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EXPERIENCE WITH Q 

IMPLEMENTATION OF A 

PROTOTYPE PROGRAMMING ENVIRONMENT 

PARTY 

Bruce J. MacLennan 
Computer Science Department 

Naval Postgraduate School 
Monterey. CA 93943 

Abstract: 

This is the fifth report of a series exploring the use of the ft programming notation to prototype a pro- 
gramming environment. This environment includes an interpreter, unpaxser, syntax directed editor, 
command interpreter, debugger and code generator, and supports programming in a small applicative 
language. The present report presents a code generator operating on abstract syntax trees. The code 
generation process is implemented as an evaluator over a nonstandard domain. An implementation of 
the code generator is listed in the appendices. 

1. Introduction 

Our goal in this series of reports* i MacLennan85b, MacLennan85c. MacLennan86a. MacLennan86bi is 

to explore in the context of a very simple language the use of the ft programming notation IMacLen- 

nan83, MacLennan85ai to implement some of the tools that constitute a programming environment. 

In this report we define a code generator for abstract programs. The code generator will be a 

member of the same family as the interpreter and the unparser. Thai is. it will be an evaluator for 

abstract programs defined on the domain of code sequences. First we discuss machine and run-time 

structure; next, informal translations; and finally present the translation rules. 

2. Target Machine Structure 

We will generate code for a stack machine with several special purpose registers (EP. SP) and several 

temporary registers (Tl. T2).   It has the following instructions: 

Support (or this research was provided by the Office of Naval Research under contract N00014-86- WR-24092. 
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• LDC k —   load constant 

. ADD, SUB, MUL, DIV, EQL, etc. -   arithmetic 

• JMP /, JMPT / —   unconditional jump, jump on true 

• LBL / —  define label 

• SKIP S —  skip down static chain 

• LOD —   load contents of variable 

. ENTER, EXIT -  block control 

. CALL. RETURN -  function control 

. PUSH r, POP r -   stack control 

• BREAK —   enter debugger 

3.   Run-Time Structure 

We use a conventional static-chain implementation for statically-scoped languages. Note that this 

stack-based activation record structure will not support function-valued functions, which are supported 

by the interpreter. This incompatibility between the interpreter and code generator is very serious, but 

not addressed in the present report, since it would not affect the use of fi as a tool for writing the code 

generator. Exercise for the reader: define a non-stack-based activation record structure that solves this 

problem. 

Consider the following program: 

let A =   1 

[funcF X = 

jletB=   (X x A) 

|letC =  3 

(if (X >  0) 

thenF (C +   (X - B)) 

else 0 ) | ] 
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F (A x2) ] ] 

This diagram illustrates the run-time data structures when execution is within the 'let B 

the recursive invocation of F: 

— IzP 

...' block on 

'ZDyn L\YT\ i c 

C he*. 1 y\ h A • r 

Notice how the static links for both of F's activation records point to the environment defining F.   The 

ep/ip pair is the dynamic link. 
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4.   Informal Translation Rules 

4.1 Constants, Variables and Applications 

For constants we merely stack the constant value: 

k     =*>     LDC/fc 

For variables we must first scan down the static chain to the environment of definition of the variable. 

Then the value of the local variable from that environment's activation record can be loaded onto the 

stack: 

SKIP<5 
v   ""*    LOD 

where 6 is the static distance to v't activation record. 

The code for an application is illustrated by this example: 

X 

X+Y  -*    Y 

ADD 

The X and Y on the right represent the code corresponding to the X and Y on the left. Thus we gen- 

erate code that executes X and Y in order and leaves their values on the stack, where they can be 

popped by ADD. 

4.2 Conditional Expression 

Code for a conditional first evaluates the condition, leaving a Boolean value on the stack. A JMPT 

instruction can then be used to test this value, skipping the alternate and jumping to the consequent 

when the value is true. 

