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Abstract

As networked systems grow and traffic patterns evolve, management ap-
plications are increasing in complexity and functionality. To address the re-
quirements of these management applications, equipment vendors and admin-
istrators today depend on incremental solutions that increase the complexity of
network elements and deployment costs for operators. Despite this increased
complexity and cost, the incremental nature of these solutions still leaves a
significant gap between the policy objectives of system administrators and to-
day’s mechanisms. These challenges arise in several application contexts in
different networking domains: ISPs, enterprise settings, and data centers.

Much of this disconnect arises from the narrow device-centric view of
current solutions. Such piecemeal solutions are inefficient: network elements
duplicate tasks and some locations become overloaded. Worse still, adminis-
trators struggle to retrofit their high-level goals within device-centric config-
urations. This dissertation argues for a clean-slate system-wide approach for
resource management in large-scale networked systems based on three high-
level principles: (1) systematic selection and placement of device-level prim-
itives, (2) lightweight coordination mechanisms that enable different network
elements to effectively complement one another, and (3) practical optimiza-
tion models that capture operating constraints and policy objectives.

This dissertation demonstrates the benefits of this system-wide approach
in three application contexts: (1) meeting fine-grained coverage and accuracy
requirements in traffic monitoring, (2) implementing a redundancy elimina-
tion service to improve network performance, and (3) managing the deploy-
ment of intrusion detection and prevention systems.
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Chapter 1

| ntroduction

Network management challenges arise in domains such as ISPs, enterprise networks, and
data centers. Each domain involves several management tasks such as traffic monitor-
ing, security, and performance optimization. These management applications have natural
high-level policy goals. For example, network operators may want: (1) good monitoring
coverage in order to understand end-to-end traffic patterns for detecting anomalous pat-
terns, (2) effective configurations for application acceleration services in order to provide
good end-to-end performance for their customers, and (3) effective deployment of intru-
sion detection and prevention systems to detect and drop malicious traffic as efficiently as
possible.

However, as networks and traffic patteewlve, the set of management applications
and the requirements of existing applications change as well. This implies the need for
new functions, more fine-grained capabilities, and more scalable solutions to understand
and adapt to these changes. To put the work presented in this thesis in perspective, we dis-
cuss some possible approaches available to network operators today to meet the growing
demands of network management applications.

1.1 Current practice

To provide some context, we group the current approaches into four broad classes. As a
first-order approximation, the functionality increases as we move along the spectrum from
left to right in Figure 1.1. However, the cost of deploying the solutions also increases.



Configuration & Analysis Middleboxes New router primitives Programmable elements

From Left to Right: Increased functionality but higher deployment and development cost

Figure 1.1: Qualitative comparison of four proposed clasdesolutions to address the
growing demands of network management applications.

Configuration and analysis:

The most common and easiest solution is for network operators to deploy techniques to
work with existing router primitives. Router vendors (e.g., Cisco, Juniper) have provided
in-built support in terms of configuration tools and router commands to support specific
tasks like routing and access control. ISPs and enterprise networks also develop a suite
of in-house analysis and configuration tools to simplify such functions. These include
techniques that provide support for better traffic engineering and routing configurations
(e.q., [66, 184, 43, 148, 68, 149]), techniques for inferring patterns of interesting traffic
activity from existing measurement feeds (e.g., [99, 101, 86, 100, 49]), and accounting
for potential biases in measurements (e.g., [58, 56, 57, 55]). Because such techniques
do not require additional support from network elements, they are easy to develop and
inexpensive to deploy. However, it might not always be possible to develop such tools
(see [118, 40]).

Deploying middleboxes:

Often, management applications need new capabilities that might not be available on
existing network elements. In such cases, network operators can deploy middleboxes de-
veloped by third party vendors. For example, these are commonly used for providing new
security features (e.g., [1, 34, 12]) and for performance acceleration (e.g., [3, 8, 20, 19,
18, 7, 13]). Unfortunately, such solutions have a narrow scope and each new applica-
tion context requires additional middleboxes. Further, because these are often proprietary
solutions, they run the risk of becoming “black-boxes” to network operators.

New router primitives:

Further down the cost/development cycle is for router vendors to integrate the requi-
site functionality directly. There are several proposals for better monitoring algorithms
(e.g., [97, 75, 168, 90]), in-depth forensic capabilities (e.g., [153, 119]), new diagnostic
primitives (e.g., [54, 84]), more efficient data structures (e.qg., [94, 111]), etc. While these
avoid the problems of having too many middleboxes inside the network, they require router
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vendors and network managers to commit to a fixed set of capedivithout knowing if
these will meet future application requirements.

Programmable network elements:

One possible solution to alleviate the concern of vendors and network operators to
commit a priori to specific capabilities is an emerging class of solutions that use pro-
grammable network elements (e.g., [41, 116, 9, 46, 125, 180, 82]). However, there are still
open issues with respect performance (can they operate at high traffic rates?) and ease of
use (does it increase the configuration workload for operators?) that make the adoption of
such solutions questionable.

1.2 Thesis Approach and Contributions

As the previous discussion shows, to meet the growing and evolving requirements of man-
agement applications, equipment vendors and administrators today depend on incremental
solutions. This increases the complexity of network elements and deployment costs for
operators. However, in spite this increased complexity and cost, there is still a significant
gap between the policy objectives of system administrators and the capabilities provided
by today’s mechanisms. In particular, administrators have high-lesVork-wideob-
jectives are often difficult to translate into router/device configurations that will meet the
goals.

Our hypothesis, in the spirit of the recent proposals for centralized network manage-
ment (e.g. [73, 43, 37, 69, 160, 60, 126, 125]), is that much of the disconnect between the
goals of network operators and the tools available to them arises from the raevove-
centricview of current solutions. Such piecemeal solutions are inefficient: network ele-
ments duplicate tasks and some locations become overloaded. Worse still, administrators
struggle to implement their high-level goals within device-centric configurations.

A key concern in achieving these high-level objectives is that the network elements
(e.g., routers, middleboxes) that enable such management tasks have constraints on pro-
cessing, memory, and storage capabilities. Even though network devices are becoming
more powerful with advances in technology, the traffic workloads and usage patterns are
scaling nearly as fast (if not faster) than these technology advances. Thus, these resource
constraints are fundamental. As a result, these network management tasks can be broadly
viewed as resource management problems in large networked systems.

Having cast the management tasks as resource management problems, we argue that
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the policy goals can be best achieved usimgtvork-wide approachather than a device-
centric approach. The network-wide approach we advocate in this thesis is based on three
guiding principles:

1. Systematic selection and placement of device-level primitives.

2. Lightweight coordination mechanisms that enable different network elements to ef-
fectively complement each other.

3. Practical optimization models that capture operating constraints and policy objec-
tives, and produce close to optimal ways to configure the device-level primitives
within their technological constraints.

At a high-level, we can think of this approach as being a middle ground between the
configuration and analysiand thenew middleboxes and router primitivapproaches.
That is, we need (1) practical, efficient primitives that do not significantly increase the
complexity and resource requirements of network elements and (2) frameworks to rea-
son about how to configure/analyze these primitives to meet the high-level objectives of
network operators.

In this dissertation, we demonstrate the benefits of this approach in three contexts:
e Flow-level traffic monitoring (Chapters 2—4).
e Performance acceleration using redundancy elimination (Chapter 5).

e Deploying intrusion detection and prevention systems (Chapter 6).

Next, we outline the key contributions in this dissertation for each application context.

1.2.1 Building a Robust Flow Monitoring Infrastructure

Networks use flow-levélmeasurements for traffic engineering, analyzing user applica-
tions, detecting attacks, and forensic analysis. Because of resource constraints, routers
sample some of the traffic that pass through them to generate these measurements. Several
studies have shown the limitations of current packet sampling based solutions (e.g., Cisco

1The specific techniques we outline are amenable to both middlebox and in-router deployments.
2A flow is a sequence of packets that have the same source/destination IP addresses, source/destination
ports, and protocol that occur within a short span of time.
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NetFlow) in providing the coverage and accuracy for many sasks. This dissertation
addresses two key challenges:

(1) How can we increase coverage (monitor many flows) and support fine-grained network-
wide measurement objectives?

(2) How can a monitoring infrastructure be designed to support a wide spectrum of current
and future management applications?

Improved Coverage using Coordinated Sampling:

To address the first challenge, we present a system called cSamp [147] in Chapter 2.
cSamp combines three ideas: (1) flow sampling to increase flow coverage by avoiding
the biases of existing monitoring primitives such as packet sampling, (2) coordination
via hash-based packet selection to avoid redundant monitoring, and (3) network-wide op-
timization. These ideas have been proposed independently in other contexts. The key
contribution in this dissertation is in their synergistic combination for flow monitoring.

Chapter 2 presents efficient algorithms for generating the optimal sampling strategies
for very large ISPs. The chapter also outlines developed practical solutions to handle
changes in traffic patterns and estimation errors in inputs. Across several topologies,
cSamp achieves more than 2he total coverage and 8the performance for fine-grained
objectives compared to existing monitoring solutions.

Coordination With Partial Information:

A natural unit of coordination in cSamp is an Origin-Destination pair (traffic with the
same ingress and egress routers). Each router determines the OD-pair for each packet and
decide whether or not to process it based on the monitoring responsibilities assigned to it
for this OD-pair. However, determining the OD-pair may be difficult; e.g., due to routing
table aggregation or multi-exit peers that advertise the same IP addresses at multiple points.

A practical challenge is to provide the benefits of a cSamp-like system when routers
only work with local information [146]. In this case, maximizing the total flow coverage or
fine-grained network-wide flow coverage goals become NP-hard. Consequently, a central
algorithmic challenge is to design mechanisms that optimize these measures. We address
this challenge in Chapter 3.

For the total coverage, we extend results from the theory of optimizing submodular
functions [71] to achieve near-optimal performance. For other (non-submodular) objec-
tives, we design practical heuristics for resource augmentation and partial deployment. In
practice, only a few such upgrades are necessary to achieve near-optimal performance.



A Case for a Minimalist Flow Monitoring Architecture:

The inadequacy of current solutions for flow-level monitoring has led to the devel-
opment of several application-specific algorithms specialized for monitoring tasks such
as detecting “heavy-hitters” or large changes in traffic patterns [96, 102, 168, 176, 94].
However, these increase router complexity and require vendors and operators to commit
to hardware capabilities without knowing if they are necessary or sufficient for future re-
quirements. In this context, Chapter 4 revisits the case fomamalist approach where
each router implements a few generic primitives instead of several application-specific
ones.

The case for a minimalist approach is motivated both by router technology trends
and the structure of monitoring applications. First, the main bottleneck for monitoring
is keeping counters in fast memory. By aggregating the memory used individually by
several application-specific primitives, generic primitives can run with high enough sam-
pling rates to support a wide spectrum of applications. Second, monitoring tasks fall
into two broad classes that analyze either volume structure (e.g., traffic engineering) or
communication structure (e.g., network security). Based on these insights, we present a
candidate for a minimalist approach that combines flow sampling (to capture communica-
tion structure) [79] and sample-and-hold (for volume structure) [62], and use cSamp for
network-wide management. We show using trace-driven evaluations that this combination
performs as well or even better than several application-specific approaches. These results
have both immediate benefits and long-term implications for both equipment vendors and
network operators.

1.2.2 Improving Network Performance via Coordinated Redundancy
Elimination

Redundancy Elimination (RE) to avoid duplicate delivery of content that is common across
different network transfers can improve network performance and reduce bandwidth costs.
Today, this is widely used on enterprise access links (e.g., [19]). This success has sparked
interest in a network-wide RE service that would improve the effective capacity of ISPs
and socializes the performance benefits to all end-to-end traffic [30]. However, extending
single-vantage solutions to a network-wide service is challenging because RE involves
expensive operations for indexing and caching content and compressing and reconstructing
packets.



In Chapter 5, we present the design and implementation of &Bardn architec-
ture that makes network-wide RE practical [31]. Unlike single-point solutions that tightly
couple compression and reconstruction per link, SmartRE spatially decouples encoding
and decoding operations to magnify the benefits of each such pair of operations. It uses
hash-based coordination to divide caching tasks without needing complex cache consis-
tency protocols. SmartRE’s optimization framework models device constraints and traf-
fic/redundancy patterns and optimizes the network’s traffic engineering goals (e.g., reduc-
ing the overall traffic footprint). A prototype implementation shows that SmartRE is 4-5x
better than current solutions and achieves close to 90% of the performance of an ideal
unconstrained system.

1.2.3 Deploying Network Intrusion Detection and Prevention Systems

Network intrusion detection (NIDS) and prevention systems (NIPS) serve a critical role in
detecting and dropping malicious traffic. The traditional view has treated these as single-
vantage-point systems at the boundary between the internal network and the Internet.
However, the limitations of traditional approaches for scaling such single-vantage-point
solutions is increasingly evident in the context of: (1) large enterprise networks and in
new domains such as data centers and (2) ISPs deploying “in-network” defenses to pro-
vide security services to their customers. These trends require us to look beyond the tra-
ditional view of perimeter defense and provide network-wide visibility in deploying these
systems [112].

In Chapter 6 we design a framework for partitioning NIDS functions across a net-
work to ensure that no node is overloaded. This takes into account the resource footprints
of each NIDS component, the capabilities of different nodes, and placement constraints
specifying where each function is most effective (e.g., ingress nodes are best suited for
scan detection). For NIPS, we show how to maximally reduce unwanted traffic without af-
fecting the performance of benign traffic using specialized and power-intensive hardware
with limited capacity (e.g., content addressable memories). We also present preliminary
results extending techniques from online learning to combat strategic adversaries who try
to evade these defenses.



1.3 Outline

The rest of this dissertation is organized as follows:

e Chapter 2 describes the design and implementation of cSamp.

e Chapter 3 shows how we can achieve the performance benefits of cSamp even when
each router only has access to local routing information (versus OD-pair information
for each packet).

e Chapter 4 presents the quantitative comparison between our minimalist architecture
for monitoring and an architecture using application-specific algorithms on routers.

e Chapter 5 describes the design and implementation of SmartRE and evaluates it on
real/synthetic packet traces.

e Chapter 6 shows how a system-wide approach can be used to manage a network-
wide deployment of intrusion detection and prevention systems.

e We summarize the key contributions and the implications of the work presented here
before highlighting some potential avenues for future work in Chapter 7.



Chapter 2

cSamp: A System for Network-Wide
Flow Monitoring

Network operators routinely collect flow-level measurements to guide several network
management applications. Traditionally, these measurements were used for customer ac-
counting [55] and traffic engineering [66], which largely rely on aggregate traffic volume
statistics. Today, however, flow monitoring assists several other critical network manage-
ment tasks such as anomaly detection [99], identification of unwanted application traf-
fic [49], and even forensic analysis [173], which need to identify and analyze as many
distinct flows as possible. The main consequence of this trend is the increased need to
obtain fine-grained flow measurements.

Yet, because of technological and resource constraints, modern routers cannot each
record all packets or flows that pass through them. Instead, they rely on a varsstymof
pling techniques to selectively record as many packets as their CPU and memory resources
allow. For example, most router vendors today implement uniform packet sampling (e.qg.,
Netflow [48], sFlow [130]); each router independently selects a packet with a sampling
probability (typically betweer®).001 and0.01) and aggregates the selected packets into
flow records [124]. While sampling makes passive measurement technologically feasible
(i.e., operate within the router constraints), the overall fidelity of flow-level measurements
is reduced.

There is a disconnect between the increasing requirements of new network manage-
ment applications and what current sampling techniques can provide. While router re-
sources do scale with technological advances, it is unlikely that this disconnect will disap-
pear entirely, as networks continue to scale as well. We observe that part of this disconnect
stems from a router-centric view of current measurement solutions. In today’s networks,
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routers record flow measurements completetiependentlpf each other, thus leading to
redundant flow measurements and inefficient use of router resources.

We argue that a centralized system that coordinates monitoring responsibilities across
different routers can enhance the flow monitoring capabilities of a network. Moreover,
such a centralized system simplifies the process of specifying and realizing network-wide
flow measurement objectives. We describe Coordinated Sampling (cSamp), a system for
flow monitoring within a single Autonomous System (AS). cSamp treats a network of
routersas a system to be managed in a coordinated fastoarchieve specific measure-
ment objectives. Our system consists of three design primitives:

e Flow sampling: cSamp uses flow sampling [79] instead of traditional packet sampling
to avoid the sampling biases against small flows—a feature of particular importance to
the new spectrum of security applications. At the same time, flow sampling preserves the
fidelity of traffic volume estimation and thus the accuracy of traditional traffic engineering
applications.

e Hash-based coordination: cSamp uses a hash-based selection primitive to eliminate
duplicate measurements in the network. This allows different routers to monitor disjoint
sets of flows without requiring explicit communication between routers, thus eliminating
redundant and possibly ambiguous measurements across the network.

e Network-wide optimization: Finally, cSamp uses an optimization framework to spec-
ify and satisfy network-wide monitoring objectives while respecting router resource con-
straints. The output of this optimization is then translated into per-r@at@pling mani-
feststhat specify the set of flows that each router is required to record.

This chapter addresses several practical aspects in the design and implementation of
cSamp. We present efficient algorithms for computing sampling manifests that scale to
large tier-1 backbone networks with hundreds of routers. We provide practical solutions
for handling multi-path routing and realistic changes in traffic patterns. We also implement
a prototype using an off-the-shelf flow collection tool.

We demonstrate that cSamp is fast enough to respond in real time to realistic network
dynamics. Using network-wide evaluations on the Emulab testbed, we also show that
cSamp naturally balances the monitoring load across the network, thereby avoiding report-
ing hotspots. We evaluate the benefits of cSamp over a wide range of network topologies.
cSamp observes more than twice as many flows compared with traditional uniform packet
sampling, and is even more effective at achieving system-wide monitoring goals. For
example, in the case of the minimum fractional flow coverage across all pairs of ingress-
egress pairs, it provides significant improvement over other flow monitoring solutions.
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ISPs can derive operational benefits from cSamp, as it rednedsmndwidth and the data
management overheads caused by duplicated flow reports. We also show that cSamp is
robust with respect to errors in input data and realistic traffic dynamics.

2.1 Related Work

The design of cSamp as a centrally managed network-wide monitoring system is inspired
by recent trends in network management. In particular, recent work has demonstrated
the benefits of a network-wide approach for traffic engineering [66, 184] and network
diagnosis [99, 101, 108, 183]. Other recent proposals suggest that a centralized approach
can significantly reduce management complexity and operating costs [37, 43, 73].

Despite the importance of network-wide flow monitoring, there have been few attempts
in the past to design such systems. Most of the related work focuses on the single-router
case and on providing incremental solutions to work around the limitations of uniform
packet sampling. This includes work on adapting the packet sampling rate to changing
traffic conditions [61, 89], tracking heavy-hitters [62, 186], obtaining better traffic esti-
mates from sampled measurements [55, 79], reducing the overall amount of measurement
traffic [57], and data streaming algorithms for specific applications [96, 102, 151].

Early work on network-wide monitoring has focused on the placement of monitors
at appropriate locations to cover all routing paths using as few monitors as possible [47,
159, 128]. The authors show that such a formulation is NP-hard, and propose greedy
approximation algorithms. In contrast, cSamp assumes a given set of monitoring locations
along with their resource constraints and, therefore, is complementary to these approaches.

There are extensions to the monitor-placement problem to incorporate packet sam-
pling [159]. Cantieni et al. also consider a similar problem [45]. While the optimization
formulations in these share some structural similarity to our approach in Section 2.2.2,
the specific contexts in which these formulations are applied are different. First, cSamp
focuses on flow sampling as opposed to packet sampling. By using flow sampling, cSamp
provides a generic flow measurement primitive that subsumes the specific traffic engineer-
ing applications that packet sampling (and the frameworks that rely on it) can support.
Second, while it is reasonable to assume that the probability of a single packet being sam-
pled multiple times across routers is negligible, this assumption is not valid in the context
of flow-level monitoring. The probability of two routers sampling the same flow is high as
flow sizes follow heavy-tailed distributions [53, 181]. Hence, cSamp uses mechanisms to
coordinate routers to avoid duplicate flow reporting.
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To reduce duplicate measurements, Sharma and Byers [150§sutbg use of Bloom
filters. While minimizing redundant measurements is a common high-level theme between
cSamp and their approach, our work differs on two significant fronts. First, cSamp allows
network operators to directly specify and satisfy network-wide objectives, explicitly taking
into account (possibly heterogeneous) resource constraints on routers, while their approach
does not. Second, cSamp uses hash-based packet selection to implement coordination
withoutexplicit communication, while their approach requires every router to inform every
other router about the set of flows it is monitoring.

Hash-based packet selection as a router-level primitive was suggested in Trajectory
Sampling [54, 106]. Trajectory Sampling assigns all routers in the netwadranon
hash range. Each router in the network records the passage for all packets that fall in
this common hash range. The recorded trajectories of the selected packets are then used
for applications such as fault diagnosis and for detecting routing anomalies. In contrast,
cSamp uses hash-based selection to achieve the opposite functionality: it dsggns
hash ranges across multiple routers so that different routers monitor different flows.

2.2 Design

In this section, we present the design of the hash-based flow sampling primitive and the
optimization engine used in cSamp. In the following discussion, we assume the common
5-tuple (srclIP, dstlP, srcport, dstport, protocol) definition of an IP flow.

2.2.1 Router Primitives

Hash-based flow sampling: Each router has sampling manifest a table of hash ranges
indexed using a key. Upon receiving a packet, the router looks up the hash range using
a key derived from the packet’s header fields. It computes the hash of the packet’'s 5-
tuple and samples the packet if the hash falls within the range obtained from the sampling
manifest. In this case, the hash is used as an index into a table of flows that the router is
currently monitoring. If the flow already exists in the table, it updates the byte and packet
counters (and other statistics) for the flow. Otherwise it creates a new entry in the table.

The above approach implements flow sampling [79], since only those flows whose
hash lies within the hash range are monitored. Essentially, we can treat the hash as a
function that maps the input 5-tuple into a random value in the intéova). Thus, the
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size of each hash range determines the flow sampling rate obtiter for each category
of flows in the sampling manifest.

Flow sampling requires flow table lookups for each packet; the flow table, therefore,
needs to be implemented in fast SRAM. Prior work has shown that maintaining counters
in SRAM is feasible in many situations [62]. Even if flow counters in SRAM are not
feasible, it is easy to add a packet sampling stage prior to flow sampling to make DRAM
implementations possible [89]. For simplicity, however, we assume that the counters can
fitin SRAM for the rest of the chapter.

Coordination: If each router operates in isolation, i.e., independently sampling a subset
of flows it observes, the resulting measurements from different routers are likely to contain
duplicates. These duplicate measurements represent a waste of memory and reporting
bandwidth on routers. In addition, processing duplicated flow reports incurs additional
data management overheads.

Hash-based sampling enables a simple but powerful coordination strategy to avoid
these duplicate measurements. Routers are configured to use the same hash function, but
are assigned disjoint hash ranges so that the hash of any flow will match at most one
router’s hash range. The sets of flows sampled by different routers will therefore not
overlap. Importantly, assigning non-overlapping hash ranges achieves coordimition
outexplicit communication. Routers can thus achieve coordinated tasks without complex
distributed protocols.

2.2.2 Network-wide Optimization

ISPs typically specify their network-wide goals in term&ufgin-Destination (OD) pairs,
specified by the ingress and egress routers. To achieve flow monitoring goals specified in
terms of OD-pairs, cSamp’s optimization engine needs the traffic matrix (the number of
flows per OD-pair) and routing information (the router-level path(s) per OD-pair), both of
which are readily available to network operators [66, 184].

Assumptions and notation: We make two assumptions to simplify the discussion. First,

we assume that the traffic matrix (number of IP flows per OD-pair) and routing information
for the network are given and that these change infrequently. Second, we assume that each
OD-pair has a single router-level path. We relax these assumptions in Section 2.2.4 and
Section 2.2.5.

Each OD-pairOD; (i = 1,..., M) is characterized by its router-level pafthand the
numberT; of IP flows in a measurement interval (e.g., five minutes).
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Each routerR?; (j = 1,...,N) is constrained by two resources: memory (per-flow
counters in SRAM) and bandwidth (for reporting flow records). (Because we assume
that the flow counters are stored in SRAM, we do not model packet processing con-
straints [62].) We abstract these into a single resource consfraitite number of flows
router R; can record and report in a given measurement interval.

Letd;; denote the fraction of the IP flows 6fD; that routerRz; samples. If?; does not
lie on pathP;, then the variablé,; will not appear in the formulation. Far=1,..., M,
let C; denote the fraction of flows o@D, that is monitored.

Objective: We present a general framework that is flexible enough to support several
possible flow monitoring objectives specified as (weighted) combinations of the different
C; values. As a concrete objective, we consider a hybrid measurement objective that
maximizes the total flow-coverage across all OD-pa¥s (; x C; ) subject to ensuring

the optimal minimum fractional coverage per OD-pair (1{if; }).

Problem maaxtotgivenfrac(0):

MaximizeZ(Ti x (), subject to

Vi, ) (dyx T) <L (2.1)
i:R;EP;
Vi, Ci= > dy (2.2)
J:R;€EP;
Vi, Vi, di; >0 (2.3)
Vi, (<1 (2.4)
Vi, C;>0 (2.5)

We define a linear programming (LP) formulation that takes as a parafetee
desired minimum fractional coverage per OD-pair. Giethe LP maximizes the total
flow coverage subject to ensuring that each OD-pair achieves a fractional coverage at least
0, and that each router operates within its load constraint.

We briefly explain each of the constraints. Eq (2.1) ensures that the number of flows
that R; is required to monitor does not exceed its resource constfaintAs we only
consider sampling manifests in which the routers@rfor OD; will monitor distinct
flows, Eq (2.2) says that the fraction of traffic 6fD; that has been covered is simply
the sum of the fractional coveragés of the different routers oP’;. Because eact;
represents a fractional quantity we have the natural upper bond 1 in Eq (2.4).
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Since we want to guarantee that the fractional coverage dm @8cpair is greater than

the desired minimum fractional coverage, we have the lower bound in Eq (2.5). Since the
d;; define fractional coverages, they are constrained to be in the f@rigehowever, the
constraints in Eq (2.4) subsume the upper bound on éa@nd we impose the non-zero
constraints in Eq (2.3).

To maximize the total coverage subject to achieving the highest possible minimum
fractional coverage, we use a two-step approach. First, we obtain the optimal minimum
fractional coverage by considering the problem of maximizimi;{ C;} subject to con-
straints Eqs (2.1)—(2.4). Next, the val@®tMinFrac obtained from this optimization is
used as the inputto the problemmaztotgivenfrac.

B R

pling strategy that maximizes the total flow coverage subject to achieving the optimal
minimum fractional coverage per OD-pair.

2.2.3 Sampling Manifests

The next step is to map the optimal solution intsaanpling manifedior each router that
specifies its monitoring responsibilities (Figure 2.1). The algorithm iterates ove¥/the
OD-pairs. For eaclvD;, the variableRange is advanced in each iteration (i.e., per router)
by the fractional coveragé’; provided by the current router (lines 4 and 5 in Figure 2.1).
This ensures that routers on the pathfor OD; are assigned disjoint ranges. Thus, no
flows are monitored redundantly.

Once a router has received its sampling manifest, it implements the algorithm shown
in Figure 2.2. For each packet it observes, the router first identifies the OD-pair. Next, it
computes a hash of the flow header (the IP 5-tuple) and checks if the hash value lies in
the hash range assigned for this OD-pair. (The functias#returns a value in the range
[0, 1]). That s, the key used for looking up the hash range (c.f., Section 2.2.1) is the flow’s
OD-pair. Each router maintainsfowtable of the set of flows it is currently monitoring.

If the packet has been selected, then the router either creates a new entry (if none exists)
or updates the counters for the corresponding entry irFthetable.

2.2.4 Handling Inaccurate Traffic Matrices
The discussion so far assumed that the traffic matrices are known and fixed. Traffic ma-

trices are typically obtained using estimation techniques (e.g., [184, 185]) that may have
estimation errors.
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GENERATESAMPLINGMANIFEST(d* = (d}.))

)
// i ranges over all OD-pairs

1 fori=1,...,Mdo
2 Range «— 0

// j ranges over routers
3 forj=1,...,Ndo
4 HashRange(i, j) < [Range, Range + d;;)
5 Range < Range + d;
6 Vj, Manifest(j) < {(i, HashRange(i, j))|d;; > 0}

Figure 2.1: Translating the optimal solution into a samphmanifest for each router

If the estimation errors are bounded, we scale the sampling strategy appropriately to
ensure that the new scaled solution will operate within the router resource constraints and
be near-optimal in comparison to an optimal solution for the true (but unknown) traffic
matrix.

Suppose the estimation errors in the traffic matrix are bounded, i .aifd 7; denote

the estimated and actual traffic forD; respectively, thewi, T; € [Ti(l —€), Ti(l +
€)]. Here,e quantifies how much the estimated traffic matrix (i.e., our input data) differs

with respect to the true traffic matrix. Suppose the optlmal sampllng strategy for

<T>1§st is d* <dz]>1§1_§;/[71§;§;\7

A sampling strategyl is T-feasible if it satisfies conditions Egs (2.1)—(2.4) for For
a T-feasible strategy, let 3(d, T') = min;{ C;} denote the minimum fractional coverage,
andlety(d, T') = >, Ti x G; = >, T; x (3_, di;) denote the total flow coverage. Setting

di; = d;;(1 — ¢€), we can show that’ is T-feasible, and

(i) s

A 1—62 A a
d, T d,T).
1) = (155) 2

B(d, T)

v

v

For example, with = 1%, usingd’ yields a worst case performance reduction of 2% in
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COORDSAMPROUTER(pkt, Manifest)
/] Manifest = (i, HashRange(i, j))
1 OD <« GETODPuIRID (pkt)
// HASH returns a value if0, 1]
2 hyr — HASH(FLOWHEADER(pkt))
3 if hyw € Hashrange(OD, j) then
4 Create an entry ilowtable if none exists
5 Update byte and packet counters for the entry

Figure 2.2: Algorithm to implement coordinated sampling ounter R,

the minimum fractional coverage and 4% in the total coverage with respect to the optimal
Strategyd.

Proof sketch:

For clarity, we start by focusing on the minimum fractional coverage objegtiverst,
let us considetl. The constraints this satisfies are

Vi, di T < I

Since;- < Ti, we also have the inequality,

. - TG
v]azdij1+€ <L,

Now considerd” = (1;16) By the above equation we note thétis feasible forT'.

Sinced” is feasible forT’, the optimal value ofi* on 7 is related ta3(d, ?) in the follow-
ing manner:

B(d, T)
(1+¢)
Now let us consided*. The constraints this satisfies are:

Vi, dy T < I

B(d*, T) > B(d", T) = B(d", T) =

1Becauses is only a function of thel values 3(d”, T) = 3(d’, T).

17



Sinceﬁ(l —¢) < T;, we have the relationship

V],Zd 1—6 <L,

Now consider’ = d*(1 —¢). We observe that (a) is feasible forT, and (b) the value
of the objective function of on T"is 3(d', T') = B(d*, T')(1 — ¢).

So now we haved(d', T) = B(d', T) = (1 — €)3(d*, T) > =£3(d, T)

Similarly, we can prove that(d’, ?) > 8: 27(a? ?) as follows. We want to find
the relationship between(d’, T') and~(d, T'). First, as before let us considét = 1+€

which is a feasible solution fof’, and we can show thatd, 7') > 1—+E (d, T). Now by
constructiony(d', T') = (1 — e)y(d*, T').

~

Let us considety(d’, T'). We have

V@, T) = Y TG

_ (d,T)
1+e
B 1—c¢ (d* T)
- 1 67 )
e =
Z (1+€)2 (d7 T)

2.2.5 Handling Multiple Paths per OD-pair

Next, we discuss a practical extension to incorporate multiple paths per OD-pair, for ex-

ample using equal cost multi-path routing (ECMP) [51].

Given the routing and topology information, we can obtain the multiple routing paths
for each OD-pair and can compute the number of flows routed across each of the multiple
paths. Then, we treat each of the different paths as a distinct logical OD-pair with different

2ECMP-enabled routers make forwarding decisions on a per-IP-flow rather than on a per-packet basis.
Thus, we need not be concerned with multiple packets from a single flow traversing different router-level

paths.
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individual traffic demands. As an example, supp6s®; has two paths®! and P?. We
treat P} and P? as independent OD-pairs with traffic valu&s and 77?. This means that
we introduce additionad;; variables in the formulation. In this example, in Eq (2.1) we
expand the termd,; x T; for router R; to bed;; x T} +d;; x T} if R; lies on bothP! and
P2,

However, when we specify the objective function and the sampling manifests, we
merge these logical OD-pairs. In the above example, we would specify the network-wide
objectives in terms of the total coverage for th®;, C; = C! + C?. This merging pro-
cedure also applies to the sampling manifests. For example, sufposeurs on the two
paths in the above example, and the optimal solution has vd}yasddfj corresponding
to P! and P?. The sampling manifest simply specifies ttigtis responsible for a total
fractiond;; = dj; + d;; of the flows inOD;.

2.3 System Architecture

Figure 2.3 depicts the overall architecture of cSamp. The central optimization engine
computes and disseminates sampling manifests based on the traffic matrix and routing
information continuously measured in the network. This engine also assigns an identifier
to every OD-pair and propagates this information to the ingress routers. The ingress routers
determine the OD-pair and mark packets with the identifier. Each router uses the OD-
pair identifier and its sampling manifest to decide if it should record a specific flow. In
order to handle traffic dynamics, the optimization engine recalculates the traffic matrix
periodically based on the observed flow reports to generate and distribute new sampling
manifests. Such a centralized approach is consistent with the operating model of modern
ISPs, where operators push out router configuration files (e.g., routing tables, ACLs) and
collect information from the routers.

To complete the description of the cSamp system, we describe the following mecha-
nisms: 1) obtaining OD-pair information for packets; 2) responding to long- and short-
term traffic dynamics; 3) managing memory resources on routers; 4) computing the sam-
pling manifests efficiently; and 5) reacting to routing dynamics.

2.3.1 OD-pair Identification

Each router, on observing a packet, must identify the OD-pair to which the packet belongs.
There are prior approaches to infer the OD-pair for a given packet based on the source and
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Figure 2.3: An overall view of the architecture of the cSamgtey. The optimization en-
gine uses up-to-date traffic and routing information to compute and disseminate sampling
manifests to routers.

destination IP addresses and routing information [66]. However, such information may
not be immediately discernible to interior routers from their routing tables due to prefix
aggregation. Ingress routers are in a better position to identify the appropriate egress when
a packet enters the network using such techniques. Thus the ingress routers mark each
packet header with the OD-pair identifier. Interior routers can subsequently extract this
information. In practice, the OD-pair identifier can either be added to the IP-header or to
the MPLS label stack. Note that the multi-path extension (Section 2.2.5) does not impose
additional work on the ingress routers for OD-pair identification. In both the single-path
and multi-path cases, an ingress router only needs to determine the egress router and the
identifier for the ingress-egress pair, and need not distinguish between the different paths
for each ingress-egress pair.

The identifier can be added to the IP-id field in a manner similar to other proposals
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that rely on packet marking (e.g., [107, 143, 177]). This itdibld allows assigning a
unique identifier to each OD-pair in a network with up to 256 border routers (and 65,536
OD-pairs), which suffices for medium-sized networks. For larger ISPs, we use an addi-
tional encoding step to assign identifiers to OD-pairs so that there are no conflicts in the
assignments. For exampl®,D; and OD; can be assigned the same identifiePjfand

P, do not traverse a common router (and the same interfaces on that router) or, if they do,
the common router is not assigned logging responsibility for one of them. We formulate
this notion of non-conflicting OD-pairs as a graph coloring problem, and run a greedy col-
oring algorithm on the resulting conflict graph. Using this extension, the approach scales
to larger ISPs (e.g., needing fewer than 10 bits to encode all OD-pairs for a network with
300 border routers).

While the above approach to retrofit OD-pair identifiers within the IP header requires
some work, it is easier to add the OD-pair identifier as a static label in the MPLS label
stack. In this case, the space required to specify OD-pair identifiers is not a serious con-
cern. In the next chapter, we relax this assumption and describe an alternative approach
that does not require OD-pair identifiers.

2.3.2 Dealing with Traffic Dynamics

To ensure that the flow monitoring goals are achieved consistently over time, the optimiza-
tion engine must be able to predict the traffic matrix to compute the sampling manifests.
This prediction must take into account long-term variations in traffic matrices (e.g., diur-
nal trends), and also be able to respond to short-term dynamics (e.g., on the scale of a few
minutes).

Long-term variations in traffic matrices typically arise from predictable time-of-day
and day-of-week effects [140]. To handle these, we use historical traffic matrices as inputs
to the optimization engine to compute the sampling strategy. For example, to compute the
manifests for this week’s Fri. 9am-10am period, we use the traffic matrix observed during
the previous week’s Fri. 9am-10am period.

The optimization engine also has to respond to less predictable short-term traffic vari-
ations. Using historical traffic matrices averaged over long periods (e.g., one week) runs
the risk ofunderfitting; important structure present over shorter time scales is lost due to
averaging. On the other hand, using historical traffic matrices over short periods (e.g., 5-
minute intervals) may result iaverfitting, unnecessarily incorporating details specific to
the particular historical period in question.

