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This article presents hybrid, degradation-based reliability models for a single-unit system whose degradation is driven by a semi-
Markov environment. The primary objective is to develop a mathematical framework and associated computational techniques that
unite environmental data and stochastic failure models to assess the current or future health of the system. By employing phase-type
distributions, it is possible to construct a surrogate environment process that is amenable to analysis by exact Markovian techniques
to obtain reliability estimates. The viability of the proposed approach and the quality of the approximations are demonstrated in two
numerical experiments. The numerical results indicate that remarkably accurate lifetime distribution and moment approximations
are attainable.
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1. Introduction

Recent advances in sensor technologies have dramatically
accelerated the use of sensors for continuously monitor-
ing critical engineering components in a host of applica-
tions (e.g., manufacturing equipment, aircraft components,
structures, roadway pavement, power grids, etc.). The ad-
vantage of using sensor data to estimate the current or
future health of a component or system is obvious—such
data obviate the need for failure time observations which
may be scarce. For example, failure time data may be very
limited when systems are highly reliable or when it is pro-
hibitively expensive to run systems to failure. Consequently,
many researchers have been advocating degradation-based
techniques as an alternative to the failure-based paradigm
in order to exploit a plethora of degradation-related data
that are now attainable through advanced sensing technolo-
gies. However, in some applications, the degradation may
be difficult to measure, but the cumulative degradation can
often be characterized as a function of the environment
in which the component resides or the conditions under
which it operates. One example is the degradation of pro-
tective chemical coatings that are exposed to time-varying
environmental conditions. If the environment can be char-
acterized appropriately (by some stochastic process), then
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it may be possible to characterize the cumulative degrada-
tion as a function of time. However, translating environ-
mental data into useful lifetime distributions for reliability
estimation remains a significant challenge. Therefore, there
exists a critical need for novel techniques that can map
environmental sensor data to degradation-based reliability
indices.

In this article, we present hybrid, degradation-based reli-
ability models for a single-unit system whose degradation is
driven by a semi-Markov environment. The primary objec-
tive is to develop a mathematical framework and associated
computational techniques for uniting environmental data
and stochastic failure models to assess the current or future
health of the system. Specifically, we develop a general pro-
cedure that uses information about the sensed environment
to estimate important reliability indices (e.g., the reliabil-
ity function, the residual lifetime distribution, the mean
time-to-failure and the residual mean time-to-failure). Our
procedures are most suitable when either; (i) discrete (and
distinct) environment states can be identified in a natural
way; or (ii) discrete states can be constructed within a con-
tinuous state space in a natural way. The framework extends
a host of so-called random environment models to the case
of semi-Markovian environments that place only mild re-
strictions on the dynamics of the evolving environment.
Moreover, unlike most existing stochastic failure models of
this type, we devise a procedure for using observed data to
estimate the models’ parameters and to produce reliability
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estimates. The need to estimate reliability indices within a
non-failure-based paradigm has become critical as complex
systems are increasingly reliable and prohibitively costly to
run to failure.

The literature related to environment- and degradation-
based reliability, while relatively immature as compared to
that of failure-based reliability, has been growing at a rapid
pace. Generally, work in this area can be partitioned into
two categories broadly construed as physics- and statistics-
based models and probabilistic (or stochastic) models.
Physics-of-failure models are typically deterministic mod-
els that attempt to capture the basic physical principles
underlying the failure process. Some examples are pro-
vided in Lawless (1982), Ebeling (1997), Mishra and Pecht
(2002), and Elsayed et al. (2006). Statistics-based mod-
els are usually developed by collecting data over a pe-
riod of time that includes a reasonable number of sys-
tem failures and then using these data to form the basis
of a statistical model that predicts failure as a function
of the sensor measurement. One example is the Propor-
tional Hazard Model (PHM) developed by Cox in 1972
to analyze medical survival data (Cox, 1972; Cox and
Oakes, 1984). The PHM has been implemented in a variety
of engineering applications, such as aircraft, marine sys-
tems, and machinery (Jardine and Anderson, 1985; Jardine
et al., 1987, 1989; Zhan et al., 2003). An excellent review
of PHMs for preventive maintenance can be found in Kob-
bacy et al. (1997). Gebraeel, et al. (2005) and Gebraeel
and Pan (2008) proposed models that use observed sig-
nals to fit linear, exponential, and polynomial degradation
curves from which they estimated normal residual lifetime
distributions. The results were compared with real degra-
dation signals using frequency measurements from rolling
bearings. Both physics-of-failure models (by definition) and
statistical models (due to the experimental methods used to
develop them) are limited to the specific system under con-
sideration. Furthermore, because it may be difficult and/or
prohibitively costly to run systems to failure, their develop-
ment and implementation may be very time-consuming, as
noted by Elsayed (2000).

Techniques of the second type are typically based on
stochastic shock and wear models, as well as models for
systems that evolve in a random environment. Early work
due to Esary et al. (1973) provided several results for both
wear and shock processes. Çinlar (1977, 1984) generalized
many of the models of Esary et al. (1973) by showing that
the joint process of the unit’s wear level and the state of its
ambient environment may be viewed as a Markov-additive
process and provided several examples. The first consid-
ered the case when the random environment is a finite
Markov process, and the wear is assumed to increase as
a Lévy process. Random shocks were also assumed to oc-
cur at environment transition epochs. The second, which is
similar to our approach, views cumulative wear as a con-
tinuous, additive functional of the operating environment,
and the first time-to-failure is a first passage time for the

cumulative wear process. Other stochastic failure models
also attempt to capture the impact of a randomly varying
environment. An excellent survey of such models is due
to Singpurwalla (1995). Li and Luo (2005) considered a
Markov-modulated shock process wherein the shock inter-
arrival times and the random shock damage are both gov-
erned by a Markov chain. They obtained reliability bounds
for when the inter-arrival times have heavy- or light-tailed
distributions, but their degradation model does not in-
clude a continuous wear component. Mallor and Omey
(2001) considered a generalized shock process and stud-
ied some asymptotic properties. Kharoufeh (2003) and
Kharoufeh and Cox (2005) presented degradation models
that assume a Markovian environment. Klutke et al. (1996)
examined the availability of an inspected system whose
inter-inspection times and wear rates are random. Kiessler
et al. (2002) investigated the limiting average availability of
a system whose time-varying wear rates are governed by
a continuous-time Markov chain. Kharoufeh et al. (2006)
extended the model of Kiessler et al. (2002) by including
damage-inducing shocks that arrive according to a time-
homogeneous Poisson process and deriving the Laplace-
Stieltjes transforms of transient reliability indices. Ebrahimi
(2006) considered a system whose degradation is comprised
of a continuous wear component as well as jumps. The
properties of the model were investigated and bounds were
established for the reliability function. Recently, Özekici
and Soyer (2003, 2004, 2006) analytically examined reliabil-
ity indices in both Markov and semi-Markov environments.

