILDREN

HAND POSITIONS - AVERAGE MAN

MAX. REACH

min. open

protected

buttons
.93 D.

2.25

2.25 x 4’’ hole

or 3.5’’ sq. hole

min. access for

empty hand

3 LB. max. F.
1 LB. opt.

prefer to
operate
push buttons
by finger pads

90o

7.5

1.02 - S.M.
1.17 - AV.M.
1.31 - L.M. 32o

54o

80o

73o

95o

110o

FINGER GRIP

angle of max.

force and

resting angle

35o
14% increase in

hand lg.

8.8% decrease in
hand lg.

16 LB. max. force

4.0
4.5
5.0

max. hole for
finger exclusion

.5

.3

2.8
3.0
3.22.4

2.7

2.9
fist circum.:
10.4 - S.M.
11.6 - AV.M.
12.7 - L.M.

1.75 max. handrail dia.
1.5 max. rung dia.
.75 min. rung dia.

touch pt.

3.7
4.1
4.5

2.75 max. sphere
1.5 opt.

1.6
1.8 max. cyl.
2.1

HAND GRASP

Figure 5-3: The hand characteristics and registration heuristics were, in part,
inspired by Henry Dreyfuss’s 1955 book “Designing for People.” Reproduced with
permission. Courtesy of Allworth Press.

89

be reliably insensitive to extreme finger configuration and hand orientation cases

that the user might present while experimenting with the interface.

Finger detection is the first step in our algorithm. When a finger touches the

device, the centroid of the contact is added to a list of possible point candidates.

If there are five or more candidates in the list, the candidate list is passed through

a heuristic to determine if those points could contain a subset of five fingers from

a single hand. If five of the points pass the heuristic, the points are removed from

the candidates list and added to a separate hand list.

Currently, the heuristic for the hand is a pair-wise evaluation of the candidate

points to determine if a subset of those points are within the maximum possible

distance for a human hand. Based on Dreyfuss’s measurements (Dreyfuss, 1955) for

the largest male hand and some empirical testing, we determined that the distances

between the points need to be clustered within eight inches. This heuristic was

chosen because of its simplicity, but improvements on this heuristic are discussed

in the section on future work.

Once the heuristic has determined that a hand has been detected, the finger

registration algorithm then attempts to figure out which of the five points corre-

spond to specific fingers. To compare the angles between the points, a relatively

accurate centroid of the hand needs to be located. A bounding box is created

around the five points. The centroid of the box roughly represents a point above

the center of the palm, but below the knuckle on the middle finger.

A sorted list of angles between adjacent points and the centroid of the bounding

box is then calculated. The largest angle in this list represents the angle between

the thumb and the little finger. The second largest angle represents the angle

between the thumb and the index finger. By taking the intersection of these

two sets, the algorithm is able to determine the point representing the thumb.

The complimentary point on the largest angle is then the little finger and the

complimentary point on the second largest is the index finger. Likewise, the

complimentary point to the index finger that is not the thumb is the middle finger.

The remaining point is the ring finger.

90

< 8 in

Thumb

Index
Middle

Ring

Little

Centroid

Largest

Second
Largest

Clockwise
= Right

Counter
= Left

Figure 5-4: Hand and finger registration is accomplished by first ensuring that the
points are within the maximum size for a human hand (top left), then finding the
centroid of the bounding box containing all of the points (top right), determining
the two largest angles (bottom left), and determining if the angle from the thumb
to the index finger is clockwise or counterclockwise (bottom right).

91

Now that the fingers have been identified, the algorithm can determine if

the fingers correspond to a right or left hand. If the angle from the thumb,

centroid, and index finger is clockwise, then it is the right hand. If the angle is

counterclockwise, then it is the left hand. To determine the direction of rotation,

we take the sign of the cross product of two vectors. For the purpose of derivation,

we assign the vector from the centroid to the thumb as ~a and the vector from

the centroid to the index finger as ~b. Assuming that ~a and ~b are in the XZ plane,

then the cross product vector will be positive (point upwards) if the rotation from

~a to ~b is counterclockwise, and be negative (point downwards) if the rotation is

clockwise. Since these are two dimensional vectors, the cross product derivation

expands to Equation 5.1 where (xt, yt) correspond to the thumb coordinates, (xi, yi)

correspond to the index finger coordinates, and (xc, yc) correspond to the centroid

of the bounding box.

(xc − xt) · (yi − yc)− (yc − yt) · (xi − xc) (5.1)

At this point, the algorithm has all of the information that it needs to begin

building the DREAM Controller underneath the user’s hand. With the exception

of the initial bounding box to determine the centroid of the hand, it should be

noted that the algorithm does not rely on a Cartesian coordinate system and is

insensitive to user orientation. The algorithm only uses the highly optimized atan2

standard math library function and arithmetic functions, making it inherently fast

and applicable for execution on limited processors. Finally, since the algorithm

does not use any of the contact surface area information, it can be used on other

multi-touch technologies that only return single pixel touch points.

5.5 Form and Function

The algorithm uses the hand geometry and handedness to adjust the size, orienta-

tion, and arrangement of the DREAM Controller elements. As shown in Figure

5-5, there are some key measurements that determine these features. The following

92

description of the widget algorithm will focus on the right hand controller, but the

left hand controller is the same algorithm, just mirrored.

First, the angle from the thumb to the index finger determines the orientation

of the controller and the button grid. The top right corner of the button grid

is placed at the index finger and the lower right corner is placed at the thumb.

The width of the grid is determined by the size of the buttons and sliders with

the addition of padding for layout and visual balance. The height is the distance

between the thumb and the index finger.

A circle containing the points corresponding to the thumb, index finger, and

little finger is calculated. This bounding circle provides a purely aesthetic visual,

showing the users that the controller is tailored to their specific hand size. Pro-

grammatically, this circle is also used to protect user elements in lower panels

from detecting erroneous events from the finger movement on the controller layer

above. Since the controller can be created and moved to any part of the screen,

this protection for lower event triggers becomes important.

The circle is calculated based on the circumcircle that surrounds the triangle

created by the points representing the thumb, index, and little finger. First, the

coordinates of the circumcenter is calculated using the equation shown in Equation

5.2 through 5.4. The distance from this circumcenter to any of the finger points is

the radius of the desired circle.

xc = ((y2t + x2
t) ∗ (yi − yl) + (y2i + x2

i) ∗ (yl − yt) + (y2l + x2
l) ∗ (yt − yi))/D (5.2)

yc = ((y2t + x2
t) ∗ (xl − xi) + (y2i + x2

i) ∗ (xt − xl) + (y2l + x2
l) ∗ (xi − xt))/D (5.3)

D = 2 ∗ (xt ∗ (yi − yl) + xi ∗ (yl − yt) + xl ∗ (yt − yi)) (5.4)

Two circles are placed under the center of the index and middle fingers. These

are analogous to the “shoulder” buttons used on dual-thumb joystick controllers.

The circles were not needed to provide button functionality in this particular

implementation, but since they can receive their own events (above the controller

object), they can easily be used as momentary or toggle buttons if needed. Ad-

ditionally, these have the potential to be used as pressure sensitive buttons just

93

Index to
Thumb

Clear Function Labels

2DOF Proportional Control

Button width + padding

Buttons for tracking and movement

Basis for Circle

1/3 Distance
Index to Thumb

Dead Band

Zoom Speed Reset

ADR

Up

Down

Left Right

Figure 5-5: Users have a wide variety of hand characteristics. The DREAM
Controller adjusts several parameters to tailor the size, orientation, and position
of the controller. This design is intended to maximize the users’ comfort and
performance.

94

like the dual-thumb joystick controllers since the relative size of the finger blob

detected can be determined as the user changes the amount of pressure placed on

the surface.

A circle pad is placed under the thumb representing analog control for two

fully proportional degrees of freedom (DOF). Much like the Playstation controller,

the thumb is then moved up, down, left, and right corresponding to the desired

movement. The thumb pads have their function clearly labeled within the bound-

aries of the circle. The left hand is labeled for robot movement where the top of

the circle corresponds to moving forward, bottom to moving backwards, left for

counterclockwise rotation, and right for clockwise rotation. For the right hand,

movement to the top of the circle tilts the camera up, bottom of the circle tilts

the camera down, and left and right movement rotate the camera left and right

respectively. In both hand cases, the user has full proportional control and can

fully mix the analog ranges for both degrees of freedom. If the thumb is not in

contact with the analog control pad, then motion of the camera pan-tilt mechanism

or drive system is immediately halted.

The text labeling in the camera thumb control visual is important because

users may come to the interface with two different competing paradigms for camera

manipulation. In the case of people familiar with first person shooters, moving the

thumb joystick toward the top causes the character view to look in an upwards

direction. In the case of airplane or submarine simulators, moving the joystick

down causes the vehicle to fly in a more upward angle. The downward motion of

the joystick is commonly referred to as “pulling up” on the joystick even though in

actuality the joystick is being pushed to the bottom of its freedom of movement.

Interfaces should carefully implement labeling and optionally give the user an

option to select either paradigm.

The index and middle finger can be moved to adjust the angle of the controller

dynamically if the thumb is not in contact with the joystick. The controller will

simply follow the user’s fingers and maintain the orientation of the controller

relative to the respective contact points. This freedom of movement is stopped

95

once the thumb makes contact with the 2DOF analog control pad. The shunting

of movement is important for safety and continuity of control. Many secondary

movements are transferred to the index and middle finger when the thumb muscles

are actuated. The thumb position relative to the analog control pad changes if

this movement of the index finger and middle finger then rotate or translate the

position of the controller. This, in turn, causes the user to move their thumb,

which causes the index and middle finger to again move. This feedback loop

would quickly become very frustrating to the user and would result in the user

pushing down on the screen surface to limit secondary movement. Muscle fatigue

would quickly occur and the user experience would be very diminished. By simply

stopping movement on thumb contact, the controller maintains position and allows

the user to relax his or her hand muscles without consequence.

Removal of the DREAM Controller requires the user to simultaneously lift

their thumb and their index or middle finger. As mentioned above, the user can

lift their thumb to stop the motion of the robot and allow repositioning of the

controller.

At any time while using the controller, the user can lift or lower their ring and

little fingers with no effect on operation. We made this design decision for the

comfort of the user after noticing this relaxation behavior with the early paper

prototypes.

5.6 Experiment Design

We needed to test the reliability of the above algorithms before investing effort

integrating the DREAM Controller into the interfaces described in Chapter 6. To

test the accuracy of the hand detection and the finger registration algorithm, we

designed an experiment to collect data from a wide sampling of people to get a

range of hand sizes and natural angles between fingers. For this experiment, we

used a Microsoft Surface which uses diffuse illumination of infrared (IR) light.

96

0
1

2

3
4

5

6

7

Figure 5-6: Participants in the study were asked to stand in one of eight positions
around the Surface to test the sensitivity of the algorithm to hand orientation.

At the start of the experiment, the participant would stand facing the Surface.1

Participants were asked to stand in one of eight positions: four corresponding to

the sides of the Surface and four to the corners of the Surface, as shown in Figure

5-6. A participant would stay in his or her location for the entire data collection

session.

Once positioned, the participant was asked to place his or her fingers down

on the table in three configurations, first with the right hand, then with the left.

Each hand posture was demonstrated by the researcher for the participant and is

shown in Figure 5-7.

First, participants were asked to curl their fingers so that the tips touched the

board simultaneously, similar to a pose used by piano players or touch typists.

After the Surface registered the touches, our algorithm would run, displaying how

it identified the fingers and hand. Participants were then asked to remove their

hand from the Surface. If the Microsoft-supplied vision processing system failed

1Our Surface is mounted on a wheeled dolly, making operation from a standing position
comfortable.

97

to identify all five touches when a participant put his or her hand down,2 the

participant would be asked to try the hand position again.

Second, participants were asked to relax their hand so that their muscles were

in a neutral position and pose. In the ergonomic literature, this hand position

would be referred to as a position of function (e.g., see (Bunnell, 1942)). This

position is the same pose that is used after a hand injury when a hand is placed in

a cast. It is the most natural and ergonomic pose for the human hand. Participants

were again asked to place the pads of their fingers on the Surface simultaneously.

After the Surface registered the five points and our algorithm ran, participants

were told they could remove their hand from the table. If the Surface did not

register all five points, the participant was asked to put his or her hand down in

that position again.

Third, participants were asked to stretch their fingertips as far as they could

while maintaining reasonable comfort. This position represents the maximum hand

size that the participant can create. Again, participants were asked to place the

pads of their fingers on the Surface simultaneously.

The entire process took under two minutes per participant. Each participant

was given a gift card for their participation in the study.

Data was collected in three ways. First, the test administrator wrote down on

paper whether the algorithm correctly identified the hand and fingers. Correctness

was determined by visually inspecting the labels over the fingers. Because the

algorithm could not measure its own performance, this manual step was necessary

for evaluation.

Data was also collected using the Surface Simulator Recording Utility. This

utility creates a script file for all of the touch events on the Surface. A script

was created for each user individually. A concatenation of these scripts provides

a comprehensive way to test future versions of the algorithm and compare them

directly to this study.

Finally, each time the hand detection and finger registration was executed, a

2Sources of the interference could be sunlight, fluorescent lighting, or other sources of IR light.

98

Finger Tips Finger Pads Hand Stretch

Figure 5-7: Participants were asked to place their hands in three positions. First,
on the tips of their fingers (left) like a pianist or touch typist. Then in a relaxed
position (center) with the pads of their fingers resting on the surface. Finally,
they stretched their hands as far a possible (right) to demonstrate their maximum
contact size.

photograph of the raw image of the diffused illumination surface was taken. This

image capture used the same cameras in the Surface that provide all of the image

processing of touch points. This final data collection step was done in the event

that a future hand detection or registration algorithm is developed that wishes to

bypass the standard Surface API libraries and process the images directly. Since

the Surface cameras can see fingers and hands slightly above the surface of the

screen, information outside of touch contacts may be an interesting source for

future information gain about the orientation and registration of fingers. In the

interest of direct comparison, this photographic data set could be used to evaluate

a new algorithm relative to algorithms that strictly use the script method above.

5.7 Results and Discussion

Sixty-five people participated in this experiment (21 female, 44 male), which

resulted in a data set of 390 hand placements on the Surface. The algorithm

described in this paper correctly recognized 92.31% (360 of 390) of the hand

placements. It correctly recognized both right hand placements (91.79%; 179 of

195) and left hand placements (92.82%; 181 of 195).

99

5.7.1 Hand Position

The user may or may not place his or her hand in a comfortable or correct

posture for efficient use of the DREAM Controller. While it is hoped that this will

eventually be the case, during the experimentation and learning phase, the user

may present many different hand configurations. The algorithm must determine

the correct finger registrations and arrange the controller correctly in even severely

sub-optimal hand positions. If not, the user will doubt that the interface will

perform reliably.

The three hand postures shown in Figure 5-7 represent two extreme cases and

one desired case. When the participant touched the Surface with the tips of their

fingers, this represents a very compact and minimal size for the overall surface area

of the fingers and will result in the smallest controller size. This position is also

an expected experimentation approach for any users who are familiar with touch

typing. The anatomy of the hand in this configuration (as detected by the Surface)

is not as well defined since the fingers are arched and do not have their normal

representative angles of deflection. From the view of the Surface, the points are

shortened fingers relative to the centroid of the bounding box and would therefore

have potentially different angle characteristics.

In the second case, the relaxed pose puts the hand in the most ergonomic

position and maximizes the surface area of the finger pads. The anatomy of the

hand in this configuration is closest to the position of function and should represent

a detectable configuration for the algorithm. This position is the one that we

hope most users would use after some experience with the system. This posture

should minimize fatigue and give the highest degree of manipulation for the thumb

joystick.

The final posture represents the maximum size that the participant can generate

with their hand. Since the thumb is fully extended in this case, it would not be a

usable configuration for control of the thumb pad. This said, one would expect a

inexperienced user to test this hand configuration during their learning time to

100

Table 5.1: Hand and finger recognition rates by hand

Tips Pads Stretch

Right Hand 56 of 65 61 of 65 62 of 65
(86.15%) (93.85%) (95.38%)

Left Hand 59 of 65 60 of 65 62 of 65
(90.77%) (92.31%) (95.38%)

Both 115 of 130 121 of 130 124 of 130
(88.46%) (93.08%) (95.38%)

see how the system responds. This position also presented an opportunity to see if

the hand detection heuristic for a cluster of points within 8 inches was appropriate

for the population tested.

We conducted 1-tailed paired t-tests with α=0.05 examining the three different

hand postures. Table 5.1 shows the recognition rate for the right, left, and combined

hand placements. We found that the algorithm recognized the participants’ hands

significantly better when people used the pads of their finger versus the tips of

their fingers overall (p<0.03, t(265)=2.20).

The algorithm also recognized the participants’ hands significantly better when

people had their hands fully stretched versus the tips of their fingers overall (p<0.01,

t(265)=2.99). Further, in comparing the tips and stretched hand positions, we found

that the algorithm performed significantly better in both in right hand placements

(p<0.02, t(129)=2.43) and in left hand placements (p<0.05, t(129)=2.06). The

third hand posture in which the participant was asked to stretch his/her hand to

maximally comfortable position is another instance of the pads hand posture. As

such, we found no statistical significance between the recognition rates between

the pads and stretch hand postures.

5.7.2 Board Position

One of the inherent values of multi-touch devices is the ability to bring people

around a common table. Unlike traditional WIMP (windows, icons, menus, and

101

Table 5.2: Hand and finger recognition rates by board position

Position 0 Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7

All 54 of 54 44 of 54 48 of 48 52 of 54 40 of 41 38 of 42 42 of 42 38 of 53
(100%) (81.48%) (100%) (96.30%) (97.62%) (90.48%) (100%) (70.37%)

Right 27 of 27 24 of 27 24 of 24 24 of 27 20 of 21 17 of 21 21 of 21 21 of 27
overall (100%) (88.89%) (100%) (88.89%) (95.24%) (80.95%) (100%) (77.78%)

Right 9 of 9 8 of 9 8 of 8 8 of 9 6 of 7 5 of 7 7 of 7 5 of 9
tips (100%) (88.89%) (100%) (88.89%) (85.71%) (71.43%) (100%) (55.56%)

Right 9 of 9 8 of 9 8 of 8 8 of 9 7 of 7 6 of 7 7 of 7 8 of 9
pads (100%) (88.89%) (100%) (88.89%) (100%) (85.71%) (100%) (88.89%)

Right 9 of 9 8 of 9 8 of 8 8 of 9 7 of 7 6 of 7 7 of 7 8 of 9
stretch (100%) (88.89%) (100%) (88.89%) (100%) (85.71%) (100%) (88.89%)

Left 27 of 27 20 of 27 24 of 24 27 of 27 21 of 21 21 of 21 21 of 21 20 of 27
overall (100%) (74.07%) (100%) (100%) (100%) (100%) (100%) (74.07%)

Left 9 of 9 7 of 9 8 of 8 9 of 9 7 of 7 7 of 7 7 of 7 5 of 9
tips (100%) (77.78%) (100%) (100%) (100%) (100%) (100%) (55.56%)

Left 9 of 9 6 of 9 8 of 8 9 of 9 7 of 7 7 of 7 7 of 7 7 of 9
pads (100%) (66.67%) (100%) (100%) (100%) (100%) (100%) (77.78%)

Left 9 of 9 7 of 9 8 of 8 9 of 9 7 of 7 7 of 7 7 of 7 8 of 9
stretch (100%) (77.78%) (100%) (100%) (100%) (100%) (100%) (88.89%)

pointer) interfaces which have a clear sense of orientation, people may use the

multi-touch device from any side. In this experiment, participants stood at one of

eight positions. We wanted to test if our hand and finger recognition algorithm

was insensitive to orientation. Table 5.2 shows the hand and finger algorithm

recognition rates for each of the eight positions.

We examined the recognition rate for the hand placements for which the

participant was perpendicular to a major axis (i.e., positions 0, 2, 4, and 6) versus

those who were at a 45 degree angle between the major axes (i.e., positions 1, 3, 5,

and 7). For participants facing a major axis, the algorithm recognized 99.46% (185

of 186) of the hand placements and 85.78% (175 of 204) of the hand placements

for participants who were not. We conducted 1-tailed unpaired t-test with α=0.05

and found that our algorithm performed significantly better with on-axis hand

placements (p<0.01, t(388)=5.51).

5.7.3 Gender

Table 5.3 shows the hand and finger algorithm recognition rates for males, fe-

males, and all participants combined. We conducted 1-tailed unpaired t-test

with α=0.05 and found that our algorithm performed significantly better overall

102

Table 5.3: Hand and finger recognition rates by sex

Overall Tips Pads Stretch

Male 251 of 264 81 of 88 84 of 88 86 of 88
(95.08%) (92.05%) (95.45%) (97.73%)

Female 109 of 126 34 of 42 37 of 42 38 of 42
(86.51%) (80.95%) (88.10%) (90.47%)

on hand placements from male participants versus female participants (p<0.01,

t(388)=2.79).

Interestingly, we find that in 97% (28 of 29) of the failed recognitions of hand

placements for both male and female have to do with placement of the thumb

relative to the fingers. Figure 5-8 shows a sampling of the failure cases in which

the angle between the thumb and index finger is greater than the angle between

the thumb and little finger. Visually, the thumb might seem to be nearly equal in

distance to both the index and little fingers. Physically, the thumb is positioned

under the palm. At this point, it is unclear if the effect is also a function of the

difference in hand size between men and women, of an effect that would reduce

with a larger population. Regardless, we believe that the user’s hand would quickly

tire in this position while manipulating the proportional joystick because of the

restricted thumb movement. We hope that when actually using the DREAM

Controller, the user would adjust his or her hand to a more comfortable and less

tiring configuration.

5.8 Potential for Improvement

Although the hand detection and finger registration algorithm performed well for

this user study, there is still room for improvement. For instance, the use of the

bounding box for determining the relative center of the hand loses accuracy as the

user approaches the 45-degree positions relative to the Cartesian coordinate system.

A more accurate and orientation insensitive approach might use an equation that

103

Failure Success

M
al

e P6 with right tips P6 with left tips

P43 with left pads P43 with right pads

F
em

al
e

P63 with right tips P63 with left tips

P51 with left tips P51 with right tips

Figure 5-8: Annotated images for failed hand and finger recognition of hand
placements (left column) and successful recognition for the other hand (right
column). The center point (c), thumb (t), index finger (i), and little finger (l)
have been labelled. ti is the angle between the thumb and index finger and is
overlaid on the angle tcl as an arc. When the arc ti extends over the line tc, then
the algorithm failed. In other words, the angle between the thumb and the index
finger must be smaller in order to correctly identify the fingers.

104

uses all or a subset of the points to create a circumscribed polygon. The center

of this circle, or some combination of circles, may provide a closer approximation

and would certainly be less orientation sensitive.

There is an interesting point of information gain that was not exploited by this

algorithm that may also help in determining the centroid of the palm and help

start the finger registration process. The thumb is typically the point furthest

from all of the other finger points. By performing the reverse of a nearest neighbor

search, the algorithm could find the point that is furthest from all of the other

points in the set. Since this point is arguably the thumb, a weighted average for

the points in the Cartesian plane or some other heuristic might be able to better

determine the center of the palm and bootstrap the registration process.

By all intuitive measures, the algorithm described and tested in this document

should work well with multiple users at different orientations. Since the DREAM

Controllers are always located relative to the hands of the operators, concepts

of territoriality in collaborative workspaces are preserved (Scott et al., 2004).

However, the simple hand detection heuristic of five points clustered within eight

inches may not be sufficient for users that are in close proximity to each other and

place their hands down on the surface simultaneously. The heuristic would need to

make a much closer anatomical evaluation of the candidate points to disambiguate

the points in nearby hands that have not been fully detected and registered.

