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I.  INTRODUCTION 

The algorithm proposed in this report for smoothing 

3-D data of NUWES uses sequential differences to screen the 

data for "wild" data values (outliers) and a 7-point least- 

squares procedure to perform the data smoothing. 

It is assumed that the actual relationship between 

each coordinate (x,y,z) of the path of the vehicle being tracked 

and time can be expressed as a low order polynomial  pu(t) 

where k  is the order (degree) of the polynomial.  An observed 

value X.  can then, for example, be expressed as 

x. = P, (t.) + n. 
1   k  i    1 

where  n. is the noise component resulting from inaccuracy in 

measuring the x-component of the position of the vehicle at 

time  t..  Examination of 3-D data from a torpedo run at NUWES, 

supported by consideration of the relationship between 

vehicular maneuvering capabilities and data rate, suggests that 

polynomials of no higher order than K = 3  (cubics) need be 

considered for  7  consecutive point data segments.  The selec- 

tion of the appropriate order of polynomial and the smoothing 

are incorporated in STEP 4 of the algorithm and discussed in 

Section III D. 

Performance of least-squares smoothing can be stand- 

ardized and computational requirements considerably reduced when 

7-point data segments contain no missing values.  This neces- 

sitates provision of temporary values to fill in gaps in the 



data.  Such, temporary values are also useful in the screening 

process to identify outliers.  Provision of temporary values 

for missing data values is treated in STEP 1 of the algorithm 

and discussed in Section III A. 

When a component of a vehicular path is a polynomial 

of order k _< 3,  then the fourth order sequential differences 

of the observational data will consist exclusively of the noise 

components in the data, (Ref. 2).  Since outliers can be at- 

tributed to noise it would appear reasonable to use fourth 

order sequential differences to screen for them.  This is in- 

corporated in STEP 2 and discussed in Section III B.  This 

step calls for replacement of outliers by temporary values as in 

the treatment of missing values in STEP 1. 

The temporary values to fill in missing points and 

replace outliers were selected to be consistent with the closest 

observed data value before and the closest after the point in 

question.  This could, and actually does in some cases, produce 

temporary values that are inconsistent with the polynomial that 

best fits the observed values in the data segment.  It is pro- 

posed in STEP 3 that smoothing be performed as in STEP 4 for 

7-point data segments centered at the temporary values and that 

these smoothed values be treated as observed values in smoothing 

at observed data values.  This is a direct attempt to minimize 

the effects of temporary values (either missing points or 

outliers) on the results of data smoothing.  This is discussed 

in Section III C. 



The presence of two or more missing points and/or out- 

liers (i.e., temporary values) within the same 7-point data 

segment, or, more specifically, within three data points of 

each other, requires special treatment.  Some initial efforts 

in this direction are included in STEP 5 and discussed in 

Section III E.  The general motivation for this step is the 

derivation of the maximum information on a vehicular path that 

can be obtained from the data even though that information is 

degraded by missing points and outliers.  The possibility of 

providing some measure of the "quality" of the smoothing at 

each data point for the guidance of potential users is discussed 

in Section III F. 



II.  A DATA SMOOTHING ALGORITH 

The following Algorithm using fourth order sequential 

differences and least-squares smoothing of 7-point data segments 

is proposed for smoothing of 3-D data at NUWES. 

STEP 1 Preliminary treatment of missing data points. 

(a) A missing data value at time  t.  where the adjacent 

observed values x. ,  and x.,,  are available is l—l       l+l 

assigned the temporary value 

x* = (x. . + x.^,)/2 . 
l    l-l   i+l 

(b) Adjacent missing values at times  t.  and t. , , where 

the values x. ,  and x.,~  are observed, are assigned 
l-l      i+2 '        3 

the temporary values 

xt • (2x. ., + *i+2l/3     and 

xi+l = Cxi-1 + 2xi+2)/3 ' 

(c) Occurrence of more than two consecutive missing values 

are designated for Special Treatment in Step 5. 

STEP 2  Identify and temporarily replace Outlier data points. 

(a) Calculate fourth order sequential differences  d. .. 's . 

(Ref. 2) 

(b) Any value d..  which exceeds a specified level  d in 

magnitude is a potential outlier.  The signature in 

fourth order differences of an outlier is a large value 

d..  with somewhat smaller values  d.._,  and  d.. , 



of opposite sign adjacent. (These adjacent values may, 

or may not, be outliers even though they exceed d in 

magnitude.) Designate  x.  as an outlier and treat it 

as a missing value as in Step 1. 

(c)  Repeat Step 2(a) and Step 2Cb) in the neighborhood of 

x. . 
i 

STEP 3  Determine smoothed values to replace temporary values. 

