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m Abstract We review the use of ray models for internal waves, particularly formu-
lations for calculating wave amplitudes along the ray. These are expressed in spatial,
wave number, and phase-space coordinates. The choice of formulation affects not only
the difficulty of the calculations for rays and caustics but also the degree to which
the waves satisfy slowly varying assumptions. We describe several examples taken
from atmospheric and oceanic applications that illustrate the variety of options for ray
models.

1. INTRODUCTION

Ray models are the basis for much of our understanding of atmospheric and oceanic
internal waves. They describe the wave field that emerges from various sources,
the subsequent propagation through a nonuniform background, and the approach
to dissipation. Ray models also represent some of the leading attempts to account
for internal-wave spectra and internal-wave dissipation rates in parts of the atmo-
sphere and ocean, and they have been used to parameterize internal-wave drag
in atmospheric circulation models. Here we review and relate ray models of in-
ternal waves for these and other applications. We concentrate on the formulation
rather than on their predictions, a subject included in other surveys (e.g., Fritts &
Alexander 2003).

Ray models can be formulated in spatial coordinates, in wave-number coor-
dinates, or in a mix of the two. The formulation in wave-number coordinates is
equivalent to the ray description of the Fourier transform of the wave field. How-
ever formulated, the wave amplitudes are controlled by the same basic rules of
ray convergence and divergence, but some formulations are more convenient than
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others. For example, for a height-dependent horizontally uniform background, the
transformation from horizontal spatial coordinates to horizontal wave-number co-
ordinates straightens the rays and eliminates the more complicated occurrences of
the ray singularity known as a caustic, so the ray calculation and the correction of
the caustic can be made with relative ease.

A caustic is a singularity particular to ray theory. It occurs where neighbor-
ing rays intersect each other, resulting in an extreme breakdown of ray theory’s
slowly varying approximation and a ray prediction of infinite wave amplitudes.
The familiar case is the buoyancy-frequency turning point (Lighthill 1978, section
4.11), where neighboring rays intersect as they reverse their vertical direction of
propagation. This case is for a particular model and for a particular formulation
of the ray equations. Typically, the caustic locations are more widespread, and in
some models they can occur almost anywhere along the ray.

The problem with caustics is that their correction in numerical ray tracing is
generally nontrivial. Very few of the models that we review correct any caustics at
all. For some applications, such as those concerned with the approach to a critical
layer, caustics are of limited interest. The rays may pass through a caustic on the
way to a critical layer, but assuming no dissipation takes place at the caustic, it is
enough to know that the amount of wave action carried by the waves is conserved
through the caustic, and that ray theory becomes valid again after the ray leaves
the caustic. In applications where caustics occur at locations of interest, the choice
of model formulation can ease or obviate the correction of caustics. Part of the aim
of this paper is to review how this has been done.

We start in Section 2 with a description of the spatial and wave-number formu-
lations of ray theory. Initially we assume a steady source of waves in a steady back-
ground, as do many ray models of internal waves, but the general time-dependent
ray equations for wave-amplitude calculations are also of interest and are described
later in the section.

In Section 3 we discuss caustics. The familiar caustic at a buoyancy-frequency
turning point is one case that can be handled easily, by a matching method or
by a uniform approximation, usually involving an Airy function. The details are
given in many other references (e.g., Kravtsov & Orlov 1999, Lighthill 1978), so
we concentrate on another interesting example of a caustic that is less familiar but
importantin certain models of internal waves generated by flow over topography or
by an oscillating source. Miles (1969) and Lighthill (1978) suggested alternatives
to the basic ray method that avoid the difficulties in these respective examples.
Miles’s alternative is related to Maslov’s method, the subject of Section 4.

Maslov's method takes advantage of the fact that the occurrence of caustics is
formulation dependent. A caustic cannot occur along the ray in its spatial formu-
lation and in its wave-number formulation at the same time. The idea in Maslov's
method is to calculate the ray solution in the formulation without the caustic, and
then to map it to a solution in the other formulation by Fourier transform. In theory,
this corrects all types of caustics, and in some cases Maslov’s method is actually
easy to implement. We give an example in Section 4.
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In Section 5 we discuss a range of applications that indicates the variety of op-
tions used in ray models for internal waves. Sometimes the formulation is chosen
for the variables of direct interest, but the choice is also influenced by computa-
tional limitations and concerns about caustics. We do not cover basic internal-wave
theory, which can be found in texts such as Gossard & Hooke (1975), Lighthill
(1978), Gill (1982), and Nappo (2002). For other reviews of internal waves, see
Fritts & Alexander (2003), Mclintyre (2001), Baines (1995), Wurtele et al. (1996),
and Muller et al. (1986).

2. GENERAL THEORY

Lighthill (1978, section 4.6) discusses the ray tracing of internal waves through
a horizontal, vertically varying windJ(z), directed along th&—axis. A ray is
defined as the position x(t= (x(t), y(t), z(t)) that moves through the medium
at the local group velocity of the waveg = (Cq1, Cg2, Cq3) Mmeasured by a sta-
tionary observer on the ground. Becausedepends only orz, the horizontal
wave number¥, | remain constant following the ray, as does the frequency
measured by the stationary ground observer. The vertical wave numisaies
along the ray, as does the intrinsic frequenrgy="w — kU measured by an
observer moving with the local wind velocity. For a single wave train of fixed
K, I, ® and height-dependem(z), the wave amplitudes are predicted from the
constancy of the wave-action fluxgsE /o, whereE is the wave-energy den-
sity (see Equation 19). This simple case explains aspects of phenomena such
as the Booker-Bretherton critical-layer interaction (Gossard & Hooke 1975). To
review other ray models of internal waves, we need to consider the more general
theory.

