et
NAVAL POSTGRADUATE SCROOL

Monterey, California

LIBRARY

RESEARCH REPORTS DIVISION
NAVAL POSTGRADUATE SCHOOL |
MONTEREY, CALIFORNIA 93940

|

g

EXPERIENCE WITH {1 /,CHQ 74« s

IMPLEMENTATION OF A
PROTOTYPE PROGRAMMING ENVIRONMENT |
PART WV <

v, Bruce J. MacLennan

¥ January 1986

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217

20091105008

REPRODUCED AT GOVERNMENT EXPENSE

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. H. Shumaker
Superintendent

D. A. Schrady
Provost

The work reported herein was supported by Contract from the

Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

-~

g

ol
{,.__\C._-‘_,,fr‘- P e —

Bruce J. Maclennan
Assocliate Professor
Computer Science

Released by:

Iy

\Lv\.fu\.:\,\ < \&\\y(\.,\\

'VINCENT Y. ?yﬁ“'
Chairman

Department of Computer Science

KNEALE T. MARSHALL =
Dean of Information and .
Policy Science P

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REPORT NUMBER 2. GOVT ACCESSION NOJ| 3. RECIPIENT'S CATALOG NUMBER
NPS52-86-007
4. TITLE (and Subtitle) 5. TYPE DF REPORT & PERIDD COVERED

EXPERIENCE WITH @
IMPLEMENTATION OF A PROTOTYPE

PROGRAMMING ENVIRONMENT PART IV 6. PERFDRMING ORG. REPORT NUMBER

7. AUTHDR(s) 8. CONTRACT DR GRANT NUMBER(s)

NOOO14-86-WR-24092

Bruce J. MacLennan
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Naval Postgraduate School
Monterey, CA 93943-5100

1. CONTROLLING DFFICE NAME AND ADDRESS 12. REPDRT DATE
Chief of Naval Research January 1986
Arlington, VA 22217 13. NUMBER OF PAGES

52

4. MDNITDRING AGENCY NAME & ADDRESS(if different from Controtling Oftice) 1S. SECURITY CLASS. (of this rsport)

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTIDN STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, it different from Raport)

18. SUPPLEMENTARY NDTES

19. KEY WOROS (Continue on reverse side if necessary and Identify by block number)

20. ABSTRACT (Continue on reverse aide if neceseary and Identily by biock number)

This is the fourth report of a series exploring the use of the @ programming
notation to prototype a programming environment. This environment includes an
interpreter, unparser, syntax directed editor, command interpreter, debugger
and code generator, and supports programming in a small applicative language.
The present report extends the interpreter, unparser, syntax directed editor,
command interpreter and debugger to accommodate recursive function definition

and invocation, and completes the extension of the language into an applicativd
programming system supporting higher-order functions. An implementation of

DD , 523"73 1473 EDITION OF ' NDV 65 1S OBSOLETE
SN 0102-LF-014-6601

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entared)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

these ideas is listed in the appendices.

S/N 0102- LF-014- 6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

EXPERIENCE WITH 1

IMPLEMENTATION OF A
PROTOTYPE PROGRAMMING ENVIRONMENT

PART IV

Bruce J. MacLennan
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Abstract:

This i1s the fourth report of a series exploring the use of the 1 programming notation to prototype a
programming environment. This environment includes an interpreter, unparser, syntax directed editor,
command interpreter, debugger and code generator, and supports programming in a small applicative
language. The present report extends the interpreter, unparser, syntax directed editor, command inter-
preter and debugger to accommodate recursive function definition and invocation, and completes the
extension of the language into an applicative programming system supporting higher-order functions.
An implementation of these ideas is listed in the appendices.

1. Introduction

Our goal in this series of reports* |MacLennan85b, MacLennan85¢, MacLennan86| is to explore in the
context of a very simple language the use of the {l programming notation |[MacLennan83,

MacLennan85al to implement some of the tools that constitute a programming environment.

The structure of this report is as follows: First we outline the requirements for the function
definiuon facility. Next we define the abstract structure of function definitions and invocations. We
proceed to the dynamic structures required to support recursive, statically scoped procedures. This
leads naturally to the topic of evaluation. We finish by discussing possible debugger support for the
new facilities. As in previous reports, a running system demonstrating these ideas is listed in the

appendices.

Support for this research was provided by the Office of Naval Research under contract N00014-86- WR-24092.

