
LIBRARY
RESEARCH REPORTS DIVISION
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93940

P-NPS52-86-009

NAVAL POSTGRADUATE SCHOOL
II Monterey, California

tf

EXPERIENCE WITH Q ^yy^j^^*

IMPLEMENTATION OF A
PROTO TYPE PROGRAMMING ENVIRONMENT

\s

PART y <r.

I3ruce J. MacLennan

J

z February 1986

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217

20091105009

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. H. Shumaker
Superintendent

D. A. Schrady
Provost

The work reported herein was supported by Contract from the
Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

BRUCE J. MACLENNAN
Associate Professor

Reviewed by: Released by:

VINCENT Y.
Chairman
Department of Computer Science

\i^juT. ytcv^LA\
KNEALE T. MARSHALL
Dean of Information and
Policy Science

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PACE C>W»»n Omtm Entmrmd)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER pj. GOVT ACCESSION NO.

NPS52-86-009

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (mnd Subtitle)

EXPERIENCE WITH ft IMPLEMENTATION OF A
PROTOTYPE PROGRAMMING ENVIRONMENT PART V

5. TYPE OF REPORT 4 PERIOD COVERED

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(»J

Bruce J. MacLennan

8. CONTRACT OR GRANT NUMBERft)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93943-5100

10. PROGRAM ELEMENT. PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

61153N; KR015-08-01
N0001485WR24092

II. CONTROLLING OFFICE NAME AND ADDRESS

Chief of Naval Research
Arlington, VA 22217

12. REPORT DATE

February 1986
13. NUMBER OF PAGES

34
14. MONITORING AGENCY NAME 4 ADDR ESSfll dltterent from Controlling Otllce) 15. SECURITY CLASS, (ol this report)

IS*. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol the mbstrmct entered In Block 10, 11 dltterent from Report)

IB. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide II neceeemry end Identity by block number)

20. ABSTRACT (Continue on reverse elde II neceeemry mnd Identity by block number;

This is the fifth report of a series exploring the use of the ft program-
ming notation to prototype a programming environment. This environment
includes an interpreter, unparser, syntax directed editor, command interpreter,
debugger and code generator, and supports programming in a small applicative
language. The present report presents a code generator operating on abstract
syntax trees. The code generation process is implemented as an evaluator over
a nonstandard domain. An implementation of the code generator is listed in

1 the appendices.

DD ,5 FORM
AN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

S N 0102- LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dmlm Bnimted)

SECURITY CLASSIFICATION OF THIS PAGE (Whm Dtm Entararf)

S/N 0102- LF-014-6601

StCUNITY CLASSIFICATION OF THIS F-AGEr**«" Dmtm Bntmnd)

EXPERIENCE WITH Q

IMPLEMENTATION OF A

PROTOTYPE PROGRAMMING ENVIRONMENT

PARTY

Bruce J. MacLennan
Computer Science Department

Naval Postgraduate School
Monterey. CA 93943

Abstract:

This is the fifth report of a series exploring the use of the ft programming notation to prototype a pro-
gramming environment. This environment includes an interpreter, unpaxser, syntax directed editor,
command interpreter, debugger and code generator, and supports programming in a small applicative
language. The present report presents a code generator operating on abstract syntax trees. The code
generation process is implemented as an evaluator over a nonstandard domain. An implementation of
the code generator is listed in the appendices.

1. Introduction

Our goal in this series of reports* i MacLennan85b, MacLennan85c. MacLennan86a. MacLennan86bi is

to explore in the context of a very simple language the use of the ft programming notation IMacLen-

nan83, MacLennan85ai to implement some of the tools that constitute a programming environment.

In this report we define a code generator for abstract programs. The code generator will be a

member of the same family as the interpreter and the unparser. Thai is. it will be an evaluator for

abstract programs defined on the domain of code sequences. First we discuss machine and run-time

structure; next, informal translations; and finally present the translation rules.

2. Target Machine Structure

We will generate code for a stack machine with several special purpose registers (EP. SP) and several

temporary registers (Tl. T2). It has the following instructions:

Support (or this research was provided by the Office of Naval Research under contract N00014-86- WR-24092.

