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Master of Science in Aeronautics and Astronautics.

Abstract

Advances in autonomy have made it possible to invert the operator-to-vehicle ratio so
that a single operator can control multiple heterogeneous Unmanned Vehicles (UVs). This
autonomy will reduce the need for the operator to manually control each vehicle, enabling the
operator to focus on higher-level goal setting and decision-making. Computer optimization
algorithms that can be used in UV path-planning and task allocation usually have an a priori
coded objective function that only takes into account pre-determined variables with set
weightings. Due to the complex, time-critical, and dynamic nature of command and control
missions, brittleness due to a static objective function could cause higher workload as the
operator manages the automation. Increased workload during critical decision-making could lead
to lower system performance which, in turn, could result in a mission or life-critical failure.

This research proposes a method of collaborative multiple UV control that enables
operators to dynamically modify the weightings within the objective function of an automated
planner during a mission. After a review of function allocation literature, an appropriate
taxonomy was used to evaluate the likely impact of human interaction with a dynamic objective
function. This analysis revealed a potential reduction in the number of cognitive steps required to
evaluate and select a plan, by aligning the objectives of the operator with the automated planner.

A multiple UV simulation testbed was modified to provide two types of dynamic
objective functions. The operator could either choose one quantity or choose any combination of
equally weighted quantities for the automated planner to use in evaluating mission plans. To
compare the performance and workload of operators using these dynamic objective functions
against operators using a static objective function, an experiment was conducted where 30
participants performed UV missions in a synthetic environment. Two scenarios were designed,
one in which the Rules of Engagement (ROEs) remained the same throughout the scenario and
one in which the ROEs changed.

The experimental results showed that operators rated their performance and confidence
highest when using the dynamic objective function with multiple objectives. Allowing the
operator to choose multiple objectives resulted in fewer modifications to the objective function,
enhanced situational awareness (SA), and increased spare mental capacity. Limiting the operator
to choosing a single objective for the automated planner led to superior performance for
individual mission goals such as finding new targets, while also causing some violations of
ROEs, such as destroying a target without permission. Although there were no significant
differences in system performance or workload between the dynamic and static objective
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functions, operators had superior performance and higher SA during the mission with changing
ROEs. While these results suggest that a dynamic objective function could be beneficial, further
research is required to explore the impact of dynamic objective functions and changing mission
goals on human performance and workload in multiple UV control.

Thesis Supervisor: Mary L. Cummings
Title: Associate Professor of Aeronautics and Astronautics
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1 Introduction

1.1  Motivation

In the past decade, the use of Unmanned Vehicles (UVs) has increased dramatically for
scientific, military, and civilian purposes. UVs have been successfully used in dangerous and
remote environments, with Underwater Unmanned Vehicles exploring the deepest trenches of
the ocean (e.g., [1]) and NASA’s rovers traversing the surface of Mars [2]. Unmanned Aerial
Vehicles (UAVs) have enabled the military to conduct long duration missions over hostile
territory without placing a pilot in harm’s way. Unmanned Ground Vehicles have been utilized
by soldiers and civilian bomb squads to investigate and defuse explosive devices (e.g., [3]).
Scientists have studied global warming by surveying the polar ice caps (e.g., [4]) with UAVS,
while civilian agencies have employed UAVs for border patrol [5] and forest firefighting [6].

While these UVs contain advanced technology, they typically require multiple human
operators, often many more than a comparable manned vehicle would require. This barrier to
further progress in the use of UVs can be overcome through an increase in the autonomous
capabilities of UVs [7]. Many advanced UVs can execute basic operational and navigational
tasks autonomously and can collaborate with other UVs to complete higher level tasks, such as
surveying a designated area [8, 9]. The United States Department of Defense already envisions
inverting the operator-to-vehicle ratio in future scenarios where a single operator controls
multiple UAVs simultaneously [10]. This concept has been extended to single operator control
of multiple heterogeneous (air, sea, land) UVs [11], as illustrated in Figure 1.

In this concept of operations, a single operator will supervise multiple vehicles, providing
high level direction to achieve mission goals, and will need to comprehend a large amount of

information while under time-pressure to make effective decisions in a dynamic environment.
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Figure 1. Coordinated Operations with Heterogeneous Unmanned Vehicles [12].

This large amount of data provides a challenge for system designers, as it may cause cognitive
saturation, which has been shown to correlate with poor performance [13, 14]. The capacity of a
single operator to control multiple UVs has been demonstrated in multiple studies [15, 16].
Operators will be assisted by automated planners, which can be faster and more accurate than
humans at path planning [17] and task allocation [18] in a multivariate, dynamic, time-pressured
environment.

