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Introduction 

Described herein are the key findings and results associated with the project entitled 
"Investigation of ELF Signals Associated with Mine Warfare, A University of Idaho and 
Acoustic Research Detachment Collaboration, Phase Two." Phase Two is a continuation 
of the Phase One effort under the same title. The scope, objectives and outcomes of Phase 
Two are similar to those described in the report and proposal of Phase One. Some of the 
following text is also found in the Phase One report. 

Extremely low frequency (ELF) electromagnetic signals are used by enemy combatants 
to detect and, subsequently, to incapacitate, by means of surface and subsurface mines, 
naval vessels. This program is of high importance to the Navy - particularly since ELF 
signals are one of the primary signature emissions of the Navy's proposed electric ship 
fleet. 

The questions that are being asked in this investigation are: 1) once an ELF signal is 
generated, how far will it propagate and still be detectable and 2) how can such signals be 
modeled, excited and measured? To this end, the scenario considered is one in which an 
ELF source of the electric or magnetic kind is located in or above water, such as a lake or 
ocean. This source stimulates an ELF signal that is free to propagate in the water and air, 
and is reflected by various material interfaces, say between the water and air, or between 
the water and the floor. For purposes of experimental demonstration, the investigation 
focuses on the scenario of ELF sources and signals in the context of Lake Pend Oreille, 
where the Acoustic Research Detachment (ARD, Bayview, Idaho) is located and 
entrusted with the necessary assets to perform validation measurements. 

The research program was designed with two major thrusts: Modeling and 
experimentation. The modeling thrust was coordinated and executed by the University of 
Idaho (UI), Moscow, Idaho; the experimentation thrust was coordinated and executed by 
ARD. This report focuses primarily on the modeling thrust. A separate report from ARD 
has been issued that addresses the experimentation thrust (See "ELF Phase Three Test 1," 
complied by Frank Jurenka, Chris Burgy and Vicki Pfeifer, July 15, 2010. Note: ARD 
expensed Phase Three funds while UI was still expensing Phase Two funds.). 

Both students and faculty of the University of Idaho and of Washington State University 
were involved in this project. Team members include: 

Prof. Jeffrey L. Young (UI), Lead PI: 
• Dr. Christopher L. Wagner, Research Engineer, FDTD code development 
• Mr. Robert Rebich, MSEE RA, Quasi-static code development 
• Mr. Christopher Johnson, MSEE RA, Data analysis and code development 



• Mr. Das Butherus, MSEE RA, Data analysis and code development 
• Mr. Chenchen "Jimmy" Li, BSEE RA, Topographical data translation 
• Ms. Neelima Dahal, BSEE RA, Data analysis 
• Mr. Markus Geiger, BSEE RA, Data analysis 

Prof. Dennis Sullivan (Ul): 
• Mr. Yang Xia, Research engineer, FDTD parallelization code development 
• Mr. Alireza Mansoori, MSEE RA, FDTD parallelization code development 

Prof. Robert Olsen (WSU): 

Mr. Zhi Li, MSEE RA, Layered media modeling 

ELF Modeling 

The activities pursued during Phase Two continue those pursued during Phase One, with 
particular emphasis on the refinement and validation of the numerical models. Portions of 
the following text summarize the modeling effort undertaken by the University of Idaho 
and are also found in the Phase One report. Some of that text has been updated to reflect 
new knowledge gained since the Phase One report was issued. In subsequent sections, 
unique results and findings associated with Phase Two activities will be presented. 

Modeling of ELF electromagnetic signals in water environments can be accomplished 

either by means of direct, analytical solution of Maxwell's equations or by numerical 
solutions of the same. The former is attractive for purposes of gaining insights into the 
physical mechanisms that hinder or aid the propagation of ELF signals. The disadvantage 
is found in the number of simplifying assumptions that are made to bring about a 
closed-form solution. A numerical solution has no such simplifying assumptions, but does 
suffer from discretization errors. In principle, it can model all of the physical and 
geometrical features of the domain of consideration. The price paid for doing so, however, 
is the required time and the CPU/memory resources needed to accomplish the task. Data 

visualization and management are other issues that need to be addressed when working 
with large data sets produced by numerical solvers. The positive and negative tradeoffs 
between these two approaches (i.e. analytical vs. numerical) suggest that no one method 

is superior. For that reason the UI team adopted a diverse strategy that encompasses many 
different approaches in order to assure a positive outcome and to provide deliverable 

modeling methodologies. 

The five principle techniques or tools that were considered during the Phase One and 
Phase Two efforts were the a) Sommerfeld Half-Space (SHS) method, b) 
Finite-difference, time-domain method (FDTD), c) High Frequency Structural Simulator 

(HFSS), finite-element code, d) Maxwell code and e) quasi-static method (QES). A 
summary of these methods is provided next. Detailed technical information on the SHS, 
FDTD and quasi-static methods are provided in the attached appendices. 



Sommerfeld Half-Space (SHS) Method 

The SHS method is an analytical approach that assumes that all interfaces (say between 

water and air, or between water and floor) are planar and infinitely extended. This 
assumption is reasonably valid for the water-air interface, particularly in open water 

regions where the source is located near the surface. For the littoral zones, the method 

may fail, particularly when electric sources are used to excite the ELF signals. By 
assuming that the interfaces are flat, a closed-form solution can be devised that is cast in 
terms of Fourier-Bessel integrals. These integrals can be evaluated numerically and 
rapidly in a matter of seconds on any desktop machine. Even with the potential 
deficiency of treating all interfaces as planar, the SHS method is attractive as a validation 
tool for the other numerical modeling approaches. For example, the team used the SHS 
method to validate the data produced by the FDTD or HFSS methods (described next) 

when these numerical methods consider the same layered media problem statement. The 

SHS method is also attractive in quantifying the up-over-down effect. This effect is 
associated with a low signal loss path through the air and a high signal loss path up and 

down through the water. If the path through the water is short, then the up-over-down 
signal loss can be low relative to a direct path between a source and sensor in the water. 
Professor Robert Olsen of Washington State University (WSU) is the lead investigator of 
the SHS method. 

Finite Difference, Time-Domain Method (FDTD) 

The FDTD method is a numerical approach that discretizes Maxwell's equations in their 
fundamental form using a staggered grid and leap-frog integrator. This method has been 
fully vetted in the open literature and has been established as a robust way of obtaining 
accurate simulation data. In principle, the FDTD method accounts for all material 

interfaces and inhomogeneities by assigning permittivity, permeability and conductivity 
values along edges of the grid elements. Curvilinear boundaries are approximated by 
straight line, stair-stepped boundaries. For geometrical features that are significantly less 
than a wavelength, such stair-stepping causes no appreciable errors in the computed data. 
Note that the domain of interest at Lake Pend Oreille does not exceed 8 km on a side; the 
lake floor at its deepest point is about 335 m. Assuming an operating frequency of 100 Hz 
and a water conductivity of 0.018 S/m, we note that the corresponding skin depth is 375 
m and the wavelength is 2.356 km; for air, the wavelength is 3,000 km. Thus the domain 

spans a fraction of a wavelength in air but about 3.4 wavelengths (or 21.3 skin depths) in 
water. The significant disparity between these two relative sizes potentially introduces 
computational complexities. One area of concern is the proper design of an absorbing 
boundary condition (ABC) or perfectly matched layer (PML) that will allow an open 
physical domain to be truncated into a finite computational domain. Placement of this 



ABC/PML in terms of wavelengths is critical if non-spurious reflections are to be 
avoided. Significant time and effort was expended to figure out a way to design an 
optimal PML. The outcome of this effort is described in the paper by Wagner and Young, 
"FDTD numerical tests of the convolutional-PML at extremely low frequencies," IEEE 
Antennas and Wireless Propagation Letters, vol. 8, pp. 1398-1401, 2009. This paper is 
attached to this report. Dr. Christopher Wagner of the University of Idaho is the lead 
researcher of the FDTD and PML effort. 

Given the amount of computing time that is required to run an FDTD simulation for 
domain sizes contemplated in this project (domains are on the order of kilometers), 
simulation times can be excessive (i.e. hours to days). For this reason, an effort in 
computational parallelization was undertaken using message passing interface (MPI) 
protocols and specialized graphics hardware. As shown in Appendix C, simulation times 
can be reduced by over a factor 16 using these kinds of parallelization techniques. 
Professor Dennis Sullivan of the University of Idaho is the lead researcher of this activity. 

High Frequency Structural Simulator (HFSS) 

HFSS is a commercially available electromagnetic, finite-element, frequency-domain, 
numerical solver that has been designed by Ansoft/Ansys for antenna and microwave 
circuit applications. One question that was asked in this investigation was whether such a 
tool could be used to predict the electromagnetic propagation characteristics of an ELF 
signal in a highly conductive environment. In Phase One and Two, the answer to this 
question was inconclusive due to source modeling issues. (In the Phase Three report, 
however, the answer will be more conclusive and positive.) Professor Jeffrey Young of 
the University of Idaho is the lead engineer of the HFSS effort. 

Maxwell 

Maxwell is also a commercial code developed by Ansoft/Ansys. However, unlike HFSS, 
it is a static solver for either electric or magnetic fields. Since ELF waves are static-like 
in the vicinity of the source, questions that have been raised by the team are these: 1) At 
what distance are the fields more static-like rather than wave-like and 2) can ELF waves 
be modeled by a static solver in some region about the source. Professor Jeffrey Young of 
the University of Idaho is the lead engineer of this effort. 

Quasi-Static Method 

A custom quasi-static method was also considered given that ELF signals are quasi-static 
in the vicinity of the source. By definition, the quasi-static method does not consider any 
wavelike mechanisms in Maxwell's equations; it assumes that the field lines are the same 



as the static field, but oscillating. This is accomplished by neglecting magnetic 
displacement currents for electric sources. By doing so, simple solutions can be 
constructed that correlate well with other more advanced solutions, like HFSS and FDTD. 
Professor Jeffrey Young of the University of Idaho is the lead engineer of the quasi-static 
modeling effort. 

Lake Parameters and Discretization 

Unlike the December 2008 experiments in which the experiments were conducted in an 
open area of the lake, the domain for the March 2010 experiment encompasses significant 
geometrical features above and below water. This was purposefully chosen to be so in 
order to exercise the limits of the various numerical and analytical models. That is, we 
would expect the ELF signals in the open area to be far easier to model than those in a 
more cluttered environment, due to the changes in the material parameters and 
geometrical features of the environment. Hence, we wanted the most severe environment 
possible to see if the models would fail to produce the correct data. 

The FDTD and HFSS numerical methods require a precise understanding of the electrical 
and geometrical features of the lake. The domain of interest considered in Phase Two is 
the area known as Idlewilde Bay and is shown below. The domain is about 6 km by 7 km 
on a side and represents the general area where actual experiments were performed in 
March 2010 using both electric and magnetic sources. (See the report entitled "ELF 
Phase Three Test 1" complied by Frank Jurenka, Chris Burgy and Vicki Pfeifer, July 15, 
2010. Note: ARD expensed Phase Three funds while UI was still expensing Phase Two 
funds.) 



The terrain elevation data (relative to sea level) along with their corresponding 
coordinates (in varying forms) were extracted from three sources: a data set from 
insideidaho.org, an AUTOCAD file of Lake Pend Oreille Contours from the Idaho 
Geological Survey, and data points taken manually from a provisional map of Lake Pend 
Oreille. The coordinates of each data point were converted into meters northing and 
easting in Idaho West State Plane; any elevation data in feet were converted to meter - 
thus, all three data sets conform to the same system. All three data sets were compiled 
together (minor adjustments were made to eliminate conflict between the data sets). 
Interpolation of elevation data at all points along two vectors (in x and y direction that 
define the area to interpolate) was accomplished using the 'griddata' function in Matlab. 
This created a matrix height field that defines the elevation and depth of the terrain or 
lake at each point in lm intervals. The matrix height field was then used as an input file 
for the various numerical solvers, i.e. FDTD, HFSS or Maxwell. 

The height field, if used with HFSS or Maxwell, needs to be converted into a solid model. 
The first step is to extract data from the height field into x,y,z coordinates. Then, in 
AutoCAD, the command '3dmesh' is used to create a mesh that is up to 255x255 cells in 
dimension from those coordinates. Since the height field is 6240x7520 cells in size, the 
data is down-sampled so that it will be within the bounds of '3dmesh'. After meshing, an 
AutoCAD script, 'M2S-2007.lsp' is used to convert the mesh into a solid figure. This 
solid figure is then exported as an ACIS .sat file (which is supported by HFSS). However, 
the mesh on the surface of the solid is too refined and uniform for HFSS to use efficiently 
in data computation. Therefore, an additional remeshing step is necessary via the mesh 
tool Cubit. By combining all the surfaces of the original mesh into one composite surface, 
the composite surface is then meshed using one of Cubit's meshing schemes. 
Unfortunately, Cubit cannot imprint the new mesh onto the original AutoCAD solid; the 
new mesh must be converted into a solid itself. The mesh is exported into an .inp file and 
then re-imported into Cubit, which removes the AutoCAD solid and leaves only the Cubit 
mesh. The mesh is then converted into a solid within Cubit and is exported back into an 
ACIS .sat format. Clearly, this is an involved process, but a necessary one when using 
HFSS or Maxwell. 

In addition to precise geometrical data, the various solvers also require precise 
knowledge of the conductivity of the lake and the mud at the bottom of the lake. The UI 
team used a value of 0.018 S/m for the water and 0.012 S/m for the mud floor. These 
numbers were previously measured by ART) during Phase One. As for the value of the 
dielectric permittivity of the lake, this was not deemed essential, since displacement 
currents in the lake are virtually insignificant relative to the conduction currents. 

It should be noted that a major shortcoming of the modeling effort has nothing to do with 
the modeling methodology, but with the lack of information about the environment to be 



modeled. For example, we treat the problem statement as if the environment is only 
comprised of three homogeneous substances: water, air and mud. Clearly, this is not so. 
The lake bottom, which we call mud, is actually an inhomogeneous substance of rock and 
silt that is saturated by water. The land, which is called mud, is an inhomogeneous 
substance of rock, dirt, trees and structures. Only the water and air are homogeneous for 
which numbers like permittivity and conductivity are known. Hence, errors between 
experimental data and simulation data can be attributed to the lack of knowledge of the 
environment and certain guesses about the quantification of the environment. 

Electric and Magnetic Sources 

Two kinds of electric sources were used in the March 2010 experiment: 1) a 4 meter, 2 
Ampere (max) electric source placed on a boat hull that skimmed the surface of the water 
and 2) a 15 meter, 3 Ampere (max) portable electric source that was lowered from 15 
meters in the water to the lake floor (i.e. about 152 meters). Additionally, a 3.6 meter by 
3.6 meter, 12 turn, 20 Ampere magnetic source was also used to stimulate ELF signals; 
this source was rigidly placed on the shore at Farragut State Park. For both electric and 
magnetic sources, the ELF signals were measured using a portable electromagnetic array 
(EMA) that was lower into the water at depths ranging from 15 m to 152 m. Source and 
sensor locations associated with the March 2010 experiment are shown below. 

In^H 

1   M-Source   1 
1  E-Sourcc 1 
1    Moored   1 

Sensor 
1     Unmoored     1 

1     Sensor 
1    Moored 

1     Sensor     1 
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E Source 
Unmoored 

(not used for dm test) 



Experimental Data Post-Processing 

Once the experimental data was collected, it was transferred to the University of Idaho in 
binary format for processing - particularly, to extract the desired frequency domain 
signals from the time-domain data. The first step was to pre-process the measured data 
into a useable format and to scale the data using appropriate scaling factors, as provided 
by ARD. Next the data was analyzed and plotted to identify experimental runs that 
correspond to fairly stationary source locations, since the ELF models assume both 
stationary sources and sensors. Typically, ten seconds of contiguous data sets can be 
obtained, which are transformed into the frequency domain using fast Fourier Transform 
(FFT) methods. The FFT data reveal the time-harmonic signal strength of each 
electromagnetic field component relative to the coordinate system of the experiment. To 
compare these data with simulation data, coordinate transformations are performed on the 
experimental data using GPS sensor data. The processing of the data is not completely 
automatic given random noise spikes and discontinuities in the data streams. To avoid 
post-processing conversion anomalies, only clean, contiguous data were processed. 

Results 

Data Comparisons: Simulation Methods vs Sommerfeld Half Space Method 

As noted previously, the Sommerfeld Half-Space (SHS) Method, being an exact solution 
of Maxwell's equations, can be used to benchmark the accuracy of the various methods 
employed in this project. Two sets of plots are shown below for vertical magnetic dipole 
excitation and horizontal electric dipole excitation. For the former, it is clearly seen that 
the Sommerfeld data (identified as WSU, who were the developers) and the FDTD data 
are closely correlated, thus validating the FDTD methodology and code. There is fairly 
good correlation between the data sets of WSU and Maxwell and no correlation between 
the data sets of WSU and HFSS. This poor correlation is attributed to the way HFSS 
models Hertzian dipoles in lossy media. Although there are some "tricks" for getting 
better data, these tricks involve the use of scaling factors that cannot be rigorously 
justified by theory. Moreover, a priori reliability is never assured. (Research conducted 
during Phase Three has found much more reliable ways to assure good data; this will be 
reported in the Phase Three report.) Similar conclusions can be reached for the vertical 
electric dipole case, but with additional validation of the quasi-static method. Since 
Maxwell only predicts electric fields by assuming no excitation of the magnetic field and 
since the source only excites a ^-component of the electric field, only a plot of Ey is 
shown. Yet for distances as far out as 675 meters, and low vertical depths, the quasi-static 
data agree with the Sommerfeld data reasonably well. 
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Figure 1: Electric field (y-component) of a 2500 A-m2 vertical magnetic dipole 
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observation point is at a radial distance of 150 m. The field is a function of vertical 

distance from -180 m in water to 45 m in air. 
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Figure 2: Magnetic field (z-component) of a 2500 A-m2 vertical magnetic dipole 

(VMD) for a three layer, flat earth. The source is in air at a height of 15 m and the 

observation point is at a radial distance of 150 m. The field is a function of vertical 
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Figure 3: Magnetic field (x-component) of a 2500 A-m2 vertical magnetic dipole 

(VMD) for a three layer, flat earth. The source is in air at a height of 15 m and the 

observation point is at a radial distance of 150 m. The field is a function of vertical 

distance from -180 m in water to 45 m in air. 
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Figure 4: Electric field (^-component) of a 45 A-m horizontal electric dipole (HED) 

for a three layer, flat earth. The source is in water at a depth 90 m and the observation 

point is at a radial distance of 675 m. The field is a function of vertical distance from 

-180 m in water to 45 m in air. 



lc-05 

4c-06 

I 
=  2c-06 c. 
E < 

le-06 

6c-07 

3e-07 

^.imuri-" .J   • • nimnri • *»» •  »^*-*M»***-« 

   Iiresionoiiz 
 mssi-.mi, 
- WSU l(«X) HI 

 WSU 100 Hi 
 WSU 10 Hi 
 WSU 1 Hz 
    PDTDIOMHi 

FT)TDI04lll 
-      FDTD 11.5Hz 

FDTDDC 

175 -150 -125 -100        -75 -50 
Vertical distance (m) 

-25 2? 

Figure 5: Magnetic field (z-component) of a 45 A-m horizontal electric dipole (HED) 

for a three layer, flat earth. The source is in water at a depth 90 m and the observation 

point is at a radial distance of 675 m. The field is a function of vertical distance from 

-180 m in water to 45 m in air. 
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point is at a radial distance of 675 m. The field is a function of vertical distance from 

-180 m in water to 45 m in air. 

12 



Data Comparisons: Simulation vs. Experimentation 

The plots on the following pages show comparisons between data as obtained from 
experimentation and simulation. Actual experimental run numbers are shown in the figure 
captions. Experimental runs were selected based on those runs that had sufficient 
contiguous data streams unaffected by noise and random noise spikes. Runs were 
grouped to form a single reference set for comparison. Due to the way the experiments 
were conducted and the way the data was collected, it was not uncommon to have only 
three data points per set. Finally, not all of the March 2010 experimental data was 
processed during Phase II. Additional processing of that data is also occurring in Phase 
Three; which will be presented in the Phase Three Final Report. The following table 
correlates the figure numbers with the run numbers. 