5.9 Impacts and Implications

Given the high success rate of the current algorithm, it is the hope of the author

that this algorithm, and algorithms like it, become a standard component of multi-

touch software development kits. As future interfaces begin taking advantage of the

full anatomy and ergonomics of the human hand, the identification and registration

of fingers becomes vital. It is to this end that the collected Microsoft Surface

Simulator scripts and Surface photographic data is being released into the public

domain and available upon request. An example of the Surface Simulator data

105

Figure 5-9: Our hand detection algorithm is played back in the Surface Simulator
using the publicly available dataset (left). Additional photographic data (right) is
included in this data set for researchers that wish to work with the vision system
directly.

and photographic data is shown in Figure 5-9. Others are encouraged to compare

their algorithms to our results and improve upon the detection and registration

performance. When coupled with the Microsoft Surface Simulator API, this data

has the potential to be a powerful tool for testing new algorithms.

Although this research is set in the context of physically situated robots, we

foresee this type of controller being used effectively for game play and other domains

when multiple degrees of freedom must be managed simultaneously. First person

games are an obvious application, but others such as crane or forklift operation,

manufacturing equipment, or aircraft control may benefit from experimentation

with controllers like the one described.

106

Chapter 6

Robust Multi-touch Robot

Control

Having established a potentially useful model for joystick emulation on multi-touch

devices in Chapter 5, the next natural step in this iterative design process was to see

how the DREAM Controller compared to the performance of the DiamondTouch

interface validated in Chapter 4. The interface and experiment design for this

part of the study were two-fold. First, we wanted to apply the newly designed

DREAM Controller to the well tested and studied UML USAR interface. The

original joystick-based design described in Chapter 4 and also in Keyes (2007)

would provide a baseline for comparison. We kept the visual presentation constant,

which would allow a three-way comparison between the joystick, DiamondTouch,

and new Surface DREAM Controller. It was our hope that the new design would

increase performance above both of the prior implementations.

The second part of this chapter’s study drastically changed the visual presen-

tation while keeping the DREAM Controller implementation constant. In Yanco

and Drury (2006), one of the suggested guidelines for robot control interfaces was

to use larger video on the control screen since that was the primary sensor used

by the operators. The changes in this interface included a full-screen display with

transparent sensor readouts. Taking inspiration from the displays on military

helicopters and aircraft, the video was stretched to the extents of the screen and a

107

green overlay would augment the view of the surrounding environment with sensor

readings and robot state.

By carefully controlling the variables in the experiment, it was our intent to

provide a two-step improvement in the same user study. If either of the interface

changes degraded performance, we would be able to identify the component of

performance degradation and adjust future versions of the interface accordingly.

Table 6.1: Four versions of the operator control interface. The original joystick
version (top) was compared against the DiamondTouch version from Chapter 4
(upper-middle) and two newer Surface versions (lower-middle and bottom).

Joystick:Window
Interface that uses joystick and keyboard for input
with the visual display detailed in Chapter 4 and also
in Keyes (2007).

DiamondTouch:Window
Interface that uses multi-touch control with the static
round widget. This implementation was detailed in
Chapter 4 and otherwise uses the identical graphical
presentation as Joystick:Window.

Surface:Window
Interface that uses the DREAM Controller described
in Chapter 5. Graphical presentation is based on
Joystick:Window and DiamondTouch:Window with
only minor layout adjustments.

Surface:FullScreen
Interface that uses the same DREAM Controller de-
sign with a full-screen video display. The interface
borrows from the lessons of the previous interfaces, but
is a significant departure from the previous graphical
layouts.

108

The UML USAR interface has seen an almost constant improvement through

multiple iterations over eight years of development. A significant improvement in

input method and display organization would hopefully provide the next step in

this interface evolution.

6.1 Interface Definitions

For this chapter, there are four interfaces that will be discussed. They are shown and

defined in Table 6.1. For the experiments based on these interface definitions, there

are two independent variables. The first is the control input method, where the

new DREAM Controller in Surface:Window will be compared to the performance

of the multi-touch joystick widget on DiamondTouch:Window and the physical

joystick with Joystick:Window. The other independent variable is the presentation

of the interface. The window-based interface in Surface:Window will be compared

to the full screen display in Surface:FullScreen.

We will also use this notation to maximize the clarity and brevity of com-

parisons in the following descriptions and analysis. References to the “Window”

interface include Joystick:Window, DiamondTouch:Window, and Surface:Window,

as opposed to the “FullScreen” interface which includes Surface:FullScreen. A refer-

ence to the “Joystick” or “DiamondTouch” interface refer to the Joystick:Window

and DiamondTouch:Window respectively. Finally, “Surface” refers to both the

Surface:Window and Surface:FullScreen interfaces.

6.1.1 Surface:Window Interface Description

The Joystick:Window and DiamondTouch:Window interfaces provided the look

and panel arrangement for the Surface:Window interface. The earlier interfaces are

discussed in depth in Chapter 4. The focus of this section is the Surface:Window

interface and the interaction techniques implemented.

The Window interfaces use four panels and a user adjustable joystick for control

of the robot functions. Each discrete interaction element is shown in Figure 6-1.

109

Main Video Panel:
Pinch = zoom

Tap = pan & tilt
Drag = servo to finger

Double Tap = reset

ADR Mode Panel:
Double Tap to toggle

ADR mode

Distance Panel:
Tap to toggle top-

down view

Tap button to begin
experiment run timer

Camera DREAM
Controller

Drive DREAM
Controller

Map Panel

Figure 6-1: Surface:Window features and gestures for operating the robot with
on-screen controls.

Main Video Panel: This panel provides the view from the forward facing

camera and occupies the center of the display. The video image is augmented by

a crosshair that represents the position of the camera pan and tilt unit (PTU)

relative to the body of the robot. The crosshair is calibrated so that when the

camera is facing straight forward, the crosshairs are centered on the vertical and

horizontal view of the camera image. The crosshair coordinate system corresponds

to the limits of movement for the PTU, where panning rotation from 0 to 90

degrees leftward will move the crosshair proportionally from the center to the left

of the image. This similarly happens for movement to the right, top, and bottom.

The crosshairs move proportionally across both degrees of freedom, which provides

a quick visual reminder of the rotation of the camera PTU.

If the user taps the main video panel with his or her finger, the PTU will

servo to the corresponding (x, y) location with the crosshair providing real-time

position feedback. If the user drags the finger, the crosshair and PTU will “chase”

the finger and attempt to maintain the crosshair under the finger tip. The PTU

is mechanically limited and the motors have to overcome inertia, friction, and

other physical properties, so the tracking movement is best-effort and optimized

to minimize lag as much as possible. A double-tap on the main video panel will

reset the PTU to the origin (0, 0) where the camera is looking straight forward

110

and level to the robot chassis.

ADR Mode Panel: The robot has a rear-looking camera with a wide-angle

lens that allows the user to see what is behind the robot at any time. The video

from this camera is placed in the upper right hand corner of the user interface and

is analogous to a rearview mirror in an left-hand drive automobile. This image

is mirrored on the vertical axis to make it appear natural as a rear-view mirror.

In Keyes et al. (2006), it was shown that simply providing this view of the robot

helps significantly increase situation awareness and many measurements of user

performance.

A double tap on the rear view will cause the rear image to switch with the

larger main image in the center of the screen. This feature is called Automatic

Direction Reversal (ADR) mode and it allows the user to drive the robot backwards

while looking through the larger central image. To further facilitate the ease of

operation, the driving commands are reversed so that a normally forward movement

of the joystick now moves the robot backwards. Steering is similarly reversed.

This effectively allows the user to drive the robot physically in reverse while it is

perceived to be driving forward. Since the robot has skid-steering and is longer

than it is wide, this feature is helpful when the robot is driven into a corner and

cannot easily turn around in place.

Distance Panel: Directly below the main video panel, a distance panel depicts

the robot’s chassis with white lines displayed around it representing the distance

readings from the sonar sensors and the laser range finder. These distance lines

help give the user frame of reference regarding how close the robot is to obstacles

that may, or may not, be in the view of the camera. The axis immediately under

the robot are shown with 0.25 meter tick marks for reference. Lines surrounding

the robot in this panel are a fusion of the laser range sensor in the front of the

robot and the sonar data that covers 360 degrees around the robot. Since the

laser range finder is typically more accurate and has higher resolution, the sensor

display for the front of the robot is more reliable than the sides and rear. With a

tap, this panel can be toggled between a perspective view (similar to popular GPS

111

navigation systems) and a top down view (similar to a paper map).

Map Panel: The upper left corner of the display contains a map that is

dynamically generated as the robot travels through the environment. This map,

which uses a simultaneous localization and mapping (SLAM)-based algorithm

(Howard, 2006), is dynamically generated as the robot is maneuvered around an

area. The map shows open space as white space, obstacles are depicted as black

lines, and grey represents unexplored space. The robot location is shown with a

green triangle and the robot path is a red line.

Although it was not the intent of the original design, the arrangement of panels

left two open areas on each side of the distance and main video panels sufficiently

large for two hands. This area was used as a convenient location to place five

fingers and spawn the DREAM Controller. The user was not restricted to this

area, but the openness of this area lent itself to joystick control very easily. When

the user places five fingers down, the DREAM Controller is activated and when

the fingers are lifted, the robot is stopped and the controller is removed.

It should be noted that this Surface:Window interface omits two panels that

were used in the previous revision of the DiamondTouch:Window interface. First,

the autonomy mode panel that was previously above the main video was removed

and this functionality was moved to three radio buttons on the DREAM Controller

(to be described in Section 6.2). The proportional drive control widget in the lower

right was removed along with the speed sliders and brake control. Again, this

functionality is moved to the control panel on the DREAM Controller.

One of the motivations for this change was a minimalist approach to the main

window display. Specifically, when the user was not touching the interface, we

wanted to maximize the resolution and layout of each of the components of video,

range sensing, and mapping. Having the interface cluttered with static buttons and

other widgets seemed wasteful when we had determined that the dynamic DREAM

Controller could provide this functionality and optimize button placement relative

to the users’ hands.

112

Camera Control:
Pinch = zoom

Tap = turn to point
Drag = servo to finger

Double Tap = reset

ADR Mode Panel:
Pinch = enlarge
Drag = move

Flick = snap to corner
Double Tap = toggle

ADR mode

Distance Panel:
Tap image to toggle

top-down view

Tap button to begin
experiment run timer

Map Panel:
Pinch = enlarge
Drag = move

Flick = snap to corner

Sliding scale for pan
and tilt degrees offset

Camera Control

Drive Control

Figure 6-2: Surface:FullScreen features and gestures for operating the robot with
on-screen controls.

6.1.2 Full Screen Interface Description

The full screen version of the interface has all of the same interface elements

of the Window display, but presented in a slightly different arrangement. The

most significant change is the maximization of the video to the full extents of

the screen. Since the video now takes up the entire screen, all of the interface

elements need to be transparent and allow the user to see the video underneath

the graphical rendering of the information presented. Taking inspiration from

fighter-jet and helicopter heads-up display implementations, we outlined all of

the interface elements in a high-contrast green with their backgrounds at full

transparency or slightly tinted black.

Camera Control: To control the camera, the user needed to only tap on the

part of the image that he or she wanted to have at the center of the screen after

rotation. Functionally, this meant that the user could just “tap on what you want

to see” and the PTU would servo to center this object in the middle of the screen.

If the user dragged their finger on the screen, the camera would “chase” the finger

much like the Window interface.

Unlike the Window interface, we abandoned the crosshair design and displayed

the pan and tilt degrees in a scrolling counter on the top and side of the display

region respectively. The intent in this change was to give the user a direct reading

113

of the pan and tilt values rather than them having to visually interpret each side

of the screen representing -90 to 90 degrees as in the Window interface. The user

need only to look at the sliding scale and it would display the numerical number of

degrees left, right, up, or down that the PTU is rotated. As before, a double-tap

on the image will reset the PTU to the origin (0, 0) where the camera is looking

straight forward and level to the robot’s chassis.

ADR Panel: The ADR and map functionality stayed relatively the same

as the Window design. A double tap in the rear view would cause the interface

to switch to ADR mode as previously described. Rather than locking the ADR

and map panels in a single location on the screen, the individual panels could be

disconnected from the corners and dragged to any location of the display for closer

inspection. The panels could be moved, resized, and rotated. When the user was

done manipulating the panel, a quick flick of the finger toward the desired corner

of the screen would cause the panel to fly to that corner and snap into place. This

feature was useful for close inspection, and it allowed the user to resize the map

and rear view panels before snapping them back into the corners.

Distance Panel: The distance panel was identical to the Window interfaces

in position and functionality. The panel was fully transparent with the exception

of the outlines of the range readings and the distance scale. This transparency

provided the user with all of the same distance information without interfering

with the use of the camera video below.

Like the Surface:Window interface, the user places five fingers on the surface of

the screen to activate the DREAM Controller functionality. Since the video takes

up the entire screen, the DREAM Controller was made fully transparent with a

bright green outline and a slight dark tint to match the rest of the FullScreen color

scheme. The transparency allowed the user to gain all of the functionality of the

DREAM Controller with minimal occlusion of the video underneath. When the

user’s hands were lifted, the controller disappeared and the robot immediately

halted movement.

114

6.2 DREAM Controller

As reported in Chapter 4, we found that users bring many different experiences,

learned behaviors, and biases to large touch screen interfaces. We found that the

novelty of the multi-touch surface created opportunities for “emergent interactions”

that were that were not anticipated by the system designers. Unfortunately, in

most cases these alternate interaction styles degraded user efficiency, comfort, and

ergonomics.

To counter these effects as seen in the DiamondTouch:Window interface, we

decided to abandon the concept of static widgets that provided the affordances of a

joystick, dial, knob, or switch. Rather than having the user conform to metaphors

and artificially emulated affordances, we would have the user place their five fingers

on the multi-touch surface and then shape the controller around their individual

touch profile. This control scheme is novel, and to the our knowledge, this method

of adaptive multi-touch control has never been applied to robots or game control.

To control the robot, we implemented a version of the DREAM Controller

described in Chapter 5 for the iRobot ATRV-Jr robot platform. The design of the

DREAM Controller is very flexible, so the control panel and thumb controls were

tailored to the specifics of this robot. Specifically, the robot had functionality for

brakes, speed limiting, and autonomy mode changes. All of the associated buttons

and sliders were implemented on the panel extending from the index finger and

thumb as described below.

As in many first person shooter games, the right hand was used for camera

control. The control encircling the thumb would rotate the camera up, down, left,

and right when the thumb was placed at the top, bottom, left and right of the

circle respectively. The center of the thumb control represented zero rotational

velocity, and this velocity increased as the thumb moved outward from the center.

Full mixing of the two degrees of freedom was permitted which allowed for fully

proportional control of the pan and tilt. A double tap in the thumb area would

re-center the camera so the camera is looking straight forward and level to the

115

Reset PTU to (0,0)

Scalar for adjusting
camera zoom level

Proportional control
of camera pan and tilt

Toggle brake

Scalar for PTU
velocity

Proportional control
of robot navigation

Scalar for drive
velocity

Toggle ADR Mode

Mode selection:
Shared, Safe,
and Manual

Toggle sound

Figure 6-3: The DREAM Controller, as configured for the ATRV-Jr robot used in
this study. Illustration shows the controller functionality and many of the local
controls that duplicate on-screen controls.

robot’s chassis.

The panel that extended from the right hand’s thumb and index finger included

buttons to re-center the camera and switch into ADR mode. These two controls

duplicated the functionality of the on-screen gestures, but provided quick local

access without the user having to lift a hand from the joystick. Two sliders provided

the ability to zoom the camera and adjust the gain on the rotational velocity of

the PTU control provided by the thumb.

Also as in fist person shooter games, the controller on the left hand was used

for the movement of the robot’s base. In the thumb control area, movement to the

top and bottom moved the robot forward and backwards respectively. The left and

right of the circle rotate the chassis via skid steer to the left and right respectively.

As with the camera movement, this control surface was fully proportional and

permitted simultaneous operation of both degrees of freedom.

The thumb and index panel for the left hand also contained buttons and sliders

for additional robot control. There were two buttons to toggle ADR mode and

sound.1 The ADR mode button provided identical functionality as the on-screen

control for Window interfaces.

1We hoped to have sound functionality working by the time of the experiment. Unfortunately
the sound feature was not fully implemented so the button was non-functional.

116

Three buttons on the left hand panel also controlled the navigation mode of the

robot. These were identical behaviors as described in Chapter 4 where the robot

could be placed in shared, safe, and manual mode. In shared mode, the user input

would be mixed with an algorithm that would seek out the most open space and

would help guide the robot through tight passageways. Safe mode would give the

user control of the robot and only slow or stop the robot if an impending collision

with objects in the environment was detected. Finally, manual mode gave the user

full control of the robot and provided no interaction or protection.

The user would create these joysticks by simply placing their hands on the

surface of the screen. The size and controls would then be configured to the

individual user’s finger contact points. If the hand was removed from the screen,

the joysticks were destroyed and the robot immediately stopped. The user could

adjust the position of the DREAM Controller by lifting their thumb and dragging

their index and middle finger to a different location of the screen at any time. The

user could relax their ring and little finger once the joystick was created if they

desired by lifting the fingers off of the surface.

6.3 Hypotheses

Before our experiment, we hypothesized:

H1: The new multi-touch proportional robot control widget in Surface:Window

will increase task performance when compared to the Joystick:Window or

DiamondTouch:Window interface. That is, we hypothesize that participants

will be able to cover more area, find more victims, and create less damage to

the environment.

H2: The new presentation in Surface:FullScreen will increase task performance

when compared to the Joystick:Window, DiamondTouch:Window or Sur-

face:Window interface. That is, we hypothesize that participants will be

able to cover more area, find more victims, and create less damage to the

117

environment.

H3: Participants will prefer the Surface:FullScreen interface over the

Surface:Window interface.

6.4 Experimental Design

In August 2007, we conducted a within subjects study of the Joystick:Window

and DiamondTouch:Window interfaces with six participants from the emergency

response field described in Chapter 4 (hereafter referred to as the “2007 study”).

We concluded that the DiamondTouch:Window interface performed no worse than

the Joystick:Window interface, thus establishing the baseline. In this experiment,

we repeated the experimental protocol with six new emergency responders. The

participants used the Surface:Window and Surface:FullScreen interfaces to drive

the robot through a maze to locate victims.

To the extent that it was feasible, we created an exact duplicate of the the

Reference Test Arenas for Autonomous Mobile Robots at the National Institute

of Standards and Technology (NIST) (Schipani and Messina, 2007) used in the

2007 study. A 2000 square foot maze was built using the same materials and

construction in an controlled indoor environment. In place of mannequins and

dolls, victim markers were 8.5 x 11 inch white pieces of paper with the letter “V”

printed on them, as shown in the middle of Figure 6-4. The ten victim markers

were place in the same locations as the 2007 study, and two starting conditions

were established.

We compared the task performance data of the 2007 study with this study.

Since we had two independent participant pools (between subjects), unpaired t-

tests were used when comparing the Joystick:Window and DiamondTouch:Window

interfaces to the Surface interfaces. It would have been ideal to directly compare the

Joystick:Window condition with the same participant pool as the Surface conditions.

A within subjects experiment would help to directly correlate the performance of

the two Surface interfaces to the Joystick:Window interface. Unfortunately, the

118

Figure 6-4: The participant is observed using the multi-touch interfaces (left) to
search for victim marker using an ATRV-Jr robot (middle) while test administrators
(right) record video and written documentation regarding the performance of the
run.

nature of the USAR personnel demographic makes it extremely difficult to capture

large numbers of personnel for multiple hours of their limited time. As such, our

experiment design attempted to mirror the two testing environments as closely as

possible to limit confounders and complications.

6.4.1 Procedure

For consistency between this experiment and the 2007 study, the procedure stayed

the same. After signing a consent form, participants filled out a pre-experiment

questionnaire requesting demographic information and probing their relevant

experience with computers, robots, remote control vehicles, video games, and

joysticks. We showed the participants what the robot looks like and then trained

them on how to control the robot using one of the interfaces. We allowed the

participants time to practice using the robot in a location outside the test arena

and not within their line of sight so they could become comfortable with remotely

moving the robot and the cameras. We then moved the robot to the start location

in the arena and asked them to maneuver through the area to find as many

victims as possible during a 25-minute period. We asked participants to “think

aloud” (Ericsson and Simon, 1980) during the task so we could determine when

participants were having trouble with parts of the interface and/or had a different

119

mental model of how the interface works than was intended by the designers. After

task completion, an experimenter asked several post-run questions related to their

experience with the interface. After a break, we then repeated these steps using

the other robot interface.

We counterbalanced the experiment in two ways to avoid confounding factors.

Three of the participants started with the Surface:Window interface and the other

three started with the Surface:FullScreen interface. Additionally, we used two

different starting positions (A and B in Figure 4-4) in the arena so that knowledge

of the arena gained from using the first interface would not transfer to the use of

the second interface. The two counterbalancing techniques led to four different

combinations of initial arena entrance and initial interface.

6.4.2 Data collection

We collected four types of data: video, logs, observer notes, and annotated maps.

In addition to a video of the robot’s progress through the arena, we videotaped

over the shoulder of each participant to capture his or her interactions, and we

mounted a video recorder pointing down at the multi-touch table. Custom logging

software captured each time the participants changed modes, moved the camera,

or activated other controls. Two experimenters sat with the participant and

hand-wrote observations. Finally, an experimenter following the robot manually

marked its progress through the maze on a run sheet that also provided space to

note when and where each bump, scrape, or “e-stop” (emergency halting of the

robot) occurred. Figure 4-4 contains a reproduction of the map portion from a

run sheet that shows numbers coded to specific incidents that are enumerated on

the run sheet’s second page.

6.4.3 Participants

Four men and two women with an average age of 43 years (SD = 9.5) participated

in this study. All were active members of the USAR community with an average

120

of 8 years (SD = 4.5) experience in the field. Disciplines included technical

information specialist, communications specialist, canine search, and search. One

member was additionally a search team leader for a wilderness search and rescue

group. All had used computers for five years or more, and four assessed their

expertise to be at expert or better. All but one had some experience with touch

or pen based computing technologies. Half of the participants played video games

for an average of 4.5 hours per week (SD = 4.4) and half reported that they were

pilots. Four of the six had never previously used robots. All participants were

right hand dominant in their daily computing activities.

6.5 Results and Discussion

For the analysis of the experimental data, we performed a 4-way comparison on all of

the task performance measures between Joystick:Window, DiamondTouch:Window,

Surface:Window, and Surface:FullScreen. These are general task performance

measures related to search coverage, victim identification, and damage to the

environment. Through experience gained through the 2007 and other later studies,

we incorporated additional usability metrics used in a 2-way comparison between

Surface:Window and Surface:FullScreen interfaces.

6.5.1 Task Performance

The positive, or constructive, task performance of the interfaces was measured

in two ways. First, we measured the number of victims found by the operator

accounting for overlap in identification. If the participant identified a victim twice

or more, the victim only counted as one “find.” Second, we measured the distance

that the robot traveled in the area. This metric was computed slightly differently

from the analysis reported in Chapter 4 due to the fact that both Surface interfaces

allowed several participants to travel so far into the maze that they effectively

“lapped” the maze in the allocated time. As such, the distance traveled for both

studies is reported including areas that had already been searched. These two

121

Table 6.2: Area explored including overlap in the USAR arena (in squared feet).

2007 Study 2010 Study

Joystick: DiamondTouch: Surface: Surface:
Participant Window Window Participant Window FullScreen

1 576 352 7 736 960
2 512 320 8 1040 352
3 560 304 9 720 592
4 544 624 10 1056 912
5 464 544 11 192 352
6 896 752 12 736 928

Total 3552 2896 Total 4480 4096

Average 592.00 482.67 Average 746.67 682.67
SD 154.13 185.33 SD 313.15 288.65

metrics are closely related, since the farther that the robot can travel, the higher

the search coverage and probability of detection. The results are shown in the top

chart in 6-5.

Area Explored: We compared the area explored for the four interfaces.

First, people drove farther using the Joystick:Window interface then the Diamond-

Touch:Window interface with weak significance (p = 0.07, t(11) = 2.02) using a

one-tailed paired t-test with α = 0.05. One should note that this result differs

from the result presented in Chapter 4, when we found these two interfaces to have

no significant significance. This change is due to the need to change the metric

for area explored from non-overlapping to overlapping. Eliminating overlapping

search areas is generally a good practice when using this performance metric, as it

is important to cover new ground in a search task. However, as mentioned above,

the distance traveled using the two Surface interfaces was artificially limited by

the construction of the 2000 square foot course. As such, the revised metric was

analyzed with the earlier data.