The dispersion relation is(x, t) = Q(K, x, t), for timet, positionx = (X, y,
z), and wave-number vectkr= (k, I, m). The wave frequency is = &® + k - U,
for intrinsic frequencyw"and a background velocity, which can vary in space
and time. It is convenient to follow Hayes’s notation (1970) for specifying the
independent variables. Whénandx are both treated as independent variables,
we use2 and partial derivatives denoted by subscripts. Whamdx are treated
as functions of one another, we useand partial derivatives denoted Byat,
V = (0/9x%, d/dy, 3/0z), andVy = (9/9dk, 9/3l, 3/9m). Notation such a2y
refers to the tensor with componeisgy, Qy, etc.

The ray equations are (Lighthill 1978, Hayes 1970)

dx/dt = € 1)
dk/dt = —Q,, (2)

whered/dt = 9/0t +¢c4 - V andcg = S is the group velocity vector. There
is no need yet to specify the form f@2, though for now we assume th&t is
independent of time. We relax this assumption later.
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The ray equations for wave-amplitude calculations can be formulated in spatial
coordinates or in wave-number coordinates. We first describe how these formu-
lations are related to the ray phase-space formulation, where the independent
coordinates are bothandk.

In phase space, the initial conditions uniquely determine each ray path, so there
are no ray intersections and hence no caustics. Furthermore, the density of wave
action in phase space is constant along the ray (e.g., Hertzog et al. 2002). Although
the absence of caustics and the constancy of the wave-action density along the ray
are nice simplifications, we are not usually interested in the phase-space density
of wave action itself but rather in the spatial density or wave-number density of
wave action. To obtain these densities, project the ray solution from phase space
to the spatial domain or to the wave-number domain. In the projected domains,
two neighboring rays can project onto the same point, resulting in a caustic.

Figure 1 illustrates the case where the projected rays form a caustic in the spatial
domain. It is also possible to have a caustic in the wave-number domain, but an

Figure 1 Rays in phase space are shown in this schematic diagram, along with their
projections onto the spatial domain and the wave-numb&rdomain. Rays never
intersect in phase space. Ray intersections, and hence caustics, occur only in the ray
projections, in this case in thedomain.
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important point is that a ray in phase space cannot simultaneously project onto a
caustic in the wave-number domain and onto a caustic in the spatial domain. At
a caustic in the spatial domain, neighboring rays have the sdmgedifferentk.
The situation is reversed at a caustic in the wave-number domain, where neigh-
boring rays have the samkebut differentx. If there were caustics in both domains
simultaneously, the neighboring rays would have the same valuearadk and
would not be distinct.

The ray solution for same quantity a(xt) in the spatial domain has the form

a(x, t) = ag(x)e =1, ®3)

with k(x) = V. We assume for now a simple time dependesice! with fixed
frequencyw. The corresponding ray solution in the wave-number domain is

b(k, t) = bo(K)e'l?®-et], "

with x(k) = —Vi¢. The two phase functionsandyr are related by the Legendre
transformation (e.g., Brown 2000). Of more concern is the relation between the
two amplitude functiongg andby, which is given by

al|Vix| = b2. (5)

The JacobianVvix| is for the ray transformatior(k) that maps wave number to
position.

At a caustic, the ray transformatiak) is multivalued. In the case of Figure 1,
two nonintersecting neighboring rays in the wave-number domain map onto the
same spatial point at the caustic, where the Jacobian vanishes:

|Vix| = 0. (6)

Because = — V¢ (see Equation 4), the Jacobian can also be expressegd.as

a term that appears in the denominator of the amplitude of the stationary-phase
solution (e.g., Shutts 1998, equation 65) and accounts for the breakdown of the
stationary-phase method at a caustic. The stationary-phase condition is simply the
ray transformatiorx(k).

In the following, we identifya andb3 with the wave-action densities in the
spatial domain and in the wave-number domain, respectively. We continue to ignore
time dependence (except in the wave phase). We invoke the idea of a narrow
ray tube, which consists of a set of neighboring rays. The wave-action density
within the ray tube is controlled by the convergence and divergence of neighboring
rays that make up the ray tube (e.g., Lighthill 1978). Conservation of wave action
implies thatV - (cga3) = 0. Use of the Gauss divergence theorem then leads to
the relation for the constancy of wave-action flux through the ray tube (e.g., Broad
1999).

a3 dx/dt - AidS= constant. (7)

The constant here (and in the following three equations) is generally different for
each ray tube. The group velocity ¢ = dx/dt, andfidSis a directed area
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element spanning the ray tube (e.g., Lighthill 1978, figure 89). An analogous
solution exists for the wave-number domain:

bZdk/dt - AdS = constant, (8)

wherefidSis a directed area element spanning the ray tube in the wave-number
domain. We return to Equation 8 in Section 5.3.

Two cases of Equation 7 are used commonly. In the first caseparallel to
Cy, anddSis the cross-sectional area of the ray tube. The left side of Equation 7
reduces t@Z|cy|d S as Lighthill (1978, p. 321) notes.