Figures 7, 8 and 9 Runs 3003,3111 and 3203 

Figures 10, 11 and 12 Runs 2003, 2007 and 2011 

Figures 13, 14 and 15 Runs 2404, 2408 and 2412 

Figures 16, 17 and 18 Runs 4304x, 4304y and 4304z 

Figures 7-9 show the electric field components excited by a 100 Hz portable electric 
source at a depth of 15.2 meters at map location 4. The observation distance is 505 meters 
at map location 5. The data are presented as a function of sensor depth. The correlation 
between data sets is quite good for the £>,and Ez components; the correlation is less than 
adequate for the Ex component. However, the modeling data for Ex are grouped together 
with the experimental data being the outlier. This suggests that the models are consistent 
in the way that the experiment is interpreted but that interpretation may be wrong. Further 
study is needed to assess and rectify this problem. 

Figures 10-12 show electric Field excited by a 100 Hz portable electric source at a depth 
of 15.2, 72.2 and 131.7 meters at map location 4. The observation distance is 964 meters; 
see map location 6. The data are presented as a function of source depth. In this case, the 
correlation between data sets is much better, albeit not perfect. The ^-component of the 
electric field has two experimental data points that lie near the modeling data; however, 
the third data point at 131 meters is an outlier. The correlations for Ex and E: are much 
better. With respect to E-, the quasi-static data is seen to be off by a factor of ten. Yet, 
since the observation distance is 964 meters, such distances fall outside the domain of 
validity for the quasi-static method. 

Figures 13-15 show electric field excited by a 1,000 Hz portable electric source at a depth 
of 15.2, 76.2 and 121.9 meters at map location 4. The observation distance is 1,000 
meters; see map location 6. The data are presented as a function of source depth. The 
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correlation between data sets is by far the worst. However, the quasi-static method 
appears to give the best results, even though the observation distance is far from the 
source. 

Finally, Figure 16-18 show electric field excited by the magnetic source on the shore at 
map location 3. The observation distance is 675 meters at map location 6. The data are 
presented as a function of sensor depth. The HFSS data are clearly questionable. This 
poor data is attributed to the way the source is modeled in HFSS; a new source model has 
since been developed and is currently being tested. The FDTD method seems to give 
better results, but the data for Ex are particularly bad. This poor correlation can be 
explained by noting that the source is on the shore and the FDTD method models the 
shore as if it were a homogeneous substance of mud, which it is not. If the constitutive 
composition of the shore is not known somewhat precisely in the vicinity of the shore, 
then there is no expectation that the model will predict the experimental outcome. 

To highlight this last comment, consider Figures 19 and 20. Both figures show the field 
data, as obtained from FDTD simulation, for two different value of shore conductivity 
(i.e. rock vs. mud); all other parts of the simulation are the same for the two cases (i.e. 
source, geometry, etc.). There is no question from this data that the fields are highly 
dependent on conductivity, thus supporting the previous claim that when the source (or 
observation point) is near a material boundary or interface, the constitutive composition 
of that material must be known to a high degree of accuracy if good data are to be 
obtained. 

It should be noted that magnetic field data are not shown, even for magnetic source 
excitation. This is due to the very weak magnetic field signal that was received relative to 
the noise floor. Even when the source and observation points were close to each other (i.e. 
100 meters), the signal was too weak to detect. The noise floor could be reduced by 
integrating the time domain data over longer periods of time, but that would require the 
sensor array to be stationary for long periods of time, which it was not. A Phase Three 
experiment will be conducted to rectify this latter problem along with new 
post-processing methods that will account for sensor motion. 
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Figure 7: Electric field (y-component) excited by a 100 Hz portable electric 

source at a depth of 15.2 meters at map location 4. The observation distance is 

505 meters at map location 5. The data are presented as a function of sensor depth 

and corresponds to runs 3003, 3111 and 3203. 
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Figure 8: Electric field (x-component) excited by a 100 Hz portable electric 

source at a depth of 15.2 meters at map location 4. The observation distance is 

505 meters at map location 5. The data are presented as a function of sensor depth 

and corresponds to runs 3003, 3111 and 3203. 
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Figure 9: Electric field (z-component) excited by a 100 Hz portable electric 

source at a depth of 15.2 meters at map location 4. The observation distance is 

505 meters at map location 5. The data are presented as a function of sensor depth 

and corresponds to runs 3003, 3111 and 3203. The dotted line is the experimental 

noise floor. 
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Figure 10: Electric field (y-component) excited by a 100 Hz portable electric 

source at a depth of 15.2, 72.2 and 131.7 meters at map location 4. The 

observation distance is 964 meters; see map location 6. The data are presented as 

a function of source depth and corresponds to runs 2003, 2007 and 2011. The 

dotted line is the experimental noise floor. 

16 



ie-u:> 

* 
* * 

> 

j 
c 
I 
< 

W   le-07   HFSS 
- QES 
  WSU 
   FDTD 

}(S—# Experiment 

-175 -150 -125 -100 -75 -50 
Vertical distance (m) 

•2? 

Figure 11: Electric field (jt-component) excited by a 100 Hz portable electric 

source at a depth of 15.2, 72.2 and 131.7 meters at map location 4. The 

observation distance is 964 meters; see map location 6. The data are presented as 

a function of source depth and corresponds to runs 2003, 2007 and 2011. The 

dotted line is the experimental noise floor. 
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Figure 12: Electric field (z-component) excited by a 100 Hz portable electric 

source at a depth of 15.2, 72.2 and 131.7 meters at map location 4. The 

observation distance is 964 meters; see map location 6. The data are presented as 

a function of source depth and corresponds to runs 2003, 2007 and 2011. The 

dotted line is the experimental noise floor. 
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Figure 13: Electric field (y-component) excited by a 1,000 Hz portable electric 

source at a depth of 15.2, 76.2 and 121.9 meters at map location 4. The 

observation distance is 1,000 meters; see map location 6. The data are presented 

as a function of source depth and corresponds to runs 2404, 2408 and 2412. The 

dotted line is the experimental noise floor. 
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Figure 14: Electric field (x-component) excited by a 1,000 Hz portable electric 

source at a depth of 15.2, 76.2 and 121.9 meters at map location 4. The 

observation distance is 1,000 meters; see map location 6. The data are presented 

as a function of source depth and corresponds to runs 2404, 2408 and 2412. The 

dotted line is the experimental noise floor. 
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Figure 15: Electric field (z-component) excited by a 1,000 Hz portable electric 

source at a depth of 15.2, 76.2 and 121.9 meters at map location 4. The 

observation distance is 1,000 meters; see map location 6. The data are presented 
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Figure 16: Electric field (x-component) excited by the magnetic source on the 

shore at map location 3. The observation distance is 675 m at map location 6. The 

data are presented as a function of sensor depth and corresponds to runs 4304x, 

4304y and 4304z. 
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Figure 17: Electric field (z-component) excited by the magnetic source on the 

shore at map location 3. The observation distance is 675 m at map location 6. The 

data are presented as a function of sensor depth and corresponds to runs 4304x, 

4304y and 4304z. 
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Figure 18: Electric field (y-component) excited by the magnetic source on the 

shore at map location 3. The observation distance is 675 m at map location 6. The 

data are presented as a function of sensor depth and corresponds to runs 4304x, 

4304y and 4304z. 
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Figure 19: FDTD electric field data for different conductivities for the shore and 

lake bottom (i.e. rock vs. mud). 
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Figure 20: FDTD magnetic field data for different conductivities for the shore 

and lake bottom (i.e. rock vs. mud). 
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Future Work 

Based on the previous discussions and the objectives of the project, the following future 
work is envisioned: 

• Fully validate the new source model in HFSS. 
• Implement a new data post-processing method that accounts for sensor and source 

rotation. 
• Conduct one more set of experiments on the lake. Particular emphasis will be on 

source and sensor locations near the shore and on magnetic field sensing from the 
magnetic source when source and sensor are close to each other. 

• Refine the FDTD and quasi-static codes to obtain better data as compared to the 
experimental data. 

• Improve FDTD processing times using parallelization techniques. 
• Deliver Phase Three user manuals and documentation for each of the developed 

models and codes. 
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Appendix A 

Electromagnetic Fields from an Electric or Magnetic Dipole in a 

Three-layered Medium 

Robert G Olsen and Zhi Li 

School of Electrical Engineering & Computer Science, Washington State University 

Introduction 

The electric (E) and magnetic (H) fields from a dipole (electric or magnetic), which is 
placed in the top half or buried in the middle layer of a three-layer medium, can be 
determined by the Sommerfeld integral method. The objective of this report is to find and 
validate the solutions to the E and H fields anywhere in the model in terms of the 
Sommerfeld integrals. 

In the three-layered model, two half spaces occupy the top and bottom of the medium, 
which are denoted as #0 and #2 medium. The #0 medium is assumed to be free space and 
the #1 is lossy, representing lake bottom. And in between there is a layer conducting 
medium with a uniform thickness of d. The middle layer is denoted as #1 medium and it 
represents lake water. In this project, the dipole source is allowed to be placed in either 
#0 or #1 medium. Therefore, according to the type (electric or magnetic), orientation 
(vertical or horizontal) and position (in #0 or #1 medium), there are eight different cases 
of dipole source to be studied in this project. The eight cases and their assigned identifiers 
are shown in Table 1. 

Table 1    Eight cases of dipole source 

Case 
number 

Descriptions Identifier 

1 Horizontal electric dipole (HED) in #0 medium; HED0 

2 Horizontal electric dipole (HED) in #1 medium; HED1 

3 Horizontal magnetic dipole (HMD) in #0 medium; HMD0 

4 Horizontal magnetic dipole (HMD) in #1 medium; HMD1 

5 Vertical electric dipole (VED) in #0 medium; VED0 

6 Vertical electric dipole (VED) in #1 medium; VED1 

7 Vertical magnetic dipole (VMD) in #0 medium; VMD0 

8 Vertical magnetic dipole (VMD) in #1 medium. VMD1 
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Without losing generality, the case of HMD in #1 medium, HMD is chosen as example 
in the report to show the detailed process how to find the solutions, by the Sommerfeld 
integral method, to E and H fields at the field point anywhere in the model. The results of 
the other seven cases will be listed at the end of the report. 

Geometry of Case HMD1 

For the case HMD1, a horizontal magnetic dipole (HMD) is placed in the middle layer 
(#1) of the three-layered medium. The '/ oriented HMD, with a dipole moment of IdA 
(A-m2), is on the 'z' axis and buried in medium #1 and 'ft' meters below the interface 
between medium #0 and #1 (-d < z < 0). The cylindrical coordinate system (p, g>, z) is 
used in this paper, where x = pcoscp and y = ps'iny. Thus, the observation (or field) point is 
assumed to be at (p, (p, z). Fig. 1 illustrates the model. 

Free Space 
(#0) 

iz 

z = 0 
£Q> &Q' M) 

observation 

•   •   •   •    HMD * Z = -h ' puini 

Conducting 
Medium (#H  t, Oi, Un . "1 • *^1 > rO 

///////// 
Bottom 

(#2) 

z = -dx// 

c2- 0*2- M) 

Fig. 1    Illustration of the model 

As noted in the figure, £, and a, are the permittivity and conductivity of the i'h half space 
(/ = 0 and 1 for free space and conductor, respectively), e, = e„£o, where cri is the relative 
permittivity and eo is the permittivity of free space. It is assumed that all materials have 
the permeability of free space ^o- Before the derivations, some of the constants and 
variables need to be defined. 

y] = -«>; = -afftie, - j -*-) 
CO 

where E' = £, -j<r,/e>   is the complex permittivity of the medium #/'s (/ = 0, 1 or 2), kt is 

the wave number where Re(y,)^0 and Re(«,) SO defines the proper Reimann sheet of the 
complex plane. 
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Sommerfeld Integral Equations to E and H Fields 

According to the theory of electromagnetics, the fields due to the dipole radiation should 
satisfy the boundary condition at both the interfaces. For the horizontal dipole case, to 
fulfill the boundary conditions two non-zero components of vector potentials are required. 
The pair can be a variety of combinations of the vector potentials. In this project, for the 
convenience of derivation, we choose Fy and Fz to be the only non-zero vector potentials. 
The vector potentials can be written in terms of Sommerfeld integrals as: 

Fl=k\fx{X)e-^XJ,{Xp)dX   (z>0) (1) 

F;, =kl^- + kl[[f2(A)e-">: +f3(A)eu':]AJQ(Ap)dA   (-d<z<0) (2) 

Fy
2=k}[f4(A)e^AJ0(Ap)dA   {2<~d) (3) 

|Ve~'"(z+',)M>(W^ (z+h) > 0 
is the source term and represents the 

f M-'e"l(2+*UJ0 (Ap)dA    (z + h) < 0 
where    

R 

field directly from the dipole source,  R = (p2 +z2)"2   is the distance from the dipole to the 

observation point, and  £, = ' . The superscripts, 0, 1 or 2, of vector potential 
An 

indicates which layer of medium the vector potential is related to. 

F^k^Tg^e^AJ^Ap^A   (z>0) (4) 
ay * 

F! =*,|-f[g2We""' +g3(AV"]M0(Ap)cU   (-d<z<0) (5) 

F- ski4r [gMV2ZUo(Ap)<u (* *-d) (6) 
oy * 

Since the dipole is oriented in 'y' direction, only the F{  component contains source 

term, as shown in (2). In these equations,// ~/j and gj ~ g4 are just some arbitrary 
coefficient functions of the integral variable A to be determined by the boundary 
conditions. To find the solutions to the fields, the first step is to determine these 
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coefficient functions. 

Coefficient Functions 

Known the vector potentials, the electric and magnetic fields can be calculated by 
Maxwell's equations (7) and (8). 

EF=--VxF 
e 

H,=-jcoF ^-V(V-F) 
co/ue 

(7) 

(8) 

Equation (9) to (14) give the expressions of each field components in terms of Fy and Fz. 

s   dy 
dF>) 
dz 

P      1 dF. 
>~ edx 

E=-'dF> 
e dx 

CO/2£ dx   dy      dz 

OifJ.£ 
~ USF>+dF-)-/F] dy   dy      dz 

H.=-   j   • 
CO/JE dz   dy      dz 

(9) 

(10) 

(ID 

(12) 

(13) 

(14) 

The boundary conditions to be satisfied are that all the tangential fields are continuous at 
both the upper and lower interfaces. At the upper interface (z = 0), they can be written as: 

—F.°=—F! (15) 
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e'0  dz     e[ dz 
(16) 

/"PI/70 
dF     dF,° 
—*-+—- 
dy      dz 

(dF*    dF!] 
•+• 

dy      dz 
(17) 

e'   y     e'   y (18) 

And at the lower interface (z = -d), they are: 

1 
•F  =-F (19) 

1 5F2      1 5F1 

f^  5z     e[ dz 
(20) 

jjaE. as 2 3172^ j   / 

fj 1   ^V       dz 

SF;  dF; 
dy      dz 

(21) 

(22) 

Plugging all the vector potentials into (15) to (22) and simplifying the equations, it is 
obtained that 

-*•(>*) =-[S2W + S3W] (23) 

^MA) = \[e-"h+uJ2(A)-uiMA)] (24) 

-[/M)-»0gM)] = - -e-u<h+f2{X)+f,{X)-uxgM)+^gM) 

1 

(25) 

(26) 
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\e-^gM) = \[eu"Jg2W + e-Utdg3(A)] (27) 

^-"'7^)4[^l(H,-¥",72W + ¥""l7,W] (28) 

e-"^ 
-[fM)+"2gM)] = - 

i U,d 
er*~>+e*f2W + e-*f3(A)-ule'"g3W + ule-*'g3(A) 

(29) 

^/4W=-^,W)+^/2W+^7,(A) (30) 

Let (24) - (26) x -2- to cancel the term of//, we have 

/i + 
v   fci    6o y 

/3 = 
f'      £•' 

-u,h (31) 

Similarly, let (28)- (30) x^- to get rid of/, such that 

r   ,.     ,. \ 
E'    E' 

f„   „ ^ 
eM/2 + ^-^ e-w'V3=- ,~W|^ 

f „    „ A 

v°i    °2 y V £2      £1 j 

u,(h-J) 

Solve equation (31) and (32) together for/ and/ 

1 

(32) 

A =— [(«fa, "*&)(*& -«^)«^CW) +(*>„+*&)(*& -^«,)^l(W)]  (33) 

/3 ="[(*>. -<«o)(^2 -^«,)eI"(W) +(^Mo s'Qux){e[u2 +jft)f^]  (34) 

where   Z) = (f^w, -£-,'w0)(e'2ux -s[u2)e 
U[it -[E'0U[ + s\u0)(s[u2 +£'2

U\)e"'J • Then use (26) 

and (30) to find/ and/, 

2e' f^[{s\u2 -E'2ux)e"^ -{E\u2+E>2ux)e-^] (35) 
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2e'e ' ~u7d 

/4=if|-[W«0-^)^-(^+Ci'«o)^] (36) 

Next step is to solve equations (27) to (30) for gi ~ g4. Before that, it's convenient to 
simplify (28) with (24) 

( i      n 
-t*.= 

u. «, 

e\        ex 

and to simplify (30) with (26) 

M2     -u,d (1   0 
7"7F V.*1        62/ 

-u,d      r       U\     u,d _     .   Ml     -u,</ „. 
•/4—7e   Si+—e     g3 

(37) 

(38) 

It is the similar routine to get g2 and gj, then gi and g./. Let (5) x u0 + (15): 

K£'o     J 
./, K-Ml)^2+(M0+Ml)^3 = 

and (7)XM2+(16): 

(u2 + w, )eU[d • g2 + (u2 - w, )e u,d • gi = 

Solve (39) and (40), we have 

c-' 
V      fc2 7 

,-M./ 

= s'M-s'0){u2-u,)e-^fx +£'0(£[-s'2)(u0+u])e-^f4 

(39) 

(40) 

(41) 

(42) 

where   Z), = (W0-M,)(W2 -w,)<r"'  -(«„ + «,)(«, + «2K'   •  Then solve (23) and (27) to 

obtain g/ and g4. 

_ e'2(el-e'0)[(u2 -ux)e^J -(», +u2)e""1]fl + 2s'0ux{s[-s,
2)e-'^ fA 

g\ = e'A-Dx 
(43) 
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24j«,(«5 -ty*fx +£'0(£l-s'1)Uu0+ul)e^-(u0-ul)e-'"jy4 

8i= rrkr; — (44) *X-A 

Integral Equations of E and H Fields 

Since all the coefficient functions have been determined in part 2.1, the E and H fields 
anywhere in the model can be determined. After plugging the vector potentials in (1) to (6) 
into the Maxwell's equations (9) to (14) and some algebra manipulations, the components 
of E and H fields at the observation point can be obtained. The results are shown below. 
In medium #0 and #2, there is no dipole source. Therefore, the field component contains 
only the transmitted field from the interface. The transmitted field is denoted by a '/' in 
subscript of each field component. 

The field component in medium #1 is formed by two parts: one is the incident field 
directly from the dipole source and the other one is the reflected field due to the two 
interfaces. They are denoted by '/' and V in the subscript of the corresponding field 
component. 
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Numerical Validation of the Results 

To validate the results in (45) to (62), the electric and magnetic are numerically calculated 
and checked with some known results, such as the quasi-static fields in infinite medium. 
The values of the parameters used in the following calculation are listed in Table 2. 

Table 2    List of parameters 

Medium #0 #1 #2 
Relative permittivity,  er 1 81 3 

Conductivity, a (S/m) 0 4 0.01 
Permeability, /J. (H/m) 471x10"' 471x10"' 471x10"' 

dim) 300 

Mm) can vary from 0 to 300 

Dipole momentIdA (A-m2) 1 
Frequency/(Hz) 10 to 3000 

Numerical Integration 

In this project we choose the composite Simpson's rule to do the numerical integration. 
For a given integrand f(x), the Simpson's rule is used to obtain the integration of/ft) over 
interval [a, b]. It is given as 

lf(x)dx = ^[f(a) + 4f(xl) + f(b)]-^fw(t) (63) 

where x/ is the middle point of [a, b], a<E,<b. The Simpson's rule is usually inaccurate 
if used over large integration intervals. To avoid the problem, a piecewise approach, the 
composite Simpson's rule, is often applied. (Fig.2) 

y=m 

*2        *** Xq-i    * 1> = xn   x 

Fig. 2    Integration intervals for the composite Simpson's rule 
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First, the integration interval [a, b] is divided into n equal-spaced subintervals, where n 
must be an even number. Then apply the Simpson's rule on each subinterval and combine 
all the integrations over every subinterval to get the final result. In formula, the composite 
Simpson's rule is described as 

f f(x)dx = - 
(w/2)-l n/2 

f(x0) + 2 X /(*2y) + 4Z/(*2H) + /(*.) 
y=i /-l 

L5  n/2 

(64) 

where x2j_2 <<* <>x2/, for each j = 1, 2, ..., nil. When the numerical integration is 

carried out, the error term is usually truncated. 