Outside of the world of UV control, path planning with the assistance of automated
planners has become routine, with the proliferation of Global Positioning Systems on mobile
devices and in automobile navigation systems, as well as advances in online route planners such
as MapQuest® and Google Maps®. While extensive research has been conducted in the
computer science field to develop better algorithms for planning, comparatively little research
has occurred on the methods by which human users utilize these tools, especially when working
in dynamic, time-critical situations with high uncertainty in information [19].
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Human management of the automated planner is crucial, as automated planners do not
always generate accurate solutions, especially in the presence of unknown variables and possibly
inaccurate prior information. Though fast and able to handle complex computation far better
than humans, computer optimization algorithms are notoriously “brittle” in that they can only
take into account those quantifiable variables identified in the design stages that were deemed to
be critical [20, 21]. In a command and control situation such as supervising multiple UVs, where
events are often unanticipated, automated planners are unable to account for and respond to
unforeseen problems [22, 23]. Additionally, operators can become confused when working with
automation, unaware of how the “black box™ automated planner came to its solution. Various
methods of human-computer collaboration have been investigated to address the inherent
brittleness and opacity of computer algorithms [19, 21, 24, 25]. To truly assist human
supervisors of multiple UVs, however, automated planners must be capable of dynamic mission
replanning. As vehicles move, new tasks emerge, and mission needs shift, the way that the
automated planner works will need to change to assist in real-time decision making. This will
require greater flexibility and transparency in the computer algorithms designed for supporting
multi-UV missions.

This thesis will investigate the impact of human-computer collaboration in the context of
dynamic objective function manipulation for multiple UV control. Computer optimization
algorithms, such as those used in most automated path planning and task allocation problems,
typically have an a priori coded objective function that only takes into account pre-determined
variables with set weightings. In this work, human operators will be given the ability to modify
the weightings of these optimization variables during a mission. One significant concern in this

concept of operations where one operator supervises multiple UVs is the potential high workload
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for the operator, and possible negative performance consequences. This work will investigate
the operator workload and both human and system performance implications of providing this
additional level of human-computer collaboration.
1.2 Problem Statement
To effectively supervise multiple UVs simultaneously, operators will need the support of
significant embedded collaborative autonomy. This autonomy will reduce the need for the
operator to manually control each vehicle, enabling the operator to focus on higher-level goal
setting and decision-making. Automated planners can conduct path planning and scheduling
faster and possibly more efficiently than humans. Due to the complexity and dynamic nature of
command and control missions, however, the brittleness of automated planners could cause
overall lower system performance or higher workload as the operator manages the automation.
This thesis seeks to determine how best to divide responsibility for mission replanning in a
dynamic environment between the human and automation, with the ability to designate degrees
of collaboration. Additionally, this thesis seeks to evaluate whether there is a difference in
system performance when a human operator controlling multiple, heterogeneous UVs
collaborates with an automated planner that has a static objective function or a dynamic objective
function that can be modified during the mission.
1.3 Research Objectives
To address this goal, the following research objectives were posed:
e Objective 1: Determine the motivating principles for dynamic objective function
manipulation in human-computer collaborative multi-UV control. In order to
achieve this objective, current research in human-computer collaboration for

scheduling, resource allocation, and path planning was reviewed, as described in
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Chapter 2. Also, a theoretical model of dynamic objective function manipulation was
developed, as outlined in Chapter 3.

e Objective 2: Develop a tool to enable operators to dynamically modify the
objective function of an automated planner. From the motivating principles
described in Objective 1, as well as mission-specific information, a dynamic objective
function tool was designed, described in Chapter 4. This tool was integrated into the
Onboard Planning System for UxVs Supporting Expeditionary Reconnaissance and
Surveillance (OPS-USERS), a previously developed multi-UV mission simulation
testbed for evaluating the impact of embedded autonomy distributed across
networked UVs [18, 26].

e Objective 3: Evaluate the effectiveness of real-time human manipulation of
objective function in multi-UV scheduling algorithms. To address this objective,
human performance experimentation (Chapters 4 and 5) was conducted to analyze
how well the dynamic objective function tool is able to support single operator multi-
UV control compared to an automated planner with a static objective function.

1.4 Thesis Organization
This thesis is organized into the following chapters:
e Chapter 1, Introduction, describes the motivation and research objectives of this thesis.
e Chapter 2, Background, provides a summary of a previous experiment that motivated this
thesis, discusses current human-computer collaboration research, and frames the context

of the research objectives introduced in Chapter 1.

e Chapter 3, Human-Automation Role Allocation, provides an overview of function

allocation literature to discuss methods for dividing responsibility for mission replanning
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in a dynamic environment between the human and automation. A theoretical model of
function allocation is applied to the chosen simulation testbed. This model is extended to
incorporate dynamic objective function manipulation and to describe the potential
benefits of a dynamic objective function tool.