In the second casé,is directed vertically, along theaxis. ThenrdSmeasures
the area of a horizontal slice through the ray tube, and wave-action conservation
becomes

ascg3Ji = constant. (9)

The Jacobiard; = d(X, y)/3(Xo, Yo) is taken at fixed and is proportional talS.

The vertical component of the group velocitycig, and the coordinates, yo
refer to a reference position. [For a horizontally uniform background, it is some-
times convenient to ude | instead ofxg, Yo, as seen in Shutts (1998) and Broad
(1999)].

If J; is constant, we are left with the constancygfa3, the vertical flux of wave
action. This has probably been the most widely used equation for wave-amplitude
calculations in internal-wave models. The assumption (in addition to the neglect
of time dependence) is that the horizontal divergence of the rays can be neglected.

So far, we have considered representations in spatial coordinates and in wave-
number coordinates. It is sometimes convenient to mix the coordinates, e.g., to
combine the vertical spatial coordinatevith the horizontal wave-number coor-
dinatesk, I. All of the above relations generalize to this case in a natural way. For
instance, the expression analogous to Equation 9 is

Qo°Cg3J2 = constant. (10)

Here the Jacobiady = d(k, |)/3(Ko, lo) for reference valudsg, |o; the wave-action
density in (kJ, z) is denoted by?. This form is especially useful for a horizontally
uniform medium because the horizontal wave numbers are then constant along the
ray, leavingJ, = 1. In Section 4, we discuss the mapping of the ray solution
associated with Equation 10 into a spatial solution by inverse Fourier transform.

Finally, we discuss ray formulations for the general case that includes full time
dependence as well as full spatial dependence. The general expression for wave-
action conservation, in the form of the ray equation, is

dA/dt = —AV - c,. (11)

Here we use the notatiok (previouslya3 but now allowed to be time dependent)
for the wave-action density in the spatial domain. Chain-rule differentiation of
V - ¢4 leads to an expression involving the wave-number gradient tevikor
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A separate ray equation fork can be derived (Hayes 1970), but elements of
Vk diverge whenever the ray meets a caustic. So, near a caustic, Hayes (1970)
suggests reformulating the ray equations in termgof, the inverse ofk. This
is in effect a mapping to the wave-number domain, which avoids the caustic in
the spatial domain. Generally, there are also caustics in the wave-number domain,
whereVix diverges, so a ray-tracing scheme of this kind would need to alternate
between formulations based on the two tendtksand Vi x.

A single formulation is obtained from the parametric representatiant)
andk(a, t). Herea, which has the same dimensionxads a label for each ray,
for instance its initial position. The quantity of interest for the calculation of the
spatial wave-action densi# is the Jacobiad = |V;X|, taken at fixed, which
measures the changing volume of an element of the ray tube advected along the
ray at the local group velocity. At a caustityanishes so the ray integration can
proceed through the caustic without dealing with singularity quantities suah as
The wave-action density is computed at positions before or after the caustic using
the constancy oAJ along the ray, though as Brown (2000) states, this does not
alter the fact that the ray solution breaks down near the caustic. To abtai@
need in the general case a ray equation for the nonsymmetric ténsoaadVk
(Hayes 1970, White & Fornberg 1998):

AVK/dt = —VaX - Qo — Vak - Qe (13)

These are derived from Equations 1 and 2 by applying the opevatdtote that

V, andd/dt commute, unlikev andd/dt. Similar equations have been used to
assess the stability of trajectories in a Hamiltonian system (e.g., Gutzwiller 1990,
p. 88). In some applications it is enough to know the total amount of wave action
carried along with a group of waves. This amount is not dependent on the focusing
of rays within the group and is constant following the group:

/ A(x, t) dx = constant. (14)
D)

The integral is taken over a volurit), whose boundaries move at the local group
velocity. For an infinitesimally size@®(t), A can be removed from the integral,
and Equation 14 is equivalent to the constancjdélong the ray. An analogous
result holds for the wave-number domain:

/ B(k, t) dk = constant. (15)
K(t)

HereB (previouslyb3 but now allowed to be time dependent) is the wave-number
density of wave action, and the integral is taken over a wave-number vdlifthe
that moves with the rays in the wave-number domain. For a uniform medium,
has fixed size, independent of time, becakigconstant along the ray. For more
on volume integrals of this type, see Bihler et al. (1999).
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In the rest of the paper we specialize to internal waves. We ignore non-Boussi-
nesq effects, which are important in atmospheric applications but not for our
discussion of ray formulations. We write the dispersion relation in the form

w=wo+k- U, (16)
whereU(x, t) is the background flow and is the intrinsic frequency:
& = (N2 + m? 1) Y%/ (1 + m?) (17)

The magnitude of the horizontal wave numbekis= (k? 4+ 12)1/2. The inertial
(Coriolis) frequency i and the mean buoyancy frequencyisin the hydrostatic
limit without Coriolis effects, the dispersion relation reduces to

& ~ +kaN/m. (18)

For internal waves the wave-energy dendty= Aw is related to the vertical
displacement amplitude, by

1
E= Epong(Nz—i— f2m?/k7), (19)

wherepg is the mean density.