B 
JMPTr 

(if B F 
then   T =£• JMPco 
else   F ) LBL r 

T 

LBL u 

Of course the code for the alternate must end with a JMP to skip the consequent. 
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4.3 Blocks 

The first step in the code for a block is the evaluation of the bound value E in the surrounding con- 

text. Two macroinstructions, ENTER and EXIT, surround the block body B, and handle the entry and 

exit of the block context: 

E 

\letv = E ENTER 

B ] =>    B 

EXIT 

The ENTER macro instruction must create the block's activation record, incorporating the bound value, 

and link the activation record into the static chain.   It is equivalent to the following operations: 

PUSH EP      {SL} 

EP-SP {setEP} 

That is, we push the old value of the EP register (which is a pointer to the surrounding context) onto 

the stack, thus forming the static link of the new activation record. The value of the bound value E is 

already on the stack, where it will be accessible as the local value in the new activation record. 

Transferring the contents of the stack pointer (SP) to the environment pointer (EP) installs the new 

activation record as the active one. 

The EXIT macroinstruction must save the value computed by the block (which is on the top of the 

stack) while the block's activation record is deleted.   Its code expansion is straight-forward: 

POPT1 {block value} 

POPEP {SL} 

POP - {local} 

PUSH Tl {block value} 

4.4 Function Definition 

Consider a function definition such as the following: 

func } n - B 

X 



This is very much like a let block, except that execution of the function body B must be deferred until 

the function / is invoked: 

JMP u> {skip function body} 

LBL 4> {entry point} 

B {body of function} 

RETURN {return to function} 

LBL a; {here to skip function body} 

LDC <t> {stack entry point} 

ENTER {enter func. defn. block} 

A' {body of func. defn. block} 

EXIT {exit func. defn. block} 

The function body is represented by the LBL <j> (which is its entry point), the code B. and the 

RETURN macro instruction (which is discussed below). The JMP u skips the function body, thus 

deferring its execution. The LDC 0 stacks the entry point address as the local value of the function 

block, which is then ENTERed and EXITed in the usual way. 

4.5  RETURN Instruction 

The RETURN macroinstruction has the task of saving the function's value (which is on the top of 

the stack), restoring the caller's environment, deleting the function's activation record, leaving the 

function'? value on the top of the stack, and resuming execution of the caller. The code to accomplish 

this is: 

POPTl {return value} 

POP EP {caller's EP} 

POP T2 {caller's IP} 

POP- {SL} 

POP- {param} 

PUSH Tl {return value} 

JMP T2 {resume caller} 
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The first POP saves the function's value in temporary register Tl. The second restores the callers 

environment from the dynamic link (EP/IP pair). The third saves the caller's resumption address in 

temporary register T2. The next two POPs delete the function's activation record. The PUSH instruc- 

tion puts the function's value back on the top of the stack, and the indirect JMP through T2 transfers 

control back to the caller. 

4.6  Function Invocation 

The code sequence for the function application '/ .,¥' is as follows: 

X 

SKIP .5 

/ A:   =*   LOD 

SKIP 4-1 

CALL 

where S is static distance to /'s environment of definition. The first SKIP moves to the activation 

record of the function block so that the LOD can access the entry address. The second SKIP, which 

goes one static link further, accesses the environment of definition of the function. The CALL 

macroinstruction completes the invocation process. 

The  CALL  macroinstruction  has  the  task  of constructing  an  activation  record  for the callee  and 

transferring control to the callee.   This is accomplished by the following code expansion: 

POPT1 {get env. of defn.} 

POP T2 {get entry address} 

PUSH Tl {static link} 

PUSH p {caller s IP} 

PUSH EP {callers EP} 

EP-SP-2 {callee's SL} 

JMPT2 {enter function} 

LBL p {return location} 

On entry to the CALL macroinstruction the top of the stack is the environment of definition of the cal- 

lee, the second on the stack is the entry point address, and the third on the stack is the actual parame- 



ter value: 

env. of defn. 

entry point 

actual 

The first two are saved in registers Tl and T2. The actual parameter is left on the stack to form the 

first component of the callee's activation record. The next component is its static link (whose value 

was saved in register Tl). Then we save the caller's IP (the resumption address p) and EP (which was 

in the EP register); together they constitute the dynamic link back to the caller. Finally, EP—SP-2 

installs the callee's activation record as the active one, and the indirect JMP through T2 transfers con- 

trol to the function. The LBL p of course defines the return point in the caller. (Exercise for the 

reader:   Why '-2' in 'EP—SP-2'?) The completed activation record looks like this: 