(The 7-point least-squares smoothing procedure of 

STEP 4 is used to determine smoothed values to replace the 

temporary values obtained in STEP 1 and STEP 2.) 

(a)  Any temporary data value  x*  for which the 7-point 

data segment (x. -,, x. _, x. ,, x*, x.,,, x.,_, x.,-.) ^       1-3'  i-2'  i-l'  i'  i+l'  i+2'  i+3 

contains no other temporary values is treated as 

follows, 

(i)  Apply the 7-point least-squares smoothing pro- 

cedure of STEP 5 to determine a smoothed value 

x! . 
l 

(ii)  If the difference x* - x.1  is less than a 
11 

prescribed value  a (Section III C) then  x! 

is accepted as the smoothed value of x at 

time  t. .  If  Ixt - x?I > a, then replace 
I       ' i   i' ^ 

x*  by  x!  and repeat step (i) above.  This 

process is repeated until a difference 

|x* - x!| less than  a is achieved. 1 l   i' 



(b) If two temporary data values  x?  and x*  are separated 

by less than three observations (j = i+1, i+2, or i+3) 

and a 7-point data segment centered at x* or x* 

(or, preferably, centered between x*  and x*f) 

contains no other temporary values, then the least- 

squares smoothing procedure of STEP 5 is applied to 

that data segment to determine smoothed values x.' 

and x!  simultaneously as in (a) above. 

(c) Any temporary value that cannot be smoothed by (a) or 

(b) above is designated for special treatment (STEP 5). 

STEP 4  Smooth observed data values. 

Each observed data value which is at the center of a 

7-point data segment containing observed values or previously 

smoothed values (STEP 3) is smoothed using the 7-point least- 

squares smoothing procedure described in Section III D.  Other 

observed data values are designated for special treatment. 

STEP 5  Special treatment of designated data points. 

The purpose of this step is to determine additional 

information, wherever possible on the vehicular path in the 

neighborhood of multiple outliers and/or missing points.  (It 

should be recognized, and specifically indicated to potential 

users of the smoothed data that there is greater uncertainty 

in the actual vehicular path when STEP 5 is used for smoothing.) 

Two possibilities for accomplishing this are included here. 

Other possible treatments may be added as they are developed. 



(a) Observed data values which do not satisfy the require- 

ments for treatment in STEP 4 but are within a 7-point 

data segment containing only observed or previously 

smoothed data values are also to be smoothed as in 

STEP 4.  In this case the center of the 7-point segment 

used for smoothing should be as close to the observed 

value to be smoothed as possible-  (This procedure could 

also be used to predict values outside the 7-point 

segment with increasing uncertainty.) 

(b) There is some possibility of extracting additional 

information on the vehicular path in the vicinity of 

multiple temporary values by relaxing the requirement 

in STEP 3 (b) on the location of the center of the 

7-point segment used for smoothing with respect to the 

temporary values to be smoothed. 



Ill  DISCUSSION 

A.  MISSING DATA POINTS CSTEP 1) 

The role of STEP 1 is to provide temporary values for 

missing data points.  These temporary values are used in two 

ways.  First, they are of help in reducing gaps in fourth order 

sequential differences and hence permit a more complete exam- 

ination of those differences in the search for potential out- 

lier values.  Second, they provide initial values for the 7- 

point smoothing procedure which, in its special form as de- 

scribed in Section III D, is only applicable to segments of 

seven sequential data values. 

Perhaps the simplest way to provide temporary values 

for missing points is to assume that the actual relationship of 

x  (for example) and t is linear and hence to use linear 

interpolation for missing values between adjoining observed 

values.  For a missing value at time  t.  when  x. ,  and 3 l        l-l 

x. ,  are the adjacent observed values, the appropriate temporary 

value at time  t.  then becomes 
I 

xi " xi-l + l(xi+l " xi-l}   =   Cxi-1 +  xi+l)/2   • 

For adjacent missing values at times  t.  and  t.,, , use of 

the observed values  x-_i  anc^ x- + ?  yields the temporary values 

Xi  =  Xi-1  + I(xi+2   "  Xi-1}   =   C2xi-1  +  xi+2)/3 and 

Xi+1  =  Xi-1  +  I(xi+2   "  H-l*   =   Ui-1  +   2xi+2)/3   ' 



For missing values at times  t._,, t., and t. , , the appropriate 

temporary values are 

Xi-1 = Xi-2 + T(xi+2 ' "i-21 " (3xi-2 + Xi+2
)/4 ' 

Xi = Xi-2 + f(xi+2 " Xi-2} " Cxi-2 + xi+2)/2 '    and 

3 
X*,. = x. ,, + -r(x.,~ - x. _} = (x. _ + 3x.,~)/4 . 1+1    i-2   4  i+2    i-2      i-2     1+2" 

Extension to longer sequences is not useful for either screening 

for outliers or for data smoothing. 

