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Abstract
Cancer stem–like cells have been identified in both primary tumors and in cell lines and seem to have a high degree
of inherent resistance to traditional chemotherapeutic agents. Relapsed cancers including neuroblastoma are gen-
erally chemotherapy-resistant and carry a very poor prognosis. We investigated the side populations of three pairs of
neuroblastoma cell lines derived from single patients at the time of their initial presentation and then at relapse after
multimodality therapy. We found that the size of the side populations in the relapsed cell lines was significantly
increased compared with its paired pretreatment cell line. In addition, these side population cells showed increased
proliferation and were significantly more efficient at forming colonies in soft agar than their prerelapse pair. Gene
expression analysis of the stem cell genes NANOG and POU5F1 (Oct3/4) showed increased expression in the un-
sorted relapsed cell lines compared with pretreatment lines as well as in the side populations of the relapsed versus
prerelapse cell line pairs. The increased size, proliferative ability, and colony-forming efficiency of the side popula-
tions of the postrelapse cell lines demonstrated in this study suggest that a population of stemlike cells is not
being efficiently targeted by conventional therapy and implies that strategies to specifically target the stem cell frac-
tion of neuroblastomas are needed to improve outcomes in this devastating childhood disease.
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Introduction
Neuroblastoma is the most common extracranial solid tumor of child-
hood, accounting for 15% of pediatric cancer fatalities annually. Despite
advances in pediatric cancer therapy, cure rates for high-risk neuro-
blastoma continue to be poor, with a less than 40% long-term survival
rate despite intensive treatment including chemoradiotherapy and bone
marrow transplantation. On recurrence, neuroblastoma carries a high
level of therapy resistance and an extremely poor prognosis with an
almost universally fatal outcome [1–3].

Most cancers have been shown to contain a subpopulation of cells
that exhibit stem cell–like properties. This observation has led to the
formulation of the cancer stem cell hypothesis that states that tumors
contain a small population of cells that have the capacity to self-renew
and to differentiate, thus giving rise to the heterogeneous tumor pheno-
type. Although evidence suggests the existence of cancer stem cells,
the hypothesis remains controversial, particularly with regard to solid
tumors [4–6]. The significance of the cancer stem cell hypothesis is that
reports have shown that the putative cancer stem cells have increased

chemoresistance and are likely responsible for clinical relapse [7]. Thus,
eradicating tumors may be difficult because conventional treatments
target the bulk of the tumor cells, leaving behind the cancer stem–like
cells, which, like their normal counterparts, maintain the tumor tissue.
According to this hypothesis, identifying and eliminating cancer stem
cells will be necessary to develop more effective cancer treatments.

The cancer stem cell hypothesis was originally proposed and has been
most thoroughly studied in hematological malignancies [8,9]. However,

Address all correspondence to: Stephen S. Roberts, MD, Department of Pediatrics, Uni-
formed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD
20814-4799. E-mail: sroberts@usuhs.mil
1Funding was through the Department of Pediatrics at the Uniformed Services University
of the Health Sciences in Bethesda, MD, including a fellowship training research grant to
Dr Thomas Newton.
Received 6 October 2009; Revised 1 February 2010; Accepted 8 February 2010

Copyright © 2010 Neoplasia Press, Inc. All rights reserved 1944-7124/10/$25.00
DOI 10.1593/tlo.09301

www.transonc.com

Trans la t iona l Onco logy Volume 3 Number 4 August 2010 pp. 246–251 246



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
01 FEB 2010 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2010 to 00-00-2010  