[f(x)dx» 
(n/2)-l nil 

/(*0) + 2 X /(^) + 4X/(^->) + /K) 
7=1 H (65) 

Theoretically, as shown in (45) to (62), the exact fields will be given by the integration 
from zero to infinity. But it is not possible to do this in a numerical manner. The computer 
program can only deal with integration over finite intervals. To make the fields 
calculation possible, some approximation should be made. An integral can be separated 
into two parts 

£ f(x)dx = £ f(x)dx + £ f(x)dx (66) 

If we can find a bound number '6' such that the second integral on the right hand side is 
small enough compared to the first integral, the total integral can be approximated by the 
first term. Fortunately, we do can find such kind of'6' for the field calculation because all 
the integrands in the field calculation equations have attenuation characteristics. 

Fl(X)dX=[     FI(A)dZ+\     FI(X)dA 

fmax 

FI{X)dX 

where Fl(X) represents integrand for field integration, X„ 
integration interval to be used in numerical calculation. 

(67) 

is the upper limit of the 

IT 

In practice, we use 50 as the value of Xmax for all the terms derived from the source term, 

£u;V>(z+h)AJ0(Ap)dA     (z + h)>0 

£u;'eu'{z+h)AJ0(Ap)dA      (z + h)<0 

This value of Xm^ will give us enough accuracy for calculation. However, for all the 
scattered-field terms, which contains the coefficient functions// -ft and gi ~ g4, the same 
Xmax doesn't work. If the Xmax value is too large, the calculation of the coefficient functions 
will exceed the operation limit of the computer (like 10324). By testing, the Xmax is set at 
1.2. Although it is much smaller than that for the source terms, the final results of 
calculation are still acceptable. 
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The integral step h is another important factor to the numerical integration. Too large 
steps not only bring big error but also cause bad behavior of the calculation. Small steps, 
however, slow down the speed of integration. In this project we choose the integral step h 
around 0.01 for both source term and scattered term integration. And it gives a good 
compromise between computing stability and speed. 

If the HMD source is located in the middle of the water layer and we consider the area 
not too far away from the dipole, the scattered fields in this area will be so small that can 
be ignored. The total field then will behave exactly like that induced by a HMD radiating 
in an infinite uniform media of water. In order to verify the numerical results, those 
results are compared to the fields radiated by a HMD in the infinite water media. 

Fig. 3 and Fig. 4 show an example of the comparison between the two set of results. The 
HMD is at h = 150m, which is in the middle of the water layer. The '0' angle of the 
evaluating points is 7i/4 and z = -149m. For a HMD radiating in the infinite uniform 
conducting medium, Ey component is always zero. So there is no Ey presented in the 
comparison. 

In those figures the solid line curve stands for the 3-layer results and the star-line curve 
for the uniform media results. It is clear that the two sets of the results match each other 
very well. 
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I 2 3 < 5 • 7 I I « 

(a)   Ex (b)   E2 

Fig. 3    Comparison of E fields between 3-layer results and uniform-media results 
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Fig. 4    Comparison of H fields between 3-layer results and uniform-medium results 
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Checking Boundary Conditions 

Checking boundary conditions at each interface provides another approach to validate the 
the solutions to the fields, equation (45) ~ (62). At the upper interface (z = 0), the 
tangential-field components are 

AJ0(Ap)s\n2(<f>)+ -Jl(Ap)cos(2(/>) 
P 

E°x=-^[uQMJ0(Ap)dA + -{[gi 

K =^£[e-"h-uJ2+uJ}]AJ0(Ap)dA 

A2dA 

!tf(ft+*) AJ0{Ap)sm\P) + -Ji(Ap)cos{2<j>) 
P 

A2dA 

<-4f* AJ0(Ap) J,{Ap) 
P 

A2sin(^)cos(^)aU 

^-4ffe+ft) AJ0(Ap) J,{Ap) 
P 

A2sin(^)cos(^)<//l 

AJ0(Ap) J{(Ap) 
P 

A2 s'm(</>)cos(0)dA 

AJ0(AP) JMP) 
P 

A2sin(^)cos(^)c//l 

ro    IdA  s[ ">^IW/>> An   e, 
AJo(Ap)s'm2(0) + — Jl(Ap)cos(20) 

P 
A2dA 

IdA  e\ 

An   e. 
•^[YIMJMPWI 

H\=-f1 f K'e_u,A+/»*f* -"&+u&) AJo(Ap)s'm2(</>) +—Ji(Ap)cos(20) 
P 

A2dA 

IdA 
An 

[(u;le-"h+f2+fiyr
2AJ0(Ap)dA 

With the boundary conditions (23) ~ (26), it is not difficult to prove that 

E°x = Ex HI = H'x 

E° = E[   ^   H°=H\; 
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So the boundary conditions are theoretically proved to be satisfied at the upper interface. 
Similarly, at the lower interface (z = -d) the tangential-field components are 

E]=^l u2e^"f4AJ0(Ap)dA + ^[ e-^g4 AJ0(Ap)sin2(<f>) + — Jl(Ap)cos(2<fi) 
P 

A2dA 

K =^ f [e"'(W) -u{e"'Jf2 + u^Jf,]AJ0{Ap)dA 

1 
AJ0 (Ap) sin * {<j>) +—J, (Ap) cos(2^) 

P 
A2dA 

El-^[e-^ AJ0(Ap)—J,(Ap) A2sin(^)cos(^)c//l 

El=-^[(e^g2+e^8,) AJ0(Ap) J{(Ap) 
P 

A2 s'm(0)cos(<f>)dA 

«--£4rw«.x AJ0(Ap) J,{Ap) 
P 

A2 s\n{</>)cos{<f>)dA 

IdA H* " IT f («r^<A-") +^/2 +*«A -u<e«g2 + «,«-**,) 4;r 

AJ0(A/7) J,(Ap) A2 sin(^)cos(^)dA 

//  = 
IdA  el 

y     An   e jf-U+^K 
M,i/ Ay0(/l/7) sin2 (<*) + — J, (/I/?) cos(2^) 

P 
A2dA 

IdA  e\ 
An   s 

•^r[r2
0e-UiJf4AJ0(AP)dA 

IdA H>=-T f (w."i^(w)+ «"l7,+^/,-«,^&+«1«"M&) 

IdA 
An 

AJo(Ap)sm2(0) +—Jl(Ap)cos(20) 
P 

A2dA 

[(u;le"'ih-J)
+e""'f2+e-""'fJ)r

2AJ0(Ap)dA 
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By considering the equations (27) ~ (30), it also can be proved that 

El=K H\=H\ 
and 

E2=El 
y       y K-K 

Then the boundary conditions are theoretically proved to be satisfied at the lower 
interface. Fig. 5 and Fig. 6 show the matching of boundary conditions at the lower 
interface. The HMD source is put at h = 290m. For the field points, <P= 7t/4. (Figures are 
on next page.) As shown in the figures, the fields at the both sides match each other 
very well. 
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(a)   Ex (b)   Ey 

Fig. 5    Checking tangential E fields along the water-bottom interface 

h » M0.# « 0 2ii 

(a)   Hx (b)   Hy 

Fig. 6    Checking tangential H fields along the water-bottom interface 
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Appendix: 

Sommerfeld integral equations of E and H fields for other dipole cases 

There are eight cases of different dipole source conditions interested in this project. In the 
previous sections of the report, the process of finding the Sommerfeld integral solutions 
to E and H fields for the case that HMD in #1 medium, HMD1, has been introduced. By 
using the similar method, the solutions for the other seven cases can also be obtained. In 
this appendix, the results of the cases (in case identifier as shown in Table 1): HED°, 
HED1, HMD0, VED°, VED1, VMD°, and VMD1 are provided. 
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Appendix B 

Maximum Detectable Range for Electromagnetic Fields from 

Dipole Sources Near an Air-Water Interface 

Robert G. Olsen and Zhi Li 

School of Electrical Engineering & Computer Science, Washington State University 

Introduction 

In Phase II of this Project, a Matlab program based on the Sommerfeld integral 
formulation to calculate the electromagnetic fields from electric or magnetic dipole 
sources in a three-layered medium was developed. The program allows four 
types/orientations of dipole sources which are: vertical electric dipole (VED), 
horizontal electric dipole (HED), vertical (VMD), and horizontal (HMD) magnetic 
dipole. The three layers are numbered, from the top to the bottom, as layer 0, 1, and 2, 
respectively. The top (0) and the bottom (2) layers extent to +/- oo respectively. Layer 
0 is assumed to be free space, while layers 1 and 2 are conducting media and the 
dipole source can be placed in either layer 0 or 1. Fig. 1 illustrates the case for an 
HED in layer 1. 

Free Space 
(#0) 

iz 
co- Ob. Vo 

z = o y 

 observation 
HED 4 z = -h     •   •     '      P°int 

Conducting 
Medium <#1l • &. C«. Un   • • > • > r*o 

Bottom 
(#2) 

*2> °2> M) 

Fig. I.    Model of a HED placed in # I medium. 

Detectable Range 

Using this program, the electric (E) and the magnetic (H) fields anywhere in space 
can be calculated. This provides the basis for determining the detectable range from 
the source if the maximum dipole moment and the minimum detectable signal for the 
measuring equipment are given. In these simulations, it was assumed that the 
maximum dipole moments for electric and magnetic dipoles are 50 A-m and 2500 
A-m2 respectively and that the minimum detectable electric and magnetic fields are 
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luV/m and 40uA/m respectively. It was observed from the simulations that the 
horizontal electric field component perpendicular to the HED direction can nearly 
always be detected at a distance much larger than that for any other field component 
from any other dipole source1. 

Figs. 2-10 show the variation of the maximum detectable range of Ex with dipole 
frequency. Figs. 2 - 4 are the results for the cases that the dipole is 2 meters below the 
upper interface and the field point is 5, 20 and 50 meters below the upper interface, 
respectively. The dipole moment for these three simulations is Idl = 50 A-m. 
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h = 2; z = -5 

o. • 0.018 S/m; B^ • 1 

a^ =0.5 S/m; c   • 1 

a. =4.8 S/m; e    =81 
1 '    r1 

500 1000        1500        2000 
Frequency (Hz) 

2500 3000 

Fig. 2.    Detectable range of Ex as a function of dipole frequency (HED is 2 meters below the upper 

interface. h = 2, field point is 5 meters below the interface, z = -5). 

' For a conductivity of 4.8 S/m, the HED magnetic field has a higher detectable range for frequencies 

less than 500 Hz.    At smaller conductivities, the frequency at which this occurs is smaller than this. 
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Fig. 3.    Detectable range of Ex as a function of dipole frequency (HED is 2 meters below the upper 

interface, h = 2, field point is 20 meters below the interface, z = -20). 
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Fig. 4.    Detectable range of Ex as a function of dipole frequency (HED is 2 meters below the upper 

interface, h = 2, field point is 50 meters below the interface, z = -50). 
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In Figs. 2 and 3, the curves at the top and bottom represent the simulation results for 
lake water and sea water. The conductivity for the curve in the middle is an arbitrarily 
chosen value between that for lake water and sea water. The detectable range for sea 
water when the field point is at z = -50m is so short that it is not shown in Fig. 4. 

The simulations for Figs. 5 to 7 are respectively similar to that for Figs. 2-4. The 
only difference is that the dipole moment and the minimum detectable field are 
assumed to be increased and reduced by three times, respectively. 

Mnw=3xM 

F"• =E /3 min-detectable mm-detectablc 

The detectable ranges in these cases are much larger than their counterparts in Figs. 2 
- 4 due to the increase of both the strength of source signal (i.e., the dipole moment) 
and the ability of detection (i.e., minimum detectable field). In Figs. 8-10, the dipole 
moment and ability of detection are increased by five times: 

E"•1 =E / 5 min-detectable min -detectable 

The increases of the detectable range of Ex become more obvious. 

h = 2; z = -5 
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Fig. 5.    Detectable range of Ex as a function of dipole frequency when the dipole moment and the 

detectability are both increased by three times (W/new = 3*M, Eminnn = EmJ3; h = 2, andz = -5). 
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h = 2; z = -20 
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Fig. 6.    Detectable range of Ex as a function of dipole frequency when the dipole moment and the 

detectability are both increased by three times (Idl„t„ = 3*M, £„,„.„,». = E„Ji; h = 2, and z = -20). 
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Fig. 7.    Detectable range of Ex as a function of dipole frequency when the dipole moment and the 

detectability are both increased by three times (Idln £m,„/3;/! = 2,andr = -50). 
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Fig. 8.    Detectable range of Ex as a function of dipole frequency when the dipole moment and the 

detectability are both increased by five times (Mmw = 5*Idl, E„mnrw = E„J5; h = 2, and z = -5). 
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Fig. 9.    Detectable range of E, as a function of dipole frequency when the dipole moment and the 

detectability are both increased by five times (W/„ew = 5*ldl, Eminntw = EmJ5; h = 2, and z = -20). 
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Fig. 10. Detectable range of Er as a function of dipole frequency when the dipole moment and the 

detectability are both increased by five times (Mne„ = 5*M, EminjKU = EmJ5\ h = 2, and z = -50). 

Up-over-and-down Model 

Another part of work accomplished in Phase II is the study of an up-over-and-down 
model for HED propagation near an interface [1]. In this study, the HED is assumed 
to be buried in the lower (lossy) half medium of a two-half-space model. Note that the 
bottom layer of Fig. 1 can often be neglected if source and field point are much closer 
to the top interface than the lower one. The top half is free space. The model is shown 
in Fig. 11. 

Free space (#0) 
Z 

z = 0 
c0- Ob. M) 

HED+ Z=-h 

observation 
point 

Conducting medium (#1).   .   .   . £,, CT,, fJQ 

Fig. 11.    Geometry of the model 

When the HED and the field point, (p, <p, z), are both close to the interface, the 
Sommerfeld integrals for the electric and magnetic fields in the lower half space can 
be simplified and a set of simple approximations for the fields obtained. For example, 
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if the depths of the HED and field point are much smaller than the horizontal distance 
between them, the ^-component of electric field in the conducting medium can be 
approximated by 

E[x2jAxkl-eMz-h) 
-J*oP 

{AP) 
3 + - 

U%P) 
sin </> cos ^ (1) 

where AX = — Equation (1) was used to do the similar simulations for determining 
Att(oe[ 

the detectable range. Fig. 12 and Fig. 13 show the comparisons between the results 
obtained by (1) and that found by Sommerfeld integral method, shown in Fig.2 and 
Fig. 5, respectively. It is obvious that the approximation of the field in (1) gives very 
good result over the most portion of the frequency range interested.  Since the 
approximation (1) has no integral in it, the calculation time can be significantly 
reduced by using it. Therefore, the approximation based on the up-over-and-down 
model   provides   us   a  fast  but  relatively   accurate  approach   to  determine  the 
electromagnetic  field  in the conducting medium  when the third  layer can  be 
neglected. 

1000 
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500 1000        1500        2000 
Frequency (Hz) 

2500 3000 

Fig. 12. Comparison between Sommerfeld method and up-over-and-down approximation 
for detectable range of Ex. (HED is 2 meters below the upper interface, h = 2, field point is 5 
meters below the interface, z = -5). 
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Fig. 13. Comparison between Sommerfeld method and up-over-and-down approximation 
for detectable range of £,. The dipole moment and the detectability are both increased by 
three times (/<#«« = 3*Idl, Eminjiew = EmiJ3; h = 2, and z = -5). 
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Appendix C 

FDTD Parallelization Methods 

Dennis Sullivan 

Department of Electrical and Computer Engineering, University of Idaho 

Introduction 

In the past year, the FDTD simulation group has accomplished the following: 

1. The FDTD codes were reformulated using the Message Passing 
Interface (MPI) software. The purpose was to achieve more 
efficient parallelization of the code. It was also to make the 
code more flexible by allowing it to be distributed over several 
computers [1,2]. 

2. The FDTD codes were implemented using dedicated hardware 
from the Acceleware corporation. This system uses graphics 
cards to do the bulk of the FDTD calculation. This is controlled 
through the software development kit (SDK) from Acceleware [2, 

3]- 

3. The near-to-far field formulation was implemented in the time 
domain instead of the frequency domain. This method allows 
greater flexibility and provides more information. Wavelet 
theory was used for data compression to avoid the storage of 
large amounts of time-domain data [4]. 

Implementation of the FDTD simulation using MPI 

Modern compilers on computers with multiple CPUs will parallelize computer 
programs using an option called Open MP. Open MP distributes the code among 
the available CPUs in a computer. It will not distribute the code among different 
computers. 

Message Passing Interface (MPI) is a software package that allows the programmer to 
decide how the computation is distributed among the CPUs in one machine, or among 
the CPUs in several machines [5-8]. The implementation using MPI requires 
considerable additional programming effort. This was done in the hope of 
surpassing the speed achieved by Open MP, as well as acquiring the ability to 
distribute the program over several computers. 
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MPI utilizes the Domain Decomposition Method (DDM), a protocol that solves large 
numerical boundary value problems by splitting the main problem space into smaller 
sub-domains. Each sub-domain retains the original qualities of the main domain and 
follows the same coordinate structure as the original problem space. The 
non-overlapping DDM requires some communication among the sub-domains, 

creating the need for a message passing interface like the MPI library. Figure 1.1 
shows an example of a problem space that is 1003 cells that can be divided into eight 
sections of 503 sub-domains. 

Figure 1.1. Domain decomposition into eight independent sub-domains. 

The setup illustrated in Fig. 1.1 is as balanced as possible and creates a parallel 
environment so each sub-domain can communicate to the same number of neighboring 
sub-domains. This minimizes the lag that can occur when a core has to wait for data 
from another to continue processing. The number of sub-domains depends on the 
number of sections on each side of the main domain. A sub-domain that has all six 
neighbors is illustrated in Fig. 1.2. 

Figure. 1.2. An illustration of how one sub-domain sees its six surrounding sub-domains. 

Decomposition of the PML and the lossy media is related to the position of each 
sub-domain. Figure 1.3 illustrates a two-dimensional domain that has been divided 
into four sub-domains, where each contains different media and PML. The process 
takes in the topographic data in the format of the main domain by each processing core 
and keeps only the data that applies to its related sub-domain.   The algorithm uses the 
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position data to realize its correct place among other sub-domains and compares that to 

the main domain's three-dimensional mesh. 

L^ 

t 

Air    AC 

.JA/ater   j 

PML 

Air 

Water 

Figure 1.3. Two-dimensional illustration of the PML and Media defined for 4 sub-domains. 

The Message Passing Interface Library makes communication at the sub-domain 
boundaries possible. Communication between the sub-domains is facilitated by MPl's 
blocking receive operation (MPIRecv) and MPI's non-blocking send operation 
{MPIJSend). The blocking receive operation keeps each sub-domain from continuing 
with the calculation of the E and H fields, until the needed parameters are received. 
However, the non-blocking send operation sends the data to the addressed sub-domain 
and continues with the rest of the FDTD calculation. Using a combination of 
non-blocking send operations and blocking receive operations reduces the chance of 
possible software hang-ups. In this case hang-ups occur either when a message is 
needed that has not been sent or a sub-domain is awaiting a successful sent 
confirmation that has not been received by the other sub-domain. Figure 1.4 shows the 
fields that must be passed to the neighboring sub-domains. 

Hz(i,max,k) 
Hx(i.max,k) 

Figure 1.4. Field information transferred at the boundaries of sub-domains. 
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The following sequence insures that the parallel FDTD algorithm performs smoothly. 

Step 1) Send the correct E-fields to the back, left, and bottom sub-domains. 
Step 2) After   receiving   the   required   E-fields   from   the   front,   right,   and   top 

sub-domains, calculate the H-fields. 
Step 3) Send the correct H-fields to the right, top, and front sub-domains. 
Step 4) Update the D-fields. The sub-domains must receive the required H-fields from 

the back, left, and bottom sub-domains. 

Step 5) Calculate the E-fields from the D-fields. 

As a result of the parallel FDTD calculation, the electromagnetic field data are defined 
for each sub-domain and each sub-domain can be simulated separately. At the end of 
the parallel FDTD process in each sub-domain the resulting E and H fields are present. 
The last sub-domain accumulates all the fields in one large array. These E and H fields 
will look similar to results from the regular FDTD method after executing sequentially 
across only one core.   This is illustrated in Fig. 1.5. 

0 015- 

0 01 - | 
0005- | 

Z      0- 

•0005- 

-0 01 • ' 
•0 015, 

100 

50 

Y(cells) X(cdls) 

Figure 1.5. A three-dimensional view of the E-field in sub-domain 1 (left) and the entire 

domain (fight). 