To handle the long and short-term traffic dynamics, we take the following heuristic
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approach. Suppose we are interested in computing samplingasis for every 5-minute
interval for the Fri. 9am-10am period of the current week. To avoid overfitting, we do not
use the traffic matrices observed during the corresponding 5-minute intervals that make
up the previous week’s Fri. 9am-10am period. Instead, we take the (hourly) traffic matrix
for the previous week’s Fri. 9am-10am period, divide it by 12 (the number of 5-minute
segments per hour), and use the resulting traffic mafri% as input data for computing

the manifests for the first 5-minute period. At the end of this period, we collect flow data
from each router and obtain the traffic matfix®s from the collected flow reports. (If the
fractional coverage fo©D; with the current sampling strategy @$ andz; sampled flows

are reported, theff?* = %, i.e., normalizing the number of sampled flows by the total
flow sampling rate.) '

Given the observed traffic matrix for the current measurement pefitd and the
historical traffic matrix7°!¢, a new traffic matrix is computed usinganservative update
policy. The resulting traffic matrixx'"** is used as the input for obtaining the manifests
for the next 5-minute period.

The conservative update policy works as follows. First, we check if there are significant
differences between the observed traffic maffi¥* and the historical input datd*".

Let); = ‘TbT;MT”‘ denote the estimation error farD,. If §; exceeds a threshold, then

compute a new traffic matrix entr§j"**, otherwise us&'?'?. If T°% is greater thar?’*¢,
then setT"e = Teb. If T2 is smaller thanT*, we check the resource utilization of
the routers currently responsible for monitorin;. If all these routers have residual
resources available, séf** = T°%*; otherwise sefl*** = T,

The rationale behind this conservative update heuristic is that if a router runs out of
resources, it may result in underestimating the new traffic on OD-pairs for which it is
responsible (i.e.7°% is an under-estimate of the actual traffic matrix). Updatifits”
with T°% for such OD-pairs is likely to cause a recurrence of the same overflow condition
in the next 5-minute period. Instead, we err on the side of overestimating the traffic for
each OD-pair. This ensures that the information obtained for the next period is reliable
and can help make a better decision when computing manifests for subsequent intervals.

The only caveat is that this policy may provide lower flow coverage since it overes-
timates the total traffic volume. Our evaluations with real traffic traces (Section 2.4.3)
show that this performance penalty is low and the heuristic provides near-optimal traffic
coverage.
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2.3.3 Flow Records in SRAM

We assume that the flow table is maintained in (more expensive) SRAM. Thus, we need a
compact representation of the flow record in memory, unlike Netflow [48] which maintains
a 64-byte flow record in DRAM. We observe that the entire flow record (the IP 5-tuple, the
OD-pair identifier, and counters) need not actually be maintained in SRAM; only the flow
counters (for byte and packet counts) need to be in SRAM. Thus, we can offload most of
the flow fields to DRAM and retain only those relevant to the online computation: a four
byte flow-hash (for flowtable lookups) and 32-bit counters for packets and bytes, requiring
only 12 bytes of SRAM per flow record. To further reduce the SRAM required, we can
use techniques for maintaining counters using a combination of SRAM and DRAM [187].
We defer a discussion of handling router memory exhaustion to Section 2.5.

2.3.4 Computing the Optimal Solution

In order to respond in near-real time to network dynamics, computing and disseminating
the sampling manifests should require at most a few seconds. Unfortunately, the sim-
ple two-step approach in Section 2.2.2 requires a few hundreds of seconds on large ISP
topologies and thus does not scale, even with state of the art LP solve@HIKEX. We
discovered that the main bottleneck is the first step of solving the modified LP to find
OptMinFrac.

To reduce the computation time we implement two optimizations. First, we use a
binary search procedure to determifgtMinFrac. This was based on experimental ev-
idence that solving the LP specified byaxtotgivenfrac(0) for a givend is faster than
solving the LP to findOptMinFrac. Second, we use the insight thatiztotgivenfrac(6)
can be formulated as a special instance of ax¥Low problem [63]. These optimiza-
tions reduce the time needed to compute the optimal sampling strategy to at most eleven
seconds even on large tier-1 ISPs with more than 300 routers.

Binary search: The main idea is to use binary search over the valué of the LP
formulation maztotgivenfrac(0). The procedure (Figure 2.4) takes as input an error pa-
rametere and returns a feasible solution with a minimum fractional coverégeith
OptMinFrac — 0* < e. The search keeps track&f,..,, the smallest feasible value known
(initially set to zero), and,,,.., the highest possible value (initially set%—) In each
iteration, the lower and upper bounds are updated depending on whether the current value
0 is feasible or not and the current valties updated td’% The search starts from

0 = Oypper, and stops ib),,per — Oiower < €, and returng* = 6,,,,., at this stopping point.
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BINARY SEARCH(¢e, SOLVE)

// €is the additive approximation error
// SOLVE solves themaxtotgivenfrac problem for a giverd
elower —0

// The best possible solution is simply the ratio

// of total resource available to total traffic
9 - Zj Lj

upper Zz T;
currentgap < Qupper — Qiower

chrrent — Hupper

while ( currentgap > €)

do
(status, Solution) «— SOLVE(Oypper)
if (status = feasible)
then

— 0

Qlower current

else

— ecurrent

eupper"!‘elowcr
ecurrent — 2

currentgap < Qupper — Qiower
Return(f,,pe, Solution)

gupper

Figure 2.4: Using the binary search optimization to find thiéno@l sampling strategy

Reformulation using MAXFLOW :

than general LPs.

We construct the following (directed) gragh= (V, E'). The set of vertices ity is

V = {SO’LL?”C@, smk} U {Odi}lgiSM U {Tj}lﬁjSN

Eachod; in the above graph corresponds to OD-p@ip; in the network and each

in the graph corresponds to routy in the network.
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We formulate the LPmaxtotgivenfrac(f) as an
equivalent Max FLow problem. Specifically, we construct a variant of traditional M-Low
problems that has additional lower-bound constraints on edge capacities. The intuition be-
hind this optimization is that Mx FLow problems are typically more efficient to solve



The set of edges i8 = F; U F, U E3, where

Ey = {(source, od;) }r<icm
Ey = {(rj, sink)}1<j<n
Es = {(Odi7 rj)}i,jZRjEPi
Let f(x,y) denote the flow on the edde,y) € E, and letUB(z, y) and LB(z, y)

denote the upper-bound and lower-bound on edge capaciti@s i®ur objective is to
maximize the flowF” from source to sink subject to the following constraints.

F T = source

YV, (Z f(z,y) — Zf(y,x)) =< —F x=sink

0 otherwise

We specify lower and upper bounds on the flow on each edge as:

Va,Vy, LB(x,y) < f(x,y) < UB(z,y)

The upper-bounds on the edge capacities are: (i) the edges fromitle to od; have
a maximum capacity equal t6, (the traffic for OD-pairOD;), and (ii) the edges from each
r; to thesink have a maximum capacity equalle (resource available on each roufey).

T; x = source,y = od;
UB((xz,y)) =< L; x=rjy=sink
oo otherwise

We introduce lower bounds only on the edges fromdtwerce to eachod;, indicating
that eachOD; should have a fractional flow coverage at least

0 x T; x= source,y = od,;

LB((z,y)) = { 0 otherwise

We use the binary search procedure discussed earlier, but useARiBUdwW formu-
lation to solve each iteration of the binary search instead of the LP formulation.

2.3.5 Handling Routing Changes

The cSamp system can receive real-time routing updates from a passive routing and topol-
ogy monitor such as OSPF monitor [149]. Ideally, the optimization engine would recom-

pute the sampling manifests for each routing update. However, recomputing and dissem-
inating sampling manifests to all routers for each routing update is expensive. Instead,
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the optimization engine uses a snapshot of the routing araddgy information at the be-
ginning of every measurement interval to compute and disseminate manifests for the next
interval. This ensures that all topology changes are handled within at most two measure-
ment intervals.

To respond more quickly to routing changes, the optimization enginpresmompute
sampling manifests for different failure scenarios in a given measurement cycle. Thus, ifa
routing change occurs, an appropriate sampling manifest corresponding to this scenario is
already available. This precomputation reduces the latency of adapting to a given routing
change to less than one measurement interval. Since it takes only a few seconds (e.g., 7
seconds for 300 routers and 60,000 OD-pairs) to compute a manifest on one CPU (Sec-
tion 2.4.1), we can precompute manifests for all single router/link failure scenarios with a
moderate (4-5x) level of parallelism. While precomputing manifests for multiple failure
scenarios is difficult, such scenarios are also relatively rare.

2.3.6 Prototype implementation

Optimization engine: Our implementation of the algorithms for computing sampling
manifests (Section 2.3.4) consists of 1500 lines of C/C++ code usingRh& Xcallable

library. The implementation is optimized for repeated computations with small changes to
the input parameters, in that it carries state from one solution over to the next. Solvers like
CPLEXtypically reach a solution more quickly when starting “close” to a solution than
when starting from scratch. Moreover, the solutions that result tend to have fewer changes
to the preceding solutions than would solutions computed from scratch, which enables
reconfigured manifests to be deployed with fewer or smaller messages. We implement
this optimization for both our binary search algorithm and when recomputing sampling
manifests in response to traffic and routing dynamics.

Flow collection: We implemented a cSamp extension toY#d-flow collection tool [21].

Our choice was motivated by our familiarity with YAF, its simplicity of implementation,
and because it is a reference implementation for the IETF IPFIX working group [10]. The
extensions to YAF required 200 lines of additional code. The small code modification sug-
gests that many current flow monitoring tools can be easily extended to realize the benefits
of cSamp. In our implementation, we use the Bob hash function [4] recommended by
Molina et al [121].
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2.4 Evaluation

We divide our evaluation into three parts. First, we demonstrate that the centralized op-
timization engine and the individual flow collection processes in cSamp are scalable in

Section 2.4.1. Second, we show the practical benefits that network operators can derive
from cSamp in Section 2.4.2. Finally, in Section 2.4.3, we show that the system can effec-

tively handle realistic traffic dynamics.

In our experiments, we compare the performance of different sampling algorithms at a
PoP-level granularity, i.e., treating each PoP as a “router” in the network model. We use
PoP-level network topologies from educational backbones (Internet2 EM\I(B) and
tier-1 ISP backbone topologies inferred by Rocketfuel [157]. We construct OD-pairs by
considering all possible pairs of PoPs and use shortest-path routing to compute the PoP-
level path per OD-pair. To obtain the shortest paths, we use publicly available static IS-1S
weights for Internet2 and BANT and inferred link weights [117] for Rocketfuel-based
topologies.

Topology (AS#) | PoPs| OD-pairs | Flows | Packets
x10° x10°

NTT (2914) 70 4900 51 204
Level3 (3356) | 63 3969 46 196
Sprint (1239) 52 2704 37 148

Telstra (1221) 44 1936 32 128
Tiscali (3257) 41 1681 32 218
GEANT 22 484 16 64
Internet2 11 121 8 32

Table 2.1: Parameters for the experiments

Due to the lack of publicly available traffic matrices and aggregate traffic estimates
for commercial ISPs, we take the following approach. We use a baseline traffic volume
of 8 million IP flows for Internet2 (per 5-minute interval).For other topologies, we
scale the total traffic by the number of PoPs in the topology (e.g., given that Internet2
has 11 PoPs, for Sprint with 52 PoPs the traffié—?ﬂsx 8 = 37 million flows). These
values match reasonably well with traffic estimates reported for tier-1 ISPs. To model the

3The weekly aggregate traffic on Internet2 is roughly 175TB. Ignoring time-of-day effects, this translates

into 0.08TB per 5-minute interval. Assuming an average flow size of 10KB, this translates into roughly 8
million flows.
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structure of the traffic matrix, we first annotate Plo®ith the populatiorp, of the city

to which it is mapped. We then use a gravity model to obtain the traffic volume for each
OD-pair [150, 139]. In particular, we assume that the total traffic between Paifsl

k' is proportional top, x pr. We assume that flow size (number of packets) is Pareto-
distributed, i.e.Pr(Flowsize > x packets) = (£)7,z > cwith v = 1.8 andc = 4 [170].

(We use these as representative values; our results are similar across a range of flow size
parameters.) Table 2.1 summarizes our evaluation setup.

2.4.1 Microbenchmarks

In this section, we measure the performance of cSamp along two dimensions — the cost of
computing sampling manifests and the router overhead.

AS PoP-level (secs) Router-level (secs)
Bin-LP | Bin-MaxFlow | Bin-LP | Bin-MaxFlow
NTT 0.53 0.16 445 10.9
Level3 0.27 0.10 24.6 7.1
Sprint 0.01 0.08 17.9 4.8
Telstra 0.09 0.03 9.6 2.2
Tiscali 0.11 0.03 9.4 2.2
GEANT 0.03 0.01 2.3 0.3
Internet2| 0.01 0.005 0.20 0.14

Table 2.2: Time (in seconds) to compute the optimal sampling manifest for both PoP- and
router-level topologies. Bin-LP refers to the binary search procedure without the MaxFlow
optimization.

Computing sampling manifests: Table 2.2 shows the time taken to compute the sam-
pling manifests on an Intel Xeon 2.80 GHz CPU machine for different topologies. For
every PoP-level topology we considered, our optimization framework generates sampling
manifests within one second, even with the basic LP formulation. Using the MaxFlow
formulation reduces this further. On the largest PoP-level topology, NTT, with 70 PoPs, it
takes only 160 ms to compute the sampling manifests with this optimization.

We also consider augmented router-level topologies constructed from PoP-level topolo-
gies by assuming that each PoP has four edge routers and one core router, with router-level
OD-pairs between every pair of edge routers. To obtain the router-level traffic matrix, we
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split the inter-PoP traffic uniformly across the router-l&9®-pairs constituting each PoP-
level OD-pair.

Even with 5xas many routers and 16as many OD-pairs as the PoP-level topologies,
the worst case computation time is less than 11 seconds with the MaxFlow optimization.
These results show that cSamp can respond to network dynamics in near real-time, and
that the optimization step is not a bottleneck.

Worst-case processing overheadcSamp imposes extra processing overhead per router

to look up the OD-pair identifier in a sampling manifest and to compute a hash over the
packet header. To quantify this overhead, we compare the throughput (on multiple offline
packet traces) of running YAF in full flow capture mode, and running YAF with cSamp
configured to log every flow. Note that this configuration demonstrates the worst-case
overhead because, in real deployments, a cSamp instance would need to compute hashes
only for packets belonging to OD-pairs that have been assigned to it, and update flow
counters only for the packets it has selected. Even with this worst-case configuration the
overhead of cSamp is only 5% (not shown).

Network-wide evaluation using Emulab: We use Emulab [169] for a realistic network-
wide evaluation of our prototype implementation. The test framework consists of sup-
port code that (a) sets up network topologies; (b) configures and runs YAF instances per
“router”; (c) generates offline packet traces for a given traffic matrix; and (d) runs real-
time tests using thBitTwist  * packet replay engine with minor modifications. The only
difference between the design in Section 2.2 and our Emulab setup is with respect to node
configurations. In Section 2.2, sampling manifests are computed on a per-router basis, but
YAF processes are instantiated on a per-interface basis. We map router-level manifests to
interface-level manifests by assigning each router’s responsibilities across its ingress inter-
faces. For example, i®; is assigned the responsibility to lagD;, then this responsibility

is assigned to the YAF process instantiated on the ingress interface dorR;.

We configure cSamp in full-coverage mode, i.e., configured to capture all flows in the
network. (In our formulation this means setting the router resources suabjitidin Frac =
1). We also consider the alternative full coverage solution where each ingress router is
configured to capture all traffic on incoming interfaces. The metric we compare is the nor-
malized throughput of each YAF instance running in the emulated network. Let the total
number of packets sent through the interface (in a fixed interval of 300 seconds) on which
the YAF process is instantiated béts ,.,..,- Suppose the YAF instance was able to pro-
cess onlypkts packets in the same time interval. Then the normalized throughput

processed

“http://bittwist.sourceforge.net
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is defined ag st By definition, the normalized throughput can be at most 1.
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Figure 2.5: Comparing the CDF of normalized throughput pesriate across the entire
network

Our test setup is unfair to cSamp for two reasons. First, with a PoP-level topology,
every ingress router is also a core router. Thus, there are no interior routers on which the
monitoring load can be distributed. Second, to emulate a router processing packets on
each interface, we instantiate multiple YAF processes on a single-CPU EpuBab0
node. In contrast, ingress flow capture needs exactly one process per Emulab node. In
reality, this processing would be either parallelized in hardware (offloaded to individual
linecards), or on multiple CPUs per YAF process even in software implementations, or
across multiple routers in router-level topologies.

Figure 2.5 shows the distribution of the normalized throughput values of each YAF in-
stance in the emulated network. Despite the disadvantageous setup, the normalized packet
processing throughput of cSamp is higher. Given the 5% overhead due to hash compu-
tations mentioned before, this result might appear surprising. The better throughput of
cSamp is due to two reasons. First, each per-interface YAF instance incurs per-packet
flow processing overheads (look up flowtable, update counters, etc.) only for the subset of
flows assigned to it. Second, we implement an optimization that first checks whether the
OD-pair (identified from IP-id field) for the packet is present in its sampling manifest, and
computes a hash only if there is an entry for this OD-pair. We also repeated the experi-
ment by doubling the total traffic volume, i.e., using 16 million flows instead of 8 million
flows. The difference between the normalized throughputs is similar in this case as well.
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For example, the minimum throughput with ingress flow capisionly 85%, whereas for

cSamp the minimum normalized throug

hput is 93% (not shown). These results show that

by distributing responsibilities across the network, cSamp balances the monitoring load

effectively.

2.4.2 Benefits of cSamp

(a) Total flow coverage

(b) Min. fractional flow coverage per OD-pair
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Figure 2.6: Comparing cSamp with packet sampling and hypo#idtow sampling ap-

proaches

It is difficult to scale our evaluations to larger topologies using Emulab. Therefore,

we implemented a custom packet-level

network simulator (roughly 2500 lines of C++)
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to evaluate the performance of different sampling appraachRer all the sampling algo-
rithms, the simulator uses the same network topology, OD traffic matrix, and IP flow-size
distribution for consistent comparisons.

We consider two packet sampling alternatives: (i) uniform packet sampling with a
sampling rate of 1-in-100 packets at all routers in the network, and (ii) uniform packet
sampling at edge routers (this may reflect a feasible alternative for some ISPs [66]) with a
packet sampling rate of 1-in-50 packets. We also consider two flow sampling variants: (iii)
constant-rate flow sampling at all routers with a sampling rate of 1-in-100 flows, and (iv)
maximal flow sampling in which the flow sampling rates are chosen such that each node
maximally utilizes its available memory. In maximal flow sampling, the flow sampling
rate for a router isnin(1,1), wherel is the number of flow records it is provisioned to
hold andt is the total number of flows it observes. Both constant-rate and maximal flow
sampling alternatives are hypothetical; there are no implementations of either available
in routers today. We consider them along with cSamp to evaluate different intermediate
solutions in the overall design space, with current packet sampling approaches at one end
of the spectrum and cSamp at the other.

cSamp and the two flow sampling alternatives are constrained by the amount of SRAM
on each router. We assume that each PoP in the network is provisioned to hold up to
400,000 flow records. Assuming roughly 5 routers per PoP, 10 interfaces per router, and
12 bytes per flow record, this requirement translates ##8>>'2 = 96 KB SRAM per
linecard, which is well within the 8 MB technology limit (in 2004) suggested by Vargh-
ese [167]. (The total SRAM per linecard is shared across multiple router functions, but it
is reasonable to allocate 1% of the SRAM for flow monitoring.) Since packet sampling
alternatives primarily operate in DRAM, we use the methodology suggested by Estan and
Varghese [62] and impose no memory restrictions on the routers. By assuming that packet
sampling operates under no memory constraints, we provide it the best possible flow cov-
erage (i.e., we underestimate the benefits of cSamp).

Coverage benefits: Figure 2.6(a) compares the total flow coverage obtained with dif-
ferent sampling schemes for the various PoP-level topologies (Table 2.1). The total flow
coverage of cSamp is8-3.3x that of the uniform packet sampling approaches for all the
topologies considered. Doubling the sampling rate for edge-based uniform packet sam-
pling only marginally improves flow coverage over all-router uniform packet sampling.
Among the two flow sampling alternatives, constant rate flow sampling uses the available
memory resources inefficiently, and the flow coverage-1$ x less than cSamp. Maxi-
mal flow sampling saturates the memory resources and is the closest in performance. Even
in this case, cSamp provides 14-32% better flow coverage. While this represents only a
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modest gain over maximal flow sampling, Figures 2.6(b) an{c® $how that maximal
flow sampling suffers from poor minimum fractional coverage and increases the amount
of redundancy in flow reporting.

Figure 2.6(b) compares the minimum fractional coverage per OD-pair. cSamp signif-
icantly outperforms all alternatives, including maximal flow sampling. This result shows
a key strength of cSamp to achieve network-wide flow coverage objectives, which other
alternatives fail to provide. In addition, the different topologies vary significantly in the
minimum fractional coverage, in comparison to the total coverage. For example, the mini-
mum fractional coverage for Internet2 an&&NT is significantly higher than other ASes
even though the traffic volumes in our simulations are scaled linearly with the number of
PoPs. We attribute this to the unusually large diagonal and near-diagonal elements in a
traffic matrix. For example, in the case of Telstra, the bias in the population distribution
across PoPs is such that the top few densely populated PoPs (Sydney, Melbourne, and Los
Angeles) account for more than 60% of the total traffic in the gravity-model based traffic
matrix.

Reporting benefits: In Figure 2.6(c), we show the ratio of the numberduiplicate
flow recordsreported to the total number of distinct flow reports reported. The absence
of cSamp in Figure 2.6(c) is because of the assignment of non-overlapping hash-ranges to
avoid duplicate monitoring. Constant rate flow sampling has little duplication, but it pro-
vides very low flow coverage. Uniform packet sampling can result in up to 14% duplicate
reports. Edge-based packet sampling can alleviate this waste to some extent by avoiding
redundant reporting from transit routers. Maximal flow sampling incurs the largest amount
of duplicate flow reports (as high as 33%).

Figure 2.6(d) shows thmaximum reporting bandwidtcross all PoPs. We normalize
the reporting bandwidth by the bandwidth required for cSamp. The reporting bandwidth
for cSamp and flow sampling is bounded by the amount of memory that the routers are
provisioned with; memory relates directly to the number of flow-records that a router
needs to export. The normalized load for uniform packet sampling can be as high as four.
Thus cSamp has the added benefit of avoiding reporting hotspots unlike traditional packet
sampling approaches.

Summary of benefits: cSamp outperforms traditional packet sampling approaches on all
four metrics. Compared to constant rate flow sampling, cSamp is more efficient at using
the available resources. While maximal flow sampling can provide reasonable total flow
coverage, it has poor performance with respect to the minimum fractional flow coverage
and duplicated flow reports. Also, as network operators provision routers to obtain greater
flow coverage, this bandwidth overhead due to duplicate flow reports will increase.
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2.4.3 Robustness Properties

To evaluate the robustness of our approach to realistic traffic changes, we consider a two-
week snapshot (Dec 1-14, 2006) of (packet sampled) flow data from Internet2. We map
each flow entry to the corresponding network ingress and egress points using the technique
outlined by Feldmann et al. [66].We assume that there are no routing changes in the
network, and that the sampled flow records represent the actual traffic in the network.
(Since cSamp does not suffer from flow size biases there is no need to renormalize the
flow sizes by the packet sampling rate.) For this evaluation, we scale down the per-PoP
memory to 50,000 flow records. (Due to packet sampling, the dataset contains fewer
unique flows than the estimate in Table 2.1.)

0.8 ;
— Optimal
0.7 Per—hour
' - - - Per—hour + Conservative update

o
fe))

o
4

o
w

Total traffic coverage
o
~

o
N
T
I

0.1F 1

Fr912/8 12/9 12/10 12/11 12/12 12/13 12/14
Five minute timeslot index

Figure 2.7: Comparing total traffic coverage with the congareaipdate heuristic vs. the
optimal solution

Figure 2.7 compares the total flow coverage using our approach for handling traffic
dynamics (Section 2.3.2) with the optimal total flow coverage (i.e., if we use the actual
traffic matrix instead of the estimated traffic matrix to compute manifests). As expected,

5Since IP-addresses are anonymized by zero-ing out the last 11 bits, there is some ambiguity in egress
resolution. However, this does not introduce a significant bias as less than 3% of the flows are affected.
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the optimal flow coverage exhibits time-of-day and day-otlweffects. For example,
during the weekend, the coverage is around 70% while on the weekdays the coverage is
typically in the 20-50% range. The result confirms that relying on traffic matrices that are
based on hourly averages from the previous week gives near-optimal total flow coverage
and represents a time scale of practical interest that avoids both overfitting and underfitting
(Section 2.3.2). Using more coarse-grained historical information (e.g., daily or weekly
averages) gives sub-optimal coverage (not shown). Figure 2.7 also shows that even though
the conservative update heuristic (Section 2.3.2) overestimates the traffic matrix, the per-
formance penalty arising from this overestimation is negligible.
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Figure 2.8: Comparing the minimum fractional coverage with tlonservative update
heuristic vs. the optimal solution

Figure 2.8 shows that using the per-hour historical estimates alone performs poorly
compared to the optimal minimum fractional coverage. This is primarily because of short-
term variations that the historical traffic matrices cannot account for. The conservative
update heuristic significantly improves the performance in this case and achieves near-
optimal performance. These results demonstrate that our approach of using per-hour his-
torical traffic matrices combined with a conservative update heuristic is robust to realistic
traffic dynamics.
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2.5 Discussion

Router memory exhaustion: Despite factoring in the router memory constraints into

the optimization framework, a router’'s flow memory might be exhausted due to traffic
dynamics. In our current prototype, we choose not to evict flow records already in the flow
memory, but instead stop creating new flow records until the end of the measurement cycle.
The conservative update heuristic (Section 2.3.2) will ensure that the traffic demands for
the particular OD-pairs that caused the discrepancy are updated appropriately in the next
measurement cycle.

In general, however, more sophisticated eviction strategies might be required to prevent
unfairness within a given measurement cycle under adversarial traffic conditions. For
example, one such strategy could be to allocate the available flow memory across all OD-
pairs in proportion to their hash ranges and evict flows only from those OD-pairs that
exceed their allotted share. While this approach appears plausible at first glance, it has
the side effect that traffic matrices will not be updated properly to reflect traffic dynamics.
Thus, itis important to jointly devise the eviction and the traffic matrix update strategies to
prevent short-term unfairness, handle potential adversarial traffic conditions, and minimize
the error in estimating traffic matrices. We intend to pursue such strategies as part of future
work.

Transient conditions inducing loss of flow coverage or duplication: A loss in flow
coverage can occur if a router that has been assigned a hash range for an OD-pair no longer
sees any traffic for that OD-pair due to a routing change. Routing changes will not cause
any duplication if the OD-pair identifiers are globally unique. However, if we encode OD-
pair identifiers without unique assignments (see Section 2.3.1), then routing changes could
result in duplication due to OD-pair identifier aliasing. Also, due to differences in the time
for new configurations to be disseminated to different routers, there is a small amount
of time during which routers may be in inconsistent sampling configurations resulting in
some duplication or loss.

Applications of cSamp: cSamp provides an efficient flow monitoring infrastructure that
can aid and enable many new traffic monitoring applications (e.g., [49, 86, 99, 145, 173]).
As an example application that can benefit from better flow coverage, we explored the pos-
sibility of uncovering botnet-like communication structure in the network [135]. We use
flow-level data from Internet2 and inject 1,000 synthetically crafted single-packet flows
into the original trace, simulating botnet command-and-control traffic. cSamp uncovers
12 (on average) more botnet flows compared to uniform packet sampling. We also con-
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firmed that cSamp provides similar or better fidelity compaoaghiform packet sampling
for traditional traffic engineering applications such as traffic matrix estimation.

Network Provisioning: An alternative version of the network-wide formulation (Sec-
tion 2.2.2) can be posed as a capacity provisioning problem; i.e., how should a network
operator invest resources at routers (e.g., memory) to achieve a given target traffic cov-
erage? To discuss such a “what-if” scenario, we use the notation and formulation from
Section 2.2.2 and let; denote the targeted fraction of traffic on OD-pato be moni-
tored; that is,

Vi, Coverage; > 0,

The monitoring load.; on router; is given by
Vj, L_j = de X 711

and translates directly into the memory and reporting bandwidth that need to be provi-
sioned on the router. It also reflects the cost incurred by the operators (e.g., memory
upgrades on router hardware). We consider the following objective: minimizing the max-
imum load on any single router in the network.
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Figure 2.9: Distribution of memory requirement across PoPs

Across the different PoP-level topologies we find that even with a target flow coverage
of 90%, the maximum memory required per PoP is of the order of a 1-3 million traffic
records. Assuming a 32-byte flow record, this translates into a maximum memory require-
ment of 90MB per-PoP, which is larger than the memory capacities on routers today, but
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not technologically inconceivable. This is promising inwief certain applications for
which near-complete traffic coverage is desirable (e.g., forensic applications [173]). Fig-
ure 2.9 shows the distribution of the per-PoP memory requirement (in terms of number of
flow records). We observe that the number of nodes that need very high provisioning is
small. This is consistent with the observations in Section 2.4.2 regarding the structure of
the underlying traffic matrix — dominant PoPs that carry a significant fraction of the traffic
naturally demand better provisioning than smaller PoPs.

Minimizing Reconfigurations: An aspect of robustness that has not been addressed in
this chapter concerns the number of reconfigurations under traffic dynamics. To reduce
management complexity, network operators may prefer sampling manifests that are stable
over time or require only a handful of reconfigurations in response to some of the typ-
ical events they expect. Here, a reconfiguration refers to either (i) a nontzevalue
becoming zero in the new sampling strategy recomputed after the traffic change, or (ii) a
d;; entry that was previously zero becoming non-zero in the new sampling strategy. As a
preliminary exploration, we augmented the objective function with a reconfiguration cost
term. The reconfiguration cost penalizes feasible sampling strategies that, while optimal
otherwise, require a large number of reconfigurations when compared to the sampling
strategy currently in use. Figure 2.10 shows the results of this preliminary exploration
using data from Internet2. (We only show the results for day2 from week2; results for
other days were similar). We see that the new sampling manifests are relatively stable
throughout the 24-hour period and require only a small number of reconfigurations (less
than 5% of the entries on average). Moreover, this added robustness feature is achieved
with negligible loss in total flow coverage and minimum fractional coverage (0.5% and
3% respectively). These preliminary results are similar to prior work on configuring link
weights in the context of intra-domain routing [32, 69]. One direction of future work is
exploring this connection and developing strategies that are explicitly designed to have as
few reconfigurations as possible.

2.6 Chapter Summary

Flow-level monitoring is an integral part of the suite of network management applications
used by network operators today. EXxisting solutions, however, focus on incrementally
improving single-router sampling algorithms and fail to meet the increasing demands for
fine-grained flow-level measurements. To meet these growing demands, we argue the need
for a system-wide rather than router-centric approach for flow monitoring.

We presented cSamp, a system that takes a network-wide approach to flow moni-

38



—
o

— Without reconfiguration cost
1ol - - - With reconfiguration cost
'c .
o
3
= 1 R
c
(o]
3
o 085 :
.0 I
=] I
@ 0.67 ! :
© h
c N
9 0.4r ’ ]
© h
© |
n
" 0.2} ! " 1
'|'| i I
N TR “\:'\ 1:'\\'”1\| "‘ 'I\.\ l" N :I‘ Al I
O I\ \v\A/l\_F“\\\" N L A A T PR VA WAL Wi L AP 27 T ORI T A
0 50 100 150 200 250 300

Five minute timeslot index

Figure 2.10: Effect of introducing reconfiguration cost te tarmulation

toring. Compared to current solutions, cSamp provides higher flow coverage, achieves
fine-grained network-wide flow coverage goals, efficiently leverages available monitoring
capacity and minimizes redundant measurements, and naturally load balances responsi-
bilities to avoid hotspots. We also demonstrated that our system is practical: it scales to
large tier-1 backbone networks, it is robust to realistic network dynamics, and it provides

a flexible framework to accommodate complex policies and objectives.
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Chapter 3

Coordinated Sampling sans
Origin-Destination ldentifiers

In order to simplify the underlying algorithmic formulations, cSamp assumes that each
router on receiving a packet can immediately ascertain the Origin-Destination (OD) pair

for the packet, specified by the ingress and egress routers. However, due to prefix-aggregation
and multi-exit peers, interior routers in the network cannot identify the OD-pair given just

the source and destination IP addresses. Thus, cSamp imposes two requirements: (i) mod-
ifications to packet headers to carry OD-pair identifiers, and (ii) upgrades to border routers

to compute the OD-pair identifiers [66] for each packet. Both modifications present signif-
icant deployment barriers for many ISPs. Thus, while cSamp is an elegant architecture that
has the potential to improve flow monitoring, it does not have an immediate deployment
path for ISPs today.

To address this impediment, in this chapter, we reformulate the problem of implement-
ing a cSamp-like architecture when OD-pair identifiers are not available. The goal of such
an architecture, to which we refer as cSampi3 to realize the benefits of cSamp and at
the same time be immediately deployable. An immediate consequence of this reformu-
lation is that the known algorithms [147] for efficiently maximizing either the total flow
coverage or minimum fractional coverage across all OD-pairs, no longer apply. In fact,
we show that these problems are NP-hard. Consequently, a central challenge is to develop
algorithms for efficiently computing sampling strategies so as to optimize these measures,
either exactly or approximately.

In this chapter, we present substantial progress toward meeting this challenge. For the

lcSamp-T denotes cSamp minus Tags for OD-pairs

41



measure of total flow coverage (total number of unique flowgéal), we notice that the
objective function isubmodular. This is important because even though it is hard to find
an exact optimal solution, we can implement efficient greedy algorithms with good ap-
proximation guarantees that leverage this submodularity property. We borrow and extend
results from a rich theory of optimizing submodular functions subject to budget constraints
(e.q., [71, 114, 91, 93]) to this specific application. We show that on realistic topologies,
this approach yields near optimal total flow coverage.

The minimum fractional coverage objective (i.e., the minimum across all OD-pairs
of the fraction of flows logged per OD-pair) is not submodular, however, and so does not
inherit these approximation guarantees with a greedy approach [93]. Moreover, on realistic
topologies the greedy approach performs poorly. So, in this case we turn to examining
the additional resources needed in order to obtain good performance. We consider two
practical scenarios for ISPs to alleviate this concern: (a) augmenting targeted routers with
more memory resources and (b) incremental deployment of cSamp by upgrading a small
subset of border routers with the functionality to compute OD-pair identifiers and add
them into packet headers. Our results in this direction are promising: we show that a few
such router upgrades can significantly boost the minimum fractional coverage obtained in
realistic topologies.

cSamp-T thus makes cSamp-like solutions more immediately deployable by relaxing
the dependence on the OD-pair identifiers. Further, it provides an incremental deploy-
ment path for ISPs to transition their flow monitoring infrastructures to cSamp, while in
the interim partial deployment phase it provides performance comparable to cSamp. We
also believe that many of the specific algorithmic techniques and heuristic extensions we
develop here (e.g., applying results from the theory of submodular set maximization, in-
telligent resource provisioning, hybrid cSamp/cSamp-T deployment) can be more broadly
applied to other aspects of network management and measurement.

3.1 Background and Motivation

Assumptions in cSamp: There are three main assumptions: (i) a centralized module for
assigning router responsibilities that has access to routing and traffic matrices, (ii) routers
implement hash-based flow sampling, and (iii) routers obtain OD-pair information from
packet headers.

The first two assumptions are feasible within current technological and operational
realities. First, centralization is viable if the router configurations are generated in a rea-
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sonable amount of time (say at most 1-2 minutes). Furthegntedcends show that ISPs
increasingly favor centralization of the network management functions [37, 73] and that
routing and traffic matrices are typically already available [66, 184]. The second assump-
tion that routers support hash-based flow sampling is also feasible within capabilities avail-
able today. The requirements on such hash functions are quite simple [153, 54] (e.g., no
strong cryptographic guarantees) and thus they are amenable to fast hardware implemen-
tations [136]. Further, routers already implement hardware hash functions for other tasks.
Flow sampling requires flow table lookups for each packet; the flow table, therefore, needs
to be implemented in fast SRAM. Prior work has shown that maintaining such counters is
feasible [62, 89]. For simplicity, cSamp assumes that the flow counters are maintained in
SRAM and the amount of SRAM is the resource constraint that determines the number of
flows a router can log.

The assumption that routers can obtain OD-pair identifiers simplifies cSamp’s design
and makes the optimization problem theoretically tractable. Specifically, Eq (2.2) implic-
itly assumes that the hash-ranges assigned to different routers for the same OD-pair are
non-overlapping. Thus, the coverage of each OD-pair is simply the sum of the fractional
coverages of the routers on the path. If OD-pair identifiers were not available, this would
no longer hold. As we argue next, for many ISPs this assumption is not practical.

Challenges in OD-pair identification:

Given no additional information, a router needs to determine the ingress and egress
routers (the OD-pair) for a given packet using only the packet's source and destination
IP addresses and its local routing table. The feasibility of doing this depends on whether
the ISP uses IP-based or MPLS-based forwarding. While IP forwarding is destination-
based, MPLS can also take into account source information. However, we are unaware
of deployments configured in this way, and we have confirmed that a large tier-one ISP’s
deployment of MPLS, for example, does not [29]. As such, here we restrict our atten-
tion to destination-based MPLS forwarding, which we believe to be the norm. Table 3.1
summarizes the feasibility of resolving the ingress and egress in these two scenarios.

Information to Routing/Forwarding
Resolve IP (dest-based) | MPLS (dest-based)
Ingress Difficult Difficult
Egress With some ambiguitJ Possible

Table 3.1: Feasibility of resolving ingress and egress information using packet headers
and local routing tables.
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In both cases, resolving the ingress is nearly impossible ekample, in the case of
traffic entering from a multi-exit peer (i.e., a neighboring AS with which an ISP peers at
multiple peering points), source IP address and routing table information cannot determine
the ingress from which the packet arrived. With MPLS, the egress can be resolved exactly;
with IP the egress can be resolved within some ambiguity. Further, in IP forwarding,
ingress/egress resolution may be additionally difficult due to prefix aggregation.