4.7   Example 

Consider the following simple program: 

letK =  4 

func fac n = 

(if(n=   0) 

then 1 

else (n x fac (n - 1)) ) 

fac K ] ] 

The following code will be generated: 

ep 

'P 

SL 

par am. 
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LDC 4 local value K =-  4 

ENTER enter  let K = ' 

JMP L3 skip body of fac 

LBL L4 entry point of fac 

SKIP 0 access formal n 

LOD fetch value n 

LDC 0 stack 0 

EQL compare, (n =  0) 

JMPT Ll if true, skip alternate 

SKIP 0 access formal n 

LOD fetch value n (to multiply) 

SKIP 0 access formal n 

LOD fetch value n (to subtract) 

LDC 1 stack 1 

SUB compute actual param (n - 1] 

SKIP 1 access defn of fac 

LOD . fetch entry point address 

SKIP 2 access fac:s env. of defn. 

CALL call fac (n - 1) 

MUL multiply n by result of fac 

JMP L2 skip consequent of if 

LBL Ll alternate of if: 

LDC 1 stack 1 

LBL L2 end of if 

RETURN return from fac 

LBL L3 here to skip over fac 

LDC L4 stack entry point of fac 

ENTER enter 'fane fac = ' block 



SKIP 1 access context of K 

LOD fetch value of K 

SKIP 0 access context of fac 

LOD stack entry point of fac 

SKIP 1 access env. of defn. of fac 

CALL call fac K 

EXIT exit  func fac = ' 

EXIT exit  let K = ' 

Exercise for the reader:   trace the execution of this program showing all stack states. 
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5.   Code Generation 

5.1  Introduction 

The  code  generator is  like  Eval and  Unparse,  except that we  change  the  domain  on  which  the 

evaluation is done: 

Unparse(£) =>  "(3+5)" 

Eval(£\C) -*  8 

CodeGen(£,C) -*   < LDC (3j, LDC|5j, ADD> 

Notice that the "value'" computed by CodeGen is a list of target machine instructions. 

5.2 Code Generation Relations 

The relations required for code generation are exact analogs of the Eval and Value relations in the 

interpreter: 

.     CodeGen (E, C) 

request code generation for E in context C 

Degree (CodeGen, 2), Domain (expr, 1, CodeGen), Domain (Context. 2. CodeGen). 

.     Code (U. E, C) 

V is the code for E in C 

Function (Code, expr/Context. code-list). 

5.3 Constants 

The code for a constant is simply the appropriate LDC instruction, which we assume to be generated 

by the function Con: 

•CodeGen (E, C), Con (E), LitVal ( V, E) 

=5.   Code (< Con | V\ > , E). 

Note that because the range of Code is defined to be a code list, it is necessary to return  Con| V\  as a 

one-element list. 
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5.4 Applications 

We need an additional relation, OpCode, which is a table giving the target machine opcode for each 

primitive operator. This relation corresponds to the Meaning relation of the interpreter and the Tem- 

plate relation of the unparser. 

.     OpCode (F, N) 

• F is the opcode for TV 

• Function (OpCode, string, operation). 

The analysis rule for applications must request the code generation of the two argument expressions: 

*CodeGen [E, C). Appl (E), Left (A', E), Right ( Y, E) 

==>   CodeGen (A, C), CodeGen ( Y, C). 

The synthesis rule catenates the code sequence for the arguments with the appropriate arithmetic opera- 

tion found in OpCode: 

Appl (E),Op(N, E), Left [X, E), Right (Y, E), 

*Code (U, A, C), *Code (V, Y, C), OpCode {F, N) 

=s>  Code {U * V "< F> , E. C). 

Note that the opcode is made into a one element list so that it can be catenated with the code lists  V 

and  V. 

5.5 Concitionals 

The analysis rule for conditionals requests the code generation of the three parts of the conditional: 

*CodeGen (E, C), ConEx (E), Cond [B, E), Conseq ( T, E), Alt (F, E) 

=>  CodeGen (B, C), CodeGen ( T, C), CodeGen {F, C). 