Chapter 4, Human Performance Experimentation, describes the human-performance
experiment used to test the hypotheses of this research. Details include a discussion of the
interfaces designed to enable manipulation of the objective function of an automated
planner for multiple UV control, objectives of the experiment, participants, procedures,
and experimental design.

Chapter 5, Results, presents the statistical results of the experiment from Chapter 4.
Chapter 6, Discussion, compares the results of the human performance experiment with
the hypotheses.

Chapter 7, Conclusions, summarizes the motivation and objectives of this research, how
well the objectives were met, and the key contributions. Suggestions for future work are

also provided.



2 Background

This chapter discusses previous research relevant to human supervisory control of
multiple UVs with the support of an automated planning algorithm. Previous experimental work
on human-automation collaboration for scheduling, path planning, and task allocation is
described to detail both the benefits and drawbacks of collaboration with automated planners.
Through this initial research, three gaps in previous methods of human collaboration with
automated planners were revealed: methods for dealing with dynamic and uncertain
environments, decision-making support under time-pressure on the order of seconds, and
methods for operators to align the objective function of the automated planner with their desires.
These gaps can be addressed through the development of a dynamic objective function method
for collaborative human-automation control of multiple UVs.

2.1 Motivating Experiment

In a previous experiment, human operators used a simulation environment to supervise
multiple UVs with the assistance of a decentralized automated planner with a static objective
function [18]. This system was utilized to examine the impact of increasing automation
replanning rates on operator performance and workload [13]. The operator was prompted to
replan at various intervals, but could also choose to replan whenever he or she desired. When
replanning, the operator could accept, reject, or attempt to modify automation-generated plans
manually.

Results showed that the rate of replanning by the human operator had a significant impact
on workload and performance. Specifically, rapid replanning caused high operator workload,
which resulted in poorer overall system performance [13]. Workload was characterized through

a utilization metric, which measured percent busy time. Results from the experiment also
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showed that operators with the ability to collaborate effectively with the automated planner,
labeled “Consenters” in the study, had significantly higher performance and lower workload
[27].

Surveys conducted after each trial revealed that approximately 35% of the participants
were frustrated by the automated planner. Participants wrote or stated that they did not always
understand what the automated planner was doing. A few participants specifically wrote that
they desired the ability to modify the way that the automated planner worked. For example,
participants wrote “automation [is] not very smart, [and] doesn't have same priorities | do,” and
“the algorithm does its own thing most of the time...there was a clash between what I wanted to
have the UAVs do and what the [algorithm] decided” [13]. Operators were unable to express
their desires to the automated planner, which was too brittle for the dynamic environment and
mission. This thesis seeks to address this shortcoming by developing a method for dynamic
objective function manipulation, which should enable operators to more effectively collaborate
with an automated planner for multi-UV control.

2.2 Human-Automation Collaboration Empirical Research

This section outlines experiments which have explored the ability of humans to
collaborate closely with an automated planner for a path-planning, scheduling, or resource
allocation problem. These experiments show previous attempts to develop systems that address
the communication gap between humans and the automated systems. Human-automation
collaboration can be beneficial due to the uncertainty inherent in supervisory control systems,
such as weather, target movement, changing priorities, etc. Numerous previous experiments
have shown the benefits of human-guided algorithms for search, such as in vehicle-routing

problems [28-30] or trade space exploration for large scale design optimization [31]. However,
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the inability of the human to understand the method by which the automation developed its
solution, or whether a solution is optimal, especially in time-pressured situations, can lead to
automation bias [32]. This automation bias can cause complacency, degradation in skills and
performance, and potential loss of Situational Awareness (SA) [15].

Many researchers have found success in addressing challenging scheduling problems
using mixed-initiative systems, where a human guides a computer algorithm in a collaborative
process to solve a problem. The "initiative" in such systems is shared in that both the human and
computer can independently contribute to the formulation and analysis of solutions [33]. For
example, a mixed-initiative tool to solve an over-constrained scheduling problem could provide
operators with the ability to relax constraints for a sensitivity analysis. This is essentially a
“what-if” tool to compare the results of changes made to the schedule [34]. Scott, Lesh, and
Klau showed that in experiments with humans utilizing mixed-initiative systems for vehicle
routing, operator intervention can lead to better results, but there is variation in the way that
operators interact with the system and in their success in working with the automation [29].
Howe et al. developed a mixed initiative scheduler for the U.S. Air Force satellite control
network, implementing a satisficing algorithm, which recommends plans despite the fact that a
solution that satisfies all constraints does not exist [35]. The user can choose the “best” plan
despite constraint violations and modify the plan to address mistakes and allow for emergency
high priority requests. The authors argued that it was difficult to express the complete objective
function of a human through an a priori coded objective function because of the likely non-linear
evaluations made by the human and the unavailability of all information necessary for the