The present article extends the models of Kiessler et al.
(2002), Gebraeel et al. (2005), Kharoufeh and Cox (2005),
and Gebraeel and Pan (2008) in very important ways.
First, it incorporates environmental data for the purpose
of evaluating reliability indices by linking these data to
degradation. Second, it generalizes the models of Kiessler
et al. (2002), Kharoufeh (2003), and Kharoufeh and Cox
(2005) by assuming that the environment does not evolve
as a Markov process but rather as a semi-Markov process.
This generalization allows us to consider environment
dynamics that are not restricted to memoryless holding
times in individual environment states. Third, it provides
a viable, data-driven approach for translating environment
observations into failure time estimates using analytical
stochastic failure models. Specifically, we exploit phase-
type (PH) distributions to approximate environment state
holding times, thereby inducing a Markovian structure
that is amenable to exact analysis by the methods described
in Kharoufeh and Cox (2005) and Kharoufeh et al. (2006).
We provide guidance on selecting an appropriate PH
distribution approximation for each environment holding
time. Finally, using simulated benchmarks, we illustrate
the viability of our approach, and the remarkably high
quality of our approximations, by way of two numerical
experiments. The key innovation of our work is the use
of environmental data to compute lifetime distributions
within a degradation-based paradigm.
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The remainder of the article is organized as follows.
Section 2 describes the semi-Markov environment model
and the stochastic failure models. In Section 3, we
briefly review PH distributions and provide decision rules
for selecting a PH approximation. Section 4 formally
describes our procedure for converting the non-Markovian
environment into one that is amenable to exact analysis by
Markovian techniques. Section 5 presents two randomized
experiments that illustrate the viability of our approach,
while Section 6 provides some concluding remarks and
directions for future work.

2. Model description

This section describes our mathematical model of a single-
unit system (i.e., a component) subject to continuous,
environment-driven degradation. The component is placed
into service at time 0 in perfect working order and degrades
at a rate that depends on the state of its environment, which
evolves as a continuous-time stochastic process with finitely
many discrete states. When the component’s cumulative
degradation reaches a deterministic, critical threshold value
x, the system is said to be failed. We denote the random time
to first reach x by Tx, and we assume that Tx is proper (i.e., as
t → ∞, P(Tx ≤ t) → 1 for each x > 0). The time-varying
degradation rate is modulated by an external stochastic
process commonly termed the random environment.

The random environment is denoted by Z ≡ {Z(t) : t ≥
0} with finite state space S ≡ {1, 2, . . . , K} and 2 ≤ K < ∞.
The process visits some state i ∈ S and spends a random
amount of time there that depends on the next state it will
visit, say, j ∈ S, j 	= i . It chooses j according to a Markov
chain with transition probability matrix P. The time spent
in state i , given that the process next visits state j , has cu-
mulative distribution function (c.d.f.) Hi j . Let Sn denote the
time of the nth transition of the environment process, and
let En ≡ Z(Sn+) be the state of Z just after the nth transi-
tion epoch. The environment is a temporally homogeneous
Semi-Markov process (SMP) with associated Markov re-
newal sequence {(En, Sn) : n ≥ 0} on the state space S. For
each t ≥ 0, n ≥ 0 and i, j ∈ S, define the probabilities:

Gi, j (t) = P(En+1 = j, Sn+1 − Sn ≤ t|En = i ),

and the corresponding semi-Markov kernel matrix G(t) =
[Gi, j (t)]. The environment transitions from state i to state
j 	= i according to a Markov chain on S with transition
probability matrix P where the (i, j )th element of P is given
by

pi, j ≡ P(E1 = j |E0 = i ) = lim
t→∞ Gi, j (t). (1)

Although the transition probabilities ({pi, j }) can be ob-
tained by evaluating the limit of Equation (1), the ker-
nel functions Gi, j (t) may not be known in practice, or
they may be difficult to characterize. We circumvent this

shortcoming by estimating pi, j from observable data in
Section 4.

When Z(t) = i ∈ S, the c.d.f. of the environment’s hold-
ing time in state i , given that it next visits state j 	= i , is

Hi, j (t) = P(Sn+1 − Sn ≤ t | En+1 = j, En = i )
= P(S1 ≤ t | E1 = j, E0 = i ),

where the second equality implies temporal homogeneity.
Therefore, the c.d.f. of the holding time in state i , indepen-
dent of the next state, is

Hi (t) = P(S1 ≤ t | E0 = i ) =
∑
j∈S

Gi, j (t), i ∈ S.

For t ≥ 0 and i, j ∈ S, define the transition functions of
Z by

πi, j (t) ≡ P(Z(t) = j | Z(0) = i ),

and the transition matrix P(t) = [πi, j (t)]. It can be shown
(cf. Kulkarni (1995)) that πi, j (t) satisfies the Markov re-
newal equation:

πi, j (t) = H̄i (t) 1{i= j} +
∑
k∈S

∫ t

0
πk, j (t − v) Gi,k(dv), (2)

where H̄i (t) = 1 − Hi (t), the indicator function 1{i= j} as-
sumes a value of one if i = j and is zero otherwise, and
the integral on the right-hand side of Equation (2) is the
convolution of πk, j with Gi,k. In general, it is difficult to ob-
tain the transition functions, even when the kernel matrix
is known.

Next, define a rate function r : S → (0, ∞) such that
whenever Z(t) = i , the system degrades at a constant rate
r (i ), r (i ) > 0 for i = 1, 2, . . . , K . That is, the component’s
degradation rate is semi-Markov modulated. We pause
here to make two remarks. First, it is important to note that
our technique does not require, or assume, that the overall
degradation path is linear in form. Rather, the imposed
assumption is that the rate of degradation is constant
within a given environment state. This framework allows us
to characterize the degradation process by a set of mean
rates of degradation as a function of time (or usage).
The environment-modulated rates lead to piece-wise
linear sample paths of degradation that can approximate
common degradation patterns (e.g., linear, exponential,
polynomial or other forms). For example, once a crack
has been initiated in a metallic specimen, the crack grows
exponentially in the number of load cycles (see Virkler et
al. (1979)). The degradation pattern can generally be rep-
resented by three distinct regions. The first region exhibits
mild linear growth pattern until reaching an inflection
point at which the degradation grows at a moderately
higher rate. After growing moderately for some time, the
degradation path reaches a second inflection point beyond
which the crack growth rate is very high until reaching
a critical failure threshold (e.g., the fracture point of the
material). It was shown in Kharoufeh and Cox (2005) that
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such a nonlinear degradation path can be approximated
using a piece-wise linear path with three distinct rates
associated to the three phases of crack length growth. They
developed a statistical procedure to: (i) estimate the appro-
priate number of environment states; and (ii) estimate the
degradation rate in each environment state. In practice, the
degradation rate associated with each environment state
must be estimated with great care—in consultation with
subject matter experts—to ensure consistency with phys-
ical principles. Second, the assumption of strictly positive
degradation rates can be justified as follows. It is presumed
that, whenever the unit is in operation, degradation accrues
to at least some degree; i.e., the component experiences
day-to-day wear from normal usage. On the other hand,
in some scenarios, even if the system is not in use, the
ambient environment might induce degradation (e.g.,
the degradation of protective chemical coatings that are
exposed to the elements). We do not consider environment
states that improve the condition of the component.