The synthesis rule assembles these with the appropriate jump instructions: 
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ConEx (E), Cond [B, E). Conseq ( T, E). Alt (F, E) 

*Code ( U, B, C), *Code ( V, T, C), "Code ( W, F, C), *Avail (r, u) 

=?>  Code ( 

U ' 

<JMPT[r)>   " 

W  ' 

<. JMPiwj. LBL [r]>   * 

V ' 

<LBL [«]>, E. C). 

The only complication is that unique lables r and u must be generated. 

5.6   Block Structure 

Contexts will be computed during code generation just as they are during evaluation.   However, a 

name is bound to its static nesting level instead of its value (which is not known until runtime). 

Variable lookup is requested by the Access relation: its static nesting level is returned in the Loca- 

tion relation. 

.    Access (A\ D. E. C) 

access N in D for E in C 

Function (Access, exprxContext, stringxContext). 

•     Location (L. E. C) 

L is the location for E in C 

Function (Location, exprxContext, integer). 

The rules governing the Access process are exact analogs of the Lookup rules in the interpreter: 
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•Access (N, D, E, C), Binds (D, N, L), 

=^>  Location (L, E, C) 

else *Access (N, D, E, C), Nonlocal (D', D) 

=>  Access [N, D\ E, C) 

else *Access (AT, D, E, C) 

=*   Break ("Undefined: "  ~N, E, C). 

5.7 Variables 

The analysis rule for variables simply request that Access determine the variable's location: 

"CodeGen (E, C), Var (E), Ident (N, E) 

==>   Access (N, C, E, C). 

The synthesis rule waits for the static distance to be returned in Location, and incorporates it into the 

appropriate SKIP instruction: 

Var [E), "Location (L, E, C), Binds (C, - , K), -Rator (E, - ) 

«*>  Code (< SKIP \K-L\, LOD> , E, C). 

The condition '^Rator (E. — ): is a bit of a kluge; it prevent the activation of this rule on variables that 

happen to be the operator of a function application, which must be handled differently. A runtime 

structure that supported function-valued functions (and variables) would eliminate the need for this 

kluge:   exercise for the reader. 

5.8 Blocks 

The analysis rule for blocks requests code generation for the bound value and the block's body. 

*CodeGen [E, C), Block (E), BndVar (N, E), BndVal (X, E), Body (B, E), 

Binds (C, - , K), *Avail (D) 

=^>   Context (D). Binds (D, N, K + \), Nonlocal (C, D), CodeGen (X, C), CodeGen (B. D). 

The bound value's code is generated at the same static nesting level as the block (K); the body is gen- 

erated at a level one greater (K + l).   The synthesis rule merely catenates the code sequences with the 
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ENTER and EXIT instructions: 

Block (£), BndVal (X, £), Body [B, E), *Code ( U, X, C), *Code {V, B, Z>), Nonlocal ( C, D) 

=*>  Code ( U ' < ENTER>   ' V '< EXIT> , E, C). 

5.9  Function Definition 

Code is generated for a function definition in very much the same way as for a block. The analysis 

rule requests code generation for the body of the function and the body of the function block, but this 

requires the creation of two new contexts: 

•CodeGen (£\ C). FunDef (E), FunName (F, E), FunForm&l (N, E), 

FunBody (B. E). FunScope (A'. E). Binds (£. - . K). 'Avail (D. A) 

=s>  Context (D), Nonlocal (C, D), Binds (D, F, A-rl> ), CodeGen [X, D). 

Context (A), Nonlocal (D, A), Binds (A, N, A'+2), CodeGen (B, A) 

The context D represents the context of the function definition block, which binds F to static nesting 

level A'~l (i.e.. one more than that of the surrounding context). Code for the body X of the function 

definition block is generated in this context D. The context A represents the context of the function's 

body, which binds the formal A to its static nesting level (A—2, i.e., one more than Z)'s). A is the 

context in which code is generated for the function's body; notice that the nonlocal environment of .4 

includes D, thus permitting recursive function invocations. 

The synthesis rule gathers the code generated for the function and block bodies, and assembles it 

into the complete code sequence: 

FunDef (E). FunBody (B. £), FunScope (.V. E), Nonlocal (C. D). 

*Code [U, B, A), "Code (V, X, D), *Avail (w, <t>) 

-s>   Code ( 

< JMP [w], LBL \<i>\>   ' U  ' 

< RETURN, LBL (wj, 

LDC [4], ENTER>   * V ' 

<EXIT>, E. C). 
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The label <t> is the function's entry point (which is left on the stack); the label ui is for skipping over the 

function's body, so it will not be executed until it is called. 