B.  OUTLIERS (STEP 2) 

As indicated in Section I, it is assumed that the re- 

lationship between a component of the path of a vehicle being 

tracked can be represented by, for example,  x as a polynomial 

function of  t of no higher order than three.  The fourth order 

sequential differences of the observed values, then, will be 

functions of the noise components in the observed values.  It 

was shown in Reference 2 that the standard deviation of the 

fourth order sequential difference  d..  at time  t.  is 

a . .   = 8.36 7a.T 4i        N 

where  aN  is the standard deviation in the noise component 

of each observed value. 

In order to be useful this must be translated into a 

threshold value  d with any observed value  x.  for which  d.. 
•* l 4i 

exceeds  d  in magnitude being identified as an outlier.  It 



would appear reasonable to assume that  d. . , as a linear com- 

bination of noise components, is at least approximately normally 

distributed with zero mean and hence the probability that D.. , 

as a random variable, will exceed  3a..  in magnitude is less 

than 0.01.  The threshold value  d  can then be expressed as 

d = 3 a..   = 25 oM . 

(Note that in a sequence of 100 observed values one legitimate 

observed value, on an average, will be incorrectly identified 

as an outlier.) 

There remains the problem of specifying an appropriate 

value for the standard deviation  a„ of the observational N 

noise.  There are several possible approaches here, all of which 

rely basically on estimation of  a., by the standard deviation (SE) 

of the residual errors after fitting data segments by polynomials 

using the least squares method.  (Ref. 1)  The following ways of 

estimating  aN  are possible: 

(1) Historical Data - Fitting of polynomials to data seg- 

ments from 3-D data on torpedo paths at NUWES yielded 

values  SE = 2  in many cases.  (Ref. 1 and Table 1 to 

follow) 

(2) Technical - Information should be available from 

instrumentation personnel on the capabilities of the 

position location system in use at NUWES.  (This has 

not been explored.) 

10 



(3)  Current Data - A possible substitute for historical 

data would be the use selected segments from the data 

to be smoothed.  Trial fitting of these segments solely 

for the purpose of obtaining current values of SE 

could be used to estimate  o .  (This approach has the 

advantage that it represents the current status of the 

position location system.  It has the disadvantage that 

it can be seriously contaminated by outlier points which 

cause large values of  SE.)  (Isolated large values of 

SE  could be considered as an indication of the presence 

of potential outliers.  This could be followed up to 

determine whether the large value of  SE  was caused 

by a single large residual error.  This could be in- 

corporated into the algorithm to provide a second screen- 

ing for outliers performed whenever an unusually large 

value of SE  occurs in the data smoothing (STEP 3 and 

STEP 4) ) . 

3-D data from a torpedo path on a run at NUWES 

was used to assist in the development of the algorithm. 

In this data every eighth data point was missing due to 

the data collection procedure.  Trial sample variances 

were calculated for 30 of the data segments between 

these missing points.  (Missing points in the segments 

were treated as in STEP 1 and screening for outliers 

was not performed in these calculations.)  Using the 

least-squares procedure described in Section III D, 

sample variances  SEK  of 

11 



residual errors were calculated for linear (K=l), 

quadratic (K=2) and cubic (K=3) polynomials.  These 

values and the value of K for which SEK  is smallest 

are presented in Table 1.  The last column of the table 

indicates data segments containing observed values 

identified as outliers in STEP 2 using a = 2  so that 

d = 25 a„ = 50 . N 

(The average value of the minimum SEK's  for each 

segment, omitting the segments with indicated outliers, 

is 2.10. 

(4)  Position Dependent Thresholds - It should be recognized 

that the magnitude of  aN  can vary with such factors 

as the location of the vehicle being tracked with 

respect to the position location of the array collect- 

ing the data and the state of the transmission medium 

in different parts of the test area.  It is then con- 

ceivable that different values of  a„  could be used to N 

specify different values of  d depending on the part 

of the test area where the segments of the vehicular 

path occurred. 

Performance of STEP 1 and STEP 4 for the data used to 

produce Table 1 yielded the sequence shown below for the data 

segment centered at time  t^ = 2157. 