The cumulative degradation up to time t, denoted by
X(t), is

X(t) = X(0) +
∫ t

0
r [Z(u)]du, (3)

where we assume X(0) ≡ 0, and∫ t

0
|r [Z(u)]|du < ∞ a.s.,

so that X(t) is well defined for each t ≥ 0. The pro-
cess, X ≡ {X(t) : t ≥ 0}, is termed the cumulative degra-
dation process. The positivity of the degradation rates,
r (1), r (2), . . . , r (K), ensures that the sample paths of X are
almost surely monotone increasing, and consequently, that
events {X(t) ≤ x} and {Tx ≥ t} are equivalent. The system’s
random lifetime is given by

Tx = inf{t > 0 : X(t) ≥ x}, (4)

or the first time the degradation process X reaches x. Let

F(x, t) ≡ P(Tx ≤ t) = 1 − P(X(t) ≤ x),

denote the unconditional c.d.f. of the unit’s lifetime, and let

Fi (x, t)≡P(Tx ≤ t | Z(0) = i ) = 1 − P(X(t) ≤ x | Z(0) = i ),

be the conditional c.d.f. of Tx, given the initial state of the
environment. Denote by E[Tn

x ] the nth moment of Tx, for
n ≥ 1, and let its conditional counterpart be denoted by
Ei [Tn

x ] ≡ E[Tn
x |Z(0) = i ].

For a semi-Markov environment process Z, comput-
ing F(x, t) and Fi (x, t) is non-trivial due to the difficulty
in obtaining πi, j (t) of Equation (2). However, if Z is a
Continuous-Time Markov Chain (CTMC) on the state
space S, the Laplace-Stieltjes Transforms (LSTs) of F(x, t),
Fi (x, t), E[Tn

x ] and Ei [Tn
x ], with respect to x, can be derived

explicitly (see Kharoufeh and Cox (2005) and Kharoufeh
et al. (2006)). Let α be the initial distribution vector of the

environment, e is a column vector of ones, and ei is a col-
umn vector whose i th entry is unity and all others are zero.
The unconditional, full lifetime distribution is given by

F(x, t) = P(Tx ≤ t) = 1 − αV(x, t) e

where V(x, t) = [Vi , j (x, t)] is a K × K matrix with

Vi , j (x, t) = P(X(t) ≤ x, Z(t) = j |Z(0) = i ),

the joint probability that, at time t, the degradation of the
system has not exceeded x, and the environment process is
in state j ∈ S, given that the environment was initially in
state i ∈ S. The conditional c.d.f. of Tx is

Fi (x, t) ≡ Pi (Tx ≤ t) = 1 − e′
i V(x, t)e, (5)

where e′
i denotes the transpose of ei . Let the LSTs of F(x, t)

and Fi (x, t), with respect to x, be

F̃(u, t) ≡
∫ ∞

0
e−uxF(dx, t), Re(u) > 0,

and

F̃i (u, t) ≡
∫ ∞

0
e−uxFi (dx, t), Re(u) > 0,

respectively. Using Theorem 3 of Kharoufeh et al. (2006),
it can be shown that

F̃(u, t) = 1 − α exp[(Q − uRd)t]e, (6)

and

F̃i (u, t) = 1 − e′
i exp[(Q − uRd)t]e (7)

where Q is the generator matrix of the CTMC, Rd =
diag(r (1), r (2), . . . , r (K)), and exp(A) denotes exponenti-
ation of the square matrix A.

While these results are useful, they are applicable only
when the environment evolves as a CTMC (i.e., when the
environment spends an exponential time in each state be-
fore it transitions to another state). However, in reality,
these state holding times are general, non-negative random
variables whose distributions are (in most cases) unknown.
In fact, the assumption of memoryless holding time dis-
tributions may be completely unwarranted in many appli-
cations. Our aim is to provide a means by which to use
sensor data, especially environment-related data, to char-
acterize the holding time distributions and the environ-
ment’s transition rates so that Equation (6) or Equation
(7) can be directly applied to compute reliability indices.
Our technique requires observations of the environment’s
current state, its transition times, and observation of its
subsequent state. These will be used in an automated
procedure to estimate holding time distributions by PH
distributions. By doing so, we generalize the models pre-
sented in Kiessler et al. (2002), Kharoufeh (2003), Gebraeel
et al. (2005), Kharoufeh and Cox (2005), and Gebraeel and
Pan (2008) to account for semi-Markovian environments.
Sections 3 and 4 describe our approach for approximating
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the c.d.f. F(x, t) (or Fi (x, t)) and its moments within the
semi-Markov framework presented in this section.

3. PH approximations

Here, we review the most commonly used techniques for
approximating the c.d.f. of a non-negative random vari-
able by a PH distribution. For a complete introduction to
PH distributions, the reader is referred to Neuts (1981).
A non-negative random variable, Y, is said to have a PH
distribution if it represents the time to absorption of some
Markov chain. If the chain evolves in discrete (continuous)
time, then Y is a discrete (continuous) PH random variable.
Owing to the fact that our environment evolves in continu-
ous time, we review only the continuous version here.

Let {φ(t) : t ≥ 0} be a CTMC with finite state space M =
{1, 2, . . . , k + 1} where states 1, 2, . . . , k are transient, and
state k + 1 is absorbing. The infinitesimal generator matrix
of {φ(t) : t ≥ 0} is

Q∗ =
[

T T0

0 0

]
, (8)

where T is a k × k matrix with Ti,i < 0 and Ti, j ≥ 0, j 	= i ,
T0 is a column vector, 0 is the zero vector, and Te + T0 = 0.
The vector β0 = (β, βk+1) is the initial distribution vector
of Q∗; i.e., β is a 1 × k row vector, and βk+1 is the probability
that the Markov process begins in the absorbing state k + 1.
We assume throughout that β0 = (β, 0). The vector β0
satisfies the usual condition β0 e = 1. Let Y be the time
to absorption of Q∗. It is not difficult to verify (cf. Neuts
(1981)) that the c.d.f. of Y is

F(y) ≡ P(Y ≤ y) = 1 − β exp(Ty) e, (9)

and the nth moment of Y is

E[Yn] = (−1)n n! T−n e, n ≥ 1.

The distribution function (9) is a PH distribution with
representation (β, T); therefore, constructing a PH approx-
imation of the c.d.f. of a non-negative random variable
X involves determining the pair (β, T). PH distributions
are attractive because they can approximate the c.d.f.
of any non-negative random variable. Moreover, they
can facilitate tractability when analyzing non-Markovian
stochastic processes. That is, by supplementing the original
non-Markov process with the phase variable, φ(t), one can
obtain a Markovian structure so that standard analysis
techniques for Markov processes can be employed (cf.
Whitt (1984), Altiok (1985), Perros (1994), and Osogami
and Harchol-Balter (2006)). For these two primary
reasons, we will employ PH distributions to approxi-
mate the environment state holding time distributions,
Hi (t), i = 1, 2, . . . , K . By doing so, we will replace our
semi-Markov environment by a surrogate (expanded)

environment that is Markovian so that Equations (6) and
(7) can be used to compute reliability indices.