Due to the above challenges, cSamp assumes that ingress routers explicitly add OD-
pair identifiers to packet headers. However, this leads to a practical deployment hurdle—it
imposes additional processing on ingress routers to resolve/add the egress information and
requires modifications to packet headers to carry OD-pair identifiers.

3.2 cSamp-T: Problem Statement

The above challenges in OD-pair identification bring us to the motivating question for our
work: Can we implement a cSamp-like approach without requiring OD-pair identifiers?
Intuitively, we want to specify each router’'s sampling manifest abarser granularity
relying only onlocal informationrather than the global OD-pair identifiers, while still
achieving the coverage guarantees of cSamp. We call this new approach cSamp-T.

cSamp-T eliminates the need for ISPs to (a) upgrade border routers with additional
intelligence for OD-pair identification, (b) modify packet headers to accommodate these
identifiers, and (c) overhaul their routing infrastructures. Thus, cSamp-T makes the bene-
fits of cSamp-like solutions available to network operators without incurring the overhead
for OD-pair identification that cSamp imposes.

High-level approach: The key requirement in the cSamp-T approach is to onlyacsd
information at each router to specify the router's sampling responsibilities. The coverage
of each OD-pair is obtained by “stitching” together the coverages provided by each router
on the path.

Consider the example shown in Figure 3.1 with 2 ingresses, 2 egresses, and 4 OD-pairs
P1-P4. The top-half shows a cSamp configuration; OD-pair identifiers are available and
each router’s responsibilities are in terms of hash-ranges per OD-pair and for each OD-pair
the ranges on the routers on its path are non-overlapping.

The bottom-half of Figure 3.1 shows a scenario where routers cannot obtain OD-pairs.
The sampling manifests are specified based on just local information; each router is as-
signed ahash-range per router 3-tupleonsisting of the previous hop, current router, and
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Four OD-pairs: P1:11-E1, P2: I11-E2, P3: 12-E1, P4: 12-E2
With OD-pair identifiers

Coverage:
P1:02+0.3=0.5

(=2) P2:03 +0.3=0.6
51, 100.2] P1,]0.2.0.5] P310.1.03 ;3‘5 g.; +04=05
P2, [0,0.3] P2,[0.3,0.6] P4,[0,0.5] o
P3,[0,0.1]

Without OD-pair identifiers; Use only local information

Coverage:

<R1,RZ,R3>, [0.1,0.2] P1: [0,0.2]U10.1,0.2]U[0.1,0.3] = 0.3

@ P2: [0,0.2]U[0.1,0.2]U[0.1,0.2] = 0.2

P3: [0,0.1]U[0.1,0.2]U[0.1,0.3] = 0.3

<1.R1R2>, [0.0.2] <R2,R3,El>, [0,1,0.37~_P4: [0,0.1]U[0.1,0.2]U[0.1,0.2] = 0.2
<I2,R1,R2>, [0,0.1] <R2,R3,E2>,[0.1,0.2]

Figure 3.1: Example topology showing the intuition behinel ¢lsamp-T approach

the next hop. Note that for each packet, a router can ascertain the previous hop and next
hop just based on local information (e.g., the interface the packet arrives on and the next
hop router determined by the routing table). The coverage for each OD-pair will then be
theunionof the ranges assigned to its constituent path-segments (the 3-tuples on each path
in this example).

This example demonstrates two key differences between cSamp and cSamp-T. First,
the sampling responsibilities are specified using locally available information rather than
global OD-pair identifiers. Second, the coverage for each OD-pair is no longer simply the
sum of the coverage of each router on the path; it is the union of the ranges assigned to the
routers on the path.

Now, how do we assign sampling responsibilities in cSamp-T to maximize specific
flow coverage objectives while operating within each router’s resource constraints? The
following sections present a formal framework to address this.

Problem Formulation for cSamp-T: We borrow two assumptions from cSamp: (a) sam-
pling responsibilities are generated at a centralized module with access to routing and
traffic matrices and (b) routers implement hash-based flow sampling using SRAM coun-
ters and the amount of SRAM is the main constraint on the number of flows a router can
log. As discussed earlier, both are reasonable assumptions. Next, we discuss how the a
centralized module can assign sampling responsibilities without OD-pair identifiers.
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We first define the notion of &amplingSpedo capture the granularity at which each
router’'s sampling decisions are made. For the current discussion, the SamplingSpecs are
three-tuples of router identifiefs?;, , R,,, R;,) that appear contiguously on some path in
the network, and so in particuldt;, andR;, are neighbors of;,. Let ¢, denote a generic
SamplingSpec in our system.

The notationa, € P; captures the idea of a SamplingSpec being on the patbr
OD;.2 For example, if the patl®; uses routers- - R, Ry, R in that order, then

J2 73
the SamplingSpee = (R;,, Rj,, R;,) € P;. This is a natural extension similar to the
notion of a routerR; being on path”;. We uset, = > ., .p T; to denote the total
traffic that traverses,.. Our framework maps SamplingSpecs to routers in a many-to-one
fashion; we denote the set of SamplingSpecs assignég by R;.specs. In this way,R;
is assigned sampling responsibilities corresponding ta,af R;.specs. In this chapter,

if a = <Rj1, Rj2, Rj3>, thena, € Rj2.specs.

From the above discussion, it is clear thaRifspecs > a;, thenR; is in a position to
log (some or all) of the traffic on pathd > a,. But which fraction should it log? To this
end, if the entire traffic corresponding &p is mapped to points in the unit intervil, 1]
(say, by hashing) then the router will be responsible for some subgetlof In particular,
we discretiz€0, 1] into ; equal-sized intervals of lengthh, = [(I — 1)4, 16], and assign to
a;, Some of theseé-intervals.

We formalize this by creating a set 8amplingAtoms. A SamplingAtom is a pair
(ax, h), whereq is a SamplingSpec arfdC [0, 1] is a “hash-range”—a subset of the unit
interval of lengthd. For any SamplingAtomg,; = (ax, ), if a4, € R;.specs, then router
R; will log the flows that traverse;, such that the hash of the flow falls ip. We use
h(gr) as a shortcut for the hash-range associated gyjth

Example: Figure 3.2 illustrates the above definitions with an exam@e. has three
SamplingSpecs in the forward direction (and three similar SamplingSpecs in the reverse
direction): (R1,R3, Rj), (R1,R3, R2) and(R2, R3, R4). R3 is assigned three Sam-
plingAtoms, two for(R1, R3, Rj), one for(R2, R3, Rj), and none foR1, R3, R2).

Sayé = 0.25. Consider paths of the forfv., R1, R3, R4, ..} (there may be many such
paths).R3 will log all flows along these paths whose hashes fall either in the range5]

or [0.75,1], and flows along paths of the forfn., R2, R3, R/, ..} such that the hash of

the flow falls in the rang@, 0.25].

2Since this notion of “on-path™-ness is quite general, our approach works for multi-path routing as well.
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Figure 3.2: Example to illustrate the definitions showing$aenplingSpecs and assigned

| <R1,R3,R2><R4,R3,R1>
| <R4,R3,R2><R2,R3,R1> {

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

SamplingSpecs SamplingAtoms
<R1,R3,R4>, [0,0.25]:
<R1R3R4> —7 SRIRIRI> [0_75’1 |
<R2,R3,R4> - <R2,R3,R4>, [0,0.25]:

/

SamplingAtoms at router R3.

Notation Explanation
M Number of OD-pairs
N Number of routers
OD; OD-pairi
Ci Fraction of flows on OD-paii covered
R; Router;
L; Available resources oR;
Load,; Total monitoring load ok,
ay, SamplingSpeé
R;.specs set of SamplingSpecs i),
b Total traffic traversing SamplingSpeg
Okl SamplingAtom/ on a
Trl an assigned or selected SamplingAtom
h(gw) | hash-rang& [0, 1] in SamplingAtomgy,

Table 3.2: Notation in the problem statement
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Measures of Goodness: Given a set of assigned SamplingAtordg;; }, the fractional
coveragdor OD; is as follows. The coverage due to one particular SamplinggpecP;
isU; h(gr) € [0, 1], and hence the total coverage is

coverageC; = |U, ep, U, P(Gx1)| (3.1)

Here, given an intervad C [0, 1], we us€S| to denote the fraction of the unit interval
covered by this subset. Note that the coverage for a path isilbe of the assigned hash-
ranges across all the constituent SamplingSpecs — i$anechash-range is assigned to
several SamplingSpecs along a path, then the same set of flows gets sampled and we do
not get any extra coverage.

The monitoring loadon a router is given by summing, over all SamplingSpecs
R;.specs, the portion of the traffic throughy, that R; logs:

Loadj = ZakeRj.specs tk X ‘Ul h(@” (32)

Given the(;s for the various OD-pairs, the specific functions we consider arethke
traffic coveragef,,, = >, 7 C;, and theminimum fractional coveragg,,;, = min; C;.
Formally, the goal of our algorithms is to obtain the set of assigned SamplingAtgins
such that we maximize eith¢,; or f,..., while operating within the router resource con-
straints (i.e.,.Load; < L; for all j). We choose these specific objective functions because
of their use in cSamp [147]; our framework can accommodate a wider range of objective
functions specified as convex combinations of thealues.

The maximization problem: We can rewrite the above maximization problems as fol-
lows. Consider a “ground se®’ which contains as its elements all possible Samplin-
gAtoms: i.e.,V = {(a, hy) for all possible SamplingSpees and all ; hash-rangesy }.
Suppose a subsét C V of these SamplingAtoms are chosen and assigned to their cor-
responding routers. These give us the fractional coverages defined by Eq (3.1) and router
loads given by Eq (3.2). Now;;.; or f,... can be viewed as functions from subsetd/of

to the reals. The problem is to select ygtimal S* C V, satisfyingLoad; < L;, that
maximizesfio; or foin-

Exact Solutions are Hard: Finding the optimalS* to maximizef,,; or f,.., subject to

the load constraints on routers is NP-hard. The next section demonstrates the hardness via
a reduction from the 3-SAT problem. Moreover, it is infeasible for practical system sizes.
Specifically, we cast the problem into an integer linear programming (ILP) formulation
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by assigning 0-1 indicator variables for eaghto denote whether it is “assigned” or not.
Even on the Internet2 topology with just 11 routers, the commercial s@EXdid

not converge to a solution after a day. Because of this intractability of solving the problem
exactly, we resort to greedy approximations. However, as we will see, our algorithms yield
results that compare favorably to the original cSamp performance.

3.3 NP-hardness

First, we show that the decision version of thg cSamp-T problem witlh = 1 is NP-
hard via a reduction from 3-SAT. Then, we extend the result and shoyvthé case is at
least as hard as the= 1 case.

Hardness foréo = 1. Let the variables in the 3-SAT problem be denotedchy. . ., zy
and the clauses denoted by, ..., C),. Given an instance of a 3-SAT problem, we con-
struct a cSamp-T problem as follows.

The set of “routers” in cSamp-T iX UT U F U D, whereX = {Xj,..., Xy},
T={T,...., Ty}, F ={F,...,Fy},andD = {Dy, ..., Dy}. Edges in the graph are
{(T5, X5) Y ULCES, X503 UG, Dy y U(D;, Ty g" > 5y U{(Dy, Fy }i' > g}

Each SamplingSpeg, can be one of the following(T;, X;, D;), (F};, X;, D;), (X;, D;, Tj/),
and (X;, D;, F;). There is exactly one SamplingAtog, for eache, and is equal to
(ax, [0, 1]). The budget constraints fd», F', andT" nodes is zero. The only non-zero bud-
gets are on th&’ nodes andudget (X ;) is equal tanax(#clauses with;, #clauses witlr;).

For each clause, we construct a OD-pair/p&tlas follows. Without loss of generality,
let us assume that the clauses appear in sorted order of the variable indices. If the literal
x; appears in the clause, there is a sequence of vertices of th&foxn, D; in the path.
If the literal z; appears in the clause, there is a sequence of vertices of theffptiy, D;
in the path.P; has edges fromb; to the adjacent (in sorted order of indices) variablg’s
or F;; depending on whether; appears in positive or negative form in the clause. Each
path has unit traffic, i.evi, T; = 1.

Example: If C; = (z; V 7% V ), we create a patlt, = (1}, X;, D;, Fy., Dy, 1}, X)) as
shown in Fig. 3.3.

Claim: The decision problem of checkingfif; = M on the above cSamp-T problem is
equivalent to solving the 3-SAT instance.

By construction, the only non-trivial SamplingAtoms are of the fd(ffy, X;, D,), [0, 1])

49



Figure 3.3: Example showing the path corresponding to theseld; = (z; V 75 V ;)

or ((F;, X;, D;),[0,1]). Note that they specify all-or-nothing responsibilities. Due to the
way the budgets are defined, for eachexactly one of 7}, X;, D;, [0, 1]) or (F;, X;, D;, [0, 1])

is “active”—in effect this corresponds to setting the variablé¢o be true or false. Hence,

P; has unit coverage in the solution of the cSamp-T instance if and only if there is at least
one satisfied literal in clausg;. Thus, checking if there is a satisfying assignment or not
for the 3-SAT formula is equivalent to checking if the coverdgge= M or f,,, < M. (In

fact, it is also equivalent to checking ff.;, = 1 or f,.;, = 0.) This proves the hardness

for both cSamp-T problems of maximizinfg,; and f,,;, with § = 1.

Hardness with finer discretization: Given integerd > 1, the hardness for thé =

1/d < 1 case follows from a reduction from tlde= 1 problem. Indeed, given an instance
of the cSamp-T decision problem of decidingfif; = M with § = 1, we construct the
following instance withy = 1/d: we created — 1 “dummy” verticesV;, ..., V;_4, and
prepend these vertices to all patAs We set the budgets on the dummy vertices to be
(1/d) x M. For every non-dummy vertex in tlie= 1 problem, we scale the budgets by a
factor1/d. By construction,f,,; = M on thed = 1/d problem if and only iff;,; = M on
thed = 1 problem; an analogous result holds §6y;,. Thus, the = 1/d problems are at
least as hard as the= 1 problems.

3.4 Submodularity and Algorithms

Overview and Intuition: In the previous section, we saw that obtaining exact solutions
for maximizing the total coverage or the minimum fractional coverage in the cSamp-T
framework is hard. Fortunately, as we will see in the next sections, there are efficient prac-
tical algorithms to obtain the sampling strategies in cSamp-T. The key insight is that the
coverage functions have a natural “submodularity” property (defined next) which allows
us to apply powerful results from the theory of maximizing submodular set functions to
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our context. This is particularly promising, since submadity implies that the greedy
algorithm yields a constant-factor approximation [71].

More specifically, the coverage functions are “submodular” and the memory con-
straints at each router are “knapsack” constraints; our problem is then equivalent to the
problem of maximizing submodular functions subject to knapsack constraints. We give
theoretical bounds (Section 3.5) and also show that the greedy algorithms work very well
in practice. We also give results for maximizinig;, using algorithms for max-min sub-
modular maximization [93].

3.4.1 Submodularity

Definition: A function ' : 2¥ — % mapping subsets of a ground 3eto the reals is
submodulaif for all setsS C S” C V, all elements; € V,

F(SU{s}) = F(S) = F(S"U{s}) — F(5)

i.e., the marginal benefit obtained from addirgto a larger set is smallef71]. This
captures the intuitive property of diminishing returns. The funcfdis monotone (non-
decreasing)f VS C 5', F(S) < F(5).

Submodular set maximization: The goal is to pick a subsét C V maximizing F'(.S);

what makes this problem hard is that we also have a “budget” constraint of the &y«

B; i.e., given “costs’c(s) for all s € V, the total cost(S) := > s c(s) of elements
picked in setS cannot exceed the “budgeB. This submodular maximization problem is
NP-hard [71], but good approximation guarantees are known. In particular, the algorithm
specified in Figure 3.4 either greedily picks elements that give the greatest marginal benefit
and do not violate the budget constraints, or greedily picks the elements that give the
maximum marginal benefgier unit element-cogdepending on whethetfiag is true or

false), as long as the budget is not violated. It is well-known that the better of these two
algorithms is a constant factor approximation algorithm [172].

3.4.2 Application to cSamp-T

It is easy to check the coverag€sviewed as a functions frod = Sampling Atoms —
it are monotone submodular functions, and hence so is their weightefisum> ~ T; C;.

Budget constraints in cSamp-T: The budget constraints in cSamp-T come from the
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SUBMODULARGREEDY(F, V, cbflag, B)

// F :2Y — R submodularp is total budget
// if cbflag istrue use benefit/cost instead of benefit
S0
while (3s € V\ S : ¢(SU{s}) < B) do
forseV\ Sdo
norm « ((cbflag = true) 7 c(s) : 1)
5, O
§* «— argmaxg, g0s
S — SuU{s*}
return(s, F'(S))

O~NOOT ~WNPE

Figure 3.4: Basic greedy algorithm for maximizing a submodiuaction

bounds on router load. To model router load, we need a knapsack constr@aint< L;

for each router?;. A naive approach is to consider the cSamp-T problem as a submod-
ular set maximization problem with multiple knapsack constraints. This naive approach
yields aO(N) approximation, whereV is the number of routers. This is clearly undesir-
able, especially for large networks. Specifically, since egethplingAtom contributes

to the load on exactly one router, this results in a collectionarf-overlappingknapsack
constraints. We call the resulting problesabmodular function maximization subject to
partition-knapsack constraints. (Each “partition” corresponds to a different router, and the
“knapsack” comes from the load constraint for that router). In Section 3.5 we show that a
modified greedy algorithm—an extension of one from Figure 3.4—gives a constant-factor
approximation.

Maximizing f;,,;: To match the theoretical guarantees [172] from Section 3.5, we run
two separate invocations of the greedy algorithm—with and without the benefit-cost flag
set to true, and return the solution with better performance. In practice, both have similar
performance (Section 3.7.1).

Maximizing f,.... To maximize f,..,, we need to go from one submodular function
F to many submodular functiong,, F, ..., F)y—in our case, these are the fractional
coveraged’y, ..., Cy. The problem is now to picls C V to (approximately) maximize

F™in(S) = min; F(S), the minimumvalue across these different functions. This new
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GREEDYMAXMIN(FY, ..., Fy,€e,V, B,7)
// Maximizemin;{ F; }

// Vi, F;:2Y — [0,1] is submodular
Tlower < 01 Tupper < 1

while (Tupper — Tiower > €) dO

Tupper +Tlower
3 Teurrent < 2

// Define the modified objective function
4 Vi, =min(F, Toen); F =3, 5
// Run greedy without budget constraints
5 By «— SUBMODULARGREEDY(E, V, true, co)
// Compare resource usage
6 if MAXUSAGE(B 4, B) > 7 then
// Tewrrent 1S infeasible, reduce upper bound

N -

7 Tupper “— Tcurrent
8 else

// Tewrrent 1S fEa@sible, increase lower bound
9 Tlower <~ Tcurrent

10 Returnm,yer

Figure 3.5: Maximizing the minimum of a set of submodular fumes with resource
augmentation
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CSAMP-T_ROUTER(pkt, Manifest)
/] Manifest = {g = (a,h)}
1 a < GETSAMPLINGSPEQ(pkt)
// Ranges is a set of hash-range blocks
2 Ranges «— GETRANGES(a)
// HAsSH returns a value iff0, 1]
3 hpi — HASH(FLOWHEADER(pkt))
// Log if the hash value falls in one of the ranges
if hyie € Ranges then
Create an entry irlowtable if none exists
Update byte and packet counters for the entry

o 01 &~

Figure 3.6: Implementing cSamp-T on roufey

function F™* is no longer submodular; indeed, obtaining any non-trivial approximation
guarantee for this max-min optimization problem is NP-hard [93]. However, we can give
an algorithm to maximizé™® when we are allowed to exceed the budget constraint by
some factor. Formally, i6* is an optimal set satisfying budget constraints, the algorithm
in Figure 3.5 finds a set with F™(S) > F™in(S*) — ¢ but which exceeds the budget
constraints by a factor of, wherey = O(log(£ Y, .\, Fi(v))) [93].

The key idea is this: the modified objective functiBpn= > min(F}, 7) is submod-
ular. For anyr, £ has the property that its maximum valuelisx 7 and at this maximum
valueVi, F; > 7. Running the greedy algorithm assuming no resource constraints always
gives a set such that the actual resource usage at rBuisrat mosty x Load;. Notice
that this holds for all, and in particular, for the optimal valug = F™i"(S*). Since the
optimal 7 is not known, the algorithm in Figure 3.5 uses binary search over

Router algorithm: Given a solution to the problem of maximizirfg, or f,..., Figure 3.6

shows each router’s sampling algorithm. Note that the router no longer requires the OD-
pair information for a packet; it only requires the coarser SamplingSpec information which
can be immediately discerned using only the packet headers and other local information
(e.g., what interface the packet arrives/leaves on). We allow forRthejes for each
SamplingSpec to be a set of non-contiguous hash ranges; thus, the router samples the
packet if the hash value falls anyof the ranges.
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SUBMODULARGREEDYLAZY (F,V, cbflag, B)

O©CoOoO~NOOLd,WNPE

10
11
12
13

// F :2Y — R submodularp is total budget
// if cbflag is true use benefit-cost instead of benefit
S« 0,6, «—ocforallseV
while (Is € V\ S: (S U{s}) < B) do
Vs € V\ S, active, < false
flag < true
while flag do
§* < argmax ey g0s
if activeg then
S — SuU{s*}
flag < false
else
norm < ((cbflag = true) 7 c(s) : 1)
P F(Su{;:T}T)n—F(S)
activeg «— true

Return(S, F'(S))

Figure 3.7: Greedy algorithm with lazy execution to reducegotation time
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3.4.3 Practical Issues

Reducing computation time: The computation time of the algorithm of Figure 3.4 can

be reduced by using the insight that for each element’, the marginal benefit obtained

by picking s decreases monotonically across iterations of the greedy algorithm [114, 72].
Thus, we can use lazy evaluatioralgorithm [114, 72]. The main intuition behind lazy
evaluation (Figure 3.7) is that not &ll values need to be recomputed in Figure 3.4; only

a smaller subset of that are likely to affect the choice*afieed to be computed. We omit
further details of this algorithm for brevity and refer the reader to the references [114, 72].
We can replace all instances of the procedure caBNsODULAR GREEDY with the lazy
evaluation version in Figure 3.7. Section 3.7.2 shows that this reduces the computation
time by more than an order of magnitude.

For very large topologies (>200 nodes), we use two additional optimizations: (1) In
each greedy iteration, we evaluate the nextest choices ipparallel using the OpenMP
library [15]; (2) We use the cSamp solution for the minimum fractional coverage as the
starting upper bound and avoid unnecessary iterations for the binary search in Figure 3.5.

Generalizing SamplingSpecs: We assumed that the SamplingSpecs are defined at the
granularity of router three-tuples. Note, however, that the greedy algorithms and the per-
router sampling algorithm are generic as they do not depend on SamplingSpecs being
router three-tuples. Thus, we can generalize the algorithms and results to different notions
of a SamplingSpec. For example, the SamplingSpecs can be router identifiers (in which
case the router applies the same sampling decisions to every path passing through it), or
router two-tuples (previous hop and current router), or incorporate IP-prefix information
as well.

Practical issues in discretization: Section 3.2 defined discretization intervalsuch

that gy, = (ax, [(I — 1)6,18]), for valuesl € {1,...,5}. There are two practical issues

to note here. First, we can make the widthrbitrarily small; there is a tradeoff between
(potentially) better coverage vs. the time to compute the solution. In our evaluations, we
fix § = 0.02 since we find that it works well in practice. Secondly, instead of considering

< disjoint intervals, we can also consider tbgehash-ranges of the forimJd, (m +n)d| to

make assignments as contiguous as possible. This increases the computation time quadrat-
ically without providing any additional coverage benefits. In practice, we avoid this and
instead run a simple merge procedure (Section 3.7.3) to compress the sampling manifests.

56



3.5 Algorithmic Guarantees

Suppose we are given a monotone submodular funciion U — R with a partition
U=U0UyW...w U, The goal is to pick a sei C U such thatS N U;| < 1 and the
value F'(S) is maximized. (In other words, we have a partition matroidoand want to
maximizeF’ subject toS being independent in this matroid.) If we greedily pick elements
e; € U; such thak; is an element that-approximately maximizes (« 1) the marginal
benefitF'({e1, ea, ..., ei-1,6;}) — F({e1,e2,...,6,1}), then the benefit'({ey, ..., exr})

is at least; - of the optimal benefit possible [44].

A different setting is wher¥' : U — R is monotone submodular, we have a “budget”
B, and eacle € U has “size’c.: the goal is to pickS C U with ¢(S) := > .sc. < B.
Consider two greedy algorithms: (a) the “cost/benefit” algorithm greedily keeps picking
an element which maxmmesw and does not violate the budget, and (b) the
“benefit” algorithm greedily keeps plcklng elemenivhich maximizes the increase i
and does not violate the budget. One can show that the better of these two algorithms gets
benefit at leasd.35 times the best possible [172]. In fact, an algorithm based on partial
enumeration [161] gets an optim@l — e~!)-approximation.

We can combine these ideas to solve the problem of “submodular maximization sub-
ject to partition-knapsack constraints”. Formally, we are given a monotone submodular
function F : V — R, where there is a partitioll = V; WV, W ... W )V,. Each element
e € V has asize,, and each pai; has a budgeB;: we want to pick a set C V such that
if S; =S NV, then the knapsack constra@ee& c. < B is satisfied. For this problem,
we can combine the two ideas above: imagine each valid knapsack of the elemgnts in
to be a distinct element of the abstract8gtandU = WU,. Then considering the parts
one-by-one, and running the better of the benefit or cost-benefit algorithms on each part,
results in the following result:

Theorem 1 The simple greedy algorithm described aboveﬁ%— > (.148-approximation
for the problem of submodular maximization subject to partition-knapsack constraints.
Using a knapsack algorithm based on partial enumeration, we can get:a~ 0.406-
approximation.

As always, note that the results averst-case guarantees: often these greedy algorithms
for submodular maximization perform much better in practice.

The idea can be extended to the max-min problem. The algorithm for the max-min
problem (subject to a cardinality constraint) from Krause et al. [93] usé$ anc™!) =~
0.632-approximation algorithm for submodular maximization only in a black-box fash-
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ion. Hence we can replace that algorithm by the above algorfdr submodular max-
imization subject to partition-knapsack constraints to get a bicriteria algorithm for the
max-min problem that achieves optimal benefit, but exceeds each budget by a factor
O(log(X",cy Fi(v)))—the fact that we are using an approximation guarante@ la8
instead 0f).632 only changes the constants in the big-oh.

3.6 Heuristic Extensions

While the theoretical guarantees ffy;; are encouraging, achieving good performance for
fmin IS less promising. The theoretical results suggests that the resource augmentation
required to obtain any non-trivial guarantee is quite high.

In this section, we consider three practical extensions to improve the performance for
fmin- The first extension uses a targeted provisioning heuristic to use fewer resources in
aggregate. The second extension evaluates an incremental deployment scenario where a
small subset of ingress routers can be upgraded to add OD-pair identifiers. We present
these in the specific context of thg,;,, objective. However, these two techniques we de-
velop for targeted provisioning and partial marking can be more generally applied to other
network-wide objectives where the greedy algorithm performs poorly. We also consider
an alternative submodular objective function for getting better performandge,far

3.6.1 Intelligent Provisioning

Maximizemin; C;, subjectto

V5, 2 ksae Ry specs e X e < L (3.3)
>_; Lj < Budget (3.4)

Vj,LB; < L; < UB, (3.5)

Vi, G = Y apep, U (3.6)

VEk, u > 0 (3.7)

Vi, C; <1 (3.8)

The theoretical bounds from the previous section assume that each router in the net-
work is uniformly giveny times more resources. In practice, this may be quite excessive
since it might be very expensive to agddimes more SRAM capacity to each router. An
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interesting question is whether it is possible get bettefopeance if we can add more
memory on routers intelligently — instead of upgrading all routers, we seek to augment
a smaller subset of routers and still get similar performance. The rationale behind the
approach is that it may suffice to upgrade a small number of heavily loaded routers.

Problem provisioning: To address this question, we consider the above provisioning
problem. The network operator specifies a total budget of memory resources to be dis-
tributed across different routers (e.g., defined by a total monetary budget and the cost of
SRAM). Each router?; has a lower bound (LJ} for the default memory configuration

and a technology upper bound ({)®n the maximum amount of memory that can be pro-
visioned. (There are natural technological limits on the amount of fast SRAM that can be
added to linecards [167].) The inputs to the problem are the total memory bBddeiz,

LB;, and UB;. The output is the specific allocation of resources to routers to optimize
fmin-

However, it is difficult to model the coveragé of each OD-pair provided by the
greedy algorithm under a given set of resources. Thus, we make a simplifying assumption
that the hash ranges (represented by the variahledlocated across the different Sam-
plingSpecs on a given path are mutually non-overlapping. This allows us to robdsl
simply the sum of the rangesg in (3.6). Under this assumption, the resource provision-
ing problem can be solved as a linear programvwisioning. While this is not optimal
compared to faithfully modeling thé; as the union of the ranges, this is a reasonable
assumption since our goal is to obtain general guidelines for resource provisioning. As we
will see in Section 3.7.4, this heuristic works well in practice.

There are two steps to the intelligent provisioning heuristic. The first step solves the
LP provisioning. Next, given the resource allocation outputfayvisioning, we run the
greedy algorithm in Figure 3.5 with = 1 to ensure that we are strictly within the resource
constraints.

Adding a variance term to the objective: In practice, we find that it is useful to add a
variance term to the objective function. We modify the above objective funation C;

to be{min; C;} — g({L3}), whereg is a function of the second-moments of thealues.

The negative term denotes that our intent isrimimizethe variance across thevalues

(with appropriate normalization to ensure that the variance term and the coverage term do
not have wildly different magnitudes). Among the different configurations that maximize
min; C;, the goal is to pick the configuration that distributes the resources most uniformly
across the routers. This offsets two potential undesirable effects. First, the LP solver may
not necessarily use all the available resources to achieve the optimal minimum fractional
coverage. Second, the LP solution may result in a skewed resource allocation which may
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be undesirable for the greedy algorithm and less robust togdsain traffic or routing
inputs. The variance term forces the optimization solver (now a quadratic program instead
of a LP) to use up the available resources efficiently and also reduces the skew. While this
works well for most common cases, it may not prevent skewed allocations fvhen .

3.6.2 Partial OD-pair identification

Next, we consider a scenario in which a network operator can choose to upgrade some
border routers. For example, this can be achieved using a software update to the router or
by adding a simple two-port middlebox (using a software switch running on commaodity
hardware [122] or using FPGA [82]) that processes each packet, modifies the header, and
forwards them to the router. These few upgraded nodes (routers or router plus middlebox)
then have the capabilities to identify the OD-pairs and add the identifiers to packet headers.
We assume that all routers run both cSamp and cSamp-T sampling algorithms —i.e., a
router logs a flow if the hash of the flow falls in a hash-range corresporatingrto the
OD-pair or the SamplingSpec for the packet.

Problem enabledODs(6, P..):

Minimize » " L;, subject to
j

V), 2 iep.riep,; (dig X Ti) < L (3.9)
Vi€ PeCi= Y0 e, di (3.10)
Vi € Pe, VJ, dij >0 (311)
VieP,,0<C <1 (3.12)

Let P. denote the set of “enabled” OD-pairs whose packets carry OD-pair identifiers
and letP denote the set of all OD-pairs. We compute the maximum minimum fractional
coverage using a binary search oveiThe key difference between the new algorithm and
Figure 3.5 is that each iteration of the binary search has two logical steps. In the first step,
we solve a cSamp-style linear program over the enabled OD-pairs. In the second step, we
define the capped functiors () = min,(C;, 7) for the non-enabled OD-pairs and use
the greedy algorithm to maximize = 3, C;.

In each iteration, for the current valug,,..;, the first step involves solving the LP
enabledODs. The input to the LP is the set of enabled OD-p@trsand the target fractional
coverag® = T..n:- 1he 0bjective of the LP is to minimize the total amount of resources
used across the different routers to ensure that €ath € P, gets coverage at least
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0 = Tourent- Solving the LP returns the resources allotted to each router or returns an
infeasible status if there is no feasible solution.

If the LP is infeasible, then we directly proceed to the next iteration of the binary
search. If the LP is feasible, then we obtain the new budget per router by subtracting the
resources used in the LP stage from the original budget per router. Next, we run the greedy
algorithm with the reduced budget and modified objective specified over the non-enabled
OD-pairs. By construction, the maximum valfiecan take iSM — |P.|) X Teurrens Where
M is the total number of OD-pairs an®.| is the number of enabled OD-pairs. This
maximum value is achieved if and only if each of the non-enabled OD-pairs (i.e., in the set
P\ P.) achieves a fractional coverage equatig..... If the greedy algorithm achieves
this objective value, then.,.....; is feasible and we try a higher value in the next iteration;
else we try a lower value in the next iteration.

3.6.3 Using then-fairness function

The idea ofa-fairness has been used in the congestion control literature (e.g., [120]) to
generalize the notion of max-min fair allocation. Given itemsand a total resource

C we want to allocate the total resource to the items in a “fair” manner. oFf@rness
function is defined a3, U(x;), whereU(z) = ﬁ:;" The parametes can take values in
[0,0), and the valuea = 0, a = 1,2 anda — oo correspond to achieving maximum
throughput, proportional fairness, and max-min fairness respectively.

In our problem setting, each corresponds to the submodular functibpn= C;. It
is easy to check thgt_, U( ;) is submodular; thus, we can useEvODULAR GREEDY
with « set to some large value. To avoid numerical instabilities, weause 100 and
also add a small additive constant to ed¢hat the beginning since the functidn(z) is
undefined when: = 0. Note that unlike the above heuristics, using déh@ir function is
tightly coupled to maximizing the minimum fractional coverage.

3.7 Evaluation

Evaluation Setup: We compare the performance of cSamp and cSamp-T at a PoP-level
granularity, i.e., treating each PoP as a “router” in the network model. Our evaluation setup
(Table 2.1) consists of several PoP-level network topologies from educational backbones

3At a = 1, the function is defined d8(x) = log(z).
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and tier-1 ISP backbones inferred by Rocketfuel [157]. We heetsst-path routing to
construct paths between every OD-pair. The traffic matrix is modeled using a gravity
model based on city populations [150]. We assume that each PoP is provisioned to log up
to L = 400, 000 flow records® For cSamp-T, we discretize the hash-range in increments
of § = 0.02.

3.7.1 Coverage and Overlap

Total flow coverage: We are interested in two aspects: (a) the granularity of Sam-
plingSpecs and (b) is there a significant difference in performance between the benefit or
benefit-cost tradeoff versions of the greedy algorithm.

We consider three granularities of SamplingSpecs: router, router 3-tuple, and router
3-tuple augmented with egress information. Note that the first two SamplingSpecs can
always be inferred from just local information but there may be some residual ambiguity
in resolving the egress (Table 3.1). We use the tuple+egress as a hypothetical solution
to see the gap between it and other solutions. We also compare these to cSamp and a
maximal uncoordinated flow sampling solution. Recall that in maximal flow sampling,
the flow sampling rate for a router isin(1, 1), wherel is the number of flow records it
is provisioned to hold andis the total number of flows it observes; each node maximally
utilizes the available resources.

Figure 3.8 shows that using 3-tuple SamplingSpecs provides significant improvement
(25-30%) over the router-level case. cSamp-T (3-tuple+egress) is closest to cSamp, but
the gap between the 3-tuple and egress-added cases is small. cSamp-T with the tuple
formulation is closest to cSamp.

The theoretical guarantee for total flow coverage depends on running the two greedy
algorithms: with and without the cost-benefit flag. We want to understand if there is a
clear difference in performance between the two configurations. Figure 3.9 shows that
both configurations have very similar performance and that the algorithm with the cost-
benefit flagebflag = false is slightly better.

Minimum fractional coverage: We saw in Section 3.4 that it is impossible to maximize
fmin using a greedy algorithm without resource augmentation. Thus, we evaluate the
performance as a function of the resource augmentation factdrere each router can

log v x 400, 000 flow records. Here, we only consider the router and tuple granularities.

4Assuming 12 bytes per flow record [147], this translates i@ 000 x 12 = 4.8 MB of SRAM per
PoP, which is well within the 8 MB technology limit per linecard suggested by Varghese [167].
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The tuple+egress was almost identical to the tuple case; we do not show this for brevity. In
Figure 3.10, we normalize the minimum fractional coverage by the optimal value achieved
by cSamp at the baseline provisioning (i.e., cSamp at1). For example, if the greedy
algorithm returned a value ®f¥2 at~y = 3 and the solution for cSamp has valiid at
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~v = 1, the normalized y-axis value correspondingyte- 3 is 8—i = 0.5.

With v > 4, cSamp-T has performance comparable5(%) to cSamp for all topolo-
gies. Also, the difference between the router and tuple formulations becomes even more
pronounced with the minimum fractional coverage result — there is a significant advantage
to be gained in using more fine-grained SamplingSpecs. With router-level SamplingSpecs,
even aty = 5, four out of the seven topologies only reach 40% of cSamp’s performance.
For the same' = 5, with tuple-level SamplingSpecs, five out seven topologies achieve at
least 90% of cSamp’s performance.

Figure 3.11 shows the corresponding result when we use-fhgness objective func-
tion with the tuple formulation. We see that this function gives slightly better performance
compared to the capped-minfrac technique used above.

The~ at which cSamp has good performance is much better than the theoretical bound
in Section 3.4. In Section 3.7.4, we show that targeted provisioning reduces this even
further.
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Figure 3.10: Normalized minimum fractional coverage achieved by cSamp-T as a function
of the resource augmentation factor

These results show that 3-tuple SamplingSpecs perform much better than router Sam-
plingSpecs, and are very close to the tuple+egress case. Thus, we focus on 3-tuples for the
rest of the evaluation.