We found that people drove farther using the Surface:Window interface (x̄ =

746.67, SD = 313.15), than the DiamondTouch:Window interface (x̄ = 682.67, SD =

288.65) with weak significance (p = 0.056, t(10) = 2.16), using a one-tailed un-

122

10

20

30

40

Joystick:
Window

DiamondTouch:
Window

Surface:
Window

Surface:
FullScreen

N
u
m

b
er

of
V

ic
ti

m
s

F
ou

n
d

Victims Found

500

1500

2500

3500

4500

Joystick:
Window

DiamondTouch:
Window

Surface:
Window

Surface:
FullScreen

S
q
u
ar

e
F

ee
t

E
x
p
lo

re
d

Area Explored Including Overlap

Figure 6-5: Participant performance was measured by counting the number of
victims found (above) and the overall distance traveled in the arena (below). In the
case of the Surface:Window interface, the participants were able to travel farther
and find more victims.

123

paired t-test with unequal variance with α = 0.05. We also found that people

drove farther using the Surface:FullScreen interface (x̄ = 682.67, SD = 288.65)

than the DiamondTouch:Window with weak significance (p = 0.09, t(10) = 1.85)

using a one-tailed unpaired t-test with unequal variance with α = 0.05. There

was no significant difference in the area explored including overlap between the

Surface:Window and the Surface:FullScreen interfaces (p = 0.335, t(11) = 1.01).

Based on the experimental design, the use of the DREAM Controller is most

likely the contributor to this finding since the control method was the independent

variable in the first three cases, and the presentation remained constant between

the Window interfaces. In short, this result is an indicator that the human-centered

design of the DREAM Controller is a significant step in the right direction when

compared to traditional static widgets for robot control.

Qualitatively, this result is supported by several observations by the test

administrator. One of the ways that participants move quickly through the maze

is by focusing on the search task itself and not the robot controls on the screen.

In virtually all cases, by the end of the first run, the participants appeared to

be confident that the controller would reliably appear under their fingers in the

correct configuration. This interaction was noted since it eliminated the need to

look down to their hands and confirm that the controller was configured correctly

and ready for input. By gaining the participant’s confidence through the reliability

of the hand detection algorithm, the new controller was able to take seconds off

every hand placement. Over the course of the 25 minute run, this time adds up

and cumulatively allow the participant to achieve higher levels of performance over

a static widget. Much like the touch typist or pianist does not need to look at

their hands to achieve significant performance, our participants did not need to

look at the DREAM Controller to maneuver the robot through the maze.

A second observed contributor to the area explored was lack of use of on-screen

controls outside of the DREAM Controller. Our interface design team spent a

significant amount of time ensuring that the mixed interface metaphors of the

DiamondTouch:Window interface were not repeated in the Surface interfaces.

124

Responsive and accurate on-screen proportional camera control is an example of

interaction methods that were designed specifically to ensure that the participant

did not have problems like we observed in Chapter 4 where proportional robot

and discrete camera control confused participants. While these improvements

alone should have helped align the interface with participant expectations, the

participants more often used the controls on the DREAM Controller for camera

movement, zoom, and resetting while driving. In effect, the Surface interfaces

allowed the participants to not only interact more naturally with the on screen

controls when not driving the robot, but also gave them a more efficient way of

adjusting those controls while they were engaged in the manipulation of the virtual

joystick controller.

The use of a single hand to trigger buttons and sliders on the DREAM Con-

trollers was one final observation related to efficiency while driving. Before this

user testing, we had assumed that the user would lift the opposite hand to trigger

buttons on the DREAM Controller. For example, imagine that the user has the

left hand engaged in the DREAM Controller and is using it to drive the robot.

We assumed that one would use the right hand fingers to move the speed limited

sliders or toggle the autonomy mode buttons while keeping the left hand in a static

position. In many cases, the participants would angle their hand with the wrist at

a slightly upward angle and toggle the nearby button with their thumb. Since the

DREAM Controller had the ability to rotate and track the person based on their

index and middle finger positions, participants found they could just quickly flip

the position of these two fingers several degrees and place the buttons under their

thumb that rather than lifting their opposite hand. While not the most ergonomic

technique, this quick and elegant trick permitted quick mode changes and slider

adjustment outside of our original design intent.

Destructive Performance: We also measured the negative, or destructive,

performance by recording the number of critical events in which the robot damaged

the environment. This metric was categorized as pushes (the robot moves an

obstacle away from its resting position), scrapes (some part of the robot brushes

125

Table 6.3: Number of destructive incidents per square foot in the USAR arena.

2007 Study 2010 Study

Joystick: DiamondTouch: Surface: Surface:
Participant Window Window Participant Window FullScreen

1 0.005 0.000 7 0.031 0.008
2 0.070 0.034 8 0.013 0.051
3 0.002 0.069 9 0.026 0.036
4 0.000 0.002 10 0.008 0.022
5 0.000 0.026 11 0.037 0.009
6 0.002 0.004 12 0.015 0.025

Average 0.013 0.023 Average 0.022 0.025
SD 0.028 0.027 SD 0.012 0.016

up against an obstacle), bumps (the robot impacts an obstacle), and e-stops

(experimenters fear severe damage will occur to the robot if operations continue

and press a button on the robot to stop it). Due to the fact that the distance

traveled in this study was higher than the 2007 study, this performance metric was

adjusted to accommodate the greater distance traveled. Rather than a straight

count of events, we computed this metric using the number of critical events per

square foot of distance traveled. This data is shown in 6.3. Note that the numbers

vary widely in both studies and, in the case of the 2007 study, the standard

deviations were larger than the average values.

We found that the number of destructive incidents per square foot showed no

statistically significant difference across all four interfaces. The consistency in

the number of destructive incidents is a positive finding since it indicates that

neither of the Surface interfaces dramatically decreased performance or safety of

the environment while operating the robot. We believe that all of the performance

benefits and observations in the above discussion on Area Explored also apply

here.

Victims Located: The number of victims over all participants for the Sur-

face:Window interface for victim detection showed a 23% and 16% increase com-

126

pared to Joystick:Window and DiamondTouch:Window respectively (Figure 6-5).

The Surface:FullScreen interface showed similar increased performance with a 16%

and 9% increase in victims when compared to Joystick:Window and Diamond-

Touch:Window respectively. InYanco and Drury (2004), it was found that robot

operators on average used 47% of their time operating the camera to look around

the environment. If the participant was more comfortable moving the camera

while moving through the environment when compared to the Joystick:Window

and DiamondTouch:Window interfaces, then it follows that the participants would

be able to keep the destructive performance on par while increasing the distance

traveled and number of victims located.

However, several factors in this experiment did not allow the data to achieve

statistical significance to support the claim that victim detection performance

increased. As mentioned above, the overall distance traveled for the Surface

interfaces allowed many of the participants to visit areas that they had already

searched. Since victims can only be counted once, the participant could no longer

receive credit for duplicate victims found. It is not known how many victims that

the participants neglected to identify when they realized that they had looped

back to their starting location (and several of them did realize they had looped), so

this data cannot be easily generated from the raw data set post-hoc. To mitigate

this problem in future user testing, the maze needs to be enlarged to exceed the

maximum performance expected from the participants.

As a result of the area explored, incidents, and victim performance metrics

above, we are unable to support H0 (Surface:Window will increase task perfor-

mance when compared to the Joystick:Window or DiamondTouch:Window) and

H1 (Surface:FullScreen will increase task performance when compared to the

Joystick:Window, DiamondTouch:Window or Surface:Window interface) given

the task performance data. However, the summative data seems to indicate

that our approach is in the right direction particularly since we observed that

participants were able to drive farther using the Surface interfaces than the Di-

amondTouch:Window interface. Also, the number of destructive incidents per

127

Table 6.4: Victims found in the USAR arena.

2007 Study 2010 Study

Joystick: DiamondTouch: Surface: Surface:
Participant Window Window Participant Window FullScreen

1 4 5 7 5 7
2 3 2 8 7 3
3 3 3 9 8 6
4 8 7 10 9 3
5 7 6 11 3 4
6 6 10 12 6 7

Total 31 33 Total 38 36

Average 5.17 5.50 Average 6.33 6.00
SD 2.14 2.88 SD 2.16 2.19

square foot was not statistically different across all four interfaces, supporting that

we are not impairing performance.

Quantitatively, the testing administrators did notice one major contributor

to support that the participants were working more efficiently and able to more

easily identify victims. In the earlier Joystick:Window and DiamondTouchWindow

interfaces, the participants were largely driving or searching throughout their run,

but rarely both at the same time. The top-hat camera control in the Joystick

interface allowed the actuation of drive and camera control at the same time, but

this hand movement was difficult and ergonomically unnatural for most people.

The DiamondTouch interface also allowed simultaneous drive and camera control,

but both required the participant to look at their hands to ensure they were

touching the right position on the screen in the absence of tactile feedback. As a

result, in both cases, we rarely saw the participants confidently using both position

controls simultaneously.

In the Surface interfaces, the DREAM Controller allowed the participants to

rest both of their hands on the surface and engage all four degrees of freedom

without ergonomic awkwardness or the need for visual positioning of the finger.

This hand position allowed them to operate the robot control and the camera

128

at the same time. In all six users, we observed continuous periods during their

runs where both hands were fully engaged with the surface and their thumbs were

moving, or ready to move, simultaneously. This observation beckons to the need

for “chording” motions as described in the beginning of Chapter 5. In our own

bodies, we are able to simultaneously walk and look around our surroundings in

a natural and intuitive fashion. This ability increases our situation awareness of

the world around us and is a characteristic of most successful land creatures. As

such, we should not be surprised to see them moving, looking, and increasing their

situation awareness when the design of the controller makes this possible.

6.5.2 Usability Performance

According to Nielsen, the usability of a system can be measured by its is learnability,

efficiency, memorability, satisfaction, and resistance to errors. Nielsen (1993) defines

the composition as follows:

“Learnability: The system should be easy to learn so that the user can

rapidly start getting some work done with the system.

Efficiency: The system should be efficient to use, so that once the user

has learned the system, a high level of productivity is possible.

Memorability: The system should be easy to remember, so that the

casual user is able to return after some period of not having used it,

without having to learn everything all over again.

Errors: The system should have a low error rate, so that users make

few errors during the use of the system, and so that if they do make

errors they can easily recover from them. Additionally, catastrophic

errors must not occur.

129

Table 6.5: Participants’ subjective assessment.

Semantic differential scale Surface:Window Surface:FullScreen

Scale range 1 / 5 X̄ SD X̄ SD

Hinder / Help 4.7 0.5 3.7 0.8
Difficult / Easy to learn 4.5 0.6 3.8 1.0
Difficult / Easy to use 4.3 0.5 3.8 0.4
Irritating / Pleasant 4.2 0.4 3.5 1.0

Uncomfortable / Comfortable 3.7 0.8 3.8 1.0
Inefficient / Efficient 4.5 0.5 4.0 0.6

Satisfaction: The system should be pleasant to use, so that users are

subjectively satisfied when using it; they like it.” (Nielsen, 1993, pg.

26)

When placed in the context of usability performance, Nielsen’s measures can

provide a useful framework for interface comparison. When we designed the

experiment for this study, we wanted to make sure that these data points were

captured through observations and qualitative questions for the participants. As

such, the following analysis is a usability comparison of the Surface:Windows and

Surface:FullScreen interfaces.

Learnability: We measured learnability through the number of clarifications

the participant requested during the run regarding the use of the interface. Ex-

amples of this might include questions about the interface and corrections about

interface assumptions. Participants received fewer clarifications about the interface

using the Surface:Window interface (x̄S:W = 4.67 clarifications, SD = 1.90) versus

the Surface:FullScreen interface (x̄S:FS = 6.67, SD=2.25). Using a one-tailed

paired t-test, the results show weak significance (p = 0.08, t(11) = 1.90).

Participants asked a total of 34 questions for which they received clarification.

Only two of which were related to the interaction with the interface; both ques-

tions were asked when the participants were using the Surface:Window interface.

Participant 3 asked if it mattered that his hand touched the distance panel when

130

summoning the DREAM Controller. Participant 4 asked if his thumb needed to

be outside the blue joystick controller area when selecting buttons on the DREAM

Controller panel.

The remaining questions could be categorized into categories relating to the

interface and the robot system; note the one question could have more than

one categorization. Participants asked questions relating to details of pmap (9

questions), the distance panel (9 questions), the video panel (4 questions), and

ADR mode (4 questions). There were eight questions relating to the hardware

capabilities of the robot system, and two about the status of the robot.

Efficiency: In the case of this experiment, the participants were only able

to use the interface for 25 minutes. In that amount of time, a good measure of

efficiency is not realistic since the participants are still in a learning phase. Since

it cannot be quantitatively measured through a direct performance metric, we

measured the perceived efficiency through two semantic differential questions asked

upon the completion of the task (i.e., on a scale from 1 to 5, how did the interface

hinder/help in performing the task, and how inefficient/efficient was the interface

to use). The participants reported that the Surface:Window interface helped them

in performing the task significantly better than the Surface:FullScreen interface

(x̄S:W = 4.7, SD = 0.5; x̄S:FS = 3.7, SD = 0.8; p<0.01, t(11)=3.41), using a

one-tailed paired t-test with α = 0.05. The participants reported that both Surface

interfaces were efficient to use (x̄S:W = 4.5, SD = 0.5; x̄S:FS = 4.0, SD = 0.6),

with no statistically significant difference.

Memorability: Immediately following each run, the participant was asked to

recall all of the gestures and describe the resulting actions. Participants were not

instructed to remember these answers for later use. Each of the participants was

contacted ten days after the experiment and asked to recall the gestures used to

control the interface.

Understanding is a side-effect of the memorability measure, since the number of

correct gestures immediately after the experiment can indicate missed metaphors

131

P
er

ce
n
t

C
or

re
ct

After Run After 10 Days

20

40

60

80

100

Cam
era

Control

Zoom
In

Zoom
O
ut

A
D
R

M
ode

A
utonom

y
M

ode

R
obot D

rive
Control

Speed
Lim

iter

O
verall

Figure 6-6: Memorability was measured by testing the recall of participants
immediately after the experiment run and then ten days later. The percentage
of correct answers was recorded and compared to assess the memorability of the
robot control mechanisms.

or affordances. As such, understanding was measured as the number of correct

gesture descriptions immediately after the experiment over the total number of

gestures.

The percentage of questions answered correctly in each of the interface categories

is shown in Figure 6-6. Overall, the percentage of correct recall after the run and

ten days later was 91.7 and 92.7 respectively. This indicates that the interface

design is highly memorable, as the users were able to recall more than 90% of the

interface functionality ten days after using the system. Learnability of an interface

is highly desirable to the USAR demographic, since responders may have limited

training time and need to recall functionality quickly during emergency use.

We found a statistically significant learning effect for the zoom out command

(p < 0.04, t(11) = 2.36) for the first interface the participants used versus the

second. This effect was compared using a one tailed paired t-test with α = 0.05.

This finding simply indicates that by the second 25 minute run, the users were

better able to recall how to use the zoom functionality of the interfaces. This

132

effect was enhanced due to the fact that the zoom was not widely used across the

participants’ runs. The close proximity of the walls of the maze did not require

the use of the zoom to identify victim markings. As such, this feature was not

used much by the participants and therefore took longer for retention to occur.

There were no other statistically significant learning effects.

Errors: Errors are considered with respect to the usage of the interface, and

not errors relative to the robot and the environment. An example of an error

may include unintended events such as triggering ADR mode or not being able

to reset or zoom the camera. An interface error is an error by the system; the

participant executed the correct gesture, but the system did not register that

gesture. A gesture error was counted when the participant did not execute the

gesture correctly.

There were a total of 89 interface errors and 28 gesture errors when the partici-

pants used the Surface:Window interface (x̄interfaceerrors = 14.83 errors, SD=13.47;

x̄gestureerrors = 4.67 errors, SD=5.39 respectively). For the Surface:FullScreen

interface, there were a total of 70 interface errors and 32 gesture errors when

the participants used the Surface:Window interface (x̄interfaceerrors = 11.67 errors,

SD=8.85; x̄gestureerrors = 5.33 errors, SD=4.13 respectively). There was not a

statistical difference between the total number of errors, interface errors, or gesture

errors.

The most common gesture error seen was single tapping the rear view mirror

for ADR mode instead of double tapping; single or triple tapping the thumb on

the right DREAM Controller to recenter the video instead of double tapping; and

tapping the index finger on the DREAM Controller as if there were a button below

the finger. The most common interface errors were not registering double tap for

re-centering the camera on both the right joystick and on the video panel, and

interpreting the heel of a hand when a joystick was activated as the point to which

the camera should servo.

133

Fortunately, these errors can be easily fixed and should dramatically increase

the consistency of the user experience. In all of the cases where single, double,

or triple taps were misinterpreted, these tap sequences can easily be adjusted to

receive any number of taps to toggle the state of the display. We learned from this

experiment and applied this lesson to the selection of robots in the interface that

is described in Chapter 8. The errors related to the heel of the hand can be solved

through a more accurate heuristic for the detection of a finger, as opposed to any

part of the body contacting the surface.

Finally, the error related to the index finger tapping on the DREAM Controller

is an interesting one. In this case, the circular pad underneath the finger did

nothing to affect the robot or the interface so there were no direct negative impacts.

What this does indicate is a willingness to use the index finger as a button should

the complexity of control require functionality out of these fingers. Since many

of the game controllers use “shoulder” buttons for the same purpose, we will be

able to leverage all of the outside learning and muscle memory benefits that we

see with the thumb controls.

Satisfaction: We measured satisfaction through two subjective semantic

differential scale questions after the study (i.e., on a scale from 1 to 5, how

difficult/easy was the interface to use, and how irritating/pleasant was the interface

to use). The participants reported that the Surface:Window interface was more

pleasant (x̄S:W = 4.2, SD = 0.4) and easier to use (x̄S:W = 4.3, SD = 0.5)

than the Surface:FullScreen interface (x̄S:W = 3.5, SD = 1.0; and x̄S:FS = 3.8,

SD = 0.4 respectively). We believe that with a larger participant pool that

these findings would have been significant (ppleasanttouse = 0.12, t(11) = 1.70; and

peaseof use = 0.10, t(11) = 1.79 respectively).

Finally, the participants were also asked directly which interface they preferred.

This preference provides an overall assessment of satisfaction and also indicates

the interface that was the most “right” from the participant’s perspective. Five

out of the six participants reported preferring the Surface:Window interface over

134

the Surface:FullScreen interface, therefore we cannot support H2 (Participants will

prefer the Surface:FullScreen interface over the Surface:Window interface).

We believe that this preference was due to the occlusion of the video by

the hands and on-screen indicators. In the case of the Surface:FullScreen, the

participants interacted on top of the video with their hands and all of the visual

elements were rendered on top of the video. The occlusion by the hands is unlike the

heads-up displays used to inspire this type of interface. Also, since the participants

were using the video for searching, the visual elements on top of the video may

have cluttered their view of the surrounding area. The Surface:Window interface

did not suffer from these problems since the video and sensors were separated and

there was unobstructed areas where the participant could place their hands and

use the DREAM controllers.

6.6 Impacts and Implications

At the end of Chapter 4 for the 2007 study, analysis showed that people interpreted

the joystick widget in a number of different ways, leading to sub-optimal usage.

The DREAM controller did not exhibit these interpretation problems since explicit

visual affordances were not used. While we were not able to support our original

hypothesis, there is a strong indication that this anatomy-based design is a

good approach and additional improvements should be investigated. The small

population size, unpaired participants across all four interfaces, and wide variability

in task performance make statistical significance particularly difficult, but we

strongly believe that using representatives from the target population is extremely

vital in these early stages of development even if the consequence is a smaller

population sample.

Two main points did arise from this preliminary exploration. First, the design

of the interface achieved the qualitative benchmark for ease of learning (4.5 out of

5) and an extremely high score for memorability (over 90%). These two features

were key criteria in the design of the controller and interface and those benchmarks

135

were achieved. Second, victim detection and area explored did increase over the

performance found in Chapter 4. This finding is a good indicator that multi-touch

technology can be used in the place of traditional joystick control and that there

may be performance and ergonomic benefits for the user.

A common and reasonable negative reaction to multi-touch interfaces is based

around the objection that high precision control requires direct mechanical feedback

to the operators’ hands. In the case of classic joystick control, this long standing

belief is embodied in the volumes of ergonomics literature and decades of successful

product design. The tension of the spring-loaded gimbals, the debounce of the

buttons or triggers, and the shape of the control stick are just a few examples of

ways engineers have tuned the “feel” of a joystick to maximize the sensory return.

After careful investigation using the DREAM Controller as an existence proof,

we believe that the need for direct mechanical feedback is not the only way

to achieve high precision control. In fact, we believe that a departure from

traditional mechanical input device design in favor of multi-touch interaction will

not only maintain or increase performance, we believe that a significant increase

in ergonomics and posture will also result from this change.

One of the reasons that the mechanical feedback becomes so important in

traditional joystick design is because the user needs a clear way to conform to the

shape of the control surface and understand the position of the control mechanism

is in its various degrees of freedom. When this conformity is sufficiently succinct,

the psychology literature calls it an affordance (Norman, 1988). Affordances are

one or multiple properties that give some visual indication of how to interact with

an object. Properly designed door knobs afford the property of being turned and

pulled. Buttons on a control panel afford the property of being pushed. Switches

afford the property of being flipped. These elements of design walk the line between

engineering and aesthetics that, when executed properly, can become sublime and

appear to be the “correct” answer regardless of prior experience or bias.

Once the users’ hands have conformed to the device, the spring tension and

other mechanical feedback properties allow the user to look away from the joystick

136

and concentrate on the task. The user can trust that the nerves in their hands

and arms will feel the position of the joystick and they will not have to repeatedly

look at their hands to verify that their input to the system is correct. This learned

behavior is directly analogous to a touch typist or pianist, who after enough

practice, can interact with the mechanical device without looking at their hands

and achieve considerable levels of performance over time.

Just as our users bring biases and multiple metaphors to new interfaces, we as

engineers come to the proverbial design table with preconceived ideas of how we are

going to overcome the lack of dimensionality and physical interaction in multi-touch

interface design. Unfortunately, when working on a 2D glass surface, designing (or

visually emulating) physical affordances may not be the best approach. Flattening

the 3D world to a 2D screen and expecting the same affordances while (by virtue

of the device) eliminating the mechanical feedback is a strategy doomed for failure.

In the earlier example of the touch typist or pianist, it is not unexpected that a

literal 2D projection of a keyboard or piano on a multi-touch surface would not

provide the same performance as the real physical device.

As demonstrated by the DREAM Controller, a design approach that centers

closely around the bio-mechanical design of the human hand may be an appropriate

solution. This focus is not in the traditional mechanical design for physical input

devices where the designer attempts to find the most correct design for the largest

number of people. Instead, the interface should conform to the user individually

every time that their hands touch the control surface. Hand sizes, finger lengths,

and degrees of dexterity are all variables between individuals. Additionally, all of

these properties change as the user fatigues while using the interface for extended

periods of time. So, even within a single user experience, there may be multiple

optimal interaction configurations to be employed as the interaction progresses.

In a presentation in 2006, Jeff Han provided a very succinct argument for user

centered design on multi-touch devices.

“Now, when you have initiatives like the 100 dollar laptop, I kind of

cringe at the idea that we are going to introduce a whole new generation

137

of people to computing with this standard mouse-and-pointer interface.

. . . there is no reason in this day and age that we should be conforming

to a physical device. That leads to bad things like RSI. We have so

much technology nowadays that interfaces should start conforming to

us (Han, 2006).”

It is the ability to dynamically adapt to the users’ configurations that gives

multi-touch interaction a significant advantage over traditional mechanical device

design. Mechanical devices cannot dynamically conform to the user on every

instance of interaction. They cannot instantly reconfigure themselves for different

user profiles and abilities. Multi-touch interaction can adjust dynamically and

change on every contact with the surface. It just takes a departure from traditional

design methods based around physical affordances to make this happen.