Once the FDTD code had been programmed using MP1, a comparison was made with 
a similar program that only used the Open MR    The program problem space 

was (120)   cells.    It was distributed among 27 cores.    A total of 30,000 time steps 

were needed. Open MP preformed the simulation in 15 minutes, 56 seconds. The 
MPI code performed the same simulation in 9 minutes, 54 seconds. Therefore, MPI 
reduced the computation time by 35 % [1, 2]. 

Implementation of the FDTD code using dedicated hardware. 

Another approach to increasing the speed of very large FDTD programs was the 
implementation on dedicated hardware using a system from Acceleware Corporation. 
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Acceleware systems exploit the performance of video graphics cards to obtain 
substantial speed-up (Fig. 2.1) [9]. 

HP Workstation 
XW9400 

/\ 

\y 

Software Developement 
Kit (SDK) Version 9.2.0. 

Graphics Processing Unit (GPU) 
NVFDIAQuadro 
FX 5600 video card 

Figure 2.1.    Block diagram of the Acceleware system 

The Software Development Kit (SDK) is provided by Acceleware. It is a high-level 
programming language written in C++. The FDTD codes must be rewritten in this 
language. This language incorporates "handles" which represent different parts of 
the FDTD simulation. Table 2.1 is a list of some of the important handles and their 
functions. Figure 2.2 is a flow chart showing the steps for the implementation of an 
FDTD program using Acceleware. 

Table 2.1.    The Handles used in SDK 

Handle 
Axtimeexct 

Ax_rgnhandle_t 
Axmathandle 
Ax simhandle 

Type 
Time excitation 

Region 
Material 

Simulation handle 
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Programming Flow 

Open ihe Accleware FDTD system 

1 
Create the Accleware FDTD simulation 

Specify the Aceleware FDTD properties 

T 
Ready the Aceleware simulationfor processing 

Perform the Aceleware FDTD update loop 

1  
Clear and Close the Aceleware system 

Figure 2.2.    The programming flow to implement an FDTD 

program in Acceleware. 

A test was made to insure that the Acceleware FDTD was in agreement with the 
standard FDTD.    The simulation problem space and the results are shown in Fig. 2.3. 

800 m 

(a) 

100     200      300      400      500     600      700      800 
Distance (m) 

(b) 

Figure 2.3. (a) Test configuration (b) Previous FDTD (solid line) vs. Acceleware calculation (circles). 

Table 2.2 summarizes the wall clock times needed for an FDTD simulation of (120) 

cells over 30,000 time steps. 

Table 2.2.    The wall clock times required for an FDTD simulations 

of(l20)    cells for 30,000 time steps.    The first three entries were using 

the 8 Quad-core AMD Opteron• Processor 8380.    The Acceleware 
simulation was done with Acceleware libray version 9.2.0 and a NVIDIA 
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Quadro FX 5600 video card. 

1 core 
32 core (Open MP) 
27 core (MPI) 
Acceleware 

63 m 18s 
12m 56s 
9m 54s 
4m 32s 

Time-domain Near to Far Field Transformation 

A near-to-far field transformation had previously been developed [10]. This 
transformation was developed to address the problem of having to model an 
electromagnetic source like a ship at one a relatively small resolution like 10 meters, 
and yet having to model a very large problem space where larger resolution like 50 
meters would be more desirable (Fig. 3.1) The previous formulation of this near-to-far 
field transformation stored the amplitude and phase of selected frequencies of each of 
the E fields on the equivalence surface. This amplitude and phase was used in 
generating the sinusoidal source for the far field. The disadvantage of this approach 
is that a separate simulation is needed at every frequency of interest in the far field. 
If instead the time domain data at the fields on the equivalence surface could be stored, 
then information at all frequencies of interest could be obtained in the far field with 
just one simulation. The problem is that the time domain data in the near field could 
be several thousand points, and storing all this data at all the fields of interest is not 
practical. 

(a) It might be desirable to model the EM radiation of a ship over very large 

distances. 
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"I 

(b) Near field (10 m3 cells) 

(c) Far field (50 m3 cells) 

Figure 3.1. (a) A projected simulation problem where it would be desirable for a source 

of EM radiation, such as a ship, to be modeled with relatively small cells of about ten 

meters squared. However, problem spaces ranging over distances of three or more 

kilometers would require too many cells, (b) A near field calculation determines the 

radiation from the source at an equivalence surface surrounding the source, (c) This 

equivalence surface is then used as the source in an FDTD problem with much larger cells. 

In order to minimize the amount of data that has to be stored in the near to far field 
transformation, wavelets are being used to compress the data [11]. The technique of 
compressing data in an FDTD simulation has been used by this research group 
previously [12, 13]. The type of wavelet processing structure being used is 
illustrated in Figure 3.2. The circles with arrows pointing downwards indicate 
"down-sampling," i.e., every other data point is eliminated. The circles with arrows 
pointing up indicate "up-sampling," i.e., a zero is added after each data point. The 
squares indicate convolution with the filter written inside. One such group of filters 
is shown in Figure 3.3. 
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(a) Analysis tree 

C0(4) 

(b) Synthesis tree 

Figure 3.2. The type of structures being used to achieve data compression and 

reconstruction using wavelets. The circles with arrows pointing downwards indicate 

"down-sampling," i.e., every other data point is eliminated. The circles with arrows 

pointing up indicate "up-sampling," i.e., a zero is added after each data point. The 

squares indicate convolution with the filter written inside. Each stage in the analysis tree 

separates the data into low pass parts (cOs) and high pass parts (els). Note that it is only 

the low pass part that is processed further. The values obtained from the analysis can be 

used to reconstruct the original waveform in the synthesis tree. 
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12       3       4       5       6       7 

Figure 3.3.    Four filters of the type used by the structure shown if Fig. 3.2.   The 

filters h0 and f0 are low pass filters while h, and f, are high pass filters. 

As an example, Fig. 3.4 shows a waveform of 6000 time steps. An analysis tree of 
eight levels is used to produce the data shown. The low pass components are the 
solid lines while the high pass components are the dashed lines. Notice that the 
dashed lines are virtually zero compared with the solid lines. Therefore, all high 
pass data can be discarded and the original waveform can be reconstructed from the 
forty-five points of level eight as shown in Fig. 3.5. 

Since we have determined that only the low-pass parts of the analysis and synthesis 
trees are needed, the implementation of the analysis or synthesis only requires about 
ten lines of additional code in the FDTD simulations. 
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6000 

1500 

200 400 600 

Figure 3.4. A waveform with 6000 points (top, left). The subsequent plots show the outputs of the 

various levels in the analysis tree. By level 8 (lower right), only forty-five points are needed to 

represent the original signal. 

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 
Time steps 

Figure. 3.5.    The reconstructed waveform (dashed line) and the original (solid line). 

Figure 3.6 is an illustration of a simulation to show that the near-to-far field 
transformation gives the same results as a corresponding FDTD program with no 
transformation.    The source is a magnetic dipole just below the water surface.    The 

near field program is (120)   cells.    Each cell is ten meters cubed.    The far field 
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simulation is only  (60)   cells, but the cells are fifty meters cubed.    Comparisons 

are made at three points which are a lateral distance of 500 m from the dipole. Point 
A is 100 m above the water surface, point B is 100 m below the surface, and point C 
is 300 m below the surface.    The results are shown in Fig. 3.7. 

The source is a 
dipole, 5 m below 
the water surface 

500 m 

Figure 3.6.    Diagram of the near field problem space used to shown that 

the field produced in the far field are the same. 

x10a 
1000 2000 3000 4000 5000 6000 

3000 4000 5000 
Time steps 

8000 

8000 

7000 8000 

8000 

Figure 3.7. Results of the test described in Fig. 3.6. The waveform on top is source at the dipole. 

The next three plots compare the near and far field Hz fields at points A, B, and C. The solid lines are 

from the near field calculation; the dashed lines are from the far field calculation. 
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Appendix D 

Multiple-layered Quasi-Electrostatic (QES) Development 

Robert Rebich, Jeffrey Young and Chris Wagner 

Department of Electrical and Computer Engineering, University of Idaho 

Analytical Development 

Assume a domain where the media is composed of simple matter, in which case 

D = cE (1) 

B - /iH (2) 

Jc = <TE. (3) 

Here D is the electric displacement density, B is the magnetic flux density, Jr is the 
electrical conduction current density, E is the electric field intensity and H is the 
magnetic field intensity. The permittivity e is a product of the relative and free space 
permittivity so that c = crc0, where e0 = 8.854 x 10-12 F/m. The domain is absent 
of all magnetic materials so that the permeability is equal to that of free space, 
|i = no, where fi0 = Arc x 10"7 H/m. The electrical conductivity is represented by 
a. 

The fields within the domain are deemed quasi-electrostatic when the magnetic 
field has little to no time variation such that 

As a consequence of Eqn. (4), Faraday's law states that the curl of the electric field 
is then approximately zero, in which case 

V x E « 0. (5) 

From Ampere's law, 

VxH = 5+J' (6) at 
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where J represents the combination of conduction and impressed current densities: 

J = JC + J'. (7) 

By taking the divergence of Eqn. (6) and knowing that the divergence of a curl is 
always zero, we find that 

V'(^+J) =V(VxH) = °- (8) 

Given Eqn. (5), the electric field at a given point in space is equal to the negative 
gradient of the electric scalar potential V at that point; 

E = -W. (9) 

For homogeneous media, it follows from Eqns. (8) and (9) and from the constitutive 
relationships of Eqns. (1) and (2) that 

£—VV + aVV = V-J\ (10) 
at 

where V2 is the Laplacian operator. The equation of continuity states that, 

where p is the impressed charge density, so that 

£|vv+,w=-g. (.2> 
In the frequency domain, equation Eqn. (12) is similar to 

VV = —^£_, (13) 
a + jujt 

where an e+juJt time factor is assumed. A special note is made that V and p in Eqn. 
(12) are referenced in the time domain (i.e. V = V(t),p = p(t)) and V and p 
in Eqn. (13) are referenced in the frequency domain (i.e. V = V(u>),p = p(uj)). 
Subsequent analysis will be restricted to the frequency domain so that no ensuing 
confusion should remain. 

Suppose we have an interface of two dissimilar media according to Figure 1. It 
then follows from Eqn. (5) that 

(E^-EB)xn = 0. (14) 

The total induced current within a specific region is given by, 

Jf = {a + jut) E. (15) 
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n 
• 

Region A 5 

Region B 

Figure 1: A depiction showing n for a two-layered geometry 

Given Eqn. (15), continuity of normal current states that 

nj^ = nj^ (16) 

or, 
(aA + JVLA) n • EA = {aB + jutB) n • EB. (17) 

Once V is determined from solving Eqn. (13) in the context of the boundary condi- 
tions of Eqns. (14) and (17) we then use Eqn. (9) to determine the electric field E. 

Let us now consider a single point charge of strength q located at the origin in 
unbounded media. The electric potential is a solution to Eqn. (13) such that 

V-..*?.    > (18) 4TT(<J + jut)r 

where 
r = y/x2 + y2 + z2 = vV + z2. (19) 

Eqn. (18) is known as the Green's function solution of a point charge at the origin 
in a lossy homogeneous medium. This solution can be equally expressed in integral 
form by noting that £ = 0, in which case Eqn. (13) is equivalent to 

1 d  (  dV\      d2V jup 

pop \   dp J      azz a + jut 

The solution to Eqn. (20) is a combination of Bessel and exponential functions: 

V=.   (
3U2      ,  /    Jo(XP)e-Wd\. (21) 

4.7T (cr + jut) J0 

Now if the charge is located at z = h, Eqn. (21) may be written as 

V = A   /^.    .   /    Jo (\p) e-^-»U\. (22) 
47T (<7 + JOJt) JQ 

With the potential determined for a charge in a single homogeneous media, 
the analysis can be further extended to a three-layered media problem depicted in 
Figures 2. Charges and observations in region 3 will be ignored for the remaining 
development. 
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Figure 2: Point charge in region 1 for a three-layer configuration. 

a) Observation in Region 1 b) Observation in Region 2 

Figure 3: Superposition of potentials for regions 1 and 2. 
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Source Charge in Region 1 

According to Figure 2, the charge is placed in region 1 at a distance h above the 
2 = 0 interface. We construct potential solutions for each region as follows. For 
observation locations in region 1, where z > 0, the total potential at any given point 
is the superposition of two individual potentials as shown in Figure 3a. The first po- 
tential represents the direct path from the charge to observer and is of unity strength. 
The second potential represents the reflected path from the z = 0 boundary and is 
of strength R. The total potential at any location in region 1 is given by, 

Vi = TV T {e~*~* + Re-X{z+h)) J^P)d\, (23) 
47TJ 1 Jo 

where, 
Y^o^+jujtu (24) 

which is the admittivity of region 1. For observation locations in region 2, where 
z < 0 and z > -d, the total potential at any given point is the superposition of 
two individual potentials as shown in Figure 3b. The first potential represents the 
downward traveling path caused by the transmission of the direct path through the 
2 = 0 boundary and is of strength B. The second potential represents the upward 
traveling path caused by the downward path reflection at the z = —d boundary and 
is of strength A. The total potential at any location in region 2 is given by, 

V2 = f^ /    [Ae-X^ + BeM.-h)] jo{Xp)dX. (25) 
4*Yi Jo 

For observation locations in region 3, where z < -d, the potential at any given 
point represents the transmitted path of the downward traveling path in region 2 as 
it encounters the z = —d boundary and is of strength T. This situation is shown in 
Figure 3b. The total potential at any location in region 3 is given by, 

V3 = ^ rTe^J0(\p)d\. (26) 

Now that the potential solutions are formulated, the unknowns coefficients R, A, 
B, T are found by applying the boundary conditions of Eqns. (14) and (17) in 
the context of Eqn. (9). The boundary conditions must be applied at both region 
interfaces, i.e. the 2 = 0 and z = — d boundaries. Hence, 

-(i 

^L-u = K=-d' (27) 
and 

z=Q dz dz 

Y2dYl 
dz 

2=0 

-y.^l    • (28) 
""  b=-d 
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Applying the above boundary conditions to the potentials of Eqns. (23) - (26), we 
obtain a set of four equations with four unknowns given by, 

1 + R = A + B (29) 

Aexd + Be'xd = Te~Xd (30) 

Y2 

Be~Xd - AeXd = ^Te~Xd. (32) 
Y2 

l-R=^{B-A) (31) 

After many algebraic steps, we find that, 

R23e~2Xd - R 21 
R = —^ — (33) 

1 - R23R2le~^ ^ 

-2Xd R23(l-R2l)e 

1 - R23R2le-v A =   r\   R    _,w (34) 

(1 - R2\) 
B = 1 - R23R21e~• (35) 

(1 - R21)(l + R23) 
T =   1 - R23R2le->Xd ' (36) 

where the interfacial reflection-like coefficients are given by, 

R" - %T% (37) 

The potential integrals for charge in region 1 as stated by Eqns. (23) - (26) are 
now fully specified and can be computed numerically, or by image summations, as 
described next. 

Source Charge in Region 1, Observation in Region 1 

In this section we will take the rather complex potential integral of Eqn. (23) and 
simplify it into the form of an infinite summation. This is necessary because the 
integral will eventually be solved in a numerical fashion and the form of Eqn. (23) 
can be difficult to integrate numerically. The following procedure will make the 
numerical solution quick, efficient and very robust. 

The potential expression of Eqn. (23) is first separated into two parts: 

roc /•oo 

V^KX        e-x{z-'^J0(Xp)dX + Kl        Re-X{z+Vj0(\p)d\,        (39) 
Jo Jo 
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where K\ is the normalized point charge strength in region 1 defined by, 

Kt = 
4nY, 

(40) 

The first term of Eqn. (39) can be equally represented in closed-form by comparing 
Eqns. (18) and (21), in which case, 

h\ /    e-A|z-''1 JQ{Xp)dX = ^i. 
Jo r 

In the present context, r is defined by, 

r=y/p> + (z- h)2 

with, 
p = \Jx2 + y2 

(41) 

(42) 

(43) 

Eqn.   (41) is commonly referred to as the Weber integral [2].   Equation (39) is 
equally stated as, 

K f°° 
Vi = — + Ki /    Re~x{z+h)J0{Xp)dX. 

r Jo 
(44) 

We next insert R from Eqn. (33) into our expression to obtain, 

V 
r Jo 

#23e 
-2Ad R 21 

1 - R2sR2ie-2Xd e-X{z+h)J0{Xp)dX. (45) 

This integral can be expressed as an infinite summation by the following Taylor 
series expansion, 

1 °° 
 = Vin        for        \x\ < 1. (46) 
1 — x     z—' 

n=0 

This allows us to rewrite Eqn. (45) as, 

tAl 
n=0 

Vi = + KlY
I%3F%i /     (/?23e-2Ad - i?2i) e-*'+h+2nd> J0(Xp)dX.    (47) 

„=n Jo 

A close inspection of the previous integral shows that it has a closed-form solution 

[i]; 

(48) 
Jz-oo 

f    e-A J0(Xp)dX =          
o                                Va  -I- p2 

From this integral identity, it follows that Eqn. (47) is equivalent to 

Ki 
^--r + ffiE*"*" 

n=0 

11 23 /.'. 21 

v/DfT7     v^ + ? 
where, 

Di = 2 + /i + 2d(n + 1) 

(49) 

(50) 
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Figure 4: A depiction of the image principle per Eqn. (49). 
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D2 = z + h + 2dn. (51) 

The infinite summation in Eqn. (49) allows us to view the potential at some obser- 
vation location as an infinite summation of equivalent charges at different locations 
with different strengths and phases. Figure 4 shows the corresponding image lo- 
cations and strengths represented by Eqn. (49). The fully filled black circle with 
strength q represents the original charge and is located at height h. Images ao and ftp 
represent the first and second terms from the summation of Eqn. (49) when n = 0 
and are presented as gray shaded circles. The image depths are shown relative to 
the z = 0 interface. The remaining image terms, an and 6ri represent the infinite 
number of concurring images and are presented as light gray circles with dashed 
outlines. According to Eqn. (49), we see that the strengths for the corresponding 
weighted images are as follows, 

a0 = KXR 23 (52) 

b0 = KxRxy (53) 

an = K^lRn
21 (54) 

bn = K^RSt1. (55) 

It is insightful to note that the image charges are proportional to the original charge 
q. For example, we can take Eqn. (52) and substitute K\ from Eqn. (40) to obtain 

a0 
juqR 23 

ATTYX 

Waoq, 

where, W can be defined as a weighting term, 

= JURM 
ao       AITY, • 

(56) 

(57) 

It is now obvious that each image term is of strength q multiplied by a complex 
weighting term W. This suggests that the image charges are out of phase with 
the original charge and scaled appropriately. It is also important to note that as n 
increases, the weighting terms become increasing small and the distances relative to 
the observation point become increasingly large. This means that the summation of 
the images converges very rapidly. No more than a few terms from the summation 
are needed for accurate results when dealing with any combination of charge and 
observation locations. 

The electric field vector can be determined by taking the gradient of the potential 
Eqn. (49), 

The electric field components are hence given by, 

Kx 
Ex = -±x + KlXJ2K23R2i 

n=Q 

R 23 #21 

v/£?T^ vmr?~ 
(59) 
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ffl 
Ey = -±y+KlyY,Rn23I%l 

Ki 

n=0 

00 

E^-jz + K^^^i 
n=0 LV/DFT?"    v^fT7J 

(60) 

(61) 

Source Charge in Region 1, Observation in Region 2 

The aforementioned procedure may also be applied to Eqn. (25) to change the 
complex integral into an infinite summation. The detailed steps will not be shown 
for this equation due to the similarity with the previous process. The final form of 
the summation equation is given by, 

V2 = Kl(l— R21) 2_^ ^23-^21 
n=0 

II 23 

^T? 
+ 1 

y/DlT? 

where, 
D3 = h - z + 2dn. 