2. Goal

We want to permit the definition and invocation of statically scoped recursive functions. For exam-
ple, the following program defines factorial recursively and invokes the resulting definition with argu-

ment K = 4:
(func fac n =
(if (n=0)
then 1

else (nxfac (n-1)))
let K = 4
fiae K | |
It’s easy to see that the general form of a function definition is:
'func F N = B
X
For simplicity we restrict our attention to monadic functions.

3. Abstract Structure
3.1 Function Definition

The abstract structure of a function definition block is represented in a straight-forward way as a
node with four descendents, corresponding to the function name, formal parameter, function body and

block body. These are defined by the following declarations:

o FunDef (E)
E is a function definition

Degree {(FunDef, 1).

e FunName (F. E)
F 1s the function name of E

Function (FunName, FunDef, string).

o« FunFormal (N, E)
N is the formal of E

Function (FunFormal, FunDef, string).

o FunBody (B, E)
B is the body of E

Function (FunBody. FunDef, exprj.

« FunScope (X, E)
X is the scope of E

Function (FunScope, FunDef. expr).

Note that, for convenience {and consistency with let blocks) the FunName and FunFormal attributes
are strings. rather than variable nodes. This complicates editing and is probably, in the long run, a bad

decision. The problem is solved in Part VI, where table-driven syntax-directed editing is disussed.
3.2 Function Invocation

The abstract syntax of function invocations is straight-forward. Note that the function is allowed to
be an arbitrary expression, which (as we’ll see later) goes through the usual evaluation process. This.
in conjunction with the representation of closures, permits general functional programming. The

abstract structure is represented by the relations:

o Call (E)
E is acall

Degree (Call. 1).
« Rator (F, E)

F 1s the operator of E

Function (Rator. Call. Var).

o Rand (X, E)
X is the operand of E

Function (Rand, Call, expr}.

4. Dynamic Structures

4.1 Closures

Recall that in statically scoped languages a function executes in its environment of definition rather
than its envwonment of call. Thus, when a function binding is made, it is necessary to record the
function’s environment of definition. This is done by binding the function’s name to a closure object.

A closure has three parts:

1. EP: environment part (environment of definition)

2. IP: instruction part (body of function)

3. FP: formal parameter

The abstract structure of closures is represented by the following relations:

o Closure (K)
K is a closure

Degree (Closure, 1).

» EP(C, K)
C is the environment part of K

Function (EP, Closure, Context).

o IP(B; K)
B 1s instruction part of K

Function (IP, Closure, expr).

« FP(N, K)
N is formal parameter of K

Function (FP, Closure, string).

4.2 Dynamic Link

In addition to the closure, which determines the environment in which a function executes, it is also

necessary to determine the caller, within whom’s execution the execution of the callee is dynamically

-4-

nested. This is called the dynamic link of the current context, and is represented by the relation:
« Caller (E, C, B. A)

o Ein Ciscallerof Bin A

o Function (Caller, exprxContext, exprxContext).

Thus. the Caller relation refers back from the callee’s expression/context (IP/EP) pair to the caller's

expression/context pair.

Why do we not simply make the Caller relation a link from the callee’s body to the caller node:
Caller (£, B)? In the presence of recursive function invocations it's possible for function bodies to be
multiply active, that is. there may be several evaluations of a function body in progress at the same time.
These different evaluations are distinguished only by the fact that they occur in different contexts
(which is guaranteed by our creating new context objects on block and function entry). Thus an
expression/context pair is necessary to uniquely identify a particular evaluation process. This will
become more apparent when we discuss the return process below, for it's necessary for a particular

function activation to return to the proper caller activation.

5. Evaluation

5.1 Invocation and Return

Evaluation of a function invocation begins with evaluation of the Rator and Rand components of
the Call node. Notice that by running the Rator through the usual evaluation process we permit it to
be any expression, including another function call. This permits functional programming, that is. the

use of higher-order functions. The analysis rule for Calls is:

*Eval (E. C), Call (E), Rator (F, E), Rand (X, E)

= Eval (F, C), Eval (X. C).

The synthesis rule expects a closure to be returned as the result of evaluating the Rator. The closure in
turn provides access to the body (IP). formal parameter (FP) and environment of definition {EP) of

the callee. Evaluation of the function’s body B is initiated in the appropriate environment (A), which

results from binding the formal N to the value V of the actual, and linking the resulting context A to
the environment of definition D. It’s also necessary to construct a dynamic link reflecting that E in

context C is the caller of B in context A. The required rule is:

Call (E), Rator (F, E), Rand (X, E), *Value (K, F, C), *Value (V, X, C),

Closure (K), EP (D, K), IP (B, K), FP (N, K), *Avail (A)

=> Context (A), Nonlocals (D, A), Binds (A4, N, V), Caller (E, C, B, A), Eval (B. A).