12 



TABLE 1 

SAMPLE STANDARD DEVIATIONS AND OUTLIERS 
(X-COMPONENT) 

j 
(Segment) 

t. 
3 

(Time) 
SEl 

(Linear) 
SE2 

(Quadr.) 
SE3 

(Cubic) 
K 

(Min SEK) 
Outlier 
Indicated 

1 2092 21.61 7.46 8.40 2 X 

2 2100 28.51 5.44 2.34 3 

3 2108 18.49 5.44 2.64 3 

4 2116 2.92 2.14 1.90 3 

5 2124 6.46 2.02 2.33 2 

6 2132 35.74 18.58 2.84 3 

7 2140 21.79 23.24 1.85 3 

8 2148 9.81 5.61 4.04 3 

9 2156 26.47 15.82 15.31 3 X 

10 2164 7.74 2.69 3.08 2 

11 2172 19. 80 2.99 3.33 2 

12 2180 15.74 5.17 2.64 3 

13 2188 1.42 Q.81 0.90 2 

14 2196 3.04 1.21 1.02 3 

15 2204 30.96 6.71 7.72 2 X 

16 2212 28.40 19.68 2.58 3 

17 2220 15.47 13.15 4.95 3 X 

18 2228 24.59 2.99 2.44 3 

19 2236 3.80 3.49 3.73 2 

20 2244 24.01 1.62 0.52 3 

21 2252 11.90 3.91 3.45 3 

22 2260 1.36 1.47 1.22 3 

23 2268 2.25 2.47 2.13 3 

24 2276 34.78 18.96 2.23 3 

25 2284 60.60 14.96 8.87 3 X 

26 2292 36.58 5.65 2.10 3 

27 2300 15.70 2.60 0.19 3 

28 2308 10.53 5.24 0.5 3 

29 2316 29.12 1.34 1.37 2 

30 2324 12.35 8.11 7.62 3 X 

13 



I 

t. 
1 

X. 4i 

2154 33,219.5 -  13.4 

2155 33,212.5 23.1 

2156 33,221.0 - 130.8 

2157 33,273.5 212.2 

2158 33,267.7 - 146.7 

2159 33,313.5 21.9 

2160 33,374.2* 29.8 

As indicated in Reference 2, an isolated outlier will contam- 

inate the fourth order differences of the adjacent points 

producing difference of substantial magnitudes of opposite 

sign.  Using a threshold value of d = 50, the value of 

x. at t. = 2157  is strongly indicated as an outlier value. 

Replacing this  x.  by x*  using STEP 1 and recalculating 

values for  d, .  in the neighborhood of  t. = 215 7  produced 

the modified results shown below. 

t. 
1 

X. 
l 4i 

2154 - 

2155 

2156 - 14.2 

2157 33,244.35* 37.3 

2158 - 30.0 

2159 

2160 

14 



The possibility of a temporary value created in STEP 1 

for a missing point being indicated as an outlier in STEP 2 is 

interesting although it requires no special treatment.  As in- 

dicated in Section III A, a temporary value xt  is supplied 

for an isolated missing point by taking the average of the 

observed values on each side of it.  As illustrated below, where 

the actual x component of the vehicular path is a quadratic 

(parabolic) the temporary value can differ substantially from 

P2(t-) + n.  and produce a large value of d.. . 

> t 

Three of the 30 missing points in the data for the path presented 

in Table 1 were supplied temporary values using STEP 1 and which 

were identified in STEP 2 as outliers.  One of these occurred 

at time  t = 2136.  Data for the 7-point segment centered at 

this time is presented below. 
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X. 
1 4ix 

1 A   • 4iy 4iz 

1 

2 

3 

4 

5 

6 

7 

2133 

2134 

2135 

2136 

2137 

2138 

2139 

33,637.7 

33,556.5 

33,486.6 

33,466.5* 

33,446.3 

33,485.1 

33,559.3 

23.4 

34.3 

88.2 

10 8.7 

82.5 

4.8 

0.6 

12.0 

0.2 

19.3 

24.0 

22.3 

14.5 

10.3 

26.5 

-16.2 

0.7 

1.9 

0.9 

-  6.9 

15.3 

The outlier in the x-component indicated at time 2136 is not 

accompanied by outliers indicated in the y and z-components. 

This suggests that temporary values can be designated as outliers 

for one component (x) without that designation being necessary 

for the other components (y and z).  Note also that although 

d..   exceeds the threshold d = 50  in magnitude at times 

t = 2135 and t = 2137, the corresponding values of  x.  should 

not automatically be designated as outliers.  Supporting evi- 

dence that they are not outliers comes from Table 1 where these 

x.'s  lie in data segments  j = 6 and 7  respectively and the 

standard deviations for those segments  SE.  are 2.84 and 1.85 

which suggests that large residual errors are not present at 

either of these times. 