3. CAUSTICS

The difference between ray theory and linear theory is that the former assumes
slowly varying waves. The waves are not slowly varying in the vicinity of a caustic,
defined as the line or surface containing points where neighboring rays intersect
each other. The simplest caustic to analyze is flat, and correctable with an Airy
function. The presence of caustic curvature complicates the numerical implemen-
tation of the caustic correction. Note that the Airy function solution for the curved
caustic pictured in Lighthill (1978, figure 98) depends on the caustic curvature
through the third derivative terms in Lighthill's equation 381. To determine the
caustic curvature we need either to advect second derivatives of the wave number
along the ray (in addition to the first derivatives in Equation 13, or to trace enough
rays to map out the shape of the caustic. Neither appraoch is ideal for practical
ray tracing. In addition, other types of caustics occur that are not treatable with an
Airy function.

For example, consider the propagation of internal waves generated by flow over
a mountain. Such mountain waves (reviewed by Wurtele et al. 1996 and Baines
1995) often grow to large amplitudes by the time they reach the stratosphere. Their
dissipation is important for driving stratospheric winds, so the entire process of
mountain-wave generation, propagation, and dissipation needs to be parameterized
in circulation models that cannot adequately resolve the mountain waves. An early
effort by Palmer et al. (1986) was based on a simple scheme designed by Lindzen
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Figure 2 Two examples of an extreme breakdown of ray theory. The internal waves
are generated by] flow over mountain andof a localized source of fixed frequency.
All rays are confined to the vertical axis ia)(and to the surface of the cone In)(

(1981). If we try to improve Lindzen’s scheme using a standard ray method, the
resulting ray prediction for the mountain-wave amplitudes is completely useless.

Lindzen treats the mountain waves as a single hydrostatic wave train that prop-
agates directly upward above each mountain. The ray solution, on the other hand,
includes rays for a spectrum of wave numbers, but in this case every ray follows
the same path directly upward from the center of the mountain (Figure 2a). There
is no horizontal propagation because the intrinsic horizontal group velocity of
the mountain waves is directed upwind and is perfectly negated by the horizontal
background wind. The ray prediction for the vertical displacement amplitude is
infinite on the vertical axis, where there are infinitely many rays at each point, and
zero at points off the vertical axis, where there are no rays.

A similar problem affects Lighthill's theory of waves emitted from a localized
source (Lighthill 1978, section 4.9). The source has fixed frequency, and the back-
ground is stationary and uniform. Lighthill originally developed this theory for
other types of waves. Its application to internal waves breaks down because all
rays are constrained to the surface of a cone (Fighyelhe ray prediction for the
vertical displacement amplitude is infinite at points on the cone, where there are
infinitely many rays at each point, and zero at points off the cone, where there are
no rays. This cone is an example of a structurally unstable caustic, i.e., the caustic
can be eliminated by a mere perturbation. For example, moving the source relative
to the background, even at the slightest speed, spreads the rays off the cone and
makes the ray prediction finite. This is exactly what Lighthill does in section 4.12
of his book. But a finite ray solution is still inaccurate if the rays do not separate
sufficiently, and so the question arises: How fast do we have to move the source
to get an accurate ray solution?

For the mountain-wave problem, the vertical line of rays above the mountain
is also a structurally unstable caustic. Adding the slightest nonhydrostatic effects
or Coriolis effects is enough to spread the rays downwind from the vertical axis
and to give finite ray amplitudes. But again, unless these effects are significant, the
ray solution in the important region directly over the mountain, at all heights, is
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erroneously large because the rays are not well separated. Note that the only two-
dimensional ray solution for mountain waves given in Baines (1995, p. 242) uses
delta-function topography, which generates a strongly nonhydrostatic response.
Similar problems occur in the three-dimensional case. Although some rays disperse
downwind of the mountain in three dimensions, as part of a ship-wave pattern of lee
waves, other rays remain strongly focused above the mountain. (See the singularity
in the stationary-phase approximations of Smith 1980 and of Shutts 1998, and see
figure 1bof Broutman et al. 2002).

The feature that distinguishes the Airy function caustic from the caustics men-
tioned above is the number of ray intersections. In the above cases, an infinite
number of neighboring rays intersect at each point on the caustic. For the Airy
function caustic, only two neighboring rays intersect at each point on the caustic.
The Airy function caustic is structurally stable, a result predicted by catastrophe
theory. For more on caustics as catastrophes, see Brown (2000), Kravtsov & Orlov
(1999), and Nye (1999). [The amphidromic point in oceanographic tidal maps
is another example of a structurally stable singularity of wave theory—see Nye’s
book (Nye 1999).] In the next section we describe a method that avoids the problem
of these structurally unstable caustics without having to worry about the strength
of the perturbation.

4. MASLOV’'S METHOD

We note in the description of Figure 1 that one can avoid a caustic in the spatial
domain by mapping the rays to the wave-number domain. The mapping separates
the rays that intersect at a spatial caustic. Maslov’s method uses the ray solution
from one domain to correct the ray solution near caustics in the other domain.
To review Maslov’s method, we first consider the following three possibilities for
transforming from the wave-number domain to the spatial domain:

k — domain solution transform X — domain solution
linear — IFT — linear

ray — ray — ray

ray — IFT — linear (approx)

The first procedure is the usual Fourier-transform method, where IFT stands
for the inverse Fourier transform. Because the ray solution is not used, there are no
problems with caustics. But only a restrictive range of applications can be treated
in this way due to the difficulty of finding the linear solution in the wave-number
domain. The second procedure starts with the ray solution in the wave-number
domain and maps it to the spatial domain using the ray mapping (or stationary-
phase conditiomy(k, t). The ray mapping is multivalued at a caustic, where the ray
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prediction gives infinite wave amplitudes. The third procedure is a combination of
the first two. It starts with the ray solution in the wave-number domain and maps it
to the spatial domain by IFT. For the moment, we assume that the ray solution in
the wave-number domain is an accurate representation of the linear solution in the
wave-number domain (which rules out caustics in the wave-number domain). The
third procedure then gives an approximation to the linear spatial solution that is
valid at all types of caustics in the spatial domain without further correction. The
third procedure works at spatial caustics for the same reason that the first procedure
works: the IFT superimposes all Fourier components to account automatically for
diffraction as needed near any type of caustic. Away from the caustic there is the
proper transition to the spatial ray solution, which appears automatically as the
stationary-phase limit of the IFT.

