

Actuation and Response in Microsystems

Prof. Mark Rodwell

Electrical and Computer Engineering Department and Director of Nanofabrication Laboratory, University of California, Santa Barbara

The views and opinions presented by the invited speakers are their own and should not be interpreted as representing the official views of DARPA or DoD Approved For Public Release, Distribution Unlimited

Report Documentation Page			Form Approved OMB No. 0704-0188		
Public reporting burden for the co maintaining the data needed, and including suggestions for reducing VA 22202-4302. Respondents sho does not display a currently valid	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	o average 1 hour per response, incl ion of information. Send comment arters Services, Directorate for Inf ny other provision of law, no perso	luding the time for reviewing insi ts regarding this burden estimate formation Operations and Reports on shall be subject to a penalty for	tructions, searching exi- or any other aspect of t s, 1215 Jefferson Davis failing to comply with	sting data sources, gathering and his collection of information, Highway, Suite 1204, Arlington a collection of information if it
1. REPORT DATE MAR 2000		2. REPORT TYPE		3. DATES COVE	ERED D to 00_00_2000
				00-00-200	
4. TITLE AND SUBTITLE THz and nm Transistors for 1-1000 GHz Electronics			5a. CONTRACT NUMBER		
				5b. GRANT NUN	MBER
				5c. PROGRAM I	ELEMENT NUMBER
6. AUTHOR(S)				5d. PROJECT N	UMBER
				5e. TASK NUMBER	
				5f. WORK UNIT	NUMBER
7. PERFORMING ORGAN University of Calif Engineering Depa	ization name(s) and at fornia, Santa Barbar rtment,Santa Barba	DRESS(ES) ra,Electrical and Co ra,CA,93106	omputer	8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITC	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	IONITOR'S ACRONYM(S)
				11. SPONSOR/M NUMBER(S)	IONITOR'S REPORT
12. DISTRIBUTION/AVAI Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited			
13. SUPPLEMENTARY NO MTO (DARPA Mi Government or Fe	otes crosystems Technol deral Rights License	ogy Office) Sympose	sium, 2009, Mar 2	-5, San Jose,	CA. U.S.
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF	18. NUMBER	19a. NAME OF
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT Same as Report (SAR)	OF PAGES 27	RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

THz and nm Transistors for 1-1000 GHz Electronics

Mark Rodwell University of California, Santa Barbara

It's a great time to be working on electronics !

Things to work on:

InP transistors: extend to 3-4 THz→ GHz & Iow-THz ICs GaN HEMTs: powerful transmitters from 1-300 GHz Si MOSFETs: scale them past 16 nm III-V MOSFETs: help keep VLSI scaling (maybe) VLSI transistors: subvert Boltzmann→ solve power crisis mm-wave VLSI: massively complex ICs to re-invent radio

Why THz Transistors ?

How to Make THz Transistors

reduce thicknesses 2:1 Improve contacts 4:1 reduce width 4:1, keep constant length increase current density 4:1

Bipolar Transistor Scaling Laws

Changes required to double transistor bandwidth:

(emitter length L_E)

parameter	change
collector depletion layer thickness	decrease 2:1
base thickness	decrease 1.414:1
emitter junction width	decrease 4:1
collector junction width	decrease 4:1
emitter contact resistance	decrease 4:1
current density	increase 4:1
base contact resistivity	decrease 4:1

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate. Approved For Public Release, Distribution Unlimited

FET Scaling Laws

(gate width W_G)

Changes required to double transistor bandwidth:

parameter	change
gate length	decrease 2:1
gate dielectric capacitance density	increase 2:1
gate dielectric equivalent thickness	decrease 2:1
channel electron density	increase 2:1
source & drain contact resistance	decrease 4:1
current density (mA/μm)	increase 2:1

Linewidths scale as the inverse of bandwidth because fringing capacitance does not scale.

THz & nm Transistors: it's all about the interfaces

Metal-semiconductor interfaces (Ohmic contacts): very low resistivity

Dielectric-semiconductor interfaces (Gate dielectrics): very high capacitance density

Transistor & IC thermal resistivity.