The DREAM Controller provides this interaction by “wrapping” the joystick

around the fingers of the individual user. The size of the thumb control is

automatically sized based on the size of the users hands. Buttons, dials, and

control surfaces are all tailored specifically for the user’s comfort and performance.

Even in the case where the user moves his or her hand to a different location of

the screen, the controller will dynamically track to the new location and position

itself underneath the user’s fingertips.

While testing the DREAM Controller, we observed users who had never

interacted with a multi-touch device controlling four degrees of freedom without

looking at their hands during their 25 minute runs. The advantage to our user-

centered approach was illustrated through the realization of one of our participants

when he explained, “It is taking me a little while to understand that the joystick is

going to conform to me and not the other way around. It is a little strange, but I

like it.” Just as touch typists and pianists take time to trust that their hands and

muscle memory will act correctly, the users willingness to trust that the interface

will act correctly in the absence of mechanical feedback will increase over time.

When this does occur, new levels of performance and ergonomic comfort will be

the result.

138

Chapter 7

User Defined Gestures

Historically, multi-touch interfaces have used carefully designed gesture sets and UI

elements. The gesture sets are often tailored around detectability and repeatability.

These requirements vary depending on the enabling multi-touch technology and

the capabilities of the touch sensor mechanisms. Despite the best intentions of

the system designers, often the detectability of a gesture is at odds with its ease

of learning. In an ideal setting, a novice user should be able to begin interacting

with the multi-touch interface quickly, naturally, and without explicit instructions.

In the case of command and control for military operations or disaster response,

ease of learning is especially crucial since the commanders typically do not have

an abundance of time to learn new user interfaces and must be able to quickly

achieve operational proficiency.1

To maximize the ease of learning for a command and control interface for

teams of autonomous robots, this chapter aims to find the most natural gestures

for controlling robot teams, regardless of detectability or input technology. We

designed an experiment in which the participant was presented with a number

of tasks that had varying numbers of robots and the need for different types of

control. With no other visual user interface elements such as menus and windows,

the participant was asked how he or she would express the task to the robot(s).

The result is a unique look at how users wish to control multi-agent teams.

1Portions of this chapter appear in (Micire, Desai, Courtemanche, Tsui, and Yanco, 2009a)

139

Figure 7-1: Participants were seated in front of a Mitsubishi DiamondTouch
fastened to a round table where they provided gestures on a static front projected
image.

7.1 Experiment Design

Our goal was to determine the gestures participants would use naturally. The

experiment is purely exploratory. It was an effort to find “first impressions” from

users that had not interacted with this type of input device. The tasks were

designed to elicit responses from the participants that were free-form and not

constrained by pre-determined graphics and visual feedback. Care was taken to

avoid standard UI window conventions such as menus, title bars, and buttons. In

this regard, the experiment can be considered analogous to the paper prototype

method often used in early user interface designs (Snyder, 2003).

For this experiment, we used a 64 × 48 centimeter Mitsubishi DiamondTouch

by Circle Twelve and a Dell 5100MP projector. The DiamondTouch was securely

fastened to a round wood tabletop with a large steel base, ensuring that participants

could interact naturally and rest their arms without accidental movement. The

projector was fastened to the ceiling with a custom mount and front reflecting

140

B A

Figure 7-2: Participants were presented with a physical ActiveMedia Pioneer 2Dx
robot (left) that was iconically depicted in the experiment slides (right).

mirror for image adjustment. An overhead camera was secured on a custom camera

mount that aligned the camera field of view with the projected image and tabletop.

7.1.1 Participants

Thirty-one people participated in the study; each received a movie ticket. The

average age was 27.5 years (SD=10.1), and nine of the participants were female.

All of the participants had some experience with computers. Seventeen participants

reported playing video games for an average of 7.8 hours per week (SD=7.4). Nine

of the video game players reported that they played real time strategy (RTS)

games such as StarCraft, Civilization, and Sins of a Solar Empire.

All but two participants reported prior experience with touch screen or stylus-

based devices. Eighteen had experience with some type of touch screen phone;

sixteen of these were the Apple iPhone. Sixteen participants had used a Palm OS

stylus device and thirteen had experience with tablet-based PCs.

7.1.2 Procedure

Each participant was first briefed on the experiment and introduced to the physical

robot, an ActiveMedia Pioneer 2Dx, that would be iconically depicted in the

experiment as shown in Figure 7-2. After answering any questions, the participant

141

completed an informed consent form and a demographic survey. The participant

was then presented with the tasks and asked to “think aloud” (Ericsson and Simon,

1980) while completing them.

For each task, the participant was presented with a slide with a written

description of the task at the top of it; the experimenter also verbally stated the

task. Participants were asked to use their finger, fingers, hand, or hands on the

tabletop to express how they would command the robot(s) to complete the tasks;

there was no time limit on responses. We videotaped the participants’ interactions

and commentary using the overhead camera and logged the movements using

custom software. The experimenter also took notes. In addition to the think aloud

protocol, the participant was asked to talk about any aspects of the interface that

he or she would expect if the interface were active. These could include, but were

not limited to, menus, dialog boxes, or interface features.

142

Table 7.1: Illustration and descriptions of some of the 26 tasks performed by
participants. Similar tasks have been omitted from this table due to size constraints,
but full descriptions are given in the text.

A

A

Swamp

(1-2) Command the robot to area A. (3) Command the robot to area A.

B A B A

(4-5) Command the red robot to area A and
orange robot to area B.

(6-7) Command both robots to area A.

B A

(8-9) Command the red robot to go below the
wall and the orange robot to area A.

(10) Command the robot to go straight and
keep going straight.

143

B

C

A

(11-12) Command the robot to face the oppo-

site direction.

(13) Create a team consisting of all robots on

the left side and label them as “Team Left”

and on the right as “Team Right.”

B

C

A

Team Left Team Right

B

C

A

Team Left Team Right

(14-15) Have all the robots in Team Left face

area A.

(16) Command all the robots in Team Right

to area B.

B

C

A

Team Left Team Right

B

C

A

Team Left Team Right

(17) Command all the robots in Team Right

to area B and back.

(18) Split Team Right into orange and green

robots and label them as Team Orange and

Team Green.

144

B

C

A

Team Left

Team Orange

Team Green

B

C

A

Team Left

Team Orange

Team Green

(19) Command Team Left to area A, Team

Orange to area C, and Team Green to area B.

(20) Command Team Green to loop around

area C one time and then command them to

area B.

B

C

A

Team Left

Team Orange

Team Green

B

C

A

Team Left

Team Orange

Team Green

(21) Reorient the map so that area A is at the

center of the screen.

(22) Turn the map 90 degrees counter-

clockwise.

B

C

A

Team Left

Team Orange

Team Green

B

C

A

Team Left

Team Orange

Team Green

(23) Zoom into the map. (24) Have all of the robots in Team Left form

a horizontal line facing area A.

145

(25) You are viewing the robot from behind.

Change to a view where you are looking from

the front.

(26) You are viewing the robot from the top

down. Change to a view where you are looking

from behind.

7.1.3 Tasks

Twenty-six slides were presented sequentially which showed either one robot, two

robots, or two teams of 8 robots each (shown in Table 7.1). The tasks on the

slides introduced a range of desired interactions for robot command and control.

Some tasks required very little interaction, while others forced the participant into

situations where multiple hands or complex UI strategies were required. Twenty-

four showed top-down views of the robot(s), while two showed 3D views. The

slides are shown in Table 7.1. The omitted slides were visually identical and had

small changes in the required task (detailed below).

The first three tasks involved only one robot and provided a simple starting

point for the participants’ understanding of the experiment and talk aloud method.

Task 1 displayed only one robot and one labeled area; the participant was instructed

to move the robot to the labeled area. Building on the previous task, Task 2

added a wall between the robot and the destination, requiring the participant to

either express that the robot needed to go around the wall or make the assumption

that the robot was capable of finding a path around the wall on its own. Task 3

extended this one step further by displaying a impassable “swamp” area on the

left side. Again, the participant needed to express that the robot should travel

around the wall, but not through the swamp.

146

Two robots were controlled in Task 4 through Task 9. Tasks 4 and 5 asked the

participant to command each robot to a separate area. Task 5 asked the participant

to command the robots at the same time, encouraging some type of group gesture,

multi-touch interaction, or command queuing. Tasks 6 and 7 extended this idea by

having the participant command both robots to the same area. This variant was

explored since it could allow the participant to use group selection and a single

destination gesture. Like Task 5, Task 7 asked the participant to perform the task

for both robots at the same time. Tasks 8 and 9 displayed the robots in an area to

the left and required the participant to move them to different locations on the

screen. If the participant was using multi-handed gestures, this sequence created

an arm crossing situation. Again, Task 9 required concurrent actions.

Task 10 asked the participant to simply command the robot to move forward

and continue moving. Since there is no destination, this task asks the participant

to form a gesture that had no predicate. Tasks 11 and 12 asked the participant to

label the robot and rotate the robot respectively.

Groups of robots were displayed in Tasks 13 through 24. In Task 13, the

participant was asked to give each of the teams of robots a name. This task

required the participant to think about grouping and group selection. Tasks 14

and 15 then asked the participant to have a robot team face a specific area on the

map, which extended the group selection gesture to now include a group action.

Task 15 was identical, but asked for the team to face the direction at the same

time. In Task 16, the team on the right side of the screen was then required to

move to Area B. This iteration required group selection, position change, and

destination designation. Task 17 then took the previous task one step further and

asked the participant to command the team on the right to Area B, and back.

This combined action required some sort of command queuing since there were

two destinations.

Task 18 was unique since the participant needed to sort the robots and label

them by color. Then for Tasks 19 and 20, the participant needed to maneuver the

robot groups to various areas and paths on the map. Tasks 21 through 23 explored

147

the gestures to describe map translation, rotation, and zoom. Task 24 asked the

participant to command the robots into a line formation, which required a hybrid

between group selection and the need for independent movement of robots.

The final two slides were rendered in 3D to explore how participants would

control the viewpoint of the robot using only a 2D tabletop surface. In Task 25,

the view was from the rear and slightly above the robot; the participant was asked

to rotate to a forward view of the robot from the same angle. Task 26 displayed

the robot from above; the participant was asked to adjust the view so the robot

was seen from behind.

7.2 Taxonomy of User Defined Gestures

We began data analysis by looking for large-scale patterns of movement in the

overhead video. We refined our description of the patterns of interaction by

isolating components of actions using open and axial coding from grounded theory

(Glaser and Strauss, 1967). Open coding involves analysts noting data that can be

grouped or categorized while axial coding is a process of refining the groupings.

After several iterations of group discussions and individual video analysis, clear

patterns were seen across the majority of the participants. We coded instances of

participants’ gestures to the consensus of the gesture classifications. Inter-rater

reliability was established using Cohen’s Kappa statistic (κ=0.74 excluding chance,

κ=0.76 if chance was not factored out). The data set provided a total of 3197

gestures over 31 participants and 26 tasks.

We identified five groups of interaction classifications for these 26 tasks: selec-

tion, position, rotation, viewpoint, and user interface elements.

Selection gestures were used to select a robot, multiple robots, other objects of

interest in the environment. For example, a common occurrence of selection

was when the participant tapped on a robot (selecting the robot to move)

and then dragged their finger on the path that they would like the robot to

follow. The initial finger tap on the robot would be classified as a selection.

148

Table 7.2: Taxonomy of user generated gestures based on 3197 gestures over 31
users and 26 tasks.

Name Description

S
e
le
c
ti
o
n

Tap Single finger taps object to be selected (See Sequence select for multiple taps)
Double tap Single finger double taps object to be selected (See Sequence select for multiple

taps)
Lasso Single finger draws line encompassing objects to be selected
Meta Object selected with some external modifier (e.g. Ctrl, Alt)
Sequence select Robots selected in a serial fashion (Supersedes Tap and Double Tap)
Press & hold Object touched for a duration of longer than 1 second
Bounding box Opposite corners of bounding box are shown with fingers
Palm Palm of hand placed on object or objects
2-finger select Two fingers on the same hand simultaneously used for selection (Supersedes Tap)
n-finger More than two fingers on same hand used simultaneously for selection (Supersedes

Tap)

P
o
si
ti
o
n

Drag Single finger slides across surface to robot destination with immediate lift at end
Drag & hold Single finger slides across surface to robot destination with finger hold greater

than one second at end
Waypoint Tap sequence providing waypoints for robot to follow ending at destination
Pinch & move Two finger pinch and then position change to robots’ destination
Flick One or more fingers placed on robot and finger tip(s) accelerated rapidly in direc-

tion of movement
Path to edge Finger placed on object and dragged to the edge of screen in direction of movement
Arrow Arrow-like gesture drawn with arrowhead at end of vector
Direction segment Like drag, but smaller segment (vector) not terminating at goal
Palm drag Palm placed on object and dragged
2-finger drag Two fingers on the same hand are simultaneously used for drag
n-finger drag More than two fingers on the same hand used simultaneously to perform drag

R
o
ta

ti
o
n

Finger rotate Finger placed on object and finger tip rotated
Pinch & rotate Two finger pinch and then rotation change
Off center rotation Finger placed on object outside of center of mass and rotated
C-style rotation Finger begins in the center of the object, extends outwared, and begins rotation
Palm rotation Palm placed on object and rotated
2-finger rotation Two fingers from the same hand placed on the object and fingers rotated
n-finger rotation More than two fingers on the same hand used simultaneously to perform rotation

V
ie
w
p
o
in
t Pinch Thumb and finger(s) converging using one hand

Spread Thumb and finger(s) diverging using one hand
Finger pinch Two or more fingers converging using two hands - one or more finger per hand
Finger spread Two or more fingers diverging using two hands - one or more finger per hand
Vanishing point Hands placed on side parallel to each other and then angle outward

E
le
m

e
n
ts

Menu selection Menu appears with more than one object property or action
Button selection A button selected by pressing on it, allowing for object modification or action
Keyboard A keyboard appears for annotation
Handwriting Handwriting recognition modifies object
Voice recognition Voice recognition modifies object
Widget A widget verbally described and interacted via specialized functionality

149

Position gestures indicated a desired change in location of the robot or some

object. In the previous example, the drag movement of the finger providing

the path would be classified as a drag representing a position change.

Rotation gestures expressed rotation of robots, objects, or the map. Many of the

tasks required the reorientation of the robots to face areas of the map. In

the simplest of cases, participants used a two finger rotation gesture over the

robot image. Other participants creatively used single finger gestures where

the rotation was outside of the center of mass of the robot.

Viewpoint gestures were used to change the view by either moving the world

or changing the position of the camera. Most commonly, either case was

achieved using a single finger on each hand to reorient the screen. Several

participants came up with unique and unexpected gestures to accomplish

the tasks.

User Interface Elements included commonly used interface elements like but-

tons, menus, virtual keyboards, handwriting recognition, and voice recog-

nition. This classification was used when the participant described some

additional interface element outside of the touch gesture space. Most often

this was a verbal statement like, “I would expect to have a menu here,” while

pointing at the area that would contain the menu.

The grouping of these user defined gestures does not imply that gestures across

groups are not interrelated or would not be mixed in sequences. In fact, sequencing

of multiple groups of gestures was important for many of the tasks. For example,

the simple task of moving a robot from its resting position to another area of the

screen might require selection (e.g., tap), position (e.g., drag), and then another

selection (e.g., double tap). Another method for directing the robot may be simply

to select the robot (e.g., tap) and then select the destination (e.g., tap), expecting

the robot to determine the best path.

Although the grouping of the gestures is important, a developer should be

careful to not use these high level groupings to drive state-based inspection of the

150

gesture intent. In the first example, the selection (tap) can be thought of as the

subject of the action, the position (drag) as the verb, and the selection (double tap)

as the predicate. This grammar can drive the state of the gesture recognition in

this simplistic case. Unfortunately, the grammar quickly falls apart in the second

example where only the noun (tap) and predicate (tap) are provided; the verb is

omitted from the sentence analogy and must be inferred.

7.3 Results and Discussion

The data set produced 3197 coded gestures using the gesture taxonomy described in

the prior section. For each gesture, we recorded the selected object (if applicable),

the gesture type, and the destination of the gesture. Since participants had varied

levels of verbosity and gesturing, we normalized the data for each task by dividing

the examined feature by the total number of gestures used by the participant

in the task. This scalar could then be equally compared to other participants

that might have given duplicate explanations or extended talk-aloud narratives.

Unpaired two-tailed t-tests assuming equal variance with α = 0.05 were used to

determine significance. The results of the coding are shown in Figure 7-3. Of

particular interest is the low percentage of participants expressing a desire for

voice recognition (1.3%) and keyboards (1.5%).

The display provided no visual or audio feedback to the participants; while

this eliminated any potential biasing, it also removed any indications that the

participant might be providing inconsistent or nonsensical input. We observed that

this lack of feedback resulted in tendency for participants to leave their fingers

or hands engaged with the tabletop while thinking. These pauses resulted in the

coding of more “press and hold” gestures than would have been seen if the interface

reacted to the gestures.

151

Selection Position Rotation Viewpoint Elements
0%

20%

40%

60%

80%

100%

Tap
50%

Lasso
21%

Double tap
7%

2-finger
select
5%

Press &
hold
5%

Sequence
select
5%

n-finger
5%

Bounding
Box 2%

Palm
1%

Meta
1%

Drag
64%

2-finger
drag
11%

n-finger
drag
9%

Waypoint
5%

Flick
4%

Direction
segment
4%

Palm drag
3%

Arrow
2%

Path to edge
1%

Pinch & move
1%

2-finger
rotation
30%

Rev. finger
pinch
58%

Hand-
writing
53%

Button
selection
23%

Widget
12%

Menu
selection
9%

Keyboard
1%

Voice
recognition
1%

Rev. pinch
17%

Pinch
10%

Finger
pinch
9%

Vanishing
point
6%

Off center
rotation
28%

n-finger
rotation
20%

Finger
rotate
10%

C-style
rotation
6%

Pinch and
rotate
2%

Palm rotation
3%

Figure 7-3: Normalized percentages of the gestures expressed by the participants
in each of the classification groups.

152

7.3.1 Selection

From an overall gesture space perspective, the selection classifications followed

several expected trends (shown in Figure 7-3). Tap accounted for 49% of the

selection gestures. This large percentage was expected since this gesture is roughly

analogous to the “click” of the mouse in the window user interfaces. Lasso was the

second most occurring selection gesture (20%) primarily due to the natural action

of drawing an ellipse around the objects to be selected. There was a cluster of

selection techniques totaling 27% that included double taps, 2-finger select, press

and hold, sequence select, and n-finger select. These are also analogous to mouse

click methods. The low percentage of bounding box gestures at 1.5% and palm

select at 1% is notable since these gestures have been used in several tabletop

applications in the past. Overall, the selection results indicate that there is a bias

to classic mouse “click” paradigms, but a gesture to circle or lasso the object would

appear to be a very natural alternative.

We found an effect with selection gestures that has implications for gesture

registration: in situations with one or two robots, most participants had no explicit

selection step. The participant would simply gesture a drag or waypoint for

the robot to follow; the selection was implied through the source of the gesture.

The movement started at the robot and ended at the destination with no explicit

selection of either. In contrast, with a group of three or more robots, the participant

would select the robot group explicitly and then gesture the drag or waypoints

that the group was to follow. The implications of this finding are important for

gesture registration because, although the task is the same, the start of the gesture

is different depending on the number of robots being considered for the task.

For tasks that had two robots, there was statistical significance between individ-

ual selections (e.g., tap or double tap) and group selection gestures (e.g., sequence

select, lasso, and n-finger select). Participants used significantly fewer group select

gestures (X̄=0.13) than individual select gestures (X̄=0.95), (t60 = 3.0, p < 0.004).

Participants found it easier to individually select each of the two robots than to

153

use a gesture such as a lasso for a group selection. We had expected to see lasso

used more often for selection of two robots, since this is the way that it would

be accomplished in the mouse-driven case; however, participants preferred using

individual selections in the case of two robots.

In tasks with three or more robots, participants used significantly more group

select gestures (X̄=2.75) than individual select gestures (X̄=0.43), (t60 = 6.5,

p < 0.001), and the use of group selects was significant against all of the other

selection gestures.

7.3.2 Multi-hand and Multi-finger Gesturing

All participants in our study used a multi-handed gesture without explicit prompt-

ing by the experimenters. Slightly fewer (90%) used gestures that involved multiple

fingers on the same hand; the other 10% used two hands for at least one of the

tasks, but never more than one finger on each hand. This result contradicts other

studies that found that most users preferred using a single finger on a single hand

for their interactions (Epps et al., 2006; Koskinen et al., 2008). Instead, we found

an almost unanimous willingness to use multi-hand and multi-finger gestures. In

the other studies, the tasks performed were largely desktop-computing tasks. Since

our task domain is outside of the traditional desktop paradigm, we had predicted

that we would see different results. As the data above confirms, we did indeed

see this difference. This result is important because it shows that when given

unfamiliar tasks, users are more likely break away from mouse-driven paradigms

to take advantage of multi-touch capabilities.

We also observed that the number of contact points on the multi-touch surface

was influenced by the number of objects requiring manipulation in the task. For

tasks that required the selection of two robots, 42% of the participants (13 of 31)

used two fingers to select the robots, one finger per robot, rather than use a “group

select” gesture. The two fingers used for the robot selection were most often on

the same hand if the robots were close to one another and on different hands if

the robots were farther apart. Participants used two hands to gesture significantly

154

less often when there were three or more robots (X̄=0.58) as compared to tasks

where there were one or two robots (X̄=4.76), (t60 = 5.6, p < 0.001). For these

tasks with three or more robots, participants tended to perform a group select,

using a single hand.

We also observed that the type of task influenced the number of contact points,

particularly in cases where prior computer usage introduced a bias. For example,

the analogy of dragging an item from one location to another is ubiquitously used

in WIMP interfaces. We found that when asked to move a robot or a group of

robots, participants continued to use this dragging paradigm, with single finger

drag (64%), 2-finger drag (11%), and n-finger drag (9%) as the most used position

gestures. While all three gestures convey the same intent, they use differing

numbers of fingers. Given that 20% of the movement gestures used two or more

fingers to accomplish the same task as a single finger drag, a gesture set for robot

control must be designed to allow these gestures to be used interchangeably. This

finding that the number of fingers is not significant to the use of the gesture is

consistent with Wobbrock et al. (2009). We believe that it is the shared context of

dragging an item on a screen that leads to this agreement between the studies.

In contrast to position gestures, rotation gestures showed a tendency toward

multi-finger gestures. The single finger rotation classification only accounted for

10% of the total number of rotation gestures. Since rotation is not a very common

movement in WIMP interfaces, participants had fewer biases towards a mouse-like

single point gesture. These multi-finger rotations follow the same motion that

one would perform with physical objects on the table. Since the robot icons were

analogues to physical objects in the world, the off-center rotation is a natural

response and how one might rotate a robot in the physical world.

7.3.3 Handwriting

We observed that the participants tended towards handwriting for annotation tasks

when given the freedom to gesture without constraint. 87% of the participants

(27 of 31) expected to be able to use handwriting for labeling objects. Only

155

13% of the participants (4 of 31) described using onscreen keyboards, and 6.5%

of the participants (2 of 31) used both keyboards and handwriting. We found

this surprising since most ATMs, iPhones, and tablet-based PCs use on screen

keyboards as the primary text input method. We had hypothesized that ubiquitous

keyboard usage would create a bias toward the description of virtual keyboards

or keypads. However, since participants could be free-form in all of their other

gestures, they expected to be able to use handwriting and have it be recognized

by the system or stored as an image label in their handwriting. Even further

emphasizing this free form expectation, many participants did not write on the

robot itself: there is an expectation of locality. 92.5% of the participants (25 of

27) that used handwriting gestures performed the gesture on the ground and only

7.4% (2 of 27) of the participants performed the handwriting gesture directly on

the target robot(s).