Note that the IFT and the ray approximation do not commute. Taking the ray
approximation after the IFT (a further step in the first procedure) yields the spatial
ray solution that breaks down at the spatial caustics. Taking the ray approximation
before the IFT (the third procedure) yields a solution that is valid at the spatial
caustics, and elsewhere, again assuming that we start with an accurate ray approx-
imation in the wave-number domain.

The third procedure is a simple example of Maslov’s method. Consider the case
of stationary mountain waves in a height-dependent background. It is convenient
here to use the mixed formulatiénl, z, as in Equation 10. Maslov’s solution for,
say, the vertical displacemenfx) is then

n(x) = / / [no(k, I, 2)e ko m<k"~f)df] Y dk dl. (20)

The term in square brackets is the ray solutiok,ih z coordinates. Note that
it has the ray-solution property that differentiation of the phase with respect to
the independent variablés|, z gives the conjugate variables x, —y, m. For
differentiation with respect ta, this is obvious. For differentiation with respect
to k, I, the result follows fronm, = —dx/dz, m = —dy/dz (see Hayes 1970,
equation 27a).

The amplitude)q in Equation 20 is determined from conservation of wave action
in the form of Equation 10, and from the lower boundary condition &t0. For
hydrostatic mountain waves, without the effects of Earth’s rotation, Equation 20
becomes

n(x) = f / [ﬁ(k,I)[m(k,l,z)/mo(k,l)]l/zei /s m<kv"2’>df]ékx+'y dkdl. (21)

Hereﬁ(k, ) is the Fourier transform of the mountain, amg is the vertical wave
number atthe grourwl= 0. For height-dependehl(z), the integral in Equation 21
should be multiplied byN(0)/N(2). Miles (1969, equation 4.13), Shutts (1998,
equation 53), and Broutman et al. (2002, equation 27) derived solutions of this
type. None of these studies accommodates trapped waves. Broutman et al. (2003)
gives modifications for trapped waves and associated caustics.
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Maslov’s method also provides a solution for internal waves radiated from
an oscillatory source, the problem described in the previous section. Lighthill
(1978, section 4.10) treats this problem with a Fourier integral, but he reduces it
to one dimension by applying the stationary-phase method in the other dimension
(see equation 350 in Lighthill 1978). That makes Lighthill's solution a far-field
approximation. Maslov’s result is valid in the near field as well as in the far
field. There is no distinction between the near field and the far field fok,thez
formulation because the rays are everywhere equally well separated by their values
of k, |. Lighthill's solution is also restricted to a uniform background at rest with
respect to the source, whereas Maslov’s solution applies to a sufficiently smooth
but otherwise arbitrary height-dependent background.

The difficult case for Maslov's method is when there are caustics in the wave-
number domain as well as in the spatial domain. In some cases, itis straightforward
to correct the caustics directly in the wave-number domain, before taking the IFT,
as in Broutman et al. (2003). Alternatively, one can apply the IFT to ray solutions
obtained in local regions of the wave-number domain where there are no caustics,
as Maslov showed with an asymptotic theory. The result of the IFT then replaces
the spatial ray solution, but only in regions surrounding the spatial caustics. In
other regions, the spatial ray solution is retained. It is not clear how practical such
a procedure would be for internal waves, though Brown (2000) applied it success-
fully to surface gravity waves. Ziolkowski & Deschamps (1984) and Thomson &
Chapman (1985) discuss other applications of Maslov's method. Maslov’s original
work, from the 1960s, is summarized by Maslov & Fedoriuk (1981).

5. APPLICATIONS

We now discuss a selection of applications, and we continue to stress ray formu-
lations rather than ray results. We base the discussion on wave action, although
in some models the related quantity known as pseudomomentum is of more in-
terest (e.g., Warner & Mclintyre 1996). The wave-action density is denoted by
A for the spatial formulation, and b§ for the spectral or mixed spatial/spectral
formulation.

5.1. Shear-Generated Internal Waves that Reach the Mesosphere

Shear instability on the upper edge of the jet stream leads to mixing patches whose
collapse excites internal waves. Those internal waves that reach the mesosphere
(at altitudes of 50—90 km) are potentially important for driving mesopheric winds,

as discussed by Bihler et al. (1999) and Bulhler & Mclintyre. They used a Fourier
integral representation for the waves in the near field surrounding the mixing
patch, assuming a uniform background, and a ray representation for the waves in
the far field. The ray representation accounts for wave propagation through height-
dependent winds. The main concern is with the total amount of wave action that
reaches the mesosphere.
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Ray paths for this model are plotted in Figure 3 using the wind profile of Buihler
& Mclintyre (1999), as indicated in the figure. The only rays that can reach the
mesosphere through this wind are those that leave the source with an intrinsic
group velocity in the positivet and positivez directions. The usual notation for
internal waves (e.g., Gill 1982) is such that these rays kaved andm < 0. The
other rays are absorbed by critical layers or reflected by turning points at altitudes
below the mesosphere.