-1-

• LDC k — load constant

. ADD, SUB, MUL, DIV, EQL, etc. - arithmetic

• JMP /, JMPT / — unconditional jump, jump on true

• LBL / — define label

• SKIP S — skip down static chain

• LOD — load contents of variable

. ENTER, EXIT - block control

. CALL. RETURN - function control

. PUSH r, POP r - stack control

• BREAK — enter debugger

3. Run-Time Structure

We use a conventional static-chain implementation for statically-scoped languages. Note that this

stack-based activation record structure will not support function-valued functions, which are supported

by the interpreter. This incompatibility between the interpreter and code generator is very serious, but

not addressed in the present report, since it would not affect the use of fi as a tool for writing the code

generator. Exercise for the reader: define a non-stack-based activation record structure that solves this

problem.

Consider the following program:

let A = 1

[funcF X =

jletB= (X x A)

|letC = 3

(if (X > 0)

thenF (C + (X - B))

else 0) |]

-2-

F (A x2)]]

This diagram illustrates the run-time data structures when execution is within the 'let B

the recursive invocation of F:

— IzP

...' block on

'ZDyn L\YT\ i c

C he*. 1 y\ h A • r

Notice how the static links for both of F's activation records point to the environment defining F. The

ep/ip pair is the dynamic link.

-3-

4. Informal Translation Rules

4.1 Constants, Variables and Applications

For constants we merely stack the constant value:

k =*> LDC/fc

For variables we must first scan down the static chain to the environment of definition of the variable.

Then the value of the local variable from that environment's activation record can be loaded onto the

stack:

SKIP<5
v ""* LOD

where 6 is the static distance to v't activation record.

The code for an application is illustrated by this example:

X

X+Y -* Y

ADD

The X and Y on the right represent the code corresponding to the X and Y on the left. Thus we gen-

erate code that executes X and Y in order and leaves their values on the stack, where they can be

popped by ADD.

4.2 Conditional Expression

Code for a conditional first evaluates the condition, leaving a Boolean value on the stack. A JMPT

instruction can then be used to test this value, skipping the alternate and jumping to the consequent

when the value is true.

B
JMPTr

(if B F
then T =£• JMPco
else F) LBL r

T

LBL u

Of course the code for the alternate must end with a JMP to skip the consequent.

-1-

4.3 Blocks

The first step in the code for a block is the evaluation of the bound value E in the surrounding con-

text. Two macroinstructions, ENTER and EXIT, surround the block body B, and handle the entry and

exit of the block context:

E

\letv = E ENTER

B] => B

EXIT

The ENTER macro instruction must create the block's activation record, incorporating the bound value,

and link the activation record into the static chain. It is equivalent to the following operations:

PUSH EP {SL}

EP-SP {setEP}

That is, we push the old value of the EP register (which is a pointer to the surrounding context) onto

the stack, thus forming the static link of the new activation record. The value of the bound value E is

already on the stack, where it will be accessible as the local value in the new activation record.

Transferring the contents of the stack pointer (SP) to the environment pointer (EP) installs the new

activation record as the active one.

The EXIT macroinstruction must save the value computed by the block (which is on the top of the

stack) while the block's activation record is deleted. Its code expansion is straight-forward:

POPT1 {block value}

POPEP {SL}

POP - {local}

PUSH Tl {block value}

4.4 Function Definition

Consider a function definition such as the following:

func } n - B

X

This is very much like a let block, except that execution of the function body B must be deferred until

the function / is invoked:

JMP u> {skip function body}

LBL 4> {entry point}

B {body of function}

RETURN {return to function}

LBL a; {here to skip function body}

LDC <t> {stack entry point}

ENTER {enter func. defn. block}

A' {body of func. defn. block}

EXIT {exit func. defn. block}

The function body is represented by the LBL <j> (which is its entry point), the code B. and the

RETURN macro instruction (which is discussed below). The JMP u skips the function body, thus

deferring its execution. The LDC 0 stacks the entry point address as the local value of the function

block, which is then ENTERed and EXITed in the usual way.

4.5 RETURN Instruction

The RETURN macroinstruction has the task of saving the function's value (which is on the top of

the stack), restoring the caller's environment, deleting the function's activation record, leaving the

function'? value on the top of the stack, and resuming execution of the caller. The code to accomplish

this is:

POPTl {return value}

POP EP {caller's EP}

POP T2 {caller's IP}

POP- {SL}

POP- {param}

PUSH Tl {return value}

JMP T2 {resume caller}

-6-

_

The first POP saves the function's value in temporary register Tl. The second restores the callers

environment from the dynamic link (EP/IP pair). The third saves the caller's resumption address in

temporary register T2. The next two POPs delete the function's activation record. The PUSH instruc-

tion puts the function's value back on the top of the stack, and the indirect JMP through T2 transfers

control back to the caller.