Eventually evaluation of the functions body completes. Then the dynamic link is used to transfer the
returned value from the function’s body to the Call node, thus triggering resumption of evaluation in

the caller. The rule is:

*Caller (E, C, B, A), *Value (V, B, A)

=> Value (V, E, C).

Notice that if the Caller relation did not include the contexts C and B it would be possible for a value

to become attached to a function’s body, and be returned to the wrong one of several waiting callers.
5.2 Function Definition

For recursion to work correctly, the environment of definition of a function must include the bind-
ing of the function name itself. Thus. the context referred to by the EP of the Closure is that same
Context that results from binding the funcuon name to that Closure. We will have to ensure that the

Context constructed by a function definition node (FunDef) has this reflexive property.

Evaluation of a function definition block is similar to that of a let block. except that the bound value
(function body) is not evaluated at this time. Instead, a closure for the function is constructed, and the
function’s name is bound to this closure. This binding forms the context for the evaluation of the

block’s body. The analysis rule initiates evaluation of the block’s body in this context:
*Eval (£, C). FunDef (E). FunName (F, E). FunFormal (N, £},
FunBody (B, E), FunScope (X, E). *Avail (D, A)
=> Context (D), Nonlocals (C, D), Binds (D, F, K),

26

Closure (K), EP (D, K). IP (B, K). FP (N, K), Eval (X, D).

A synthesis rule waits for a value to arrive at the block’s body. and attaches the value to the function
M '

block itself (i.e., the value of the function definition block is the value of the block’s body):

*FunDef (E), FunScope (X, E), *Value (V, X, D), Nonlocals (C, D)

=> Value (V, E, C).

An script demonstrating these rules is listed in Appendix B.

6. Debugging
Suppose we have the following program:

show
letK = 4
func fac n =
(if (n=0)
then {error} (1/0)
else (nxfac(n-1)))

fac K

When evaluation reaches the bottom of the recursion the zero division suspends execution. We would

like to be able to explore the context of the error as indicated in the following example:

evaluate

division be zero

context

fac (n = 0)
caller

fac (n = 1)
callee

fac (n = 0)

callee

fac (n = 1)
callee

fac (n = 2)
out context

fac = ... function ...
out _context

K=4

Notice that the callee command is not single-valued, since there may be several calls being evaluated at

one time. For example, in the program

func fx = ...

(f1+ £2)}

the two invocations of ‘f’ could be evaluated in parallel. Thus there would be dynamic links from both
of these activations to the block body, and the callee command would not know which of these to pick.

The reader should consider possible solutions to this problem.

First we consider the evaluator modifications necessary to support these debugging facilities. To
accomplish our goal we need to record the name of a function along with its context. This is analogous
to storing the function’s name in its activation record. Hence, we modify the Enter Body Rule to

record the function’s name in the Name relation, which is defined:
e Name (M. C)
e M 1s the name of C

e Function (Name, Context, string).

The new Enter Body Rule is straight-forward:
Call (E). Rator (F. F). Rand (X, E), Var {(F). Ident (M, F), *Value (K, F, C), *Value (V. X. C).
Closure (K), EP (D, K),IP (B, K). FP (N, K), *Avail (A)
=> Context (A), Nonlocal (D, A). Binds (A, ¥, V), Name (M, A), Caller (E, C, B. A),

8-

Eval (B. A).

We alter the context command rule to notice when a variable binding is a result of function invocation.

so that we can show the name of the function:

*Command (context), CurrentContext (C), Binds (C, N, V), Name (M, C)

= Display (M ¢ (" "N "¢« =" ‘string‘—im.'V‘. G)

For function bindings, rather than trying to interpret the closure, we simply note the fact that the name

ts bound to a function.

*Command (context). CurrentContext {C), Binds (C, N. K). Closure (A)

= Display (N " = ... function ...”").

The reader can take it as an exercise to write the rule to unparse the function’s body, should that be
p y

desired.
Implementation of the caller command is simply a matter of following the dvnamic link:

*Command (caller), CurrentContext (A), Caller (E, C, B, A)

= CurrentContext { C), Command (context).
The rule for ‘callee’ is analogous.