Performance gap between cSamp and cSamp-TThe approximation guarantees com-
pare the performance of the greedy algorithms with the optimal solution for the cSamp-T
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Figure 3.12: Performance gap between cSamp and theoretical upper-bound for cSamp-T

problem. A related question is the gap between the optimal solutions for cSamp-T and

cSamp. It is hard to reason about the optimal cSamp-T solution. Instead, we compare the
theoretical upper bound for the cSamp-T problem by considering a relaxed LP-version

of the problem (similar to therovisioning problem in Section 3.6). Figures 3.12(a)
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and 3.12(b) show that this performance gap for the total floverame and the minimum
coverage respectively using a router 3-tuple granularity for cSamp-T. The figure shows
that the upper bound on cSamp-T performance can be up to 30% lower than cSamp. Com-
paring this with Figure 3.8, we also see that the greedy algorithm is very close to the
theoretical upper bound for cSamp-T in case of the total flow coverage.

Duplicated flow reports: A secondary objective of cSamp is to minimize the total
amount of duplicated flow reports. This reduces the data management overhead in pro-
cessing and eliminating duplicated flow measurements. Figure 3.13 shows the ratio of du-
plicated flow reports to the number of unique flow reports comparing cSamp-T (at the tuple
granularity) and maximal flow sampling. Compared to maximal flow sampling, cSamp-T
has 2-3 xfewer duplicated flow reports. Compared to cSamp (zero duplicated reports) this
is not ideal; however, this performance penalty is unavoidable since cSamp-T operates at
a much coarser granularity.
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Figure 3.13: Ratio of duplicated flow reports to the number ofua flow reports

3.7.2 Algorithm Running Time

In order for cSamp-T to be reasonably responsive to network dynamics, we want the time
to compute sampling manifests to be within few tens of seconds. (A typical measurement
epoch spans a few minutes; we expect that manifests are recomputed across epochs, not
within epochs.) Table 3.3 shows the computation times using the “vanilla” greedy and lazy
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evaluation algorithms. Lazy evaluation provides more thaoraer of magnitude reduc-
tion in the total computation time. The reduction is even more significant for the minimum
fractional coverage since it involves multiple invocations of the greedy subroutine during
the binary search. With this reduction, cSamp-T scales to larger topologies.

Topology | Total coverage (sec) Min. Fractional (sec)
Naive Lazy Naive Lazy
NTT 207.12 4.15 39632 154.1
Level3 205.36 3.30 48269 84.3
Sprint 75.30 2.21 14211 71.6

Telstra 50.53 1.65 6997 45.0
Tiscali 35.18 1.16 8518 33.7
GEANT | 3.06 0.28 542 7.6
Internet2 | 0.22 0.05 38.4 1.9

Table 3.3: Time to compute sampling strategy comparing the vanilla greedy algorithm
with the lazy evaluation optimization

Next, we evaluate how the algorithms scale to very large router-level topologies. We
generate router-level topologies by treating each PoP as a “core” router and add 4 edge
routers to each of these core routers. As described earlier, we use two extra optimizations:
parallel execution within each greedy iteration and tighter upper bounds for the binary
search. Table 3.4 show that even for these very large topologies, the compute times are
within reasonable bounds and can be further reduced by increasing the degree of paral-
lelization.

Topology | # Routers | Total Cov. (sec)| Min. Frac. (sec)
NTT 350 345.9 994.7
Level3 315 224.1 540.2
Sprint 260 174.0 554.6
Telstra 220 180.7 267.6
Tiscali 205 77.0 327.4

Table 3.4: Compute times for large router-level topologies with 4 threads in parallel

3.7.3 Size of Sampling Manifests
Compared to cSamp, cSamp-T increases the size of the sampling manifests. This is be-

cause, unlike cSamp, the hash-ranges assigned for each SamplingSpec are no longer con-
tiguous blocks. To reduce the size of the manifests, we implement a simple compression
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heuristic to merge hash-ranges after the greedy algorithmpates the manifests. This
looks for maximally contiguous hash ranges in the original sampling manifest and merges
them into a single hash range.

We evaluate the overhead of disseminating manifests in Table 3.5. First, the merge
algorithm reduces the manifest sizes roughly 10x. Second, we notice that the total band-
width overhead of disseminating the manifests is not large — 25KB in the worst case after
the merge routine. Finally, on a per-router basis, the worst case size of the manifest is
around 3KB which is quite low.

Topology Total (KB) Max. per PoP (KB)
Naive | Merged | Naive | Merged
NTT 178.5 16.3 5.6 1.0
Level3 341.9 25.2 34.1 3.3
Sprint 140.9 13.0 10.3 0.6
Telstra 112.3 7.2 3.3 0.5
Tiscali 110.9 12.6 9.8 0.6
GEANT | 455 6.5 5.6 0.6
Internet2 | 14.5 5.0 4.5 0.7

Table 3.5: Size of the sampling manifests (in kilobytes of text configuration files) with
cSamp-T

3.7.4 Intelligent Resource Provisioning

As a specific scenario, we séf3; = L = 400, 000 for all j. We model the total budget

as Budget = v x N x L (N is the number of PoPs) and the technology limitsas L.

We vary~ andf and for each pair of values. Figures 3.14(a) and 3.14(b) show the result
for two of the topologies, Level3 (AS3356) and Telstra (AS1221) respectively. We chose
these topologies because the greedy algorithm performed poorly with respect to cSamp in
Figure 3.10. An interesting result is that the curve levels off as a function icé., there

is not much to be gained with increasing the total budget. However, there is significant
improvement by increasing, the technology upper bound. In fact, even with a moderate
increasey = 1.2, we see that the performance gets within 80% of the cSamp performance.

Since is more crucial to the overall performance thgrior the remaining topologies
we fix v = 1.5 and analyze the normalized minimum fractional coverage as a function of
0 in Figures 3.15 and 3.16. With = 5, all the topologies achieve at least 60% of the
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ideal cSamp performance. Similar to the previous resultsytfar shows slightly better
performance. Contrasting this result with Figures 3.10 and 3.11, the main difference is
that we do not require all PoPs to be augmented with five times as many resources — the
total resource budget is less thah x.
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3.7.5 Partial OD-pair Identification

We try three strategies for selecting the enabled OD-firsupgrading the top-k PoPs
that (a) observe the maximum amount of traffic, (b) lie on most number of routing paths, or
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AS Greedy-Minfrac Greedy-Total
NoHybrid | Hybrid
NTT 0.13 0.58 0.58
Level3 0.10 0.60 0.60
Sprint 0.22 0.61 0.64
Telstra 0.13 0.59 0.62
Tiscali 0.23 0.60 0.63
GEANT 0.35 0.63 0.68
Internet2 0.60 0.71 0.78

Table 3.6: Comparing the performance of the hybrid maximization to the greedy algorithm
for maximizing the total flow coverage alone

(c) originate the most traffic. Here, upgrading implies that we enable OD-pair identifiers
on all OD-pairs having one of these top-k PoPs as origins. For/igagl run the two-step
procedure from Section 3.6.2 for all valueslin . . , & and pick the configuration with the
highestf,.i,..

Figures 3.17(a) and 3.17(b) show the normalized minimum fractional coverage for the
Level3 and Telstra topologies as a functiorkqghumber of top-k PoPs). First, we observe
that enabling even on a small number (around 8%) significantly improves the performance.
Second, enabling identifiers on routers that observe the most traffic performs much better
than the other two strategies.

3.7.6 Hybrid Coverage Objective

cSamp maximizes the total flow coverage subject to achieving the highest possible min-
imum fractional coverage across OD pairs. So far, in cSamp-T we considered these two
objectives separately. A natural question is if there is an effective algorithm for maximiz-
ing the hybrid objective, i.e., maximize total coverage subject to achieving the maximum
minimum fractional coverage. It is relatively simple to extend the algorithm in Figure 3.5
to achieve this — first run the greedy algorithm to optimize the capped minimum frac-
tional objective ) and then modify the objective function to optimize the total coverage

if T.urent 1S fEASIDIE.

To evaluate this hybrid approach, we consider the resource configuration obtained us-
ing the targeted provisioning approach with= 1.5 andj = 5. Table 3.6 compares the to-
tal coverage obtained with three strategies: maximizing the minimum fractional coverage,
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maximizing the total flow coverage, and the above two-stepistez Not surprisingly, we

find that maximizing the minimum fractional coverage alone does not work well for the
total coverage. This is because the greedy algorithm terminates when it has achieved the
targeted coverage for all OD-pairs even if it has additional resources that can be used to
boost the total coverage. The table also shows that total coverage obtained by the hybrid
approach is very close to that of the greedy algorithm for maximizing the total coverage
alone. While it is hard to provide theoretical guarantees for the hybrid objective, Table 3.6
shows that our approach works very well in practice.

3.8 Discussion

More fine-grained local information: Our current choice of SamplingSpecs is topology-
driven; we model the granularity of sampling manifests in terms of path-segments (e.g.,
router or router 3-tuple). One direction of future work is to expand the scope to include
prefix and routing table information. For example, it might be possible to approximately
estimate the OD-pair information given the source and destination address of a packet
and the available routing table information or alternatively providing additional informa-
tion (e.g., distributing IP-prefix to ingress-egress maps to routers [35]). This creates the
possibility of a cSamp-T formulation with more fine-grained information to bring the per-
formance closer to cSamp.

Sensitivity of router upgrades: Section 3.6 suggests two heuristics for upgrading
routers either with additional memory or the ability to insert OD-pair identifiers in packet
headers. The provisioning and partial marking formulations, as presented, assume static
routing and a static traffic matrix. Real-world routing and traffic matrices typically have
some dominant structural patterns that are invariant to localized dynamics. Thus, we can
apply these formulations and perform upgrades after extracting these dominant patterns.
Evaluating the sensitivity of the performance improvements to traffic or routing dynamics
and designing upgrade strategies robust to dynamics are topics of future work.

3.9 Related Work

Theory of submodularity: Submodular set-functions have long been studied as discrete
analogs of convex functions: in particular, maximizing a submodular function subject to

72



side constraints has a rich history; see, e.qg., [44, 172,d6d }he references therein.

Greedy algorithms for monitor placement: Prior work has applied greedy algo-
rithms for monitor placement to cover all routing paths using as few monitors as possi-
ble [47, 159]. The authors show that such a formulation is NP-hard and propose greedy
approximation algorithms. There are also extensions to these problems to incorporate
packet sampling [159, 45]. However, these do not satisfy flow coverage objectives, and
in fact by relying on packet sampling, they can result in a large amount of redundant flow
measurements. cSamp-T provides more fine-grained flow coverage objectives and reduces
duplicated flow reports.

Sensor network monitoring: There has been recent work applying the theory of maxi-
mizing submodular set cover functions in the context of maximizing information obtained
from multiple sensors [74, 92]. The objective of selecting observations against a set of
adversarial objectives [93] is similar to the notion of maximizing the minimum fractional
coverage objective. Krause and Guestrin [91] provide a good survey of known results and
applications of these ideas.

3.10 Chapter Summary

cSamp is a promising architecture to meet the demand for fine-grained flow monitoring
capabilities in ISPs. However, ISPs cannot realize the benefits of cSamp in practice be-
cause of its reliance on OD-pair identifiers; it requires changes to packet headers, imposes
additional overhead at ingress routers, and may require ISPs to overhaul their routing in-
frastructure.

This chapter described cSamp-T, a framework that provides benefits comparable to
cSamp, in which the sampling decisions at routers are based only on local information,
and do not rely on global OD-pair identifiers. Obtaining exact solutions to maximize the
total flow coverage (;f;) and minimum fractional coverage,(f,) is NP-hard. We achieve
near-optimal performance fgi,; by leveraging its submodularity. Fdgr,;., getting good
performance without resource augmentation is provably hard. However, targeted provi-
sioning achieves near-ideal performance with low overhead. Alternatively, upgrading a
small number of border routers to provide OD-pair information also yields good results.

cSamp-T thus makes the benefits of coordinated network-wide monitoring solutions
like cSamp more immediately available to ISPs and also provides an incremental deploy-
ment path for ISPs to transition to cSamp.
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Chapter 4

Revisiting the Case for A Minimalist
Flow Monitoring Architecture

Flow monitoring supports critical network management tasks such as traffic engineer-
ing [66], anomaly detection [99, 100], accounting [55, 62], identifying and analyzing
end-user applications [49, 86], understanding traffic structure [174], detecting worms,
scans, and botnet activities [176, 168, 134], and forensic analysis [173]. These require
high-fidelity estimates of traffic metrics relevant to each application.

High traffic rates exceed the monitoring capabilities of routemsd since traffic is
scaling at least as fast as routers’ capabilities, some form of sampling or data reduction
is necessary in commaodity solutions. (There are high-end solutions for full packet cap-
ture [12]. These are expensive and require specialized instrumentation.) The de-facto
standard is NetFlow [48, 11] which uses packet sampling. Each packet is sampled with
some probability and the selected packets are aggregated intd.fldetslow-style mon-
itoring is sufficient for coarse applications such as traffic volume estimation, but several
studies have shown the inadequacy of packet sampling for many of the fine-grained mon-
itoring applications mentioned earlier (e.g., see [118, 79, 56, 96, 40, 134, 62]).

Consequently, several research efforts have focused on application-specific monitoring
techniques. This is exemplified by the proliferation of data streaming algorithms for com-
puting the flow size distribution [96], entropy [102], superspreader detection [168], degree
histogram estimation [176], change detection [94], and so on.

1Our arguments apply to non-router monitors as well. For simplicity, we use the term router as it repre-
sents operational realities.
2A flow is a sequence of packets with the same IP 5-t¢gsieip, dstip, srcport, dstport, protocol
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While this body of work has made valuable algorithmic contiitms, this shift to
application-specific approaches is undesirable for two reasons:

e First, this increases the implementation complexity and resource requirements of
routers.

e Second, the set of applications is a moving target as normal and anomalous traffic
patterns change. This requires router vendors and network managers to commit to
a fixed set of application-level metrics without knowing if these will meet future
requirements.

We reflect on these trends and ask a fundamental question in this chapter:
Is such complexity and early commitment necessary?
Are there simpler alternatives that can provide the requisite fidelity and generality?

Approach and Intuition: We revisit the case for minimalist approach that retains the
simplicity of NetFlow, where routers only need to suppdig\@monitoring primitives, but
still provide coverage over a wide spectrum of applications.

To understand how we can achieve this, we can think of each monitoring application as
being composed of two logical phases: (lQadlectionphase that needs to operate at line
rates and (2) aestimationphase to compute different traffic metrics that need not strictly
work at line rates. Application-specific alternatives tightly couple these two components,
only retaining counters and statistics relevant to a specific application context (Figure 4.1).
In contrast, we can envision a minimalist approach tleatoupleghe collection and esti-
mation phases as much as possible.

A key question is whether such an approach can provide estimation accuracy compa-
rable to application-specific alternatives. One rationale to suggest that it can, is that the
primary bottleneck for monitoring is keeping counters in fast memory (SRAM). Instead of
splitting the available memory across different applications, we can aggregate it, and run
a few simple primitives with high-enough sampling rates to obtain accurate estimates of
traffic metrics for a wide spectrum of applications. In other words, when we look at each
application in isolation, application-specific strategies are appealing. However, when we
consider a portfolio of applications in aggregate, a minimalist approach might be a better
alternative.

Contributions and Implications: Our goal is not to design an optimal minimalist ap-
proach. Rather, our objective is to establidleasibleinstance.

We present a practical minimalist approach in Section 4.3 that combines sample-and-
hold [62], flow sampling [79], and cSamp [147]. Our choice of these specific primitives
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Figure 4.1: A minimalist approach runs a few collection aidwns. Applications can

use the collected data later (possibly offline). NetFlow/packet sampling is a minimalist
approach, but it is not well-suited for many applications. An application-specific architec-
ture implements many focused algorithms. These work well for the specific applications,
but increase complexity and are not robust to changing demands. We demonstrate a mini-
malist alternative that performs favorably w.r.t application-specific approaches over a wide
spectrum of applications.

is guided by the understanding that monitoring applications fall into two broad classes
that analyze (1yolume structurée.g., traffic engineering) or (Zpmmunication structure
(e.g., security applications). Flow sampling is ideally suited for the latter class [79, 118,
115] and sample-and-hold for the former [62]. cSamp provides a framework to efficiently
leverage router resources to meet network-wide monitoring goals.

We use trace-driven analysis to evaluate this design against several application-specific
approaches (Section 4.5): detecting heavy hitters [62], superspreaders [168], and large
traffic changes [94]; computing entropy [102] and the outdegree histogram [176]; and
estimating the flow size distribution [96]. When our approach has the same total mem-
ory resources as that used by the different application-specific algorithms in aggregate, it
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provides comparable or better estimation accuracy acressritire spectrum of applica-
tions. Moreover, by delaying the binding to specific applications, it enables computation
of not-yet-conceived measures that will be interesting in the future.

This chapter shows the promise of a minimalist approach even with a simple combi-
nation of existing techniques. We believe that this has significant implications for router
vendors, network operators, and measurement researchers. First, it can reduce router com-
plexity without compromising a vendor’s ability to satisfy its customers’ demands. Sec-
ond, it helps insulate network deployments efforts from the changing needs of monitoring
applications. Finally, we hope that our work encourages future research in developing bet-
ter minimalist primitives and estimation algorithms, and in understanding their fidelity for
different applications.

4.1 Background and Related Work

Packet sampling: Router vendors today use uniform packet sampling [48]: a router se-
lects a subset of packets, and aggregates the sampled packets into flow reports. However,
packet sampling has inherent limitations. There are known biases toward sampling larger
flows (e.g., [79, 96, 118]) and several studies have questioned its fidelity for many man-
agement applications (e.g., see [118, 79, 56, 96, 40, 134, 62]).

Application-specific approaches: The limitations of packet sampling have motivated
many application-specific data streaming algorithms [28, 123]. The high-level approach is
to use a small number of SRAM counters pertinent to each application and then estimate
the relevant traffic statistics from these counters. These include algorithms for estimating
the flow size distribution [96, 138], identifying heavy hitters [62, 90], entropy estima-
tion [102, 75, 24], superspreader detection [168], degree histogram estimation [176], and
change detection [94, 144]. However, these approaches are tightly coupled to the specific
applications and report summary statistics pertinent to each application. Thus, it is diffi-
cult to estimate or extrapolate other measures of interest from these reports. Therefore,
these lack the generality to serve as minimalist primitives.

Some data structures (e.g., count-min sketches [50]) provide more generality. How-
ever, these have two limitations. First, they are designed primarily for coatsene
gueriesand thus less suited for more fine-grained tasks like entropy estimation and super-
spreader detection. Second, sketches operate with a specific “flowkey” defined over one
or more fields of the IP 5-tuple (srcip, dstip, srcport, dstport, protocol). Each flowkey of
interest requires a separate instance of the data structure. However, it is often necessary
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to analyze combinations of two or more fields for diagnostigpses (e.g., investigating
anomalies). A separate instance for each required combination incurs high overhead. Fur-
thermore, this needs advance knowledge of which flowkeys will be useful, which may not
be known until after the operator begins to investigate specific events.

Selective sampling:Some approaches assign different sampling rates for different classes
of packets [98, 134]. Others only log flows with pre-specified patterns (e.g., [180, 9,
14, 116, 41]). While these approaches provide some flexibility, they need to know the
specific classes and sampling rates to meet the applications’ requirements. In contrast, we
envision a minimalist approach that is agnostic to the specific types of analyses that may
be performed.

Network-wide measurements:Many studies have stressed the importance of network-
wide measurements to meet operational requirements as applications and attacks become
massively distributed [66, 99, 100]. For example, understanding peer-to-peer traffic [49],
detecting botnets [134] and hit-list worms [115], understanding DDoS attacks [145], and
network forensics [173] inherently require a network-wide view aggregated from multiple
vantage points. In this respect, recent proposals show the benefits of moving beyond
router-centric solutions to network-wide monitoring solutions [45, 147].

4.2 Design Considerations

Given this background, we synthesize key requirements for a flow monitoring architecture
and derive guiding principles for a minimalist approach, echoing the charter of the IETF
PSAMP working group [16].

4.2.1 Requirements

Low router complexity: Given the hardware and development costs involved in modern
router design, we want to keep router implementations as simple as possible.

Generality across applications:The monitoring infrastructure should cover a wide spec-
trum of applications and ideally be robust to future application needs.

Enable diagnostics:The monitoring architecture should support diagnostic “drill-down”
tasks; e.g., by providing the capability to give different views into traffic structure.
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Provide network-wide views: The monitoring architecture should provide network-wide
capabilities as these are increasingly crucial for several aspects of network management
and traffic analysis as discussed earlier.

4.2.2 Design Principles

A few, simple, and generic primitives: A natural way to reduce router complexity is to
have a few primitives that are easy to implement but powerful enough to support many
management tasks.

Decouple collection and computationNow, how can we provide generality and support
diagnostics with a few monitoring primitives? We believe that this best achievelg-by
couplingthe collection and computation involved in monitoring tasks. Note that this is
already implicit in network operations today: routers export NetFlow reports to a (logi-
cally) central collector and operators analyze this data. We retain this operational model;
routers run some collection algorithms and export the collected flow reports. Once we have
the flow-level reports, we can compute any traffic metric of interest and provide different
views required for further diagnosis.

Network-wide resource managementTo provide network-wide capabilities, we need a
framework that assigns monitoring responsibilities across routers to satisfy network-wide
monitoring goals. At the same time, this framework shoulcdseurce-aware; i.e., respect

the resource constraints (e.g., memory) of routers.

4.2.3 Challenges

Given the above considerations, two questions remain:

1. Concrete Design:What primitives should be implemented on routers to support a
range of applications? How should monitoring responsibilities be assigned to meet
network-wide measurement goals?

2. Performance: Does the intuitive appeal of a minimalist approach translate into
guantitative benefits for a wide spectrum of applications?

In addressing these challenges, our goal is not to look for an “optimal” minimalist
approach. (In fact, it is not clear if we can formally reason about optimality without
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committing to a fixed set of applications.) Rather, we want tklfor afeasibleinstance
that covers a broad spectrum of applications. We present one such proposal in the next
section.

4.3 Architecture: Components and Combination

The first challenge is to choose a small set of generic collection primitives that runs on
each router and to design a framework to manage them intelligently across a network
of routers. Our specific proposal combines three ideas: flow sampling [79] and sample-
and-hold [62] for single router sampling algorithms, and cSamp [147] for network-wide
management. Keys et al. designed a system for providing traffic summaries and detecting
“resource hogs” [88] using a combination of flow sampling and sample-and-hold, similar
to our approach. We extend their work in two significant ways. First, we show how to com-
bine these primitives with the network-wide capabilities of cSamp [147] in contrast to the
single-vantage-point view in their work. Second, we look beyond simple traffic summaries
and demonstrate that this combination can support a much wider range of applications.

4.3.1 Router Primitives

Choice of primitives: Flow monitoring applications can be divided into two broad classes:
(1) those that require an understanding@fume structure; e.g., heavy-hitter detection and
traffic engineering that require an understanding of the number of packets/bytes per-port
or per-src and (2) those that depend on¢benmunication structure; e.g., security appli-
cations and anomaly detection application that require an understanding of “who-talks-to-
whom”. Our choice of primitives is guided by these two broad classes. Flow sampling is
well suited for security and anomaly detection applications that analyze communication
structure [79, 118, 115]. Similarly, sample-and-hold is well suited for traffic engineering
and accounting applications that analyze volume structure [62]. Thus, these two primitives
effectively complement each other in their capabilities.

For the following discussion, a flow refers to the IP 5-tupl#/e use flow sampling
and sample-and-hold at this 5-tuple granularity. The rationale is to collect flows at the
most general definition possible. The collected flows can be sliced-and-diced after the fact
by projecting from this general definition to more specific definitions (e.g., per destination
port, per source address).

3(srcaddr, dstaddr, srcport, dstport, protocol)
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Sample-and-Hold (SH): Sample-and-hold (SH) [62] keeps near-exact counts of “heavy
hitters”—flows with high packet counts. SH works as follows. For each packet, the router
checks if it is tracking this packetBowkey, defined over one or more fields of the IP
5-tuple. If yes, the router updates that counter. If not, the flowkey for this packet is
selected with probability, and the router keeps an exact count for this selected flowkey
subsequently. Since this requires per-packet counter updates, the counters are kept in
SRAM [62].

To configure SH, we specify the flowkey(s) (e.g., srcport, srcaddr, or 5-tuple), the
anticipated total number of packets for a specific time interval (numphtsd the number
of flows that can be logged JMepending on the SRAM constraint. The probabifitis
set to—L=_ .4 In our design, we use one instance of SH and configure it to operate at the

numpkts

5-tuple granularity.

Hash-based flow sampling (FS)Flow sampling (FS) picks flows rather than packets

at random [79]. One way to implement FS is as follows. Each router hssrling
manifest— a table of one or more hash ranges indexed using a key derived from each
packet header. On receiving a packet, the router computes the hash of the packet’s 5-tuple
(i.e., the flowkey). Next, it selects the appropriate hash range from the manifest and selects
the flow if the hash falls within this range. The hash is used as an index into a table of flows
and it updates the byte and packet counters for the flow. The hash function maps the input
5-tuple uniformly into the intervdD, 1]. Thus, the size of each hash range determines the
flow sampling rate for each category of flows in the manifest.

Similar to SH, FS requires per-packet table lookups; the flow table must therefore be
implemented in SRAM. It is possible to add a packet sampling stage to make DRAM
implementations possible [89]. For simplicity, we assume that the counters are stored in
SRAM.

4.3.2 Resource Management

Having chosen FS and SH as our minimalist primitives, we address the following question.
Given a fixed amount of SRAM available for monitoring on each router, how should we
divide it between these primitives?

Combining FS-SH on a single router: Consider a single router with a fixed amount of

4To track heavy hitters who contribute more than a fract%om the total volumep is set to nu?wxpits,

whereO is an oversampling factor [62]. Our configuration can be viewed as determirang O from the
memory budgef..
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SRAM that can hold. flow counters. A simple way to splitis to give a fractiory to FS
and the remaining — f to SH. We show in Section 4.5 thAtx 0.8 is a good choice.

Network-wide case: The above split works for the single router case. Next, we see how
we can manage the monitoring resources across a network of routers. Network-wide man-
agement tasks are typically specified in terms of Origin-Destination pairs, specified by an
ingress and egress router (or PoP). OD-pairs are convenient abstractions that naturally fit
many of the objectives (e.g., traffic engineering) and constraints (e.g., routing paths, traffic
matrix) in network management. A natural extension of the single router hybrid primitive
to the network-wide case is to consider the resource split per OD-pair [45, 147].

Here, we observe a key difference between FS and SH. It is possible to coordinate
FS instances by assigning non-overlapping responsibilities across routers on a path [147].
However, because SH logs heavy hitters, the same set of heavy hitters will be reported
across routers on a path. Thus, replicating SH across routers on a path duplicates measure-
ments and wastes router resources.

To address this issue, we make a distinction between ingress and non-ingress routers.
Ingresses implement both FS and SH, sharing the aggregate memory as in the single router
case. At each such ingress router, the SH resources are split between the OD-pairs orig-
inating at the ingress, in proportion to the anticipated number of packets per OD-pair.
Non-ingress routers only implement FS. In order to distribute FS responsibilities across
the network, we use cSamp from Chapter 2.

Example configuration: Figure 4.2 shows how the different components are combined

in the network-wide case. There are three OD-pairs P1, P2, and P3 originating at the left-
most router. We envision a configuration module at the network operations center which
disseminates configurations to the routers. This module takes into account the prevailing
network conditions, policies, router constraints, and the flow monitoring objectives to gen-
erate the FS and SH configurations for each router. In the example, the ingress router is
assigned SH responsibilities for P1, P2, and P3. The non-ingress routers are not assigned
any SH responsibilities for these OD-pairs. (The other edge routers could be assigned SH
responsibilities for OD-pairs for which they are the origin, but these are not shown.) The
FS responsibilities are generated using cSamp. Each router is only assigned FS responsi-
bilities for the paths of OD-pairs it lies on and these are specified as non-overlapping hash
ranges per OD-pair.
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Figure 4.2: Overview of our network-wide approach

4.4 Evaluation Methodology

Our goal is to compare the minimalist design from the previous section against an application-
specific architecture when both approaches are given the same total resource budget. In
order to do so, we need to specify the different applications of interest, the correspond-
ing application-specific algorithms, and the configurations for determining the resources
provisioned for each algorithm.

First, we describe the different applications, the corresponding data streaming algo-
rithms, and accuracy metrics in Section 4.4.1. Then, in Section 4.4.2, we describe how
we normalize the resource usage of the minimalist and application-specific algorithms.
We explain our assumptions and justify why these are conservative in that we underes-
timate the performance of an equivalently provisioned minimalist approach. Finally, in
Section 4.4.3, we describe the configuration parameters for the different algorithms and
the estimation phase for the minimalist approach in Section 4.4.4.
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4.4.1 Applications and Accuracy Metrics

We pick a set of diverse monitoring applications that span the spectrum of traffic engi-
neering, security, and anomaly detection tasks of interest to network operators. Table 4.1
summarizes the applications and the corresponding application-specific algorithms, accu-
racy metrics, and configuration parameters. The table also shows the default parameters
we use in each case.

Flow size distribution (FSD) estimation: Let F' denote the total number of flows in a
traffic stream and; be the number of flows of sizé (pkts per flow). The FSD esti-
mation problem is to determineél = 1...z,¢;, = % wherez is the largest flow size.
Understanding the FSD is useful for many management tasks such as estimating gains
from caches, configuring flow-switched networks, attack detection, and traffic matrix es-
timation [56, 96]. We use the data streaming and expectation-maximization algorithm
proposed by Kumar et al. [96].

The accuracy metric for FSD estimation is the weighted mean relative difference (WMRD)

between the true FSD, and the estimated FSB, [96]. The WMRD is defined as
SLF—Fi|

3, F1+F1 ’

Heavy-hitter detection: The goal here is to identify the topitems (e.g., srcaddr, src-
port) with the most traffic volume. These are used by operators to understand application
patterns and resource hogs, as well as for traffic engineering and accounting.

We use the SH algorithm [62] described earlier. We configure it to run with six in-
stances, one each for the following flowkeys: source port, destination port, source address,
destination address, 5-tuple, and source-destination address pairs. The accuracy metric is
thetop-k detection rate- the set intersection between the exact taggnél estimated top-&
heavy hitters. Our minimalist approach also uses SH; the main difference is that we use
only one instance of SH that runs at the 5-tuple granularity and use offline projections to
the other flowkeys.

Entropy estimation: The entropy of traffic distributions (e.qg., distribution of pkts per dst-
port) is useful for anomaly detection [100] and traffic classification [174]. In particular,
entropy-based analysis captures fine-grained properties that cannot be obtained with just
volume-based analysis. The entropy of a random varighkeH (X ) = — Zfil Pr(z;)logy (Pr(z;)),
wherex, ..., zy is the range of values foX, and Pr(x;) is the probability thatX takes
the valuex It is useful to normalize the entropy between zero and ong,gs,(X) =

HX) \where N, is the number of distinct; values observed in a given measurement

0gy(No) !
ef)och [100].
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Application Accuracy/Error| Algorithm | Parameters
Metric (defaults)

FSD WMRD [96] fsd (0.7)

estimation

(5-tuple)

Heavy hitter Top-k detection [62] hh, k (0.3, 50)

detection rate

(5-tuple,sip,dip,

sport,dport

sip-dip)

Entropy Relative Error [102] €,0 (0.5,0.5)

estimation

(5-tuple,sip,

dip,sport,dport)

Superspreader Detection [168] K.,b,6

detection accuracy (100,4,0.5)

Change falsepos + [94] h,k,0

detection falseneg (10,1024, 0.05)

(sip,dip)

Deg. histogram| JS-divergence| [176] -

estimation

Table 4.1: Summary of applications, accuracy metrics, élgos, and default parameters.
The parentheses in the first column specify the flowkey(s) for the application (e.g., FSD
uses 5-tuple; heavy-hitter has six flowkeyg}d and hh are expressed as a fraction of
the number of distinct IP flows per epoch.f denote error toleranced(, b means that

any IP contacting> K distinct IPs is a superspreader and any IP contae_tir{g distinct
destinations is a false positive. is the number of hash functions akds the number

of counters per hash function in the sketch data structurefdadhe change detection
threshold.
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We use the data streaming algorithm proposed by Lall et aR][10/e consider five
distributions: 5-tuple, src port, dst port, src address, and dst address. The accuracy metric
is relative error— if the actual value i%1,,,,,, and the estimated value s,,,.,,, the relative
error is |H7LOT‘7VL_HTLOT‘TVL‘ .

HTLOT‘TVL

Superspreader detection: Security applications like scan, worm, and botnet detection
need to detect “superspreaders” — source IPs that contact a large number of distinct desti-
nation IPs. Note that this is different from heavy-hitter detection; we want to find sources
talking to manyuniquedestinations rather than sources generating a large volume of traf-
fic.

We use the one-level superspreader detection algorithm proposed by Venkataraman
et al. [168]. The algorithm has three paramet&rsb, andJ; the goal is to detect all
hosts that contact K distinct destinations with probability 1 — §, and guarantee that
a source that contacts % distinct destinations is reported with probabilky 6. The
accuracy metric is theetection accuracy: the number of true superspreaders detected.
(For brevity, we do not report the false positive rate since it was zero for the minimalist
and application-specific approach in almost all cases.)

Change detection: Change detection is used to detect DDoS attacks, flash crowds, and
worms [94]. At a high-level, the goal is to detect IP addresses or ports whose behavior de-
viates significantly from some expected behavior based on a history-based forecast model.
The problem can be formally described as follows.

Suppose we bin a traffic stream into measurement epochks {¢2,...). Let [, =
a1, ae, ... be the input traffic stream for epoah Each packety; is associated with a
flowkey «; and a count; (e.g., #bytes or just 1 if we are counting packet&hs, () =
> i.a,—a Ci dENOtES the aggregate count for flowkey epocht. Let Feast,(t) denote the
forecast value (e.g., using exponentially weighted moving average, EWMA) foraditem
epocht. The forecast error fou then isErr,(t) = Obs,(t) — Fcast,(t). F2Err, =
>, Erra(t)? is the second moment of the forecast errors. The goal is to detees all
with Err,(t) > 0 x /F2Err,, wheref is a user-defined threshold. We define thange
detection accuracgs the sum of the false positive (flowkeys whose volume did not change
significantly but were incorrectly reported) and false negative rates (flowkeys that changed
but were not reported).

We use the sketch-based change detection algorithm proposed by Krishnamurthy et al. [94]
as sketches have a natural “linearity” property that makes them well-suited for change de-
tection. We use an EWMA moddlcast(t) = aObs(t) + (1 — a)Fcast(t — 1), with
a = 0.9. Note that since we are only interested in the relative performance of the min-
imalist vs. sketch-based approaches, the specific forecast model we use is not important.
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We consider two instances to identify changes in (1) the nurobpackets per source
address and (2) the number of packets per destination address.

Degree histogram estimation:The outdegreéd of a source IP is the number of distinct

IPs it contacts in a measurement epoch. We construct the degree histogram as follows. For
bucketi, let m; denote the number of sources with outdegisach thap’ < d < 2i+! 1.

The goal is to estimate thege values. A specific application is to detect botnets involved

in coordinated scans [176] by detecting changes in the outdegree histogram. The outdegree
distribution is independently useful for understanding traffic structure. We use the sam-
pling algorithm proposed by Gao et al. [176]. Given the exact distributian ms, ...}

and an estimated distributiofti,, 7, . . .}, we use thelensen-Shannon (JS) divergence
between the two distributions as the accuracy métric.

4.4.2 Assumptions and Justification

In order to compare the minimalist and application-specific approaches, we need to nor-
malize their total resource footprints. We discuss our assumptions along three dimensions:
hardware implementation, processing requirements, and memory use. We justify why our
specific assumptions amonservativan that they underestimate the performance of our
minimalist approach.

Hardware feasibility: We assume that both the application-specific algorithms and the
minimalist primitives have feasible implementations that can operate at line rates. Some
application-specific algorithms require a simple array of counters (e.g., [94, 176]), while
others (e.g., [62, 102, 168]) and the minimalist primitives FS, SH [79, 62] involve key-
value data structures. Previous work has demonstrated that it is possible to efficiently
implement such key-value data structures in routers [78, 141, 111]. Also, discussions with
a popular router vendor suggested that supporting FS, SH, and cSamp like primitives is
within the capabilities of today'’s routers.

Processing requirements:There are two processing components: online collection and
offline computation. By construction, the online collection overhead of the minimalist
approach is lower. In the application-specific architecture, each packet requires as many
counter updates as the number of application instances. (Further, each different flowkey

5Gao et al. [176] use the Kullback-Leibler (KL) divergence. However, it is not always well-defined. The
JS divergence is based on KL divergence, but is always well-defined.
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for the heavy-hitter, entropy, and change detection regugeparate updates.) With the
minimalist approach, each packet requires only two updates, one for FS and one®or SH.

We currently run estimation algorithms on the collected flow data without further sam-
pling. Thus, the offline processing overhead of the minimalist approach could be higher
because the application-specific schemes only need to process compact summaries. We
believe that offline processing costs are not a serious issue, given the costs/capabilities of
commodity hardware today. We do note that our estimation procedure can be augmented
with additional directed sampling, if necessary, to reduce the offline overhead.

Memory consumption: Note that for FS and SH, the flow record (the IP 5-tuple and other
meta-data) need not be maintained in SRAM (these can be offloaded to DRAM); only the
counters (byte/packet counts) need to be in SRAM [111].