4.6 Function Invocation

The code sequence for the function application '/ .,¥' is as follows:

X

SKIP .5

/ A: =* LOD

SKIP 4-1

CALL

where S is static distance to /'s environment of definition. The first SKIP moves to the activation

record of the function block so that the LOD can access the entry address. The second SKIP, which

goes one static link further, accesses the environment of definition of the function. The CALL

macroinstruction completes the invocation process.

The CALL macroinstruction has the task of constructing an activation record for the callee and

transferring control to the callee. This is accomplished by the following code expansion:

POPT1 {get env. of defn.}

POP T2 {get entry address}

PUSH Tl {static link}

PUSH p {caller s IP}

PUSH EP {callers EP}

EP-SP-2 {callee's SL}

JMPT2 {enter function}

LBL p {return location}

On entry to the CALL macroinstruction the top of the stack is the environment of definition of the cal-

lee, the second on the stack is the entry point address, and the third on the stack is the actual parame-

ter value:

env. of defn.

entry point

actual

The first two are saved in registers Tl and T2. The actual parameter is left on the stack to form the

first component of the callee's activation record. The next component is its static link (whose value

was saved in register Tl). Then we save the caller's IP (the resumption address p) and EP (which was

in the EP register); together they constitute the dynamic link back to the caller. Finally, EP—SP-2

installs the callee's activation record as the active one, and the indirect JMP through T2 transfers con-

trol to the function. The LBL p of course defines the return point in the caller. (Exercise for the

reader: Why '-2' in 'EP—SP-2'?) The completed activation record looks like this:

4.7 Example

Consider the following simple program:

letK = 4

func fac n =

(if(n= 0)

then 1

else (n x fac (n - 1)))

fac K]]

The following code will be generated:

ep

'P

SL

par am.

-8-

LDC 4 local value K =- 4

ENTER enter let K = '

JMP L3 skip body of fac

LBL L4 entry point of fac

SKIP 0 access formal n

LOD fetch value n

LDC 0 stack 0

EQL compare, (n = 0)

JMPT Ll if true, skip alternate

SKIP 0 access formal n

LOD fetch value n (to multiply)

SKIP 0 access formal n

LOD fetch value n (to subtract)

LDC 1 stack 1

SUB compute actual param (n - 1]

SKIP 1 access defn of fac

LOD . fetch entry point address

SKIP 2 access fac:s env. of defn.

CALL call fac (n - 1)

MUL multiply n by result of fac

JMP L2 skip consequent of if

LBL Ll alternate of if:

LDC 1 stack 1

LBL L2 end of if

RETURN return from fac

LBL L3 here to skip over fac

LDC L4 stack entry point of fac

ENTER enter 'fane fac = ' block

SKIP 1 access context of K

LOD fetch value of K

SKIP 0 access context of fac

LOD stack entry point of fac

SKIP 1 access env. of defn. of fac

CALL call fac K

EXIT exit func fac = '

EXIT exit let K = '

Exercise for the reader: trace the execution of this program showing all stack states.

-10-

5. Code Generation

5.1 Introduction

The code generator is like Eval and Unparse, except that we change the domain on which the

evaluation is done:

Unparse(£) => "(3+5)"

Eval(£\C) -* 8

CodeGen(£,C) -* < LDC (3j, LDC|5j, ADD>

Notice that the "value'" computed by CodeGen is a list of target machine instructions.

5.2 Code Generation Relations

The relations required for code generation are exact analogs of the Eval and Value relations in the

interpreter:

. CodeGen (E, C)

request code generation for E in context C

Degree (CodeGen, 2), Domain (expr, 1, CodeGen), Domain (Context. 2. CodeGen).

. Code (U. E, C)

V is the code for E in C

Function (Code, expr/Context. code-list).

5.3 Constants

The code for a constant is simply the appropriate LDC instruction, which we assume to be generated

by the function Con:

•CodeGen (E, C), Con (E), LitVal (V, E)

=5. Code (< Con | V\ > , E).

Note that because the range of Code is defined to be a code list, it is necessary to return Con| V\ as a

one-element list.

•11-

5.4 Applications

We need an additional relation, OpCode, which is a table giving the target machine opcode for each

primitive operator. This relation corresponds to the Meaning relation of the interpreter and the Tem-

plate relation of the unparser.

. OpCode (F, N)

• F is the opcode for TV

• Function (OpCode, string, operation).

The analysis rule for applications must request the code generation of the two argument expressions:

*CodeGen [E, C). Appl (E), Left (A', E), Right (Y, E)

==> CodeGen (A, C), CodeGen (Y, C).