6. Function Invocation 

For function  invocations the analysis rule requests code generation for the  actual parameter,  and 

lookup for the function's name: 

*CodeGen (E, C), Call (E), Rator (F, E), Rand (X, E), Var (F), Ident (TV, F) 

=*   Access (N, C, F, C), CodeGen (A', C). 

Note that the code generator requires the Rator to be a variable, and also interprets that variable as the 

functions name (as opposed to a variable pointing to the function, etc.). 

The  synthesis  rules  picks  up  from   Location  the  static  nesting  level  at which   the   function   was 

defined, and uses it to assemble the code sequence: 

Call(£), Rator [F, E), Rand [X, E), "Location (I, F, C), *Code (V, X, C), Binds (C, -, K) 

=s>  Code ( V "<SKIP \K-L\, LOD, SKIP [K-L+l], CALL> . E, C). 

The first SKIP accesses the context in which the function was defined, since the local value of this con- 

text is the entry point address of the function: see 5.9 Function Definition above. The LOD moves the 

entry point address to the top of the stack. The second SKIP goes one further than the previous, which 

accesses the environment of definition of the function. The actual parameter, entry point address and 

environment of definition are left on the stack for the CALL macroinstruction (see 4.6, Function Invo- 

cation) . 
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APPENDIX A:   Prototype Programming Environment 

The following is a loadable input file for the code generator described in this report.- Its operation 

requires the PI-4 system listed in Part IV [MacLennan86bJ, which is not reproduced here. The com- 

plete system is accepted by the McArthur interpreter [McArthur84], which differs in a few details from 

the H notation used in this report (see [MacLennan84]). A transcript of a test execution of this 

environment is shown in Appendix B. 

CODE GENERATOR 

!   Reducing Append Function 

fn aplLL]: 

if LL= Nil ->   [j 

else append 'first [LLj, ap [rest [LL] ] j; 

!   Relations 

newrelation {"CodeGen"}: 

newrelation {"Code"}; 

newrelation  {"Access"}; 

newrelation {"Location"}; 

newrelation {"OpCode"}; 

newrelation {"CreateConExCode"}; 

newrelation {"Create Block Code"}; 

newrelation {"CreateFunDefCode"}; 

newrelation {"Cre ate FunDef 2Code"}; 
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newrelation {"newlab"}; 

newrelation {"LastLabel"}. 

!   Machine Op Codes 

!   Alias procedure to define niladic opcodes: 

newrelation {"alias"}. 

act {< <   if *alias (A, s) ->   define {root, s, s}, A (s); > > }. 

alias {"LOD"}; 

alias {"ENTER"}: 

alias {"EXIT"}; 

alias {"CALL"}; 

alias {"RETURN"}; 

alias {"BREAK"}; 

!   Monadic opcodes: 

fn LDC Ik!:   "LDC »+   k: 

fn JMP [I:   "JMP" -   1; 

fn JMPT jl]: "JMPT " +  1; 

fn LBL [1 :   "LBL " -   1: 

fn SKIP (delta: "SKIP " +   int^tr (delta,; 

fn PUSH   r : "PUSH " -   r: 

fn POP jr|:   "POP" +  r; 

!   Opcodes used in operator applications: 

OpCode ("ADD", "+ "), 

OpCode ("SUB", "-"), 

OpCode ("MUL", "x"), 
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OpCode ("DIV", "/"), 

OpCode ("EQL", "="), 

OpCode ("GTR", "> "). 