We also observed that 10% of the participants (3 of 31) used both of their hands

for handwriting, meaning that these participants were using non-dominant hands

for handwriting. The participants abbreviated the labels for the robots in these

cases, substituting “L” for “Team Left” and “R” for “Team Right.” Watching the

video for this effect, we believe that the ambidextrous handwriting was due to

the simplistic abbreviation and the placement of the annotation on the tabletop.

Objects on the left side of the screen were annotated with the left hand and objects

on the right by the right hand. The handedness based on position is an important

property since, if implemented, handwriting recognition may need to work correctly

with possibly degraded registration from multi-handed handwriting. Alternatively,

handwriting may need to be stored as a label, without recognition, particularly in

the case of writing with the non-dominant hand.

7.3.4 Gesture Usage as a Function of Prior Experience

Unsurprisingly, we found that the gestures that people wanted to use often corre-

lated to their prior experience with computers, computer gaming, and multi-touch

devices. Since the mainstream adoption of personal computers in the 1990’s, we

156

expected that desktop computing and WIMP paradigms would affect how the par-

ticipants commanded the robot(s). The use of computer gaming has also become

pervasive. In the past few years, personal electronics have begun to incorporate

multi-touch technology, such as the iPhone.

Every participant had used computers, meaning that they had been exposed to

common mouse paradigms. Despite the fact that 90% (28 of 31) of the participants

used more than two fingers for gestures in their tasks at some point, multi-finger

gestures only constituted 8.9% of all the gestures, indicating that the use of WIMP

interfaces may be heavily influencing the expectations of the participants. Drag,

2-finger drag, and n-finger drag were the most used position gestures, totaling 84%.

While these are natural responses, their use is also encouraged by the ubiquitous

use of dragging in mouse paradigms.

We found that for tasks that were uncommon in mouse paradigms, the gesture

space did not show such influence. For example, rotation is not extremely common

in window interfaces outside of graphic design programs. The single finger rotation

and the off-center rotation classifications accounted for 10% and 28% of the gestures

respectively, where as the 2-finger rotation and n-finger rotation accounted for

40%.

Since most computer applications have some type of menu system, we expected

to see participants describing the use of drop down or on-screen menu systems.

However, this was not the case as only 29% of the participants (9 of 31) expressed

the need for menus during some point in the experiment. Similar effects were noted

for the use of buttons (32% of participants; 10 of 31) and specialized widgets (41%

of participants; 13 of 41). Participants that played games expressed the desire for

significantly more “widget” gestures (X̄=0.41) than those participants that did

not play games (X̄=0.13), (t29 = 2.2, p=0.0304), which may be attributed to the

fact that games tend to have many custom widgets to perform certain activities.

We believe that iPhones have biased the “pinch” since 53.8% of the zoom

gestures were some form of pinch gesture. This effect is not surprising, but indicates

that established gestures cannot be ignored regardless of their “correctness” (or

157

lack thereof) from a HCI perspective. Combined pinch gestures include “pinch,”

“spread,” “finger pinch,” and “finger spread.” Participants that had prior experience

using the iPhone used significantly more combined pinch gestures (X̄=0.68) than

those participants that had no experience using the iPhone (X̄=0.39), (t29 = 3.9,

p<0.001).

Participants that played RTS games had fewer combined pinch gestures

(X̄=0.68) than those participants that did not play RTS games (X̄=0.48), (t29 =

2.3, p<0.028). The prior experience of these participants might have influenced

them against using pinch gestures, since most RTS games are played using a mouse

and a keyboard and do not have any form of pinch gesture.

7.4 Impacts and Implications

As robots become more commonplace in large teams, the need to manage their

actions as individuals and groups becomes important. Our experiment was designed

to determine the gestures that people would find the most natural for a variety of

tasks in this domain. The assumption was made that the robots would have the

ability to be very autonomous in the execution of the specified tasks; without a

great deal of autonomy in each individual robot, it would not be feasible to control

a group of more than a dozen robots.

We found that the prior experience of the participants introduced some bias

into the gestures that they wanted to use. In particular, selection and movement

gestures were heavily influenced by standard mouse paradigms. Additionally, we

saw that participants who had used iPhones used significantly more pinch gestures

for zooming, while people who have spent many hours playing real time strategy

(RTS) games expect to have similar controls in the multi-touch domain. However,

we also found that when presented with unfamilar tasks, users are willing to break

away from standard mouse-driven paradigms and use multi-touch capabilities

freely.

This research has identified several guidelines for designing gesture sets for the

158

robot control domain:

• If we want the gesture set to be easy to learn, biases introduced by mouse

driven interfaces will need to be carried over to the multi-touch domain.

• To account for individual biases caused by the use of devices such as the

iPhone or a great deal of time playing computer games, gesture sets could

include multiple gestures for the same capabilities. One could even imagine a

small set of questions to be asked of a user that would customize the gesture

set to their experiences.

• Users expect to provide multiple levels of instruction to the robot. This in-

cludes providing a start and destination, providing way points, and providing

an explicit path.

• If we use free-form gestures (such as lasso) for robot selection and movement,

then there will be an inherent user expectation for free form labels (symbols)

and handwriting recognition (instead of virtual keyboard).

• The grammar expressed by the users’ gestures are not always complete and

may not include an explicit selection step. For example, “Robot A should

move to Area B” may be expressed as a drag starting near Robot A and

ending in Area B with no explicit selection of the robot itself.

These guidelines become important as we leverage the natural responses from

users to increase ease of learning and memorability. User expectations and biases

are often different from what we expect as interface engineers. From this preliminary

user study we have created a collection of the most natural responses for robot

control. The next Chapter describes how we used this distribution of gestures to

create an interface that linked the user’s intentions to the actual control of robots.

159

Chapter 8

Multi-Touch Multi-Robot

Command and Control

The previous chapters have discussed the design and testing of the individual

components of a system for command and control of robots. With all of these

pieces assembled, it was important to determine if they could all be engineered

into a usable and understandable system that was easy to learn by users who may

not have significant time to train and retain the gestures used by the system.

To achieve our goal, we leveraged many of the lessons learned from earlier

chapters.

• All of the elements in the interface must be larger than 2 cm for successful

interaction with fingers on a tabletop device (Chapter 3).

• Visual affordances from physical devices for on screen elements should be

selected carefully, if used at all (Chapter 4).

• Control metaphors must be consistent throughout the interface regardless of

underlying implementation details (Chapter 4).

• If possible, use the biomechanics of the human body to build natural interac-

tion methods rather than complex on-screen controls (Chapter 5).

160

• Take advantage of the biases and muscle memory that users bring to the

interface from video games, mobile phones, and other interactions (Chapter

6).

• There are patterns to users’ natural interactions that we can model. As in a

language’s grammar, these patterns may have exceptions, but these variances

may be accounted for programmatically (Chapter 7).

Based on these lessons, we created a command and control interface to support

our research goal from Chapter 1:

Multi-touch is a rich and interactive method of computer interaction

that can provide enhanced learnability in time-critical and safety-

critical domains when implemented correctly. By carefully studying the

biomechanics of the human hand and leveraging the natural responses of

users to multi-touch displays, human-robot interaction can be enhanced

for single and multiple robot control. The goal will be to maximize

learnability and therefore lessen the amount of training time required

for proficient control of the robot or robot teams.

As discussed in Chapter 1, we see a convergence of three key technologies

enabling the advancement of command and control for search and rescue opera-

tions. Network centric operation, robotics, and multi-touch hardware are the key

components that will mature in the near future. We have made some assumptions

about the future availability of these advancements in the design of the command

and control interface presented in this chapter. Furthermore, our design borrowed

from the research discussed in Drury et al. (2010), which explored a hazardous

material response training exercise and a mock-up paper prototype for command

and control in hazardous material response.

161

8.1 Technology Capabilities Assumptions

The design of our command and control system for robots rested on several basic

assumptions that were based on observations of robot operators, collaborative

workspaces, and newly emerging technologies. The deployment of this technology

in the field will rely on several key innovations that we expect to see in the coming

years.

Tabletop interaction: We assume that field-ready tabletop computing devices

will be available in the near future. As mentioned in Chapter 1, we are already

seeing limited support for multi-touch on large displays headed to the field for

military applications. During planning and managing operations, the design and

orientation of a tabletop fosters collaboration. People have been working around

tables and sharing information in a natural and productive manner for hundreds

of years. Maps and objects can be moved, updated, and referred to easily through

the simple movements of grasping hands and pointing fingers. More recently,

computers and laptops have begun to replace these traditional table workspaces

due to the availability of visualizations and digital data or information. Laptops

pose a problem for collaboration since the screens are prohibitively small for group

observation and interaction is typically limited to a keyboard or mouse. Our design

leverags the Microsoft Surface hardware which combines the best features of both

tabletop and laptop scenarios.

Top-down view: We assumed that a top-down view of the disaster area

was available. The view could take the form of geo-referenced satellite data

as presented in products like Google Earth or NASA Worldwind. Even today,

satellite information is available to search teams with an Internet connection or

pre-downloaded map data. Ideally, the search team has the ability to receive geo-

referenced images from manned or unmanned aerial vehicles over the affected area.

Currently, near-real-time aerial data is not available to most search teams, but we

162

hope in the future that this will change. As discussed in Chapter 1, a Predator

aircraft was used to update teams on the ground in near real-time using Google

Earth. Additionally, Google demonstrated the ability to update Google Earth

shortly after the earthquake in Haiti for organizations assisting in the response.

The top-down view is important because it places the robots and other markers

geographically with respect to each other. The location of all of the assets in a

command and control scenario is very important, so a top-down view has classically

been the view of choice in SAR and military operations. The top-down view not

only provides the current location of the assets, but also their movement and

graphical representation can provide information about the direction of travel and

status of operations.

In a study of radio transmissions during a mock hazardous material response,

Drury et al. (2010) showed that 27% of radio transmissions where problems were

noted were related to the location, status, and usage of equipment. An additional

11% of the radio transmissions were related to the status of the current situation.

Discussions with personnel in the search and rescue field indicated that these

numbers were not unique to hazardous material response and were typical of

emergency response in general. In the words of one of the participants in the study

from Drury et al. (2010), “I can only listen to so many radios.” A top-down view

can help provide the command staff with a top down view of the situation and

increase awareness of the operation’s progress.

Geo-location of assets: We assumed that GPS tagging and tracking of robots

was available. GPS tracking of resources is becoming increasingly common and

inexpensive. Tracking of fire and police vehicles is becoming standard. The push

for geo-location in emergency 911 calls has flooded the commercial market with

cheap GPS enabled cell phones that can be adapted for tracking of personnel

on the ground. The robotics field has long used GPS location for unmanned

ground vehicles used in outdoor tasks. The above GPS technologies indicate

that in the near future it is possible to have a very clear and accurate picture of

163

all of the resources that can be tasked and monitored in a search and rescue scenario.

Ground robots with reachback: The use of robots with the ability to send

back position, video, and sensors was assumed for our interface. Additionally, we

assumed that robots were available that had basic navigation, obstacle avoidance,

and exploration behaviors sufficient for searching an urban environment. They

were also assumed to be able to receive commands wirelessly. Many of these

features are available today in field-capable robots. The capabilities of ground

robots are increasing and the field is seeing more and more initiatives to bring

robots out of the laboratories and into the real-world. As such, we hope that

the near future will provide field-ready robots with the capabilities of the robots

modeled in our research.

Need for intervention: A basic philosophy surrounding our research strategy

was the idea that a solution for multiple robots must also provide manual control

for a single robot. We explored single robot control in Chapters 4 and 6, which

provided the basis for the solution presented later in this chapter.

Robots can make mistakes in judgement or sensing and will inevitably get

themselves stuck in the environment. When this error occurs, the person at the

command console will not be able to correct the problem if there is no way to take

manual control. The robot teams may be heterogenous, so losing a robot with

unique capabilities could limit the successfulness of the mission if those capabilities

are needed. Therefore, we believe that it is essential to also provide a means for

intervening and manually operating the robot.

Using the above assumptions about technology to frame our engineering con-

straints, we then proceeded to formulate how we would design a collection of

gestures and test our design.

164

8.2 Gesture Design

Our multi-touch multi-robot gesture set used a bottom-up approach based on the

most frequently used gestures described in Chapter 7. Since the gestures were

user defined, it follows that the most popular gestures should be the most natural

and maximize the ease of learning. In an effort to limit the design to the most

popular gestures, we used only the top 90% of the gestures captured in Chapter 7

and shown in Figure 7-3. For selection, these gestures included tap, lasso, double

tap, two-finger select, press and hold, and sequence sequence select. For the view

changes or movement of the robot, the gestures included drag, two-finger drag,

n-finger drag, and waypoints. For changing the map viewpoint, the gestures

included single hand finger spread, multi-hand spread1, multi-hand pinch, and

single hand pinch.

For this multi-robot interface, the gestures related to rotation were not used

and we also limited the use of specialized screen elements as much as possible. A

design goal of our interface was to minimize user interface elements. Any extra

graphics, menus, or specialized widgets were only used when there were no other

options in the gesture space. In theory, we could build a gesture state machine to

interpret any number of complex gestures. However, we did not want the gesture

space to be so complex that it was no longer easy to use or remember. To this

end, we worked within the following three design guidelines:

1. Use simple and natural gestures wherever possible.

2. Use menus only when guideline 1 is not sufficient, such as gestures that

become ambiguous or gestures that are mutually exclusive.

3. Avoid gestures that are very long or complex when guideline 2 can suffice.

Using these three guidelines as a foundation, we kept the on-screen visual

clutter to a minimum and created a map-centric interface. Unlike most computer

1The term spread is synonymous to reverse pinch and is replacing its usage in user interface
guidelines such as Villamor et al. (2010).

165

applications, there were no menus or widgets displayed on the screen. All of the

robot commands, map movement, and specialized commands were contained within

the gestures themselves or within a small hidden menu that only appeared in a

position local to the finger. Although our implementation centered on single user

interaction, a benefit of our design is that the interface is insensitive to the angle

of the observer. The non-reliance on orientation allows a user or multiple users to

approach the surface from any angle and begin interacting with the interface.

8.2.1 Gesture Grammar

The gesture space for the robot actions generally took the grammar of <subject>

<verb> <predicate> where:

<subject> was the robot or robots being manipulated,

<verb> was the action or actions to be performed, and

<predicate> was the target or destination of the action.

For example, a tap on the robot (subject) followed by a drag representing the

path (verb) that terminated with a double tap at the end (predicate) would cause

the selected robot to follow the drawn path and then stop at the final destination.

Like any flexible grammar, there were useful exceptions discussed below.

8.2.2 Robot Control Grammar

Selection (as the subject): Selection occurred using one of seven primitives:

tap, lasso, double tap, two-finger select, press and hold, sequence select, and

n-finger select. Tap and double tap were reduced to a single programatic select

primitive since it could be modeled in the state machine as a re-selection of the

same robot on the second tap. For the same reason, tap, two-finger select, and

n-finger select were reduced to select since each tap or touch event will fire on the

same relative coordinates over the robot’s position. We required 250 milliseconds to

pass between subsequent touch events before the robot was toggled to a deselected

state.

166

Figure 8-1: An example of the Lasso gesture (left) as dragged on the screen until
the finger was lifted. The result of this lasso is shown by the yellow highlighted
robots (right).

We used four of the selection gestures above, so three selection primitives

remained: sequence select, lasso, and press and hold. Sequence select required the

user to select the robots to be affected in sequential order. From a state machine

standpoint, as long as additional robots were selected via any of the select methods,

then robots were added to the subject list.

Lasso was a path drawn on the ground with a single finger. The gesture began

on a coordinate not occupied by a robot (since that could be a tap selection) and

was tracked through the drag gesture until the finger was lifted. If the line ended

within several inches of the start, the first point and last point of the drag were

connected to complete the bounding area. All points within the bounding lasso

line are selected and added to the subject list. An example of this selection method

is shown in Figure 8-1.

Position (as the verb): The user provided navigation commands to the robot

in two ways: a series of waypoints or a path. The user provided waypoints by

tapping on the map to indicate where he or she wanted the robot to navigate.

Each point was added to an ordered list of waypoints that was sent to the robot

upon execution.

A path for the robot was provided with the drag gesture on the surface. The

path, projected onto the ground plane, represented the desired path that the robot

167

should follow. Programmatically, the continuous path was reduced to a close series

of waypoints that the robot should travel in the order specified. The preservation

of order was important so that loops and intersections were properly followed.

It should be noted that these two gestures could be mixed and may be inter-

rupted. When the finger returned to the screen, the remaining waypoints were

simply added to the list. For example, the user could begin specifying a path with

the drag gesture. He or she could lift the finger from the drag, wait momentarily,

and then begin tapping the ground specifying waypoints. The user could then

provide an additional path if more detailed navigation information was needed.

The ability to resume adding additional waypoints or paths was important since a

user may be formulating the waypoints or paths as he or she is performing the

drag gesture. If the user wishes to pause for a moment and consider alternatives,

the interface will allow the pause and accept later waypoints and drags as a

concatenation to the earlier commands.

Selection (as the predicate): A double tap signified the end of the sentence

and the final location of the robot(s) after performing the actions specified in the

earlier steps. For example, the user could select a robot, provide waypoints, and

then he or she only needed to double tap on the final location to signify the end of

the gesture sequence. The robot would then begin moving immediately.

Special cases and caveats: There were a few special cases that we needed to

consider in this grammar for robot control. As we showed in Chapter 7, we had

some special cases that would break our simplistic grammar.

First, if there were only one or two robots visible on the screen, then the user

might omit the selection of the subject and only provide the verb and the predicate.

This condition was detectable since the person tapped or dragged on the ground

plane near a robot while in the initial state. By programmatically asking the

interface if only one two robots were visible, the software could determine if this

gesture was a nonsense case or if we need to select the nearby robot and add

168

waypoints to the waypoint list.

Second, the user might omit the verb and only specify the subject and predicate.

An example would be a tap on the robot and a double tap at the destination.

Since we terminate with the double tap on the ground plane, this special case was

discernible through a state state change on double tap if the state machine was

waiting for a verb gesture.

Third, the user was allowed to omit the predicate if another unselected robot

was selected after the verb. The selection of the next robot, in effect, became the

beginning of the next sentence. This particular grammar adjustment was indirectly

exposed in the user defined gestures in Chapter 7. Since the paper prototype tested

in that experiment placed each of the tasks its their own context, the need for

serializing several tasks one after another did not present itself. Interestingly, we

observed that the users created a gesture that omitted a subject, and then a verb.

We then asked, “When could the users possibly omit the predicate?” We realized

a more realistic scenario of tasking of multiple robots would expose a special case.

A diagram of the state machine is shown in Figure 8-2.

Subject(s) Verb(s) PredicateStart Tap Robot

Drag near robot

when 1 or 2 visible

Tap Robot

Double Tap

Double

Tap

Drag Ground

Tap Ground

Tap Unselected

Robot

Tap or Drag

Ground

Figure 8-2: State machine for the grammar showing the basic structure and state
changes for special cases.

169

Table 8.1: Touch gesture reference guide for robot selection, movement, and
execution. Icons based on (Villamor et al., 2010).

Name Location Description

S
e
le
c
ti
o
n

(N
o
u
n
) Tap Robot

Briefly touch robot(s) to select
and deselect.

Double
Tap

Robot
Rapidly touch finger twice on
robot(s) to select and deselect.

Lasso Robot

Draw a circle around the
robot(s) to select. Note: Must
be first selection gesture, else
could be confused with Path

A
c
ti
o
n

(V
e
rb

) Tap Ground
Briefly touch waypoint(s) that
the robot(s) will follow on the
way to destination.

Path Ground
Move one finger over surface
without loosing contact on a
path robot(s) should follow.

E
x
e
c
u
ti
o
n

(P
re

d
.)

Double
Tap

Ground
Rapidly touch ground twice
with fingertip to provide the fi-
nal destination of the robot(s).

Tap Robot
Briefly touch a new unselected
robot to begin executing the
previous command(s).

Press
& Hold

Anywhere
Select “Execute” to begin ex-
ecuting queued command(s).
Explained in Table 8.2

170

8.2.3 View Control

The user was able to move the view of the map along three degrees of freedom:

zoom (on the z-axis) and translate (on the x-axis and y-axis). Zoom allowed the

user to adjust the perceived altitude of the viewing camera. Translate moved the

camera on the plane parallel to the ground plane in x and y. Translation was

useful when the extents of the viewable world extended past the current field of

view of the overhead camera.

Zoom: Zoom in was triggered by two fingers simultaneously make contact with

the surface and then diverge from one another. We referred to this gesture as a

spread in Chapter 7. For the metaphor of the aerial vehicle, zooming in simply

lowered the view from the camera in 3D space and placed it closer to the ground.

Zoom out was exactly the opposite; the two fingers converge or pinch and the view

from the aerial vehicle was raised.

Translate: When two to four fingers contacted the surface and then dragged,

a translate action was triggered. Translation moved the camera parallel to the

ground in the opposite direction of the drag motion. In effect, the user placed his

or her fingers to grab some point on the ground and moved the map as if it was

dragged underneath their fingers. The use of two or more fingers in this gesture

distinguish it from a lasso. Since users have a tendency to use any number of

fingers for gestures, we decided to allow up to four fingers for translation. This

freedom allowed users to simply place any four of their fingers on the surface and

move the map as if it were a physical object on the table.

It is important to note that translation and zoom could happen at the same

time and within the same gesture. For instance, a user could place his or her

fingers close together on some object of interest in the upper left hand corner

of the screen relative to his or her position. By spreading the fingers apart and

moving the fingers closer to the body, the user could zoom in on the object while

171

Figure 8-3: After selecting the robots, the user pressed and held his or her finger
on the surface for four seconds (left). A menu appeared under the finger (center)
where options could be selected such as Color, Queue, and Execute. When the
user selected the desired color (right) the finger was lifted and the selected robots
were changed.

bringing it to the relative center of the screen in the same motion.

8.2.4 Menu Functions

Having implemented the majority of the user defined gestures, we needed an

unambiguous gesture to open a menu. The menu allowed additional mode control

and robot identification. The press and hold gesture was often suggested by

participants for changing robot properties during the study in Chapter 7. To

activate the menu, the user pressed and held his or her finger on the surface for

four seconds. Then a graphic appeared underneath the finger as shown in Figure

8-3. The graphic loosely resembled a glowing tree with hierarchical branches that

emanate from the finger location. At the first menu layer, the user could choose

from Color, Queue, and Execute. The Color menu option expanded to reveal a

sub-menu with the color labels for Blue, Green, and Black. When the user selected

one of the Color menu sub-options, the currently selected robot(s) changed to the

identified color. In our implementation, changing the color of the robot did not

change any other physical properties and did not associate the robots’ actions with

each other in any way. Color was a visual means for managing and talking about

the robot teams.

The Queue menu option placed the interface in a special mode for simultaneous

execution of commands. By pressing the Queue option, the interface waited before

172

Table 8.2: Touch gesture reference guide for map movement, menu selection, and
joystick control.

Name Location Description

M
a
p

M
o
v
e
m
e
n
t

OR

OR

Multi-
Finger
Drag

Ground
Move two to four fingers
on the ground to move
camera north and south.

THEN Spread Ground

Touch two to four fin-
gers on the ground and
move them apart to
move camera closer to
the ground.

THEN Pinch Ground

Touch two to four fin-
gers on the ground and
bring them closer to-
gether to increase cam-
era altitude.

M
e
n
u

Menu Anywhere

Press and hold for:
1) Command queue
2) Execute queue
3) Change color

C
o
m
m
a
n
d

E
d
it Fist Anywhere

Touch one fist with ei-
ther hand to deselect all
robots and reset all way-
points.

Double
Fist

Anywhere

Touch two fists on the
surface to halt all robots,
deselect all robots, and
reset all waypoints.

173

executing robot movement. All of the functionality of the interface remained the

same so that the user could select, provide waypoints, and complete commands

for the robots to execute when commanded. Typically, this sequence was repeated

for several robots or several teams of robots. The user pressed and held his or her

finger to reveal the menu once again and selected execute. At that point, all of the

robots were released from their static positions and began executing their assigned

tasks.