3.1. Specific PH Distributions

The general k-phase PH distribution (denoted PHk) has
an associated Markov process with k states (or phases)
and a single absorbing state k + 1. The time spent in a
transient state i is exponentially distributed with parameter
µi , i = 1, 2, . . . , k. Once state k + 1 is reached for the first
time, the process is absorbed. There are no restrictions on
the transitions of the process until the time of absorption.
That is, a visit to state i , 1 ≤ i ≤ k, can be followed by a
visit to any other transient state before absorption

By contrast, the k-phase Coxian distribution (denoted
Ck) is the distribution of the time to absorption of a Markov
chain with k phases that are visited sequentially, but ab-
sorption is possible at the end of each phase. As for the
PHk distribution, the time spent in phase i is exponential
with rate µi , i = 1, 2, . . . , k, so this PH distribution has the
representation

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−µ1 a1µ1 0 0 0
0 −µ2 a2µ2 0 0

0 0
. . . . . . 0

...
...

. . . −µk−1 ak−1µk−1

0 0 . . . 0 −µk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (10)

with β = (1, 0, . . . , 0) and T0 = ((1 − a1)µ1, (1 − a2)µ2,

. . . , (1 − ak−1)µk−1, µk)′, where ai is the transition prob-
ability from i to i + 1, i = 1, 2, . . . , k − 1, and 1 − ai is the
probability of absorption immediately following phase i .
The Coxian distribution is especially attractive because it
can exactly represent any distribution that has a rational
LST (Cox, 1955).

The k-phase Erlang distribution (denoted Ek) is a spe-
cial case of the Ck distribution in which µi = µ for i =
1, 2, . . . , k, and all the transient phases must be visited
sequentially before being absorbed into phase k + 1 (i.e.,
ai = 1, i = 1, 2, . . . , k − 1) so that absorption is not possi-
ble until after the kth phase has been completed. It is clear
that the k-phase Erlang is the sum of k independent and
identically distributed exponential random variables, each
having parameter µ. Its representation (β, T) is given by

T =

⎛⎜⎜⎜⎜⎜⎜⎝

−µ µ 0 0 0
0 −µ µ 0 0
0 0 −µ µ 0
...

...
. . . . . . . . .

0 0 0 . . . −µ

⎞⎟⎟⎟⎟⎟⎟⎠ , (11)

with β = (1, 0, . . . , 0) and T0 = (0, 0, . . . , 0, µ)′.
The k-phase generalized Erlang distribution, as defined

by Marie (1980), is identical to the k-phase Erlang except
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that absorption is possible at the end of phase 1. That
is, {φ(t) : t ≥ 0} transitions from phase 1 to phase 2 with
probability a and is absorbed after phase 1 with probability
1 − a. However, if phase 2 is reached, all subsequent phases
are visited sequentially until absorption into state k + 1.
Therefore, the representation of this PH distribution is

T =

⎛⎜⎜⎜⎜⎜⎜⎝

−µ aµ 0 0 0
0 −µ µ 0 0
0 0 −µ µ 0
...

...
. . . . . . . . .

0 0 0 . . . −µ

⎞⎟⎟⎟⎟⎟⎟⎠ , (12)

with β = (1, 0, . . . , 0) and T0 = ((1 − a)µ, 0, . . . , 0, µ)′.
Any one of the PHk, Ck, Ek, and k-phase generalized

Erlang distributions can be used to approximate the c.d.f.
of an arbitrary, non-negative random variable. However,
selecting the best distribution for a given application is
not straightforward. Next, we provide some guidelines for
choosing an appropriate approximation.

3.2. PH approximation selection

PH distribution selection is a critical aspect of our proposed
technique, and three important criteria must be considered
when making the selection. First, the approximations must
use the least possible number of phases while adequately
representing the environment sojourn times. Second, the
approximation should accommodate an automated proce-
dure so that only observed sensor data is needed to con-
struct the approximation. Finally, the computational effort
should be minimal.

Suppose that X is a non-negative random variable with
unknown c.d.f. H. We want to approximate X by a PH
random variable, say Y, with c.d.f. Ĥ. Marie (1980), Altiok
(1985), Johnson (1993), Perros (1994), and Osogami and
Harchol-Balter (2006) all provide excellent summaries of
techniques that can be used to obtain PH distribution ap-
proximations. With the exception of Osogami and Harchol-
Balter (2006), most techniques require an estimate of the
squared coefficient of variation of X, c2 = σ 2/m2

1, where
m1 and σ 2 are the mean and variance of X, respectively.
(In practice, we generally will not have m1 and σ 2 at our
disposal; therefore, their sample estimators must be used
to estimate c2.) Subsequently, one may choose moment-
matching, maximum likelihood or so-called minimum-
distance techniques. It is important to note that maximum
likelihood and minimum-distance techniques require solv-
ing a nonlinear optimization problem, whereas moment-
matching techniques require only the true, or estimated,
lower moments of X. For this reason, we consider only
moment-matching techniques. In what follows, let m j ,
j = 1, 2, 3, denote the j th moment of X.

Osogami and Harchol-Balter (2006) provide a nice sum-
mary of the most promising moment-matching techniques,

the majority of which match the first two or three mo-
ments of X to the moments of a PH distribution. There
is little dispute (see Aldous and Shepp (1987)) that the
k-phase Erlang distribution provides very reliable approx-
imations when c2 ≤ 0.5. However, when c2 > 0.5, it is not
obvious which technique is best. For example, Marie (1980)
used two moments to match a generalized Erlang when
c2 < 1, and matched two moments to a C2 distribution
when 0.5 ≤ c2 ≤ 1.0. A two-moment matching algorithm
using a k-phase Erlang was used for the range 0 < c2 ≤ 0.5.
Telek and Heindl (2003) matched three moments of X to
their two-phase canonical acyclic PH distribution when
0.5 ≤ c2 ≤ 1. However, for this range, their technique re-
quires bounds on m3 of the form:

3m3
1

(
3c2 − 1 +

√
2(1 − c2)

3
2
) ≤ m3 ≤ 6m3

1c2.

By contrast, Marie (1980) estimated the three parameters
of C2 using the first two moments, m1 and m2, with

µ1 = 2
m1

, µ2 = 1
m1c2

, a = 1
2c2

,

resulting in a C2 distribution representation with β =
(1, 0, 0) and

T =
(−µ1 aµ1

0 −µ2

)
.

Whitt (1984) showed that, when c2 > 1, it is important
to match the first three moments to reduce the maximum
relative error of the approximation. He used a two-branch
hyper-exponential distribution, whereas Altiok (1985) used
a C2 distribution, and Telek and Heindl (2003) used a
two-phase canonical acyclic PH distribution while match-
ing three moments. The hyper-exponential distribution of
Whitt (1984) requires the estimation of four parameters
while the techniques of Altiok (1985) and Telek and Heindl
(2003) require only three parameters. However, the latter
two impose the requirement:

m3 >
3(c2 + 1)2m3

1

2
.