The synthesis rule catenates the code sequence for the arguments with the appropriate arithmetic opera-

tion found in OpCode:

Appl (E),Op(N, E), Left [X, E), Right (Y, E),

*Code (U, A, C), *Code (V, Y, C), OpCode {F, N)

=s> Code {U * V "< F> , E. C).

Note that the opcode is made into a one element list so that it can be catenated with the code lists V

and V.

5.5 Concitionals

The analysis rule for conditionals requests the code generation of the three parts of the conditional:

*CodeGen (E, C), ConEx (E), Cond [B, E), Conseq (T, E), Alt (F, E)

=> CodeGen (B, C), CodeGen (T, C), CodeGen {F, C).

The synthesis rule assembles these with the appropriate jump instructions:

-12-

ConEx (E), Cond [B, E). Conseq (T, E). Alt (F, E)

*Code (U, B, C), *Code (V, T, C), "Code (W, F, C), *Avail (r, u)

=?> Code (

U '

<JMPT[r)> "

W '

<. JMPiwj. LBL [r]> *

V '

<LBL [«]>, E. C).

The only complication is that unique lables r and u must be generated.

5.6 Block Structure

Contexts will be computed during code generation just as they are during evaluation. However, a

name is bound to its static nesting level instead of its value (which is not known until runtime).

Variable lookup is requested by the Access relation: its static nesting level is returned in the Loca-

tion relation.

. Access (A\ D. E. C)

access N in D for E in C

Function (Access, exprxContext, stringxContext).

• Location (L. E. C)

L is the location for E in C

Function (Location, exprxContext, integer).

The rules governing the Access process are exact analogs of the Lookup rules in the interpreter:

-13-

•Access (N, D, E, C), Binds (D, N, L),

=^> Location (L, E, C)

else *Access (N, D, E, C), Nonlocal (D', D)

=> Access [N, D\ E, C)

else *Access (AT, D, E, C)

=* Break ("Undefined: " ~N, E, C).

5.7 Variables

The analysis rule for variables simply request that Access determine the variable's location:

"CodeGen (E, C), Var (E), Ident (N, E)

==> Access (N, C, E, C).

The synthesis rule waits for the static distance to be returned in Location, and incorporates it into the

appropriate SKIP instruction:

Var [E), "Location (L, E, C), Binds (C, - , K), -Rator (E, -)

«*> Code (< SKIP \K-L\, LOD> , E, C).

The condition '^Rator (E. —): is a bit of a kluge; it prevent the activation of this rule on variables that

happen to be the operator of a function application, which must be handled differently. A runtime

structure that supported function-valued functions (and variables) would eliminate the need for this

kluge: exercise for the reader.

5.8 Blocks

The analysis rule for blocks requests code generation for the bound value and the block's body.

*CodeGen [E, C), Block (E), BndVar (N, E), BndVal (X, E), Body (B, E),

Binds (C, - , K), *Avail (D)

=^> Context (D). Binds (D, N, K + \), Nonlocal (C, D), CodeGen (X, C), CodeGen (B. D).

The bound value's code is generated at the same static nesting level as the block (K); the body is gen-

erated at a level one greater (K + l). The synthesis rule merely catenates the code sequences with the

-14-

ENTER and EXIT instructions:

Block (£), BndVal (X, £), Body [B, E), *Code (U, X, C), *Code {V, B, Z>), Nonlocal (C, D)

=*> Code (U ' < ENTER> ' V '< EXIT> , E, C).

5.9 Function Definition

Code is generated for a function definition in very much the same way as for a block. The analysis

rule requests code generation for the body of the function and the body of the function block, but this

requires the creation of two new contexts:

•CodeGen (£\ C). FunDef (E), FunName (F, E), FunForm&l (N, E),

FunBody (B. E). FunScope (A'. E). Binds (£. - . K). 'Avail (D. A)

=s> Context (D), Nonlocal (C, D), Binds (D, F, A-rl>), CodeGen [X, D).

Context (A), Nonlocal (D, A), Binds (A, N, A'+2), CodeGen (B, A)

The context D represents the context of the function definition block, which binds F to static nesting

level A'~l (i.e.. one more than that of the surrounding context). Code for the body X of the function

definition block is generated in this context D. The context A represents the context of the function's

body, which binds the formal A to its static nesting level (A—2, i.e., one more than Z)'s). A is the

context in which code is generated for the function's body; notice that the nonlocal environment of .4

includes D, thus permitting recursive function invocations.