What other debugging commands would be useful? It would be useful to exit from a function to its
caller by supplying a return value. Exercise for the reader: Define the ‘exit v’ command with this

meaning.

7. References

[MacLennan83| MacLennan, B. J, A View of Object-Oriented Programming, Naval Postgraduate

School Computer Science Department Technical Report NPS52-83-001, February 1983.

[MacLennan84| MacLennan, B. J., The Four Forms of {1: Alternate Syntactic Forms for an Object-
Oriented Language, Naval Postgraduate School Computer Science Department Technical Report

NPS52-84-026, December 1084,

[MacLennan85a] MacLennan, B. J,, A Simple Software Environment Based on Objects and Relations,
Proc. of ACM SIGPLAN 85 Conf. on Language Issues in Prog. Environments, June 25-28, 1985, and
Naval Postgraduate School Computer Science Department Technical Report NPS52-85-005. April

1985.

[MacLennan85b] MacLennan, B. J., Experience with 2 : Implementation of a Prototype Programming
Environment Part I, Naval Postgraduate School Computer Science Department Technical Report

NPS52-85-006, May 1985.

[MacLennan85¢| MacLennan, B. J., Experience with Q2 : Implementation of a Prototype Programming
Environment Part 11, Naval Postgraduate School Computer Science Department Technical Report

NPS52-85-015, December 1985.

MacLennan86| MacLennan, B. J., Experience with {2: Implementation of a Prototype Programming
Environment Part III, Naval Postgraduate School Computer Science Department Technical Report

NPS52-86-004, January 1986.

‘McArthur84| McArthur, Heinz M., Design and Implementation of an Object- Oriented. Production- Rule

Interpreter, MS Thesis, Naval Postgraduate School Computer Science Department, December 1984,

{Ufford85 Ufford, Robert P., The Design and Analysis of a Stylized Natural Grammar for an Obje:t
Oriented Language (Omega), MS Thesis, Naval Postgraduate School Computer Science Department,

June 1985.

-10-

APPENDIX A: Prototype Programming Environment

The following is a loadable input file for the prototype programming environment described in this
report. It 1s accepted by the McArthur interpreter McArthur84 , which differs in a few details from
the 0 notation used in this report (see |[MacLennan84]). A transcript of a test execution of this

environment is shown in Appendix B.

! PI-4

! A simple programming environment for an arithmetic

expression language, including interpreter, unparser,

' syntax directed editor and debugger.

Features included in the language:
- Constants

Arithmetic Operations

- Statically Nested Declarations
- Comments
- Conditional Expressions

- Recursive Function Definition and Invocation

! PERVASIVE RELATIONS

Evaluation

newrelation {"Eval"}
newrelation {"Check"}:
newrelation {"Value'};

newrelation {Meaning"};

)) [

newrelation {"Explanation"};
! Contexts and Bindings

newrelation {"Context"};
newrelation {"Binds"};
newrelation {"Nonlocal};

newrelation {"Looking"}.
! Unparsing

newrelation {"Unparse"}:
newrelation {"lmage'};

newrelation {"Template"};
! Comments

newrelation {"Comment"}.

' Format Control Constants

define {root, "NL" "

i
define {root, "TabIn", '}

define {root, "TabOut" "}
! Logical Constants

define {root, "rue", 1}

define {root, "false". 0}.

S192-

! COMMAND INTERPRETER

! Command Interpreter Relations

newrelation {"Command"};
newrelation {"Argument"};
newrelation {"Root"};
newrelation {'Undef"};
newrelation {"CurrentNode"};
newrelation {"CurrentContext"};

newrelation {"SuspendedEval"};

newrelation {"Break"};

newrelation {"EvalPending"};
newrelation {"ShowPending"};
newrelation {"CommandPending"};
newrelation {"CreateRoot"};
newrelation {"CreateContext'"}.
define {root. "ComlIntRules", < <
1

evaluate Command

if *Command ("evaluate"), CurrentNode (E), CurrentContext (C)

-> Eval (E, C), EvalPending (E), CommandPending (E);

if *Value (V. E. C), *EvalPending (E). *CommandPending (-)

-~ displayn {V}

' Error Handler

if *Break {M. E, C), *CommandPending (-). *EvalPending (R). *SuspendedEval (—)

-> displayn {M}, SuspendedEval (R), CurrentNode (E), CurrentContext (C);

! resume Command

if *Command ('resume"), SuspendedEval (Nil)