The total amount of wave action emitted by the mixing patch and associated
with rays that have a chance of propagating into the mesosphere is (compare with
equation 27 in Buhler et al. 1999)

P =fk>0/_:° /m<0 B(k) dk dldm (22)

Here B is the wave-action density in the wave-number domain. For a uniform
backgroundB is independent of time, sB and P can be calculated from the
initial conditions, i.e., from the Fourier transform of the initial configuration

of the mixing patch. We have been stressing the difference between the wave-
number and spatial formulations of ray theory. The spatial distribution of wave
action is highly time dependent. The spatial rays are givem by cgt, so the
spatial wave-action density is initially concentrated at a single point at the cen-
ter of the mixing patch, before dispersing rapidly in all directions. The spatial
ray solution is not valid near the mixing patch because the rays are not sep-
arated sufficiently. But in wave-number space, the rays are separated by their
k values. When Buhler et al. (1999) calculated the near-field solution in Fourier
space, they calculated the equivalent of the ray solution in the wave-number
domain.

The total wave-actio® emitted by the mixing patch would be the total wave
action received by the mesosphere, except that some waves are reflected from
turning points before reaching the mesosphere, and all of the waves experience
viscous and radiative damping, which is important at these altitudes. These effects
need to be taken into account, and this is where ray tracing is useful.

Suppose we divide the spectriim> 0 andm < 0 into contiguous wave-
number sections, labeldd; fori = 1,2,3.... If the wave-number sections are
small enoughk is approximately uniform within each wave-number section. We
can then associate one ray and one value of the spectral wave-action @ensity
with each wave-number section.

The wave action integrated over each wave-number sekiios constant, as
expressed by Equation 15, apart from damping effects that can be modeled by

dR/dt = —PB - [damping terms]. (23)

Here P, = f,ci(t) Bdk. If the damping terms are parameterized as a function of
k, the ray integration of Equation 23 is simple. The convergence of rays is not a
concern, as it would be in the calculation®itself, and caustics are irrelevant. At

a caustid diverges but the size of the corresponding volume eleiganishes.
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The integralP, remains finite and gives the proper ray prediction for the amount
of wave action transported through the caustic.

The rays are integrated from the mixing patch to the mesosphere, and the total
amount of damping acting on eaéhis calculated. The damping factor, i.e., the
ratio of the finalP, to the initial P, is then used to multipl in the corresponding
wave-number element of a discretized Equation 22. In this way, the near-field
integral Equation 22 is modified to give the far-field wave action received by the
mesosphere.

The only difference between the above approach and that of Buhler & Mc-
Intyre (1999) is that the latter used the phase-space representation of wave action
N (K, x, ) in place of our wave-number integrgl. Both A andP; share the prop-
erty that for nondissipative propagation they are constant along the ray, unaffected
by the convergence of neighboring rays.

To assess the validity of the slowly varying approximation, Buhler & Mclintyre
(1999) monitored the quantitym—2dm/dz, wheredm/dz = (dm/dt)/(dz/dt).

This is the best that can be done for the variables integrated in the model. The
quantity evidently approximates—2dm/dz, the fractional change im over a
distance ofm~? (Lighthill 1978, equation 139). The smallness of this fractional
change is the appropriate condition for slow variation in certain one-dimensional
models. In more than one dimension the validity conditions presumably involve
derivatives of the other wave-number components, but the general form for the
conditions is not clear. Various conditions that we have tested, though sometimes
helpful, do not generally give a reliable indication of where ray theory breaks
down.

5.2. Mountain Waves

The simplest model of mountain waves is hydrostatic and two dimensional, and it
results in the worst possible breakdown of the slowly varying approximation (see
Section 3). All ray paths coincide on the vertical axis directly over the mountain.
An alternative is to attempt to represent the average conditions over the mountain
with a single ray tube. In the simplest arrangement, the ray tube has constant width
and is directed vertically, and the wave-action figxA is constant along the ray
tube, until dissipation. This idea has been used in schemes for the parameterization
of mountain-wave drag (see the review by Kim et al. 2003) and for operational
mountain-wave forecasting (Bacmeister et al. 1994).

An improvement to this appoach is to use several rays and allow them to prop-
agate laterally away from the mountain. The position of each ray is determined
by ray tracing, but the calculation is kept simple by preserving the vertical flux of
wave actiorcyz A for each ray, in the absence of dissipation. Some nonhydrostatic
and/or three-dimensional effects can be incorporated in this way. Schoeberl (1985)
and Dunkerton (1981) give examples of this. Eckermann & Preusse (1999) also
used this approach to improve the forecast model of Bacmeister et al. (1994) with
the ray-tracing code of Eckermann & Marks (1997).
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The above studies do not include the effects of the horizontal divergence of
the rays on the wave amplitudes. For an infinitesimal ray tube, the horizontal
divergence is determined by a Jacobian, as in Equation 9. Shutts (1998) and Broad
(1999) made calculations using Equation 9 to examine the approach of hydrostatic
mountain waves to critical layers in three dimensions. They did not evaluate the
constant in Equation 9 but still predicted relative changesatong the ray.