The synthesis rule gathers the code generated for the function and block bodies, and assembles it

into the complete code sequence:

FunDef (E). FunBody (B. £), FunScope (.V. E), Nonlocal (C. D).

*Code [U, B, A), "Code (V, X, D), *Avail (w, <t>)

-s> Code (

< JMP [w], LBL \<i>\> ' U '

< RETURN, LBL (wj,

LDC [4], ENTER> * V '

<EXIT>, E. C).

-15-

The label <t> is the function's entry point (which is left on the stack); the label ui is for skipping over the

function's body, so it will not be executed until it is called.

6. Function Invocation

For function invocations the analysis rule requests code generation for the actual parameter, and

lookup for the function's name:

*CodeGen (E, C), Call (E), Rator (F, E), Rand (X, E), Var (F), Ident (TV, F)

=* Access (N, C, F, C), CodeGen (A', C).

Note that the code generator requires the Rator to be a variable, and also interprets that variable as the

functions name (as opposed to a variable pointing to the function, etc.).

The synthesis rules picks up from Location the static nesting level at which the function was

defined, and uses it to assemble the code sequence:

Call(£), Rator [F, E), Rand [X, E), "Location (I, F, C), *Code (V, X, C), Binds (C, -, K)

=s> Code (V "<SKIP \K-L\, LOD, SKIP [K-L+l], CALL> . E, C).

The first SKIP accesses the context in which the function was defined, since the local value of this con-

text is the entry point address of the function: see 5.9 Function Definition above. The LOD moves the

entry point address to the top of the stack. The second SKIP goes one further than the previous, which

accesses the environment of definition of the function. The actual parameter, entry point address and

environment of definition are left on the stack for the CALL macroinstruction (see 4.6, Function Invo-

cation) .

7. References

j MacLennan83] MacLennan, B. J., A View of Object-Oriented Programming, Naval Postgraduate

School Computer Science Department Technical Report NPS52-83-001. February 1983.

i MacLennan841 MacLennan, B. J., The Four Forms of f2: Alternate Syntactic Forms for an Object-

Oriented Language, Naval Postgraduate School Computer Science Department Technical Report

NPS52-84-026, December 1984.

• 16-

|MacLennan85aj MacLennan, B. J., A Simple Software Environment Based on Objects and Relations,

Proe. of ACM SIGPLAN 85 Conf. on Language Issues in Prog. Environments, June 25-28, 1985, and

Naval Postgraduate School Computer Science Department Technical Report NPS52-85-005, April

1985.

[MacLennan85bj MacLennan, B. J., Experience with ft : Implementation of a Prototype Programming

Environment Part I, Naval Postgraduate School Computer Science Department Technical Report

NPS52-85-006, May 1985.

MacLennan85c MacLennan, B. J., Experience with ft : Implementation of a Prototype Programming

Environment Part II. Naval Postgraduate School Computer Science Department Technical Report

NPS52-85-015. December 1985.

i MacLennan86aj MacLennan, B. J., Experience with ft : Implementation of a Prototype Programming

Environment Part III, Naval Postgraduate School Computer Science Department Technical Report

NPS52-86-004, January 1986.

MacLennan86bi MacLennan, B. J., Experience with ft : Implementation of a Prototype Programming

Environment Part IV, Naval Postgraduate School Computer Science Department Technical Report

NPS52-86-007. January 1986.

McArthur84i McArthur, Heinz M., Design and Implementation of an Object-Oriented, Production-Rule

Interpreter, MS Thesis. Naval Postgraduate School Computer Science Department, December 1984.

UfTord85 Ufford, Robert P.. The Design and Analysis of a Stylized Natural Grammar for an Object

Oriented Language (Omega), MS Thesis, Naval Postgraduate School Computer Science Department,

June 1985.

•17-

APPENDIX A: Prototype Programming Environment

The following is a loadable input file for the code generator described in this report.- Its operation

requires the PI-4 system listed in Part IV [MacLennan86bJ, which is not reproduced here. The com-

plete system is accepted by the McArthur interpreter [McArthur84], which differs in a few details from

the H notation used in this report (see [MacLennan84]). A transcript of a test execution of this

environment is shown in Appendix B.