For our semi-Markov environment model, it is critical
to minimize the number of parameters estimated from the
observed data. Therefore, a PH distribution that uses a
minimal number of phases is ideal. To date, the question of
determining a minimal representation with respect to the
class of all PH distributions remains open. However, Os-
ogami and Harchol-Balter (2006) recently mapped general
distributions to representations that are minimal with re-
spect to the class of acyclic PH distributions (to which the
Ck and k-phase Erlang distributions belong) when match-
ing three moments. As previously noted, Telek and Heindl
(2003) examined canonical forms, a subclass of acyclic
PH distributions, that also admit minimal representations.
Note that the two-moment approximation of Marie (1980)
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Table 1. PH approximation selection criteria

Range of c2 PH approximation

0 < c2 < 0.5 2-Moment, k-phase generalized Erlang
0.5 ≤ c2 ≤ 1 2-Moment, 2-phase Coxian
c2 > 1 3-Moment, 2-phase Coxian

for 0 < c2 ≤ 0.5 provides a minimal representation when
matching only two moments.

By considering the guidance provided by Marie (1980),
Whitt (1984), Altiok (1985), Perros (1994), and Osogami
and Harchol-Balter (2006), Table 1 summarizes our criteria
for selecting the PH approximation type based on the true,
or estimated, value of c2.

In what follows, we summarize the specific calculations
needed to match moments using the three types of PH
approximations of Table 1. This discussion is largely con-
tained in Marie (1980), Altiok (1985), Perros (1994), and
Osogami and Harchol-Balter(2006).

3.2.1. 2-moment, k-phase generalized Erlang distribution
When 0 < c2 < 0.5, we will approximate the state holding
time distribution, H, by a 2-moment, k-phase generalized
Erlang approximation where the integer k (k > 1) is chosen
such that (see Perros (1994)):

1
k

≤ c2 ≤ 1
(k − 1)

.

Recall that a is the probability that {φ(t) : t ≥ 0} tran-
sitions from phase 1 to phase 2, and µ is the common
rate of the k exponential phases. These two parameters are
obtained by

a = 1 − 2kc2 + k − 2 − (k2 + 4 − 4kc2)1/2

2(c2 + 1)(k − 1)
, (13)

and

µ = 1 + (k − 1)a
m1

, (14)

where m1 must be estimated from observed data. Subse-
quently, a and µ are used directly in the representation of
Equation (12).

3.2.2. 2-moment, 2-phase Coxian distribution
When 0.5 ≤ c2 ≤ 1, a 2-moment, 2-phase Coxian distribu-
tion is used to approximate H. The representation Equation
(10) requires the exponential rates µi , i = 1, 2, . . . , k, and
the absorption probabilities, (1 − ai ). Following a moment-
matching algorithm similar to that for the 3-moment, 2-
phase Coxian distribution (discussed next), the parameters
of the 2-moment variant of the 2-phase Coxian are

µ1 = 2/m1; µ2 = 1/m1c2; a = 1/2c2,

where m1 and c2 are estimated from the observed data. It is
important to note that using either variant of the 2-phase

Coxian distribution as a PH approximation helps to limit
the growth of the surrogate environment state space.

3.2.3. 3-moment, 2-phase Coxian distribution
When c2 > 1, the c.d.f. H is approximated by a 3-moment,
2-phase Coxian distribution. As noted by Whitt (1984) and
Altiok (1985), the third moment is significant when c2 >

1. By taking successive derivatives of the LST of the C2
distribution, it has been shown in Altiok (1985) that

m1 ≡ E[Y] = 1
µ1

+ a
µ2

, (15)

m2 ≡ E[Y2] = 2(1 − a)

µ2
1

− 2aµ1µ2 − 2a(µ1 + µ2)2

µ2
1µ

2
2

, (16)

and

m3 ≡ E[Y3]

= 6(1 − a)

µ3
1

− 12aµ1µ2(µ1 + µ2) − 6a(µ1 + µ2)3

µ3
1µ

3
2

. (17)

As in Altiok (1985), if we set A = µ1 + µ2 and B = µ1µ2,
substitute, and simplify, the parameters of the 3-moment,
2-phase Coxian distribution are given by

µ1 = A+
√

A2 − 4B
2

, µ2 = A− µ1,

a = µ−1
1 µ2(m1µ1 − 1). (18)

We statistically estimate the values m1, m2, and m3 and
use these estimates in equations Equation (15) to (18) to
obtain parameters µ1, µ2, and a for use in representation
Equation (10).

In the next section, we present our formalized procedure
for approximating environment state holding times and us-
ing these within a Markovian framework to obtain lifetime
distribution approximations. Subsequently, the quality of
these approximations will be assessed through numerical
experiments in Section 5.

4. Approximation procedure

In this section, we formalize our procedure for construct-
ing a surrogate Markovian environment process to replace
the observed semi-Markov environment. To this end, let us
clarify a few assumptions. First, we assume the availability
of sensor data that provides information about the current
state of the environment (e.g., load, speed, temperature,
pressure, humidity, etc.) in which the unit resides, or under
which it operates, while the degradation status is unobserv-
able. Second, the environment is assumed to evolve as a
finite, irreducible SMP that directly influences the degra-
dation process {X(t) : t ≥ 0}; however, no assumptions are
made regarding the probability law of the latter. Third, we
assume that the environment’s true state space can be par-
titioned into K distinct states such that S = {1, 2, . . . , K},
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2 ≤ K < ∞. However, if K is not known a priori, it can
be estimated by using a simple clustering scheme, such as
that described in Kharoufeh and Cox (2005). Associated
with each environment state is a known, positive degrada-
tion rate, r ( j ), so that when Z(t) = j , the system degrades
linearly at rate r ( j ). When Z can be modeled as a CTMC,
Equations (6) and (7) require the environment’s initial dis-
tribution vector α, the diagonal matrix of degradation rates
Rd, and the infinitesimal generator matrix Q. However, be-
cause we relax the Markovian assumption here, our aim
is to obtain a surrogate Markovian environment Ẑ with
state space Ŝ and generator matrix Q̂ by approximating
each state holding time distribution by a 2- or k-phase PH
distribution, depending on the estimated value of c2, as de-
scribed in Section 3. Because each PH approximation uses
at least two phases, we have that |Ŝ| > |S|. For instance,
if |S| = 3, and each holding time distribution is approx-
imated by a 2-phase PH distribution, then the surrogate
environment process Q̂ will have 3 + 2 × 3 = 9 states. Note
that the degradation rate matrix, Rd, must also be replaced
by R̂d, which has the same dimension as Q̂.

Assume the homogeneous environment process {Z(t) :
t ≥ 0} is perfectly observable over some time interval [0, τ ],
and that the unit has not failed in this interval. The en-
vironment is continuously observed up to time τ , and at
each transition epoch, we record the current and subse-
quent state of the random environment. Let R(i, j ) denote
the true (unknown) rate at which the environment transi-
tions from state i ∈ S to state j ∈ S, j 	= i . Let Nτ (i, j ) be
the number of transitions from i to j in time τ , let Nτ (i )
be the number of visits to state i , and let Wτ (i ) be the total
time spent by Z in state i during [0, τ ]. It can be shown (cf.
Basawa and Rao (1980)) that, for each i ∈ S and j 	= i , as
τ → ∞:

Nτ (i, j )
Wτ (i )

→ R(i, j ) a.s.,

Therefore, for τ sufficiently large, we approximate R(i, j )
by

R(i, j ) ≈ R̂τ (i, j ) = Nτ (i, j )
Wτ (i )