(62) 

(63) 

Figure 5 shows the corresponding image locations and strengths represented by 
Eqn. (62). The strengths for the corresponding weighted images are as follows, 

a0 = Kl(l-R2,) 

b0 = Ki(l - R2l)R23 

a\ — ^i(l _ R2\)R2-AR2\ 

bl = Kl(l-R2l)Rl3R21 

dn —Ki(l— i?2l)^23-R2i 

K = K\(l - R2l)R%3    ^21- 

The electric field components are hence given by, 

R 
R^AR^X  —7: 

n=0 

Ex = KlX(l-R2l) 53/^3^1 

n=0 

00 

Ez = Kx{\-R2,)YJR^Rn2 
n=0 

R23D1 D, 

V^f+7 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 
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Figure 5: A depiction of the image principle per Eqn. (62). 
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Source Strength K\ 

In this section the point charge strength K\ will be specified in terms of a two elec- 
trode problem. We will begin with the definition of K\ from Eqn. (40). We will 
assume the existence of two spherical electrodes of charge + q and -q, of radius a 
and of separation L. We will define the configuration of two oppositely charged 
electrodes as a source. If we assume the charge distribution is uniform across the 
entire surface of both electrodes then Eqn. (49) is valid for the following proce- 
dure. Given the charge separation, a potential Vo is assumed to exist between the 
electrodes. Let Pi be any point on the negative charged sphere and P2 be any point 
on the positive charged sphere. Then by Eqn. (49) for source location in region 1 
and from superposition, we have, 

Vo = tf i 
1      °° 
- + J2 ^23^1 

n=0 

R 23 R 21 

VW y/DfT 

/'j 

(73) 

We will define the geometrical factor Gx to be the following: 

G, 
1      °° 

n=0 

R 23 •^21 

v^f+7    y/W+7 

Pi 

Pi 

(74) 

The source strength is now determined by supplying the potential between the two 
electrodes and calculating the geometrical factor; 

Kt = Vo_ (75) 

Source Charge in Region 2 

In Figure 6 the charge is located in region 2 at a distance — h below the 2 = 0 
interface. We construct potential solutions according to Eqn. (22) for each region 
as follows. For observation locations in region 1, where z > 0, the total potential 
at any given observation point is equal to the upward transmitted path through the 
2 = 0 boundary, which is of strength T\ and is shown in Figure 7a. The total 
potential is given by, 

Vi = 
ju>q   r 
47rr2 J0 

Txe-XzMXp)d\. (76) 

For observation locations in region 2, where 2 < 0 and 2 > -d, the total potential at 
any given observation point is equal to the superposition of three different potentials 
and is shown in Figure 7b. The first is the direct path from charge to observer and is 
of unity strength. The second is the upward traveling path caused by the reflection 
from the direct charge from the 2 = -d boundary and is of strength A. The last 
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Figure 6: Point charge in region 2 for a three-layer configuration. 
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a) Observation in Region 1 b) Observation in Region 2 

Figure 7: Superposition of potentials for regions 1 and 2. 
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is the downward traveling path caused by the reflection of the direct charge off the 
2 = 0 boundary and is of strength B. The total potential is given by, 

v   m. 
2        47TV, 

/•oo 

/    [e'xlz-hl + Ae'Xz + BeXz}J0{Xp)d\. (77) 
Jo 

For observation locations in region 2, where z < -d, the total potential is equal to 
the direct charge transmitted path through the z = -d boundary and is of strength 
T2, and is shown in Figure 7b. The total potential is given by, 

y3 = fv rT2e
XzJ0(Xp)d\. (78) 

4vr>2 Jo 

The same boundary conditions of Eqns. (27) and (28) still apply. Applying these 
boundary conditions, we obtain a set of four equations with four unknowns: 

T\ = eXh + A + B (79) 

T2e~xd = e-
X{h+d) + AeXd + Be~xd (80) 

YiTx = Y2(e
Xh + A - B) (81) 

Y2{Aexd - Be~xd - e-
x{h+d)) = -Y3T2e~xd. (82) 

Solving for the unknown coefficients of interest, we obtain the following equations: 

(R2l + l)(eXh + R23e-x^) 
Tl ~ 1 - R23R2le-• (83) 

R23(l + R2ie*x»)e-X^ 
A ~ 1 - R23R2le-^ (84) 

_      R2le
Xh + R23R21e-xW» 

B ~ 1 - RnRne-•        • (85) 

Source Charge in Region 2, Observation in Region 1 

The image solution for the configuration of Figure 6 with observation in region 1 as 
stated by Eqn. (76) is given as, 

vi = .Mi+ fln) £*a*5i 
71=0 

where, 

R23 1 

yDfT7    VDJT? 
(86) 

D4 = z - h + 2dn (87) 

and K2 is the point source strength in region 2 defined by, 

*2 = -TT-- (88) 
A-KY2 
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Figure 8: A depiction of the image principle per Eqn. (86). 
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Figure 8 shows the corresponding image locations and strengths represented by 
Eqn. (86). The strengths for the corresponding weighted images are as follows, 

a0 = K2{\ + R2X) 

b0 = K2R23(\ + R2l) 

ax = K2R23{1 + R2X)R2X 

bx = K2Rl3(l + R2X)R2X 

an = K2I%3(l + R2i)B2i 

bn = K2R2t
l{l + R2i)^v 

The electric field components are hence given by, 

n=0 

oo 

Ey = Kxy{\+R2l)YJR^^x 
n=0 

R 23 + 

#23 + 

n=0 

DxRn D. + 
Lv^fT?       y/B[+? \ 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 

Source Charge in Region 2, Observation in Region 2 

The image solution for the configuration of Figure 6 with observation in region 1 as 
stated by Eqn. (77) is given as, 

A: V2 = -1 + K2 J2 i&AJ, 
n=0 

II 23 + #23-^21 

R21 #23 #21 

V^1T7    y/D?+7 

where, 
Db = z -h + 2d(n + 1), 

D6 = h- z + 2d(n + 1), 

D7 — 2nd — z — h. 

(98) 

(99) 

(100) 

(101) 
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Figure 9: A depiction of the image principle per Eqn. (98). 
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Figure 9 shows the corresponding image locations and strengths represented by 
Eqn. (98). The strengths for the corresponding weighted images are as follows, 

QQ = K2R23R21 

60 = K2R23R21 

Co = K2R21 

/o = ^2 #23 

an = K2R23  #2i+ 

bn = ^2 #23    #21 

Cn = ^2 #23 #21 

In = ^2 #23    #21- 

The electric field components are hence given by, 

Ex = 
K, 

x + K2xY,^Rn2x 
n=0 

/?• 23 

y/WT? 
+ #23 # 23 J»-21 

+ R23R2I + R21 

VWT?J\ 

(102) 

(103) 

(104) 

(105) 

(106) 

(107) 

(108) 

(109) 

(110) 

K, ^H»+^Ew 
n=0 

R 23 + #23 #• 23-^21 

#23 #21 #21 + 
v^T 

+ 
v/WT?0 (in) 

K 
^ = ^ + ^2^/253^ 

n=Cl 

DxR UV23 + ^5 #23 #21 

Z)6#23#2i D7R2i 

TMT?     x/tffT^ 
(112) 

Source Strength K2 

For source location in region 2 and by Eqn. (98) we have: 

VQ = K2 
1       °° 

n=0 

#23 #23 #21 #23 #21 #21 

D\ + p>     Dl + pi     Dl + p>^D> + p> 
Pi 
(113) 
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We will define the geometrical factor G2 for the two electrode scenario to be the 
following: 

1      °° 
G2 = ~ + 2J -^23-^21 r 

n=0 

#23 #23^21 #23^21 #21 

£>? + p2     D2 + p2     D2+p2     D2 + p2 •   (114) 

We now can determine the source strength by supplying the potential between the 
two electrodes and calculating the geometrical factor; 

V0 
K2 = -pr- (H5) 

Results 

In this section we will use the closed form Sommerfeld solution (denoted as WSU, 
per Appendix B) to compare and validate the QES solution. The Sommerfeld so- 
lution has been fully validated and is regarded as the exact full-wave solution. For 
the first scenario we place the source in region 2 along the i-axis at a depth of 10m 
with a normalized strength of 1 A-m. Regions 1, 2 and 3 will be that of air, water 
and mud respectively, as specified in Table 1. The electric field magnitude is ob- 
served along the horizontal x-axis at a depth of 50m. The WSU solution relies on a 
point source, so for an equivalent scenario, the QES source will be made small. The 
QES source electrodes have a radius of 0.2m and are separated by lm. The results 
for this scenario are shown in Figure 10. The QES solution has little change with 
frequency while the WSU solution is frequency dependent. For this scenario the 
QES solution falls within 50 percent of the WSU solution for frequncies up to 1000 
Hz and is very accurate at lower frequencies. For the next scenario, the same 

Table 1: Material Properties 

Region 1    Region 2    Region 3 

~       i 8l i 
a 0 0.018 0.012 

source location and strength will be used. Region properties will be consistent with 
Table 1. We observe the electric field magnitude along the vertical z-axis at a radial 
distance of 100m. The results are shown in Figure 11. The results are similar to that 
of the first scenario except more accurate. Consider the scenario when the source 
is moved further in the water to a depth of 50m and the observation is moved out a 
distance of 300m. The data for this scenario is shown in Figure 12. We can see that 
the QES solution is highly accurate when the frequency is low. For this scenario, 
when the frequency is increased upwards to 1000 Hz, the QES solution over pre- 
dicts the magnitude of the electric field by up to 150 percent but is still precise at 
low freqeuncies. Clearly the region of validity for the QES solution is determined 
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Figure 10: HED in water - Horizontal sweep 

by the relative distance between source and observation, and frequency. In the near 
field, the QES solution predicts to a high level of accurately while in the far field, 
the QES solution becomes increasingly inaccurate. Also we notice that the QES 
solution error is larger in water than in air. Further work is needed to ascertain the 
QES region of validity. 
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A Perfectly Matched Layer for Lossy Media 
at Extremely Low Frequencies 

Dennis M. Sullivan, Senior Member, IEEE, Yang Xia, and Das Butherus 

Abstract—The perfectly matched layer (PML) has proven to be 
an effective means of absorbing outgoing waves for finite-differ- 
ence time-domain (FDTD) simulations. This letter describes the de- 
velopment of a PML specifically for underwater simulations at low 
frequencies. This is a significant development for this project that 
involves simulations of electromagnetic signals for long distances 
under water. 

Index Terms—finite-difference time-domain (FDTD) methods, 
perfectly matched layer (PML). 

I. INTRODUCTION 

THE single largest threat to surface warships is mines. 
These mines are often detonated by the electromagnetic 

signature of a surface ship [ 1 ]. For this reason, it is desirable to 
have simulation methods to study the propagation of extremely 
low frequency (ELF) electromagnetic waves under water. The 
finite-difference time-domain (FDTD) method [2], [3] is one of 
the most widely used methods in electromagnetic simulation 
and has recently been adapted for ELFs under water [4], [5]. 
In FDTD simulations, it is necessary to have an absorbing 
boundary condition (ABC) to truncate the problem space and 
absorb outgoing waves. One of the most widely used and 
versatile ABCs is the perfectly matched layer (PML) [6], [7]. 
There has been some activity in the development of PMLs that 
are effective in low frequency or dispersive media [8]-[ll]. 
In this letter, we describe the development of a PML that is 
specifically suited for very lossy media at ELFs. 

II. IMPLEMENTATION OF THE PML 

A.  Berenger's PML in Free Space 

Berenger [6] assumed that any plane wave propagating in the 
direction d near the PML could be broken up into the part trav- 
eling perpendicular to the PML rfx and the part traveling parallel 
d\\ (Fig. 1). The two conditions for the PML are the following: 

1) It must have the same impedance as free space and not 
present a loss to the wave traveling parallel to the interface. 

Manuscript received July 02, 2009; revised August 29, 2009. First published 
September 29.2009; current version published October 16,2009. This work was 
supported by ONR Grant N0OO14-17-I-08II in collaboration with NAVESAE, 
Cardcrock Division. 

The authors are with the Electrical and Computer Engineering Department, 
University of Idaho. Moscow. ID 83844-1023 USA. (e-mail: dennis@ee.uidaho. 
edu). 

Color versions of one or more of the figures in this letter are available online 
at http://ieeexplore.ieee.org. 

Digital Object Identifier 10.1 IO9/LAWP.20O9.2O33215 

PML Medium 

Fig. 1. The PML is implemented by assuming any propagating wave can be 
broken up into a part that is perpendicular to the PML interface and a part that 
is parallel to it. 

2) It must increase the artificial electric and magnetic conduc- 
tivities such that the impedance still matches that of the free 
space. 

Both of these conditions are met by increasing the electric and 
magnetic conductivities in the PML such that 

T/ = 
*>(1 + ^) (1) 

Note that this impedance is a real number. 
Berenger implemented (1) into the FDTD formulation by a 

split-step formulation that broke each electric and magnetic field 
into two components. Most applications assume that the back- 
ground medium in the main problem space is free space. 

B.  The PML in a Lossy Medium at ELFs 

When the background medium is lake water and the frequen- 
cies are in the ELF region, the situation is different. Lake water 
has a dielectric constant of 80 and a conductivity of 0.018 S/m 
[12]. For lake water at I kHz, the complex dielectric constant is 

0.018 + = 80 + 
jwe-o j (2TT x 103) (8.85 x 10-12) 

= 80 -J3.24 x 105 S -J3.24 x 105. 

Therefore, the impedance is 

Vw = 
Mo Mo 
leo ve°te) 

This impedance can be written in polar coordinates as 

Vw = |^|Z45°. 

(2) 
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Notice that because the loss term dominates, the impedance is where Ax and At are the cell size and time-step, respectively, 
at 45°. The impedance of the PML material must remain at this The implementation of the PML in the Hz field in the y-direc- 
value, but at the same time increase the loss further as it goes per- tion is relatively straightforward. The term s is added only to the 
pendicular into the PML. This can be accomplished by adding y differential 
a factor s to the conductivity and the permeability 

Vpml - (3) 

This addition of the s term causes the PML medium to absorb 
outgoing waves faster than the water medium, but also avoids 
reflections from the PML medium. The factor s equals one in 
the background medium, but increases as it goes into the PML. 

This implementation may bare a superficial representation 
to the "stretched coordinates" proposed by Chew and Weedon 
[13]. However, the a in (3) is a real number as opposed to the 
complex numbers used in the stretched coordinates. There have 
been other methods proposed for the PML in lossy media [10], 
[11] where the conductivity is large enough that it plays a sub- 
stantial role in the complex dielectric constant. However, the 
impedance in (3) is for the situation when the imaginary part of 
the dielectric constant dominates completely. 

tf;,+1/2(;,j,fc) 

=//r1/2(M,*--) 

+ ,    A\   , [E'x'
+l (i,j + l,k)- E'z>+1 (ij,k)} 

{s • fioAx) 
(6) 

Instead of changing the entire term containing s above, we have 
found it expedient to include a one-dimensional array 

9V U) = - a 
(7) 

so (6) becomes 

C.  Implementation Into FDTD 

We begin with the following formulation of the Maxwell 
equations for a lossy media: 

OE 
£r£o-^r - o-E = V x H 

Ot 

/'o ot' 
= - V x E. 

i/;i+1/2(»,j,fc) 

=//r1/2(i,j,fc) 
At 

+ a^)^+1(M'")-£"1{l+1'M)] 

At 
+ gy(j) ( 

•[E2+1{iJ + l,k)-E2+l{i,j,k)]. (8) 

Adding the PML to the calculation of the Ex field requires that 
We will restrict the discussion to the implementation of Ez and    ,ne calculation be split into two equations for propagation in the 
Hz propagating in the ^/-direction perpendicular to the PML 

dEt                  0HZ     0Hy 
CWCO-XT- + °v>Ex = — —^ (4a) 

0HZ =dE±_DEy 
dt dy        dx 

The FDTD formulation leads to the following coupled equa- 
tions: 

y and z directions. The a term is only added to the conductivity 
in the y-direction 

E^l(iJ,k) 

etu^o -E*,(i,j,k) + m 
(ew£o + s • CTU, • At)   xy ' '  (eu,eo + a • au,Ar.) 

•[H?+1'2(iJ,k)-H:+l'2(i,j-l,k)\ (9a) 

E^l{i,j,k) 

^n+l (i,j,k) EUI£Q 

£w£o 
(eu,e0 + Cm • At) 

E?(i,j,k) + m -E';(ij,k) + m 

H'z
i+i/2(ij,k)-m 

(ewe0 + <ru, • At) 
r?+l/2(i,j-i,fc) 

l-HZ+l/2{i,j,k) + HZ+1/2(i,j,k-l) 
Hr1/2{U,k) 

=Hr1/2d,j,k) + T^-1 (lM)Ax) 
E?+l(iJ + l,k)-E«+l(iJ,k) 

(ew£0 + Ow • A) (e-u,e0 + ow • At) 

• [H2+1'2(i,jtk-l)-H2+V2{i,j,k)]. (9b) 

(5a)    Once again, it is expedient to implement this by an additional 
one-dimensional array. Equation (9a) becomes 

E?+1(i,j,k)-EZ+1(i + l,j,k) 

E^1(iJ,k) = fy(j)-ca.E^(i,j,k) 
(5b)    +fy(J)cb[Hz>+l/2(i.j,k)-H?+l'2(i,j-l,k)\     (10) 
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80 cells 

Monitor line 

Ez Dipole 
source 

15 cell? 

Fig. 2. (a) A dipole source is located in the SO3 problem space. Once steady 
stale has been reached, the amplitude is determined at a transverse line 15 cells 
from the source. The cells are 25 m3. (b) The amplitude at the monitor line after 
4000 time-steps. 

where 

Ew^O 

(ewe0 + ow • A) 

cb = m 

fy(j) 

(e^fo + Ow • At) 

(Ha) 

(lib) 

(He) 

In summary, the PML is implemented in the ^-direction by 
the one-dimensional arrays 

9V U) = - 

fyU) 
(* + *»•;£) 

( 
1 + S • <TU 

At 

:) 

(7*) 

(lie*) 

It has been found empirically that an effective formula for the 
,s factor as it goes into the PML is 

a = 0.2-0'-i**r (12) 

where jetig0 is the beginning of the PML. This formulation also 
prevents the largest stretched cells from exceeding the skin 
depth. 

III. RESULTS 

In this section, we illustrate the effectiveness of the lossy 
medium ELF PML. We will start with the problem space illus- 
trated in Fig. 2(a), which is 80 cells cubed. Each cell is 25 m 

80 cells 
15 cells 

6- 

? 

~\ 
\ 

/ V\ 
10 20 30 40 50 60 70 80 

cells 

(b) 

8 

6 

2 

x10"" 

/    \ 

\\ 

10 20 30 40 50 
cells 

W) 70 80 

(c) 

Fig. 3. (a) The problem space is truncated to 10 cells to the right of the source. 
A four-cell lossy PML has been added to each boundary, (b) The solid line is 
the amplitude for the simulation in (a), while the dashed line is from the 80 cell 
monitor line of Fig. 2. (c) The same simulation with no PML. 

cubed. The size of 803 was needed so that boundary plays no 
role in the results of the simulation. The source is a single-cell 
electric dipole. After 4000 time-steps, the amplitude is calcu- 
lated via the method of two equations, two unknowns (2E2U) 
[14] at a monitor line 15 cells from the dipole, as shown in 
Fig. 2(b). 

The simulation is then repeated for the truncated problem 
space shown in Fig. 3(a), where a four-cell PML has been added. 
In this simulation, the right wall has been moved in to within 10 
cells of the source. The results are plotted in Fig. 3(b) (solid line) 
along with the results of the previous simulation (dashed line). 
For comparison, Fig. 3(c) is the same simulation with no PML 
on the truncated wall. Clearly, substantial errors appear when 
the PML is not present. 

In one final simulation, the problem space is reduced to 
60 x 20 x 20 cells, as illustrated in Fig. 4(a). The results are 
shown in Fig. 4(b), where the results of the original simulation 
of Fig. 2 are presented for comparison. The amplitudes on the 
monitor line within five cells of the center are identical. Once 
again, the results without the PML are shown in Fig. 4(c), 
demonstrating the expected error when no PML is present. 
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free space or other lossless media, it substantially decreases the 
needed computer resources. For instance, in the examples in 
Section III, it was found that a problem space of 803 was nec- 
essary to insure that the boundaries were not influencing the re- 
sults when there was no PML. After the PML was added, the 
problem space was reduced to 60 x 20 x 20. This represents a 
reduction in the problems space from 512 000 cells to 24000 
cells. 

Fig. 4. (a) A simulation similar to Fig. 2 but with the problem space truncated 
to 60 x 20 x 20 cells, (b) The solid line is the amplitude for the smaller problem 
space, while the dashed line is the larger problem space of Fig. 2. (c) The same 
comparison when a 60 X 20 x 20 problem space with no PML is used. 

