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5-W Yellow Laser by Intracavity Frequency
Doubling of High-Power Vertical-External-Cavity

Surface-Emitting Laser
Mahmoud Fallahi, Li Fan, Yushi Kaneda, Chris Hessenius, Jörg Hader, Hongbo Li, Jerome V. Moloney,

Bernardette Kunert, Wolfgang Stolz, Stephan W. Koch, James Murray, and Robert Bedford

Abstract—We report on the development of a high-power
tunable yellow–orange laser. It is based on intracavity frequency
doubling of a widely tunable, highly strained InGaAs–GaAs
vertical-external-cavity surface-emitting laser operating near
1175 nm. Over 5 W of continuous-wave output power is achieved
and is tunable over a 15-nm band centered at 587 nm. This
compact low-cost high-power yellow–orange laser provides an
innovative alternative for sodium guidestar lasers, medical and
communication applications.

Index Terms—Intracavity frequency doubling, optically
pumped semiconductor lasers, tunable vertical-external-cavity
surface-emitting laser (VECSEL).

I. INTRODUCTION

H IGH-POWER laser sources covering the 570- to 590-nm
bands are of great interest for a wide range of applica-

tions including sodium guidestar laser, quantum computing, and
medical applications [1], [2]. Despite the wide range of appli-
cations, the development of yellow–orange lasers has been lim-
ited, primarily due to a lack of gain materials within this band.
Nonlinear frequency conversion has frequently been used to
generate emission in the yellow–orange range. Several methods
including frequency doubling of Yb solid-state lasers [3], fre-
quency doubling of Raman-shifted Yb (Nd) lasers [4], and fre-
quency doubling of Bi-doped fiber lasers [5] have been investi-
gated. Unfortunately a majority of these approaches suffer from
limited emission range, low output power, and high cost. De-
velopment of a semiconductor-based yellow laser is very attrac-
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tive for their high-gain, large volume production, and low cost.
Strained multiquantum-well semiconductor lasers are widely
used in the near infrared range. However, due to their limited
direct bandgap energy, a range of visible emission wavelengths
are difficult to fabricate.

Optically pumped vertical-external-cavity surface-emitting
lasers (VECSELs) using multiquantum wells are very attractive
as low-cost high-power high-brightness sources [6], [7]. In
addition, by having access to the intracavity, several attractive
features such as wavelength tuning, frequency doubling for
visible generation, and -switching can be achieved.

Here we report on the development and demonstration of
a highly strained InGaAs–GaAs VECSEL which can cover
a significantly longer wavelength range of 1147–1197 nm.
Very robust multi-Watt high-brightness performance at room
temperature is demonstrated. Using intracavity frequency dou-
bling we demonstrate high-power coherent emission in a wide
yellow–orange band (575–595 nm).

II. DESIGN AND FABRICATION

Strained InGaAs–GaAs quantum-well (QW) lasers are
widely used for the generation of 900- to 1100-nm lasers.
However longer wavelengths are a major challenge and require
careful design and growth of the structure. The design of the
1180-nm VECSEL structure is accomplished using rigorous
many-body microscopic quantum design tools and 3-D op-
tical/thermal modeling of the device [7]. This microscopic
quantum design approach utilizes a closed-loop semiconductor
laser design tool that is free of adjustable fit parameters, and
rigorously computes the low-intensity photoluminescence (PL)
spectra, semiconductor gain (and refractive index) spectra, and
spontaneous and Auger recombination losses for the specific
QW structure. Computed low-intensity PL spectra are used
for wafer diagnostics and quality control. The quantum design
is then coupled with 3-D optical/thermal modeling of the
device. A highly strain compensated InGaAs–GaAs–GaAsP
multiquantum well in a resonant periodic gain (RPG) structure
was designed using the modeling tool.

The designed InGaAs–GaAs VECSEL structure was grown
using a low-temperature metal–organic vapor phase epitaxial
(MOVPE) process. MOVPE growth uses alternative group-V
liquid sources [tertiarybutylarsine (TBA); tertiarybutylphos-
phine (TBP)] that decompose at lower temperatures than the
conventional hydride precursors [8]. This allows for a general

1041-1135/$25.00 © 2008 IEEE
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reduction of the growth temperature, promoting higher values
of strain and, thus, reproducibly higher indium-concentrations
in the active QW. In addition, GaAsP barriers with precise
chemical composition are grown to balance the QW strain.
These factors enable growth of InGaAs epitaxial structure
achieving lasing at the target wavelength of 1175 nm.

The VECSEL structure consists of ten repeats of compressive
strained InGaAs QWs. Each QW is 7 nm thick and surrounded
by GaAsP strain compensation layers and GaAs barriers, in
which the 808-nm pump emission is absorbed. The thickness
and compositions of the layers are optimized such that each QW
is positioned at the antinodes of the cavity standing wave to pro-
vide RPG in the active region. A high reflectivity %
distributed Bragg reflector (DBR) stack made of 21 pairs of Al-
GaAs–AlAs is grown on the top of the active region. To avoid
premature thermal rollover, a detuning between QW gain peak
and microcavity resonance of about 30 nm is introduced which
compensates the thermal detuning at higher temperatures and
powers at the expense of a slight increase in threshold power.