4. TITLE AND SUBTITLE 
Comparison of the Side Populations in Pretreatment and Postrelapse
Neuroblastoma Cell Lines 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Uniformed Services University of the Health Sciences,Department of
Pediatrics,4301 Jones Bridge Rd,Bethesda,MD,20814-4799 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Cancer stem?like cells have been identified in both primary tumors and in cell lines and seem to have a
high degree of inherent resistance to traditional chemotherapeutic agents. Relapsed cancers including
neuroblastoma are generally chemotherapy-resistant and carry a very poor prognosis. We investigated the
side populations of three pairs of neuroblastoma cell lines derived from single patients at the time of their
initial presentation and then at relapse after multimodality therapy. We found that the size of the side
populations in the relapsed cell lines was significantly increased compared with its paired pretreatment cell
line. In addition, these side population cells showed increased proliferation and were significantly more
efficient at forming colonies in soft agar than their prerelapse pair. Gene expression analysis of the stem
cell genes NANOG and POU5F1 (Oct3/4) showed increased expression in the unsorted relapsed cell lines
compared with pretreatment lines as well as in the side populations of the relapsed versus prerelapse cell
line pairs. The increased size, proliferative ability, and colony-forming efficiency of the side populations of
the postrelapse cell lines demonstrated in this study suggest that a population of stemlike cells is not being
efficiently targeted by conventional therapy and implies that strategies to specifically target the stem cell
fraction of neuroblastomas are needed to improve outcomes in this devastating childhood disease. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

6 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



mounting evidence supports the existence of cancer stem–like cells in
solid tumors as well [10–19].
Identification of cancer stem–like cells has been performed using

specific differentially expressed markers and side population (SP) analy-
sis. In acutemyelogenous leukemia (AML), CD34+ andCD38− cells are
highly enriched for tumor-initiating potential [8,9]. CD133, the defin-
ingmember of the novel pentaspan transmembrane glycoprotein family,
has proven to be useful in the identification of cancer stem cells in brain
and colon cancers [13,14,16,17], and CD44high/CD24low/Lin− cells
have been shown to isolate stemlike cells from human breast cancers
[11]. Because selectively expressed markers have not been identified
for many cancers, researchers have also used the differential ability of
certain cells to exclude DNA binding dyes such as Hoechst 33342
and DyeCycle Violet to identify subpopulations enriched for cells with
stemlike characteristics. Cells with the capacity to efflux these dyes were
first identified in mouse bone marrow and were called SP cells because
they fell to the “side” of the positively stained cells in flow cytometry
analysis plots [20]. Since this original discovery, SP cells have been iden-
tified in a wide variety of normal tissues [21–24], tumors, and cell lines
[7,25–32]. The mechanism regulating this efflux seems to be conferred,
in part, through the expression of ATP binding cassette protein (ABC)
transporters [33].
In neuroblastoma, cancer stem–like cells have been found in both

primary tumor specimens and established cell lines and comprise 4%
to 37% of the total population [7]. Previous studies measuring the ex-
pression of CD133 and CD117 have suggested a two-fold difference
in the number of cancer stem cells in metastatic versus localized tumors
(33% vs 14%) and in progressive tumors versus tumors in which remis-
sion was achieved (35% vs 18%) [34]. Additional studies have shown
that many neuroblastoma cells express numerous different primitive
neural markers including CD34, ABCG2, and nestin [7,35–37]. Re-
sults of SP analysis have been complex, with one report showing that
65% of primary tumors contain a stemlike SP, whereas another failed
to identify a SP in neuroblastoma cells isolated from bone marrow
metastases [7,15], suggesting that the significance of the SP in neuro-
blastoma remains unclear and warrants further evaluation.
Given the cancer stem cell hypothesis, it would seem logical that the

proportion of SP cells within a particular cancer cell line would corre-
late with its tumorigenicity; however, to date, there have been no reports
demonstrating this in cell lines. Here, we show for the first time that
neuroblastoma cell lines have a stable SP and that the SP in postrelapse
cell lines is both increased in size and shows increased tumor-initiating
capacity as measured by colony-forming assay compared with its pre-
treatment pair. To the best of our knowledge, this report represents
the first published data comparing the SPs of cell lines derived from pre-
treatment and relapsed tumors from the same patient.