On the other hand, the outlier in the x-component at the 

time  t = 2157 and previously discussed is accompanied by the 

values  d..  = - 139.2  and d..  = - 19 3.8  so that all 3 4iy 4iz 

components have outliers indicated at t = 2157.  This brings 

up the question as to whether a legitimate outlier (not a 

temporary value at a missing point) can occur in one component 

16 



only or that an outlier indicated in one component should re- 

quire that the observed values of the other components are also 

suspect and should be treated as outliers whether their fourth 

order differences exceed d or not. 

C.  SMOOTHED VALUES FOR TEMPORARY VALUES (STEP 3) 

The standardized computational format for smoothing seven 

consecutive data using the least-squares method is discussed 

in the next section (Section in D) .  It is proposed that this 

procedure be used repetitively on the 7-point data segment 

centered at the temporary value x* .  At each repitition, the 

temporary value  x*  is replaced by the smoothed value.  This 

iteration is continued until the residual noise  e.. • x* - x! 

is reduced to some acceptable level.  (Theoretically, it could 

be repeated until  e. . = Q).  To illustrate this consider the 

example with an outlier at  t. = 2157.  (Note:  This is not at 

the center of the data segment examined in what follows but 

the shift of the temporary value from  i = 0 to i = 1 was 

originally dictated by the fact that every eighth data point 

(values at  t. = 2152 and 2160) was missing.  The results pre- 

sented here involve use of the 7-point segment between times 

2152 and 2160 and have not been recalculated.)  The results of 

smoothing on the outlier value  x.  and of three repititions of 

smoothing starting at the temporary value  xt  (STEP 1) are 

shown below. 

17 



smoothing 
stage 

j x. . 
H 

SEj e. . 
il 

x! . 

outlier 33,273.5 15.3 19.42 33,254.1 

1 33,244.35* 3.49 3.45 33,240.9 

2 33,240.9 2.53 1.57 33,239.3 

3 33,239.3 2.28 0.69 33,238.6 

The smoothing procedure could have terminated after the second 

stage since the residual e.~ = 1.57  is less than SE2 = 2.53 

and hence well within the noise level of the other observations 

in the segment.  One additional stage was used to produce the 

final smoothed value xf = 33,238.6  at time  t. = 215 7. 

(Additional stages could reduce e..  further but would have 

decreasing effect on SE..) 

It is of interest to see the effect on successive dif- 

ferences (STEP 2) of replacing the outlier value  x. = 33,273.5 

by the smoothed value 33,238.6.  This is shown below. 

pre post 

i 
4i 4i 

- 3 2.6 

- 2 -  13.4 - 13.4 

- 1 33.1 1. 8 

0 - 130.8 -  8.4 

1 212.2 2.8 

2 - 146.7 -  7.1 

3 21.9 

The treatment for adjacent temporary values, whether 

resulting from missing points or outliers, is similar.  Instead 

of determining smoothed values for one of them and then the 

18 



other or of alternating the smoothing stages between the two 

(and alternating data segments also), it would appear rea- 

sonable to smooth both simultaneously with the data segment 

centered on either one.  (If one segment has additional tem- 

porary values but the other does not, the segment without 

additional missing points is to be used.)  At each stage both 

temporary values are replaced by their smoothed values. 

For two temporary values separated by one or more ob- 

served values the relative merits of simultaneous smoothing 

versus alternate smoothing stages centered first on one tem- 

porary value then on the other has not been examined.  The 

widths of confidence intervals when the actual relationship 

is linear (x(t) = P,(t)) increases with distance from the mid- 

point. (Ref. 1)  This could suggest that simultaneous smoothing 

might still be appropriate  if the temporary values are not too 

widely separated.  In this procedure the 7-point data segment 

should have its center as close to the midpoint between the 

temporary values as possible.  A modification of this selection 

may be required to avoid other temporary values, however.  (This 

modification could be used in STEP 5 for the treatment of 

multiple temporary values.) 

The presence of three temporary values in a data seg- 

ment of seven consecutive points causes special difficulties. 

Iterated simultaneous smoothing of the three values could, 

theoretically, be carried to the limit in which a cubic equa- 

tion involving four parameters is fitted exactly to the four 

observed values in the data segment.  This results in all 
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residual errors, and hence SE, being equal to zero.  The 

cubic is fitted not just to the path but to the noise as well. 

It would be possible to carry the smoothing only to the stage 

where the residual errors at the times of the temporary values 

are within the noise. 