IV. DISCUSSION 

A PML has been developed for applications involving ELFs 
in lossy media. As opposed to the original Berenger PML in free 
space, this one requires a split .E-field, but not a split //"-field. 
Although the use of a PML is not as crucial as it might be in 
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Underwater FDTD Simulation at Extremely Low 
Frequencies 

Yang Xia and Dennis M. Sullivan, Senior Member, IEEE 

Abstract—This letter describes the application of the fi- 
nite-difference time-domain (FDTD) method to the simulation 
of extremely low frequency (ELF) electromagnetic signals under 
water. This requires substantial modification to the traditional 
FDTD method, as well as the development of an analytic method 
needed to verify the accuracy of the FDTD method. 

Index Terms—Electromagnetic propagation in absorbing media, 
extremely low frequencies, finite-difference time-domain (FDTD) 
methods. 

I. INTRODUCTION 

MODERN antiship mines can be detonated by the electro- 
magnetic signature of a surface ship [1]. For this reason, 

it is desirable to have simulation methods to study the propaga- 
tion of extremely low-frequency (ELF) electromagnetic waves 
under water. The finite-difference time-domain (FDTD) method 
[2], [3] is one of the most widely used methods in electromag- 
netic simulation. However, it has seen limited use for low fre- 
quencies in lossy media. In this letter, we describe the use of 
FDTD for ELF simulation under water. In Section II, we de- 
scribe the formulation of the FDTD method that has been found 
to be most appropriate for this application. Section III describes 
the method of two equations, two unknowns (2E2U) that is 
used to determine the resulting amplitudes when the FDTD pro- 
gram has reached steady state. Section IV describes an analytic 
method that was developed to evaluate the accuracy of FDTD 
at ELF. Section V presents an example of ELF simulation in 
shallow water, the type of problem that will be of interest for 
this project. Section VI ends in a discussion, including remarks 
on future areas of research. 

II. METHOD 

We begin with the time-domain Maxwell's equations 

dE    „    „ 
e,e0-^- = V x // - oE 

at 
dH r-,       r. 

(la) 

(lb) 
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Equation (1) is for three dimensions, but for the purpose of il- 
lustration, we limit the discussion to the Ex and Hy fields prop- 
agating in the z direction. Equation (la) can be taken into the 
sampled time domain using the usual finite-differencing proce- 
dures 

f, 
E'^(k) - E»(k) 

At 
4 S)*" 

1 Hy+1/2(k + 1/2) - H'y
l+l/2{k - 1/2) 

CO Ax 

We assume the cell size is Ax and the time step is At. The E" +1 

can now be calculated from 

E?+1{k) = ca{k)E?{k) 

+cb(k) [H'y'
+i'2(k + 1/2) - H\;+"\k - 1/2)]     (2a) 

where 

At 
ca 

V        ere0 ) 
cb = ca 

(ere0Ax)' 
(2b) 

There is a crucial choice that was made here. Usually, the Ex 

term next to the conductivity is averaged across the two time 
steps 

E'^(k)-E»(k) 
At 

+ (SJF (fc) + ££(*) 

1     Hy+1/2(k  +   1/2)   -   Hy+1/2{k   ~   1/2) 

e0 Ax 

which would lead to the following expression for ca: 

ca =     1 
At-a 

2ere0 
1 + 

Af -a 

2fr(fu 
(3) 

At ELF frequencies in lossy media, the ca of (3) would be neg- 
ative, leading to a potentially unstable condition. (The imple- 
mentation of (lb) into FDTD is straight-forward and will nol be 
presented here). 

There is another choice that leads to substantially larger time 
steps, and therefore, substantially faster solutions [4]. Once the 
cell size Ax is chosen, the time step must be chosen lo satisfy 
the Courant condition, which in three dimensions is 

At < 
Ax 

y/3-> 
(4) 

where cmax is usually the speed of light in a vacuum. The mate- 
rials that will be of interest for this project are listed in Table I. 
(An early goal of this project is to study propagation in lakes. 
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TABLE I 
THE PROPERTIES OF THE MATERIALS USED IN THE SIMULATIONS DESCRIBED 

IN THIS PAPER [5] 

Material 

80 

ar(S/m) 

Water 0.018 
Air 1 0 

Lake water 80 0.018 
Mud 41) 0.002 

Metal 1 107 

That is the reason that lake water is used instead of sea water.) 
The complex dielectric constant is calculated by 

e.+ 
]ue0 

At ELF frequencies, the imaginary part of the dielectric constant 
will dominate the magnitude for all the materials except air. 
Therefore, increasing the dielectric constants of mud or metal 
to 80 would make very little difference. If we assume every 
material in Table I has a real dielectric constant of 80, then 
Cmax — co/\/80 and the time step is almost an order of magni- 
tude greater, (co is the speed of light in a vacuum). Even though 
air is one of the materials listed in Table I, air is a boundary 
medium in this project. It presents almost perfect reflection to 
an electromagnetic signal in water, even if the higher dielectric 
constant is used. 

III. THE METHOD OF TWO EQUATIONS, TWO UNKOWNS 

FDTD is a time-domain method. Once the steady state has 
been reached for a simulation problem, it is desirable to know 
the resulting amplitude and phase at certain locations in the 
problem space. For frequencies of about 100 kHz and above, 
the discrete Fourier transform is the preferred method [6]. We 
have found that at ELF frequencies, the method of two equa- 
tions, two unknowns (2E2U) is preferable [7]. In this method, 
two sample points are taken 

E\ — A,sm.{u)mt\ + 9) 

Ei = Asm{u)mt2 + 9). 

(5a) 

(5b) 

Since the input frequency u>m as well as the two sample points 
t\ and <2 are known, the only unknowns are the amplitude A and 
the phase 9. The concept of solving for two unknowns from the 
two equations is straight-forward, but the fact that the inverse 
trigonometric identities must be taken can lead to inconsisten- 
cies. It has been found expedient to add an offset time 

to" = 2 H ~ h " h] (6) 

to each of the times ti and t-i. This centers the two sample points 
symmetrically on the ninety degree axis and avoids problems 
when taking inverse trigonometric functions. 

IV. VERIFICATION OF THE ACCURACY OF THE METHOD 

An analytic solution is needed to verify the accuracy of the 
FDTD method at ELF. One such method that is often used to 

Fig. I.   A layered dielectric sphere in a constant E field. 

verify FDTD formulations is a layered dielectric sphere illumi- 
nated by a plane wave. A Bessel function expansion is used to 
calculate the resulting fields [8]. This method is not valid below 
about 100 kHz. 

At low frequencies, the near field can be regarded as a static 
field. A solution for a layered sphere in a static electric field was 
developed, as illustrated in Fig. 1. A spherical boundary-value 
problem has solutions of the form [5] 

V(R,0) = J2 [A»R" + BnR
H"+1)] P„(cos0).     (7) 

n=0 

Pn(cosf?) are the Legendre polynomials. In the limit far from 
the sphere, V0(R,9)\n-.oo — —EoRcosO, and inside the 
sphere V\(R,9) = AiRcos9. There are two boundary con- 
ditions at a dielectric boundary: Ey = E2i,£iEin = £2-^2n- 
The two equations resulting from the boundary conditions are 

and 
B,n + Amr3

m - Dm+i - Am+1r
3

m = 0 

2-^-Bm + —Amrl + 2Bm+l 
£m+l £m + l 

„3 - i4,„ + i< = 0. 

(8a) 

(8b) 

The constants are determined by Gaussian elimination. Once 
the potential V is known, the E fields are determined by 

E= -VV = 
0 1 0 

dRVaR-R09Vae (9) 

which can be converted to rectangular coordinates. 
In order to compare the FDTD results with the analytic 

method, we use the three-dimensional problem space illus- 
trated in Fig. 2. A plane wave polarized in the z direction is 
generated at one end and subtracted out the other end. The 
cells used in the simulations are five meters cubed and the time 
steps are 75 ns. A layered sphere with dielectric properties to 
simulate various materials lies in the center of the total field. 
The amplitude of the E, field is determined along the major 
axes for comparison with the analytic method to evaluate the 
accuracy of the FDTD simulation. These axes go through the 
sphere and extend five cells out in each direction. The problem 
space is 50 cells cubed. 

The results of the simulations are shown in Fig. 3. The solid 
lines are the analytic results and the circles are the FDTD values. 
Clearly, the comparisons are very good. In Fig. 3(c), there is 
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Fig. 2.   The configuration of the three-dimensional simulation space used to 
evaluate the accuracy of the method. 

some discrepancy in the air layer in the middle. This is not too 
worrisome because in our problems of interest, air is a boundary, 
not a central part of the problem space. Note that this condition 
was not caused by increasing the dielectric to 80 as discussed 
above; the same result is obtained using a dielectric of 1 or 80. 

V. EXAMPLE 

Fig. 4 illustrates the type of simulation of interest for this 
project. Two dipoles, one used as a transmitter and one as a re- 
ceiver, are submerged in shallow water. The problem space is 
40 x 60 x 40 cells and each cell is 10 m squared. The transmit- 
ting current is simulated by the H fields surrounding the middle 
of the transmitting dipole 

/„ -*=i H-dl* 4Ax 

Hv(i,j,k)-Hv{i-l,j,k) 
-Hx(i,j,k) + Hx(i,j - 1,/t) (10) 

The resulting current on the receiver is calculated with a similar 
equation. Each simulation required 2000 time steps. The results 
are shown in Fig. 5. The important quantity, H, the transfer 
function, is the ratio of received current to transmitted current, 
which is plotted as a function of frequency. 

VI. DISCUSSION 

A method has been described to simulate electromagnetic 
waves propagating under water at extremely low frequencies. 
This approach necessitated substantial modification to the usual 
FDTD formulations. Furthermore, an analytic method based on 
the Legendre polynomials was developed to verify the accuracy 
of the FDTD method. 

Those familiar with FDTD methods will notice the lack of 
discussion on absorbing boundary conditions (ABCs). ABCs 
are usually required to prevent outgoing signals from being re- 
flected back into the problem space. The very lossy background 
medium of lake water has prevented this from being a concern 
for the examples presented in this letter. However, it is likely 
that an appropriate ABC, probably one based on the perfectly 

1000 Hz. mud/mud Swalef 
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Fig. 3. Comparison of the FDTD values (circles) versus the analytic values 
(lines) for an incident plane wave at I kHz and a layered sphere composed of 
different media, (a) The inner layer is mud, the outer layer is mud and water, 
(b) The inner layer is metal, the outer layer is mud. (c) The inner layer is air. the 
outer layer is mud. 

air Transmitter Receiver 

50 m 

200 m 

Fig. 4.   Two dipoles are submerged in shallow water. One is used as a trans- 
miller and the other as a receiver. 
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Fig. 5.   The transfer function of the two-dipole simulation shown in Fig. 4. The 
frequency range is 3 Hz to 3 kHz. 

matched layer (PML) [9], will be necessary for simulation over 
long distances. 

In this project, it is anticipated that simulation over distances 
of several kilometers will be required. Some form of near-to-far 
field transformation will be developed to model the EM sources 
with relatively high resolution while using lower resolution to 
model greater distances in the far field. 
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FDTD Numerical Tests of the Convolutional—PML 
at Extremely Low Frequencies 

Christopher L. Wagner and Jeffrey L. Young, Fellow, IEEE 

Abstract—Numerical evaluation of the finite-differencec 
time-domain (FDTD) convolutional perfectly matched layer 
(CPML) at extremely low frequencies (ELF) is conducted herein 
to arrive at acceptable values for the PML parameters. This is 
accomplished by conducting numerous simulations of an electric 
dipole in a 60 x 60 x 120 free-space domain and by benchmarking 
the simulation data against reference data for strategic observa- 
tion points within the domain. Results show that PML attenuation 
on the order of 60 to 70 dB can be obtained for 10 to 1000 Hz 
signals in the quasi-static region of the dipole. 

Index Terms—Absorbing boundary condition, finite-difference 
time-domain (FDTD) methods, perfectly matched layer (PML). 

I. INTRODUCTION 

IT IS well known in oceanic environments that only ex- 
tremely low-frequency (ELF) electromagnetic waves will 

propagate over long distances due to the high conductivity of 
saltwater. For this reason, such waves are quite useful in com- 
munication links, or can be undesirable emissions, as caused by 
high-powered electric drives on a ship platform. In either case, 
the propagation characteristics of these waves can be understood 
from computer finite-difference time-domain (FDTD) simula- 
tion, particularly in the littoral region, where the topological and 
bathymetry features can be geometrically complex. To accom- 
plish such a simulation, a suitable domain truncation technique 
is needed for both the water and air regions of the domain. Since 
the ELF signals are naturally attenuated in the water, the per- 
fectly matched layer (PML) development for the air is the most 
challenging. 

Classical PMLs used in FDTD truncation have poor per- 
formance at low frequencies and potentially suffer late-time 
growth [l]-[3]. The complex frequency stretching scheme in- 
troduced by Kuzuoglu and Mittra [4] alleviates these problems. 
The FDTD CPML implementation of [4] was introduced by 
Roden and Gedney [5] and is evaluated here for ELF perfor- 
mance. For this work, we consider 10 to 1000 Hz to be the ELF 
band. 
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II. FORMULATION 

A. The FDTD Problem Statement 

The FDTD simulations presented herein used 64-bit double 
precision calculations. All simulations are performed at the 
Courant stability limit to minimize dispersion error and to 
advance time as fast as possible. The FDTD code is a cubic cell 
implementation, with a cell size of 20 m. The medium is free 
space. The test domain size is 60 x 60 x 120 cells, including 
the 10-ccll-thick PML. The electromagnetic field is excited 
by a current source that is at node coordinate (30,20,40). A 
time-differentiated Gaussian waveform is used as the excitation 
pulse. This pulse has no dc component, so no persistent charge 
will be deposited into the grid, which would produce undesir- 
ably large dc electric fields [6], [7]. The field is quantified at six 
observation points located at (30,10,80), (30,20,80), (30,30,80), 
(30,40,80), (30,50,80), and (50,20,40), respectively. The first 
set of grid numbers is regarded as observation point 1, the 
second set as observation point 2, etc. Since the free-space 
wavelength of a 10-Hz signal is 3000 km, it is clear that the 
observation points are within the quasi-static region of the 
dipole. Such near-field observations pose significant challenges 
to FDTD PML development. 

Several test cases are considered that are associated with var- 
ious PML parameters. The efficacy of each PML is obtained by 
benchmarking the FDTD data against a reference solution, as 
described next. 

B. Reference Free-Space Problem 

To provide a reference solution, a large free-space 
200 x 200 x 260 domain with perfect electric conductor 
(PEC) walls is used. The geometry of the source and receiver 
points is the same as the PML test cases, but the free-space 
domain is larger than the test case domains by 140 cells in each 
direction. This reference domain is large enough that the direct 
signal is fully resolved from the reflections from the walls, so 
the reflections can be removed by time-gating. The reference 
problem only needs to run for a few hundred time-steps to 
obtain a clean direct signal. This type of reference solution 
includes all FDTD numerical errors, thus allowing us to isolate 
the effect of the PML induced errors from all others. 

C. Signal Processing 

To extract the frequency response data from the time-domain 
data, fast Fourier transforms (FFT) are used [9]. The simulations 
are conducted using 200 K time steps, which unfortunately does 
not give sufficient frequency resolution to observe the ELF re- 
sponse. To circumvent this problem, the time-domain data set 
is extended with zeros to a length sufficient to obtain the lowest 
frequency needed. For signals that decay to zero (as is the case 
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with good PMLs), zero extension is proper. For numerical pur- 
poses, we define "zero" as less then 10-12 relative to the peak 
value. The zero extended data sets are then transformed with the 
FFT. The transformed data sets are then used to compute the fre- 
quency-domain performance metric. The time-domain and fre- 
quency-domain metrics are described next. 

D.  The Performance Metrics 

To measure the performance of the PMLs, an energy metric is 
used. The energy includes all the field components in the metric. 
This eliminates the possibility of choosing an especially strong 
or weak field component at random. We present both time- and 
frequency-domain metrics. The time-domain metric is broad- 
band, which contains all spectral information contained in the 
excitation signal. The frequency-domain metrics are narrow- 
band, calculated at selected frequencies of interest. 

In the time domain, the residual energy error metric is 

Et (Swe{t) + 6wk(t)) 
(I) 

where w'e{t) and w'h(t) are the electric and magnetic energy 
densities in the time-gated reference signal, and 6we(t), 6wh{t) 
are the residual energy densities associated with the PML. The 
summations are over the full simulation time. The reference en- 
ergy electric and magnetic densities are defined as 

and 

w'K(t)=
1-ce'(t)-e'(t) 

w'h(t) = -nh'(t) • ti(t) 

(2) 

(3) 

where e'(t) is the time-gated reference FDTD electric field 
vector and h'(r) is the reference FDTD magnetic field vector. 
The residual electric energy is given by 

6wt(t) = |« (e(t) - e'(0) • (e(t) - e'(t)) (4) 

where e is the PML FDTD electric field vector. Similarly, the 
residual magnetic energy is 

6wn(t) = \n (h(<) - h'(0) • (h(t-) - h'(*)) (5) 

where again the primed vector is the reference solution and the 
unprimed vector is the PML FDTD solution. 

In the frequency domain, the residual energy error metric at 
angular frequency w is 

R{u) = 
6WE{LJ) + 6WH(UJ) 

W'E(w) + W'H{u) 
(6) 

where the residual and reference energies arc defined in a 
manner similar to the time-domain case. 

E.  The PMLs 

In the frequency domain, the CPML tensor coefficient as 
given by Kuzuoglu [4] is 
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Fig. 1. Hertzian dipole field al observation poinl I for several different PMLs 
with K = 1, The rapid fall-off of amplitude after 1 MHz is due lo (he limited 
bandwidth of the source current waveform 

The real coordinate stretch K, conductivity a, complex fre- 
quency stretch a, and their polynomial scaling characterize the 
PML. 

The test PMLs are 10 cells thick, with the parameters having 
polynomial scaling. The conductivity a and coordinate stretch 
K use a fourth-order scaling polynomial, while the complex fre- 
quency stretch a uses third-order. As is usual with the CPML, 
the scaling polynomial for the conductivity and real coordinate 
stretch increases into the PML, while the complex frequency 
stretch polynomial decreases into to PML. The maximum con- 
ductivity is set according to the optimum [8] given by 

m + 1 
'opt — 

1507rv/e7Ax 

(X) 

where m is the polynomial order, Ax is the space grid size, and 
eT is the relative dielectric constant. The maximum complex 
frequency stretch a is set by 

"max = 27T6-o/a (9) 

s, =«, +a,/(a, + jwt0),    i-x,y,z. (7) 

where fa is the CPML break frequency. 
The problem is lo find ranges for the parameters /„ and K that 

provide good performance at ELF. This can only be done em- 
pirically. Representative test cases are provided next to demon- 
strate this empirical process. 

III. RESULTS 

To validate the simulations, the exact Hertzian dipole, fre- 
quency-domain solution is compared to the transformed FDTD 
simulation data in Fig. 1. The field is observed a( point I. When 
fa is small, the low-frequency performance of the PML is poor. 
Likewise, when /„ is excessively large, the PML performs 
poorly at high frequencies. A PML with a reasonable value of 
the break frequency provides a simulation that closely matches 
the theoretical prediction over the full excited frequency band. 
We have found empirically that fa w 1 MHz seems optimum 
for ELF simulations. This conclusion is also valid when the 
field is observed at other strategic observation points, i.e. 2, 3, 
4, 5, and 6. 

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on July 27,2010 at 17:15:26 UTC from IEEE Xplore   Restrictions appl, 



1400 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS. VOL. 8. 2009 

le-05 

Fig. 2. Time-domain results at observation point 1 for K = 1. For times less 
than about 8e-6 s. the direct signal is seen. After the direct pulse has passed by 
the sample point, various levels of residual fields are seen. 
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Fig. 3.   Normalized PML frequency response at observation point 1 for K = 1. 
Lower amplitudes are better performing PMLs. 

See Fig. 2 for the time-domain performance of four test and 
the reference simulations. The reference simulation shows the 
direct signal clearly separated from the reflected signals, the 
latter of which can be removed by time-gating, as noted previ- 
ously. With fu — 1 Hz, there is slow long-term decay. (In some 
simulations, when fa — 0, slow growth has even been reported 
[3].) As fa is increased to the optimum, the absorption increases 
relative to the /„ = 1 Hz case. As /„ is increased further, the 
absorption degrades, but still with good late-time fall-off. 

In Fig. 3, the frequency-domain residual energy error metric 
as computed by (6) is shown for observation point 1. In this plot, 
a better PML will have a lower response. The PML is tested 
with various break frequencies fa, each with K = 1. With /„ 
too large or small, there is poor PML absorption. As can be seen 
in both the time-domain and frequency-domain plots, there is an 
optimum value for the break frequency for ELF simulations. For 
the tests performed here, /tt ~ 1 MHz provides the best PML 
absorption at ELF with a relative error on the order of 0.02%. 