THz Bipolar Transistors

InP Bipolar Transistor Scaling Roadmap

InP DHBTs: September 2008

popular metrics : f_{τ} or f_{\max} alone $\sqrt{f_{\tau} f_{\text{max}}}$ $(1/f_{\tau} + 1/f_{\text{max}})^{-1}$

much better metrics : power amplifiers: PAE, associated gain, $mW/\mu m$ low noise amplifiers: F_{min} , associated gain, digital: f_{clock} , hence $(C_{cb}\Delta V/I_c),$ $(R_{ex}I_c/\Delta V),$ $(R_{bb}I_c/\Delta V),$ $(\tau_b + \tau_c)$

Ohmic Contacts Good Enough for 3 THz Transistors

64 nm (2.0 THz) HBT needs ~ 2 Ω - μ m² contact resistivities 32 nm (2.8 THz) HBT needs ~ 1 Ω - μ m²

Contact	ts to N-InGaAs*:		
Мо	MBE in-situ	0.3 (+/- 0.3) Ω - μm²	
TiW	ex-situ	~1 to 2 Ω - μm^2	

Contact:	s to P-InGaAs:		
Мо	MBE in-situ	below 2.5 Ω - μm^2	
<i>Pd/</i>	ex-situ	0.36 (+/- 0.3) <u>Ω</u> - μm²	

*measured emitter resistance remains higher than that of contacts. Approved For Public Release, Distribution Unlimited

THz HBTs: MOSFET-like Processes for 64, 32 nm Nodes

nm MOSFETs

FET Scaling Laws

(gate width W_G)

Changes required to double transistor bandwidth:

parameter	change
gate length	decrease 2:1
gate dielectric capacitance density	increase 2:1
gate dielectric equivalent thickness	decrease 2:1
channel electron density	increase 2:1
source & drain contact resistance	decrease 4:1
current density (mA/μm)	increase 2:1

What do we do if gate dielectric cannot be further scaled ?

III-V MOSFETs for VLSI

<u>Why do it ?</u> *low electron effective mass→ higher electron velocity more current, less charge at a given insulator thickness & gate length very low access resistance*

<u>What are the problems ?</u> Iow electron effective mass→ constraints on scaling ! must grow high-K on InGaAs, must grow InGaAs on Si

<u>Synopsis</u> III-V MOSFET might win... <u>if</u> Si gate dielectric cannot scale below 0.5 nm

THz Field-Effect Transistors

(THz HEMTs)

FET Scaling Laws

(gate width W_G)

Changes required to double transistor bandwidth:

parameter	change
gate length	decrease 2:1
gate dielectric capacitance density	increase 2:1
gate dielectric equivalent thickness	decrease 2:1
channel electron density	increase 2:1
source & drain contact resistance	decrease 4:1
current density (mA/µm)	increase 2:1

InGaAs HEMTs are best for mm-wave low-noise receivers... ...but there are difficulties in improving them further.

Why HEMTs are Hard to Improve

III-V MOSFETs do not face these scaling challenges

InGaAs MOSFETs as THz Low-Noise Amplifiers

<u>Why ?</u> Much lower access resistance in S/D regions Higher gate barrier→ higher feasible electron density in channel Higher gate barrier→ gate dielectric can be made thinner

<u>Estimated Performance (?)</u> 2 THz cutoff frequencies at 32 nm gate length

VSLI for mm-wave & sub-mm-wave systems

Billions of 700-GHz Transistors \rightarrow Imaging & Arrays

What can you do with a few billion 700-GHz transistors?

Build Transmitter / Receiver Arrays

100's or 1000's of transmitters or receivers ...on < 1 cm² IC area ...operating at 100-500 GHz.

Billions of 700-GHz Transistors \rightarrow Imaging & Arrays

Arrays for (sub)-mm-wave imaging :

resovable pixels = # array elements

Arrays for Spatial-Division-Multiplexing Networks:

independen t beams = # array elements

 $4 \cdot array area$ wavelength

Device scaling (Moore's Law) is not yet over.

Challenges in scaling: contacts, dielectrics, heat

Multi-THz transistors: for systems at very high frequencies for better performance at moderate frequencies

Vast #s of THz transistors complex systems new applications.... imaging, radio, and more