-> displayn {"no evaluation in progress'}

else if *Command ("resume"), CurrentNode (E), CurrentContext {C), *SuspendedEval (R}

-> Eval (E, C), EvalPending (R), SuspendedEval (Nil);

! return Command

if *Command ("val"), *Argument (V), CurrentNode (E)

-> Value {V, E, C);

! show Command

if *Command ("show"), CurrentNode (E)

-> Unparse (E), ShowPending (E), CommandPending (E);

if *Image (S, E), *ShowPending (E), *CommandPending (-)

-> displayn {S};

! abort Command

if Command ("abort"), *Eval (E, C) -> ;

if Command ("abert"), *Value (V, E, C) -> ;
if Command ("abert"), *Check (V, E, C) ->
if Command ("abort"), *Nonlocal (C, D) -> ;

if Command ("abort"), *Binds (D, N, V) ->

if *Command ("abort"), "Eval (E, C), "Value (V, E, C), "Nonlocal (C. D), "Binds (D, N. V),

-14-

*SuspendedEval (—), *CurrentContext (-)

-> CurrentContext (Nil), SuspendedEval (Nil), displayn {"aborted"};

! done Command

if *Command ("done") -> displayn {"Pl system stopped"};

-15-

! Syntax Directed Editing

if *Command ("delete"), CurrentNode (E), Undef (E)

-> displayn ("already deleted");

! begin Command

if *Command ("begin"), *CurrentNode (—)

-> CreateRoot (newobj {}), CommandPending (Nil);

if *CreateRoot (E), *CommandPending (—)

-> Root (E). Undef {E). CurrentNode (E):

! root Command

if *Command ("root"), *CurrentNode (— }, Root (E)

-> CurrentNode {E), Command ("show");

! Debugging Commands
1

! out_context Command

if *Command ("out_context"), *CurrentContext (D), Nonlocal (C. D)

-> CurrentContext {C). Command {"context")

else if *Command {"out context")

-> displayn ("at outermost level");

! in_context Command

if *Command ("in_context"), *CurrentContext (C). Nonlocal (C, D)

-> CurrentContext (D}, Command {"context")

else if *Command ("in_context")

-16-

-> displayn ("at innermost level");

! alter Command

if *Command ("alter"), *Argument (U}, CurrentContext (C), *Binds (C, N, V)

-> Binds (C, N, U}, Command ("context")

else if *Command ("alter"), *Argument (—)
-> displayn ("no binding");

> >]

act {ComIntRules}.

% i

! COMMENTS

define {root, "RemRules", < <

! rem Command

if *Command ("rem"), *Argument (S), CurrentNode (E), “Comment (— , E)

-> Comment (S, E);

if *Command ("rem"), *Argument (—), CurrentNode (E), Comment (— , E)

-> displayn ("ode already commented");

! delete_rem Command

if *Command ("delete_rem"), CurrentNode (E), *Comment (— , E)

-> displayn ("done");

if *Command ("delete_rem"), CurrentNode (E), "Comment (— , E)
-> displayn ("no comment');

>>)

act {RemRules}.

! INCOMPLETE PROGRAM

' Tables

Explanation ("incomplete program", ["error", 0}).

define {root, "IncomProgRules", < <

! Evaluation

if *Eval (E, C}), Undef (E), *CurrentNode (—)

-> Break ("Incomplete", E, C);

-18-

' Unparsing

if *Unparse (E), Undef (E)
-> Image ("< expr> ", E};

Sl

act {IncomProgRules}.

' CONSTANT NODES

' Relations

newrelation {"Con"};

newrelation {"Litval}.

' Functions

fn Id [x]: x.

! Tables

Meaning (Id, "it"}.

Template (int_str, "it").

define {root, "ConRules", < <

! Evaluation

if *Eval (e, ¢}, Con (e), Litval (v, e), Meaning (f, "lit")

-> Value (f [v], e, ¢);

! Unparsing

if *Unparse (e}, Con (e}, Litval (v, e}, Template (f, "it"}, Comment (s, e)

-> Image { f iyl o+ ® "~ s+ n}n‘ e)

else if *Unparse (e}, Con (e}, Litval {v, e}, Template (f, 'lit")

-> Image (f |v], e);

' 4 Command

if *Command ("#"), *Argument (V), Islnt | V], CurrentNode (E), *Undef (E)

-> Con (E), Litval (V. E):

-20-

if *Command ("#"), *Argument (V), CurrentNode (E), "Undef (E)

-> displayn ("defined node");

! delete Command

if *Command ("delete"), CurrentNode (E), *Con (E), *Litval (V, E)
-> Undef (E), Command ("show");

)

act {ConRules}.