8.2.5 Stop and Reset Gestures

While creating a gesture sequence, the user might make a mistake. If a mistake

occurred, the user placed his or her fist on the surface to clear the current gesture

sequence. Programmatically, all of the robots are deselected, all of the waypoints

are cleared, and the state machine is placed in the starting state.

If the user needed to stop all of the robots that were executing commands

and clear the current gesture sequence, the user placed the bottom of both fists

on the surface simultaneously. All robot movement was stopped immediately,

commands cleared, and the state machine was placed in the starting state. An

all-stop signal is commonplace in all fire and rescue operations for safety purposes,

so this important gesture was a necessary functionality for any robots designed for

the search and rescue domain.

8.2.6 DREAM Controller Integration

At any point, the user could instantiate a DREAM Controller for manual operation

or viewing the robot’s camera. If the user placed five fingers from the right hand

on the surface, a DREAM Controller was created, and as in Chapter 6, it was used

to rotate the pan and tilt axis on the camera on the robot. On the panel that

extended from the thumb and index finger, a live view from the robot’s camera was

displayed in a size and orientation appropriate for the user’s hand configuration.

The thumb control was designed to move the pan and tilt mechanism for the

174

Table 8.3: Touch gesture reference guide for map movement, menu selection, and
joystick control.

Name Location Description

J
o
y
st
ic
k
C
o
n
tr
o
l

THEN
Left
Joystick

Anywhere

Touch five fingers with
the left hand to enable
joystick control of the
movement of last se-
lected robot and view
range sensors.

THEN
Right
Joystick

Anywhere

Touch five fingers with
the right hand to en-
able joystick control of
the camera of the last
selected robot and view
the camera.

camera.2 The user then had two simultaneous views of the robot’s situation: one

view from the aerial camera above, and one from the semi-transparent DREAM

Controller displaying the robot-eye view. If the overhead view of the robot became

occluded, the user could relocate the DREAM Controller by lifting the thumb and

dragging the index and middle fingers or just by puting his or her hand in another

location

The left hand DREAM Controller was also triggered with five fingers on

the surface. As in Chapter 6, the left hand was associated with robot’s chassis

movement. The thumb controller pad behaved identically to first person shooter

games in which the upward direction moved the robot forward, down moved the

robot backwards, and left and right rotated the robot in the respective direction.

The panel extending from the thumb and index finger displayed the distance

panel (described in Chapter 6). The radar-like view of the laser range finder data

provided information to the user about the location of the robot relative to the

objects around the front of the robot. Since the DREAM Controller functionality

2The pan and tilt camera functionality was not implemented in the virtual robot model at
the time of user testing.

175

Fwd

Back

Left Right

VIDEO
Up

Down

Left Right

Figure 8-4: Illustration of the DREAM Controller configured for dynamically
selected robots in this interface. The left hand controller displays the data from
the laser range finder in a radar-like display and allows the user to drive the robot
chassis. The right hand shows the video from the robot’s view and controls the
pan and tilt of the camera.

was integrated for manual intervention, the laser range range data could be used

if the robot became stuck or images if from the camera cannot provide sufficient

situation awareness to the user.

8.3 Gesture State Machine Implementation

As demonstrated in the previous section, the deceptively simple grammar grew to

include many features and and potential paths for execution. The state machine

in Figure 8-2 was modified to use the Microsoft Surface specific event model,

which enabled the events corresponding to finger up, finger down, and contact

changed. These events corresponded to the finger movements for pressing, lifting,

and dragging respectively. The modification of the state machine with Microsoft

events is shown in Figure 8-5.

Symbolic notation of these states and transitions provide an overview of the

events and connecting logic. The implementation details, such as time delays and

data structures, are not discussed in this text, but played an important role for

the responsiveness and “feel” of the interface.

176

Grammar Example: Subject Verb Predicate

S

1

2

3

4

5

End
(Implicit)

CU

ε

ε

CU

CU

CC, #C>1

CD-NR, #R <= 2

CD-R

CC, #C>1

CC, #C>1

CC, #C>1

CC

CC

CD-G, t >= dt

CD-R

CD-NR, #R<=2

CC-(NR \ R),

#S>0

CD-R,

RT[r] > RDT

CD-G, t<dt, d<dD

CD-R,

RT[r] < RDT

CD-G

CC, #S = 0

CD, #F > 0

End
(Explicit)

START

Transition Key:

Subject - selection(s)

Verb - waypoint(s)

Predicate - execute

Map Movement *

Other *

* Not a navigation
grammatical unit

Event Types:
CD = Contact Down

CC = Contact Change

CU = Contact Up

Associated with proximity.

Example: CD-G for

Contact Down on Ground

Constants:
dt = double-tap

 time threshold

dD = double-tap

 distance threshold

RDT = robot selection

 double-tap time

 threshold

General Variables:
#F = # of fists

#C = # of contacts

#R = # of visible robots

#S = # selected robots

Double Tap Variables:
t = time between

d = distance between

RT[r] = Time since the

 robot r received

 a CD event

All transitions' include
#F=0, #C=1 unless
indicated otherwise.

Robot-Contact Proximity:
G = Ground

R = Robot

NR = Near or on Robot

FR = Far from Robot

NR \ R = Near Robot

NR \ R

FR

G

DREAM Controllers are created concurrenly with this state machine's execution,

and supersede this logic while they are active.

CD-G, d >= dD

CC, #C>1

CC, #S=0

CD, #F > 0

CU, #S>0

NR

R

Figure 8-5: Finite state machine for the gestures in the multi-robot command and
control interface.

177

8.4 Simulation Design

The harsh reality of ground robotics today made testing with large numbers of

robots infeasible. Additionally, the logistics of finding a large city-sized area for

the robots to search was non-trivial. Additionally, this experiment was testing

the interface and not the robot design or robot behaviors themselves. We needed

a simulation architecture that would approach the realism and unpredictability

of a real world field test without needing physical robots in large numbers. As

such, we used one of the most advanced modeling and simulation environment

available to the public: the Microsoft Robotics Developer Studio (MRDS). The

MRDS environment is a Windows based architecture that allows for the creation of

virtual robots that use the Microsoft .Net Concurrency and Coordination Runtime

Libraries for communication and message passing. This service based architecture

was more than sufficient for our test and provided all of the functionality required.

The three dimensional, hardware-accelerated physics allowed us to simulate eight

ActivMedia Pioneer 3DX robots in an urban environment which was approximately

2 acres in area. An aerial view of the simulation is shown in Figure 8-6.

To model the interaction between the human, tabletop, and robots as real-

istically as possible, we separated the simulation engine from the user interface.

The simulation engine ran on a dedicated desktop workstation and managed the

creation of robots, the robots’ behaviors, and the associated physics related to the

robots’ movements in the environment. The Microsoft Surface was responsible

for interpreting the gestures of the user which were captured through a transpar-

ent overlay on the overhead camera view. As shown in Figure 8-7, the robots

were graphically outlined with a circle on this layer to show their location in the

overhead camera. The small triangle on the outside of the circle represented the

direction that the robot chassis faced. This circle was used programmatically to

show selection of the robot and was never smaller than 2 cm based on our findings

from Chapter 3.

The overhead view was modeled as a virtual camera that can translate on the

178

Figure 8-6: An aerial view of the urban simulation environment used to test the
gesture based command and control interface. The three dimentional city was
approximately 2 acres in area and used realistic hardware-accelerated physics for
robot movement and interaction with the environment.

179

Figure 8-7: Circles were drawn around the robots on a transparent layer outside
of the simulation. A selected robot (left) is shown with a yellow highlight and
unselected robot (right). In both cases, the blue triangle represents the orientation
of the robot.

three axes. The images from the virtual camera were sent as a stream of images to

the interface using a UDP protocol over Ethernet. By modeling the camera in this

way, as opposed to directly rendering the graphics from the simulation, we more

closely model how images might be captured and sent from an aircraft in non-virtual

environment. It is important to note that the circles and other graphic overlays

were generated independently on the interface and not in the simulation. Since the

interface was updated with information regarding the altitude and position of the

camera, the software only needed to calculate the required on-screen position for

the graphics based on the robots’ GPS location and the camera lens characteristics.

A side effect of this interface design was that rapid changes to camera position

could be updated in real-time in the transparent overlay on the interface. From the

user’s perspective, the on-screen overlay provided responsive feedback while the

aerial camera caught up with the requested motion and transmited the updated

imagery.

8.5 Experiment Design

Our intent was to test the gestures and interface in the most realistic scenario,

given the constraints of available personnel, equipment, and scenario scale. Since

we had created a realistic world to test the robots, we gathered domain experts in

search and rescue to test our hypothesis.

180

8.5.1 Participants and Procedure

The six participants used for the study were the same six FEMA search and

rescue subject matter experts used in Chapter 6. As such, the demographic and

self-reported computer and gaming experiences are the same as detailed in Section

6.4.3.

The participant was first briefed on the nature of the study and a general de-

scription of the tasks that would be performed. Any questions that the participant

had were answered and then he or she was given an informed consent and video

consent form to read and sign.

The participant was then trained on the gestures used for the interface. The

test administrator demonstrated each of the gestures listed in Table 8.1 through

8.3. The basics of the gesture grammar were discussed to help the participant

understand the nature of the gesture sequences. The participant was encouraged

to try the gestures during the instruction period and assistance was given if the

participant was having problems. The participant was allowed to practice on the

gestures until he or she felt that the control of the robots had been sufficiently

mastered. Training and practice took 17 minutes (SD = 8.8) on average.

At the completion of the training and practice time, the test administrator

verbally described a fictional scenario of a dirty bomb attack in the downtown area

of a city. Since the scenario and timeline were not real, the spoken description

acted as both a summary of the incident and a briefing of where the participant was

in the overall timeline. Much like a real briefing, the participant was encouraged

to ask questions for clarification on any points. The scenario was described as

follows.

As of 8:46 am, the Department of Homeland Security has received

a request for federal assistance from Loop City, Nevada. A radiological

dispersion event has occurred near the downtown area that has required

an evacuation of all buildings and emergency personnel. As of 9:03

am, incident command was been established by the local FBI terrorism

181

response unit and DHS has directed your FEMA team to work closely

with FBI and other law enforcement agencies to secure the crime scene

and ensure that there are no live victims still in the downtown area.

Your team’s cache was recently augmented with specialized robotic

equipment designed to deal with low to medium radiation environments.

First, you have a Unmanned Aerial Vehicle capable of hovering at any

altitude or position over the city. FAA has cleared the airspace and

declared it a no-fly zone for any aircraft, so you have full authority to

use it for any visual reconnaissance over the city. Second, you have eight

autonomous Unmanned Ground Vehicles capable of traveling through

urban terrain. They can be told to navigate to a GPS waypoint or

follow a pre-determined path. They have cameras that are capable of

detecting humans and sensors for monitoring the radioactivity in the

area.

You have arrived on scene and coordinated with command. Your

primary goal, as the robot search team leader, is to direct the robots

through the city as defined by the planning manager. You are safe to

assume that the robots will alert you when they have found a human.

In other words, you are directing the robots where to search and not

performing the search task yourself. Your secondary goal is to identify

the source of the radiological event. Reports from people leaving the

scene indicate that the suspects were using a forklift or front-end loader

to elevate and disperse the radiological material. It is unclear at this

time where the dispersion equipment is located and where the suspects

may have placed additional radiological sources. The robots are capable

of alerting you if they find a sufficiently strong source of radiation.

The participant was then given a map of the affected city. The map was specif-

ically illustrated and colored to imitate the USGS topographical maps commonly

used by search and rescue teams. The map is shown in Figure 8-8. The participant

was told to write on the paper map if desired and to make any note that would be

182

useful to the immediate operation or the command hierarchy. The annotation of

maps is a standard practice for search and rescue and is especially useful during a

change of personnel.

For the purposes of the scenario, the testing administrator fulfilled the roles

of the planning and safety managers in the command hierarchy. The planning

manager position meant that the test administrator would provide the search grids

and priorities to the participant acting as the robot search team manager. The

safety manager role meant that the testing administrator had the authority to

direct the participant to immediately change or halt operations at any time.

The participant was instructed that they had 25 minutes to complete the sce-

MAIN ST

Park

Parking
Lot

Fountain

Construction
Site

Monument

Skyscraper
Boundary

Building

Road

Planter

Water

Tree

Figure 8-8: Illustration of the fictional Loop City, Nevada, drawn in the style
of a USGS topographical map showing major features, highways, and common
landmark names. Participants used this map as a reference while directing search
operations with the eight simulated robots.

183

nario. A written timeline of events was pre-scripted and the testing administrator

updated the participant on the state of the operations at the times established.

The timing script with events was as follows:

Offset

(min) Event to be read

:00 Planning has divided the city into the four quadrants shown on this

map [show map].

:00 Create a green team consisting of two robots and a blue team consisting

of five robots.

:00 Command the black robot to the center of the Park.

:03 Command the Green Team to search Area A (or C depending on the

start location) outside of the main street loop.

:05 Command the Blue Team to search Area A (or C) inside of the main

street loop.

:10 Command the black robot to do a detailed search of the Park.

:12 The governor of Nevada has contacted your team leader and wants to

know what percentage of the city you have searched at this time.

:15 Use the green and blue teams to search Area D and have them start

their search at the same time.

:20 Perform an all-stop immediately.

:20 Command has alerted planning that there is a report of the suspect

vehicle at the construction site near the monument. Redirect all of

your resources south of the monument for further instruction.

:22 Radiation levels inside the construction site are reported to be high.

When two of the robots arrive at the monument, manually teleoperate

one the robots into the construction site and visually confirm that the

construction vehicle is in the structure.

Each of the events was designed to exercise specific features of the interface

and gesture set. First, at time :00, the division of the city is a common practice

184

and allows personnel to generically talk about areas of the city when they are not

familiar with the local names for neighborhoods or districts. In this case, the city

was divided into four equal square quadrants, A, B, C, and D, starting in the lower

left hand corner and moving clockwise around the map. In densely populated

areas, streets are a very common way of dividing search grids. The symmetry of

the virtual urban environment meant that the city was effectively divided into four

equal quarters of the overall map.

The second event simply divides the robots up into groups that can be referred

to collectively. The number of robots in the team was a strategy to mirror the

number of robots in the tasks explored in Chapter 7. This design strategy could

later be used to see if interaction was different when dealing with one, two, or

more than two robots at a time. The next three tasks begin moving the teams of

robots through the environment. First the black robot was sent to the park, which

minimally required the participant to execute single robot selection, destination,

and map movement to see the park area. At :03 and :05, the two groups of robots

were sent to different parts of the map on separate searches. The task exercised

the gestures for group selection, planned movement, and possibly map movement

depending on the view of the aerial camera. To encourage the detailed movement

provided by the drag gesture, the black robot (now pre-positioned in the park)

needed to be commanded to do a very detailed search of the interior of the park

at :10. All of the users relied on the drag gesture for this task and used a variety

of search patterns to canvas the area.

It is extremely typical for the search to be interrupted by requests from political

figures and the press about the status of the search. The interruption event at :12

was a simple way to have the participant self-report on how well the operation

was proceeding and the percentage of the city that had been searched. Updated

intelligence reports from outside the search team can often redirect personnel to

different locations of the search area even when an earlier task is not completed.

The wording of the task at :15 is designed to provide one of these re-tasking of

robots that were, by this point, spread all over locations in the first quadrant.

185

Furthermore, the request that the search be started “at the same time” provided

a hint that the command queue functionality of the interface should be used to

synchronize robot starting times.

At :20 the experimenter, acting as the safety manager, requires an immediate

all-stop of the robots. The command was spoken with authority and without

explanation. The intent here was to see if the all-stop gesture was memorable and

could be executed quickly. Further details about the all-stop was then provided to

the participant. The participant needed to re-group all of the available robots in a

location near a construction site so that the participant could manually teleoperate

one of the robots to a specific feature within the structure. The final task forced

the use of the DREAM Controller in the scenario and helped determine if the

reconfiguration of the video and range display panels was useful for inspection

tasks. An example of this task is shown in Figure 8-9.

8.5.2 Data Collection

For the experiment, we provided the participants a clipboard with a paper copy of

Tables 8.1 through 8.3 and a copy of the map in Figure 8-8. They were also given

a pen and highlighter and told that they could mark directly on the sheets. We

preserved the resulting sheets for post-hoc analysis.

As in previous experiments, the participants were asked to “think aloud”

while using the interface and creating their search strategy. In many cases, the

participants became engrossed in the task, and the test administrator would need

to prompt the participants to explain what they were thinking or doing. The test

administrators worked in a team of three. One person managed the computer

console in the event of a program crash or other problem. One person took

handwritten notes as the participants interacted with the surface and performed

the think aloud method. The third person directly interacted with the participants

as the command hierarchy, read any of the descriptive dialog, and answered any

questions related to the interface.

We videotaped the session from three views. The video output from the Surface

186

Figure 8-9: Final task of the scenario required the participant to take manual
control of the robot (center) and use the DREAM Controller to view the suspect
construction vehicle. This screenshot shows the activated DREAM Controller and
positions of the fingers are shown lightened circles.

187

itself was output to a device that converted high resolution computer video to

standard definition video. This output was then recorded to digital video tape.

The second recording was of the person’s hands on the surface of the screen. A

digital video camera with wide angle lens was mounted approximately six inches

above the Surface near the edge of the screen opposite the participants. This

provided an angled view of the hand to help discern when contact occurred. Finally,

high definition video was recorded from a view over participant’s the shoulder to

capture larger gross motion of the arms and body.

We asked the participants semantic differential questions upon the completion

of the experiment. The experimenter responsible for note taking verbally asked

these questions and recorded responses with handwritten notes.

8.6 Results and Discussion

To provide a cohesive discussion of the results gathered in this user study, we

combined the responses to interview questions, participants comments, video

observations, and distribution analysis to product the following results. Since this

is an exploratory study based on the prototype in Chapter 7, we focused much

of the post-hoc analysis on the variances between the two studies and how these

differences compared to our expectations. The prototype study had a larger sample

population, but the population was taken from the general public. Personnel in

the search and rescue domain may exhibit different expectations and biases when

interacting with this type of device. As discussed below, there were many patterns

that matched, but with gesture based interfaces like our implementation, the

difficult parts are often in subtle details.

8.6.1 Gestures as a function of grammar

We first looked at the distribution of gestures within their classifications in the

grammar since this can provide insight regarding why qualitative comments or

biases were provided in the questionnaire. A graph of the gestures used in this

188

study are shown in Figure 8-10.

Several observations can be made of this graph relative to the distribution

seen in Table 7-3 in Chapter 7 (henceforth referred to as the 2009 study). Lasso

was used much less in this study (only 4%) as opposed to 21% in the 2009 study.

Additionally, the tap gesture as used for sequence select increased from 5% in the

2009 study to 43% in this study. While the reason for this change is not entirely

clear and the sample population not sufficiently large enough to draw any strong

conclusions, we can hypothesize several possible reasons. First, the number of

robots in group actions was smaller in this study with eight total robots total

and the largest sub-group containing five robots. In the 2009 study, there were

a total of sixteen robots and eight robots in the largest sub-group. There may

be a subtle threshold for when users switch over to the lasso gesture for group

actions that was not exposed in this study. In the same way that users omit the

subject when there are fewer than three robots on the screen, we may see an effect

where lasso becomes the primary gesture for grouping when there are somewhere

between eight and sixteen robots on the screen.

Second, an extension of the hypothesis above for the change in the percentage

of lasso and sequence select may be further enhanced due to bias introduced by

the sentence grammar structure. While planning the next set of operations, the

participants may have thought in terms of a sentence with multiple subjects. For

example, they might think, “Robot 1, Robot, 2, Robot 3, Robot 4, and Robot

5, follow this path and terminate at this point.” In this sentence, the individual

representation of the robots may not seem awkward for five names. While acting

out the gesture, performing a sequence select may seem natural since the user can

tap each of the robots while recalling the name. When the number of robots in the

subject list is increased, the beginning of the sentence becomes long and hard to

remember. We hypothesize that this situation is when the lasso gesture becomes

useful, since each of the individual robots is not as well defined. In an extension

of the grammar, lasso becomes the plural pronoun “you.” Placed in our example

sentence above, the large collection of robots to perform the task is substituted

189

20

40

60

80

100

Selection Action Execution Viewpoint Special

P
er

ce
n
ta

ge
of

G
es

tu
re

T
y
p

e

Tap
(Single
Robot)
51%

Tap
(Sequence
Select)
43%

Lasso 4%

Double Tap 1%

Drag
(Path)
55%

Waypoint
45%

Double
Tap 92%

Next
Robot
7%

Queue < 1%

Translate
50%

Zoom Out
(Pinch)
27%

Zoom In
(Spread)
23%

Fist
(Clear)
45%

Press
and Hold
(Menu)
40%

Double
Fist (Halt)
15%

Figure 8-10: Percentages of gestures used, grouped by their position in the grammar
discussed in Section 8.2.2.

as follows: “You (group of robots), follow this path and terminate at this point.”

Further studies and sample populations would be needed to determine if these

hypothesis is correct. A parametric experiment is needed to determine the number

of robots that trigger this change in behavior from sequence select to lasso.

A second observation from this data is the dominant use of double tap in the

predicate (92%) and the relative lack of double tap in the selection stage (1%). Like

the unused on-screen controls described in Chapter 6, we spent a significant amount

of time ensuring that the interface software was able to correctly interpret single

and double taps for the selection portion of the grammar. We were surprised that

this double tap for selection feature was used less than 1% of the time compared

to the 7% usage in Chapter 7. Given the dominant use of double click in desktop

applications, we expected to see users biased to this double tap selection gesture.

190

Overall, it should be noted that while this data provided important insights

into the gestures used by our target population, the scenario was designed to elicit

specific responses from the participants. As such, the distribution of gestures is

biased by the scenario itself. For example, special gestures such as double fist,

and press and hold, were actions pressed upon the user during the timed scenario.

To refine the accuracy of these gesture distributions, longer exercises need to

be performed that allow for a wider response of gestures from participants over

time. However, in this scripted 25 minute exercise, the data provides a wealth of

insight and clarifications about the assumptions and mental models used by the

participants.

8.6.2 Gestures as a Function of Assumptions

As mentioned in Chapter 7, the level of tasking will vary based on the user’s

individual assumptions about the robot’s autonomy and capabilities. Although

the frequency and depth of discussion varied widely between participants, we

did note several data points and themes that may point to the assumptions that

participants used while interacting with the interface.

Four of the participants made specific comments about the autonomy of the

robots. One participant directly stated that the robots were more autonomous

than expected. With respect to both the primary search task and secondary

radiation detection tasks, two of the participants made statements related to the

robots having obstacle avoidance. One participant volunteered that she felt that

the robots would not hurt anyone in the environment. Additionally, she added

that the robots were smart enough for this task and, if needed, the robots could

plan and navigate around buildings.

Trust in the sensors was a recurring theme during the experiment and in the

post-experiment questionnaire. Five of the six participants stated comments related

to the sensing capabilities of the robots. Four participants simply stated that

they believed the robots would identify the victims or radiation sources with the

installed sensors. Since this ability was in the original description, this comment

191

indicated that the robots behaved in a manner that supported this statement of

identification. One participant mentioned that the sensors for victim detection

should work without getting really close to the victims, and another participant

stated that the radiation sensors needed to be close to the radiation source and

would therefore need to stay nearer to structures. One participant mentioned that

she assumed the robots had all of the same sensors.

These comments provide an interesting insight to the level of tasking that the

participant felt that he or she needed to provide for the robot. In Chapter 7, we

discussed that the perceived level of autonomy or trust in the robot’s ability to

navigate could change the natural interaction method used by the participants.

We hypothesized that the participants’ trust toward the robots may factor into

the similar percentages between the use of drag (for a path) and waypoint. In

this data set, drag represented 55% of the gestures and waypoint was 45% of the

gestures. This gesture distribution indicated that approximately half of the time

the participants believed the robot had sufficient autonomy such that the robot

could be given simple waypoints for navigation to a destination.