Materials and Methods

Cell Lines
We used three paired neuroblastoma cell lines for in vitro investiga-

tions. These were a gift from the laboratory of Dr C. Patrick Reynolds
from the Children’s Hospital of Los Angeles. These include SMS-KCN
and SMS-KCNR, SMS-KAN and SMS-KANR, and CHLA-122 and
CHLA-136. Each pair of cell lines was derived from the same patient
at the time of initial surgery and again at the time of relapse after
chemotherapy. All cell lines were derived from original tumors and have
not been otherwise modified. Cell lines were cultured in either RPMI
1640 or Iscove medium supplemented with fetal bovine serum as

previously described [38]. All three pairs were used for SP percentage
analysis; SMS-KCN and SMS-KCNR and CHLA-122 and CHLA-136
were used for all subsequent experiments.

Flow Cytometry—Analysis
Hoechst 33342 (Invitrogen, Carlsbad, CA) was added to the solu-

tion of cells at 5 μg per 5 × 106 cells as previously described [39], and
the SP was identified on a BD LSRII flow cytometer (BD Biosciences,
San Jose, CA). The location of the SP on the flow histogram was con-
firmed using the ABCG2 inhibitor fumitremorgin C (Sigma, St Louis,
MO) during initial analyses.

Flow Cytometry—Cell Sorting
Vybrant DyeCycle Violet stain (Invitrogen) was added to the cell sus-

pension at 10 μM per 5 × 106 cells as previously described [39]. After
identification of the SP, the SP and non-SP cells were sorted using the BD
FACS Aria Flow Cytometer (BD Biosciences). The SP cells and non-SP
cells were then used for gene expression analysis as previously described
and for in vitro growth, colony-forming, and cell proliferation assays.

In Vitro Growth Assay
Equal numbers (2.5 × 105) of sorted SP and non-SP cells were placed

in growth medium and were allowed to proliferate under the same con-
ditions. Samples were counted using the Beckman Coulter Vi-Cell XR
Cell Viability Analyzer (Beckman Coulter, Inc, Brea, CA) every third to
fifth day to estimate the cell population. After 4 weeks, cell subpopula-
tions were counted and reanalyzed by flow cytometry.

Colony-Forming Assay
Equal numbers (2000) of sorted cells were suspended in growth me-

dium with 3% agarose and were then plated in six-well plates. After
7 days, the number of colonies per 4× high-power field was counted
in 20 random fields to determine the mean colony-forming units of
each sample.

Real-time Reverse Transcription–Polymerase Chain Reaction
We measured gene expression levels of six genes: ABC transporter

genes ABCA3, ABCB1, ABCC1, and ABCG2 and the stem cell pluri-
potency transcription factors NANOG and POU5F1. 18S Ribosomal
RNA was used as an endogenous control. Total RNA was extracted
using the TRIzol Reagent (Molecular Research Center, Inc, Cincinnati,
OH).Gene expressionwasmeasured using a one-step real-time polymer-
ase chain reaction on the ABI 7500 Real-Time PCR System (Applied
Biosystems, Inc, Carlsbad, CA). Relative differences between samples
were determined using the ΔΔC t method according to the manufac-
turer’s instructions.

Statistical Analysis
Comparison between two means was performed using the Student’s

t test. P < .05 was considered statistically significant. All statistical
analyses were performed using Prism 5.0 and/or InStat 3.1a software
(GraphPad Software, Inc, La Jolla, CA).

Results

Postrelapse Neuroblastoma Cell Lines Contain a Stably
Increased SP

We performed SP analysis on the three pairs of case-controlled pre-
relapse and postrelapse neuroblastoma cell lines. In each case, we found
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that the postrelapse cell lines maintained a significantly increased SP
compared with its paired pretreatment cell line: SMS-KANR 13.5% ±
1.0% versus SMS-KAN 9.6% ± 0.7% (P < .01), SMS-KCNR 11.1% ±
1.5% versus SMS-KCN 6.7% ± 0.9% (P < .01), and CHLA-136
3.2% ± 0.8% versus CHLA-122 2.0% ± 0.4% (P < .01; Figure 1). For

several months and multiple repeated experiments, the percentage of
cells in the SP remained relatively stable for each cell line. This consis-
tency was found both during analysis on the BD LSRII and during
sorting on the BD FACS Aria Flow Cytometer. These results were also
consistent regardless of whether cells were cultured in serum-free me-
dium or in medium supplemented with fetal bovine serum.