-20- 



_ 

!   CODE GENERATOR RULES 

define {root, "CodeGenRules", < < 

!   Incomplete Programs 

if *CodeGen (E, C), Undef (E) 

->   Code (BREAK], E, C); 

!   Constants 

if *CodeGen (E. C), Con (E), Litval (V. E) 

->   Code ( LDC :int_str [V]jj, E, C); 

!   Applications:   Analysis 

if *CodeGen (E. C), Appl (E), Left (X, E), Right (Y, E) 

->   CodeGen (X, C), CodeGen (Y, C); 

!   Applications:   Synthesis 

if Appl (E), Op (N, E), Left (X, E). Right (Y. E), *Code (U, X, C). *Code (V. Y. C). OpCode (F, N) 

->   Code (apiiU, V, [P]]j, E, C); 

!   Conditionals:   Analysis 

if 'CodeGen (E. C). ConEx (E). Cond (B, E). Conseq (T, E). Alt (F, E) 

->   CodeGen (B, C), CodeGen (T, C), CodeGen (F, C); 

!   Conditionals:   Synthesis 

if ConEx (E), Cond (B, E), Conseq (T, E), Alt (F, E), 

"Code (U, B. C). *Code (V, T. C). *Code (W, F. C) 

->   CreateConExCode (U, V, W, E, C, newlab {}. newlab {}); 

-21- 



if *CreateConExCode (U, V, W, E, C, tau, omega) 

->   Code (ap [( 

U, 

|JMPT|tau]], 

W, 

[ JMP [omegaj, LBL (tau]], 

V, 

|LBL [omega]]]], E, C); 

!   Name Lookup Rules 

if *Access (N, D, E, C), Binds (D, N, L) 

->  Location (L, E, C) 

else if *Access (N, D, E, C), Nonlocal (Dprime, D) 

->   Access (N, Dprime, E, C) 

else if *Access (N, D, E, C) 

->   Break ("Undefined: "+   N. E, C); 

!   Variables:   Analysis 

if *CodeGen (E, C), Var (E), Ident (N, E) 

->   Access (N, C, E, C); 

!   Variables:   Synthesis 

if Var (E), *Location (L, E, C), Binds (C, - , K), 'Rator (E, - ) 

->   Code ([SKIP [K-L], LOD], E, C); 

!   Blocks:   Analysis 

if *CodeGen (E, C), Block (E), BndVar (N, E), BndVal (X, E), Body (B, E), Binds (C, - . K) 
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->   Create Block Code (C, N, K, X, B, newobj {}); 

if *CreateBlockCode (C, N, K, X, B, D) 

->   Context (D), Binds (D, N, K+ l), Nonlocal (C, D), CodeGen (X, C), CodeGen (B, D); 

!   Blocks:   Synthesis 

if Block (E), BndVal (X, E), Body (B, E), *Code (U, X, C), *Code (V, B, D), Nonlocal (C, D) 

->   Code (ap [!U, |ENTERj, V, |EXIT]|], E, C); 

!   Function Definition:   Analysis 

if "CodeGen (E, C), FunDef (E), FunName (F. E), FunFormal (N, E), FunBody (B, E). FunScope (X, E 

Binds (C, - , K) 

->   CreateFunDefCode (C, F, K, X. N, B, E, newobj {}, newobj {}. newlab {}): 

if "CreateFunDefCode (C, F, K, X, N, B, E, A, D. phi) 

->   Context (D), Nonlocal (C, D), Binds (D, F, K+ 1), CodeGen (X, D), Context (A). Nonlocal (D. A). 

Binds (A, N, K+2), CodeGen (B, A); 

!   Function Definition:   Synthesis 

if FunDef (E), FunBody (13. E), FunScope (X, E), *Code (U, B, A), *Code (V. X. D), Nonlocal (C, D) 

--   CreateFunDef2Code (newlab {}, newlab {}, U, V, E, C); 

if *CreateFunDef2Code (omega, phi, U, V, E. C) 

->   Code (ap j 

|JMP Iomega], LBL [phi]), U, 

IRETURN, LBL [omega], 

LDC |phi], ENTER], V, 

EXIT]]], E, C): 

!   Function Invocation:   Analysis 
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if *CodeGen (E, C), Call (E), Rator (F, E), Rand (X, E), Var (F), Ident (N, F) 

->   Access (N, C, F, C), CodeGen (X, C); 

!   Function Invocation:   Synthesis 

if Call (E), Rator (F, E), Rand (X, E), location (L, F, C), *Code (V, X, C), Binds (C, - , K) 

->   Code (ap[jV, [SKIPIK-L], LOD, SKIP[K-L+1], CALL]]], E, C); 

!   New Label Generator 

if *newlab (A), *LastLabel (n) 