There is up to a factor of 100 variation in error in PML absorp- 
tion across the six sample points, as shown in Fig. 4. Surpris- 
ingly, sample point I has better ELF performance than sample 
point 5. From a wave perspective, sample point 1 is the grazing 
incidence case; however, given that the fields are quasi-static, 
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Fig. 4.   PML frequency response for /„   —  10° Hz and K  =   1 for the six 
observation points. 

Fig. 5. Time-domain PML residual energy error metric at observation point I 
for various values of the real coordinate stretch K and the break frequency /„. 
FDTD simulations are performed at each grid-line intersection. 

grazing incidence has no real meaning. Clearly from Figs. 3 and 
4, good choices of parameters provide better than 70 dB of PML 
absorption over the ELF band at favorable observation locations 
and more than 60 dB attenuation in unfavorable locations. 

A. Time-Domain (Broadband) Performance 

Figs. 5 and 6 show the time-domain contours of 10log10 r 
as K varies from 1 to 20 and as fa varies from 1 to 1010 Hz 
for observation points 1 and 5, respectively. There is variation 
in the location and depth of the global minimum across the six 
observation points. However, with /„ ~ 1 MHz and 3* it< 
8, the PML provides —70 dB or better performance al all six 
observation locations. 

B. Frequency-Domain (Narrowband) Performance 

Figs. 7-9 show the frequency-domain PML performance at 
100 Hz, 10 kHz, and 1 MHz, respectively. The 1 Hz to 1 kHz 
optima vary widely with K, /„, and observation position. For 
some specific test locations, frequencies, and PML parameters, 
there are very deep minima on the order of —120 dB in some 
cases. Because the location and parameters of these minima do 
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Fig. 6.   Time-domain PML residual energy error metric at observation point 5.      Fig. 8.   10-kHz frequency-domain PML residual energy error metric at obser- 
vation point 1. 

Fig. 7.    100-Hz frequency-domain PML residual energy error metric at obser- 
vation point 1  At the same observation point, the 1 to 100 Hz results look es-     Fig 9    !_MHz freqUency-domain PML residual energy error metric at obser- 
sentially identical. vation point 1. 

not vary in a regular way, it is important to select operating con- 
ditions for the PML based on the performance at several obser- 
vation locations. For example, at 10 Hz, 100 Hz, and 1 kHz, 
fa ss 10° Hz with 1 < K < 20 provides -60 dB or better PML 
performance at all six observation points. If 18 < n < 20, then 
the PML provides —70 dB or better performance at all six ob- 
servation points. Apparently, the narrowband metrics at ELF are 
improved with larger values of K as compared to the wideband 
time-domain metric. Fig. 9 shows that at 1 MHz, smaller values 
for K provide the best PML absorption. The optimum PML pa- 
rameters depend on the metric used and on the frequencies of 
interest. 

IV. CONCLUSION 

For ELF PML development, our empirical research shows 
that when /a ~ 1 MHz, K W 6, a = ff0pt. fourth-order polyno- 
mials for a and K are invoked, and a third-order polynomial for 
Q is invoked, then at least 60 dB of PML attenuation is obtained 
in the quasi-static region (i.e. very near-field) of the dipole, for 
both the wideband and ELF narrowband metrics. This is more 
than adequate for high-quality FDTD simulations in the ELF 
band. 
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A Simple Up-over-and-down Model for Low 
Frequency Horizontal Electric Dipole 

Propagation Near An Interface 

Robert G. Olsen, Fellow, IEEE, and Zhi Li, Student Member, IEEE 

Abstract—The propagation of electromagnetic fields from an 
electric or magnetic dipole near an interface has been described 
mathematically for many years using Sommerfeld integrals. In 
the high frequency case for which the dipole and field point are 
buried in the lower (and much lossier) medium, simple 
approximations have been derived that can be interpreted as 
up-over-and-down propagation (i.e., plane wave from source to 
the surface - surface wave to a point above the field point - plane 
wave to the field point). In this paper, a simple expression valid 
for the low frequency case (i.e., relevant dimensions in the upper 
medium are electrically small) is derived. In this case the 
up-over-and-down propagation is described as near field 
propagation from source to the surface, quasi-static propagation 
along the interface to above the field point and plane wave 
propagation to the field point. 

Index Terms—Electromagnetic fields, electromagnetic 
propagation, extremely low frequency. 

I.  INTRODUCTION 

THE electric (E) and magnetic (H) fields due to a dipole 
(vertical or horizontal, electric or magnetic) buried in a 
conducting half-space have been well studied for decades 

and can be written in terms of Sommerfeld integrals [1] - [4]. 
When the dipole and the observation point are both in the 
conducting medium close to the interface relative to their 
horizontal spacing and the frequency is "low", it is possible to 
interpret the propagation mechanism as a simple 
up-over-and-down process. Here, up-over-and-down means 
that the field propagates vertically up crossing the interface to 
the free space medium, then propagates horizontally along the 
interface, and finally propagates vertically down to the 
observation point. While this behavior is somewhat similar to 
the high frequency phenomenon observed by previous authors, 
it is also different because the fields in the free space region are 
quasi-static [5]. 

The formulas for the fields given by Sommerfeld integrals 
are, while exact, very complicated. In this paper, the integrals 
are simplified by using some reasonable assumptions given the 
range of parameters of interest. Then a set of simple but very 

This work was supported in part by the U S Office of Naval Research under 
Grant N0OOI4-O8-1170 Robert G Olsen is with Washington State University, 
Pullman. WA 99163 USA (bgolsen@wsu edu) Zhi Li is with Washington State 
University, Pullman, WA 99163 USA (e-mail: zli@eecs wsu edu). 

good approximations to the electric and magnetic fields are 
obtained. Based on these approximations, the 
up-over-and-down behavior is observed and discussed. The 
dipole source here is chosen to be a horizontal electric dipole 
(HED). The HED was selected because, using achievable 
dipole moments and commonly available receiving equipment, 
it can be shown that the HED fields are detectable at larger 
distances than those of other dipole types (i.e., vertical electric 
dipole (VED) or vertical (VMD) or horizontal (HMD) 
magnetic dipoles). To be more specified, it was assumed from 
this study that the maximum dipole moments for electric and 
magnetic dipoles are 50 A-m and 2500 A-m2 respectively and 
that the minimum detectable electric and magnetic fields are 
luV/m and 40uA/m respectively. Using these values, the 
horizontal electric field component that is perpendicular to the 
HED direction can be detected to a distance of 800 meters to the 
source. No other field component from any other dipole can be 
detected beyond about 200 meters. 

II. GEOMETRY 

The geometry of the model is shown in Fig. 1. A '/ oriented 
HED, which has a dipole moment of 1(0, is on the 'z' axis and 
buried '/»' meters below the surface in a conducting half-space 
(z < 0). The upper half space (i.e., z > 0) is assumed to be free 
space. 

Free space (#0) 
,,Z 

z = 0 
£0. 

ao. fh 

HED-» z = -h 

observation 
point 

Conducting medium (#1) 

Fig I   Geometry of the model 

*i.<*i. AD- 

AS noted in the figure, e, and a, are the permittivity and 
conductivity of the i"' half space (/ = 0 and l for free space and 
conductor, respectively), e, = cnc0, where c„ is the relative 
permittivity and e0 is the permittivity of free space. It is 
assumed that all materials have the permeability of free space 
Ho- The cylindrical coordinate system (p, tp, z) is used in this 



paper, where x = pcosy and y = ps'mtp. 

III.   SOMMERFELD INTEGRAL METHOD 

The Sommerfeld integral method will be very briefly 
introduced here. This method uses the integral representations 
of vector potentials to determine the E and H fields. To find the 
E and H fields due to the HED, two non-zero components of 
vector potential are required [6, 7], Here, the y and z 
components of the magnetic vector potential, Ay and A:, are 
chosen. 

A°y=Kx[fx{X)e-u«:AJMP)dl   (z>0)      (1) 

4 = Kx?—-+K, [f2{A)e^AJ0{Xp)dA 
R 

-jk,K 
(2) 

= Kt 
R 

+ *,/„,   ^°) 

Aa
:=K^[g,{A)e-^AJ0{Ap)dA   (z>0)    (3) 

dy * 

A\=K^[g2WAJ0{Ap)dA 
dy 

d 
(4) 

= *,— /„    (z<0) 
dy 

where Jo(Xp) is the Bessel function of the first kind of order zero 
and 

^ - G?H>e\ = <»2M0(£, ~ j—) 
0) 

u, = J(A2-k?) 
pjdl 

K, 
An 

£•'= et- j0,1(0 is the complex permittivity of the f half space 

(/' = 0 or 1), k, is the wave number where Re(A,)^0 and Re(w,) £0 
defines the proper Reimann sheet of the complex plane. The 
first term in (2) is the source term and /? = (p2 + z2)"2 is the 
distance from the dipole to the observation point. /,,; and /., 
represent the integral terms in (2) and (4), respectively. The 

source term  K, 
R 

in A\ is the vector potential of the 

dipole itself in an infinite homogeneous conducting medium. It 
can be written in integral form as 

-/*,« 

R 

^u;*e"''u*h)AJQ{Ap)dA      (z + h)>0 
(5) 

^u;'e"'t!*h)AJ0(Ap)dA      (z + h)<0 

Functions/1,/2, gi and g2 are arbitrary coefficient functions of 
the integration variable A. They are determined by matching the 
boundary conditions at 2 = 0. Given the vector potentials Ay 

and A. the E and H field can be obtained from: 

cops dx   dy     dz 

*y = 

E.=- 

J 
cope 

j 
cope 

dy   dy      dz 

dz   dy     dz 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

By matching boundary conditions, i.e., the tangential 
components of E and H fields are continuous cross the z = 0 
plane, the coefficient functions can be determined as 

// 
1 9A,    dA> 

dy     dz 
) 

"> = 
1 dA. 

p dx 

H.-- 
1 dAy 

p dx 

/; = 
2e~ 

/a- 

81=82 = 

(",-"oKU|' 
"r("o + "i) 

("o+"i)(fi"o + £>i) 

(12) 

(13) 

(14) 

The E and H fields in the conducting medium can be 
formulated by inserting (2), (4), (13) and (14) into (6) - (11). 

IV. SIMPLIFICATION OF THE INTEGRAL FOR A] 

The objective of this paper is to derive simple but acceptable 
approximations for the fields, which can be interpreted to 
provide good insight into the physical behavior of the wave 
propagating from source to receiver. One fundamental problem 
with evaluating the integrals shown in (1) to (4) is that, for large 
values ofp compared to h and r, the rapid oscillations of the 
Bessel function cause difficulties with the numerical 
integration. To remedy this problem, the contours of integration 
will be deformed in the complex plane so that the integrand 
decays exponentially for large values ofp. This transformation 
will also allow other simplifying approximations that will lead 
to a simple interpretation of the final result. 

A.   Deformation of The Integral Contour 

If (14) is inserted into the integral portion of (4) and the 
exponential term is removed from g2(A.), this integral becomes 

J,I = £ g&w^xjoww      (is) 
where 

2(g;-g;) gW = 
(u0 + u])(elu0+£,

oul) 
(16) 

Using the identities 



J0(x) = j[H<l\x)+Hl2){x)] 

H«)(-x) = -H^(x) 

where H0
l)(x) and //Q

2)
(X) are the Hankel functions of the 

first and second kind of order zero, respectively, the integral 
range in (15) can be expanded to (-00, +00). Since u0, U\, and 
g\(A) are all even functions ofX 

I* = T rg'2We-"u-h)AH{
0
2)(ApyU        (17) 

For the function^(A), there is one pole, Xp, and two branch 

points, ko and k\, in the complex X plane. The branch cuts are 
selected to be vertical lines from the branch points to negative 
infinity. Then the integral contour in (17) can be deformed into 
a contour CB which is illustrated with the dashed line in Fig. 2. 

TABLE 1 
LIST OF PARAMETERS AND THEIR VALUES / VALUE RANGES 

lm(A) 

0 

complex h plane 

k0 „ Re(A) 

Fig. 2. Deformation of the integral contour 

With this deformation and the fact that the Hankel function 
goes to zero exponentially along the infinite semi-circle, the 
integral along the real axis is converted to the residue of the 
pole, Rx,„ plus the integrations along C| —» C4, which 
encompass the two branch cuts. Thus 

'--H •Cj+C,+C4 

g'^e^^AH^Ap^A + R^ 

For |A|| » |Ao|, the integral along the branch cut of k\ is much 
smaller than that of /to and can be ignored. Note that, in the 
complex plane, the sign of u0 will change when crossing the 
branch cut associated with ko. Given the choice of branch cut, 
Re(MO)

<0 and Re(wo)>0 on the left and right sides, respectively, 
as shown in Fig. 2. In addition while the pole is in the proximity 
of the branch cut integration and is evident in the integrand, its 
contribution to the integral is negligible for the low frequencies 
considered here. Thus the pole residue can be ignored. 
Therefore 

'., * \ f. ,. g'2(A)e"i:-hUH0
2\Ap)dA       (18) 

It has been shown that (18) is valid when h, z « p, |Ar,| » \ko\ 
and \k,p\ » 1. 

The parameters and their values / value ranges used for the 
simulations are listed in Table I. The conductivity and 
permittivity of the lower medium represent typical lake water. 
They will also be used for all the following simulations in this 
paper. 

Free space Conducting medium' 

Relative permittivity, 
1 1 

Conductivity, <r(S/m) 0 0018 

Permeability,^ (H/m) 471*10-' 4TC*I0-7 

Dipole depth, /i(m) 20 
»(m) -10 

Horizontal distance, p 
(m) 

100- 10000 

Dipole moment, Idl 
(A-m) 

1 

Frequency,/(Hz) 100-3000 

B.    Simplification of The Integrand 

Since forpG \h\, | z |, the decay of the integrand along C, 

and C2 is controlled by the value of |Ap|, the integral can be 
truncated at |Ap|=10 and since we assume |-i/'l>>l 

I^CA
2
-*,

2
)"

2
*;*, d9) 

With (19) the exponential term in (18) can be extracted from 
the integral, which leads to 

-A(«-*) 
/., *• •[.     g2(A)AH0

2\Ap)dA        (20) 

Further since |/cc/3|«l (i.e., quasi-static forz>0), it is reasonable 
to assume that 

Wo = ±(;i2-*0
2)1/2*±/i (2i) 

because \ko\ is very small compared to \X\ over the largest 
portion of the integral. The approximations have been made 
here can be summarized as 

pD |H \z\ 
\koPV 1 

I*,P|-   ' 
Now, if the approximations (19), (21) and |£'||»|£'0| are 

made in (16) then 
2{s[) 2 

g\ W - 

lfgr\A) = 

(±A + jk,)(±£[A)    A2±jk,A 

2        ._,      2 
A' +jk]A 

and g;<->(il): 
A2-jktA 

, represent 

g'2(A) on the right side and left side of the branch cut of Ao, 

respectively, then the integral in (20) can be approximated as 

C * [.-^—H^(Ap)dA+[ -?—H,2\Ap)dA 
•* 1 A-)kx 

xi A + jk) 

(22) 
Using the asymptotic approximation 

H{2\Ap)~  \—i-e~jX" for large \Ap\ (i.e., most of the 
\nAp 

integral) 



V <>\m -)kp 

itp\*\ VX(A-y/r,) 
dk 

(23) 

I, 
-jkp 

-dX\ 
^^{A + JK) 

Letting X = ko -js, and changing the integral variable from A to s, 
/-, finally becomes 

2 pLe-A", je-"ds 

\lk0-js{k0-js-jk{) 
(24) 

f 
je~p'ds 

Jk0-js(k0-js + jK) 

Ignoring ko in both the denominators of the two integrands, 
which is reasonable because \kc\ is very small compared to \s\ 
over most of the integral, / ,| reduces to 

where  / I -fifc   and  /, = 
V5(J + ^|) * Vs (.?-&,) -f: 

(25) 

Therefore, the calculation of the complicated integral in (18) is 
reduced to the problem of evaluating the two relatively simple 
integrals in (25). I\ can be analytically evaluated as [8] 

/2Jr •  ** I D_\j2k^)e~ 

where  DAJlk^p] is  the  parabolic  cylinder  function  of 

argument yJ2ktp with 

D,(V2^) = ^[l-0(7^)]« 
v 

The second term in the bracket, (^(J^p), is the probability 

integral, which has the asymptotic approximation for \ktp\»\: 
-t,p 

\KP 
Using this result in lu results in 

*^/(KJP) 
Similarly for A 

Therefore, the integral in (25) is 

/>-4>/2/ 
- A)/> 

*iP 

The integral /.| then can be approximated as 

ttl»-2yl2je*{" 
-IKP 

KP 
(26) 

It can be shown that (26) is approximately a factor of 1.4 
larger than the exact result in (15) and that this difference is 
relatively stable over a wide range of parameters. Given this 

and the fact that an attempt to find a missing4l factor did not 
succeed, a further study of the approximation used to derive 
(26) was carried out. This study indicated that the dominant 
part of the error resulted from the replacement of the Hankel 
function by its asymptotic expansion. Given this, a correction 
term can be written as 

1 1 
/, c n 2e-""" £ 

s - kt    s + kt 

/*oP -2 
H?{-jps)e•-\ e'" 

V nps 

(27) 

ds 

Clearly most of the contribution to this integral comes from 
small values of ps. Thus the integral is (somewhat arbitrarily) 
truncated atps = B = 0.3 and the Hankel function is replaced by 
its small argument expansion. Given this, the correction term is 
written as 

>2e-^f 1                 1 

s - K    s + K 

X 
r     2,^-/1.781,* )-J- 71 \        2 )   \xps 

(28) 

ds 

where inside the integral e'k"p D e *" Q 1 and M= BI p. The 
integral in (28) can be analytically evaluated and the result is 

/c*/CI+/„+/C3 (29) 

where 

ICI =cln 
yki+B 

-/*oP 

nk, 

c = 2 i-UJ-J]mB^ 
n 

/el and In can be further simplified by expanding the natural 
logarithm function in Taylor series. 

/ o   M !na-2cl—e 

KP 
•  and   /a«8J   2    JM e-*»> 

nM k^p 

The correction term is then rewritten as 
JN_ 
KP 

c ~ / (30) 

where   N = M -2c--+l 
n nM 

is   a   constant.   It   is 

interesting to note that the functional dependence of (30) is 
identical to that of (26). Hence adding (30) to (26) results in 



'„* 
eJk,(z-h)     je-Jk«P 

[-4V2 + A7] (31) 
2 ktp 

which is identical to (26) except for the constant and that this 
constant is approximately 1/1.4 times the constant in (26) when 
M= 0.3 (i.e., N = \J2). Then (31) becomes 

Iz^-2jejk'iz-h)--  (32) 
KP 

When h, z «p, |A,|» |A<,| and \ktp\ » I. (32) approximates the 
exact integral very well. These conditions are roughly mapped 
to the following range of parameters: h, z < 100m, 100Hz </< 
3000Hz, 500m < p < 10000m and 0.001 S/m < a < 1 OOS/m. The 
error of (32) compared to the exact integral of Jt\ in (15) is less 
than 10% when 100Hz</< 3000Hz and 500m <p < 10000m. 
Fig. 3 shows the comparisons of magnitude and phase angle 
between the approximation in (32) and the exact integral in 
(15), with dipole frequency of 1000Hz. 
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Fig 3   Exact integral of/,/ vs approximation,/^ lOOOHz: (a) magnitude, (b) 
phase angle 

This analysis is helpful for understanding the error incurred 
during the derivation of the approximation for (15). Further, the 
correction term significantly reduces the error and can be easily 
calculated. It is shown in (32) and can be used to derive simple 

results for the E and H fields. Therefore, (32) will be used as the 
approximation of /rl. 

V.  SIMPLIFICATION OF THE INTEGRAL FOR A\. 

If the exponential term is pulled out from/2(ii>, lyl of (2) can 
be rewritten as 

iyi = [my{!~h)M0(AP)dA      03) 

where/;W=     ";~"°     • 
«i  ("o + "i) 

At this point, the strategy for simplifying Iy, is the same as 
that used for Iz\. First, the integral contour is expanded and 
deformed. The deformed contour is the same as that illustrated 
in Fig. 2 except that there is no pole in this case. 