SP Cells Show Increased Proliferation Rate and
Colony-Forming Ability

To determine whether the non-SP and SP cells show inherent differ-
ences in growth potential, we regrew cells after sorting. We found that
only the SP cells could both proliferate and recapitulate the original cell
line. During a 4-week period, the non-SP cells showed minimal expan-
sion. In contrast, during the same 4-week period, the total number
of the SP cells increased in all cell lines, ranging from a doubling to
a 19-fold increase (Figure 2). Not only did the SP cells proliferate
but also, after several weeks, they morphologically resembled the origi-
nal cell line from which they were derived. These cells were reanalyzed
to determine the percentage of SP versus non-SP cells after 4 weeks.
The non-SP cells remained without any evidence of a SP in all cases,
whereas the SP cells differentiated to include both SP and non-SP popu-
lations. The SMS-KCN SP differentiated to 2% SP and 98% non-SP,
whereas the SMS-KCNR SP had 11% SP and 89% non-SP, which
was similar to the original cell line composition (data not shown).

We also investigated the ability of the sorted SP and non-SP cells to
form colonies in soft agar. After 1 week, the sorted SP cells from the cell

Figure 1. Percentage of SP cells fromprerelapse andpostrelapse cell
line pairs showing a consistent increase in the relapsed cell line in
every case. White bars represent the prerelapse cell lines, whereas
the black bars are the postrelapse lines. Graph portrays means of
multiple experiments (three ormore for each cell line) performed over
time. *P < .01 for all three pairs.

Figure 2. Graphs showing growth plots of SP cells compared with the non-SP cells after sorting. In each case, the SP cells were able to
proliferate, whereas the non-SP cells did not significantly proliferate in vitro for up to 5 weeks after sorting. Results shown are the means
of at least three experiments. (A) SMS-KCN. (B) SMS-KCNR. (C) CHLA-122. (D) CHLA-136.
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lines all showed statistically significantly (all P < .01) increased colony-
forming ability compared with the non-SP cells from the same line. This
ranged from a 5.4-fold to an 8.9-fold increase in colony-forming ability
(Figure 3). This is consistent with the previously reported fourfold to
fivefold difference between I-type (intermediate cell felt to represent a
cancer-initiating cell) and N-type (neuronal type cell) neuroblastoma
cells [18].

Proliferation and Colony Formation Is Increased in Postrelapse
Cell Line SP Cells
The SP cells from the relapsed cell lines SMS-KCNR and CHLA-136

both showed increased proliferation rates and increased colony-forming
ability compared with the SP cells from their paired prerelapse cell lines
(Figure 4, A and B). The postrelapse SP cells from both postrelapse cell
lines showed approximately a twofold increase in proliferation compared
with the prerelapse SP cells (P < .01). The postrelapse SP cells showed
a 3.1-fold (SMS-KCNR) and 4.3-fold (CHLA-136) increase in colony-
forming ability compared with the SP cells from their paired prerelapse
cell line (P < .01; Figure 4C).

Increased Expression of Stem Cell–Related Genes in Postrelapse
Cell Lines
We sought to determine whether the postrelapse cell lines had an in-

creased expression of stem cell–related genes, as might be expected given

the higher proportion of SP cells found in postrelapse cell lines and
the currently prevalent hypothesis that cancer stem cells may be respon-
sible for cancer relapse. We measured the expression of two critical
stem cell regulatory genes, NANOG and POU5F1 (previously known
asOct3/4 ), in our three cell line pairs. In each case, we found significantly
increased gene expression levels in the postrelapse line compared with its
paired prerelapse line. This expression difference was 1.6- to 2.9-fold for
NANOG and nearly 2-fold for POU5F1 (Figure 5, A and C). We also
examined the expression in the SP cells comparedwith that in the non-SP
cells and found that these genes were consistently increased in the SP cells
compared with the non-SP fraction. Postrelapse SP cells showed a 1.5- to
8-fold increased expression of both genes compared with the prerelapse
SP cells from their paired cell line (Figure 5, B and D).