Interestingly, one participant was observed using waypoints in all but the case

of the black robot searching the park in detail. (In the case of the detailed park

search, all of the participants used a drag gesture to provide a specific path.) This

participant used waypoints for the majority of the navigation gestures and was one

of the participants that immediately tasked the robots individually instead of in

groups. Interestingly, this participant was one of the most experienced in wide-area

search and had the most experience commanding these operations. When asked

later why he used waypoints for navigation, he replied that “this is how I would

have commanded people or dogs.” While providing directions to another human,

most people would not give extremely fine-grained information specific to the path

that the person should follow. Rather, most people would provide landmarks or

waypoints to achieve along the way to the goal.

The experience of this particular participant is important because the difference

in his style of interaction may point to a difference between the assumptions

192

made with extensive command experience versus those with limited command

experience. In the case of human searchers, providing explicit paths to follow

would be considered micro-managing the process at an unnecessarily low level. An

exception to this might be when command has specific information that will help

the searchers such as a specific path through an area that is difficult to navigate.

This participant demonstrates that experienced search team leaders may make

assumptions that cause them to use a different distribution of gestures than less

experienced leaders. These differences are important, since a command and control

interface like this will need to be user by both experienced and unexperienced

leaders.

8.6.3 Motivation for Further Improvement

Based on the comments from participants, there is room for improvement in the

interface. Many of the comments centered around the zoom functionality. Four

of the six participants mentioned that performing the zoom function was difficult

to use. As a result of this, suggestions were made regarding how the participants

would rather see the functionality expressed. One participant noted that the

zoom was not distinct from the pan gesture, indicating that the mix of the two

may have been problematic. The same participant suggested a zoom button that

would automatically zoom all the way out to quickly give a high level view of the

operation. One participant wanted a gesture similar to a scroll mouse instead of

the pinch and spread gestures. A final participant found that the time zooming in

and out was too time consuming, stating that a simple on-screen control would

suffice.

Admittedly, the coordination of the aerial view and the zoom gesture had some

bugs that were realized only just prior to testing. Depending on the speed and

persistence of the finger spread or pinch, the detection routine could cause the

camera to move erratically for a moment before assuming the correct altitude and

position. All of the suggestions by the participants are useful and seem to refer

to examples that they have seen work well in the past. Further testing with a

193

more robust implementation of our zoom functions will need to occur before we

are able to determine if this problem is with the gesture itself or a problem with

the implementation.

Other interface element problems were noted with less frequency. One partici-

pant mentioned having a problem while providing a path for the robot to follow.

As a result, he resorted to only providing shorter paths. Another participant

mentioned that it was “weird” providing paths around buildings. We believe that

the last comment was due to the perspective provided by the aerial camera view.

Since the camera was modeled with real lens characteristics, buildings on the edges

of the display appear to lean outward due to perspective. Buildings in the middle

appear to stand straight up toward the camera. This disparity can be problematic

when drawing paths on the ground plane. A solution to this problem is not entirely

clear, but this will be a common characteristic of aerial and satellite imagery.

A final point for improvement is the need to manage the situation where the

robots are all in very close proximity to each other and the bounding circles overlap.

This overlap is due to the 2 cm lower bound for contact established in Chapter

3. This problem reliably expressed itself during the last part of the dirty bomb

scenario when the participants were asked to redirect all of their resources to a

location south of the monument. All of the users selected the robots using lasso

or group select and eventually terminated the grammar with a single destination.

Unfortunately, this action caused all of the robots to arrive in the same place.

Depending on the frequency of the arrivals, the participant quickly found that it

was difficult to select a single robot from the group if the camera was sufficiently

zoomed out to cause overlapping circles.

Since we cannot regulate the size of robots or expect to force a lower camera

altitude before selection, an alternative must be found that permits selection when

the density of robots is high. There are numerous techniques that can be borrowed

from the visualization communities related to high density cluster mapping and

similar graphics representations. Some example solutions to this problem have been

demonstrated by Google Earth and other GIS products. Further investigation will

194

need to determine if these solutions are natural and compatible with multi-touch

interaction.

8.6.4 Information Fusion and Decision Support

A common theme among the comments was the need for more status information

in future implementations. Many of the participants made comments about losing

track of the waypoints or paths that the robot was following, or had already

followed. Note that the interface did show the waypoints or path that the robot

was going to follow as the finger was dragged, but this path was erased from the

screen to reduce clutter once the predicate was given. Normally, the search team

leaders would keep track of this information using pen and paper. In this case, the

ease of tasking the robots and the temporary nature of the path visualization may

have given a false sense of recorded planning data. One participant commented at

the end of his run that “I didn’t use paper at all, and I didn’t feel like I needed it.”

The need for past and future goals is important when earlier decisions have been

forgotten and new plans need to be made that may affect or overlap those earlier

plans. A simple visualization to remedy this problem may be for the interface

to remember the path or waypoints and show them again if the robot is selected

while executing the task. In addition, past waypoints can be shown in a different

color or shape then the future waypoints.

While only four participants directly commented about the zoom function, we

observed that all six used it frequently. This change in perspective may suggest a

need to maintain a high level operations view and a lower task level view. It is a

common technique in many first person shooter and real-time strategy games to

provide a small map of the entire operational area that is coordinated with the

information displayed in the main window. The ability to see the map and assets

in this broader scope was specifically suggested by one of the participants who had

experience with video games.

This type of high level map could be implemented easily in a way similar to the

map generated by the single robot in Chapter 6. This smaller map could provide

195

all of the known area in the scope of operation and be moved or adjusted in size

on demand. Additionally, the user could provide a gesture such as a double tap

on this operation-level view to swap the two displays much like the ADR mode

discussed in Chapter 6.

8.6.5 Questionnaire Results

We asked 11 semantic differential scale questions anchored by opposite phrases

such as “helps” or “hinders.” In each question, the participants were asked to

respond to a number between 1 and 6 relating to how strongly they felt on that

subject. These questions and the results are shown in Table 8.4. In general the

results are positive and the participants believe that the interface would bring

value to a search operation. We believe that the lowest value for the question “The

interface was uncomfortable/comfortable to use” was mostly due to the shape of

the Surface since the participants were sitting down and could not place their feet

under the table despite it being raised to 27 inches. This inconvenience caused the

participants to need to lean from a seated position to interact with the surface

of the screen. Future plasma or liquid crystal display multi-touch surfaces would

have not exhibited this problem and are already available.

8.6.6 User Expectations and Need for Intervention

All six participants mentioned that the robot did what they expected. While it

is not 100% clear what those individual expectations may have been, the robot

behaviors appeared to meet a minimum level of approval. When asked if they

trusted the robots, all six responded that they did trust the robot, with only one

user further qualifying that he trusted the robots to navigate, but not necessarily

for sensing.

One of our original design requirements was the ability to directly intervene if

a robot should be stuck or become disabled. This experiment verified this need

since five out of the six participants mentioned a robot getting stuck. Three of

196

Table 8.4: List of the semantic differential scale questions and the results from the
post experiment interview.

Question Average SD

The interface helped/hindered in performing my primary task

hindered 1 2 3 4 5 6 helped 4.17 0.75

The interface helped/hindered in performing my secondary task

hindered 1 2 3 4 5 6 helped 4.33 0.75

The interface was difficult/easy to learn

difficult 1 2 3 4 5 6 easy 4.25 0.84

The interface was difficult/easy to use

difficult 1 2 3 4 5 6 easy 4.08 1.10

The interface was irritating/pleasant to use

irritating 1 2 3 4 5 6 pleasant 4.00 0.41

The interface was uncomfortable/comfortable to use

uncomfortable 1 2 3 4 5 6 comfortable 3.92 0.75

The interface was inefficient/efficient to use

inefficient 1 2 3 4 5 6 efficient 4.33 0.63

The interface has no/much useful functionality

none 1 2 3 4 5 6 much 4.67 0.52

The interface was no help/helpful in maintaining safety

no help 1 2 3 4 5 6 helpful 4.50 0.52

The interface was hard/easy to understand

hard 1 2 3 4 5 6 easy 4.42 1.03

The interface would require more/less time than my
current system to maintain awareness of the situation

more 1 2 3 4 5 6 less 4.50 0.55

197

the participants reported robots that flipped over, rolled on their side, or rolled

onto their backs (looking at the sky) during the run. Another two participants

mentioned that at least one of their robots became disabled or hung up on objects

in the environment. In one case, the robot’s behavior caused the robot to begin

rotating in circles regardless of the waypoint position.

As a testimony to the need for manual operator interaction, two of the par-

ticipants were able to take manual control of the robots and remove them from

the failure state. These rescued robots were then given a task and continued

throughout the remainder of the testing period. In all other cases, the robot

was not able to be rescued or the participant did not attempt a rescue with the

DREAM Controller.

It should be noted that the robots were not designed to fail intermittently

and were programmed to use obstacle avoidance with the popular and publicly

available vector-field histogram behavior (Borenstein and Koren, 1991) from the

Player robot architecture (Gerkey et al., 2003). This algorithm was ported directly

from Player to MRDS with no change to the underlying logic. It was hoped that

this well tested behavior combined with the simulation environment would provide

sufficient robot autonomy to avoid any failures of the robots while they navigated

through the environment.

The realism of the simulation and low ground clearance of the Pioneer robots

modeled in this simulation performed much like one would expect in the real world.

The robots would occasionally not sense an object in the environment and crash

into it. In some cases, these objects were bushes or a ramp that was below the laser

rangefinder’s view. While these instances of errors in sensing and judgement are

particular to this virtual world, robots in the real world have much more noise in

their sensors and their algorithms need to deal with much more difficult situations.

198

8.7 Impacts and Implications

This test of our implementation of a command and control interface for multiple

robots brought a wealth of information. As discussed above, there is still room for

improvement. The responses from our participants was unanimously supportive

and encouraging. Comments included “That is a cool interface,” “My strategy

improved as it went along,” and “That is it? Can I keep playing?” From a

qualitative standpoint this response indicates that the interface was a positive

experience and the responders recognized the potential.

Our earlier goal stated that we had created a gesture set will maximize learn-

ability and therefore lessen the amount of training time required for proficient

control of the robot or robot teams. While it is difficult to directly measure this

goal without a benchmark for comparison, we do have several points that indirectly

support this goal. First, the responders were trained on the interface and then

given any amount of time to practice before beginning the timed scenario. They

were specifically told that there was no time restrictions and that they could prac-

tice until they felt that they understood all of the functionality. Participants on

average took 17 minutes (SD = 8.8) to feel confident and proficient in the interface,

including the scripted training time. Also, the scenario itself was designed to run

for approximately 25 minutes in length. Our participants were able to command

the robots through the search scenario and manually teleoperate one of the robots

to a specific point in 27 minutes on average (SD = 2.8).

The timing benchmarks above indirectly support our goal since 15 minutes for

training seems reasonable for an interface that will presumably allow for better

situation awareness and increased operational efficiency. On average the operation

ended within two minutes of the expected time, indicating that the interface did

not have a large variability in expected versus measured task completion.

We believe that this gesture set and interface design establishes a benchmark

and provides an existence proof that robot command and control can be achieved

in a gesture-based interface.

199

Chapter 9

Conclusions and Future Work

Ideally, the next step in this line of research would be to simply place this

new interface and control mechanism in the field and let the end users and

other developers further iterate on the design. However, technology adoption

in application domains such as search and rescue does not happen as quickly

as technologists would like. Fortunately, when all of the enabling technologies

described in Chapter 1 are mature and field-ready, this research has provided a

strong existence proof that multi-touch technology is not only compatible with

varying levels of robot control, but may significantly improve the performance of

robot operators.

This dissertation has provided several key components of command and control.

It has provided a multi-touch interface for teleoperation in the field and a command

and control interface for high-level coordination of robot teams. The simultaneous

use of these components can be described in a realistic, but fictional scenario based

in the application domain of military explosive ordinance disposal (EOD).

When bomb squad technicians are called to the location of a suspicious package

or automobile, their goal is to remove or disable the explosive device. The state

of the practice involves controlling a robots through large operator control units,

weighing twenty to fifty pounds. For example, the iRobot Packbot EOD and

Foster Miller Talon operator control units can be seen in Chapter 5 in Figure 5-1.

Quickly setting up and using these operator control units while in possible contact

200

Figure 9-1: Multi-touch technology will be making its way into the field in the
very near future. The UAV (above) provides real-time imagery to the command
staff back at the base of operation while the robot control unit (below) allows the
field technicians to comfortably control the UGV robot and neutralize the threat.

201

with enemy forces can be daunting and stressful at best.

In our fictional scenario, imagine that instead of the large and heavy controller,

the bomb technician has a device that looks like a thin and wide laptop where

the keyboard is replaced with a multi-touch surface large enough to accommodate

two adult hands. (An artist’s interpretation of this fictional scenario is shown in

Figure 9-1.) The technician is able to place this device on the tailgate or hood

of the vehicle. When it is opened, it shows a display of the EOD robot cameras,

manipulator positions, and the state of the robot sensors on the front screen. The

technician places both hands on the multi-touch screen and two virtual joysticks

are immediately drawn beneath the fingers. Without having to adjust posture

for manual switches and dials, the fingers simply glide to the desired positions

and chording actions are performed within the comfort and ergonomics of that

particular user’s bio-mechanics. When the technician needs to relinquish control

to a second operator, the system automatically recreates the joysticks for the

ergonomics of this new user and the mission can continue without the new operator

needing to inspect and recall the positions of the switches and dials.

If the safety of the situation degrades and these technicians radio back to their

command and request further assets, the commanders look at the multi-touch

table in the command post and identify the assets that are immediately available

in the area. After several selection and destination gestures by the commander,

the requested resources are en route to the scene and arrival estimations are

automatically relayed to the team on the ground via radio. Since the situation

may be escalating outside of the view of the field EOD technicians, the commander

selects a nearby aerial asset and then puts five fingers down on the display surface.

A joystick controller with video display appears underneath the fingers, and a quick

movement of the thumb servos the pan and tilt camera on the belly of the aircraft

to the location of the operation. Recognizing further complications several blocks

away and outside of the view of the EOD technicians, the commander quickly

releases control of the camera by simply lifting the hand from the screen, makes a

lasso gesture around the remaining human force protection resources, and redirects

202

them on a path that will provide protection to the evolving incident.

Even five years ago, this narrative story would be safely in the realm of

hollywood science fiction. Today, with the enabling technologies described in

Chapter 1 and the multi-touch interfaces designed and tested in this dissertation,

this scenario can quickly become a reality.

9.1 Contributions

This line of research has provided the following contributions to the field of human

robot interaction:

• Performance model of tabletop touch interfaces based on Fitts’s

Law: After a literature and background search, we had no indication when

we began working with tabletop devices that they would have performance

comparable to traditional mouse interfaces. In Chapter 3 we were able to

create a performance model and experimentally show that mean error rate

was comparable to the mouse interface for targets of 30 mm and 40 mm, but

substantially higher for target diameters of 20 mm and smaller. Additionally,

efficient task completion can be expected only when target elements in the

user interface are larger than approximately 30 mm in size.

• Validation of multi-touch human-robot interaction compared to a

traditional joystick-based single robot interface: An interface was

designed for robot control that demonstrated comparable performance to

traditional joystick-based robot control using a well studied interface design.

To our knowledge, our study in Chapter 4 represents the first use of a multi-

touch table with a physical agent. We experimentally showed that there

was no significant difference for the constructive or destructive performance

metrics established for this study.

• Algorithm for five-point hand identification and finger registration:

In Chapter 5, we created an algorithm that with 97% accuracy can identify

203

a hand, label the fingers as a thumb, index, middle, ring, or little finger,

and label it as a right or left hand. The algorithm can accomplish this

identification using only the computationally optimized arctan2 function and

basic arithmetic functions. While the algorithm was a means to an end for

the DREAM Controller, we believe that the contribution from this algorithm

will be useful for design spaces beyond this application.

• Interface using the dynamically resizing, ergonomic, and multi-

touch (DREAM) controller for joystick emulation: This controller

provides the user with four degrees of freedom of control on the thumbs

and two buttons on the index and middle finger used for tracking in this

implementation. Based on the metrics presented in Chapter 6, we have

demonstrated increased performance over a well studied joystick controller

implementation for robot control.

• Taxonomy and coding rule set for multi-touch multi-robot inter-

action on tabletop surfaces: In Chapter 7, extensive coding of over 3000

gestures required the creation of a taxonomy and coding rule set for the user

generated gesture set. This taxonomy can be used in future research to help

codify and identify the gestures from users performing command and control

tasks on table top surfaces.

• A user generated multi-touch gesture set tailored for ease of learn-

ing: Using the distribution of gestures from Chapter 7, we were able to

adapt the the most popular gestures into a grammar that permitted the user

to command a robot, or groups of robots, to perform navigation tasks using

only their fingers and hands.

• Integrated interface designed specifically for multi-touch interac-

tion that combines high level command and control of robot teams

and individual control of single robots: The interface described in

Chapter 8 leveraged the gesture grammar in Chapter 7 to provide high level

204

control of groups of robots and used an adaptation of the DREAM Controller

described in Chapters 5 and 6 to control individual robots and view their

sensors.

Of these contributions, the algorithm for five-point hand identification repre-

sents the most significant contribution due to the changes that this can enable in

general user interface design. The identification of individual fingers and handed-

ness can permit much more rich and generalizable interactions. For instance, if the

fingers are identified and labeled, they can represent the “asdf and jkl;” home-row

on a computer keyboard or the ivory keys on a piano. Combined with heuristics for

hand movement, the identification of the hands and fingers can provide ergonomic

emulation of these devices without the need for direct tactile feedback to the

user. This algorithm provides a method for a level of interaction not achieved by

multi-touch interfaces designed today.

9.2 Future Work

There is some future work that will immediately benefit this line of research.

• Refinement of the hand detection algorithm: In Chapter 5, we

discuss some of the limitations of the hand and finger detection algorithm.

By exploring some of the techniques suggested in Section 5.8, the performance

of the algorithm can be improved and should allow the algorithm to achieve

nearly 100% accuracy for all hand configurations and angles.

• Direct comparison of the DREAM Controller and a Playstation

or XBox controller: Chapter 4 and Chapter 6 base their comparisons on

a joystick modeled after aircraft flight-controller designs. The inspiration for

the DREAM Controller design is based on console gaming-style joysticks that

use different muscle groups and ergonomics. It would be useful to perform a

direct comparison between the DREAM controller design and the Playstation

or XBox controller.

205

• Further exploration of gestures as a function of grammar: As an

explorative study, Chapter 8 provided as many questions as it answered.

Section 8.6.1 suggested that the higher use of sequence select may indicate

a subtle adaptation of the underlying grammar. Additionally, experiments

exploring the removal of double tap in the selection stage may reduce mistakes

and confusion for the users. Both of these behaviors should be studied to

adjust the grammar gesture models.

• Further exploration of gestures as a function of assumptions: Sec-

tion 8.6.2 provided a unique data point that may indicate that responders

with different levels of experience may wish to provide different gestures to

the robots being controlled. Specifically, the more experienced participant

felt that he should provide only high level instructions to the robots and

not specific paths. The other participants that largely used drag gestures to

direct robots along specific paths. Testing with larger populations may show

that behavior is a trend and allow the interface to leverage this information

to adjust gesture parameters.

9.3 Limitations of Research

It is important to note the aspects not yet addressed in this line of research. While

they are limitations of this research, they also represent long-term future work

that will hopefully be continued by future studies and researchers.

First, the hand detection algorithm has only been designed and tested for

the two-dimensional case over the surface of a tabletop. This research does not

address interaction in the third dimension, often referred to as “above the tabletop”

interaction in the literature (Wilson, 2007; Grossman and Wigdor, 2007; Grossman

and Balakrishnan, 2008). For all of the richness that can be argued in the case of

gestures directly on the tabletop, there is another entire dimension to the gesture

interaction that can occur over the table surface. This research has not addressed

this dimension.

206

Second, this research does not address multi-person interaction. In Chapter 1,

we framed the motivation for this research in the context of a response in which

multiple people would be standing and interacting around a large touch-table that

provided many of the affordances of traditional paper maps. The experiments

and results presented in this thesis are limited to the single person case, in part,

due to the size of the devices used. The literature in this area shows that adding

multiple people to the table-top interaction introduce confounders and interesting

effects for the interface designer (Scott et al., 2004; Scott and Carpendale, 2006;

Tuddenham and Robinson, 2007; Hancock et al., 2006). As multi-touch tabletops

become larger and algorithms for detection of individual people become more

robust, future investigations can extend the interfaces from this research beyond

single-person interaction.

9.4 Generalizations of Research

There are several aspects of this research that can be generalized through further

study. First, as mentioned in the section on contributions, the hand detection

algorithm can be generalized to allow the emulation of many physical devices

that require multi-finger and multi-hand control. We have demonstrated joystick

emulation in this dissertation, but conceivably keyboards, mice, and even musical

instruments could be emulated using the unique identification of the finger tips.

As mentioned at the end of Chapter 6, the ability to dynamically adapt to the

users configurations that gives multi-touch interaction a significant advantage over

traditional mechanical device design.

It is exciting to think that the generalization of this algorithm can open entirely

new types of interactions for multi-touch tabletop interfaces. It is our hope that

this algorithm and our demonstration of its use in the DREAM controller will

cause the multi-touch community at large to re-evaluate the way that we design

interfaces for these devices and seek out other physical devices that may be adapted

to multi-touch devices now that fingers and hands can be uniquely identified.

207

Other generalizations can occur with the DREAM Controller design in demon-

strated in Chapters 6 and 8. In our studies, we have limited the design of the

DREAM Controller to emulate the dual-gimbal design from Playstation and XBox

controllers in an effort to increase ease of learning for users that have experience

playing console video games.

A departure from the Playstation and XBox joystick design may provide

ergonomic or performance improvements beyond the simple emulation of these

physical devices. There is no research in the scientific literature that states that

dual-gimbal thumb interaction is the provably correct and most efficient use of the

human hand for first-person robot or character movement. This joystick design

provides four degrees of freedom through the movement of the thumbs, but this

movement may be better served in some way other than proportional control on

two axes. There is also a high degree of two-dimensional movement in the index

and ring finger that may provide additional input other than the tracking in our

implementation.

Finally, in the case of the command and control portion of this research, the

work presented can be generalized for heterogeneous teams of robots and humans.

We have framed this problem in the context of unmanned ground robots, but

one can see this research extended to general command and control for humans,

vehicles, and robots of all types. Given an aerial view of the affected area and

the geo-location of the resource to be tracked, we can circle the location on the

interface and provide all of the functionality demonstrated in the interface from

Chapter 8. One can imagine, instead of the location being sent to the robot, that a

text-to-speech device can radio to the human agents where they need to rendezvous

for their next mission objective.

When dealing with large scale disasters where street signs and landmarks

may be destroyed, this top-down view provided by our interface not only helps

those in the command structure but those on the ground. Given sufficient reach-

back ability, one can imagine the case where the human is provided navigation

directions through a handheld device. This generalization of our research would

208

provide significant value to operations in these heavily destroyed and confusing

environments.

9.5 Closing Thoughts

This research was intended to enhance human-robot interaction by carefully

studying the biomechanics of the human hand and leveraging the natural responses

of users to multi-touch displays. Through this research, we sought to to maximize

learnability and therefore lessen the amount of training time required for proficient

control of the robot or robot teams. Through six user studies and many years

of iterative improvements to our interface designs, we have achieved a volume of

results and contributions that previously did not exist in the cross section of these

research domains.

It is our sincere hope that, as the enabling technologies of robotics, network

centric operation, and multi-touch tabletop devices begin to proliferate in all of

the emergency response and military command and control domains, this research

can help provide a bridge between the technology and the users that will rely on it

for future mission successes.

209

Bibliography

A. Agarwal, S. Izadi, M. Chandraker, and A. Blake. “High Precision Multi-

touch Sensing on Surfaces Using Overhead Cameras.” In Proceedings of the

2nd Annual IEEE International Workshop on Horizontal Interactive Human-

Computer Systems (Tabletop 2007), pages 197–200, 2007.

D. Alberts and R. Hayes. “The Future of Command and Control: Understanding

Command and Control.” Command and Control Research Program (CCRP)

Publication Series, 2006.