, j 	= i, (19)

and set

R̂τ (i, i ) = −
∑
j 	=i

R̂τ (i, j ), i ∈ S, (20)

where R̂τ (i, i ) < 0. Now let P̂ denote the estimated transi-
tion matrix of {En : n ≥ 0}, the Markov chain embedded at
environment transition epochs. The statistical estimator of
the (i, j )th element of P̂ is

p̂i, j =
{

R̂τ (i, j )
−R̂τ (i,i )

if j 	= i ,

0 if j = i .
(21)

For n ≥ 1 and i ∈ S, let Dn(i ) be the duration of the
environment’s nth visit to state i , and assume that Dn(i ) →

D(i ) weakly as n → ∞, where D(i ) is the unconditional
holding time in state i with proper c.d.f. Hi . For each i ∈ S,
the kth moment and variance of D(i ) are estimated by

mk(i ) ≡ 1
Nτ (i )

Nτ (i )∑
n=1

Dk
n(i ), k ≥ 1, (22)

and

s2
i ≡ 1

Nτ (i ) − 1

Nτ (i )∑
n=1

[Dn(i ) − m1(i )]2 , (23)

respectively. Note that Equation (22) is the sample kth
moment of the holding time in state i during [0, τ ],
and Equation (23) is the sample variance of the holding
time. The PH distribution selection procedure described
in Section 3 requires the sample squared coefficient of
variation:

ĉ2
i = s2

i

m2
1(i )

, i ∈ S. (24)

We now formalize the full procedure to obtain Ẑ, Q̂, and
R̂d.

Step 0. Initialization.
Select a sufficiently large observation time τ .

Step 1. Observe the environment process on [0, τ ].
During the observation period, for each (i, j ) such
that j 	= i , record the number of transitions from
i → j , Nτ (i, j ). Also record the duration of each
visit to state i , Dn(i ) for n = 1, 2, . . . , Nτ (i ). The
total time spent in state i during [0, τ ] is approxi-
mated by

Wτ (i ) ≈
Nτ (i )∑
n=1

Dn(i ), i ∈ S,

since Wτ (i ) is (almost surely) bounded above by the
sum on the right-hand side.

Step 2. Estimate the required parameters.
Using Nτ (i ), Dn(i ), n = 1, . . . , Nτ (i ), Nτ (i, j ) and
Wτ (i ), estimate the transition matrix P̂ using Equa-
tions (19) to (21). For each i ∈ S, compute the first
three sample moments mk(i ), k = 1, 2, 3, the sam-
ple variance s2

i , and the sample squared coefficient
of variation ĉ2

i using Equations (22) to (24).
Step 3. Select the PH distribution approximation for Hi .

Using mk(i ), k = 1, 2, 3, and ĉ2
i , i ∈ S, select the ap-

propriate PH distribution approximation in accor-
dance with Table 1. Using the moment-matching
methods described in Section 3, compute the ma-
trix Ti for each i ∈ S. Note that T0

i follows directly
from Ti since Ti e + T0

i = 0. Therefore, for each
t ≥ 0, the PH approximation of Hi is given by

Ĥi (t) = 1 − β exp(Ti t)e, i ∈ S.
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Step 4. Construct surrogate environment process.
Suppose |S| = K and that Hi is approximated by a
PH distribution with ki phases. That is, an absorb-
ing Markov chain with ki + 1 states replaces the
original state i . Therefore, the surrogate Marko-
vian environment, {Ẑ(t) : t ≥ 0}, has state space Ŝ
with cardinality:

|Ŝ| = K +
K∑

i=1

ki .

For this reason, it is important to use the smallest
possible integer ki for each i ∈ S. Next, construct
the surrogate, Ŝ-valued CTMC {Ẑ(t) : t ≥ 0} with
generator matrix Q̂ given by

Q̂ =

⎛⎜⎜⎜⎜⎝
A11 A12 · · · A1K

A21 A22 · · · A2K

...
...

. . .
...

AK1 AK2 · · · AK K

⎞⎟⎟⎟⎟⎠
where

Ai i =
(

Ti T0
i

0 c R̂τ(i, i )

)
,

for j 	= i ,

Ai j =
(

0 0

c R̂τ (i, j ) 0

)
,

and c is a very large, positive real number. The
parameter c is needed in the numerical implemen-
tation to ensure that {Ẑ(t) : t ≥ 0} instantaneously
transitions to the next state chosen by P̂ when the
environment’s sojourn in state i ∈ S is complete.
Note that Ti is a ki × ki matrix while T0

i is a ki -
dimensional column vector. The degradation rate
matrix must also be expanded accordingly. The new
matrix is of the form

R̂d =

⎛⎜⎜⎜⎜⎝
� (r (1)) 0 · · · 0

0 � (r (2)) · · · 0
...

...
. . .

...
0 0 · · · � (r (K))

⎞⎟⎟⎟⎟⎠
where �(a) is a diagonal matrix whose diagonal
entries are all a.

Step 5. Approximate the lifetime distribution function and
moments.
By replacing the SMP environment {Z(t) : t ≥ 0}
with state space S and generator Q by the CTMC
environment {Ẑ(t) : t ≥ 0} with state space Ŝ and
generator Q̂, the LST of the unconditional lifetime
distribution is given by

F̃(u, t) = 1 − α exp[(Q̂ − uR̂d)t]e, (25)

and its conditional counterpart is

F̃i (u, t) = 1 − e′
i exp[(Q̂ − uR̂d)t]e. (26)

Moreover, the LST of the nth moment of Tx, con-
ditioned on the initial state of the environment, is
obtained by (see Kharoufeh et al. (2006))

Ẽi
[
Tn

u

] = n! e′
i

(
uR̂d − Q̂

)−n
e, n ≥ 1. (27)

While the procedure described here appears somewhat
involved, it has the advantage of requiring only event times
and count data for the environment process. There is no
need for failure time observations, or for degradation ob-
servations (besides those that will be needed initially to
estimate the rates r ( j ), j ∈ S). The next section provides
two numerical experiments to assess the quality of our ap-
proximations and to illustrate the viability of the approach.

5. Numerical experiments

This section provides two extensive numerical experiments
to assess the quality of distribution approximations ob-
tained by the procedures described in Sections 3 and 4.
In lieu of real data describing the evolution of a random
environment, we randomly generated 1000 test scenarios
for each of the two experiments. Specifically, we: (i) chose
holding time distributions (Hi ) for SMP environments and
randomized their parameter values; (ii) randomly gener-
ated the transition probability matrix (P) of the discrete-
time Markov chain embedded at transition epochs; and (iii)
randomly generated the degradation rate (r (i )) associated
with the i th environment state. To the outside observer, the
SMP process that drives the environment’s evolution is un-
known. Therefore, we observed only the states visited by
the environment and the time spent in each state over a
time interval [0, τ ]. Subsequently, the statistical estimators
described in Section 4 were calculated. From these values,
PH distribution approximations and the surrogate (Marko-
vian) environment process were constructed to approximate
the c.d.f. of Tx.