=2l

! VARIABLE NODES
! Relations

newrelation {'Var'};

newrelation {"ldent"}.
define {root, "VarRules", < <
! Evaluation

if *Eval (E, C), Var (E), Ident (N, E)

-> Looking (N, C, E, C);

if *Looking (N, C, E, D), Binds (C, N, V)

-> Value (V, E, D)

else if *Looking (N, C, E, D), Nonlocal {Cprime, C)

-> Looking (N, Cprime, E, D)

else if *Looking (N, C, E, D), *CurrentNode (—), *CurrentContext (—)

-> Break ("Unbound: "+ N, E, D);
! Unparsing

if *Unparse (E), Var (E), Ident (N, E), Comment (S, E)

-> Image (N - " {"4. S &+ ll}lv, E)

else if *Unparse (E), Var (E), Ident (N, E)

-> Image (N. E});
' var Command

if *Command ('"var"). *Argument (N), CurrentNode (E), *Undef (E)

-> Var (E), Ident (N, E});

e

' delete Command

if *Command ("delete"), CurrentNode (E), *Var (E), *Ident (N, E)
-> Undef (E), Command {"show");

>> }

act {VarRules}.

! APPLICATION NODES
! Relations

newrelation {"Appl"};
newrelation {"Op"};
newrelation {"Left"};

newrelation {"Right"};

newrelation {"Create Appl"}.

! Evaluation Functions

fn Sum |x, y}: x + y;
fn Dif [x, yl: x - ;r;
fn Product [x, y|: x *y;
fn Quotient |x, yl:
if y=0-> ["rror", 1]

else x / y;

fn Equal [x, yj: if x = y-> true else false;

fn IsErrorcode |[wi:
if IsList [w, jw = Nil-> Nil

else first [w] = "error™,

! Unparsing Functions

fn upSum [x, yl: "("+ x + "+ "4 y 4+ M

fn upDif x, y : ™"~ x - "-" -y 4+ NN

fn upprod X, .V II(H__ X + "X e y+ Il)ll;

fn upQuot '{X' y";: ||(||+ X = "min y - n)u;

fn upEqua |x, y]: "("+ x = "=

+ y +

H) ll.

-94-

! Evaluation Tables

Meaning (Sum, "+ ");
Meaning (Dif, "");
Meaning (Product, "x");
Meaning (Quotient, "/");

Meaning (Equal, "=").

! Unparsing Tables

Template (upSum, "+ ");
Template (upDif, ™");

Template (upProd, "x");
Template (upQuot, "/");

Template (upEqua, "=").

' Other Tables

Explanation ('division by zero", ["error", 1|).

define {root, "ApplRules", < <

! Evaluation

if *Eval (e, ¢), Appl (e), Left (x, e), Right (y, e)

- > Eval (x. ¢). Eval (y, ¢):

if *Value (u, x. ¢}, *Value (v, v, ¢), Appl (e), Op (n. e), Left (x, e}, Right (y, e), Meaning (f, n)

-> Check (f u., v], e, c):

if *Check (w, e, ¢), “IsErrorcode |w

-> Value (w, e, ¢):

if *Check (w, e, ¢}, IsErrorcode |w/|, Explanation (s, w), *CurrentNode (q)

-25-

-> Break (s, e, ¢);

! Unparsing

if *Unparse (e), Appl (e), Left (x, e), Right (y, e)

-> Unparse (x), Unparse (y);

! Unparsing Comments on Applications

if Appl (E), Op (N, E), Left (X, E), Right (Y, E), *Image (U, X). *Image (V, Y), Comment (S, E)

-> Image ("{"+ S+ "M("+ U+ N+ V+ " "E)

else if *Image (u. x), *Image (v, y), Appl (e), Op (n, e), Left (x, e}, Right (y, e), Template (f, n)

-> Image (f [u, v], e);

' ~,-,x,/, = Commands

if *Command (op), member {op, "= ", " " /" "=1] *CyrrentNode (E), *Undef (E)

-> CommandPending (E), CreateAppl (op, E, newobj {}, newobj {});

if *CreateAppl (op, E, X, Y), *CommandPending (E)
-> {Appl (E), Op (op. E), Left (X, E), Right (Y, E), Undef (X), Undef (Y), CurrentNode (X):