We assume a 4 vverhead for maintaining flow counters as key-value pairs in SRAM
for the minimalist approach as compared to a corresponding counter used by the application-
specific approaches. We justify why this 4actor isconservative.

1. Some application-specific algorithms we consider also require key-value counters;
we conservatively assume that these incur no overhead compared to an array of
counters. That is, if each entry in a counter array is 2 bytes, we assume that it takes
8 bytes to store one key-value pair for the minimalist primitives but only 2 bytes to
store one key-value pair for the application-specific algorithms.

2. Suppose each counter for the application-specific algorithms is 2 bytes [187]. We
ran experiments with a sparse hash data structure and found that it carD$tibwes
counters in 8 MB, i.e., 8 bytes per counter. In other wordspmmodity, software
onlyimplementation has just = 4x overhead.

3. With smarter hardware for storing flow counters such as counter braids [111], the
overhead will be even lower. For example, maintaining 1 million flow counters
using counter braids only requirést MB of memory, i.e., an effective overhead
1.4
= << A4X,

2

Summarizing the above discussion, we see that

1. The hardware requirements of our primitives are similar to the application-specific
algorithms.

50ne caveat is that FS, SH, and the different application-specific approaches require per-packet process-
ing unlike packet sampling. Again, our discussions with the router vendor suggested that this is feasible.
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2.
3.

The online processing overhead of the minimalist appraastrictly lower.

The minimalist primitives have at most a 4nemory overhead.

Thus, for the rest of the chapter, we only consider the conservativedmory over-
head to generate a equivalent resource configuration for the minimalist approach.

4.4.3 Configuring the Different Algorithms

Application-specific case:To configure the different algorithms, we follow the guidelines
and recommended parameters from the literature:

1.

The FSD estimation algorithm uses an arraysadf x F' counters, wheré”’ is the
number of distinct flows in a measurement interval. Following the guidelines of
Kumar et al. [96], we sefsd = 0.7.

We configure the heavy-hitter detection algorithm withx F' counters withhh =
0.3, divide these equally among the six instances, and focus on the top-50 detection
rate.

. The entropy estimation algorithm is énd) approximation, i.e., the relative error is

at moste with probability at least — 5. The number of counters it uses increases as
we require tighter guarantees (loweandd). However, Lall et al. [102] show that
in practice it works well even with loose bounds. Thus, wessets = 0.5.

For superspreader detection, we et 100 andb = 4. Again, since loose bounds
work well in practice, we sef = 0.5.

. The sketch data structure has three parameterthe number of hash functions;

k, the size of the counter array per hash function; and the detection threshold
Following Krishnamurthy et al. [94], we sét= 10, £ = 1024, andd = 0.05.

For degree histogram estimation, we use the same configuration as Gao et al [176].

Minimalist case: The minimalist approach has two configuration parameters: the number
of flow records it can collect (fand, for ingress routers, the FS-SH split (fo determine

L, we measure the aggregate number of counters used by the different application-specific
algorithms and scale downby a factor of4 as discussed earlier. We get= 0.8, giving

80% of the resources to FS on each ingress router.
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4.4.4 Estimation Phase in minimalist Approach

The estimation phase for the minimalist approach is conceptually simple. Since we have
the actual flow records (i.e., the 5-tuples along with the packet counts), we can run exact
estimation algorithms. For example, we can compute the flow size distribution of the

reported flows and use that as our estimate of the true flow size distribution. Similarly, we

can compute the observed (normalized) entropy of different flowkey combinations from

the reported flows and use it as the estimate of the true (normalized) entropy.

The only issue is in combining the flow reports from the FS and SH components for the
different estimation tasks. We use the following heuristic. First, we take the union of the
flow records reported by SH (after normalizing packet counts by the sampling rate [62])
and the flow records reported by F8Ve compute the FSD, entropy, and detect heavy hit-
ters or changes per-source (or destination) on this merged set of flow records. Second, we
(logically) retain the set of flow records reported only by FS. We use this set for detecting
superspreaders and computing the degree histogram.

Note that the minimalist approach exports the actual flow records. Thus, it is possible
to run any estimation procedure on these flow records to compute any application metric,
even unforeseen ones.

4.5 Trace-Driven Evaluation

Trace Description | Avg # pkts | Avg # flows
(millions) | (thousands)
Caida 2003 | OC-48, large ISR 6 400
Univ-2 UNC, 2003 25 91
Univ-1 USC, 2004 1.6 93
Cada 2007-2 0C-12 1.3 45
Cada 2007-1 0C-12 0.7 30

Table 4.2: Traces used in the single router experiments; averages are over 5-minute epochs

In this section, we compare the minimalist approach against the different application-

’If the same flow is reported by both FS and SH, we use the FS record because the packet count in FS is
exact.
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(e) Degree histogram

(f) Change Detection

Figure 4.3: Each result shows a box-whiskers plot with the median, 25%ile, 75%ile, and
extreme values. A positive value on the y-axis means that the accuracy of the minimalist
approach was better; a negative value indicates otherwise. For most applications, the
minimalist approach outperforms the application-specific alternatives. In the cases where
the performance is worse, it is only worse by a small relative margin.
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Figure 4.4: Exploring the sensitivity of applications in isolation. The zero line represents
the point at which the minimalist approach starts to outperform the application-specific
approach. The resource magnification factor captures the sharing effect of aggregating

resources across applications.
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specific algorithms using packet and flow-level traces ctd&rom different settings. We
start with a single router evaluation and then proceed to a network-wide evaluation.

4.5.1 Single Router Case
Using trace-driven evaluations, we answer the following questions:

e How does the accuracy of the minimalist approach compare with the application-
specific approaches when configured with the aggregate memory used by the application-
specific algorithms?

e How sensitive is individual application performance to the amount of memory avail-
able to the minimalist approach?

e How does the success of the minimalist approach depend on the set of application-
specific algorithms that are implemented on the router (we call thagpahcation
portfolio)? That is, when does it make sense to adopt a minimalist approach instead
of implementing each application-specific alternative?

e How should we split resources between FS and SH?

Table 4.2 summarizes the five different one-hour packet header traces (binned into
5-minute epochs) used for the single-router evaluation.

Accuracy: minimalist vs. Application-specific

We use the default parameters from Table 4.1 and run the minimalist approach configured
with the total normalized memory used by the six algorithms. Then we compute the rel-
ative accuracy difference for each application defined as follows:Alet,. ;. denote

the accuracy of the application-specific algorithm andAet,,;,.;...i;: denote the accu-

racy of the minimalist approach for that application. Thkative accuracy differences
ACC”"ZC’C;_;‘“?ﬁ By construction, a positive value indicates that the accuracy of the

minimalist approach is better; a negative value indicates othefwise.

All the algorithms are inherently randomized; we present the results over five indepen-
dent runs with different seeds. Figure 4.3 shows the relative accuracy difference using a

8Some metrics denote “error” while others denote “accuracy”. For error metrics (FSD, entropy, degree
histogram, change detection) the relative accuracy as defined is negative when the minimalist approach
performs better. For ease of presentation, we reverse the sign of the numerator in these cases.
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box-and-whiskers plot for the different traces. Each boxghthe 25%ile, median, and
75%ile values.

The result shows that the median value of this metric is positive in most cases; i.e.,
the minimalist approach outperforms the application-specific alternative in most applica-
tions. Further, even the 25%ile is positive in many cases; i.e., the minimalist approach
consistently outperforms the application-specific approaches. Only in heavy-hitter detec-
tion (Figure 4.3(b)) does the minimalist approach perform worse; even then the median
accuracy gap is at most08. This answers the second challenge from Section 4.2:

The minimalist approach provisioned with the total resources used by the six applications
performs better than or comparable to the application-specific approaches.

We now proceed to answer to two natural questions: (a) what if we consider each ap-
plication class in isolation and (b) what types of application portfolios does the minimalist
approach perform favorably in. For brevity, we only present the results from the Caida
2003 trace.

Application Sensitivity

In the following experiments, we try 2-3 configurations for each application-specific al-
gorithm. For each configuration, we consider a minimalist approach provisioned-with
times as much memory (before the normalization) as that used by the algoritihm
isolation.

As before, we focus on the relative accuracy difference between the minimalist and
application-specific approach. Figure 4.4(a) plots the relative accuracy difference between
the minimalist approach and the FSD estimation algorithm. We show three different con-
figurations with the FSD algorithm usinfgd = 0.7, 1, and1.5. For some configurations
(e.g.,fsd = 1.5, G = 1), the minimalist approach performs worse. The large negative
values of the metric is an artifact of the low WMRD values at these points. Since we
normalize the difference by the WMRD of the application-specific case, the gap gets mag-
nified. The absolute accuracy of the FSD algorithm improves (i.e., the WMRD goes down)
as it is provisioned with more resources (not shown). For example, for the configuration
fsd = 1.5 andG = 1, the WMRD for the FSD EM algorithm was02 and the WMRD
for the minimalist approach.05. Both values are small for many practical purposes [96].

Figure 4.4(b) shows similar results for heavy-hitter detection, witlset to0.3, 0.5,
and0.7. For clarity, we average the relative accuracy difference across the six heavy-

9The whiskers extend to the most extreme data points not considered outliers. By default, this corre-
sponds to a length of 1.5the difference between the 25%ile and 75%ile values.

95



hitter instances. The minimalist approach is worse than pipé&cation-specific approach.
However, ag7 increases, the accuracy gap closes significantly. One reason for the poor
accuracy is that we configure the SH algorithm in the minimalist approach to operate at
the 5-tuple granularity and then subsequently project results to other dimensions. In fact,
the minimalist approach performs better if we only consider the 5-tuple granularity; it
does worse for the other flowkeys due to some loss of accuracy in the projection phase
(Figure 4.3(b)). We could also configure the SH algorithm in the minimalist approach to
operate at multiple flowkeys. We tradeoff a small reduction in accuracy for a significant
reduction in online processing overhead complexity since we only need to run one instance
of the SH algorithm instead of six instances.

Entropy estimation (Figure 4.4(c)) with= ¢ set t00.2 and0.5 and superspreader
detection (not shown) show similar trends. If we consider each application in isolation, the
minimalist approach performs worse. But, the gap closésiasreases and the minimalist
approach eventually outperforms the application-specific algorithm.

Sensitivity to Application Portfolio

1
‘-FSD -+ [l Entropy [I]Superspreader [ |Deg. Histogram | ]ChangeDetection

osF : | | : 1

0 Huu~
| | |

-05 L ! L ! L ! I !
Sketch+Histogram HH+Entropy+SS _All - FSD . FSD All
Application portfolio

Relative accuracy difference

Figure 4.5: Effect of application portfolio on the relativecaracy difference. The portfo-
lios are in increasing order of memory usage from left to right.

Next, we evaluate the effect of varying the application portfolio. That is, we consider
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the case where the router only implements a subset of theglicafions described earlier.

For a fixed portfolio, we use the default configurations from Table 4.1 and run the minimal-
ist approach configured with the aggregate resources contributed only by the applications
within this portfolio. The relative accuracies are computed with respect to the default con-
figurations for the different applications (even for those not in the portfolio). For example,
the configuration labeled “Sketch + Histogram” uses resources only from sketch-based
change detection and degree histogram estimation (the most lightweight applications). At
the other extreme, the configuration labeled “All” uses the aggregate resources (as in Fig-
ure 4.3).

Figure 4.5 shows the portfolios in increasing order of memory usage. For clarity, we
show averages across the different flowkeys for heavy-hitter detection, entropy estimation,
and change detection. We observe two effects. First, for larger application portfolios (i.e.,
as the requirements of management applications increase), there is a clear win for the
minimalist approach. Second, if there are some resource-intensive applications (e.g., FSD
estimation), then it is better to adopt a minimalist approach because it benefits all potential
applications.

Split between FS and SH

So far, we fixed the FS-SH split to lfe= 0.8. Figure 4.6 shows the effect of varyirfg

The x-axis isf, the fraction of resources allocated to FS. For most applications, increasing
f improves the accuracy of the minimalist approach, but there is a diminishing returns
effect. For heavy-hitter detection, as expected, giving more resources to SH helps, but
the improvement is fairly gradual. In light of this, the 80-20 split is a reasonable tradeoff
across the different application classes.

4.5.2 Network-wide Evaluation

Dataset and Setup: We use a one-hour snapshot of flow data collected across eleven
routers from the Internet2 backbone. There are roughlynillion distinct flows and).5

million packets in aggregate per 5-minute interval. We map each flow entry to the cor-
responding network ingress and egress points [66]. Unlike the packet traces used earlier,
these are flow records with sampled packet counts (with 0.01). We assume that the
sampled flow records represent the actual traffic and use the sampled counts as the actual
packet counts. Also, IP-addresses in the dataset are anonymized by zero-ing out the last
11 bits. We treat each anonymized IP as a unique IP. Thus, the entropy and outdegree
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Figure 4.6: Varying the split between FS and SH

measures are computed at this granularity. Since we are only interested rilatiee
performance, this dataset is still valuable for understanding network-wide effects.

In a network-wide setting, operators often want to compute the different traffic metrics
such as FSD, entropy, heavy hitters etc., over muligplatial viewg86, 174, 180, 100].
For example, we might want to understand traffic patterns on a per-ingress basis, or a per
OD-pair basis, or over the entire network.

As such, we configure the application-specific algorithms on a per-ingress basis. That
is, at each node, we run these algorithms only on packets originating from this node and
ignore transit/terminating traffic. (In this topology, each node is an ingress for some traffic
and there are no pure transit nodes that do not originate any traffic.) For example, the
FSD algorithm at ATLA estimates the FSD for the traffic originating at ATLA and the
superspreader algorithm at ATLA tracks only the source IPs that originate traffic at ATLA.

From this configuration, we obtain the total memory usage at each node. The coordi-
nated minimalist approach from Section 4.3 operates on a per OD-pair granularity using
this equivalent per-router memory (after scaling it down by thendxmalization factor).
Given the flow records for each OD-pair, we estimate the traffic metrics over three spatial
views: per-ingress, per-OD, and network-wide.
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Figure 4.7: Result showing the relative accuracy difference between the coordinated min-
imalist approach and the application-specific algorithms per ingress router. A positive
value indicates that the accuracy of the minimalist approach was better; a negative value
indicates otherwise.
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Per-ingress results: Figure 4.7 shows, for each ingress, the relative accuracy difference
between the coordinated minimalist approach and the application-specific algorithms con-
figured per ingress. Recall that a positive value indicates that the accuracy of the mini-
malist approach was better; a negative value indicates otherwise. As with the single router
evaluation, we see that the minimalist approach outperforms the application-specific al-
gorithms, except in heavy-hitter detection. (SNVA looks different from the others in the
magnitude of the relative accuracy metric, but not in the qualitative sense that the mini-
malist approach is still better. While we have not been able to conclusively explain this
observation, we noticed that the traffic volumes for SNVA were an order of magnitude
lower than the rest. We suspect that this as a potential cause for the anomalous behavior.)

One potential concern is the high variability in the relative accuracy in some cases (e.g.,
DNVR and SNVA in Figure 4.7(c)). In each of these cases, we analyzed the raw accuracy
values and found that the variability in fact comes from the application-specific case. That
is, the accuracy of the minimalist approach has low variance, but the application-specific
case has high variané@.

Network-wide result: Next, we consider the application metrics oneawork-widebasis.

As a point of comparison, we consideramcoordinated minimalisapproach. Here, each

node has the same resources as the coordinated case, but independently runs FS and SH
on the traffic it sees.

Given the per-ingress results for the application-specific algorithms obtained earlier,
we compute network-wide estimates by merging the reports from each ingress after ap-
propriately normalizing the per-ingress statistics. (We can do this because the per-ingress
setup implicitly partitions the network-wide traffic into non-overlapping subsets. Thus,
the summaries reported by the different ingresses for each application were generated
over disjoint traffic subsets.) Depending on the metric, this normalization depends on the
number of flows, packets, or source IPs seen at each ingress. For example, to obtain the
network-wide FSD, we take the per-ingress FSD and normalize it by the number of flows
originating at each ingress. However, we cannot estimate the network-wide entropy from
the per-ingress entropy values as this does not give us sufficient information. For the co-
ordinated approach, we combine the flow records obtained for each OD-pair and run the
estimation procedures on this merged set of the flow records. The estimation step for the
uncoordinated case is similar, but needs additional processing to remove duplicate flows.

Table 4.3 compares the application-specific, uncoordinated, and coordinated approaches

0The high variance in the application-specific case is not an inherent flaw—the variance decreases with
more memory. But as Figure 4.5 shows, adding a few memory-intensive applications makes the case for the
minimalist approach stronger.
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Application Application | Uncoordinated Coordinated

(error metric) Specific minimalist minimalist
FSD (WMRD) 0.16 0.19 0.02
Heavy hitter (miss rate) 0.02 0.3 0.04
Entropy (relative error) n/a 0.03 0.02

Superspreader (miss rate) 0.02 0.04 0.009
Deg. histogram (JS) 0.15 0.03 0.02

D

Table 4.3: Absolute error for network-wide metrics. Lower values imply better perfor-
mance.

for the network-wide case w.r.t tladsolute errovalues. (The entropy row is empty for the
application-specific column because of the aforementioned reason.) There are two main
observations. First, the coordinated approach has the lowest error overall. The benefits
of coordination are particularly significant for the heavy-hitter and FSD estimation appli-
cations. Second, while the uncoordinated approach provides some generality (e.g., it can
also provide per OD-pair estimates whereas the per-ingress application-specific algorithms
cannot), it performs worse in this evaluation. One reason is that the per-ingress application-
specific algorithms are implicitly coordinated and avoid ambiguity/biases when we merge
the results for the network-wide case. The uncoordinated minimalist approach does not
have this property and multiple sources of ambiguity/bias arise when we merge flow re-
ports from multiple routers: (i) different routers may have different sampling rates as they
see different traffic volumes, (ii) flows traversing longer paths get higher sampling prob-
abilities, and (iii) large flows are reported multiple times by SH. An additional practical
benefit of the coordinated approach is that the merging and estimation algorithms are sim-
pler and more accurate.

Per OD-Pair results: Finally, we consider the different application metrics gomea OD-

pair basis. Note that the application-specific alternatives as configured cannot provide per
OD-pair results. They work at a coarse per-ingress level and we cannot compute the appli-
cation metrics on a more fine-grained per-OD basis. This is not an inherent limitation of
application-specific approaches; we can also configure them on a per-OD basis. However,
this significantly increases the complexity since we need an instance per application per
OD-pair. Thus, we only consider the minimalist approaches for this result.

Figure 4.8 shows four application metrics for the per OD-pair case. Since super-
spreader detection and change detection are meaningful only when viewed across all OD-
pairs, we do not consider these. Also, we focus on the top-10 heavy hitters per OD-pair.
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The CDFs show that the coordinated approach performs well across most OD-pairs. The
80th percentile of the WMRD, heavy-hitter miss rate, average relative error in entropy
estimation, and JS-divergence for the degree histograr. &r2 0.05, and0.03 respec-

tively. The corresponding results for the uncoordinated casé.aré, 0.15, and0.06.
Further, the OD-pairs where the coordinated approach has poor accuracy have low traffic
volume (not shown), which indicates that it performs very well for the dominant traffic
patterns. The results for network-wide and per OD-pair views demonstrate the benefits of
a systematic coordinated approach for network-wide monitoring.



4.5.3 Summary of Main Results

e The accuracy of the minimalist approach configured with the aggregate resources
used by the six different applications is better than or comparable to the application-
specific approaches.

¢ With large application portfolios or if there are one or more resource-intensive appli-
cations in the portfolio, there is a clear win for a minimalist approach vs. application-
specific approaches.

e A 80-20 split between FS and SH is a reasonable tradeoff across the spectrum of
applications.

¢ In a network-wide setting, a coordinated minimalist approach provides more flex-
ibility and better accuracy while projecting results to different spatial views com-
pared to uncoordinated and application-specific approaches.

4.6 Discussion

Bandwidth overhead: In the application-specific architecture, each router only reports
summary estimates of the various traffic metrics (e.g., FSD, entropy). Thus the bandwidth
overhead for aggregating these reports is negligible. A practical concern with our proposal
is the bandwidth overhead for transferring flow records to a logically centralized collector.
We give a back-of-the-envelope calculation to estimate the worst-case overhead. The In-
ternet2 dataset has roughlyrGB of 1-in-100 packet sampled flow data per PoP per day.
This conservatively translates intG0 GB per PoP per day @r.6GB per five minutes for

full flow capture. (This is conservative because we are normalizing the number of flows
by the packet sampling rate.) Suppose, we collect this data every five minutes with a near
real-time requirement that the data be sent before the start of the next five minute interval.
The bandwidth per PoP required for full flow capture would2g3 Sbits — (016 Gbps.

Given OC-192 backbone line rates of 10 Gbps today, it is not unreasonable to expect ISPs
to use0.16% of the network bandwidth per PoP for measurement traffic to aid network
management.

Adaptation: Another natural question is how does our minimalist approach deal with
network dynamics. Estan et al. [61] and Keys et al. [88] have in-depth discussions on how
to adapt the sampling rates for packet sampling, FS, and SH to changing traffic conditions.
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Chapter 2 discussed how cSamp can adapt to network dynamicsaMleverage these
existing techniques to make the minimalist approach robust to network dynamics.

4.7 Chapter Summary

This chapter is a reflection on recent trends in network monitoring. There is a growing
demand for estimating a wide variety of traffic metrics to support different network man-
agement applications. The inadequacy of current packet-sampling-based solutions has led
to the proliferation of many application-specific algorithms, each catering to a narrow ap-
plication.

In contrast to these application-specific alternatives, we revisit the case for a mini-
malist architecture for flow monitoring. Such an architecture dramatically reduces router
complexity and enables router vendors to focus their energies on building efficient imple-
mentations of a small number of primitives. Further, it allows late binding to what traffic
metrics are important, thus insulating router implementations from the changing needs of
flow monitoring applications.

This chapter demonstrated a proof-of-concept minimalist approach that combines flow
sampling, sample-and-hold, and cSamp. We saw that this approach performs favorably
across a wide spectrum of applications compared to application-specific approaches. Our
proposal is by no means “optimal” or the final word in this problem space—the goal of
this chapter was to demonstrate fieasibility of a minimalist approach. In this respect,
there are three avenues for future work: (i) developing better minimalist primitives, (ii)
designing estimation algorithms that optimally leverage the data collected across different
primitives, and (iii) providing formal models to reason about application requirements and
performance. We hope that our work motivates further research in these directions.
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Chapter 5

SmartRE: A System for Coordinated
Network-Wide Redundancy Elimination

Redundancy Elimination (RE) for network transfers has gained a lot of traction in recent

years. RE is widely used by data centers and enterprise networks to improve their effective
network capacity, to reduce their wide-area footprint, and to improve end-to-end applica-

tion performance. The importance of RE is reflected in the emergence of a huge market
for RE solutions (e.g., [6, 5, 3, 19, 7]) and their rapidly growing adoption [8, 20].

The success of such deployments has motivated researchers, equipment vendors, and
ISPs to explore the potential of network-wide RE. For example, Anand et al. [30] have
recently shown the benefits of supporting RE as a primitive IP-layer service on network
routers. In similar vein, network equipment vendors have highlighted network-wide sup-
port for content caching and duplicate suppression as a key focus area in their future devel-
opment efforts [5, 3]. Broadly speaking, these efforts argue for deploying RE at multiple
points across a large network and using it as a generic service which is transparent to
end-to-end applications.

This vision of network-wide RE is promising for two reasons. First, a network-wide
deployment spreads the benefits of RE to all end-to-end applications, as opposed to just
benefiting transfers on the individual links of enterprises. Second, it benefits ISPs by
improving their effective network capacity and allowing them to better accommodate the
increasing number of bandwidth intensive multimedia and file-sharing applications we see
today, and by giving them better control over traffic engineering operations [30].

While RE has been well-studied in the context of point deployments (e.g., enterprise
WAN access links), there has been little work on how best to design network-wide RE.
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Thus, the promise of network-wide RE remains unfulfilled. lis thapter, we study how
to build an effective and practical network-wide RE architecture.

We start by observing that a network-wide RE architecture should meet three key re-
quirements:

(1) Resource-awarenessRE involves resource-intensive operations such as index-
ing content, looking up content fingerprints and compressing data, and reconstructing the
original content from locally stored information. An ideal approach must explicitly ac-
count for the resource constraints on network elements in performing these RE functions.
These constraints arise mainly from (a) throughput bounds which depend on the number of
memory operations possible per second and (b) memory capacity which limits the amount
of data that can be cached for RE purposes. Naive approaches that do not account for
these constraints, such as the strawman framework of Anand et al. [30], offer sub-optimal
performance. In contrast, using the limited resources available at each node intelligently
can offer close to the best possible benefits.

(2) Network-wide goals: The architecture should allow network operators to spec-
ify network-wide goals such as increasing overall efficiency (e.g., improving the network
throughput) or achieving specific traffic engineering goals (e.g., alleviating congested
hotspots).

(3) Flexibility: The architecture must be incrementally adoptable providing benefits
even under partial deployment, and must supplement, not replace, current network opera-
tions such as existing routing and network management practices.

This chapter presents the design, implementation, and evaluation of SmartRE, an ar-
chitecture for network-wide RE that meets the above requirements. In SmartRE, redun-
dancy elimination is performed in a coordinated fashion by multiple devices. SmartRE
uses the available resources on RE devices efficiently and naturally accommodates several
network-wide objectives.

In describing SmartRE, we focus largely on packet-level RE in ISP networks [30],
where RE devices on routers cache packet payloads and strip duplicate strings from in-
dividual packets. However, we believe that our design can apply to other deployment
scenarios, e.g., in multi-hop wireless networks and datacenters.

In SmartRE, a packet can potentially be reconstructed or decoded several hops down-
stream from the location where it was compressed or encoded. In this respect, SmartRE
represents a significant departure from packet-level RE designs proposed in prior solu-
tions [158, 30], where each compressed packet is reconstructed at the immediate down-
stream router. Further, SmartRE uses a network-wide coordinated approach for intelli-
gently allocating encoding and decoding responsibilities across network elements.

106



In general, encoding incurs greater overhead than decodiimgs, SmartRE allocates
encoding to ingress routers to avoid overloading interior routers that operate at higher
line-rates and thus have stricter resource constraints. Since the number of edge routers
is large, a large number of encoded packets are introduced into the network. Interior
routers in SmartRE perform less expensive decoding actions. Decoding is performed in a
coordinated fashion with each interior router responsible for storing and reconstructing a
fraction of the encoded packets on a path. We use hash-based sampling techniques [147]
to facilitate coordination across interior routers with low overhead.

When allocating encoding and decoding responsibilities across a network, SmartRE
takes into account the memory capacity and packet processing throughput at each RE
device along with the prevailing traffic conditions, and configures the actions of different
devices so as to best meet an operator-specified network-wide goal. This ensures that no
device is overwhelmed and that RE is used optimally to meet the network’s objectives.

The duplicate removal and reconstruction logic in SmartRE can be implemented in
high-speed two-port switches or middleboxes, which can then be deployed across specific
ISP links. These enable incremental adoption in an ISP network. We develop prototypes
of the two-port switches in the Click modular router [122]. Using real packet traces, we
find that the prototypes can perform duplicate removal at 2.2 Gbps and reconstruction at
8 Gbps.

We conduct an in-depth evaluation of SmartRE as applied to IP-layer RE in ISP net-
works using controlled simulations based on synthetic and real packet traces over several
real and inferred ISP topologies. Across a range of topologies and traffic patterns, the
performance of SmartRE is 4-5better than naively extending a single-vantage point RE
solution to the network-wide case. Further, SmartRE achieves 80-90% of the absolute
network footprint reduction of the optimal possible case where RE devices are not limited
by any throughput or capacity constraints. We also evaluate partial deployment scenarios
and find that enabling SmartRE on a small set of strategically selected routers can offer
significant network-wide benefits.

5.1 Background and Related Work

We start by describing prior work on removing duplicate data from network links, ranging
from full object-based approaches to partial packet-based ones. We then present details of
packet-level RE and describe prior work on enabling packet-level RE as a router service
across ISP networks that forms a key focus in our work.
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5.1.1 Related Work

Object-level caching: Several systems in the past have explored how to remove duplicate
data from network links. Classical approaches such as Web caches work at the object level,
serving popular HTTP objects locally [171]. In similar spirit, CDNs and peer-to-peer
caches [18, 2] perform object-level duplicate removal.

Protocol-independent RE mechanisms: In recent years, a class application- and
protocol-independeniéechniques have been developed which can remove redundant strings
from any traffic flow. Starting with the pioneering work of Spring et al. [158], several
commercial vendors have introduced WAN optimizers which remove duplicate content
from network transfers. Many of these products [6, 3, 19, 7] work at the level of chunks
inside objects and we refer to them @sunk-levelapproaches. In contrast, both Spring
et al. [158] and Anand et al. [30] adopt techniques which are similar at the high level but
operate at packet-level.

Content-based naming for RE: Content-based naming has emerged as an alternative

to enhance web caching (e.g., [80, 142]), content distribution (e.g., [164, 131, 127]), and
distributed file systems (e.g., [25]). These approaches use fingerprinting mechanisms [132]
similar to packet-level RE to identify addressable chunks. However, these approaches
require modifications to end-systems to fully realize the benefits of RE. Network-based,
protocol-independent RE approaches are transparent to end-systems and offers the benefits
of RE to end-systems that are not content-aware.

5.1.2 Packet-level RE Explained

The central idea of packet-level RE is to remove strings in packets that have appeared in
earlier packets. To perform RE across a single link, the upstream device stores (in mem-
ory) packets it has transferred on the link over a certain period of time. Packet contents are
indexed usindingerprintswhich essentially form content-based hooks pointing to content

in random locations within the packet. For each incoming packet, the upstream RE de-
vice checks if the packet’s fingerprints have appeared in earlier in-memory packets. Each
matching fingerprint indicates a certain region of partial overlap between the incoming
packet and some earlier packet. The matching packets are compared to identify the max-
imal region of overlap. Such overlapping regions are removed from the incoming packet
and a shim is inserted to tell the downstream device how to decode the packet using its
local memory. A packet can carry multiple shims, each potentially matching a different
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in-memory packet. Decoding is simple: the downstream devses the shim in the en-
coded packet to retrieve the matching packet(s), and fills in the corresponding missing byte
range(s). Chunk-level approaches work similarly.

5.1.3 Network-wide RE

Why packet-level RE: Both packet- and chunk-level RE are agnostic to application
protocols and can be implemented as generic network services that need not understand
the semantics of specific applications. Prior studies have shown that both approaches are
significantly better than caching entire objects [158]. However, chunk-level approaches
require terminating TCP connections and partially reconstructing objects before apply-
ing compression. This interferes with the end-to-end semantics of connections and also
imposes high overhead on the RE devices since they must maintain per-flow state. Packet-
level approaches do not interfere with end-to-end semantics of connections, and where
technology permits, can be transparently supported in routers or middleboxes.

Extending packet-level RE to a network: Since packet-level RE brings significant
compression benefits while operating in a transparent and application-agnostic fashion,
Anand et al advocate its use as a router primitive for network-wide RE [30]. In their
proposal, each router in an ISP network maintains a cache of recently forwarded packets.
Upstream routers on a link use the cache to identify common content with new incoming
packets and strip these redundant bytes on the fly. Downstream routers reconstruct packets
from their local cache. This process repeats hop-by-hogashion along a network path
inside an ISP. Anand et al. evaluate an ideal, unconstrained setting where they assume
memory operations take negligible time and that the caches on each router are infinite.
Under this model, they show that network-wide RE could offer significant benefits in
terms of reducing overall network load and absorbing sudden traffic overload in situations
such as flash crowds. The central goal of our chapter is to design a practical architecture
that can achieve these benefits when RE elements operate within realistic throughput and
memory capacity constraints.

The hop-by-hop approach proposed by Anand et al. takes a very link-local view of RE
and does not account for constraints of the RE devices. In the next section, we discuss why
this naive approach offers poor performance in practice and show how smarter caching and
coordination can offer vastly improved benefits.
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5.2 Benefits of Coordination

We start by describing the practical limits on the throughput of the two packet-level RE
primitives, namely, encoding and decoding. Then, we present qualitative examples high-
lighting the benefits arising from assigning encoding and decoding responsibilities across
a collection of routers in an intelligent, coordinated fashion. In particular, we show how
this: (1) leads to efficient memory usage, (2) ensures RE-related tasks can be performed
at full capacity, and (3) enables incremental deployment. We contrast this against a naive
approach that does not account for resource constraints.

In this section, we assume a hypothetical intelligent, coordinated approach. This has
two implications. First, we have the flexibility to specify where a packet should be cached
along a routing path. In particular, this allows us to split caching responsibilities along
a path. This is in contrast to the hop-by-hop approach, where each packet is explicitly
cached at every hop along the path. For example, if pagkets., p, traverse a path
I, Ry,..., Ry, we can specify that eaghis cached at (and only af);. Second, we assume
that RE devices that are separated by multiple hops in the network can either implicitly or
explicitly maintain a consistent view of each other’'s caches. This means that an encoded
packet can potentially be decoded several hops downstream from the point where it was
encoded. In the above example, this means fltatn encode packet, with respect tqs
and R; is responsible for decoding it. Again, in the hop-by-hop approach, this would not
be possible; each packet would have to be encoded and decoded per-link.

5.2.1 Encoding and Decoding Throughput

Standalone throughput: The main bottleneck affecting the processing throughput of
packet-level RE operations isemory access. Encoding a packet requires multiple mem-
ory accesses and is much slower than decoding. To see why, suppose that the memory
hardware can suppoft random memory accesses per second. For modern DRAMSs, the
random access latency is 50ns, hefce 2 x 107. Suppose that each packet has at most

k matches, and that we computefingerprints for each packet. (Note that since the num-

ber of matches can never be more than the number of fingerprints that were computed,
k < F.) Typical values aré’ = 10 andk = 3 [30].

The encoding throughput for a standalone RE deviae immostR/ F' packets per sec-
ond. This is because each packet, whether it can be encoded or not, réquinedom
accesses to determine if there are any matches. Once matches are found, further process-
ing is required to actually create the encodings. On the other hand, decoding throughput
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is at least R/k. This is because each packet has between Okagcodings. Thus, in
this standalone case, decoding>isF'/k times faster than encoding. Sinke< F, the
decoding throughput is clearly higher.

Throughput on a single link:  Given this understanding of the standalone encoding
and decoding throughput, we can now consider the throughput across a single link. For
simplicity, let us assume all packets are of the same &/%¢. Suppose that the link
capacity is such that it can car®y MSS-sized packets per second. For instance, if the link
speed is 2.4Gbps (0OC48), andSS = 5008, thenP = 6 x 10° and for an OC192 link
P = 2.4 x 10°. Two cases arise:

1. Slow link (R/F > P): This means thdine rateencoding and decoding are possi-
ble; e.g., for an OC48 link wherB/F = 2 x 105 > P = 6 x 10°. In this case, the
encoder can encode up tbpackets per second, each carrying up taatches. The
decoder can decode each encoded packet.

2. Fastlink (R/F < P): This means thdine rate encodings not possible. This is the
case for OC192 and higher speed links. (R£R2 x 10° < P = 2.4 x 10°). In this
case, the encoder can encode no more fRaR packets per second; a fraction of
packets are left un-encoded to ensure line-rate operation. Even though the decoder
as a standalone operatEgk times faster, its decoding throughput is now limited
by the encoding throughput immediately upstream. Thus, it is limited to decoding
R/ F packets per second.

5.2.2 Motivating Examples

We present the examples in the context of a “bump-in-the-wire” deployment where an
RE middlebox is attached to router linecards. Each RE device has pre-spezsfiedce
constraints. These capture hardware limitations (e.g., how many decoding actions can the
device perform per unit time?) or economic constraints (e.g., DRAM cost which could
limit total memory per device).

These examples also apply when there are resource buggetsuter. For exam-
ple, processing constraints induced by power/cooling requirements are better modeled on
a per-router/per-PoP basis rather than per-middlebox. Also, software or virtualized RE
deployments (e.qg., [39, 122]) would be characterized by per-router constraints.

As the following examples show, the naive hop-by-hop approach described in the pre-
vious section severely constrains the effectiveness of redundancy elimination.
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Each router switches 8 packets e.g., R1 need not switch packets 6,7,8

Figure 5.1: Benefits of a coordinated approach when RE devisesdoastraints on mem-
ory size.

Memory efficiency and router benefits: Consider the scenario in Figure 5.1. Suppose
each RE device on the path has memory to store only 1 packet for this path (since the
devices are shared among the paths that traverse the link), but the RE devices on the first
link can store 4 packets. Each store is managed in a FIFO fashion. The hop-by-hop model
yields no benefits from RE on the interior links. A coordinated approach can ensure that
the different packets are stored and decoded at different routers. This helps reduce the total
traffic by 33%. There are secondary benefits in that routers have to switch smaller packets
internally, thereby improving their effective switching capacity. This example shows that
a coordinated approach can use a given amount of memory more effectively.

Memory access constraints: Consider the example shown in Figure 5.2. Here, the links
between ingresses 1114.and the core router R1 are much slower than the core-core links.
Assume that the encoding RE device at the slow link can perform 5 packet encodings per
second (this corresponds to case #1 from Section 5.2.1 wheteb). The encoding RE
device at the fast links can perform 10 packet encodings per second (this corresponds to
case #2 from Section 5.2.1 wheR F* = 10). Now, consider the decoding devices. The
ones on the slow links can decode 5 packets per second, while the ones on the fast link can
decode up to 20 packets per second (R R0).