Let F̂i (x, t) denote the approximate lifetime c.d.f. gener-
ated by the surrogate environment {Ẑ(t) : t ≥ 0} with gen-
erator matrix Q̂ and degradation matrix R̂d. Denote by
Fi (x, t) the c.d.f. of Tx obtained by simulating the degrada-
tion process, {X(t) : t ≥ 0}, until it first reaches the critical
threshold value x. For each of the 1000 scenarios, and for
both experiments, Fi (x, t) was constructed using 20 000 ob-
servations of Tx, given that Z(0) = i . Therefore, we view the
simulated c.d.f. as the completely specified, hypothesized
benchmark. To compare F̂i (x, t) and Fi (x, t), we employed
the non-parametric two-sided Kolmogorov-Smirnov (KS)
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goodness-of-fit test, which tests the hypothesis:

H0 : F̂i (x, t) = Fi (x, t), for all t ∈ R,

H1 : F̂i (x, t) 	= Fi (x, t), for at least one t ∈ R.

The distribution F̂i (x, t) was sampled on a finite set T ⊆
R+ ≡ [0, ∞) whose range depends on observed simulated
outcomes. The test statistic for the two-sided KS test (see
Conover (1999), p. 431). is given by

ε = sup
t∈T

∣∣Fi (x, t) − F̂i (x, t)
∣∣ ,

the maximum absolute deviation between the two distribu-
tions over the set T. The null hypothesis, H0, is rejected at
the α level of significance if ε > ε∗ where ε∗ is the (1 − α)
quantile of the test statistic. Let n = |T| denote the cardi-
nality of T. At the 0.05 level, the critical value ε∗ is given
by

ε∗ = 1.36 n−1/2,

if n > 40, and if n ≤ 40, the critical value is obtained from
Conover (1999, Table A13, p. 547). All hypothesis tests were
performed at the α = 0.05 level of significance.

Numerical values of F̂i (x, t) were obtained via the inverse
Laplace transform:

F̂i (x, t) = L−1(u−1 F̃i (u, t)), (28)

where F̃i (u, t) is given by Equation (26), and L−1 denotes
the inverse Laplace transform operator. For illustrative pur-
poses, we also assess the quality of the lower moment ap-
proximations given by

Ê[Tn
x |Z(0) = i ] = L−1 (

u−1Ẽi [Tn
u ]

)
, n ≥ 1, (29)

where Ẽi [Tn
u ] is given by Equation (27). The inverse Laplace

transforms (28) and (29) were obtained by coding a numer-
ical Laplace transform inversion algorithm due to Abate
and Whitt (1995). This algorithm and the discrete-event
simulation models were coded in the MATLAB R© com-
puting environment and executed on a personal computer
equipped with an Intel R© CoreTM 2 Duo CPU operating at
3.00 GHz with 2.00 GB of RAM.

5.1. Experiment 1: degradation of a turbine blade

Consider an aircraft engine turbine blade that operates at
high temperatures and experiences centrifugal stresses. The
rotational speed of the blade varies depending on uncer-
tain prevailing conditions. For example, the engine load
varies as the aircraft is exposed to different flight condi-
tions (i.e., takeoff, maximum climb, maximum cruise, loi-
ter, flight idle, taxi, ground idle and cutoff), or at different
flight altitudes. Moreover, if inclement weather is encoun-
tered mid-flight, the aircraft may change altitude, acceler-
ate, or decelerate to minimize the effects of turbulence. The
induced centrifugal stresses can lead to elongated particles
at the microstructure level that can result in degradation of
fatigue strength that results in voids and crack initiation in

Table 2. Summary input data for the turbine blade experiment

Rotation Holding time Degradation
State speed (rpm) distribution growth rate

1 1000–4999 Beta (a, b) r (1) ∼ U(0, 5)
2 5000–8999 Beta (a, b) r (2) ∼ U(0, 5)
3 9000–12 999 Weibull (c, d) r (3) ∼ U(0, 5)
4 13 000–15 999 Weibull (c, d) r (4) ∼ U(0, 5)

the blade and continued loading exacerbates the degrada-
tion. This phenomenon has been documented, for exam-
ple, in Persson and Persson (1993), Tamarin (2002), Ejaz
and Tauqir (2006). The blade’s dynamic and stochastic ro-
tational speed can be viewed as a proxy for the induced
stresses. Suppose the degradation process {X(t) : t ≥ 0}
tracks the degradation level (e.g., the length of a crack)
of the blade, and let Z(t) denote the rotational speed of the
blade at time t. We partition the possible range of speeds
into four non-overlapping intervals that describe four dis-
tinct operating states (or flight conditions). The state space
of the environment is S = {1, 2, 3, 4}. The critical thresh-
old for the degradation level is x = 20.0 units. The state
descriptions, holding time distributions, and degradation
growth rates are summarized in Table 2.

In Table 2, Beta (a, b) denotes a beta probability distri-
bution with shape parameters a and b. (Note that the beta
distribution does not have a closed-form c.d.f.). The pa-
rameter values a and b were randomly generated for each
of the 1000 scenarios so that:

a ∼ U(1, 5) and b ∼ U(1, 5).

This range of values allows for a variety of distribution
shapes including right-skewed, left-skewed and symmetric
forms. Weibull (c, d) denotes a Weibull distribution with
shape parameter c and scale parameter d. These parameter
values were also randomly generated for each of the 1000
scenarios as follows:

c ∼ U(0.5, 6) and d ∼ U(0.5, 6).

The transition probability matrix of the SMP environment
was generated by first creating a 4 × 4 matrix B = [bi, j ] such
that bi, j ∼ U(0, 1), j 	= i , and bi,i = 0, which was subse-
quently rescaled to ensure a stochastic matrix. Specifically,
the (i, j )th element of the randomly generated transition
matrix P is obtained by

pi, j = bi, j∑4
j=1 bi, j

, i, j ∈ S,

for each of the 1000 scenarios. From Table 2, it is seen that
the matrix of degradation rates is also randomly generated
in each case.

We assume Z begins in the first state with a proba-
bility of one; therefore, the initial probability vector is
e′

1 = (1, 0, 0, 0). We simulated Z and observed its evolution



Semi-Markov models 609

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

F
(x

,t)

Simulated c.d.f.
Approximated c.d.f.

Fig. 1. Simulated versus approximated lifetime c.d.f.: turbine blade experiment.

for τ = 10 000 time units. From the simulated environment,
we estimated the parameters P̂, mk(i ), s2

i , ĉ2
i , i = 1, 2, 3, 4,

k = 1, 2, 3, using Equations (19) to (24). Subsequently, we
applied the criteria of Table 1 to select PH distributions for
each state i and constructed Q̂ and R̂d using the procedure
described in Section 4. For the sake of brevity, we do not
include here the PH representations (β, Ti ), i = 1, . . . , 4.

In 988 of 1000 randomized scenarios, we fail to reject the
null hypothesis that F̂1(x, t) is equivalent to the benchmark
c.d.f. F1(x, t) at the α = 0.05 level. Of the 12 cases in which
we reject H0, six were the result of instability in the numer-
ical Laplace transform inversion algorithm. Specifically, in
the rare cases when the c.d.f. is not sufficiently smooth, the
inversion algorithm of Abate and Whitt (1995) may not per-
form well without modifications. Of the remaining six cases
for which H0 was rejected, the average maximum absolute
deviation in probability was approximately 0.1478. In sum-
mary, we fail to reject nearly 99% of the 1000 randomized
scenarios.