Increased Expression of ABCG2 Transporter Gene in SP Cells
Wemeasured the gene expression levels of four ABC transporter genes

including ABCA3, ABCB1, ABCC1, and ABCG2. As one might expect,
because the presence of a SP requires expression of the ABCG2 trans-
porter, we found an up to 10-fold increased ABCG2 expression in the
SP cells compared with the non-SP cells. However, no other consistent
patterns of ABC transporter gene expression were seen between the cell
lines (data not shown).

Discussion
Relapsed neuroblastoma remains one of the greatest challenges in pedi-
atric oncology today; despite decades of research, relapsed high-risk
neuroblastoma remains almost universally fatal. The cancer stem cell
hypothesis suggests that the difficulty in permanently eradicating tumors
may be because conventional treatment regimens preferentially eliminate
the bulk of the progeny cells while leaving the cancer stem cells intact. SP
analysis has been used successfully in many different cancers to identify
a subpopulation of cells that exhibit stemlike properties and that are
enriched for tumor-initiating cells. This study presents data describing
the SP in several neuroblastoma cell lines and suggests that these SPs
are enriched for a population of cells that exhibit stemlike characteristics.
Importantly, it is the first study to present and evaluate the SP properties
of an in vitro pretreatment versus postrelapse model using single-patient
derived paired cell lines.

Using this resource, we have shown that the size of the SP increased
significantly between the pretreatment and postrelapse cell lines and
that these cell lines maintain a relatively constant ratio of SP versus

Figure 3. Results of soft agar colony-forming assays. SP cells have
significantly increased colony-forming ability compared with the
non-SP cells in every case. *P < .01 for all four cell lines tested.
Results shown are the means of at least three experiments.

Figure 4. Comparison of growth and colony formation of prerelapse versus postrelapse SP cells. (A and B) Increased proliferative ability
of the postrelapse SP cells from the SMS-KCNR (A) and CHLA-136 (B) cell lines compared with their paired prerelapse cell lines, respec-
tively. (C) Postrelapse SP cells show increased colony formation efficiency compared with the prerelapse SP cells from their paired
prerelapse cell lines. Results shown are means of at least three experiments. *P < .01.
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non-SP cells over time. In addition, when reanalyzed after several weeks
in culture, the SP cells had phenotypically recapitulated the original cell
line in every case, whereas the non-SP cells showed little proliferative
ability and had not regenerated a SP. These findings, combined with
the data showing the SP cells’ increased capacity to form colonies in
soft agar, represent what is to our knowledge the first study to show
a correlation between the percentage of SP cells within a cell line and
its tumorigenicity. Studies to confirm these findings in vivo using xeno-
graft models are planned.

NANOG and POU5F1, along with SOX2, have been shown to be
the critical regulators of embryonic stem cell maintenance [40] and
have recently been shown to be overexpressed in several different can-
cers [41,42]. Neither gene has been previously characterized in neuro-
blastoma. We found that the messenger RNA expressions of NANOG
and POU5F1 as well as that of the ABCG2 transporter were signifi-
cantly increased in the postrelapse cell lines compared with its paired pre-
treatment cell lines. Both NANOG and POU5F1 also showed increased
expression in the postrelapse SP cells compared with the prerelapse SP
cells, suggesting that the pathways that control stem cell maintenance
and expansion may play an important role in neuroblastoma relapse.
Given that the messenger RNA expression of these stem cell regulators
is increased in the relapsed cell lines and in the SP cell subpopulation,
it seems logical that possible mechanisms for the increase in the size of
the SPs include dysregulation of these pathways.

This work represents the first study to characterize the SPs in
paired pretreatment and relapsed neuroblastoma cell lines. Our
study supports the hypothesis that failure to eradicate the underlying
stem cell population in neuroblastoma contributes to its relapse and
suggests that novel agents that specifically target neuroblastoma
cancer stem cells are needed if we are to improve outcomes in high-
risk neuroblastoma.
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