->   A("L"^   int_str in!). LastLabel (n +   1); 

act {CodeGenRules}. 
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!   Code Generator Commands 

newrelation {"CodeGenPending"}. 

define {root, "CodeGenComRules", < < 

!   codegen Command 

if 'Command ("codegen"), CurrentNode (E), CurrentContext (C) 

->   CodeGen (E, C), CodeGenPending (E), CommandPending (E); 

if Code (V. E. C). "CodeGenPending (E). *CommandPending (- ) 

->   displayn {"Code generation completed."}; 

!   showcode Command 

if 'Command ("showcode"), CurrentNode (E), Code (V, E, C) 

-;•   displayn {V}; 

if 'Command ("showcode"), CurrentNode (E), "Code (V, E. C) 

->   displayn {"No code available"}; 

>>}. 

act {CodeGenComRules}. 

define {root, 'CodeGenTests", < < 

if 'Test (A, 10) ->   { Script {[ 

"begin", 'let", "K", "#", 4, "next", Tune", "fac", "n". 

"if", "= ", 'Var", "n", "next", "#", 0, "out", "next", "#", 1, "next", 

"x". "Var", "n", "next", "call", 'Var", 'fac", "next", 

"-". 'Var". "n". "next", "#", 1, "root". "Ill", "next", "in", "next". 

•tall", 'Var", "fac", "next", 'Var", "K", "root", "codegen", Showcode" 

]}; 
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A ('Test done"); 

}; 

act {CodeGenTests}. 

LastLabel (0); 

if *CurrentContext (— ) ->  CurrentContext (newobj {}). 

if CurrentContext (C) ->  Binds (C, "", 0). 

displayn {"Pl-5 System Loaded."}. 
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APPENDIX B:   Transcript of ft   Session 

The following is a transcript of an ft session illustrating the operation of the prototype programming 

environment shown in Appendix A. The assertion 'Script {testscript}' causes the commands in 

testscript to be executed in order. The nth testscript is executed by 'Test{n}\ Each command is 

printed on a separate line, followed by whatever output is generated by the programming environment. 

This transcript was produced by the McArthur interpreter [McArthur84:. 

% omega 

OMEGA-1     11/30/84 

Use Cntl-D or exit{} to quit. 

For help, enter help{"?"}. 

To report a bug, enter Bugs{}. 

newrelation rule activated. 

> do{"Pl4.rul"}. do{"PI5.ru 1"}. 

Pl-4 System loaded 

OK 

> PI-5 System Loaded. 

OK 

> Test{l0}. 

... begin 

... K let 

< expr> 

-4 # 

... next 

< exprr- 

... fac n func 

... if 
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< expr> 

< expr> 

... n var 

... next 

< expr> 

... 0# 

... out 

(n=  0) 

... next 

< expr> 

- 1 # 

... next 

< expr> 

... x 

< expr> 

... n var 

... next 

< expr> 

... call 

... fac var 

... next 

< expr> 

< expr> 

... n var 

... next 

< expr> 
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... 1 # 

... root 

let   K =  4 

, func fac n = 

(if (n=  0) 

then 1 

else (n x fac (n - 1)) 

< expr>   J 

... next 

func fac n = 

(if (n =   0) 

then 1 

else (n x fac (n - 1)) ) 

< expr>   ! 

... in 

(if (n =  0) 

then  1 

else (n x fac (n - 1)) ) 

... next 

< expr> 

... call 

... fac var 

... next 
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< expr> 

... K var 

... root 

[let  K =  4 

ffunc fac n = 

(if(n =  0) 

then 1 

else (n x fac (n - 1)) ) 

fac K j j 

... codegen 

Code generation completed. 

... showcode 

LDC 4, ENTER, JMPL3, LBL L4, SKIP 0. LOD, LDC 0, EQL. JMPTLl, SKIP 0, LOD, 

SKIP 0, LOD, LDC 1, SUB, SKIP 1, LOD, SKIP 2, CALL, MUL, JMP L2, LBL Ll, LDC 1, 

LBL L2. RETURN, LBL L3, LDC L4, ENTER, SKIP 1, LOD, SKIP 0, LOD. SKIP 1. CALL, 

EXIT. EXIT; 

>   exit{}. 

Goodbye. 

% 
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