In the hop-by-hop case, the number of packets decoded by a downstream RE device
is the same as the number of packets encoded by the immediate upstream device. As-
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Hop-by-hop Redundancy Elimination Coordinated Redundancy Elimination
5 enc/s
5 dec/s

10 enc/s, 20 dec/s

13 Assume each decoding saves X bytes
Total savings = 5X * 4 + 10X * 2 = 40X

‘Assume each decoding saves X bytes
Total savings = 20X * 3 = 60X

Figure 5.2: Benefits of coordination when RE devices have cansr on encod-
ing/decoding throughput.

suming each decoding sav&sbytes, the hop-by-hop approach remo¥eX bytes (5X

on 4 ingress-core router links, and 1@X two core-core links). Consider an alternative
coordinated scenario, in which the RE devices on interior routers are not involved in en-
coding and can decode at the maximum rate. In this case, devices on R1 and R2 can just
forward encoded packets and R3 can allot its full decoding capacity. This will reduce the
total network footprint by20 x 3 x X. (Since R3 is 3 hops away from the ingress, for
each decoded packet we save 3 hops in the network footprint). Also, some of the devices
perform no RE function; yet this architectureli$ x better than the hop-by-hop approach.

Benefits under partial deployment: In Figure 5.2, consider a partial deployment sce-
nario with no RE devices attached to router R1. In the hop-by-hop approach, the total sav-
ings would only bel0.X (only on link R2-R3). Note that since the coordinated approach
did not involve R1, it provide§0.X savings even with partial deployment. Network opera-
tors can thus realize significantly more benefits with partial deployment with a coordinated
design.

The above examples demonstrate the benefits of a hypothetical intelligent and coordi-
nated approach. Next, we describe how we can implement this hypothetical approach in
practice.

5.3 SmartRE Design

In this section, we formally describe the design of SmartRE, an architecture for redun-
dancy elimination that draws on the principles of spatially decoupling encoding and decod-
ing responsibilities, and coordinating the actions of RE devices for maximum efficiency.

Our description focuses on SmartRE as applied to an ISP network.
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Figure 5.3: Schematic depiction of SmartRE.

SmartRE synthesizes two ideas: packet caches for redundancy elimination [158, 30]
and cSamp [147]. SmartRE leverages ideas from cSamp to split caching (and decoding)
responsibilities across multiple router hops in a network. It specifies the caching respon-
sibility of each RE device in terms oflzash-range per path per device. Each device is
responsible for caching packets such that the hash of the packet header falls in its assigned
ranges. By using the same hash function across the network and assigning non-overlapping
hash ranges across devices on the same path, SmartRE leverages the memory resources ef-
ficiently without requiring expensive cache coordination protocols.

A network operator can specify different ISP-wide objectives, e.g., minimizing net-
work utilization, aiding traffic engineering goals. SmartRE uses a network-wide opti-
mization framework that takes into account the prevailing traffic conditions (volume, re-
dundancy patterns), the network’s routing policies, and the capacities of individual RE
devices to assign encoding and decoding responsibilities across the network to optimally
satisfy the operator’s objectives.
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5.3.1 System Overview

We focus our discussion on the design of three key elements (Figure 5.3): ingress nodes,
interior nodes, and a central configuration module. Ingress and interior nodes maintain
caches storing a subset of packets they observe.

Ingress nodesncodepackets. They search for redundant content in incoming packets
and encode them with respect to previously seen packets using the mechanism described
in Section 5.1. In this sense, the role of an ingress node is identical in the hop-by-hop
approach and SmartRE.

The key difference between the hop-by-hop approach and SmartRE is in the design
of interior nodes. First, interior elements need not store all packets in their packet cache
— they only store a subset as specified biyaahing manifesproduced by the configura-
tion module. Second, they have no encoding responsibilities. Interior nodedexdge
packets, i.e., expand encoded regions specified by the ingresses using packets in their local
packet cache.

The configuration module computes the caching manifests to optimize the ISP objec-
tive(s), while operating within the memory and packet processing constraints of network
elements. Similar to other proposals for centralized network management (e.g., [73, 43,
37]), we assume that this module will be at the network operations center (NOC), and has
access to the network’s traffic matrix, routing policies, and the resource configurations of
the network elements.

5.3.2 Network-wide Optimization

The configuration module uses a network-wide view of traffic patterns and resource con-
straints to compute how and where decoding should be done to optimize ISP objectives.

Assumptions and Terminology: We assume that the traffic matrix (volume of traffic

in bytes and packets between every pair of ingress-egress routers) and the routing path(s)
between an ingress-egress pair are known and given as inputs. We use the sybandpts

q to indicate paths; to denote a node (either a router or a bump-in-the-wire middlebox)
and the notation € p to denote that nodelies on the pat. v, is the total traffic volume,

in bytes, flowing on patp in a specific measurement intervdtstance, , is the upstream
latency (e.g., hop count, OSPF weights, physical fiber distance) oppgitio noder. In

our current frameworkdistance,, , is specified in terms of the hop count.

We also assume that we know thedlundancy profilef the network from historical
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traffic data or using periodic reports from ingress nodess Téaundancy profile is speci-

fied in terms of two constants for every pair of paths. These are.1)h,, , (measured in
packets), the number of matches that traffic flowing through patiserves with traffic on

pathq and (2)matchlen, , (in bytes) denoting the average match length observed within
these packets (this is bound by the MSS). As a special easg),, and matchlen,,

capture intra-path redundancy. As such, our current focus is on redundancy between paths
with the same ingress.

The configuration module maximizes the total savings (i.e., minimizing the network
footprint or the link utilization-distance product), while respecting the operating resource
constraints: i.e., the total available memory,(/&nd the total decoding processing power
(L,) per node. A network operator could specify other network-wide objectives as well.

Formulation: The key variables in the formulation are t#g. values. Eacld, . specifies
the fraction of traffic on pat that node- caches. We now describe how the variablgs
are determined. First, we model the packet store capacity constraints on each node:

VY dpy X v, < M, (5.1)

pireEp

Next, we model the total packet processing capabilities on each node. The processing
capabilities are bound by the number of memory operations that can be performed in unit
time! For each interior node, there are two types of memory operations that contribute to
the processing load: caching and decoding. We assume for simplicity that both operations
are equally expensive per-packet, but it is easy to incorporate other models as well. The
total number of packets that will be stored byn pathp is d,, . (wgpktme (avgpktsize
appears becausg s in bytes but the load is per packet.) The total number of matches that
will be decoded by nodeis ) | dgr x match,,.? Thus, we have

D,q:TEP,TEQ

v,y dpy —E— avgpktme + Y dy, matchy, < L, (5.2)

D,TEP D4 TEP,q

There is a natural constraint that the total range covered on each path should be less
than or equal to 1:

We do not explicitly model CPU constraints because these are subsumed by processing constraints
imposed by memory accesses.

2Strictly speaking, this is an approximation that assumes that the matches are uniformly spread out across
the differentd, ,. ranges. In practice, this is a reasonable assumption.

116



Vp, Y dy, <1 (5.3)

TrEDP

Next, we compute the total savings in the network-wide footprint. The savings pro-
vided by node- for traffic on pathp (S, ) depends on the redundancy thathares with
other paths that traverseand the caching responsibility thahas for these paths. It also
depends on the location pon the patlp — the more downstreamis (higherdistance,, ),
the greater savings it provides.

Spr = Z dgr X distance,, x matchy,, X matchlen, (5.4)
q:req

The objective then is to maximizEp >, Sp.. Note that maximizing this objective,
subject to the constraints captured by Eqgs (5.1)—(5.3) is a linear programming (LP) formu-
lation and thus can be solved efficiently using off-the-shelf LP solvers (W& BR&&X).

The output of the LP solver i¢" = {d; .}, the optimal solution to the formulation.

We can augment this framework to incorporate resource constraints on ingress nodes
as well. We omit this extended formulation for brevity, but use it in our evaluation.

5.3.3 Encoding and Decoding

In the next few sections, we provide details on the actions taken by nodes in the network
given the allocations derived by the central configuration module.

Assigning caching responsibilities: The output of the optimization framework is a set of
caching manifesta/hich specify the caching responsibilities for each node. Each node’s
manifest is a set of key-value paif$p, HashRange)}, indexed by the path identifier.

We use a simple procedure takes in the solutibras input and iterates over the paths

one by one. For each a variableRange (initially zero) is advanced in each iteration per
node, in order of location on the path, by the vailje, and node- is assigned the hash
range|Range, Range + dy ). Thus, nodes on the pathare assigned non-overlapping
hash ranges to ensure that the caching responsibilities for nodes on the path are disjoint.
We use the on-path ordering to simplify the encoding algorithm (see the discussion in
Section 5.4.1).

For example, suppose there are three nodesr2, and 3 on pathp (in order of

distance from the ingress), and the optimal solution has valfigs= 0.2, d; ., = 0.3,
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PROCESSACKETINGRESS pkt, ingress)

// Steps 1-4 are for encoding
// Use routing/MPLS info for the next two steps
egress < FINDEGRESS pkt)
2 pathid < GETPATHID (ingress, egress)

// this step depends on theerlapmatriz (See Section 5.4)
3 candidates «— GETCANDIDATES(pathid)

// encodedpkt carries the shim header (Figure 5.5)
4 encodedpkt < ENCODE(pkt, candidates)

// Steps 5—7 are for caching

// Whatis} . o (patnia) Apathia, fOT this path?
5 coveredrange < GETCOVEREDRANGE(pathid)
// only store packets with hash within covered range
h < HASH(pkt.header)
7 if (h € coveredrange) then

ADDPKTTOSTORE(pkt, pathid, h)

// forward as usual

8 FORWARD(encodedpkt)

[EEN

(o]

Figure 5.4: Pseudocode for an ingress node in SmartRE.

andd; ., = 0.1. The ranges assignedo, r2, andr3 for pathp will be [0,0.2), [0.2,0.5),
and[0.5,0.6).

For each patlp, an interior node- only stores packets whose hashes falls within the
range assigned to it fgr. To do this, the interior node computes a hash over the packet
header HASH(pkt.header) and decides whether or not to cache the packetsHs com-
puted over the fields of the packet header that uniquely identify a packet, the src/dst IPs,
src/dst ports, protocol, and the IP ID field, and returns a value in the f@ange These
are invariant fields that do not change along the routing path [54].

Encoding at the ingresses: We first present a high-level overview of the encoding
algorithm at each ingress. We defer to more detailed issues in Section 5.4.

Figure 5.4 shows the pseudocode for an ingress node. The ingress encodes packets
with respect to packets in its store. When matches are found, it computes a shim header
(Figure 5.5). The shim header has 2 parts: a fixed length path identifier field specifying the
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Pathid of Hash of matched Matched region
Matched Packet packet’'s header [<startbyte, endbyte>

Pathid MatchSpec 1 | MatchSpec 2 ... | MatchSpec n

Transport SmatREShim | Packet

IP Header
Header Header Payload

Figure 5.5: Format of the SmartRE shim header.

path identifier for the current packetand a (possibly variable length) description of the
matches. Each match is specified using three fields: (i) the path identifier for the packet in
the ingress’s cache with which a match was found, (ii) the unique hash for the matching
packet computed over the invariant header fields, and (iii) the matched byte region.

The ingress stores packets whose hashes fall in the total covered range for the path.
It ignores other packets as matches with these cannot be decoded downstream. When the
ingress cache is full, it evicts packets in FIFO order.

Decoding at interior nodes: Figure 5.6 shows the algorithm at an interior node. The
node reads the shim header and checks if any of the matches correspond to packets that it is
currently caching. Each matchspec carries the pathid and the hash of the reference packet
with which a match was found. Thus, the interior node can determine if it has cached the
reference packét.If so, the node reconstructs the corresponding match region(s). Note
that different matched regions may be reconstructed by different downstream nodes as the
packet traverses the path.

5.4 Ensuring Correctness in SmartRE

As we saw in the previous section, there are three key features in SmartRE: (1) it allows
a packet to be decoded multiple hops downstream from the ingress where it was encoded,
(2) it splits caching (and decoding) responsibilities along the RE elements on a path, and
(3) it uses a network-wide approach for allocating caching responsibilities.

These three features are essential for efficiently utilizing the available RE resources

3|f interior nodes can get the pathid from MPLS labels or routing information, this is not necessary.
4Errors due to hash collisions are highly unlikely.
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PROCESSACKETINTERIOR(encodedpkt, )

// ris the node id
// Steps 1-2 are for decoding
// Check if any decoding needs to be done
1 mymatches « PROCESSSHIM (encodedpkt.shim)
// this may only partially reconstruct the packet
2 decodedpkt < DECODE encodedpkt, mymatches)
// Steps 3—6 are for caching
3 pathid < GETPATHID (encodedpkt)
// what is my assigned hash range for this path?
myrange < GETRANGE(pathid, )
h < HASH(pkt.header)
6 if (h € myrange) then
ADDPKTTOSTORE(decodedpkt, pathid, h)
// forward as usual
7 FORWARD(decodedpkt)

(G20 S8

Figure 5.6: Pseudocode for an interior node in SmartRE.

(e.g., caches, memory accesses) to derive close to optimal network-wide benefits. For
example, (1) means that each decoding operation performed by an interior iohtgrs
downstream ig{ times as effective in reducing the network-wide footprint as the same
operation performed by the router adjacent to the ingress. Similarly, (2) means that each
cache entry is utilized efficiently. (3) combines these features to achieve network-wide
goals; this could mean that RE elements common to paths that share redundant content are
assigned inter-path decoding responsibilities. However, these features raise some issues
with respect to correctness; i.e., will an encoded packet be decoded correctly before it
leaves the network perimeter. Specifically, we identify three issues:

1. How can an ingress decide if encoding a packet w.r.t a previous packet will be valid?
That is, will that previous packet be available in a cache on the path taken by the
current packet? (Section 5.4.1)

2. Since interior elements may be assigned responsibilities across multiple ingresses,
how does each encoder maintain a consistent view of the caches at interior elements?
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OverlapMatrix [P_i,P_j] = range for packets
on path P_i that can be chosen to encode
packets on path P_j

OverlapMatrix[P1,P2] = [0,0.4];

R1,R2 (common to P1,P2) store pkts in this range on P2
OverlapMatrix[P2,P1] = [0,0.5];

R1,R2 store pkts in this range on P1

Figure 5.7: Example showing the overlap matrix.

That is, if an ingress encodes a packet, will the decoders have the required matched
packets or would they have evicted them? (Section 5.4.2)

3. As decoding responsibilities are split across a path, some packets may be encoded
when they reach their assigned caching nodes. Should we cache such encoded pack-
ets? (Section 5.4.3)

We present lightweight solutions to address these issues in the context of SmartRE.
However, the issues themselves are more general to the design of network-wide RE solu-
tions.

5.4.1 Identifying Valid Inter-path Encodings

If the ingress identifies a match with a packet that traversed the same path it can encode
the match. However, when the ingress sees a match with a packet from another path, it
needs to ensure that this can be successfully decoded downstreanaweFl@matrix
specifiesvalid inter-path encodings, and in Figure 5.4, the functioBTGANDIDATES
checksoverlapmatriz to find valid encodings.

Figure 5.7 shows a simple example of what the overlap matrix means. We have two
paths P1 and P2. The caching responsibilities of each node are specified in terms of hash-
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ranges per path. Suppose a new packdéelonging to P1 arrives at. [ finds a match
with packetB sent earlier along P2. Now, has to decide whethet if encoded w.r.tB
can be decoded downstream. I_RBH(B) < owverlapmatriz[P1, P2], one of R1 or R2
will be able to decode the match. Otherwigejs stored on nodes that do not lie on P1
and thusA cannot be encoded with respectio

Let us go back to the discussion of on-path ordering (Section 5.3.3). The configura-
tion module generates thaerlapmatriz from the LP solution and distributes it to the
ingresses. On-path ordering ensures that each entry in this matrix is one contiguous range
instead of several disjoint ranges. This simplifies the description afithéapmatriz and
also simplifies the process by which the ingresses identify valid encodings.

5.4.2 Using Cache Buckets for Consistency

In hop-by-hop RE, each node’s packet store is perfectly in sync with the upstream node’s
packet store. However, SmartRE needs to explicitly ensure that ingress and interior caches
are consistent.

To see why this is necessary, consider the following scenario. PacCketinitially
cached at interior nod& and the ingresg. Consider the case wher and / maintain
independent FIFO caches. Supposés evicted fromR’s cache due to a sudden increase
in traffic along paths from other ingresses. Now, padkatrives at/. I finds a match with
X and encodeX with respect td”. Clearly, R will not be able to reconstruct the matched
region forY. The packet” would thus have to be dropped downstream or rejected by the
application at the end-host.

To address this, we use a lightweight, yet robust, consistency mechanism. The main
idea is to divide the ingress packet store ibtakets; each bucket corresponds to a hash
range assigned to a specific interior node-path pair. Interior stores are organized similarly.
As a packet arrives at the ingress, it is stored into the per-path per-range bucket into which
its hash falls. This explains the parametgiighid andh to ADDPKTTOSTORE in Fig-
ures 5.4 and 5.6 — together they identify the bucket in which to store the packet. Each
bucket is a circular buffer; as a bucket gets full, packets get evicted in FIFO order to ac-
commodate newer packets. The size of each bucket is determined by the LP solution and
the traffic patterns (i.ed; . x v,); the configuration module also specifies these sizes as
part of the caching manifests. When new solutions are computed in response to traffic or
routing dynamics, the bucket sizes can be reassigned appropriately.
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Figure 5.8: Example of how decoding gaps may occur.

54.3 Handling Gaps in Encoded Packets

An interior node may not have the full payload for packets for which it is assigned caching
responsibilities. This could happen if at the time the packet reaches this node, there is still
some decoding to be done downstream. Thus, the node only sees a partially reconstructed
packet. This creates a problem if subsequent packets need to be encoded with respect to
a packet with some decoding “gaps”. To see why this is an issue, consider the example
in Figure 5.8. In the example, even though the ingress can encomligh respect to its
cached version oB3, R1 which is storing an incomplete version B8fcannot decode this
match.

One option is that the ingress does not use encoded packets for future encodings. Thus,
packetB which was encoded with respect #ois not even stored at Another option is
to use these encoded packetaximally, i.e., all non-gap regions in the packet are used to
match further packets. Thus, routein the example storeB but nullifies the bytes irB
that matchedd. Future packets can only be encoded with respect to non-null regions of
B. Both solutions ensure correct end-to-end packet delivery, but provide lower redundancy
elimination than the ideal case when there are no decoding gaps. Since the second solution
achieves better redundancy elimination, we implement this option. Our experiments with
real packet traces showed that with the second option, the loss in RE is less than 3%.
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5.5 Implementation Issues

55.1 Encoder and Decoder Implementation

We implement the encoding and decoding algorithms from Section 5.3.3 and Section 5.4 in
Click [122]. The key components of the encoder are: fingerprint computation per packet,
a packet store for caching packets, and a hash table for mapping fingerprints to the packets
they were found in (similar to [158, 30]).

Like most RE systems, we use Rabin fingerprinting [132]. Each Rabin fingerprint cap-
tures a fixed 64 byte region in a packet [30]. We store a maximuim ©f 10 fingerprints
per packet in the fingerprint hash table. This reflects a reasonable throughput-redundancy
tradeoff based on real traces.

We segment the packet store into logical buckets per interior-node-path pair (Sec-
tion 5.4.2). The encoder inserts each packet into the appropriate bucket in FIFO order.
In addition to payloads, we store the IP headers for each packet because a hash of the
headers is used to decide decoding and storage responsibilities (Figure 5.5). Also, the en-
coder flags one bit in the IP header (e.g., TOS field) to indicate that the packet has one or
more shims that need to be decoded.

In prior RE solutions [158, 30], each fingerprint in the fingerprint hash table is associ-
ated with the most recent packet for which it is computed. In SmartRE, this raises issues
with packets being undecodable due to gaps. (To elaborate, this most recent packet may
itself have been encoded and thus further encodings with respect to this packet will lead
to decoding gaps as discussed in Section 5.4.) To address this issue, when a packet sees
a match and the match region is grown to the maximal byte range, the fingerprints of this
packet that mapped into the maximal range are re-associated with the matched in-cache
packet. Also, the maximal byte range in the incoming packet is zeroed out. This ensures
ensure that bytes in the maximal match region are not used for encoding. Our implemen-
tation is thus conservative; we sacrifice some performance in favor of correctness.

The decoder implementation largely follows the discussion in Section 5.3.3. The last
decoder on a path clears the flag in the header indicating that the packet has been fully
decoded.
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5.5.2 Configuration Parameters

Parameters for the LP optimization: To specify parameters to the LP formulation, we
need to fix a certain measurement epoch. However, this epoch cannot be arbitrary, as the
RE capabilities are limited by the storage available at the ingresses. Thus, we define the
notion of anetwork data retention timgetermined by the size of the ingress packet stores.

All values in the formulation (i.e., the match profiles and the traffic matrix) are specified

in terms of this common value. In real deployments, we expect ISPs to employ ingress
caches storing few tens of seconds worth of data.

Traffic and routing dynamics: The dominant source of traffic dynamics are time-of-day
and day-of-week effects [140]. Fortunately, these are predictable and we can use historical
traffic matrices to model these effects.

Routing changes are trickier because an ingress may incorrectly assume that a down-
stream node will be able to decode a match. Two scenarios arise. First, if routes are
computed centrally [73], SmartRE can use the new routes to recompute a new caching
strategy and disseminate it to the ingresses. However, the recomputation may take few
tens of seconds, and we need to ensure correctness during this transient state. Second,
the ingresses do not receive new caching strategies, but instead receive the current routing
information (e.g., OSPF monitor [149]) and avoid encodings that are non-decodable after
the routing change. This ensures correctness but sacrifices some performance. Note that
this also solves the transient problems in the first scenario.

Changes in redundancy profiles: To estimate the redundancy profiles, the ingress RE
devices maintain simple counters to track matches between paths. The ingresses period-
ically report these values to the central configuration module. Note that this adds little
overhead to the ingress implementation. However, since these could bé thegewill

be reported infrequently (e.g., every 30 minutes).

This raises the issue of staleness of redundancy profiles. This may have two effects: (1)
It may affect the optimality without affecting correctness. This is an acceptable operating
mode for SmartRE and we evaluate it further in Section 5.6. (2) Significant changes in the
redundancy profile may increase the decoding load on each node (Section 5.3.2, Eq (5.2))
and affect feasibility. To handle (2), each ingress tracks the actual number of matches per
interior node to avoid overloading nodes with decoding responsibilities. Thus, changes in
redundancy profiles do not affect correctness.

SWith n access routers, there are3) paths. Even restricting to paths with the same ingress, the
overhead for transmitting redundancy profiles isi®)(
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Additionally, SmartRE can usetaggeredapproach. For example, under flash-crowd-
like scenarios where traffic patterns change dramatically, the affected ingresses can report
the large changes to the NOC. This can trigger an immediate recomputation of the caching
manifests instead of the periodic recomputation.

5.5.3 More on Correctness

Consistent configurations: The bandwidth overhead for dissemination is low as the
configuration files are quite small (1-2 KB per device). However, differences in the dis-
tances between the devices and the NOC could lead RE devices to use inconsistent caching
configurations. To mitigate this, we can use latency information from topology maps to
schedule the transfers to ensure that all devices receive the new configurations at approx-
imately the same time. Also, for a small transition interval (few tens of milliseconds), all
RE devices honor both configurations. That is, the encoders and decoders store packets
assigned by either the old configuration or the new one. (RE devices can allot a small
amount of spare memory for this purpose). This may result in a small performance re-
duction, as some packets may get decoded before their optimally assigned decoders, but it
ensures correct packet delivery.

Errors due to packet drops: Packet drops can cause encoder and decoder caches to
get out of sync. Packet drops cause two issues: (1) Packets which are encoded w.r.t the
dropped packet cannot be decoded downstream; (2) When the higher-layer application
retransmits the dropped packet, it is likely that the retransmission will get encoded with
respect to the dropped packet, and get dropped again. TCP-based applications can typ-
ically recover from single packet drops in a window, but drops of retransmitted packets
(case #2) severely impacts TCP throughput. We handle the latter as a special case. If
an ingress sees a packet which has a full content match and the same connection 5-tuple
match with an in-cache packet, it will not encode this packet.

5.6 Evaluation

Our evaluation is divided into the following sections:
1. Benchmarks of the Click prototype and time taken by the optimization framework.

2. Benefits of SmartRE compared to the ideal and naive approaches using synthetic
traces with different redundancy profiles and resource provisioning regimes.
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Network PoP-level Router-level |
(ASH#H) # PoPs| Time | # Routers | Time
NTT (2914) 70 | 0.92| 350 |55.41
Level3 (3356)] 63 0.53 315 30.06
Sprint (1239) | 52 | 0.47| 260 |21.41
Telstra (1221) 44 0.29 220 16.85
Tiscali (3257)| 41 | 0.21 205 | 11.05
GEANT 22 | 0.07 110 2.48
Internet2 11 0.03 55 0.48

Table 5.1: LP solution time (in seconds).

3. Evaluation using real packet traces collected at a large US university’s border router
and at a university-owned /24 prefix hosting popular Web servers.

4. Impact of staleness of redundancy profiles.

5. Benefits under partial deployment.

For the following results, we use PoP-level ISP topologies from Rocketfuel [157] and
add four access routers to each PoP to obtain router-level topologies.

5.6.1 Performance Benchmarks

LP solution time: Table 5.1 shows the time taken to generate the caching manifests
on a 2.80 GHz machine for seven PoP- and router-level topologies. Even for the largest
router-level topology (NTT), the time to solve (usi@dPLEX) is< 60s. We envision that
reconfigurations occur on the scale of a few minutes — this result shows that the optimiza-
tion step is fast enough to support such reconfigurations.

Encoding and decoding rates: We now try to understand how the encoders and decoders
can be used in practical ISP deployments. To do so, we benchmark the implementations
on a standard desktop machine and extrapolate the performance to more realistic settings.

We run our prototypes on a desktop with 2.4GHz CPU, with a DRAM latency of 90ns
(benchmarked using PAPI [17]. We use real packet traces from the /24 prefix. (This
trace was 35% redundant using a 600 MB packet cache and 10 fingerprints per packet.)
In addition to computing the raw throughput, we also compute the effective throughput
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after subtracting the overhead due to Click operations. Tttisygolates the results to a
SmartRE middlebox implemented on an FPGA [82] which would be constrained only by
memory accesses and have no software overhead.

First, we benchmark the encoder. To understand the maximum throughput of a memory-
bound RE middlebox, we follow the methodology of Anand et al. [30]: (1) load the packet
trace into memory, (2) precompute and load fingerprints for all packets into memory, (3)
encode packets one by one, and report the throughput.

We configured a packet store to hold 600MB of packet payloads; the corresponding fin-
gerprint index was 400MB in size. Using 10 fingerprints per packet, the effective through-
put obtained for encoding was around 2.2Gbps (after subtracting the Click overhead). We
also ran this on a machine with 120ns memory latency and the throughput dropped to
1.5Gbps. Extrapolating, we conclude that with lower DRAM latencies, the encoder can
operate at OC-48 linerates. (Today’s high-end DRAMs hawns latency as opposed to
90ns on our desktop). Other SmartRE operations (e.g., redundancy profile computation,
storing in isolated buckets) add negligible overhead.

Next, we evaluate the decoding throughput. This depends on the number of match
regions encoded in packet shims: as more regions get encoded, more redundancy is identi-
fied, but the throughput decreases as the number of memory accesses increases. We study
this tradeoff in Table 5.2. The decoding store size was set to 600MB. We see that de-
coding is roughly 3-4xfaster than encoding, since it involves fewer memory operations
per packet. While decoding throughput does decrease with more matches (due to more
memory accesses), the decrease is smalPfd matches. Our implementation uses a
maximum of 3 match-specs as a tradeoff between the amount of redundancy identified
and the throughput.

Our simple encoder and decoder implementations can roughly operate on OC-48 (2.5Gbps)
and OC-192 links (10Gbps), respectively. In networks where such links are used, SmartRE
can leverage the encoding and decoding capabilities of nodes to give optimal benefits.
Middleboxes based on these simple designs can also be used in ISPs that employ faster
links, e.g., 40Gbps for the core. The only difference is that each decoder may be able to
act only on one-fourth of the packets entering the router; the rest of the packets need to be
decoded at other locations. In this case, the benefits of SmartRE may not be optimal. We
explore the gap between SmartRE and the optimal in greater detail next.
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# Match | Redundancy Throughput (Gbps)
Specs In software | W/o overhead
1 24.1% 4.9 8.7
2 31.6% 4.5 7.9
3 34.6% 4.3 7.7
4 34.7% 4.3 7.6
5 34.8% 4.3 7.6

Table 5.2: Trade-off in redundancy and decoding throughput with number of match-specs.
5.6.2 Synthetic Trace Study

We compare the benefits of SmartRE, the hop-by-hop approach without any resource con-
straints (i.e.hop-by-hop ideal), the hop-by-hop approach with actual resource constraints,
and a special case of SmartRE called edge-based RE. In both SmartRE and edge-based
RE, encoding is a one-time task; performed only at the ingresses. However, decoding hap-
pens only at the edge of the network in edge-based RE, unlike SmartRE. While SmartRE
can effectively operate under all types of redundancy profiles, edge-based RE is effective
only when intra-path redundancy is the dominant source of repeated content. Hop-by-hop
ideal represents the best possible benefits achievable from network-wide RE assuming
that RE devices are unconstrained. Our main goals are to understand how close to ideal
SmartRE gets, how much better it is than other approaches, and what factors contribute to
SmartRE’s performance.

Setup: We implemented an offline emulator using Click to compare different network-
wide RE solutions. We assume a middlebox deployment where each network link has RE
devices attached on both ends of the link. For SmartRE, the device at one end of a link is
used for decoding/encoding packets in one direction, and the one at the other end is used
for the reverse direction.

Encoders at each access link st@reseconds of packets (e.g., 3 GB memory at 2.4
Gbps impliesl” = 10s). Decoders at the edge have the same cache size as the encoders.
Each interior RE device uses a 6GB cache which we believe is practical in terms of cost;
we also evaluate the effect of varying cache size. We model the throughput of each device
in terms of the total number of memory operations per second. We select bounds that
reflect the throughput achieved by our prototype. Assuming a (conservative) memory
latency of 100ns, 20 lookups for encoding, and 4 lookups for decoding, this translates into
0.5 million encodings and 2.5 million decodings per second respectively.
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Traffic model: We use a gravity model based on city populations to determine the fraction
of traffic from each ingress access router to an egress PoP. Within each PoP, the traffic is
divided equally among the 4 access routers. Each trace’s redundancy profile is specified by
three parametersy, Yintrapop, aNAYintapatn- v 1S the overall traffic redundancy per-ingress
access link.v;uqp0p determines the redundancy within the traffic destined for the same
egress PoP. Within each egress PoR,.,..» determines the intra-path redundancy of the
end-to-end path between the ingress and egress access routers. These parameters specify
how redundant the traffic is, and how localized/dispersed the redundancy profileyis. If

is high then the traffic is highly redundant;jif,;,.,., is high then most of this redundant
traffic is destined to the same PoP3if,p. then most of the intra-PoP redundancy is
within the same ingress-egress path.

Results: We first consider the single-ingress case, where traffic originates from a single
ISP PoP. In this case, the decoding capabilities in the network are split proportionally by
volume across all ingress-access routers; on eachljach ingresg’s share is%,
wherewvol;(L) is the volume of traffic originating at ingregslowing through link L and
vol(L) is the total volume of traffic through from all ingresses. The following results use
two configurations withy = 25% and~y = 50% redundancy, Withy;,irapep @NAYintrapatn
set t00.5 in each case. Our choice ofis based on measurements of redundancy in real

traffic traces from enterprise and university networks [23].

Our main metric of interest is the fractional reduction in the network footprint (Sec-
tion 5.3). Figure 5.9 shows the CDF of the reduction in network footprint for the four
solutions for the Sprint topology. The footprint reduction of SmartRE is 24-30% across
the ingresses for the 50%-redundant trace (12-15% for the 25%-redundant trace), indicat-
ing the extent to which the aggregate utilization of the ISP improves for traffic from the
ingress in question. The median fractional reduction across the ingresses for the 50%-
redundant trace in SmartRE is Doetter than the naive approach. More importantly, the
median value is less than the ideal unconstrained case (with no processing and memory
constraints) by only.04 in absolute terms.

Figure 5.10 shows the network-wide reduction for 4 tier-1 ISPs. Here, we consider
the top 20 PoPs (by degree) in each topology, and assume that the total traffic entering
each of the 80 ingresses (4 per PoP) is the same. For simplicity, we also assume that
the redundancy profile is the same across all ingresses. Across the different topologies,
SmartRE is consistentlyx better than the naive approach; even the edge-only variant of
SmartRE is roughlg — 3x better than a naive approach. Also, SmartRE is quite close to
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Figure 5.9: CDF of network footprint reduction across ingresses for Sprint (AS1239) using
synthetic traces.
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Figure 5.10: Network-wide footprint reduction for four tier-1 ISP topologies using syn-
thetic traces.

the unconstrained ideal case and provides 80-90% of the ideal savings.

Importance of SmartRE optimizations: SmartRE takes into account three factors
while assigning caching responsibilities across RE devices in the network: (1) memory
constraints on RE devices, (2) packet processing constraints imposed by memory accesses,
and (3) traffic and routing matrices and redundancy profiles. We evaluate the relative
importance of these next.
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To do so, we consider four hypothetical scenarios:

1. SmartRE with no memory constraints (SmartRE-nomem); setting &ach oo in
the LP from Section 5.3.2.

2. SmartRE with no packet processing constraints (SmartRE-noproc); setting each
L, =occinthe LP.

3. Aheuristic (Heurl) where the hash-ranges are divided equally across the RE devices
on a path —if there ark RE devices on the pafh each cacheg of the packets on
this path.

4. A second heuristic (Heur2) similar to the one above, except that RE devices further
downstream are assigned more caching responsibilities. Specifically, if pask
hops, then thé” hop cache% of the packets on this path.
j=1

Table 5.3 compares the performance of these schemes with SmartRE and the ideal
solution with no resource constraints. Note that Heurl and Heur2 are also resource aware;
the effective caching and decoding responsibilities are capped off by the actual memory
and processing constraints. We see three effects. First, SmartRE performs significantly
better than both heuristics showing that accounting for traffic, routing, and redundancy
patterns while assigning caching responsibilities is necessary. Second, the gap between
SmartRE-nomem and SmartRE is negligible. This is because cache size has a natural
diminishing property (see Figure 5.11); it is necessary to have a sufficiently large cache but
increasing it further does not help much. Finally, relaxing processing constraints does not
help too much. This is because the core RE devices are not overloaded for the redundancy
profile we use for this evaluation {p0p = Vintraparn = 0.5) and perform fewer decodings
than their effective capacity. However, in other redundancy profiles where the core devices
operate at full capacity, the gap between SmartRE and SmartRE-noproc is more noticeable
(not shown).

SmartRE with no resource constraints is $till4 lower than the ideal solution. This is
an effect of enforcing non-overlapping caches. For example, consider two({paths B)
and(X, A, C') with the same ingresk and a packeP along(X, A, B) that matches future
packets on both paths. If we allow caches to overfagan be stored on botA and B,
to achieve optimal RE. If we use non-overlapping cacliesan be on eithed or B, but
not both. This sacrifices either inter-path RE (if we stéren B alone) or the footprint
reduction for intra-path RE (if we storB on A alone). Allowing caches to overlap can
yield better RE when there are no memory constraints. However, overlapping caches are
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Topology Heurl| Heur2 | SmartRE SmartRE SmartRE Ideal
(equal) (distance nomem | noproc
Sprint | 0.145| 0.168 0.264 0.267 0.274 | 0.31
ATT | 0.138| 0.162 0.244 0.248 0.262 |0.297
AOL | 0.152| 0.178 0.267 0.277 0.278 | 0.33
NTT | 0.142 | 0.167 0.259 0.264 0.278 | 0.31

Table 5.3: Understanding the relative importance of the different components of
SmartRE’s optimization.

(Yintrapops Vintrapath) Reduction in network footprint
SmartRE| Edge | Hop-by-hop| Ideal
05,05) 026 |012| 008 |031
(0.5,0.75) 0.28 0.18 0.08 0.31
(0.75,0.75) 0.38 0.27 0.11 0.42
(0.25,0.5) 0.18 0.05 0.06 0.20

Table 5.4: Exploring different redundancy profiles on the Sprint topology, with total re-
dundancyy = 0.5.

not optimal in realistic settings with actual resource constraints. Further, there are other
practical difficulties in extending SmartRE to allow overlapping caches (see Section 5.7).

Varying redundancy profiles: Table 5.4 compares different types of redundancy pro-
files. While SmartRE is consistently better, the improvement depends on the redundancy
profile. For example, when intra-path redundancy domin@é&s, 0.75), SmartRE is not
significantly better than the edge-based variant. Again, across all the profiles, SmartRE is
within 0.04 of the ideal unconstrained case.

The configuratior{0.25, 0.5) where there is significant redundancy across egress PoPs
should be ideal for SmartRE. However, all three approaches fare poorly, and hop-by-hop
marginally outperforms the edge-only approach. The latter does poorly in this case be-
cause most of the redundancy is inter-path, not intra-path. We were surprised at why
SmartRE and even the ideal case did worse in this scenario. We find that shortest path
routing between the top-20 PoPs in this ISP does not allow for much scope for on-path
coordination between paths because the paths have very few hops in them. In this context,
redundancy-aware routing [30] can additionally boost the performance of SmartRE.
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Figure 5.11: Varying cache size in the interior using a sytithteace over the Sprint
topology.

Memory provisioning: Figure 5.11 shows the effect of adding more cache memory to
interior devices, while keeping the cache size on the edge devices fixed. Adding cache
memory to the interior has two benefits. (1) The total on-path memory increases and
greater intra-path redundancy is identified. However, this increase happens only up to a
certain point when the total memory on a path matches the memory used for encoding.
(2) Interior nodes see redundancy between paths from same ingress destined to different
egresses. The amount of inter-path redundancy increases monotonically with memory.
Adding more memory to core devices leverages such sources of redundancy that cannot
be identified in an edge-only approach. While adding more memory in the core exploits
more redundancy, the benefits are marginal beyond 4GB. Beyond this, the amount of inter-
path redundancy identified is small.