Again, using the argument that the integral along the branch cut 
of ^o dominates the total integral, Iv, can be approximated as the 
sum of the integrals along C, and C2 

/„ "\ {.+C! m)e^-h)AH«\kp)dA      (34) 

The approximations given in (19) and (21) still work and 
ik T- A. given these the function reduces to f'(A)x——  

y-v      yV0*,±A) 
The change of signs in it is due to that u0 takes different signs 
on the left and right sides of the branch cut of k^. The integral in 
(34) becomes 

I, 
y*,+A 

+ i,i jkt + X 

A- 

AH•{Ap)dA 

AH{
0
z\Ap)dA 

Combining the two integrals on the right hand side results in 

'*- I-.Fn^***- 
Use the asymptotic approximation of the Hankel  function 

Hi2)(Xp) *   I——•e')Xp, and the variable change k = Ao -is, 
0 \/cAp 
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27 „lkt{i-h)-jk„p     f      (^0      js) I   ~ —2 / j^-e'"'*~ "'e 
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e-pxds 

Since |s|»| AO|, all Vs in the integrand can be ignored and 

~2 
/ , * 2  —e 

\np 
AU-h)   - lk„p 

h (35) 

where /, — I   —= T-e p'ds . From the table of integrals 
* S  - jfe, 

[8], /j can be analytically evaluated and further simplified as 



/s — 
3yfn     1 

Ak?   ft* 
and the integral Iyi is 

2k 
(36) 

/r 

Numerical calculations indicate that the approximation, (36), 
is approximately 5% larger in magnitude than the exact integral, 
(33). This error is relatively stable over the parameter range 
100Hz < f < 3000Hz and/? > 500m. Since the error is small for 
this case, it is not necessary to add a correction term to (36). 
Rather the factor of 3\fl/4 * 1.06 is simply set equal to 1 

resulting in: 

/   »     *   *<,-*>£ •A,p 
(37) 

*f pJ 

Again, when h, z « p, |A,| » |*o| and |A,/>| » 1, (37) 
approximates the exact integral (33) very well. Fig. 4 (a) and 
(b) give the comparisons of the magnitude and the phase angle, 
respectively, between the exact integral of (33) and its 
approximation (37). For this case, the magnitude error of (37) is 
even less than 6% when p > 500m. 
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Fig. 4   Exact integral of lvt vs approximation: (a) magnitude, (b) phase angle 

VI.   THE APPROXIMATIONS FOR E & H FIELD 

Given the approximations (32) and (37) for the integral 
portions of the vector potentials A\ and A\, respectively, the 

electromagnetic fields can be found. The approximate results 
for /j| and Iyi in (32) and (37), respectively, can be used in (2) 
and (4) and (6) ~ (11) to find the complete set of E and H fields 
in region #1. The components of total E and H fields can be 
written as the combination of the source terms and the reflected 
terms. 

E\ = El + El;   E[ = El+El;   E[ = E[^E\r; 

K = Hi + Hi;   H\ = W; + Hi; H\ = Hl
u + H\r. 

where the components with V in the subscript refer to the 
source terms of the fields and those with V in the subscript 
refer to the reflected fields. The source terms of the fields are 

El„ = Ar^-(k;R2 -3jk[R-3)-sm^>cos(/)    (38a) 
R' 

,-A* 
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The simplified reflected fields are 
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The results for E and H fields calculated by (39) are 
compared to the results from the exact Sommerfeld integral 
formulas. Fig. 5 shows the comparing result of the reflected 
field £' . For the reflected magnetic field, similar result can be 

obtained. 

500 10O0        1500        2000        2500        3000 
p(m) 

Fig 5. Exact reflected field Ey,, vs its approximation (39b), <P - x 

VII. DISCUSSION 

At any observation point P, (p, <p, z), in the lower conducting 
medium (z<0), the total field is the combination of the incident 
field directly from the dipole and the reflected field due to the 
interface, as shown in (38) and (39), respectively. In the far 
field of the conducting medium (\k\p\»h, z), the incident field 
decays much faster than the reflected field, which suggests that 
the propagation mechanism may involve some fields 
propagating in the low loss free space region. For the set of 
parameters considered the source term can be ignored beyond 
approximately 500m. 

In fact, the approximations (39a) ~ (39f) can be interpreted to 
have an up-over-and-down behavior, similar (but not identical) 
to the mechanism that has been studied in propagation of high 
frequency radio waves near a boundary [5]. The extremely low 
frequency (ELF) case is different because the fields in air are 
quasi-static. Here, some insight into this behavior will be given. 

Consider the Ex component, which is perpendicular to the 
HED's orientation and easier to be detected, at the observation 
point P (p. <p, z). As already discussed, the total field component 
can be approximated by the corresponding reflected field 
component in the far field. Thus, the total x component of the 
electric field can be approximated by (39a). In the far field of 
the conducting medium the second term in the bracket is small 
compared to the constant '3' and can be ignored. Given this, the 
right hand side of this equation can be rewritten as 

E   * 
VlJdl •e •/*!*        ,,-Aj/> 

2k, 
-sin0cos< ,A' (40) 

-, P 
For the up-over-and-down process, , as illustrated in Fig. 6, 

the wave induced by the dipole (HED) first propagates upward 
(Part I) and crosses the interface into the free space region. It is 
attenuated by a transmission coefficient Tup. Second, the wave 
spreads out horizontally (Part II) along the interface. Note that 
since the upper medium is free space and for the whole range of 

p (100 - 10000m) considered here, \kop\«\, the fields are 
quasi-static. Finally, at the position on the interface right above 
P, the wave crosses the interface again after attenuation by a 
transmission coefficient T<iown and propagates vertically down 
(Part III) to the observation point. 

X   TuP I- down 

0HED 
(z=-h) 

m 

P(p,<P.z) 

Fig. 6. Illustration of the path of the up-over-and-down process 

To identify (40) as an up-over-and-down process, it is 
important to show how the different terms have functional 
dependencies that are characteristic to different portions of the 
process. For example, it will be shown first that the 'up' term of 
(40) represents near field vertical propagation of magnetic field 
from an HED in a homogeneous medium and second, why this 
term would be expected to be a magnetic field rather than an 
electric field. 

To begin, it is helpful to understand how a quasi-static field 
in the air can be excited by the buried HED. This can be done 
by recognizing that the HED generates tangential electric and 
magnetic fields just above the air-water interface and that these 
fields can be treated as equivalent magnetic and electric current 
sources respectively in the air region [7]. If, further, the water is 
replaced by a perfect magnetic conductor (PMC), then the only 
remaining source is the electric field sources that originate in 
the incident magnetic field and are doubled in value by the 
imaging effect [7]. The use of image theory allows the 
calculations of fields to be done in a homogeneous air medium. 
These fields will be quasi-static since kffi « 1. The original 
case for HED buried in PMC is shown on the left side of Fig. 7. 
The tangential magnetic field generated by the HED just above 
the air-water interface only has an x component, H    r • The 

fields in the air region can be obtained by the equivalent electric 
surface current source, J (A/m), which is shown on the right 

side of Fig. 7. 

H mc 

\\\\\\\\ 
X    O O G 

^> 

HED® 

Fig 7. Equivalent surface current source for the HED buried in I'MC 

J  on the interface (z = 0) can be determined by 

J=2nxHl = 2auH. 
0 
inc.x (41) 

where 



s 

/C»T*i 
Idlhe'^' 

The primed variable r' represents the distance from the dipole 
to a point on the source surface and r' = J(p')1 + h1 • T ^ is 

the transmission coefficient for x component of the magnetic 
field. 

Integrating the source current over the entire surface gives 

a = f [J.p'dp'df (43) 
where Q  has the same dimension as a electric dipole moment 

(A-m). Therefore, it can be treated as an equivalent dipole 
moment to replace the original HED if p is much larger than the 
size of the source. This can be understood as follows. The HED 
is first replaced by the surface current J on the interface, then 

the distributed surface current is integrated into a new 
horizontal (y orientation) electric dipole just above the interface. 
It is equivalent to say that the original HED is shifted onto the 
air-water interface with a change in magnitude. The new 
equivalent HED magnitude can be determined by using (41) in 
the integration in (43). 

Q,=ayIdl-e-^T^ (44) 
The exponential term in (44) is obtained by assuming that k\r' 
varies little over the source area and 

e-
jk'r'x e'Ah. (45) 

As shown in (41), J  is dependent on the depth of the HED, 

h. It is proportional to \/h2 when near to the origin. Beyond 
several multiples of h from the origin, the current becomes very 
small and negligible. This makes the approximation in (45) 
reasonable because within several multiples of h the 
assumption that ktr' varies little is valid. Fig. 8 shows the 
magnitude distribution of J,. 

y(m) -40 x(m) 

Fig   8     Normalized magnitude distribution of the surface current (all the 
magnitudes are normalized by the maximum of the current). 

The magnitudes in the figure are normalized by the 
magnitude of the current at the origin (i.e., the maximum of the 
current). It can be shown that there is an effective area beyond 
which the effect of the source current can be ignored. The 

effective area is proportional to h2. Since the current decays 
vertically as 1/A2 and the effective area grows with fr, the 
integral over the surface will be independent of h. Thus the new 
dipole moment as shown in (44) is independent of h except for 
the exponential term. The process shown by (41) to (45) 
describes the 'up' (Part I in Fig. 6) part of the propagation. 

Given the new equivalent HED, the field in the air region can 
be determined by treating the new HED as a dipole in free space. 
The x component of the electric field in air on z - 0 plane is 

<.(/>.*<>) = • 

4iL 

•A<P 

-sin^cos^ 
-o        P 

where Q, is the new dipole moment and the subscript V stands 
for the field obtained by the up-over-and-down interpretation. 
Replacing Q, by (44) results in 

E°xJpJ,0) = - 
3jrkIdl-e-Ahe-jk"p\p IK 

4koP> 
sin^cos^(46) 

This is a field propagating, in air, over the air-water interface 
and the 'over' (Part II in Fig. 6) part of the propagation. 

The field shown in (46) travels from the interface down to 
the observation point P in the same way a plane wave does. 

This is valid because |Aop|«l. An exponential term, e'[!, 
indicating the propagating pattern of a plane wave in the '-z' 
direction is then added in the expression of the field at P to 
represent the 'down' (Part III in Fig. 6) part of the propagation. 
Finally, the expression of electric field component Ex at the 
observation point is 

(47) Vn0Idle-^T.e-^ 
4kn 

sin^cos^T( 
,A* 

down. Ex 
-a P 

which shows a complete process of the up-over-and-down 
propagation. The transmission coefficient Tdown,Ex in (47) is for 
the x component of E field when it travels down and crosses the 
interface. Since there is no reflected wave in the upper region 
and the tangential fields are continuous across the boundary, 

' down.Ex —  ' - 
Comparing (47) to (40), there  is a constant difference 

between the two expressions that 

KM*>') -2^T._„.-£;(A*Z) 
Kl\ 

up.Hx 

The reason why the difference appears is still not identified at 
this point. But if TupHx is selected as 

T  H   =2^ = ^ (48) 

then the simple model based on the physical interpretation of 
the propagation process matches the derived expression. 

Vlll. CONCLUSIONS 

A method to simplify the Sommerfeld integration is 
proposed in this paper. Using this method a non-integral, far 
field approximation of the E & H field due to a horizontal 
electric dipole buried in a conducting half space is obtained. 
Then it is tested that this approximation works very well when 
h, z « p, \k,\ »|Ao| and \k,p\» 1 and the error is less than 10%. 



This approximation reveals the up-over-and-down behavior of 
the electromagnetic wave when propagating in the conducting 
half space. Finally an interpretation based on the surface 
equivalence theorem to the up-over-and-down process of the 
wave propagation is introduced. 
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Dual Problem Space FDTD Simulation for 
Underwater ELF Applications 

Yang Xia, Dennis M. Sullivan, Zhi Li, and Robert Olsen 

Abstract—The finite-difference time-domain (FDTD) method is 
being used to simulate extremely low frequencies underwater. In 
order to expand the potential problem space without reducing the 
resolution at which the source is modeled, a near-to-far-field trans- 
formation method has been developed. 

Index Terms—Equivalent sources, finite-difference time-domain 
(FDTD) methods. 

I. INTRODUCTION 

Fig. 1. Two problem spaces arc used in the FDTD simulation, (a) The radiating 
source is modeled in the near-field, and the tangential H-field on the three-di- 
mensional surface are calculated, (b) Using the tangential H-fields. a three-di- 
mensional source is impressed in the far-field, (a) Near-field problem space, 
(b) Far-field problem space. 

UNDERWATER mines pose the greatest threat to surface 
ships [1], These mines are no longer restricted to direct 

contact, but can detect the electromagnetic (EM) signature of a 
ship and launch a torpedo from hundreds of meters away [2], 
The EM radiation of a surface ship tends to be in the extremely 
low frequency (ELF) range and can propagate underwater over 
long distances. For this reason, simulation is being used to study 
underwater EM radiation. 

One of the most common methods used in EM simulation is 
the finite-difference time-domain (FDTD) method [3], [4]. It 
has recently been shown to be effective at ELF frequencies [5]. 
However, because it employs a uniform grid, one is always left 
with the problem of choosing a cell size that is small enough 
to accurately model the radiating source, but large enough 
to model an extensive far field. In order to overcome this, a 
three-dimensional near-to-far-field transformation has been 
developed. This method involves two separate FDTD simula- 
tions. The simulation space in the near-field models the source, 
whether it is a ship's hull or an antenna, with relatively high 
resolution; a second simulation space models the far-field with 
larger cells in order to model propagation hundreds of meters 
from the source. The transition between near- and far-field is 
accomplished by applying the equivalence principle [6]. 

This letter is arranged as follows. The use of the equivalence 
principle to make the near-to-far-field transition is described in 
Section II. In Section III, we verify the accuracy of the method 
by comparison with an analytic method based on Sommerfeld's 
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half-space method [7J—[9]. In Section IV, a more realistic ex- 
ample of the simulation of a loop antenna in a lake bed is pre- 
sented. Section V summarizes the letter. 

II. THE NEAR-TO-FAR-FIELD TRANSFORMATION 

Two three-dimensional FDTD problem spaces are utilized 
to implement the near-to-far-field transformation (Fig. 1). A 
problem space with a relatively small cell size (1 m3) is used 
to model the source [Fig. 1(a)]. Another prohlem space with 
larger cells [13 m3) is used to model the far-field [Fig. 1(b)]. 
The ratio of 13 to I between far- and near-field cell sizes re- 
sulted in near- and far-field problem spaces of about the same 
size, which seemed to be the optimum case. Each problem space 
is surrounded by a perfectly matched layer (PML) [ 10]. (A new 
PML for ELF frequencies and lossy media has been developed 
and will be the subject of a future paper.) Each problem space 
contains a three-dimensional transfer surface where the equiva- 
lence principle [6] is implemented. On a surface, the source is 
uniquely specified by either the tangential E- or H-fields. We 
use the H-fields. The tangential fields calculated on the transfer 
surface in the near-field are impressed on the transfer surface in 
the far-field to form the far-field source. Since the far-field cells 
are 13 times larger than the new field cells, only one value out 
of 13 in the near-field is needed in the far-field. This method is 
effective even when the medium is inhomogeneous, as will be 
demonstrated in the next section. There is no coupling from the 
far-field back to the near-field. This is illustrated in Fig. 2. 

III. VERIFICATION OF THE ACCURACY 

In this section, the results of the near-to-far-field transforma- 
tion are compared to analytic results calculated using Sommer- 
feld's half-space (SHS) problem. SHS problem calculates the 
resulting fields from an oscillating dipole near a plane interface 
separating two homogeneous half-space regions, as illustrated 
in Fig. 3. This method is well described in the literature [7]-[9] 

I536-I225/$25.00 © 2009 IEEE 
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Fig. 2.   (a) Near-field mesh plot, (b) Far-field mesh plot. 
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Fig. 3. Diagram of Ihe three-dimensional far-field used in the comparison be- 
tween the FDTD near-to-far-field transformation and the SHS method. Thejt-di- 
rection (not shown) is 1500 m. The source is a magnetic dipole 1 m below the 
air-water interface and was generated in the near-field (not shown). 

TABLE I 
PROPERTIES OF THE MATERIALS USED IN THE SIMULATIONS DESCRIBED 

IN THIS LETTER [5] 

Material 

Air 
Lake water 

Mud 

1 
80 
4(1 

a {Sim) 
o 

0.018 
0.002 

and will not be repeated here. In Fig. 3, the upper layer is air, 
the middle layer is water, and the lower level is mud. The water 
layer in the middle is 300 m thick. The dielectric properties for 
water, mud, and air are given in Table I. The dipole is formed 
by specifiying the Hz -field in one 1-m3 cell in the near-field 
problem space. The monitor lines represent the places where 
comparisons between the methods will be made. Note that the 
FDTD simulations are all three-dimensional. 

Comparisons at 200 and 1000 m are shown in Fig. 4(a) and 
(b), respectively. The simulation required 30 000 time-steps. 
The amplitudes in each figure are calculated by the method of 
two equations, two unknowns [11]. The horizontal coordinate is 
the distance to the air/water surface, and the vertical coordinate 
is the magnitude of the field. The discrete symbols represent the 
FDTD calculations, and the solid lines represent the calculations 
by SHS method. Clearly, the results of the comparisons are very 
good in all cases. 
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Fig. 4. Comparisons of the FDTD simulations (the symbols) and the SHS cal- 
culations (the lines) for the cell size ratio of 13. The source is near the upper 
surface of the water layer. The comparisons are made at (a) 200 and (b) 1000 m. 
Z represents the distance from the surface, (a) Comparison at 200 m. (b) Com- 
parison at 1000 m. 

IV. EXAMPLE 

This section illustrates the use of FDTD with a near-field, 
far-field transformation in simulating a more realistic case. One 
of the goals of the simulation is to verify the accuracy of the 
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Fig. 5. The simulation of a 4 m x 4 m current loop in FDTD as generated in 
the near-field, (a) Setting the group of cells at the respective E-field points in the 
grid simulates a metal loop, (b) Current is simulated by setting an Ev-field to a 
value. This couples to the surrounding H-fields. 

modeling with measured data that can be made in a lake. Be- 
cause the lake bed is not flat, analytical approaches cannot be 
used to solve the problem. 

The antennas that will be used in the transmission are 
4 m x 4 m rectangular current loops. Fig. 5(a) illustrates how 
this is simulated in the .XY-plane in the FDTD space. Metal can 
be simulated by ensuring that an E-field is zero at a particular 
point in the space. Therefore, using cells that are 1 m3, the 
metal loop antenna is simulated at the corresponding Ex or Ey 

positions, as shown in Fig. 5(a). Since the radius of the wire 
of the antennas is considerably less than the 1-m cell size, the 
thin rod approximation [12] is used to model the wire at these 
positions 

In FDTD, a current cannot be simulated directly, but it can 
be simulated indirectly by using Ampere's circuit law [13] and 
specifying the surrounding H-fields 

J   Mo 
,/l. .1) 

By impressing a hard source on one of the Ey-fields, a value is 
induced on the surrounding H-fields, as shown in Fig. 5(b). This 
results in a current via (1). 

A model of the lake bed is created for the far-field domain 
(Fig. 6). The cells are 13 m3. The shape of the lower surface of 
(he water layer shows a complex geometry structure similar to 
a real lake bed. 

400 m 

J-*Y • 200 m 
_^ 1000 m 

Fig. 6. The lake bed that is simulated in the far-field. The cells in the far-field 
are 13 m3. The near-field (the enclosed dashed area) contains a current loop 
located I m below the surface of the water. 
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Fig. 7.   Results of the simulation illustrated in Fig. 6. Z represents the distance 
from the surface, (a) The results at 200 m. (b) The results at KXX) m. 

Fig. 7(a) and (b) shows the results of the near-to-far-field sim- 
ulation using the current loop source in the near-field and the 
lake bed in the far-field at 200 and 1000 m from the source and 
at three different frequencies, 10, 100, and 1000 Hz. These sim- 
ulations were done on an HP DL140 GE Quad Core and re- 
quired about 6 h. Both the near- and far-field problem spaces 
were 120 cells cubed. 

V. SUMMARY 

A near-to-far-field transformation utilizing the equivalence 
principle in conjunction with the FDTD method has been pre- 
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sented. The accuracy of this method was confirmed by compar- 
isons with analytic results based on Sommerfeld's half-space 
method. An example illustrating the flexibility of the method in 
simulating a realistic problem has also been presented. 

The method presented in this letter substantially extends the 
range of FDTD simulations at ELF frequencies for the purpose 
of determining the vulnerability of surface ships to electromag- 
netically detonated mines. Accuracy at 1 km has already been 
confirmed, and it is hoped that the development of a new under- 
water PML will extend this range to 3 km. 
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