D.  LEAST-SQUARES SMOOTHING (STEP 4) 

The basic elements of the Least-Squares Method for 

smoothing two-dimensional data is described in Reference 1. 

For the purposes of the algorithm being developed, the method 

will be adapted to data segments of seven consecutive data 

values equally spaced in time.  The procedure will be presented 

for the x-component only with the fitted function being of the 

form 

k x(t) = b + b-j^t +...+b. t  , 

using 7 pairs of data of the form (t.,x.). 

The computations involved in fitting the function x(t) 

to the data is facilitated by making the following time trans- 

lations of the data. 

t. 
1 

t. , 1-3 fci-2 Vl t. 
l fci+l 1+2 fci+3 

i -3 -2 -1 0 +1 2 3 

X. 
i 

X-3 X-2 X-l X0 Xl X2 X3 

This transformation serves two purposes.  First, it reduces the 

magnitudes of the numbers to be computed and hence reduces 
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inaccuracies caused by computer round-off.  To illustrate this, 

consider the dat segment including the time  t. = 2157.  Fitting 

a polynomial of degree three to this data segment involves the 
V\ on 

term SS3 = £ t.  which is of the order of magnitude of  10 

and will be severely reduced in significant digits by any com- 

puter.  Translation from t. to i  changes this term to 
+ 3  6 

L 7 
SS3 = I  i  = 1588.  The important information in  SS3 = £t? 

-3 1 1 

is contained in the last 8 digits which are lost in round-off 

rather than the first 8 digits which are retained by a computer 

using 8 decimal places. 

The second, and equally important, purpose of the trans- 

lation in time is that the portions of the regression calcula- 

tions relating exclusively to the  t. *s (.the i's in the trans- 

lated times) are common to all 7-point data segments and can be 

precalculated and introduced into the computations as constants. 

A translation of the x.'s of the form 

0 
X.  = X . - X 
1   1 

where  x.  indicates the observed value of  x  at time  i  and 
i 

1  r  0 
X = •=•   > X. 

7 -3  x 

will also help reduce the effects of computer round-off for 
2 

such terms as  SSX = T x. . L     l 

Note that these translations in  t. and x.  produce the 

relationships 

3     3^3,3 
I i = I   i3 = I   i5 = I   ^   =   0 

-3     -3      -3      -3 
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and these terms drop from the formulas providing additional 

simplification in the computations.  It will be assumed that 

the use of the data smoothing portions of the algorithm is 

preceded by these translations of  x and  t. 

The information from the data segment essential to the 

smoothing procedure includes mean value x and the following 

statistics: 

SIX = £ix., S2X = £i2x., S3X = £i3x., and SSX = £xT . 

(All of the summations are over i = -3 to i = +3.)  Intermediate 

values to be calculated from the above and which are needed 

are: 

SSX.l = [28(SSX] - (SlX)2]/28, 

S3X.1 = (S3X) - 7 (SIX) , 

SSX. 2 = [84 (SSX.l) - (S2X)2]/84,  and 

SSX. 3 = [216CSSX.2) - (S3X. 1} 2]/216 . 

One of the advantages of the least-squares method of 

fitting polynomials to data is that the standard deviations of 

the residual errors can be calculated for any order polynomial 

(K = 1,2,3 for this algorithm) before any of the polynomials 

are fitted and hence before smoothed values and residual errors 

are determined.  Thus 
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SE1 = /^ le*L  = /(SSX.D/5 , 

SE2 = /ir l&l.   = /csSX.2)/4 ,    and n-3 L   2i ' 

SE3 = /XTj^2~ = /cssX.3)/3 

These standard deviations of residual errors provide a basis 

for selection of the appropriate order of polynomial with the 

order selected having the smallest value of SEK.  (This has 

already been illustrated in Table 1.) 

As a consequence of the nature of the least-squares 

method of fitting polynomials, the sums of squares of the 

residuals must satisfy the inequalities 

Ki > l»2
2i > l4i t  

The possibility of a second order polynomial, for example, 

producing a smaller value  SE2  than a third order polynomial 

is due to the divisor  n-(k+ll  which accounts for the fact 

that a polynomial of order K  has  K+l  coefficients.  (This 

divisor is called "degrees of freedom" 

v = n-(k+l) . 

It will be examined again in Section III F.) 

For a 7-point data sequence (n=7), a third order polynomial 

will be considered to give a "better" fit than a second order 

polynomial (SE3 < SE2) only if 

r 2  . 3 v 2 
£e3i K   4 £e2i • 
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This contradicts our belief that a smaller value for 

r 2 2_e, .  indicates a closer fit of the polynomial.  The statistic 

SEK  is selected as the criterion here because its square is 

2 
an unbiased estimate of the noise variance a„  and hence SEK N 

is used in establishing confidence intervals for actual com- 

ponents of the vehicular path. 