Extraction of the quantum defect heat from the active region
presents another challenge in the development of high-power
lasers. The large energy difference between the pump and lasing
wavelength lowers the quantum efficiency of the laser and gen-
erates more waste heat in the active region. For efficient heat
dissipation, after a thin Ti–Au metallization, the epitaxial side
of the wafer is mounted on a chemical vapor deposition dia-
mond heat spreader using indium solder. The GaAs substrate
is then completely removed by selective wet chemical etching.
The remaining semiconductor, consisting of a DBR stack and
RPG active layers, is about 6 m thick allowing efficient heat
extraction at high pumping energy. The surface quality of the
VECSEL sample is characterized by a WYKO NT-2000 inter-
ferometer, and a peak-to-valley height of less than 40 nm over
an area of 0.5 mm 0.5 mm is measured. This optically smooth
surface makes the scattering/diffraction loss negligible and re-
sults in high slope efficiency and high beam quality. Finally in
order to reduce the surface reflectivity and subcavity resonance
effect a dielectric antireflection (AR) coating is deposited. The
processed VECSEL chip is mounted on a heat sink for temper-
ature control.

III. EXPERIMENTAL RESULTS

To generate a coherent fundamental and yellow–orange laser,
we used the folded cavity of Fig. 1, in which the VECSEL
chip and a flat mirror serve as two end mirrors and a concave
spherical mirror as the folding mirror. L1 and L2 are around
10 and 4.5 cm, respectively, with a full folding angle of about
30 . The folding concave mirror with a radius of curvature of
75 mm is high-reflective coated for the fundamental laser but is
highly transmissive ( 95%) at the yellow–orange wavelength.
The laser is characterized by focusing an incoherent fiber-cou-
pled 808-nm pump source on the chip with a spot size of 500 m
in diameter. First in order to characterize the performance of the
fundamental ( 1175 nm) VECSEL, a flat output mirror with a
reflectivity of 96% is used. Fig. 2 shows the performance of the
laser at 15 C and 25 C heat-sink temperatures for a 500- m

Fig. 1. Schematic of the VECSEL cavity setup for yellow–orange generation.

Fig. 2. VECSEL fundamental output power versus net pump power and the
beam quality at 7-W output (M < 1:5).

pump spot. Maximum continuous-wave output power can reach
8.6 W at room temperature. The slope efficiency is around 35%
at room temperature. The factor slowly increases from 1.03
at threshold to 1.5- at 8.6-W output, indicating a near TEM
transverse mode at high-power operation. At an output power
of 8 W, the free lasing wavelengths are 1174 and 1175 nm at
15 C and 25 C, respectively. Linewidth narrowing and wave-
length tuning is achieved by using an intracavity birefringent
filter (BF), which is inserted at Brewster’s angle. By using this
low-loss filter, we can achieve over 30-nm wavelength tuning.
The output power variation is less than 10% in the tuning range
of 1170–1180 nm, making the laser suitable for yellow–orange
operation.

For efficient intracavity frequency doubling, we increased the
cavity by replacing the 96% flat outcoupler with a highly re-
flecting mirror. In such a cavity the fundamental wavelength can
be further tuned in the1150- to 1195-nm wavelength range. A
lithium triborate (LBO) crystal with a size of 3 mm 3 mm

10 mm normally cut for the 1178- to 589-nm conversion is
then inserted close to the flat mirror, providing a Type-I an-
gular phase-matching condition (Fig. 1). Both facets of the LBO
are AR coated for both the fundamental laser (1178 nm) and
SHG signal (589 nm). Fig. 3 shows the total yellow output for
a 500- m pump spot size. At this pump spot, over 5 W at 585
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Fig. 3. Yellow laser output power versus the absorbed pump power.

Fig. 4. Yellow–orange wavelength tuning spectra.

and 589 nm is generated. The overall pump optical power to
yellow optical conversion efficiency exceeds 14% at 589-nm
SHG, which is the result of high-performance fundamental gen-
eration and the efficiency of intracavity frequency doubling. A
wide tuning range covering 580 to 595 nm is also achieved
(Fig. 4). In the tuning range, we lock the fundamental wave-
length at 1159, 1170, 1178, and 1190 nm, respectively, and align

the phase matching angle of the LBO crystal to optimize the
yellow–orange output. The yellow laser linewidth is around four
angstroms, and can be further reduced to subangstrom by incor-
porating an intracavity Fabry–Pérot etalon in conjunction with
the BF.

IV. CONCLUSION

We have demonstrated an efficient yellow laser by intracavity
frequency doubling of a highly strained InGaAs–GaAs tunable
VECSEL laser with an output power in excess of 8 W at around
1175 nm. Full wavelength tuning in the 1150- to 1190-nm
range has been demonstrated using a folded high- cavity.
High-power broadband output in the yellow–orange band (579-
to 595-nm bands) is achieved through intracavity frequency
doubling. Over 5-W yellow–orange tunable output power has
been demonstrated over the 585- to 589-nm bands. This laser
promises to be a reliable alternative for high-power, compact,
and low-cost yellow lasers.
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