CODE GENERATOR

! Reducing Append Function

fn aplLL]:

if LL= Nil -> [j

else append 'first [LLj, ap [rest [LL]] j;

! Relations

newrelation {"CodeGen"}:

newrelation {"Code"};

newrelation {"Access"};

newrelation {"Location"};

newrelation {"OpCode"};

newrelation {"CreateConExCode"};

newrelation {"Create Block Code"};

newrelation {"CreateFunDefCode"};

newrelation {"Cre ate FunDef 2Code"};

• 18-

newrelation {"newlab"};

newrelation {"LastLabel"}.

! Machine Op Codes

! Alias procedure to define niladic opcodes:

newrelation {"alias"}.

act {< < if *alias (A, s) -> define {root, s, s}, A (s); > > }.

alias {"LOD"};

alias {"ENTER"}:

alias {"EXIT"};

alias {"CALL"};

alias {"RETURN"};

alias {"BREAK"};

! Monadic opcodes:

fn LDC Ik!: "LDC »+ k:

fn JMP [I: "JMP" - 1;

fn JMPT jl]: "JMPT " + 1;

fn LBL [1 : "LBL " - 1:

fn SKIP (delta: "SKIP " + int^tr (delta,;

fn PUSH r : "PUSH " - r:

fn POP jr|: "POP" + r;

! Opcodes used in operator applications:

OpCode ("ADD", "+ "),

OpCode ("SUB", "-"),

OpCode ("MUL", "x"),

-19-

OpCode ("DIV", "/"),

OpCode ("EQL", "="),

OpCode ("GTR", "> ").

-20-

_

! CODE GENERATOR RULES

define {root, "CodeGenRules", < <

! Incomplete Programs

if *CodeGen (E, C), Undef (E)

-> Code (BREAK], E, C);

! Constants

if *CodeGen (E. C), Con (E), Litval (V. E)

-> Code (LDC :int_str [V]jj, E, C);

! Applications: Analysis

if *CodeGen (E. C), Appl (E), Left (X, E), Right (Y, E)

-> CodeGen (X, C), CodeGen (Y, C);

! Applications: Synthesis

if Appl (E), Op (N, E), Left (X, E). Right (Y. E), *Code (U, X, C). *Code (V. Y. C). OpCode (F, N)

-> Code (apiiU, V, [P]]j, E, C);

! Conditionals: Analysis

if 'CodeGen (E. C). ConEx (E). Cond (B, E). Conseq (T, E). Alt (F, E)

-> CodeGen (B, C), CodeGen (T, C), CodeGen (F, C);

! Conditionals: Synthesis

if ConEx (E), Cond (B, E), Conseq (T, E), Alt (F, E),

"Code (U, B. C). *Code (V, T. C). *Code (W, F. C)

-> CreateConExCode (U, V, W, E, C, newlab {}. newlab {});

-21-

if *CreateConExCode (U, V, W, E, C, tau, omega)

-> Code (ap [(

U,

|JMPT|tau]],

W,

[JMP [omegaj, LBL (tau]],

V,

|LBL [omega]]]], E, C);

! Name Lookup Rules

if *Access (N, D, E, C), Binds (D, N, L)

-> Location (L, E, C)

else if *Access (N, D, E, C), Nonlocal (Dprime, D)

-> Access (N, Dprime, E, C)

else if *Access (N, D, E, C)

-> Break ("Undefined: "+ N. E, C);

! Variables: Analysis

if *CodeGen (E, C), Var (E), Ident (N, E)

-> Access (N, C, E, C);

! Variables: Synthesis

if Var (E), *Location (L, E, C), Binds (C, - , K), 'Rator (E, -)

-> Code ([SKIP [K-L], LOD], E, C);

! Blocks: Analysis

if *CodeGen (E, C), Block (E), BndVar (N, E), BndVal (X, E), Body (B, E), Binds (C, - . K)

-22-

_

-> Create Block Code (C, N, K, X, B, newobj {});

if *CreateBlockCode (C, N, K, X, B, D)

-> Context (D), Binds (D, N, K+ l), Nonlocal (C, D), CodeGen (X, C), CodeGen (B, D);

! Blocks: Synthesis

if Block (E), BndVal (X, E), Body (B, E), *Code (U, X, C), *Code (V, B, D), Nonlocal (C, D)

-> Code (ap [!U, |ENTERj, V, |EXIT]|], E, C);

! Function Definition: Analysis

if "CodeGen (E, C), FunDef (E), FunName (F. E), FunFormal (N, E), FunBody (B, E). FunScope (X, E

Binds (C, - , K)

-> CreateFunDefCode (C, F, K, X. N, B, E, newobj {}, newobj {}. newlab {}):

if "CreateFunDefCode (C, F, K, X, N, B, E, A, D. phi)

-> Context (D), Nonlocal (C, D), Binds (D, F, K+ 1), CodeGen (X, D), Context (A). Nonlocal (D. A).