Note that for 9-point data segments SE3 will be less 

than SE2 whenever 

n-4 
Ae3i   n-3 ^e2i   6 ^e2i 

A smaller decrease in  )e,.  will lead to selection k = 3 L   3i 

than when n = 7.  (.This is one reason for statistician's 

insatiable demand for larger samples.) 

The coefficients for the selected order polynomial 

can now be calculated as follows: 

Linear    x'(t) = b^+b^i b^ = (SlX)/28 

= P1'(t) b1Q - 0 

Quadrabic x'(t) = b2Q
+b21t+b22t2 b22 = CS2X)/84 

= P2' (t) b21 = CSlX)/28 

b20   "  ~4b22 

Cubic x'Ctl   = b3Q+b31t+b32t
2+b33t

3 b33  =   CS3X.il/216 

=  P3« (t) b32  =   (S2X)/84 

b31 = ^Slx) -196b33]/28 

b30 " "4b32 

Smoothed values  x'Ci)  can then be calculated for any  i  using 

the selected order polynomial. 
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E.  SPECIAL TREATMENT (STEP 5) 

There are three conflicting properties desired in a 

data smoothing algorithm.  One of these is the extraction of 

the maximum information from the data on the vehicular path. 

The second is that automation of the algorithm (the computer 

program) be as complete as possible so that little or no sub- 

sequent manual processing is required.  The third property is 

that the computer program to implement the algorithm be as 

simple as possible. 

If the first property were omitted or if no outliers 

or missing points were present in the data then STEP 5 could be 

deleted.  The purpose of STEP 5 is to extract more information 

on the vehicular path from data in the vicinity of multiple 

outliers and/or missing points.  This will be more difficult to 

automate (awkward to program) and the resulting information will 

be somewhat degraded in quality.  Nevertheless, efforts to im- 

plement this step are important since path segments with mul- 

tiple outliers and/or missing points appear to occur when in- 

formation on torpedo and target locations are most important 

(e.g., in the vicinity of intercept). 

There are several possibilities for using least-squares 

smoothing at data points in a data segment other than the mid- 

point and even for estimation or prediction at points outside 

the segment.  These possibilities have not been fully explored 

or developed to the state where they can be specified for 

inclusion in STEP 5. 
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F.  OTHER FEATURES OF LEAST-SQUARES SMOOTHING 

1.  Appropriate Polynomial Degree 

As discussed in Reference 1 and in Section I of this 

report each, observed datum is assumed to contain two components, 

one representing the actual coordinate of a point on the path 

of a moving vehicle and th.e other a noise component resulting 

from inaccuracy of measuring the first.  Thus, for the observa- 

tion x.  at time  t., we have 
i I 

x. = P(t.) + n. . 
x       1      1 

If the data segment to be fitted is short, it will be assumed 

that the path component P(t.)  for any of the coordinates 

can be represented by a low order polynomial with its error in 

fitting the actual path component being small in comparison to 

the noise component. 

The highest order polynomial required for a given length 

of data segment depends upon the turning rate of the vehicle 

being tracked and the data tracking rate.  For example, a tor- 

pedo is capable of making a complete circle within 10 data in- 

tervals (data segments of 11 points).  The x-component for a 

circular path can be represented as a sine function, e.g., 

P Ct) = a + b sinCc+at) 

which might be graphed as below. 
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The minimum order polynomial which might be considered as a 

reasonable representation of this is four so that 

P(t) = bQ + bxt + b2t
2 + b3t

3 + b4t
4 

with a graph of the form shown below, 

For data segments of 7 points, it would appear that a poly- 

nomial of order three (cubic) might be adequate so that 

P(t) = bQ + b1t + b2t
2 + b3t

3 

with a graph below. 

>t 
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For a vehicle maneuvering at a lower rate a polynomial of second 

order (quadratic or parabolic) or first order (linear) might 

be adequate.  The graph of a parabola could appear as below. 

Examination of the results of fitting 7-point data segments of 

the x-component of a torpedo run at NUWES which were presented 

in Table 1 illustrate the capabilities of polynomials of orders 

three or less to represent actual path components. 

The interaction of data segment length and corresponding 

polynomial order requirements has not been explored. 

2.  Quality of Smoothing 

The "quality" of fit of a polynomial to a data segment 

v 2 would appear to be better represented by the quantity le. 

than the sample standard deviation SEK which was used in 

Section III D do select the appropriate order polynomial to fit 

a data segment. 