Command ('show")};
! delete Command

if *Command ("delete"}. CurrentNode (E), *Appl (E), *Op (N, E), *Left (X, E), Right (Y, E)

-> Undef (E}. Command ("show");

' in Command

if *Command ("in"). *CurrentNode (E), Left (X. E)

-> CurrentNode (X), Command ('show");

-26-

' out Command

if *Command ("out"), *CurrentNode (X), Left (X, E)

-> CurrentNode (E), Command ("show");

if *Command ("out"), *CurrentNode (Y), Right (Y, E)

-> CurrentNode (E), Command ('"show");

! next Command

if *Command ("next"), *CurrentNode (X), Left (X, E), Right (Y, E)

-> CurrentNode (Y). Command ("show™"):

! prev Command

if *Command ("prev"), *CurrentNode (Y), Right (Y, E), Left (X, E)
-> CurrentNode (X), Command ("show");

> > }

act {ApplRules}.

2T

! BLOCK

! Relations

newrelation {"Block"};
newrelation {"BndVar'};
newrelation {"BndVal"};

newrelation {'Body"};

newrelation {"CreateLet"}.

define {root. "BlockRules". < -

! Evaluation

if *Eval (E, C), Block (E), BndVal (X, E)

-> Eval (X, C):

if Block (E), BndVar (N, E), BndVal (X, E), Body (B, E), *Value (V, X, C), Comment (S, E)

-> CreateContext (newobj {}, N, V, C, B, S)

else if Block (E), BndVar (N, E), BndVal (X, E), Body (B, E), *Value (V, X, C)

-> CreateContext (newobj {}, N, V, C, B);

if *CreateContext (D, N, V, C, B. §)

-> CreateContext (D. N. V. C. B}, Comment (S. D):

if *CreateContext (D, N, V, C, B)

-> Context (D), Binds (D. N. V), Nonlocal (C, D}, Eval (B, D);

if Block (E}, Body (B, E}, *Value (V, B, D), *Nonlocal (C, D), *Binds (D. N, W}, *Context (D)

-> Value (V. E, C):

! Unparsing

L9 K-

if *Unparse (E), Block (E), BndVal (X, E), Body (B, E)

-> Unparse (X}, Unparse (B);

! Unparsing comments on blocks

if Block (E), BndVar (N, E), BndVal (X, E), Body (B, E), *Image (U, X), *Image (V, B), Comment (S, E
-> Image (

Tabln + NL —~ "let {"+ S + "

+ Tabln + NL + N+ "= "+ U

~ NL + V.4 nin

~ TabOut — TabOut. E)

else if Block (E), BndVar (N, E), BndVal (X, E), Body (B, E}, *Image (U, X). *Image (V, B)
-> Image (Tabln +~ NL

- Mlet "+ N+ "="4+ U

- Tabln + NL - V + "}

~ TabOut +~ TabOut,

E);

! let Command

if *Command ("let"). *Argument (N), *CurrentNode (E}, *Undef (E)

-> CommandPending (E). CreateLet (N, E, newobj {}, newobj {}};

if *CreateLet (N, E. X, B). *CommandPending (E)
-> {Block (E), BndVar (N, E), BndVal (X, E), Body (B. E).
Undef (X]), Undef (B}, CurrentNode (X);

Command ('show") }: |

' iIn Command

if *Command ("in"). *CurrentNode (E), BndVal (X, E)

-29-

-> CurrentNode (X}, Command ("show");

! out Command

if *Command ("out"), *CurrentNode (X), BndVal (X, E)

-> CurrentNode (E), Command ("show");

if *Command ("out"). *CurrentNode {B), Body (B, E)

-> CurrentNode (E}, Command ("show");

! next Command

if *Command {"next"), *CurrentNode (X), BndVal (X, E), Body (B, E)

-> CurrentNode (B), Command ("show");

! prev Command

if *Command ("prev"), *CurrentNode (B), Body (B, E}, BndVal (X, E)
-> CurrentNode (X), Command ("show");

-

act {BlockRules}.