Binds (A, N, K+2), CodeGen (B, A);

! Function Definition: Synthesis

if FunDef (E), FunBody (13. E), FunScope (X, E), *Code (U, B, A), *Code (V. X. D), Nonlocal (C, D)

-- CreateFunDef2Code (newlab {}, newlab {}, U, V, E, C);

if *CreateFunDef2Code (omega, phi, U, V, E. C)

-> Code (ap j

|JMP Iomega], LBL [phi]), U,

IRETURN, LBL [omega],

LDC |phi], ENTER], V,

EXIT]]], E, C):

! Function Invocation: Analysis

-23-

if *CodeGen (E, C), Call (E), Rator (F, E), Rand (X, E), Var (F), Ident (N, F)

-> Access (N, C, F, C), CodeGen (X, C);

! Function Invocation: Synthesis

if Call (E), Rator (F, E), Rand (X, E), location (L, F, C), *Code (V, X, C), Binds (C, - , K)

-> Code (ap[jV, [SKIPIK-L], LOD, SKIP[K-L+1], CALL]]], E, C);

! New Label Generator

if *newlab (A), *LastLabel (n)

-> A("L"^ int_str in!). LastLabel (n + 1);

act {CodeGenRules}.

-24-

! Code Generator Commands

newrelation {"CodeGenPending"}.

define {root, "CodeGenComRules", < <

! codegen Command

if 'Command ("codegen"), CurrentNode (E), CurrentContext (C)

-> CodeGen (E, C), CodeGenPending (E), CommandPending (E);

if Code (V. E. C). "CodeGenPending (E). *CommandPending (-)

-> displayn {"Code generation completed."};

! showcode Command

if 'Command ("showcode"), CurrentNode (E), Code (V, E, C)

-;• displayn {V};

if 'Command ("showcode"), CurrentNode (E), "Code (V, E. C)

-> displayn {"No code available"};

>>}.

act {CodeGenComRules}.

define {root, 'CodeGenTests", < <

if 'Test (A, 10) -> { Script {[

"begin", 'let", "K", "#", 4, "next", Tune", "fac", "n".

"if", "= ", 'Var", "n", "next", "#", 0, "out", "next", "#", 1, "next",

"x". "Var", "n", "next", "call", 'Var", 'fac", "next",

"-". 'Var". "n". "next", "#", 1, "root". "Ill", "next", "in", "next".

•tall", 'Var", "fac", "next", 'Var", "K", "root", "codegen", Showcode"

]};

-25-

A ('Test done");

};

act {CodeGenTests}.

LastLabel (0);

if *CurrentContext (—) -> CurrentContext (newobj {}).

if CurrentContext (C) -> Binds (C, "", 0).

displayn {"Pl-5 System Loaded."}.

-26-

APPENDIX B: Transcript of ft Session

The following is a transcript of an ft session illustrating the operation of the prototype programming

environment shown in Appendix A. The assertion 'Script {testscript}' causes the commands in

testscript to be executed in order. The nth testscript is executed by 'Test{n}\ Each command is

printed on a separate line, followed by whatever output is generated by the programming environment.

This transcript was produced by the McArthur interpreter [McArthur84:.

% omega

OMEGA-1 11/30/84

Use Cntl-D or exit{} to quit.

For help, enter help{"?"}.

To report a bug, enter Bugs{}.

newrelation rule activated.

> do{"Pl4.rul"}. do{"PI5.ru 1"}.

Pl-4 System loaded

OK

> PI-5 System Loaded.

OK

> Test{l0}.

... begin

... K let

< expr>

-4 #

... next

< exprr-

... fac n func

... if

-27-

< expr>

< expr>

... n var

... next

< expr>

... 0#

... out

(n= 0)

... next

< expr>

- 1 #

... next

< expr>

... x

< expr>

... n var

... next

< expr>

... call

... fac var

... next

< expr>

< expr>

... n var

... next

< expr>

-28-

... 1 #

... root

let K = 4

, func fac n =

(if (n= 0)

then 1

else (n x fac (n - 1))

< expr> J

... next

func fac n =

(if (n = 0)

then 1

else (n x fac (n - 1)))

< expr> !