An alternative is to formulate the ray solutiorkifl, zand use Maslov’s method.
Figure 4 shows an example of Maslov’s spatial solution for mountain waves over
Scandinavia. The calculation was made by the authors in a NASA measurement
program during January 2003. Vertical profiles (assumed horizontally uniform)
for the mean winds and the mean density were obtained from a weather forecast
model. Broutman et al. (2002) gives more details on the calculation of Maslov’s
solution.

For the nonhydrostatic case, the presence of trapped mountain waves compli-
cates the calculation of the ray solution in bothy, z andk, |, z because there
are turning points where = N and wherecgz = 0. We are used to thinking of
such turning points as caustics (e.g., Lighthill 1978, p. 396), but this is only true of
thek, |, zformulation. The turning point is not a caustic in the spatial formulation
because there cannot be simultaneous caustics in two different projections of the
phase-space rays (Section 2).

To illustrate this point, Figure 5 shows the spatial rays for the same prob-
lem presented in Figure 1 of Wurtele et al. (1996), which is also described in
Waurtele et al. (1987) and in Broutman et al. (2003). The mountain is centered at
the origin, and the wind flows from left to right, increasing linearly with height.
The rays do not intersect at a turning point, and hence the turning point is not a
caustic in thex, y, z formulation. The rays encounter caustics, which appear as
approximately straight lines that slope upwards from the origin. Note that each ray
reflects from its turning point at a position that is slightly to the right of the nearest
caustic. For more on the caustics in this particular problem, see Broutman et al.
(2003).

5.3. Models of Internal-Wave Spectra

We now consider models that combine ray methods with a statistical representation
of the wave field. We start with a case from the ocean: the refraction of short internal
waves by a spectrum of longer internal waves. Using ray methods for this problem
began in earnest with the preliminary study of Henyey & Pomphrey (1983), and
continued with Flatté et al. (1985), Henyey et al. (1986), and Sun & Kunze (1999).
(See also the review by Muller et al. 1986). These studies implement Monte Carlo
ray tracings involving the Garrett-Munk model spectrum (Garrett & Munk 1979),
which approximates measurements from the ocean and which is used in two ways:
to set the amplitudes of the background long waves, and to set the initial conditions
for the short waves. The idea is to duplicate the Garrett-Munk model in the initial
conditions, for short waves of relatively large wavelengths, and then to see if
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the ray tracing duplicates the Garrett-Munk model at smaller scales, down to
dissipative wavelengths. Also of interest is the flux of wave action through the
spectrum, which is used to predict ocean-mixing rates resulting from internal-wave
dissipation.

The long-wave background is variable in all three spatial dimensions and in
time. This is not a serious complication for calculating ray paths, but it is a serious
complication for calculating the wave-number density or spatial density of wave
action along the ray. The ray tracing would require the initialization and integration
of the full set of ray equations in Equations 12 and 13, and would undoubtedly
lead to frequent occurrences of caustics.

Flatté et al. (1985), Henyey et al. (1986), and Sun & Kunze (1999) simplified
the wave-amplitude calculation and eliminated caustics by defining the ray tube
statistically. They assumed that the statistics represented an internal-wave spectrum
that was stationary and horizontally isotropic.

To see how this works, consider the form of wave-action conservation

B(kn, m) dk,/dtAm = constant, (24)

whereB is the spectral wave-action density. This is a special case of Equation 8
for the constancy of the wave-action flbgdk/dt -AdS along a ray tube in the
wave-number domain. To obtain Equation 24 from Equatiof i8,the direction

of the horizontal wave-number axis, and the width of the ray tLbis the vertical
wave-number variatiolnm across the ray tube. It is then assumed that each term
in Equation 24 can be represented by its averaged value.

For example, Sun & Kunze (1999) used this approach to estimate the flux of
wave energy to short dissipative scales. Initial conditions are specified at the rela-
tively large scale for the short waves of 1-km horizontal wavelength: the Garrett-
Munk spectrum sets the initial average Bthe discretization of the Garrett-Munk
spectrum determines the initialm, and various estimates are used to set the initial
average value fodk,/dt (see Sun & Kunze, p. 2912). This determines the con-
stant on the right side of Equation 24, i.e., the wave-action flux for each ray tube.
The wave-energy flux is then calculated at a small dissipative scale by multiplying
the wave-action flux by the short-wave intrinsic frequencst that small scale.
Herew is obtained by tracing individual rays through realizations of the Garrett-
Munk background. The small dissipative scale was chosen to be 5-m vertical
wavelength.

Figure 6 illustrates another point about these ocean ray models. The ray paths
shown in this figure follow short-wave propagation through a vertically localized
packet of inertia waves centered in the middle of the plot. A numerical solution for
the short waves is also shown. When this figure was first published in Broutman
et al. (1997), the main interest was in the initial encounter of the short waves
with the inertia-wave packet, at times just after one inertia period. The permanent
upturn of the rays after one pass through the inertia-wave packet and the absense
of critical layers for the short waves were noted as special features of refraction
by time-dependent shear.
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Figure 6 Ray paths and a numerical solution for short waves propagating through an
inertia-wave packet. From Broutman et al. (1997).