5.6.3 Evaluation Using Real Traces

We use packet traces collected at a large US university to examine the effectiveness of
SmartRE with real traffic patterns. To simulate a real trace over a specific topology, we
map the observed IP addresses to the nearest PoP in the ISP topology. We used one trace
capturing all traffic leaving the university (which was 15% redundant with 10s of encoding
cache) and another trace for traffic leaving the /24 prefix (40% redundant).

We start with the single-ingress case. Figure 5.12 shows the CDF of footprint reduction
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Figure 5.12: CDF of network footprint reduction across ingresses on Sprint topology ex-
trapolating from real traces.

on the Sprint topology using both all-university and /24 prefix traces. Again, SmartRE
outperforms the hop-by-hop approach by 4-5x. In the University trace, SmartRE is almost
indistinguishable from the ideal case; in the /24 trace the median performance difference
1S 0.04.

We observed substantial variance in the relative performances of the naive approach
and SmartRE across different ingresses (not shown). We explored this further, focusing
on the top-4 ingress PoPs in the topology (by degree). For two of the PoPs (Seattle and
Dallas) SmartRE is 7-8xnore effective than the naive approach. For the remaining two
(New York, Chicago), it is 3-4>better. There are two factors here. First, a majority of the
traffic is destined to New York and Chicago and there is considerable overlap within this
traffic. Second, the paths from the other two PoPs to New York and Chicago share many
intermediary nodes. Thus, SmartRE can better exploit this inter-path redundancy.

We also conducted the network-wide evaluations across 4 ISP networks. SmartRE
reduced the network-wide footprint by 20% and 13% on average across the 4 networks for
the /24 and all-university traces respectively.

5.6.4 Effect of Stale Redundancy Profiles

As discussed in Section 5.5, SmartRE uses the redundancy profile observed in the current
epoch to compute caching manifests for the next epoch. We evaluate the impact of using
stale redundancy profiles (SmartRE-stale) compared to SmartRE-ideal which uses up-to-
date information (as in the rest of this section so far).
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We study variants of SmartRE-stale which differ in the timensstn when redundancy
profiles were computed and when they are used. We use the real packet traces from Sec-
tion 5.6.3 for this study. We evaluate time lags of 10, 20, 30 and 40 minutes (not shown).
We find that SmartRE-stale performs close to SmartRE-ideal (and hence ideal RE), with
the worst-case footprint reduction being at m@st worse than SmartRE-ideal. We in-
vestigated why SmartRE performs well even with a stale redundancy profile and found
that the traffic volume to the large cities (Chicago and New York) dominates the overall
benefits and the redundancy profiles for these are stable. While these results are prelim-
inary, they are encouraging—the dominant sources of redundancy appear to be stable and
SmartRE can provide benefits even with stale redundancy profiles.

Flash-crowd scenarios: Next, we study how staleness can affect RE performance in
more sudden flash-crowd-like scenarios. First, we increase the total traffic volume entering
at a particular ingress to saturate its upstream bandwidth, keeping the redundancy at each
ingress fixed at 50%. In this setup, the footprint reductianhs with an up-to-date traffic
matrix and redundancy profile; with older inputs the reduction28 — 0.25 depending
on the ingress. Second, we increase the aggregate redundancy for a specific ingress from
25% to 50%, keeping the redundancy from other ingresses fixed at 25%. Depending on
the ingress that has increased redundancy, the footprint reductiantis 0.15 with up-
to-date profiles an@.10 — 0.11 with an old profile. These experiments further confirm
that while up-to-date profiles yield better RE performance, even stale profiles can yield
substantial benefits. However, for dramatic changes, profiles should be updated using the
triggered update mechanism discussed in Section 5.5.

5.6.5 Partial Deployment Benefits

The middlebox-style implementation of encoders and encoders makes SmartRE amenable
to incremental and partial deployment, in that the encoders/decoders can be installed at
locations where reduction in network load is desired most.

We consider a scenario where an ISP would like to mitigate the impact of redundant
traffic originating from certain high-volume PoPs (say, top 5 by volume) by deploying RE
middleboxes strategically in its network. (Encoding RE boxes are deployed at each of a
PoP’s ingress access links). We ask if SmartRE is useful even on a limited scale.

We examine two strategies. In both cases, our goal is to deploy RE boxes where there
is a lot of traffic aggregation. We first count the number of shortest path routes traversing
each interior link. In the first strategy we simply deploy decoders on links which lie on
many of the network paths from the 5 ingresses in question to other egresses. The second
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Figure 5.13: Two partial deployment strategies on the Spopblogy (x=65 represents
full deployment). Each device has a 6GB cache.

strategy is smarter, in that it first weighs each path traversing a link by the volume of
traffic it carries and the distance of the link from the corresponding ingress, and ranks
links according to the total weights of paths traversing them.

Figure 5.13 shows that in both cases, deploying RE middleboxes on a small number of
links (e.g.,< 10 out of a maximum of 65) still offers reasonable benefits in network-wide
utilization (roughly 10% compared to the best possible 26%). The smarter strategy works
better with 50% - 70% deployment. Figure 5.13 indicates that even simple strategies for
partial deployments work well. This can be further enhanced by weighing each path with
the expected amount of redundancy based on historical observations.

5.6.6 Evaluation Summary

e SmartRE is on average 4-5xore effective than a naive hop-by-hop approach.

e SmartRE, even under strict resource constraints on both memory and memory ac-
cess throughput, achieves 80-90% of the performance of an ideal unconstrained RE
solution which assumes no memory or processing constraints.

e The above results are consistent across several redundancy profiles and on both syn-
thetic and real traces.

e The global resource-aware optimization in SmartRE is necessary for good RE per-
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formance; simple heuristics for assigning caching resjditsas do not yield suffi-
cient network footprint reduction.

e SmartRE can provide benefits comparable to the ideal scenario even under partial
deployment or with slightly out-of-date redundancy profiles.

5.7 Discussion

Multi-hop wireless: We believe that SmartRE can be used to enhance caching systems
in other contexts, e.g., multi-hop wireless networks [52]. Coordinated caching can help in
two ways here: (1) improving the effective memory usage at multihop nodes by chunking
large transfers and apportioning each chunk to a specific node (this replaces blind caching
at all on-path routers) and (2) preventing multiple nodes from retrieving a popular chunk
from a single cache - this creates contention for the medium and may wipe out the benefits
of caching. We can limit each cache’s encoding responsibilities and this creates an even
distribution of caching/encoding across nodes in the network.

Allowing overlapping ranges in SmartRE: We saw in Section 5.6.2 that allowing
caches to overlap may improve RE performance. However, there are two practical diffi-
culties. First, the formulation from Section 5.3.2 becomes more complicated. Specifically,
we can no longer model the second term in Eq (5.2) and the savings term in Eq (5.4) as
linear expressions; in fact, it is not even clear if we can precisely model these terms. Thus,
it is difficult to obtain the optimal caching responsibilities in this setting. Second, in order
to maintain a consistent view with every decoder each ingress has to either (a) keep dupli-
cate copies of packets that belong to overlapping ranges or (b) use additional mechanisms
to keep track of whether a packet has been evicted from an interior node and also maintain
the appropriate mappings between fingerprints to the packets in the store. Additionally,
the ingress needs to explicitly decide which of the decoders is responsible for reconstruct-
ing encoded regions in case the matched packet is cached on multiple downstream nodes.
The performance of SmartRE with non-overlapping ranges is already close to the ideal
scenario. Thus, we do not consider this extension to allow overlapping caches because the
marginal improvement does not merit the increased implementation complexity.
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5.8 Chapter Summary

As Internet traffic volumes increase and more bandwidth-intensive applications appear,
redundancy elimination (RE) has emerged as a promising practical solution to increase
end-to-end application throughput. More recently, there has been interest in expanding
the scope of RE to network-wide scenarios with the grander vision of offering this as an
IP-layer service within ISP networks.

This chapter takes this vision one step closer to reality. We look beyond a naive link-
by-link view and adopt a network-wide coordinated approach. We design and implement a
framework called SmartRE based on these high-level design principles. SmartRE is natu-
rally suited to handle heterogeneous resource constraints and traffic patterns and for incre-
mental deployment. We address several practical issues in the design to ensure correctness
of operation in the presence of network dynamics. Across a wide range of evaluation sce-
narios, SmartRE provides 4-5improvement over naive solutions and achieves 80-90%
of the performance of an ideal, unconstrained RE network-wide alternative.

A natural extension is to apply SmartRE to datacenter and multi-hop wireless net-
works. Another area of future work is to expand the scope for RE by allowing multiple
encoders per-path (in contrast to encoding only at the ingress) and exploring the interplay
between RE techniques and network coding.
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Chapter 6

Network-Wide Deployment of Intrusion
Detection and Prevention Systems

Intrusion detection (NIDS) and prevention systems (NIPS) serve a critical role in detecting
and dropping malicious or unwanted network traffic. These have been widely deployed
as perimeter defense solutions in enterprise networks at the boundary between a trusted
internal network and the untrusted Internet. This traditional deployment model has largely
focused on a single-vantage-point view of NIDS/NIPS systems, placed at manually chosen
(or created) chokepoints to provide coverage for all suspicious traffic.

Increasingly, however, the challenges of scaling this approach are becoming evident.
Due to growth over time in both traffic and the types of analyses, these NIDS/NIPS place-
ments become a bottleneck. Approaches to scaling single-vantage-point solutions have
focused on building NIDS/NIPS clusters (e.g., [166]). The cluster approach, however,
faces its own challenges: Since each packet might be relevant to multiple analyses for
which the relevant state exists on different cluster nodes, these solutions need to replicate
traffic across different cluster nodes or otherwise share the relevant analysis state. This
results in overheads that limit the performance of these solutions or, if performance cannot
be sacrificed, that force guaranteed coverage to be relaxed (e.g., [155]). This limitation is
further exacerbated by the growing deployment of NIDS and NIPS functions in ISP net-
works, in order to provide security services to customers who may not have the necessary
resources or expertise to protect their network infrastructure [36, 34].

In this chapter, we explore a different design alternative to scaling NIDS/NIPS. Instead
of trying to scale processing at a few chokepoints, our approach exploits the existing repli-
cation of each packet along its forwarding path. In doing so, we depart from the single-
vantage-point strategy, and permit the different nodes on a packet’s forwarding path to be
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candidates for performing the needed analysis on the paéleein the cluster solution,
stateful analysis will require that certain types of packets be subjected to certain types of
analysis at the same node — e.g., connection-oriented analysis will process packets on
each direction of the connection at the same place. Rather than explicitly replicating a
packet or derived state to the nodes that need it for analysis, we will partition the analysis
across locations where a packet can already be observed.

The focus of this chapter is the problem of managing the deployment of NIDS and
NIPS functions throughout a network. There are three key challenges in this context:

e Resource constraints:NIDS/NIPS solutions are constrained by the processing and
memory capabilities of the underlying hardware. Additionally, some solutions use
specialized capacity-constrained hardware (e.g., for line-rate string matching) to re-
duce the performance impact on benign traffic.

e Placement affinity: NIDS/NIPS are not monolithic systems: they consist of mul-
tiple modules that analyze different traffic patterns. In particular, the modules may
have topological constraints on where they will be most effective. For example,
outbound scans and inbound floods are best detected close to network gateways.

e Network-wide objectives: Network administrators have high-level policy goals to
optimally utilize their NIDS/NIPS deployments toward their security objectives. For
example, in the NIDS case we may want to avoid overloading specific nodes. Simi-
larly, we want to enable NIPS functions throughout the network to maximally drop
unwanted traffic.

We believe these challenges are best addressed by takietgvark-wide coordinated
approach for the deployment of NIDS/NIPS functions [37, 43, 73, 147]. We outline our
specific contributions next.

NIDS: Forthe NIDS case, we design a framework for partitioning NIDS functions across

a network to ensure that no node is overloaded. This takes into account the resource foot-
prints of each NIDS component, the capabilities of different nodes, and placement con-
straints specifying where each function is most effective (e.g., ingress nodes are best suited
for scan detection). We demonstrate a proof-of-concept implementation of a network-wide
coordinated NIDS using Bro [129]. Our evaluations show that augmenting Bro with the
coordination capabilities adds little memory or processing overhead for most modules. We
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emulate a network-wide deployment scenario and find that sactdination can reduce
the maximum processing load by 50% and the maximum memory load by 20%.

NIPS: For NIPS, we show how to maximally reduce unwanted traffic without affecting
the performance of benign traffic. We model the use of specialized and power-intensive
hardware with limited capacity (e.g., content addressable memories). In these scenarios,
the problem of optimally dropping unwanted traffic is NP-hard and we design practical
approximation schemes. Using extensive evaluations on real ISP topologies, we show
that our approximation algorithms provide near-optimal performance, achieving more than
92% of the optimal possible performance in dropping unwanted traffic. We also demon-
strate the promise of leveraging techniques from online learning to combat strategic ad-
versaries who try to evade these defenses [85].

There are several efforts for scaling NIDS and NIPS (e.g., [42, 166, 70, 156, 104])
that focus on building better single-vantage-point solutions. Because our work focuses on
the network-wide aspect it effectively complements technical advances in these areas as
it enables administrators to optimally utilize their current hardware infrastructure toward
their security objectives.

6.1 NIDS Deployment

In this section, we first describe an abstract model that captures the constraints and require-
ments in deploying NIDS functions throughout a network. Next, we set up an optimization
framework that assigns NIDS responsibilities across different network nodes such that no
single node is overloaded. We describe a prototype implementation and evaluation using
theBro system [129].

6.1.1 System Model

Modern NIDS are not monolithic systems. They are comprised of modules that perform
different types of traffic analyses. For example, popular NIDS like Snort and Bro im-
plement modules for scan detection, analyzing HTTP traffic, tracking IRC traffic, finding
malware signatures, etc. We abstract the functions performed by these modules into the
notion ofclasses, where each claSsis a specific type of analysis. Associated with each

C; is a specificatior?; of the traffic of interest for analysis usin@. For example, ifC; is

a type of analysis for port-80 traffic, thén specifies all traffic to or from port 80 (on any
host) that traverses the network.
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Figure 6.1: Example of network-wide NIDS instrumentation

Let{7; } denote a partition of; into component specifications, in the sense that any
packet matching; matches exactly ong;.. We consider only class&s; for which the
associated specificaticf) can be partitioned int¢7;; }, in such a way that for every, all
traffic matchingZ;;, can be observed by each member of a nonemptygeif nodes. That
is, if nodeR; € Py, thenR; can observall traffic that matcheq;;, (and can recognize it
as such). We call each;, acoordination unit. Intuitively,P;;, is the set of nodes that are
eligible for performing analysis of typ€;; on traffic matchingdZ;..

To make this concrete, consider the example network in Figure 6.1. Suppose there
is a classC; denotedSignature that applies malware signature analysis to traffic
Suppose that; is partitioned into specificationsZ;; } . according to the end-to-end path
it traverses; e.g.7;; specifies the traffic traversing Pathl, and similarly 7or. Then,

P;; = {R1,R3 R4} is the set of nodes that can observe (and, we assume, recognize)
traffic matching7;;, and P,, = {R1,R3 R2} is the analogous set fdf,,. Similarly,
consider a scan detection moduledenotedScan that checks if any of the hosts h1-h8
show signs of anomalous scanning activity. In this case, the traffi€ partitioned into
eight blocks{7;. }%_,, corresponding to traffic initiated by each of the eight hosts. Because
only each host’s corresponding ingress node sees all the traffic the host initiates, we define
P;; = P,y = {R1} (for hosts h1-h2)P;; = P;, = {R2}, and so forth.

Because every node; € P;, can observe all traffic iffy, it is possible to divide the
analysis of7;, traffic across all of them, in order to disperse the analysis work across them.
For example, Figure 6.1 shows enablBignature  on all the nodes on the network; as
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we will see, we will do so in a way that each nofie € P;; analyzes a distinct subset of
the7;, traffic.

We useT?** and T*** to denote the total traffic volumes in packets that matcfies
and 7;,, respectively. Moreover, a type of analy<i$ performs analysis at some level
of traffic aggregation (e.g., sources, destinations, flows sessions). As such, we use
T/*ms and T}*™ to denote the total traffic volumes, expressed in the unit of aggregation
appropriate forC; (e.qg., flows), that matcheg and7;,, respectively.

6.1.2 Problem Formulation

Next, we describe the optimization problem that allows us to assign NIDS responsibilities
in a network-wide fashion.

Objective: The goal is to assign monitoring responsibilities to different nodes such that
the processing/memory load is balanced (for a suitably defined balancing function). For
example, we may want to minimize the maximum load or make sure that the load is evenly
distributed. While assigning these responsibilities, we must ensure that the traffic is
eredcompletely. This is the correctness requirement to ensure that the network-wide de-
ployment will be logically equivalent to running a single NIDS on the entire traffic.

Control Variables: d;; denotes the fraction of traffic i6; on coordination unif’;, that

R; processes. Thatis, in Figure 6.1, we can splitSignature  analysis responsibilities
fractionally across R1, R3, and R5. We consider a fractional split for two reasons. First,
this is the most general formulation possible and thus will yield the best solution. Second,
the fractional split allows us to model the optimization problem as a linear program, that
can be solved efficiently using solvers lik&LEX.

Inputs: We assume that the network administrators provide the following parameters
based on their specific infrastructure, NIDS requirements, and traffic patterns as inputs to
the optimization:

e The various NIDS classeSC;}; and, for eachC;, its coordination units Py }.
TP and T specify the volume of packets and items (e.g., flows, sources) for
C; traversingP;.

A flow is a sequence of packets close in time that have the same IP source and destination addresses/ports
and protocol.
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e The different classes may have different resource footprints. For@aalre capture
these using the per-packet processing load (e.g., CPU seconds per |6aeket),
and the memory load/emReq, (e.g., bytes per flow or per source). These can
be obtained by profiling the resource consumption of the NIDS for different mod-
ules [77].

e The processing and memory capadityuCap,; andMemCap; of each noder;. We
consider a general model in which the network elements could have heterogeneous
hardware capabilities.

Optimization problem: For concreteness, we focus on minimizing the maximum pro-
cessing/memory load on any given node across the network, while guaranteeing complete
coverage over the different NIDS classes. This optimization problem can be represented
using the following linear programming formulation.

Minimize max{ CpuLoad, MemLoad}, subjectto

Vi, Yk, > dgy =1 (6.1)
JjiR; Py
) items o
Vj, MemLoad; = 2i 2y MemfBieq; X Ty™ X dug (6.2)
MemCap;
S, CpuReg; x TH™ x dy,
Vj, CpULOCZd — Zz Zk putieq; X ik X kg (63)
J CpuCap;
Vj, CpuLoad > CpuLoad; (6.4)
Vj, MemLoad > MemLoad, (6.5)

Eq (6.1) says that the all the traffic in each coordination unit for each class should be
monitored. Eq (6.2) models the total memory load on each node, expressed as a fraction of
its memory capacity. As a first-order approximation, the memory load depen@§‘on,
the number of distinct items corresponding to this analysis [77]. For example, this would
be the number of flows in per-flow analysis and the number of distinct source addresses
in per-source analysis. Eq (6.3) models the processing load on each node expressed as a
fraction of its processing capacity. Again, we model the processing footprint as a function
of the total volume (in packets) of each class that the node is assigned [77]. Finally, we
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model the maximum memory and processing load across all tkespnand minimize the
max of these two metrics.

Output: We solve the linear program to generatampling manifestthat specify the
monitoring responsibility for each node;. These responsibilities are specified in terms
of hash-ranges for each coordination uRjt.

Thed;; values in the optimal solution can be converted into hash-range based sampling
manifests for eact?;;, using the procedure in Figure 6.2. The main idea is that we map
the fractional variables into non-overlapping hash ranges while generating the sampling
manifests for each node. The non-overlapping hash ranges ensure that eaéh aobg
analyzes a distinct subset of tiig traffic, without requiring any explicit communication
between the differenk;s.

Given a sampling manifest, the algorithm on a nétjés shown in Figure 6.3. As each
packet arrives, we find the corresponding NIDS modules that will analyze this packet. In
general, the same packet may be analyzed multiple modules; e.g., a packet on port 80 may
be analyzed by the HTTP, malware signature detection, and scan detection modules. For
each such module, we checkAf should run the corresponding analysis for this packet.

To do so, we compute a4$H from the packet header using a lightweight hash function.
Depending on the semantics of the analysis, the hash is computed over specific subsets of
the packet header. For example, for flow-based analysis, the hash uses the unidirectional
5-tuple. For session-based analysis, the hash is computed over a bidirectional 5-tuple such
that the source/destination IP are consistent for both directions of the session. If the hash
falls into the hash-range assigned to ndgdor coordination unitP;;, then this packet is
subjected to analysis by clag$ at R;.

6.1.3 Implementation in Bro

We implement the above coordination functions in the Bro IDS [129]. Bro is logically
divided into two parts (Figure 6.4): (1) avent engin¢hat converts a stream of packets
into higher-level events and (2) a site-specpulicy enginethat operates on the event
stream.

Bro maintains aonnection recordor each end-to-end session that is generated in the
event engine and carried into the policy engine. This connection record keeps the basic
state information regarding the source/destination, application ports, and other tags asso-
ciated with the connection. We modified the connection record to additionally carry the
hashes of different combinations of the connection fields. Adding these to the connec-
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GENERATENIDSMANIFEST(d* = (dj;))

1 foreachclassC; do
2 foreach coordination unit?;, do

3 Range +— 0
// the order of nodes does not matter
4 foreachj, R; € Py, do
5 HashRange(i, k,j) < [Range, Range + d}; ]
6 Range «— Range + dj;

// Assignments across Classes and Coordination units
7 Vi, Manifest(R;) « {{{i, k}, HashRange(i, k, j))| d;,; > 0}

Figure 6.2: Translating the optimal solution into a sampitmanifests for each NIDS node

tion record increases the memory footprint slightly, but avoids having to recompute the
hashes within each policy script. We use the Bob hash function recommended by prior
measurement studies [121].

We consider two implementation alternatives: (1) delaying the sampling checks in Fig-
ure 6.3 (specifically, line 5 for eachand k) until the policy engine stage and (2) imple-
menting the sampling checks in the event engine as early as possible. The first approach
has two advantages. First, it requires minimal changes inside the event engine (except
adding the hashes to the connection record). Second, it pushes the coordination intelli-
gence into theite-specificonfigurations as intended in the Bro system design. However,
we found (Section 6.1.4) that this induced significant overhead for some modules. This is
because the policy scripts are executed by an interpreter and doing hash lookups/checks is
quite expensive. In (2), we add the sampling checks and only initialize a module if nec-
essary. For example, we initialize the HTTP module for a session only if the session hash
falls in the range assigned to this node for HTTP processing. Fortunately, we do not need
to modify each such module to add these checks. We need to add this check only at two
places: (a) when application-protocol modules (e.g., HTTP, IRC) are initialized (based on
port numbers)and (b) in the event engine for the signature matching module.

For some modules, the only processing that occurs is in the policy stage. For example,
scan detection and TFTP processing receive a raw event stream reporting connection in-

2Port numbers are not robust for determining application behavior-Bro can also detect application behav-
iors dynamically. In that case, we can implement this check at the point where the corresponding application-
specific module is initialized.
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COORDINATEDNIDS(pkt, R;, Manifest(R;))

1 {C;}; < GETCLASS(pkt)
// Each packet may be analyzed by multiple modules

2 foreachclassC; do
3 k <« GETCOORDUNIT (pkt, ©)
// HAsH returns a value if0, 1]
// Specific packet fields used forAsH
// depend on semantics 6f
hpet <— HASH(pkt, i)
if hyre € HashRange(i,k,7) then

Run clasg’; for pkt

o O~

Figure 6.3: Coordinated NIDS algorithm on nofg

formation. In this case, our only option is to implement the sampling check in the policy
engine.

In both (1) and (2), we implement the common functions to process site-specific con-
figurations and sampling manifests. We assume that the network administrator provides
site-specific configurations that will map each packet matctipgo the corresponding
P;.. For example, these could map IP prefixes to their ingress locations or identify the
routing paths for a given pair of IP prefixes.

6.1.4 Evaluation

First, we describe our evaluation setup. Then, we use standalone microbenchmarks to
profile the resource footprints of the different modules and measure the overhead of our
modified Bro prototype. Finally, we describe an emulated network-wide evaluation that
shows the benefits of a coordinated network-wide approach vs. a single vantage point
approach.

Setup: We use a custom traffic generator that takes in as input a network topology, the
traffic matrix (fraction of traffic for each ingress-egress pair), routing policy (nodes on
each ingress-egress path), and a traffic profile (e.g., relative popularity of different appli-
cation ports). Additionally, we provideemplate sessiorfer different applications using
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Approach 1: Approach 2:
Current Bro Delaying coordination Doing cooordination checks
until policy stage as early as possible
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Figure 6.4: Implementing the coordination functionalityBro. The “coord” boxes indi-
cate where changes were needed to add in coordination checks in Bro. For some modules
(e.g.,Scan), the coordination checks have to be in the policy engine.

real traffic captured for common protocols like HTTP, IRC, Telnet etc., and synthetically
generated traffic sessions for other protocols.

The goal of this evaluation is to compare the relative performance (processing, mem-
ory load) of a network-wide coordinated approach against a current single vantage point
approach. By design, the network-wide approach provides the equivalent functionality.
(We verified through manual inspection of Bro logs and profiles that the aggregate be-
havior of the network-wide and standalone approaches are equivalent. We do not present
these results for brevity.) That is, we are not interested in the detection accuracy of the
IDS algorithms as such. To this end, our traffic trace generator provides a realistic mix.

The performance benchmarks we present next were obtained using Bro-1.4 on a dual-
CPU Intel Pentium 3.4GHz machine with 2GB RAM running Ubuntu 9.04.

Microbenchmarks: First, we perform a standalone evaluation (i.e., with no network-
wide coordination) of our prototype implementation and compare it with an unmodified
Bro system. We generate a single traffic trace with a total of 100,000 traffic sessions using
a mixed traffic profile that stresses different modules. We evaluate both implementation
alternatives described earlier: Bro with the coordination checks implemented in the event
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engine wherever possible, and Bro with all coordination checkhe policy scripts. The
sampling manifests in both cases are configured to specify that this standalone node needs
to process all the traffic. We setup Bro so that it runs each analysis module in isolation.

Our goal is to evaluate: (a) the processing overhead induced by the coordination func-
tions — identifying the coordination unit, computing the hashes, and checking if the
hashes lie in the appropriate sampling ranges; and (b) the memory overhead of adding
the hash values into the connection record.

Figure 6.5 shows the processing overhead for our Bro implementations relative to an
unmodified Bro system (using the total CPU time used reported by Bro) across these mod-
ules. For the Baseline, Signature, Blaster, and SYN-flood scenarios, the overhead of co-
ordination checks is around 2% on average for both implementations. For the scan and
TFTP modules, the overhead of both coordinated versions is close to 10% since these in-
volve more processing in the policy engine. In these cases, both the coordinated versions
have very similar overhead because the coordination checks occur in the same place; they
cannot be offloaded to the event engine (e.g., scan, TFTP etc.) or they occur solely in the
event engine (e.g., Signature). However, in the case of HTTP, IRC, and Login, we observe
a significant overhead when we perform the coordination checks in the policy engine.

Figure 6.6 shows that the memory overhead of the coordinated versions is at most 6%.
Recall that this overhead arises because we augment the connection record in the event
and policy engines to carry hashes of different fields in the connection identifier.

Network-wide evaluation: Next, we consider a network-wide evaluation setup. For this,

we use the Internet2 topology with 11 nodes distributed throughout the continental US to
represent a large enterprise network with several locations. We use a gravity model based
on the city populations to determine the traffic matrix; i.e., the split of the total traffic
between every pair of locations. We use shortest-path routing based on link distances
to determine the paths for traffic between each pair of locations. Given this topology
and traffic information, we set up the linear programming formulation to assign the NIDS
responsibilities across the different locations to minimize the maximum CPU/memory load
on any given location. We assume that all the locations have the same processing/memory
capabilities. We use the guidelines of Dreger et al. [77] to generate the per-packet and
per-flow/per-source resource footprints for the different Bro modules.

We compare the network-wide coordinated deployment against an edge-only deploy-
ment where each location independently runs a Bro instance on the traffic it sees. We
emulate a network-wide deployment as follows. From a network-wide trace, we gener-
ate traces that each node sees. For the coordinated case, this includes both traffic origi-
nating/terminating at a node and transit traffic. For the edge-only case, these consist of
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Figure 6.5: CPU overhead with the coordination-enabled Brtopypes for different mod-
ules

traffic originating/terminating at each node. Given these traces, we run Bro on the trace
in pseudo-realtime emulation mode. During each run, we measure the CPU utilization
and memory load usingtop sampled every 1 second. We report the CPU footprint as
the product of the utilization and the total execution time and the memory footprint in
terms of the maximum resident memory size. For each deployment scenario and node, we
run the experiment 5 times to report the mean, minimum, and maximum value of these
performance metrics.

Figures 6.7 and 6.8 show the maximum per-node memory and processing load across
the 11 node network as a function of the total network traffic volume. Here, we increase
the total number of end-to-end sessions while keeping the traffic matrix and the NIDS
functionality fixed. The NIDS modules in this case are the 8 modules from Figures 6.5
and 6.6. We see that coordination reduces the maximum memory footprint by 20% and
the maximum CPU footprint by 50%. The overall trend also shows that the network-wide
approaches scales better as the workload increases. Interestingly, we see that even though
the memory overhead of the coordinated versions in the policy and event-engine based
checks are similar (Figure 6.6), the results are significantly different in the network-wide
case (Figure 6.7). The reason is that delaying the coordination checks until the policy
engine negates any benefits that the network-wide optimization offers. This is because
each node has to keep per-protocol connection state even if it is not logically responsible
for analyzing that connection.
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Figure 6.6: Memory overhead with the coordination-enableal [Bototype for different
modules

Next, we consider the effect of adding more functionality to the NIDS. For this exper-
iment, we keep the traffic volume fixed at 100,000 flows, but add more NIDS modules by
creating one or more duplicate instances of the analysis modules seen so far. In order to
simulate the effect of adding more NIDS functionality, we create duplicate instances of
HTTP, IRC, Login, and TFTP modulésRecall that there were two classes of modules:
those where we could push most of the coordination functions into the event engine and
others where we could not. We manually inspected around 140 Bro policy scripts provided
in the default distribution and found that a majority of them fall in the former category.
Thus, our duplicate instances are indicative of how a NIDS like Bro would be configured
with additional modules in practice.

Figures 6.9 and 6.10 show the effect of increasing the number of NIDS modules.
Again, we see that the coordinated approach scales better as we add more functionality
into the NIDS deployment.

Finally, to provide insights into how these performance benefits arise, we show how the
CPU and memory load metrics vary across the different network locations in Figures 6.11
and 6.12. We see that in the edge-only deployment, the node marked 11 is most loaded.
(This corresponds to New York, which in a gravity model based traffic matrix carries

3We used fake instances merely for convenience. This let us avoid having to benchmark and modify
scripts for other modules.
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a significant volume of traffic.) These also show that the coordinated case effectively
balances the load across the different nodes— it offloads some responsibilities that were
previously assigned to node 11 to other nodes where the same analysis could have been
performed with no loss in functionality. For example, we see that some nodes (e.g., nodes
6 and 8) have to perform more NIDS responsibilities than before.

6.1.5 Extensions

More fine-grained coordination capabilities: These results show that our coordinated
Bro prototype already provides significant performance benefits in a network-wide setting.
However, there are some avenues to further improve the performance.

The basic unit of processing in the Bro event engine is a connection: an end-to-end
session between two hosts. This means that the Bro instance at thé Inodeur setup
has to track all connections, because it is the only node that can rusctdre module.
Even though a lot of the processing has been offloaded to other nodes, it has to track all
packets because a connection is the smallest granularity of processing. Thus, we have to
duplicate the baseline connection processing work across the network.

One direction of future work is to systematically design NIDS to support fine-grained
coordination capabilities—allowing different granularities of connections, creating more
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fine-grained events (e.g., first packet of a flow &wan), allowing modules to specify
how early we can implement the coordination checks etc.

Redundancy for reliability:  In order to be robust to NIDS failures, network admin-
istrators may want to ensure that each analysis module is enabkedranore distinct
locations for each coordination unit. We are specifically concerned about non-adversarial
failure modes; e.g., hardware or OS crashes. (If we are running the same NIDS implemen-
tation at all locations, this does not protect against adversaries who craft traffic patterns to
target specific implementation bugs.)

Extending our model from Section 6.1.1, this means that we have to divide the hash
space for each coordination unit across the nodes such that: (1) each point in the space is
coveredk times and (2) no node is responsible for the same point more than once. The
second clause ensures that we hadistinctnodes to analyze each packet/connection.

One approach is to add another dimension to the formulation to incorporate the notion
of a redundancy level. That is, we can extenddhgto d;; to indicate what redundancy
level this corresponds to. But it is intuitively hard to capture the constraint in (2) that the
same node is never responsible for the same point in the space more than once in this
model. At first look, it seems that incorporating such reliability demands is hard.

Fortunately, there is a simple extension to the LP formulation to meet this requirement.
The key is not to treat replicated coverage in terms of levels, but simply as fractions of a
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larger space. Thatis, instead of thinking of the problem in terms of covering the[8pHce

k times, we think of it as covering the spd6ek]|, wrapping around at integral values. We
modify the RHS of the constraint Eq (6.1) kdnstead of 1 and solve the rest of the LP as
before. While converting the LP solution into sampling manifests (Figure 6.2), we proceed
as before, except that we logically wraparound the range every time it exteeds

6.2 NIPS Deployment

In this section, we first describe our model to capture the constraints and requirements
in deploying NIPS functions. We describe the optimization problem, show that it is NP-
hard, and develop approximation algorithms based on randomized rounding techniques.
We evaluate these algorithms on a range of real and inferred ISP topologies and system
parameters. Finally, we describe how we can extend the model to be robust to dynamic
adversaries by leveraging techniques from online algorithms.
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6.2.1 System Model

We consider a general model of NIPS that include firewalls and signature-based detection
systems. NIPS typically consist bltering rules, each matching a specific traffic pattern.

For example, firewall rules look at the packet header fields; signature-based filters detect
specific string/regular expression patterns in packet payloads. As in the NIDS case, each
rule (class)C; is associated with two types of resources: (1) CPU processinglpafleq,

per packet, and (2) memory loddemReq, if it needs to maintain any per-flow or cross-
packet state. For this discussion, we restrict our presentation to rules that operate a per-
packet or per-flow granularity, since it is typical of most NIPS functions used today. As
such, we consider only coordination units that are end-to-end routing paths; i.e P;gach

is a path of routers.

Unlike the NIDS case, NIPS operate on fbewvarding pathand need to strictly operate
at (or close to) the line rate. Many firewalls and payload detection mechanisms today use
special purpose hardware such as Ternary CAMs (TCAM) for pattern matching in order to
operate at line rates (e.g., [179, 178]). However, such hardware capabilities are expensive
and power-hungry. This places additional economic and technological limits (imposed
by power and cooling requirements) on how many NIPS modules can be active on each
node and adds a new dimension where not all rules can be enabled on all NIPS nodes. To
address this concern, we extend our model from the previous section.
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Figure 6.11: Memory load on each NIDS node in the network

6.2.2 Problem Formulation

The objective is to configure the NIPS modules to minimize the network footprint of un-
wanted traffic or equivalently to maximize how much we reduce the total network footprint
by dropping such unwanted traffic. We want to genenalie placementspecifying which

rules are enabled on each NIPS node aadhpling manifestspecifying what fraction

of the traffic the node should process for each enabled rule. Given the rule placements,
the processing responsibilities are split to ensure that no node exceeds its memory/CPU
capacity.

As a generalization, we consider the footprint of each packet in terms of network dis-
tance. LetDist;,; be the downstream distance remaining on the gatfrom R;. Dist
can be measured in number of router hops, fiber distance, or routing weights. For example,
if for C;, the P;; = Ry, Ry, R3 in order, and we measuiist in router hopsDist;1; = 3,
Dist;1o = 2, and Dist;13 = 1. Alternatively, if we are only interested in the total volume
of unwanted traffic dropped, we set alist values to be 1.
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Inputs:

e Each rule(; is associated with three types of resources: (1) CPU processing load
CpuReq, per packet, (2) memory loademReq, if it needs to maintain any per-flow
or cross-packet state, and (3) TCAM usagenkReq, per rule. Also, note that the
CamReq is per-rulerather than per-packet or per-flow.

e The capacity constraintSpuCap,;, MemCap,;, and CamCap, of each noder;.

e The pathsP;, their traffic volumesT %™ and Tikts, and theDist ;;,; values for each
node on the path.

e For each rulel;, Match; denotes the fraction of traffic along this path thattches
the specific rule and will be affected by this rule. For example, if the €ules de-
signed to detect a specific malware signatifeich,; is the fraction of this malware
traffic on the pathP;,. We assume that these can be estimated from measurements
or alerts from the NIDS deployments.

Optimization Problem: Let ¢; be a{0, 1} variable that specifies if rul€’; is enabled
on nodeR;. dy; denotes the fraction of traffic on pafty, for which nodeR; applies the
filtering rule C;.

Alternatively, we can consider the case where each rgdapplies all enabled rules
{Ci|e; = 1} to some fraction of the traffic. (In this caséwould depend only ofi andk
and not oni.) Our definition is more general and subsumes this specific instance.