... in

(if (n = 0)

then 1

else (n x fac (n - 1)))

... next

< expr>

... call

... fac var

... next

-29-

< expr>

... K var

... root

[let K = 4

ffunc fac n =

(if(n = 0)

then 1

else (n x fac (n - 1)))

fac K j j

... codegen

Code generation completed.

... showcode

LDC 4, ENTER, JMPL3, LBL L4, SKIP 0. LOD, LDC 0, EQL. JMPTLl, SKIP 0, LOD,

SKIP 0, LOD, LDC 1, SUB, SKIP 1, LOD, SKIP 2, CALL, MUL, JMP L2, LBL Ll, LDC 1,

LBL L2. RETURN, LBL L3, LDC L4, ENTER, SKIP 1, LOD, SKIP 0, LOD. SKIP 1. CALL,

EXIT. EXIT;

> exit{}.

Goodbye.

%

-30-

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 2

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey. CA 93943 2

Office of Research Administration
Code 012A
Naval Postgraduate School
Monterey, CA 93943 1

Chairman. Code 52
Department of Computer Science
Naval Postgraduate School
Monterey. CA 93943 40

Associate Professor Bruce J. MacLennan
Code 52ML
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943 12

Dr. Robert Grafton
Code 433
Office of Naval Research
800 N. Quincy
Arlington, VA 22217-5000 1

Dr. David Mizell
Office of Naval Research
1030 East Green Street
Pasadena. CA 91106 1

Dr. Stephen Squires
DARPA
Information Processing Techniques Office
1400 Wilson Boulevard
Arlington. VA 22209 1

Professor Jack M. Wozencraft, 62Wz
Department of Electrical and Comp. Engr.
Naval Postgraduate School
Monterey. CA 93943 1

Professor Rudolf Bayer
Institiit fur Informatik
Technische Universitat
Postfach 2024 20
D-8000 Munchen 2
West Germany 1

-31-

Dr. Robert M. Baizer
USC Information Sciences Inst.
4676 Admiralty Way
Suite 10001
Marina del Rey, CA 90291

Mr. Ronald E. Joy
Honeywell, Inc.
Computer Sciences Center
10701 Lyndale Avenue South
Bloomington, MI 55402

Mr. Ron Laborde
INMOS
Whitefriars
Lewins Mead
Bristol
Great Britain

Mr. Lynwood Sutton
Code 424, Building 600
Naval Ocean Systems Center
San Diego, CA 92152

Mr. Jeffrey Dean
Advanced Information and Decision Systems
201 San Antonio Circle, Suite 286
Mountain View, CA 94040

Mr. Jack Fried
Mail Station D01/31T
Grumman Aerospace Corporation
Bethpage. NY 11714

Mr. Dennis Hall
New York Videotext
104 Fifth Avenue, Second Floor
New York, NY 10011

Professor S. Ceri
Laboratorio di Calcolatori
Departimento di Elettronica
Politecnico di Milano
20133 - Milano
Italy

Mr. A. Dain Samples
Computer Science Division - EECS
University of California at Berkeley
Berkeley. CA 94720

Antonio Corradi
Dipartimento di Elettronica
Informatica e Sistemistica

Universita Degli Studi di Bologna
Viale Risorgimento, 2

-32-

Bologna
Italy

Dr. Peter J. Welcher
Mathematics Dept., Stop 9E
U.S. Naval Academy
Annapolis, MD 21402

Dr. John Goodenough
Wang Institute
Tyng Road
Tyngsboro. MA 01879

Professor Richard N. Taylor
Computer Science Department
University of California at Irvine
Irvine, CA 92717

Dr. Mayer Schwartz
Computer Research Laboratory
MS 50-662
Tektronix, Inc.
Post Office Box 500
Beaverton, OR 97077

Professor Lori A. Clarke
Computer and Information Sciences Department
LGRES ROOM A305
University of Massachusetts
Amherst, MA 01003

Professor Peter Henderson
Department of Computer Science
SUNY at Stony Brook
Stony Brook. NY 11794

Dr. Mark Moriconi
SRI International
333 Ravenswood Avenue
Manlo Park, CA 95025

Professor William Waite
Department of Electrical and Computer Engineering
The University of Colorado
Campus Box 425
Boulder. CO 80309-0425

Professor Mary Shaw
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh. PA 15213

Dr. Warren Teitelman
Engineering/Software
Sun Microsystems Federal, Inc.
2550 Garcia Avenue

-33-

Mountain View, CA 94031

Prof. Raghu Ramakrishnan
Univ. of Texas at Austin
Dept. of Computer Science
Austin, TX 79712

-34-