As a sample illustration of the quality of the approxi-
mations, Fig. 1 depicts the benchmark (simulated) lifetime
c.d.f., Fi (x, t), and the approximated lifetime c.d.f. F̂i (x, t)
obtained using the surrogate Markov environment Q̂ and
degradation rate matrix R̂d. In this particular scenario,
our procedure yielded a 41 × 41 generator matrix (Q̂). The
maximum absolute deviation in probability of this scenario

is ε ≈ 0.02562. These results indicate that the surrogate
environment process with PH-approximated holding times
very closely tracks the simulated lifetime c.d.f., even when
holding times are clearly non-memoryless and their param-
eters are randomized.

We also compared the first and second moments of the
full lifetime distribution, given that the environment starts
in state 1. These values are summarized in Table 3.

The results of Table 3 illustrate the quality of the lower
moment approximations obtained using our procedure.
Both values differ from their simulated counterparts by
less than 1%.

5.2. Experiment 2: chemical coating decomposition

Now consider a protective, automotive coating that is sub-
ject to weathering by the outdoor environment. Environ-
mental effects, such as temperature and solar radiation,

Table 3. Lifetime moment comparisons for experiment 1

PH Percentage
Parameter Simulated approximation error

E[Tx|Z(0) = 1] 4.763766782 4.777832971 0.29527453
E[T2

x |Z(0) = 1] 22.77583335 22.91001248 0.589129367
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Table 4. Summary input data for the chemical coating experiment

Sky Holding time Decomposition
State condition Temperature distribution rate

1 Cloudy ≤32◦F Weibull (c, d) r (1) ∼ U(0, 2)
2 Cloudy >32◦F Beta (a, b) r (2) ∼ U(0, 2)
3 Sunny ≤32◦F Weibull (c, d) r (3) ∼ U(0, 2)
4 Sunny >32◦F Beta (a, b) r (4) ∼ U(0, 2)
5 Rain >32◦F Gamma (g, h) r (5) ∼ U(0, 2)

cause chemical decomposition (degradation) of the coat-
ing that can be measured in terms of gloss loss and/or
color change. The failure time can be defined as the first
time that the cumulative degradation of the coating reaches
a critical threshold. Here, we assume the rate of degrada-
tion of the coating depends on the ambient environment
to which it is exposed, and the critical threshold is x = 5.0
units. The environment is characterized by five-state semi-
Markov processes that are defined in Table 4 along with the
degradation rates and state holding time distributions.

In Table 4, Beta (a, b) denotes a beta probability distri-
bution with shape parameters a and b and Weibull (c, d)
denotes a Weibull distribution with shape parameter c and
scale parameter d. Gamma (g, h) denotes a gamma dis-
tribution with parameters g and h. For each of the 1000
scenarios the distribution parameter values were randomly

generated as follows:

a, b ∼ U(0.1, 3.1),
c, d ∼ U(1, 3),
g, h ∼ U(0.1, 2.1),

and the 5 × 5 transition probability matrices of the SMP
environments were generated randomly as in the turbine
blade experiment. Here, we again assume that Z begins in
state 1 (with a probability of one) so that the initial probabil-
ity vector is e′

1 = (1, 0, 0, 0). We simulated Z and observed
its evolution for τ = 10 000 time units. From the simulated
environment, we estimated the parameters P̂, mk(i ), s2

i , ĉ2
i ,

i = 1, 2, 3, 4, 5, k = 1, 2, 3, using Equations (19) to (24).
We used ĉ2

i to determine the appropriate PH distribution
approximation for each i ∈ Susing Table 1 and constructed
Q̂ and R̂d using the algorithm described in Section 4.

Of the 1000 randomized scenarios, we fail to reject the
null hypothesis that F̂1(x, t) is equivalent to F1(x, t) in 980
cases at the α = 0.05 level. Of the 20 cases for which we
reject H0, ten were caused by instability in the numeri-
cal Laplace transform inversion algorithm as in the first
experiment. For the remaining ten cases, the average max-
imum absolute deviation in probability was approximately
0.2230. To summarize the results of this experiment, we fail
to reject the null hypothesis that our approximated c.d.f. is
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Fig. 2. Simulated versus approximated lifetime c.d.f.: chemical coating experiment.
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Table 5. Lifetime moment comparisons for experiment 2

PH Percentage
Parameter Simulated approximation error

E[Tx|Z(0) = 1] 4.290965585 4.249862484 0.957898641
E[T2

x |Z(0) = 1] 19.0983667 18.74008389 1.875986669

equivalent to the benchmark c.d.f. in 98% of the random-
ized scenarios.

To further illustrate the quality of the approximations,
Fig. 2 depicts the simulated lifetime c.d.f., Fi (x, t), and the
approximated lifetime c.d.f. F̂i (x, t) obtained using the sur-
rogate Markov environment Q̂ and degradation rate matrix
R̂d. For this particular experiment, our procedure yielded
a generator matrix Q̂, which is 82 × 82, or twice as large as
the illustrative case in experiment 1. Nevertheless, the re-
sulting maximum absolute deviation in probability of this
example is ε ≈ 0.02648.

The lower two moments of the lifetime distribution were
also compared, and the results are summarized in Table 5.

As for the first example, the approximation of the lower
moments is also of very high quality. The maximum percent
difference is under 2%.

While the results of these two randomized experiments
are promising, it will be instructive to assess the quality of
our approximations using real data. Unfortunately, such
data were unavailable for use in this study. We further elab-
orate upon the advantages and limitations of our approach
in Section 6.

6. Conclusions

In this article, we have presented a novel technique
for incorporating environmental effects on component
degradation for the purpose of evaluating reliability in-
dices. The modeling framework and associated numeri-
cal techniques provide improved flexibility by allowing for
semi-Markovian environments and general degradation
patterns. These characteristics make the approach appeal-
ing whenever it is possible to assess physical degradation as
a function of the temporal evolution of the environment.
Within our framework, the environment can assume a va-
riety of roles (e.g., time-varying operating conditions, the
ambient environment, etc.).

While the procedures described in Sections 3 and 4 are
mathematically sound and relatively easy to implement,
they do impose moderately restrictive assumptions, namely
that: (i) the environment evolves in a temporally homo-
geneous manner; (ii) the number of distinct states (K) is
known; (iii) the environment transitions between states ac-
cording to a Markov chain; and (iv) the future degradation
of the unit is independent of the history of the degrada-
tion. Despite these limitations, the approximations provide
an important extension to prior methods that either ignore

the effects of the environment entirely, or assume that the
environment is completely memoryless.

In the future, it will be instructive to consider models
for systems whose rates of degradation depend not only on
the state of the environment but also on the current level
of degradation. It may also be useful to consider Bayesian
techniques for updating the parameters of the environment
as additional sensor data becomes available. If the pro-
posed models are to be of any practical value to engineers,
it is vital to provide an accurate estimate of the mapping r
that describes the evolution of degradation as a function of
the environment. To this end, real degradation data are re-
quired, as is the guidance and experience of subject matter
experts, to ensure the degradation rates are selected in ac-
cordance with known physical principles. Finally, as noted
in Section 5, it will be important to evaluate the procedure
using real environmental and degradation data.
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