! CONDITIONAL EXPRESSION NODES

' Relations

newrelation {"ConEx"};
newrelation {"Cond"};
newrelation {"Conseq'"};

newrelation {"Alt"};

newrelation {"Create ConEx"}.

define {root. "ConExRules". < «

' Evaluation

if *Eval (E, C), ConEx (E), Cond (B, E)

-> Eval (B, C);

if ConEx (E), Cond (B, E), Conseq (T, E), *Value (true, B, C)

-> Eval (T. C);

if ConEx (E). Cond (B. E), Alt (F, E). *Value (false, B, C)

-> Eval (F. C);

if ConEx (E), Conseq (T, E), *Value (V, T, C)

-> Value (V. E, C);

if ConEx (E), Alt (F, E), *Value (V, F, C)

-> Value (V. E, C);

' Unparsing

if *Unparse (E). ConEx (E). Cond (B, E), Conseq (T, E), Al¢ (F, E)

-> Unparse (B), Unparse (T), Unparse (F):

if ConEx (E), Cond (B, E), Conseq (T, E), Alt (F, E), *Image (U, B), *Image (V, T), *Image (W, F)
-> Image (Tabln + NL +

"if "+ U+ NL +

"then "+ V + NL +

"else "4+ W 4+ MM

TabOut + NL, E);
! Editing
! if Command

if *Command ("f"), *CurrentNode (E), *Undef (E)

-> CommandPending (E), CreateConEx (E, newobj {}, newobj {}, newobj {});

if *CreateConEx (E, B, T, F), *CommandPending (E)
-> {ConEx (E), Cond (B. E), Conseq (T, E), Alt (F, E),
Undef (B), Undef (T), Undef (F). CurrentNode (B);

Command ('show")};

! in Command

if *Command ("in"), *CurrentNode (E), ConEx (E), Cond (B, E)

-> CurrentNode (B}, Command ("show"};

' out Command

if *Command ("out"), *CurrentNode (B), Cond (B, E}, ConEx (E)

-> CurrentNode (E), Command ("show"):

if *Command ("out"), *CurrentNode (T), Conseq (T, E). ConEx (E)

-> CurrentNode (E), Command {'show"):

if *Command ("out"), *CurrentNode (F), Alt (F, E), ConEx (E)

-> CurrentNode (E), Command ('show");

' next Command

if *Command ("next"), *CurrentNode (B), Cond (B, E), Conseq (T, E)

-> CurrentNode (T), Command ("show");

if *Command ("next"), *CurrentNode (T), Conseq (T, E), Alt (F, E)

-> urrentNode (F), Command ('show");

! prev Command

if *Command ("prev"), *CurrentNode (F). Alt (F, E), Conseq (T, E)

-> CurrentNode (T), Command ('show");

if *Command ("prev"), *CurrentNode (T), Conseq (T, E}), Cond (B, E)
-> CurrentNode (B), Command ('show");

S S0l

act {ConExRules}.

! FUNCTION DEFINITION AND INVOCATION

! Definition Abstract Structure

newrelation {"FunDef"};
newrelation {"FunName"};
newrelation {"FunFormal"};
newrelation {"FunBody"};

newrelation {"FunScope"};

! Invocation Abstract Structure

newrelation {"Call"};
newrelation {'"Rator"};

newrelation {"Rand"};

' Runtime Relations

newrelation {"Closure"};
newrelation {"EP"}:
newrelation {"TP"};
newrelation {"FP"};
newrelation {"Caller"};
newrelation {"Name'"};

newrelation {"Argument2"};

newrelation {"CreateCall"};
newrelation {"CreateFunDef"};
newrelation {"Create ActRecord"};

newrelation {"CreateFunContext"}.

define {root, "FunRules", < <

! FUNCTION INVOCATION
! Editing
' call Command

if *Command ("call}), *CurrentNode (E), *Undef (E)

-> CommandPending (E), CreateCall (newobj {}, newobj {}, E);

if *CreateCall (F, X, E), *CommandPending (E)

-> Call (E), Rator (F, E), Rand (X, E), Undef (F), Undef (X), CurrentNode (F);

! next Command

if *Command ("next"), *CurrentNode (F), Rator (F, E), Call (E), Rand (X, E)

-> CurrentNode (X), Command ("show");

! Unparsing

if “*Unparse (E), Call (E), Rator (F, E), Rand (X, E)

-> Unparse (F), Unparse (X);

if Call (E), Rator (F, E), Rand (X, E), *Image (U, F), *Image (V, X)
-> Image (U +~ ""+ V, E):
! Evaluation

! Evaluate Rator and Rand

if *Eval (E, C). Call (E), Rator (F, E), Rand (X, E)

-~ Eval (F. C), Eval (X. C);

' Evaluate Body

if Call (E), Rator (F, E), Rand (X, E), Var (F), Ident (M, F),

*Value (K, F, C), *Value (V, X, C),
Closure (K), EP (D<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>