Here we shift attention to earlier times. The short waves wrap around the pe-
riodic computational domain and repeatedly encounter the inertia-wave packet.
The rays show signs of chaotic behavior, as they are likely to do in the models
of Flatté et al. (1985), Henyey et al. (1986), and Sun & Kunze (1999). Henyey
et al. (1986, section 2) noted that the individual rays in their calculations are very
chaotic. However, the statistics that they derive from the individual rays appear
to be very stable, and in good agreement with measurements. It may seem para-
doxical that chaotic rays, with the sensitivities in tracing them, can yield stable
and reliable results for the short-wave statistics, but this has been shown to occur
in other studies of ray chaos, for example in acoustics and semiclassical physics
(e.g., Brown et al. 2003).

Atmospheric refraction models have been developed with similar aims of pre-
dicting internal-wave spectra and dissipation rates. Warner & Mcintyre’s (1996,
1999, 2001) models are intended to be used for wave-drag parameterization in
general circulation models and are thus constrained by computational costs to a
much simpler design than the ocean models described above. For example, the re-
fraction of short waves by long waves is ignored, and only the vertical variability
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in the background winds is taken into account for the refraction. The rays are thus
not chaotic, but the wave field is still represented statistically with a generalized
wave packet, defined as a discrete element of the spectrum. Note also the use of
wave-number (and frequency) coordinates in their ray formulation.

Hertzog et al. (2002) and Souprayen et al. (2001) give another statistical wave
formulation. They use a phase-space representation to study the refraction of short
internal waves by a spectrum of long internal waves in the atmosphere. They
include the full space and time-dependence of the long waves in the ray tracing.
The rays have numerous caustics when expressed in the spatial domain (appendix
C of Hertzog et al. 2002), but as noted earlier the phase-space formulation is
free of caustics and the phase-space density of wave-akf{knx, t) is constant
along the ray. Estimates of the energy spectrum in, sayz), are obtained by an
integration ofwN overk, |, x, y (see equation 6 of Hertzog et al. 2002).

In models such as these, the rays wander quasi-randomly through large por-
tions of the allowable phase space. The projection of the rays onto the spatial,
wave-number, or mixed domains results in a dense concentration of caustics, and
Maslov’s method is not practical. The best hope of dealing with caustics in this sit-
uation is to smooth over them. The integration preformed by Hertzog et al. (2002)
smoothes the caustics and seems to be similar in some respects to the treatment
described in Berry (1983, section 3.4). Berry also gives a useful discussion of the
representation of a wave field in phase space.

5.4. Other Applications

When the background is time varying, the ray-tube equations (Equations 7—10)
are not applicable. Some models have been developed for a time-varying but
spatially uniform background, e.g., Lott & Teitelbaum’s (1993) mountain-wave
study. They computed ray and caustic solutions from the stationary phase and
Airy function limits of an integral representation. Ray-tracing models that de-
scribe time-dependent short-wave refraction by a single long-wave packet, or by
a few long-wave packets, include Sonmor & Klaassen (2000), Eckermann (1997),
Walterschied (2000), Zhong et al. (1996), Thorpe (1989), and Broutman & Young
(1986). Sonmor & Klaassen (2000) gave a detailed analysis of short-wave caustics
resulting from long-wave shear. Broutman & Young (1986) used a simple ray for-
mulation involving the volume integral of wave action to identify a mechanism for
the nondissipative damping of the long waves by the short waves. A more detailed
calculation appeared in Broutman & Grimshaw (1988).

Horizontally varying backgrounds have been treated with ray methods for ap-
plications such as internal-wave propagation near fronts and vortices (e.g., Kunze
1985, Dunkerton 1984, Hertzog et al. 2001). Often, important insights are gained
from an inspection of the ray paths without wave-amplitude calculations that would
be complicated by caustics. Pringle & Brink (1999) provide a model with atractable
ray and Airy-function caustic calculation for internal waves over a sloping bottom
in the presence of a horizontally sheared, depth-independent mean flow.
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6. CONCLUSION

We discussed ray models for wave-amplitude calculations of internal waves, stress-
ing ray formulations rather than ray results and practical implementations rather
than formal theory. We gave examples that use spatial coordinates, wave-number
coordinates, and phase-space coordinates, and that are expressed in terms of the
local density or the volume integral of wave action. In most of these cases, the ray
calculation is deterministic. In some cases, the wave amplitudes are initialized sta-
tistically and then followed along deterministic ray tubes (e.g., Warner & Mclintyre
1996), and in other cases the wave amplitudes and the ray tubes are represented
statistically (Henyey et al. 1986, Sun & Kunze 1999, Flatté et al. 1985).

The choice of ray formulation affects not only the difficulty of the ray calcu-
lation, but also the extent to which the waves satisfy slowly varying assumptions.
For example, a spatial caustic can be mapped away by changing some or all of
the spatial coordinates to wave-number coordinates. One formulation rarely suits
the entire problem: the initialization, the ray tracing, the correction of caustics,
the application of dissipative schemes, and the prediction of variables of interest.
An aim of this paper has been to discuss how a combination of formulations and
assumptions has contributed to the development of practical ray-tracing schemes.
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Figure3 Ray paths for the Bihler-Mclntyre model (Section 5.1) of internal-wave prop-
agation from the upper edge of the jet stream through the stratosphere and into the
mesosphere.
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Figure5 Ray paths for nonhydrostatic mountain waves. The calculation corresponds to
the model in figure 1 of Wurtele et a. (1996). The mountain is centered at the origin, and
thewind is in the positive x direction and increases with height.