R. O. Ambrose, H. Aldridge, R. S. Askew, R. R. Burridge, W. Bluethmann,

M. Diftler, C. Lovchik, D. Magruder, and F. Rehnmark. “Robonaut: NASA’s

Space Humanoid.” IEEE Intelligent Systems, 15:57–63, 2000.

W. Barfield and T. Furness III. Virtual environments and advanced interface design.

Oxford University Press, Inc. New York, NY, USA, 1995. ISBN 0195075552.

R. Beard, D. Kingston, M. Quigley, D. Snyder, R. Christiansen, W. Johnson,

T. McLain, and M. Goodrich. “Autonomous Vehicle Technologies for Small

Fixed Wing UAVs.” AIAA Journal of Aerospace Computing, Information, and

Communication, 2(1):92–108, 2005.

J. Borenstein and Y. Koren. “The Vector Field Histogram – Fast Obstacle

Avoidance for Mobile Robots.” IEEE Journal of Robotics and Automation, 7(3):

278–288, 1991.

M. Bruch. “The Multi-Robot Operator Control Unit (MOCU).” In SPIE Proceed-

210

ings 6230: Unmanned Systems Technology VIII, Defense Security Symposium,

2006.

S. Bunnell. “Surgery of the Intrinsic Muscles of the Hand Other Than Those

Producing Opposition of the Thumb.” The Journal of Bone and Joint Surgery,

24(1):1, 1942.

B. Buxton. “Multi-Touch Systems That I Have Known and Loved.” Microsoft

Research, 2007. http://www.billbuxton.com/multitouchOverview.html (ac-

cessed 7 October 2010).

S. Card, T. Moran, and A. Newell. The Psychology of Human-Computer Interaction.

Lawrence Erlbaum, 1st edition, 1983.

Circle Twelve. “DiamondTouch by Circle Twelve.” Website, 2009.

Committee on Planning for Catastrophe. Successful Response Starts With a

Map - Improving Geospatial Support for Disaster Management. The National

Academies Press, 2007.

F. Crescenzio, G. Miranda, F. Persiani, and T. Bombardi. “A First Implementation

of an Advanced 3D Interface to Control and Supervise UAV (Uninhabited Aerial

Vehicles) Missions.” Presence: Teleoperators & Virtual Environments, 18(3):

171–184, 2009.

C. Dang, M. Straub, and E. André. “Hand Distinction for Multi-touch Tabletop

Interaction.” In Proceedings of the ACM International Conference on Interactive

Tabletops and Surfaces (ITS), pages 101–108, 2009.

P. Dietz and D. Leigh. “DiamondTouch: A Multi-User Touch Technology.” In

Proceedings of the ACM Symposium on User Interface Software and Technology

(UIST), pages 219–226, 2001.

M. Diftler, R. Platt, C. Culbert, R. Ambrose, and W. Bluethmann. “Evolution

of the NASA/DARPA Robonaut Control System.” In Proceedings of the IEEE

211

International Conference on Robotics and Automation (ICRA), volume 2, pages

2543–2548, 2003.

S. Douglas, A. Kirkpatrick, and I. MacKenzie. “Testing Pointing Device Perfor-

mance and User Assessment with the ISO 9241, Part 9 Standard.” In SIGCHI

Conference on Human Factors in Computing Systems, 1999.

H. Dreyfuss. Designing for People. Allworth Press, 1955.

J. L. Drury, M. Micire, and H. A. Yanco. “New Technology Applications in

Hazardous Materials Operations.” Journal of Emergency Management, 2010. In

press.

M. Endsley. “Design and Evaluation for Situation Awareness Enhancement.” In

Proceedings of Human Factors and Ergonomics Society Annual Meeting, volume

32:2, pages 97–101. Human Factors and Ergonomics Society, 1988.

J. Epps, S. Lichman, and M. Wu. “A Study of Hand Shape Use in Tabletop Gesture

Interaction.” In CHI’06 Extended Abstracts on Human Factors in Computing

Systems, pages 748–753, 2006.

K. A. Ericsson and H. A. Simon. “Verbal Reports as Data.” Psychological Review,

87:215–251, 1980.

A. Esenther, C. Forlines, K. Ryall, and S. Shipman. “DiamondTouch SDK:

Support for Multi-User, Multi-Touch Applications.” In Proceedings of the ACM

Conference on Computer Supported Cooperative Work (CSCW), 2002.

P. Fitts and R. Deninger. “SR Compatibility: Correspondence among Paired

Elements within Stimulus and Response Codes.” Journal of Experimental Psy-

chology, 48(6):483–92, 1954.

T. Fong and C. Thorpe. “Vehicle teleoperation interfaces.” Autonomous robots, 11

(1):9–18, 2001. ISSN 0929-5593.

212

T. Fong, C. Thorpe, and B. Glass. “PdaDriver: A Handheld System for Remote

Driving.” In Proceedings of the 11th IEEE International Conference on Advanced

Robotics (ICAR). IEEE, 2003.

Foster Miller. “Tallon Robots.” Website, 2010. http://www.talonrobots.com

(accessed 23 June 2010).

B. Gerkey, R. Vaughan, and A. Howard. “The Player/Stage Project: Tools for

Multi-robot and Distributed Sensor Systems.” In Proceedings of the 11th IEEE

International Conference on Advanced Robotics (ICAR), pages 317–323, 2003.

B. Glaser and A. Strauss. The Discovery of Grounded Theory: Strategies for

Qualitative Research. Aldine de Gruyter, New York, 1967.

R. Green. “time: Java Glossary.” 2008. Available online at http://mindprod.

com/jgloss/time.html (accessed 24 March 2010).

A. Greenfield. Everyware: The Dawning Age of Ubiquitous Computing. Peachpit

Press, 2006.

T. Grossman and R. Balakrishnan. “Collaborative Interaction with Volumetric

Displays.” In Proceeding of the 26th Annual ACM SIGCHI Conference on Human

Factors in Computing Systems, pages 383–392, 2008.

T. Grossman and D. Wigdor. “Going Deeper: A Taxonomy of 3D on the Tabletop.”

In Proceedings of the 2nd Annual IEEE International Workshop on Horizontal

Interactive Human-Computer Systems (Tabletop 2007), pages 137–144, 2007.

J. Gyorfi, E. Buhrke, M. Tarlton, J. Lopez, and G. Valliath. “Applying Telepresence

to Incident Management: The Virtual Incident Command Center.” Presence:

Teleoperators & Virtual Environments, 17(3):231–241, 2008.

C. Hager-Ross and M. Schieber. “Quantifying the Independence of Human Finger

Movements: Comparisons of Digits, Hands, and Movement Frequencies.” Journal

of Neuroscience, 20(22):8542, 2000.

213

J. Y. Han. “Low-Cost Multi-Touch Sensing through Frustrated Total Internal

Reflection.” In Proceedings of the ACM Symposium on User Interface Software

and Technology (UIST), pages 115–118, 2005.

J. Y. Han. “Jeff Han Demos His Breakthrough Touchscreen.” Pre-

sented at TED2006, 2006. http://www.ted.com/talks/jeff_han_demos_his_

breakthrough_touchscreen.html (accessed 7 October 2010).

M. Hancock, F. Vernier, D. Wigdor, S. Carpendale, and C. Shen. “Rotation

and Translation Mechanisms for Tabletop Interaction.” In Proceedings of the

1st Annual IEEE International Workshop on Horizontal Interactive Human-

Computer Systems (Tabletop 2006), pages 79–86, 2006.

S. T. Hayes, E. R. Hooten, and J. A. Adams. “Multi-Touch Interaction for Tasking

Robots.” In Proceedings of the 5th ACM/IEEE International Conference on

Human Robot Interaction (HRI), 2010.

A. Howard. “Multi-robot Simultaneous Localization and Mapping using Particle

Filters.” International Journal of Robotics Research, 25(12):1243–1256, 2006.

ISO 2000. “Part 9: Requirements for Non-keyboard Input Devices.” In ISO 9241-9

International Standard: Ergonomic Requirements for Office Work With Visual

Display Terminals (VDTs). International Organization for Standardization,

1998.

S. Izadi, A. Agarwal, A. Criminisi, J. Winn, A. Blake, and Fitzgibbon. “C-Slate:

A Multi-Touch and Object Recognition System for Remote Collaboration using

Horizontal Surfaces.” In Proceedings of the 2nd Annual IEEE International

Workshop on Horizontal Interactive Human-Computer Systems (Tabletop 2007),

pages 3–10, 2007.

R. Kalawsky. Science of virtual reality and virtual environments. Addison Wesley

Longman Publishing Co., Inc. Redwood City, CA, USA, 2004. ISBN 0201427737.

214

J. Kato, D. Sakamoto, M. Inami, and T. Igarashi. “Multi-Touch Interface for

Controlling Multiple Mobile Robots.” In Proceedings of the 27th International

Conference Extended Abstracts on Human Factors in Computing Systems, pages

3443–3448, 2009.

H. Keskinpala, J. Adams, and K. Kawamura. “PDA-based Human-Robotic

Interface.” In IEEE International Conference on Systems, Man and Cybernetics,

pages 3931–3936, 2003.

B. Keyes. “Evolution of a Telepresence Robot Interface.”. Master’s thesis, Univer-

sity of Massachusetts Lowell, Lowell, MA, 2007.

B. Keyes, R. Casey, H. Yanco, B. Maxwell, and Y. Georgiev. “Camera Placement

and Multi-Camera Fusion for Remote Robot Operation.” In Proceedings of the

IEEE International Workshop on Safety, Security and Rescue Robotics, 2006.

H. Koskinen, J. Laarni, and P. Honkamaa. “Hands-On the Process Control: Users

Preferences and Associations on Hand Movements.” In Conference on Human

Factors in Computing Systems, 2008.

M. Krueger. Artificial Reality. Addison-Wesley Professional, 1983.

M. Krueger. Artificial Reality II. Addison-Wesley Professional, 1991.

M. Krueger, T. Gionfriddo, and K. Hinrichsen. “VIDEOPLACE — An Artificial

Reality.” ACM SIGCHI Bulletin, 16(4):35–40, 1985.

G. Landis. “Teleoperation from Mars Orbit: A Proposal for Human Exploration.”

Acta Astronautica, 62(1):59–65, 2008.

I. MacKenzie. “Movement Time Prediction in Human-Computer Interfaces.”

Readings in Human-Computer Interaction, 2:483–493, 1995.

J. Matejka, T. Grossman, J. Lo, and G. Fitzmaurice. “The Design and Evaluation

of Multi-finger Mouse Emulation Techniques.” In Proceedings of the 27th Inter-

215

national Conference on Human Factors in Computing Systems, pages 1073–1082,

2009.

M. Micire, M. Schedlbauer, and H. Yanco. “Horizontal Selection: An Evaluation of

a Digital Tabletop Input Device.” In Proceedings of the 13th Americas Conference

on Information Systems, 2007.

M. Micire, J. L. Drury, B. Keyes, H. A. Yanco, and A. Courtemanche. “Perfor-

mance of Multi-Touch Table Interaction and Physically Situated Robot Agents.”

Technical report, University of Massachusetts Lowell, 2008. Report No. 2008-002.

Presented as a poster at the rd Annual ACM/IEEE Conference on Human-Robot

Interaction.

M. Micire, M. Desai, A. Courtemanche, K. Tsui, and H. Yanco. “Analysis of

Natural Gestures for Controlling Robot Teams on Multi-touch Tabletop Surfaces.”

In Proceedings of the ACM International Conference on Interactive Tabletops

and Surfaces (ITS), pages 41–48, 2009a.

M. Micire, J. Drury, B. Keyes, and H. Yanco. “Multi-Touch Interaction for Robot

Control.” In Proceedings of the 13th ACM International Conference on Intelligent

User Interfaces (IUI), pages 425–428, 2009b.

M. J. Micire. “Evolution and Field Performance of a Rescue Robot.” Journal of

Field Robotics, 25(1-2):17–30, 2008.

Microsoft. “Welcome to Microsoft Surface.” Website, 2007. Available at http:

//www.microsoft.com/surface (accessed 6 December 2007).

H. Nguyen, R. Laird, G. Kogut, J. Andrews, B. Fletcher, T. Webber, R. Arrieta, and

H. Everett. “Land, Sea, and Air Unmanned Systems Research and Development

at SPAWAR Systems Center Pacific.” In Proceedings of the Society of Photo-

Optical Instrumentation Engineers (SPIE) Conference Series, volume 7332,

page 38, 2009.

J. Nielsen. Usability Engineering. Academic Press, San Diego, CA, 1993.

216

M. Nielsen, M. Störring, T. Moeslund, and E. Granum. “A Procedure for De-

veloping Intuitive and Ergonomic Gesture Interfaces for Man-machine Interac-

tion.” Technical report, Aalborg University, 2003. Report No. CVMT 03-01,

www.cvmt.dk/~fgnet/docs/fgnet_techreport.pdf.

D. Norman. The Design of Everyday Things. Basic Books, New York, N.Y, 1988.

D. Perzanowski, A. Schultz, W. Adams, E. Marsh, and M. Bugajska. “Building a

Multimodal Human-Robot Interface.” Intelligent Systems, 16(1):16–21, 2001.

J. Rekimoto. “SmartSkin: An Infrastructure for Freehand Manipulation on

Interactive Surfaces.” In Proceedings of the ACM SIGCHI Conference on Human

Factors in Computing Systems, pages 113–120, 2002.

A. J. Rowe, K. K. Ligett, and J. E. Davis. “Vigilant Spirit Control Station: A

Research Testbed for Multi-UAS Supervisory Control Interfaces.” In Proceedings

of the International Symposium on Aviation Psychology, 2009.

D. Saffer. Designing Gestural Interfaces: Touchscreens and Interactive Devices.

O’Reilly, 1st edition, 2008.

M. Schedlbauer. “An Extensible Platform for the Interactive Exploration of Fitts’

Law and Related Movement Time Models.” In CHI’07 Extended Abstracts on

Human Factors in Computing Systems, page 2638. ACM, 2007.

S. Schipani and E. Messina. “Maze Hypothesis Development in Assessing Robot

Performance During Teleoperation.” National Institute of Standards and Tech-

nology NISTIR 7443, September 2007.

J. Scholtz, J. Young, J. L. Drury, and H. A. Yanco. “Evaluation of Human-

Robot Interaction Awareness in Search and Rescue.” In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), New Orleans,

LA, April 2004.

217

S. Scott and S. Carpendale. “Investigating Tabletop Territoriality in Digital

Tabletop Workspaces.” Technical report, University of Calgary, 2006. Report

No. 2006-836-29.

S. Scott, M. Sheelagh, T. Carpendale, and K. Inkpen. “Territoriality in Collabora-

tive Tabletop Workspaces.” In Proceedings of the ACM Conference on Computer

Supported Cooperative Work (CSCW), pages 294–303, 2004.

B. Shneiderman. “Direct Manipulation: A Step Beyond Programming Languages.”

IEEE Computer, 16:57–69, 1983.

P. W. Singer. Wired for War: The Robotics Revolution and Conflict in the 21st

Century. Penguin Press HC, 1st edition, 2009.

M. Skubic, S. Blisard, A. Carle, and P. Matsakis. “Hand-Drawn Maps for Robot

Navigation.” In Proceedings of the AAAI Spring Symposium on Sketch Under-

standing, 2002.

M. Skubic, C. Bailey, and G. Chronis. “A Sketch Interface for Mobile Robots.”

In Proceedings of the IEEE International Conference on Systems, Man and

Cybernetics, pages 919–924, 2003.

C. Snyder. Paper Prototyping: The Fast and Easy Way to Design and Refine User

Interfaces. Morgan Kaufmann Publishers, 2003.

R. Soukoreff and I. MacKenzie. “Towards a Standard for Pointing Device Evalua-

tion, Perspectives on 27 Years of Fitts’ Law Research in HCI.” International

Journal of Human-Computer Studies, 61(6):751–789, 2004.

H. Tang, H. Van Brussel, D. Reynaerts, J. Vander Sloten, and P. Koninckx. “A La-

paroscopic Robot with Intuitive Interface for Gynecological Laser Laparoscopy.”

In Proceedings on the IEEE International Conference on Robotics and Automa-

tion (ICRA), volume 2, 2003.

218

H. Tang, H. Van Brussel, J. Sloten, D. Reynaerts, and P. Koninckx. “Implemen-

tation of an Intuitive Writing Interface and a Laparoscopic Robot for Gynae-

cological Laser Assisted Surgery.” Proceedings of the Institution of Mechanical

Engineers, Part H: Journal of Engineering in Medicine, 219(4):293–302, 2005.

R. Taylor. “Human Automation Integration for Supervisory Control of UAVs.”

Virtual Media for Military Applications, pages 12–1 through 12–10, 2006.

S. Thompson, J. Slocum, and M. Bohan. “Gain and Angle of Approach Effects

on Cursor-Positioning Time with a Mouse in Consideration of Fitts’ Law.” In

Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

volume 48:5, pages 823–827, 2004.

S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,

J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt,

P. Stang, S. Strohband, C. Dupont, L. Jendrossek, C. Koelen, C. Markey,

C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies,

S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney. “Stanley: The Robot That

Won the DARPA Grand Challenge.” Springer Tracts in Advanced Robotics: The

2005 Grand Challenge, 36:1–43, 2007.

TouchTable. “TouchTable.” Website, 2007. Available online at http://www.

touchtable.com (accessed 6 December 2007).

E. Tse, C. Shen, S. Greenberg, and C. Forlines. “Enabling Interaction With Single

User Applications Through Speech and Gestures on a Multi-User Tabletop.” In

Proceedings of the Working Conference on Advanced Visual Interfaces, 2006.

P. Tuddenham and P. Robinson. “Distributed Tabletops: Supporting Remote and

Mixed-presence Tabletop Collaboration.” In Proceedings of the 2nd Annual IEEE

International Workshop on Horizontal Interactive Human-Computer Systems

(Tabletop 2007), pages 19–26, 2007.

219

C. Urmson, J. Anhalt, D. Bartz, M. Clark, T. Galatali, A. Gutierrez, S. Har-

baugh, J. Johnston, H. Kato, P. Koon, W. Messner, N. Miller, A. Mosher,

K. Peterson, C. Ragusa, D. Ray, B. Smith, J. Snider, S. Spiker, J. Struble,

J. Ziglar, and W. Whittaker. “A Robust Approach to High-Speed Navigation

for Unrehearsed Desert Terrain.” Springer Tracts in Advanced Robotics: The

2005 Grand Challenge, 36:45–102, 2007.

C. Villamor, D. Willis, and L. Wroblewski. “Touch Gesture Reference Guide.”

Website, 2010. http://www.lukew.com/touch/TouchGestureGuide.pdf.

F. Wang and X. Ren. “Empirical Evaluation for Finger Input Properties in Multi-

Touch Interaction.” In Conference on Human Factors in Computing Systems,

2009.

F. Wang, X. Cao, X. Ren, and P. Irani. “Detecting and Leveraging Finger

Orientation for Interaction with Direct-touch Surfaces.” In Proceedings of the 22nd

Annual ACM Symposium on User Interface Software and Technology (UIST),

pages 23–32. ACM, 2009.

A. Wilson. “Depth-Sensing Video Cameras for 3D Tangible Tabletop Interaction.”

In Proceedings of the 2nd Annual IEEE International Workshop on Horizontal

Interactive Human-Computer Systems (Tabletop 2007), pages 201–204, 2007.

J. Wobbrock, M. Morris, and A. Wilson. “User-defined Gestures for Surface

Computing.” In Conference on Human Factors in Computing Systems, 2009.

M. Wu, C. Shen, K. Ryall, C. Forlines, and R. Balakrishnan. “Gesture Registration,

Relaxation, and Reuse for Multi-Point Direct-Touch Surfaces.” In Proceedings of

the 1st Annual IEEE International Workshop on Horizontal Interactive Human-

Computer Systems (Tabletop 2006), pages 183–190, 2006.

H. Yanco and J. Drury. “Rescuing Interfaces: A Multi-Year Study of Human-Robot

Interaction at the AAAI Robot Rescue Competition.” Autonomous Robots, 22

(4):333–352, 2006.

220

H. A. Yanco and J. L. Drury. ““Where Am I?” Acquiring Situation Awareness

Using a Remote Robot Platform.” In Proceedings of the IEEE Conference on

Systems, Man and Cybernetics, October 2004.

H. A. Yanco, B. Keyes, J. L. Drury, C. W. Nielsen, D. A. Few, and D. J. Bruemmer.

“Evolving Interface Design for Robot Search Tasks.” Journal of Field Robotics,

24, 2007.

S. Zhai. “Characterizing Computer Input with Fitts’ Law Parameters – The

Information and Non-information Aspects of Pointing.” International Journal

of Human-Computer Studies, 61(6):791–809, 2004.

221

Appendix A

Coding Classifications for

Multi-Touch Robot Control

A.1 Timed Event Coding Guidelines

Proportional Velocity: The participant expects speed to vary based on how far

from the origin his/her finger is on the control surface. This finger contact

creates a continuous (but not necessarily straight) line as the person drags

his/her finger across the touch surface. Discrete events are scored when the

finger hovers in an area less than the size of their finger width for more than

500ms. If the person switches fingers, these are coded as separate events.

Note that there may be overlap between this movement and the Trackpad

movement. The key difference the non-repetitive nature of the movement.

Discrete Velocity: The participant clicks on an area on the control and expects

the interface to move in that exact direction with no variance in speed or

mixing of degrees of freedom. In many cases, this movement is just a simple

button press. Any dragging of the finger on the touch surface greater than

the width of his/her finger disqualifies the event as a discrete velocity event.

Discrete events are scored when the person touches a button and then lifts

his/her finger from the button after holding for more than 500ms.

222

On Axis: The participant artificially limits himself/herself to a control area of

translate and rotate axis, but only one component at a time. This event

will occur in conjunction with a proportional or discrete event. The control

surface has the effect of shaping a control area like a “+”. The participant

cannot deviate from the axis by more than the width of their finger for this

event to be scored. Discrete events are counted when participant hovers for

more than 500ms or lifts finger from board.

Off Axis: The participant provides both translation and rotation in a single

gesture on the drive control or video display. This event will occur in

conjunction with a proportional or discrete event and is the inverse of the On

Axis event. Axis crossings are allowed and are not scored as a separate event

unless the participant stops on the axis and generates a new event based

on the above velocity criteria. Discrete events are counted when participant

hovers for more than 500ms or lifts finger from board.

Trackpad: The participant puts his/her finger down and moves it with a relatively

constant speed, but in short bursts in the direction of motion. The finger is

lifted between subsequent pushes and placed back in the starting position of

the last movement. Discrete events are scored if the participant performs

two or more of these motions within two second period and has a one second

pause before next maneuver.

Ring: The participant’s fingers enter the the outer ring of the drive control.

Discrete events are scored when the person has more than half of his/her

finger in the wheel and then lifts the finger or moves away from the outer ring

or wheel. This action should be combined with the proportional or discrete

velocity events.

223

A.2 Notes that may be of interest:

Artificial limiting of speed: The participant artificially bounds the motion of

his/her finger due to visual elements in the participant interface. For instance,

the inner buttons bound the participant from placing his/her fingers on the

outer edge of the ring, giving 100% rotation or translation. Discrete events

are scored when the person stalls at the artificial boundary for more than

500ms.

Page movement model (only applies to camera): The participant wants to

drag image directly, like a physical or PDF document. This event occurs in

the “grab document” model where the image is “pulled to center” as opposed

to “move window” model where the window is panned to center.

224

Appendix B

Biographical Sketch of Author

Mark Micire has worked for over a decade to bring robots and other technologies

to emergency response and search and rescue. He is certified in multiple aspects of

search and rescue including technical search, technical rescue, hazardous material

response, and is a nationally certified fire fighter. He is active in the search and

rescue community as a search specialist for the Massachusetts FEMA search and

rescue team. Mark was a technical search robot operator during the World Trade

Center Disaster and was a technical search specialist for Florida Task Force Three

during the Hurricane Katrina response in Biloxi, Mississippi. His recent research

leverages multi-touch tabletop, cell phone, and robot technology to bridge the gap

between responders in the field and the incident command structure that supports

them.

225