There are two aspects of the use of SEK as a measure of 

the quality of smoothing that need further examination.  One of 

these is the effect of missing and/or outlier points on the 

formula for SEK.  Thus 

SEK = /(le*L/i 
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where the "degrees of freedom" divisor, y, for a data segment 

of n observed values is 

r • n -(K+l) . 

When there are m temporary values resulting from missing and/or 

outlier data values in the segment a more appropriate formula 

is 

r = Cn-m) - (K+l) . 

The presence of temporary values in a data segment decreases  r 

producing an increase in SEK indicating a larger noise compo- 

nent and hence a lower quality of the smoothed values.  Thus 

SEK can indicate the reduction.in the "quality" of smoothing by 

the presence of temporary values in the data segment.  In the 

example where  n = 7, K = 3 and m = 3, we have r = 0.  A third 

order polynomial (K=3) can be fitted exactly to the remaining 

n - m = 4  observed data values including their noise compo- 

nent and no smoothing has been performed.  Also, no estimate of 

the noise component (cO is possible. 

Increasing the length of data segments (n) could be 

used to increase r  provided higher order polynomials 

(increasing K) is not also required.  The possibility of r 

increasing when n  is increased should also be considered. 

The other aspect of the use of SEK as a measure of the 

"quality" of smoothed values is the degredation in the quality 

depending on the location of the smoothed value with respect to 

the center of the data segment used for smoothing.  This can be 
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demonstrated by the formula for a confidence interval for the 

actual value X (i)  when the actual relationship is 

x(t) = a_ + a,t  and a polynomial of order one (x'(i) = bQ + b,t) 

is fitted by least squares to a 7-point data segment.  The 

confidence interval for XCil  is of the form 

x'(i) - c/i + jg SE1 , x'(i) + c/y + j^  SE1 

/l   i The factor  / -=• + y^ produces an increase in the width of the 

confidence interval with the distance  |i|  from the center of 

the 7-point data segment.  This can be considered as a decrease 

in the "quality" of x'Cil  as an estimate of XCi)    This 

/l   P~ factor could also be combined with SE1  so that  / -*- + yg- SE1 

could be treated as the appropriate standard deviation value 

for the noise component at time  i.  This apparent increase in 

the standard deviation of the noise also represents a decrease 

in the quality of the smoothed value at time  i. 

A general form for confidence intervals about a second 

order polynomial can be obtained using material in the 

Appendix B-3 of Reference 1, Notations are differences in 

Reference 1  and translation will be required to make it appli- 

cable to the material in this report.  A corresponding confidence 

interval for third order polynomials needs development. 

The requirement that 7-point data segments for smooth- 

ing the value at time t-  also be centered at time  t.  was 

specified by the information that confidence intervals have 
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minimal confidence interval width at this point in the sample 

when the fitted polynomial is linear.  There is some evidence 

(Ref. 1) that the minimum width of confidence intervals does 

not occur at the sample midpoint when the fitted polynomial is 

quadratic. 
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IV.  SUMMARY AND RECOMMENDATIONS 

The Algorithm presented in Section II and discussed in 

Section III provides a reasonable approach for use in smoothing 

3-D data at NUWES.  In the proposed algorithm, the data is first 

screened for outliers Cwild data) using fourth order sequential 

differences and then a special form of least-squares smoothing 

is performed to       fit a low-order polynomial to data 

segments. 

The presence of multiple outliers and/or missing values 

has two major effects on data smoothing. 

(a) They make smoothing of observational data difficult in their 

vicinity.  (Only preliminary treatment of this problem 

is included in the algorithm.] 

(b) They degrade the quality of smoothing in their vicinity. 

(This is discussed but not formally incorporated into 

the algorithm.) 

Although the algorithm can be used in its present form, 

improvements can, and should, be considered.  Some directions 

for improvements are: 

(a)  The data segment length (7 points) and the degree 

(3 or less) for fitting polynomials was somewhat 

arbitrarily selected.  The following possible changes 

need examination: 

(i)  Increase the data segment length from 7 to 9 and 

fitting polynomials of degree 3 or less, 

(ii)  Increase the data segment length to 11 and fitting 

polynomials of degree 4 or less. 
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(b) Special treatment of multiple outliers and/or missing 

points needs additional effort to achieve the goal of 

full automation. 

(c) Development, and inclusion in the algorithm, of some 

measure of the quality of smoothing could be of con- 

siderable interest to users of the smoothed data.  It 

would be useful even when no outliers and/or missing 

points are present in the data and its usefulness in- 

creases as an indicator to potential users of the ex- 

tent of degradation when the data includes outliers 

and/or missing points. 
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