Given this setup, we can formulate the NIPS deployment problem with these hardware
constraints using the following Mixed Integer-Linear Program.
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MaXimizezz Z Tii];fems x Match; X Déstkj X dikj (67)

t k J,RiEPy

subject to
vy, Z CamReq; x e; < CamCap;, (6.8)
V7, Z Z TH™ x MemReq; X dgj < MemCap; (6.9)
koo
Vi, Y ) THY x CpuReq, x dy; < CpuCap, (6.10)
koo
VEVi, Y dyy <1 (6.11)
J,R;€Pij,
Vj,Vi,Vk, dikj S €ij (612)
Vk,Vi,Vj, digj >0 (6.13)
Vi, Vi, e; € {0,1} (6.14)

The objective in Eq (6.7) models the total reduction in network footprint achieved by
dropping unwanted traffic. For a specifi@andk, the total number of unwanted flows of
this type isT}“™ x Matchy;. Each nodeR; that lies onP;, contributesDisty; X dy;
toward reducing the total footprint. Since we can effectively split the sampling responsi-
bilities across the?; on eachP;;, by hashing (as in Figure 6.2), we can simply add up the
contributions across the different nodes.

Eq (6.8) models the constraint on the number of rules that can be enabled in the con-
strained hardware on each node. Eq (6.9) and Eq (6.10) model the aggregate memory and
processing load on each node. Eq (6.12) is a sanity check to ensure that a node cannot
apply a ruleC; unless it has been enabled and Eq (6.11) ensures that the fraction of the
total traffic sampled on each path-rule combination is never more than 1.

There are three implicit assumptions in the above formulation. First, for modeling the
objective, we assume that attackers cannot explicitly craft patterns to avoid the sampling
checks. That is, both legitimate and unwanted traffic patterns are distributed uniformly
through the hash space. This is a reasonable assumption in practice: network adminis-
trator can use private keyed hash functions to prevent adversaries from evading the hash
checks. Second, to rigorously model the load on a node, we should take into account the
traffic dropped upstream on each path. In that case, Eq (6.9) and Eq (6.10) will be become
non-linear constraints. Specifically, the LHS of these equations will have an extra product
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term (1 — . _; di;) to model the traffic that has already been dropped. We conserva-
tively model the load in terms of the total volume entering the network (before any drops).
Third, we assume that the rules themselves are non-redundant and the same packet/flow
does not match multiple packets. Our high-level goal is to obtain effective guidelines for
configuring the NIPS modules. To this end, these are reasonable assumptions that make
the formulation practical.

The presence of the discretg variables (Eq (6.14)) makes such optimization prob-
lems NP-hard. Next, we show that our specific NIPS deployment problem is NP-hard via
a reduction from the Mx-CuT problem.

6.2.3 Hardness of NIPS problem

The Max-CuT problem is the following: given a grapi = (V, E), we want to find

S C V such that the number of edges betwé&eandV” \ S is maximized. It is well known
that the Max-CuT problem is NP-hard. We show NP-hardness of the NIPS deployment
problem by reducing Mx-CuT to it.

Given an instancé’ = (V, E') of the MAX-CuT problem, we construct an instance of
the NIPS deployment problem as follows. Each vertexV corresponds to a nod, in
the NIPS deployment problem. Each edge (u,v) € E corresponds to a 2-node path
consisting of the node8, and R,. Each nodeRk, has a TCAM capacityCamCap = 1.
There are only two types of rule§y and (1, that can be enabled on the nodes. Each path
P, hasTy = 1/2 for bothi = (; and for C;. Both rules have a match rate of(i.e.
Matchy; = 1). All nodes have no constraints @puCap and Mem Cap.

CLAIM : There is a max cut of sizaef and only if the optimal solution to the NIPS deploy-
ment problem has value + 7, wherem is the number of edges @.

The basic idea here is that enabli6g on a nodeR, corresponds to assigning it
and enabling”; equivalently corresponds to assigning ififo, S. By doing this, we can
drop all traffic corresponding to edges which cross the cut, i.e for all gasish that one
vertex ofk is in S and the othe#” \ S. Each remaining path has the same rule enabled
on both nodes and thus can get a maximum reductiénsoh terms of volume of traffic
dropped. (The sampling bounds on each path-rule combination in Eq (6.11) and (6.12)
ensure this.)

First, we see that if there is a cut of sizéhat we get a total reduction of + 5. This
is because of the following: For each vertexdnlet us enable”; and for each vertex in
V'\ S, enableC;. The paths corresponding to the edges which cross the cut contribute a
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reduction of] x 2+ 1 x 1 = 2 (because one of the rules will catt/i2 the volume of
traffic at a downstream distance &fand the other rule will catch/2 the volume traffic

at a downstream distance bf. For each other path (those corresponding to edges not
crossing the cut) we can get a reduction of contribute a reductio}l >of2. The total
reduction thenig x 2 + (m —¢) x 1 =m + £,

Conversely, we see that if the NIPS deployment problem has values, then there
is a cut of size-. Now, among the different paths, suppesef them have a reductlon @f
and the remainingn — ¢’ have a reduction of. Since the total reduction is + £, it must
mean that’ > ¢. Again, if in the optimal solution, rul€y is enabled to nod&,, assign
uto S, and tol \ S otherwise. Thus, there is a cut of size at least

6.2.4 Approximation via Randomized Rounding

Given that it is NP-hard to solve the above optimization problem exactly, we use an ap-
proximation algorithm using randomized rounding [133]. Figure 6.13 describes the steps
involved in our algorithm.

First, we solve @elaxedversion of the problem by replacing the discrets by contin-
uous variables in the intervdl, 1] and solving the resulting linear program. Then, starting
from the solution to this linear program, we generate a solution to the original problem
that (a) satisfies the constraints Eqgs (6.8)—(6.11) and (b) is close to the optimal value.

As a first step, we would like to “round” the optimal fractional valge in the LP
solution to a binary value;;, by setting eacle;; independently and randomly towith
the probabilitye’;, and0 otherwise. However, to decrease the chance of violating the

constraint Eq (6.8), we sef; to 1 only with probability%f (line 5 of Figure 6.13). While

this ensures that most constraints in Eq (6.8) are satisfied, it could still violate a few of
them. To rectify this, we reset some of these variables to zero (line 10) as necessary.
To make sure that we do not violate the constraints Eqs (6.9)—(6.11), we ensure that the
solution {e; }, {Jl\k]}lk] after the loop in lines 4-9 satisfies Eqs (6.9)—(6.11) to within
some factorilog N, whereN = max{#nodes #rules}—see line 7. These constraints

will be satisfied when we rescale th@js inlines 11-12. (We can do this becausedmﬁs

are fractional quantities.)

Let Opt, » denote the value of the objective function of the optimal LP solution (i.e.,
Egs (6.7)—(6.13), and with Eq (6.14) replaced by the constegist [0, 1]. LetOpty;pg be
the objective value of the optimal solution to the original “integer” formulation Eqs (6.7)—
(6.14). We show in the next section that the process in Figure 6.13 outputs a feasible
solution with objective function at Ieag%, where the constants in the big-oh depend
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RANDOMIZEDROUNDING

// Create LP relaxation
Replace “g € {0,1}"in Eq (6.14) with “0 < e; < 1"
Solve the LP relaxation to obtafr;: }; and{d;, }i;-
Vk,i,j, €y diy;/ el
repeat

Vi,j, Randomly set;; < 1 with probability%z,

ande; < 0 otherwise

vk, 1,7, CZZJ — Eikj €
7 Check if any constraint in Egs (6.9)—(6.11)

is violated by a factor more thahlog N.
8 If yes, call this trial dailure.
until notfailure
10 If for somej the constraint Eq (6.8) is violated, arbitrarily set
somee;,; to 0 until all constraints Eq (6.8) are satisfied.

11 Vk,i,j, €y < ﬁfég]\[.
12 Yk, i,j, dgy — €€5-
13 Outpute; anddy,.

(o3} g A WDNPE

©

Figure 6.13: Approximation algorithm for the NIPS deployrmproblem via randomized
rounding.

on the scaling factors and3. SinceOpt;, > Opty,pg, this guarantees that the value of

our solution is at Ieas(g%. (Reasonable values atie= 4 and = v/6.)

The algorithm in Figure 6.13 can be heuristically improved in two ways. First, the
scaling ofd;; (line 11) is likely to be too conservative. A practical alternative is to solve
the LP represented by Eqgs (6.9)—(6.14) after setting the values fobtained in line 5 to

be constants, and use the values{foir;j}ikj returned by this solution. Second, we may

be conservative in setting somag to zero (lines 10 and 5)—to fix this, we can greedily

try to sete;;s to1 until no more can be set tbwithout violating Eq (6.8), and then solve

the LP treating these; as constants. Since none of these steps affect feasibility and
can only improve the value of the objective function, the above approximation guarantee
holds on this extended heuristic as well. In practice, these heuristics boost the algorithm’s
performance significantly.
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6.2.5 Sketch of Rounding Argument

We now present the analysis of the rounding algorithm from Section 6.2.4. Recall that
N = max{#nodes, #rules}. We begin by first (loosely) boundin@pt, », which will be
useful later. To get an upper bound, imagine that we scale down the traffic volumes for

every path toﬁkmms = Tf’zjms, where\ = max; ;; T4 x Matchy; x Disty; X -
Here, for any fixed, &, j, dj;; denotes the maximum value the variable can take so that all

the constraints remain satisfied, even if no other rules are enabled. (Note that this scaling
is only for the analysis and does not affect the algorithm as such.) Since we have scaled

all T#*mss by \, we also rescale th&em Cap; bounds in Eq (6.9). Thus, any LP solution

. . . . . —— items
that was feasible witl/™ values is also feasible under the valiés . Further, the

guantity T;k”ems X Matchy; x Disty; x diy; < 1, for eachk, 4, j triplet. (Otherwise, this
would violate the property that is the maximum value.) Therefore, the total objective
functionOpt, , for the scaled problem is at mask N x N2 x N = N (there could be at
most N rules onN routers for each path, and there could be at méstlifferent paths).

At the other end, clearly we can enable just one ritilen a router;* for a pathk*,
and setd;-;+;- to the maximum feasible value while still preserving all constraints, (this
corresponds targ max; . ; T x Matchy; x Disty; x dy,;) and get a total objective of
at leastl, while meeting all the constraints. Hen€&pt,, > 1. Therefore, we have the
following bound onOpt p:

1 <Optyp < N* (6.15)

As described in the algorithm, the first step is to perform the randomized rounding in

Steps 4-9. Notice that because we@gto 1 with probability%f, we can apply linearity
of expectation and observe that, for any constraint in Eq (6.9):

— MemCap;

E | /'™ x MemReq; x dgj| < (6.16)

«

We can use linearity of expectation, to also get that the expected value for each con-
straint in Eqgs (6.10) and (6.11) are also at mb&t times their corresponding bounds.
Now since eacl;; variable was roundemhdependentlyf the others, we can use a Cher-
noff bound (on sums of independent bounded random variables) to bound the probability
that each fixed constraint in Egs (6.9)—(6.11) is violated by a factGief N by —

Nap?/2"
Next, we apply the union bound (on all the constraints) to get that the probability

of any constraint from Eq (6.9)—(6.11) being violated (i.e., a failure event occurs) is at
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most;%f/2 (there are at mos¥? constraints of the form Eq (6.11) and at mpaf other
constraints from equations Eq (6.9) and Eq (6.10)). We can ensure that this is at most
1/N8, by settinga = 4 and3 = /6. Hence, we have with high probabilityal solution

for the'e;; variables which may violate some of the constraints Eq (6.8), but using which
none of the constraints Eqs (6.9)—(6.11) are violated by more than a factbiogfV.

Before we worry about the violations for constraints Eq (6.8), let us bound the expected
value of the objective function for the rounding procedure. From linearity of expectation,

we have

: Opt
H%X:E:E:ﬁm“meMxDm@x%jz ZW (6.17)

k j,RjEP, i

However, remember that we are interested in the expected objective function value
conditionedon a non-failure. To calculate this, we use the two facts that (a) the proba-
bility of a failure is negligible (at most/N?®), and when a failure occurs the value of the
objective function is bounded hy* (see Eq (6.15)). I€ denotes a failure event, we know
that

E[X]=E[X|E]Pr[€] +E [X|E] Pr (€],

and hence

E [X|€] = (E[X] - E[X|E]Pr[€])/Pr [E]
> (Optyp/ar—1/N®- N*).

Now, becaus®pt, , > 1 anda will be setto a small constant, we have th@pt, , /a—
1/N® . N*) > Oo'j%. Therefore, the expected objective, conditioned on a non-failure is at

leastoPte.

What remains is handling the possible violations in constraints Eq (6.8). To fix this,
we reset some of the; values to0 in Step 10. To this end, let us look at the probability
of a fixede;;; variable getting dropped, conditioned on it being set triginally. This

happens when Eq (6.8) exceeds the bolGneh Cap,,. But we know that over all the other
rules, the expected load satisfies

E

Z CamReq; X e/l\]/] < (CamCap; — ey x CamReq; )/
i
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Figure 6.14: Performance of the approximation algorithms with a uniform rule match rate
distribution

Therefore, we can use Markov’s inequality and bound the probability that this sum of
random variables exceeds (CamGap CamReq; ) to be at mose/a.

Therefore, with probability at leadt — % any e; which was set ta in Steps 4-9
is retained ad. Therefore, the expected value of the objective function, after Step 10,
is at least(“=2) () Opt,p, and the only violated constraints are those in Egs (6.9)-
(6.11) — and even these are violated by only a factop bfg N. But this is rectified in
Step 11, when we scale each of thealues by this factor. Therefore, all the constraints
are satisfied, and the objective function value drops by a fact@i@f N. Therefore, the

final expected objective is at Ieaoﬁtc%Opt .p and all constraints are satisfied with

very high probability. Specifically, if we set = 4, and3 = /6, we get anl /(25 log N)-
approximation.

6.2.6 Evaluation

For this evaluation, we use network topologies from educational backbones (Internet2 and
Geant) and tier-1 ISP backbone topologies inferred by Rocketfuel [157]. We construct
ingress-egress paths for each pair of nodes using shortest-path routing [117]. We use a
gravity model traffic matrix based on city populations [150]. To model the total volume,
we start with a baseline of 8 million flows and 40 million packets (per 5 minute interval)
for Internet2 based on publicly available estimates. For the other networks (Geant, AS
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Figure 6.15: Performance of the approximation algorithms with an exponential rule match
rate distribution

1221, AS 1239, AS 3257) we scale the total volume linearly as a function of network size
from this baseline estimate. Each nd@ein the network has a total/em Cap, of 400000
flows and aCpuCap; of 2 million packets that it can process in this 5-minute interval. We
useDist values measured in router hops.

We assume that there are a total of 100 NIPS rules, each having a unit requirement
of TCAM, packet processing, and flow memory units; i¥8., CamReq, = CpuReq; =
MemReq, = 1. We present results for two scenarios: (I}tchy; values are distributed
uniformly in the rang€0, 0.01] and (2) Matchy; values follow an exponential distribution
with mean0.01. For the following results, we vary th€am Cap; of each node as a fraction
of the total number of NIPS rules. For each setting, we generate 30 difféfetat:
values; run 10 iterations of the rounding algorithm and take the best solution across these
10 runs.

Figures 6.14 and 6.15 present the mean, minimum, and maximum value obtained by
the rounding algorithm across the 3itch,; scenarios as a function &fpt, ,.* In each
case, we show the performance of the basic rounding algorithm and the rounding algorithm
augmented with the heuristic improvements described above.

First, we notice that the performance of the basic rounding algorithm is much better
than the approximation ratio qjm as we get more than 70% Ofpt; ,. Second, we

4Since it is hard to find the true optimum, we use the LP upper bound as a proxy. Note that this is a
conservative estimate of the true performance of our approximation algorithms.
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notice that the greedy heuristic step can significantly bit@sperformance to consistently
get more than 92% dpt; ,. We note that these results are consistent across the different
topologies andCamCap; constraints; we have verified these for other distributions of
Matchy,; values as well.

6.2.7 Online Adaptation

The above formulation considers a static scenario where the match rates are known and
fixed. However, an adversary can control the sources and nature of the unwanted traffic.
For example, an attacker who controls a large botnet can modify the attack profile—the

sources and destinations of the malicious traffic and the attack mix— to evade NIPS-based
defenses. Our goal is to adapt the NIPS deployment to be robust to such adversaries.

To model the online or adaptive version of the NIPS deployment problem, we leverage
the framework described by Kalai and Vempala [85] for modetinfine linear optimiza-
tion problems. The general problem can be described as follows. We have to make a series
of decisions0;, Os, . . ., from some possible space of decisi@sC R". At each stef,
there is a cos0;,.S; associated with making the decisioh, whereS; € S C R" rep-
resents the state of the world at timeand ‘. denotes the dot product between the two
vectorsO, andS,. However, the staté, is revealed only after the decision for ttHe step
O, has been made and we do not have access to the currentstagéore making the
decisionO,.

Maximizezz Z Titems s Matchy; x Disty; X d,

i k j,RjEP;

subject to
vy, Z TH™ x MemReq; X dgj < MemCap;, (6.18)
k %
Vi, Y ) THY x CpuReq, x dy; < CpuCap, (6.19)
k 7
VE,Vi, Y dy <1 (6.20)
j,R‘,’EPk
Yk, Vi, Vi, dg; >0 (6.21)

Next, we describe how to leverage this framework for adaptive NIPS deployment. As
a starting point, we consider a simplified version of the NIPS deployment problem where
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we do not have the TCAM constraints. The above linear prograntemsdhe optimization
problem for the static case.

To permit adaptation, we divide time ingpochs. In each epoceh0, is a vector of
the sampling variableg;;s. The state of the world; at timet captures the traffic profile
in terms of the match rates for the different rules. Specifically, ¢acis a vector of
values, each of the forrd’/*"s x Matchy; x Disty; for somei, k, j. The sizen of the
decision and state vectors is thus= M x N x L, whereM is the number of paths in
the network (over whiclk ranges) N is the number of NIPS nodes (over whighanges),
and L is the total number of NIPS rules/classes (over whichnges). Each “cost” term
directly corresponds to a term in our objective; idy; x (T{*™ x Matchy; x Disty;).
An adversary can change the differe¥ititch,;; values over time to vary the traffic mix.
Our goal is to adapt the NIPS deployment without knowing the ek&gich,; values in
each epoch.

The goal is to have a total cost oveepochsy ;_, O;.5;, that is close tonincost, =
minpeo » ,_, 0.5;. That is, we want our cost to be comparable to the cost of the best
possible single solution in hindsightThe regretis defined as$y_;_, O;.S; — mincost.;
the difference between the costs incurred by the online decision procedure and this single
best decision chosen in hindsight.

Kalai and Vempala [85] show how to convert a black-box optimization algorithm for
computing the best static solution into an online algorithm that minimizes the worst-case
regret. Given a procedurk that takes as input the stateand returnsirg mingep O.S,
they suggest &llow the perturbed leader (FPLStrategy, where at each time steand
for somee > 0:

1. Choose, uniformly at random if0, 1]".

2. UseO; = A(3121 S5+ pr).

Intuitively, to make the decisio®, at timet, the algorithm uses as input foa per-
turbedfunction of the historical sum of the state vectors observed up-td. The per-
turbation term guards against adversaries who know our strategy. If we Chasaply
using the sum ob up tot — 1, an adversary can generate valuesasuch that the regret
will be very high.

SEven though we describe the NIPS problem as a maximization, we can think of the “cost” as the volume
of unwanted traffic that we let through.
6In general, it is not possible to provide guarantees with respect to the best possible dynamic solution.

170



It can be shown that the FPL strategy has provably low regmtpakticular, if we
define constant®, R, and A such that,

e VO,0' € O,D > |0 — O'|; (i.e., maximum L1-norm difference between any two
decision vectors)

e VO € 0,5 €S, R >10.5|(i.e., maximum possible value of the cost function)

e VS €S, A>|S] (i.e., maximum possible L1-norm of the state vector),

then, FPL with parameter= /- gives,

Theorem 6.2.1 EleostEPLQ)—mincost;] - /DRA 1g5)

That is, the average regret goes to zere axreases.

The optimization procedurd in our case involves solving the linear program. To
apply the theorem, we set the constamsR, and A as follows: D = M x N x L
andR = A = Y, T x mazdrop, wheremazdrop is a conservative upper bound

on the maximum fraction of traffic we expect to be dropped. Then, in each eépoeh
L1 MatchOFs (5 . . .
setMatchy; = 2= Afflh“ 9) + 7 Wherep, is computed as described in the FPL
ki
procedure. (The normalization factors in theterm arise because the state varialfles

correspond to the product of the match rate and traffic.)

Preliminary Evaluation: To evaluate this online adaptation procedure, we use the same
setup from Section 6.2.4 (without the rule capacity constraints). We consider a dynamic
setting in which thél/atch;; are chosen at random from a uniform match rate distribution,
but are revealed to us only at the end of each epoch.

The metric we are interested is the average normalized regret as function of time:

SOT_, Objsterieort _ opi FPL h . .. . .
ST whereObj denotes the value of the objective function achieved by
the different decision procedures. That is, we normalize the total regret by the total objec-
tive value achieved by the best possible static solution. Figure 6.16 shows this normalized
regret metric over time for 5 independent runs for the Internet2 setup. Across the different
runs, the regret is at most 15% of the best single solution we could have chosen in hind-
sight. (In some epochs, the regret is negative, meaning that the online algorithm is actually
better than the best static strategy.) This preliminary result demonstrates the promise of

leveraging such online adaptation strategies for robust NIPS deployment. As future work,
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Figure 6.16: Result showing the normalized regret over timmedffierent runs of the
online adaptation algorithm. We normalize the regret by the objective value of the best
static solution.

we will explore how well such strategies perform in the presence of strategic adversaries
and extend this framework to the general formulation from Section 6.2.2.

6.3 Related Work

Network management: Several recent efforts have demonstrated the benefits of a co-
ordinated approach for network management [66, 184, 37, 43, 73]. In the context of
monitoring and sampling, hash-based packet selection to coordinate monitoring responsi-
bilities has been used in the context of Trajectory Sampling [54] and cSamp [147]. We
build on this prior work. However, NIDS/NIPS deployment present unique constraints in
modeling the problems that we address in this chapter.

Monitor placement: Several research efforts have studied the problem of placing net-
work monitors to cover all routing paths using as few monitors as possible [159, 45]. These
show that the problems are NP-hard and propose greedy algorithms. Kodialam et al [113]

"There are known extensions for the case wheig an approximation algorithm [85, 109].
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consider the problem of routing traffic such that each endrdpath passes through at
least one content filtering node. Our formulations differ in two key respects. First, we
model the problem as one of enabling different modules with different sampling rates sub-
ject to resource constraints. Second, we operate within the current routing framework and
do not modify routing policies.

Scaling NIDS/NIPS: There are several efforts for building scalable NIDS/NIPS systems
using parallelization (e.g., [42, 166, 70, 156, 105, 104]), hardware-assisted acceleration
(e.g., [81]), more efficient algorithms (e.qg., [103]), models for understanding their resource
consumption (e.g., [76, 77]), and optimizing rule patterns (e.g, [33, 27, 59, 179, 178]). Our
work effectively complements these because we expfuitialopportunities for distribut-

ing NIDS/NIPS functions across a network.

Distributed intrusion detection: Distributed intrusion and anomaly detection systems
have been actively studied in the research literature and commercial deployments (e.g., [87,
64, 26, 152, 162, 165, 38]). As applications and attacks become distributed, we need to
aggregate information across a network for effective analysis [100, 108, 110]. For exam-
ple, understanding peer-to-peer traffic [49], hit-list worms [115], and understanding DDoS
attacks [145] require a network-wide view from multiple vantage points. Our current for-
mulation is restricted to the case where each NIDS/NIPS operation can be performed at
one network location. As future work, we plan to extend our models to include such
network-wide analysis modules (e.g., incorporating communication costs).

6.4 Discussion

Provisioning and Upgrades: So far, we considered the problem of optimally config-
uring a NIDS/NIPS infrastructure. We can extend the formulations from Sections 6.1.2
and 6.2.2 to describe what-if provisioning scenarios: where should an administrator add
more resources (e.g., [166]) or augment existing deployments with more powerful hard-
ware (e.g., [81]).

Handling routing changes: A natural concern with splitting the analysis functions across

a network is with routing changes. Network paths are largely stable on the timescales we
are interested in for per-session analysis [182]. However, when route changes do occur and
we recompute the optimal solutions, there is a concern that this may affect the correctness
of stateful analysis. Specifically, the new optimal solution may be such that the node
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maintaining some specific connection state is no longer resple for monitoring that
connection.

The key challenge is to ensure correctness in the presence of such routing dynamics.
In this regard, we can tradeoff some loss in performance to ensure correctness. The main
idea is that nodes temporarily retain the old responsibilities until any existing connections
associated with these assignments expire. That is, each node picks up the new assignment
work immediately but takes on no new connections that belong to the old assignments.
This may result in some duplication, but provides correct operation and will not result in
false negatives. However, it may be the case that new packets for connections in the old
assignment no longer traverse this node as a result of the routing change. In this case,
we may have to transfer the current NIDS state associated with these connections to the
new node responsible for analyzing these [155]. Also, adding in redundant functionality
as outlined in Section 6.1.5 can further reduce the impact of routing changes.

6.5 Chapter Summary

In this chapter, we provided systematic formulations for effectively managing NIDS and
NIPS deployments. In doing so, we used a network-wide coordinated approach, where
different NIDS/NIPS capabilities can be optimally distributed across different network
locations depending on the operating constraints—traffic profiles, routing patterns, and the
resources available at each location.

Our models and algorithms will help administrators to optimally leverage their existing
infrastructure toward their security objectives. Moreover, by focusing on the network-wide
aspect, it effectively complements other efforts to scale single-vantage-point NIDS and
NIPS. Furthermore, it can offer better incremental scalability to upgrade installations as
new systems become available.
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Chapter 7

Conclusions and Future Work

The work in this dissertation was motivated by the gap between the goals of network man-
agement applications and the tools available to administrators. Much of this disconnect
stems from the device-centric approach taken by current solutions. This view has led to
the development of narrow, incremental, and inefficient workarounds to address the limi-
tations of existing solutions.

One of the key observations in this dissertation was that several network manage-
ment tasks can be cast as system-wide resource management problems. Having cast the
problems as such, we provided systematic solutions based on three high-level principles:
choosing and placing the appropriate device-level primitives, coordinating different net-
work elements to leverage the available resources effectively, and using network-wide
optimization models to configure network elements to meet specific policy objectives.

Next, we briefly summarize the main contributions and implications of the work pre-
sented in this dissertation before highlighting some potential avenues for future work.

7.1 Contributions and Implications

Traffic Monitoring:  Flow-level traffic monitoring is a critical aspect of network man-
agement that enables and guides several other facets of management such as anomaly
detection, traffic engineering, and network security. Several measurement and analyti-
cal studies have demonstrated the limitations of current monitoring solutions based on
packet sampling for such applications. As a result, several application-specific solutions
have emerged to address this disconnect between the requirements of flow monitoring
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applications and the capabilities available today. Thesmwasolutions increase router
complexity without providing the requisite generality.

The architecture we discussed in Chapters 2—4 has both immediate and long-term im-
plications for router vendors, network operators, and researchers. First, it reduces router
complexity without compromising a vendor’s ability to meet customer demands. Second,
it helps network operators insulate their deployment efforts from the changing needs of
management applications. Third, it provides the impetus to motivate further research on
developing robust generic primitives.

Redundancy Elimination:

The success of redundancy elimination in enterprise networks has sparked growing in-
terest in a network-wide RE service. A network-wide RE service benefits ISPs by reducing
link loads and increasing effective network capacity to better accommodate bandwidth-
intensive applications. Further, it generalizes the benefits of RE to all end-to-end traffic.
The design and implementation of SmartRE, presented in Chapter 5, takes this vision
closer to reality by achieving close-to-optimal benefits under practical constraints.

NIDS/NIPS Deployment:

Network intrusion detection (NIDS) and prevention systems (NIPS) serve a critical role
in detecting and dropping malicious traffic. There are several efforts for scaling NIDS and
NIPS using parallelization (e.g., [42, 166, 70, 156, 104]), hardware-assisted acceleration
(e.g., [81]), more efficient algorithms (e.g., [103]), models for understanding their resource
consumption (e.g., [76, 77]), and optimizing rule patterns (e.g, [33, 27, 59, 179, 178)).
These existing approaches primarily target single-vantage-point solutions. However, such
efforts for scaling NIDS/NIPS systems are insufficient in the context of large enterprise
networks, ISPs, and emerging contexts such as data centers.

The work presented in Chapter 6 targets the network-wide aspect and effectively com-
plements advances in these areas. Thus, it enables administrators to optimally protect
their infrastructure against attacks with existing deployments. It also offers incremental
scalability for upgrading installations as newer generations of NIDS and NIPS become
available.
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7.2 Potential Limitations

Before describing some avenues for future work, we reflect on some potential limitations.

Scalability:

The first question in any centralized optimization is the issue of scale—Can the opti-
mization module handle large network topologies on the order of hundreds of nodes? In
some cases (e.g., cSamp-T, NIPS deployment) the optimization problems are provably
NP-hard, making this question more relevant. Fortunately, we have shown that we can ad-
dress this challenge by leveraging existing algorithmic techniques such as using Max-Flow
based reformulation, binary search, lazy submodular evaluation, parallel execution, etc.
We can use two additional optimizations: (1) precomputing solutions for expected con-
figurations (e.g., to adapt to predictable traffic dynamics), or (2) seeding the optimization
solvers with previous starting solutions to avoid running the algorithms from scratch. An-
other option to address the scalability concerns is to extend the models to loosely federated
network settings—This would allow distributed agents for individual network components
to run local algorithms (of smaller size) toward a global objective.

Availability of inputs to optimization:

The optimization formulations presented in the preceding chapters require the follow-
ing inputs: (1) the traffic matrix (in terms of number of bytes, packets, and flows), (2)
the routing paths for each pair of ingress-egress routers, (3) the capabilities and resources
available at each network node (e.g., memory, processing, TCAM), and (4) in some cases
more fine-grained properties of the traffic (e.g., attack match rates, redundancy profiles
etc.).

Fortunately, there is arich literature on traffic matrix estimation [184, 66, 185, 154] and
other management tools for tracking routing state (e.g., [148]) that are deployed by oper-
ational networks today. The technology capabilities of network elements can be obtained
from vendor and configuration databases or by benchmarking (e.g., [77]). Furthermore,
the systems we describe have a natpaitive feedback that the data generated from
these deployments will provide more fine-grained information that will improve the of
these inputs. For example, cSamp will yield more fine-grained flow-level measurements;
SmartRE and the NIDS deployments can provide a better view into the traffic mix.

Sensitivity to input parameters:

Even if the above input parameters are available, there is the issue of sensitivity—Will
a management framework based on optimization models be useful if the input parameters
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are not entirely accurate, which is often the case in preeti€®r example, there are
known issues with errors in traffic matrix estimation, routing paths need to be recomputed
as links/nodes go down, and the redundancy/attack profiles could change over time.

While good input data for traffic profiles (i.e., the traffic matrix and attack/redundancy
profiles) are necessary for the optimization modules, having perfect input data is less cru-
cial. In other words, it is possible to obtain the benefits of a system-wide approach even
with approximateinputs. In many cases, the major contribution to the performance ben-
efits arise from patterns than tend to be stable and predictable. For example, large traffic
matrix elements tend to be more stable over time. Similarly, the most common sources of
redundant traffic also tend to be stable [31]. Also, we can develop specific heuristics to
workaround errors in input estimates. For example, we describe one such scaling sugges-
tion in Section 2.2.4, where we can handle bounded errors in the traffic matrix estimates.

Errors in routing data can lead to reduced coverage and thus a small loss of perfor-
mance in the cSamp case. However, these are a more serious problem in the case of NIDS
and SmartRE deployments, because it can affectectness. In this case, we have to
develop domain-specific strategies that will provide correctness even in the presence of
routing dynamics or errors in routing data—e.g., failover configurations or explicitly pro-
viding redundant coverage.

Additionally, periodic recomputation can help adapt to changing conditions. As we
described in the specific chapters, the time taken to compute the optimal solution is on the
order of tens to hundreds of seconds, even for very large network topologies. Thus, we
can recompute the optimal solution as network conditions change.

Does optimization make management more “black-box"?

Network operators often want direct control over the configurations of network ele-
ments and might be reluctant to use third-party software tools for management. In this
respect, there is a concern that optimization might seem like a “black-box” which gener-
ates configurations that may not be intuitive, and thus our techniques may not be adopted.

We note that there is growing evidence that network operators in enterprise networks
and ISPs are beginning to use centralized processes for network configuration [73, 43, 37,
69, 160, 60, 126, 125]. The motivation behind such proposals is to make network config-
uration less of a “black art” and provide more direct mechanisms for operators to specify
and achieve their policy goals. In fact, these are arguably less black-box than the current
alternative where operators purchase third-party “middleboxes” to provide some function-
ality (e.g., [34, 19, 7, 12, 162]). The systems presented in this dissertation are designed in
the same spirit to enable to operators to specify the high-level intent to the configuration
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module. Nevertheless, developing suitable user-intediacenetwork visualization tools
will ease the adoption of the systems proposed in this dissertation [67, 65, 22, 163, 95].

Does coordination make it easier for adversaries to evade detection?

With random sampling, it is difficult for an adversary to determine which packets or
flows will get monitored. With a more coordinated approach, as in cSamp, where the mon-
itoring assignments are determined by an optimization algorithm as in Chapters 2 and 6,
there is a natural concern that adversariesgiasshe network’s monitoring configura-
tion. Thus, they can use this to either generate or redirect their malicious traffic to evade
the monitoring infrastructure.

While the increased coverage and scalability provided by cSamp and the NIDS de-
ployments reduce the likelihood of adversaries evading detection, network operators can
take additional measures to further alleviate such concerns. Specifically, the actual hash
range assignments can be randomized by making the mapping procedure in Figure 2.1 less
deterministic. Further, they can seed the hash function with a private key/seed value that
will not be exposed to adversaries.

7.3 Future Work

Going beyond monitoring 5-tuples:

Some settings require more fine-grained monitoring capabilities that look beyond flow-
level statistics. These include analyzing end-to-end performance metrics (e.g., loss, through-
put, latency) and on-demand analysis (e.g., analyze hosts that show specific patterns).
Our minimalist primitives, as described in this dissertation, do not provide these capa-
bilities. However, we believe that the broad principles underlying a minimalist approach
will still apply and assume more importance with more complex monitoring requirements.
One possible solution is to include a few flexible primitives that support such capabili-
ties [46, 180] within the minimalist framework.

A unified model for flow monitoring applications:

The promise of a minimalist monitoring approach leads to a broader question:
Can we design a unified framework to understand how a given monitoring infrastructure
performs for potential applications?

That is, given a specific application portfolio consisting of a variety of traffic metrics
that we want to estimate and an available set of monitoring primitives (e.g., packet sam-
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pling, flow sampling), we want formal models that will help esison what the estimation
errors for the various applications will be. There are three challenges to address this ques-
tion: (1) developing suitable abstractions for modeling application requirements (e.g., how
sensitive is an estimation task to missing data), (2) deriving optimal estimators with avail-
able primitives (e.g., what is a good way to combine the reports from different sampling
solutions for each estimation task?), and (3) reasoning about what additional primitives
would best serve specific applications (e.g., what-if scenarios to analyze how adding some
new capability would change the performance).

From a practical viewpoint, such a framework will help guide provisioning decisions
(e.g., retain current infrastructure? upgrade to new hardware?). From a theoretical per-
spective, this will generalize existing work that analyzes the accuracy of algorithms fine-
tuned for particular applications.

Robust provisioning and deployment:

Some of the chapters described models for provisioning network elements or formu-
lations for incremental upgrades and deployment. A natural concern is the robustness of
these upgrades to routing and traffic dynamics. Consider the simple fact that traffic ma-
trices exhibit distinct diurnal trends; in this case choosing an upgrade policy based on a
specific snapshot in time might be suboptimal. One direction of future work is to incorpo-
rate techniques from oblivious routing [175, 32] to obtain good guidelines for provisioning
that are robust to network dynamics.

Integrating routing and other aspects of management:

In this dissertation, we considered the monitoring, redundancy elimination, and intru-
sion detection/prevention problems in the context of a fixed routing infrastructure. We
can extend these problems to consider more flexible alternatives that integrate routing
and different management applications (e.g., [30, 137]). These become particularly ap-
pealing in emerging contexts with programmable routers for data centers and enterprise
networks [83, 125].

Coordination and optimization in loosely federated settings:

The models presented in this dissertation assume that the entire network is under a
single administrative domain. Even within a single logical domain, there are policy and
technology considerations that often lead to hierarchical or loosely federated management
structures. For example, ISPs typically use “areas” for simplifying routing management. A
natural extension to our formulations is to consider efficient coordination and optimization
models for such settings.
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There are two key issues here: the information available th ekevice to make
decisions and granularity at which the objective functions are specified. For example,
in the case of cSamp, routers might not have end-to-end path identifiers that identify
ingress/egress routers, but only have coarser path identifiers that to identify the ingress/egress
PoPs or areas. One potential approach is to consider a multi-level optimization process that
first generates the sampling assignments at the coarsest level, and then subsequently solves
optimization problems for the lower layers. For example, in the cSamp case, the first step
might be to generate PoP-level assignments, and then each PoP runs a cSamp-like opti-
mization to assign responsibilities to routers within the PoP. However, this might lead to
situations where there is no feasible solution at the more fine-grained level. Going back to
the cSamp scenario, this might mean that the optimum minimum fractional objective at the
PoP and router-level granularities might be different. In this case, we need mechanisms to
refine the optimization model by introducing new constraints, adding more information at
the coarse-level formulation, or systematically trading off the performance.
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