algorithm to make a decision [35].
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Hanson et al. found that human operators paired with an algorithm for scheduling
multiple UAVs desired a greater understanding of why the algorithm made certain
recommendations [36]. The authors also observed that operators tend to think less in terms of
numerical optimization when planning UAV routes, but in abstract terms about the overall goals
or tactical objectives that they want to accomplish. The authors argue that developing a method
to communicate these goals to the optimization algorithm would help the user develop increased
trust in the automation and result in solutions that match the desires of the operator. Miller, et al.
attempted to address this challenge through the development of the Playbook™ human-
automation integration architecture, which identified a set of common tasks performed by semi-
autonomous UVs, grouped them into “plays,” and provided the operator with a set of play
templates to utilize [37]. This system limited the human operators’ interactions with the
automation to selecting pre-made plays instead of directly communicating their desires to the
automated planner. Although this method worked successfully in an experimental setting, it may
be too limiting for the highly complex, dynamic, and uncertain environments found in command
and control missions.

Much of this previous research focused on methods for humans to work with automation
to solve a problem, such as changing the inputs to the algorithm. Comparatively little research
has investigated methods by which the human operator could, in real-time, change the way that
the automation actually works in order to aid in accomplishing mission objectives. Techniques
for guiding optimization algorithms, for changing the constraints, and for modifying solutions
developed by an algorithm were all described in detail. There was a constant assumption,
however, that the automation was static and unchanging throughout the period in which the

human was interacting with the automation. Despite enhanced collaboration, operator SA was
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low and operators complained about the lack of transparency in how the automation generated
plans [13, 19, 35, 36]. For example, Marquez concluded that an improvement to her
collaborative lunar path planning aid would be adding additional flexibility, stating that users
should “have the ability to change the cost function (variables or relationships) and observe how
the [solution] itself changes based on the cost function modifications” [19]. Thus, developing a
method for human operators to modify the objective function of the automated planner in real-
time could provide the transparency necessary to maintain operator SA, while enabling operators
to communicate their desires to the automation.

More recent research has increased the focus on the concept of providing the human
operator with the ability to modify the way the automated planner works for collaborative
decision-making. Bruni and Cummings developed a series of studies on human interactions with
an automated planner for mission planning with Tomahawk Land Attack Missiles (TLAM) [38,
39]. In their experiment, human planners paired missiles, which could come from different
launchers, with preplanned missions or targets. This was a highly complex optimization
problem, where operators needed to consider many pieces of information. One of the interfaces
tested in the experiment featured a customizable heuristic search algorithm, where the human
operator could choose and rank criteria that would adjust the weights of variables in the objective
function. The authors emphasized that while heuristic algorithms are fast and will generally find
a solution if one exists, the algorithms provide no guarantee of finding the “best” solution, as the
algorithm can become stuck in local optima. The interface also allowed the human operator to
manually adjust the solution after utilizing the heuristic search algorithm to develop an initial
solution. Results showed that there was no statistical difference in performance between this

method of collaborative human-automation planning as compared to a more manual method of
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planning. In terms of the number of information processing steps required to generate a solution,
which relates directly to operator workload [40], the collaborative interface utilizing the
customizable search algorithm required significantly fewer steps than the manual interface.
Although lower workload was achieved, the mission was not time-critical on the order of
seconds (despite the fact that subjects were timed) and was not performed in a real-time,
dynamic environment.

Finally, Forest et al. conducted an experiment during which operators created a schedule
for multiple UAVs with the assistance of a human-guided algorithm [25]. The subjects were
presented with different interfaces to pre-plan a mission based on pre-existing targets with given
values and risks. Certain interfaces had sliding bars that enabled the operator to modify the
weights on the five factors that the objective function used to calculate scores for the plans: total
target value, risk, percentage of available missiles used (utilization), distance, and mission time.
Although the operator could utilize any of these factors to evaluate plans, the mission
instructions encouraged operators to maximize target value while minimizing mission time.

Results showed that, based purely on mission time and target value, the “best” plans were
created in an interface where the human operator did not have the ability to modify the objective
function of the automated planner [25, 41]. The authors concluded that it was likely that
operators chose plans based on a number of additional factors, including risk or distance metrics.
Discussions with participants after the experiment confirmed that they determined their own risk
tolerances and included metrics beyond just time and target value in their selection of plans.
These results show that while automation is excellent at optimizing a solution for specific goals,
automation may be too brittle to take into account all factors that could influence the success of a

complex command and control mission in an uncertain environment.
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This experiment highlighted the difficulty of human-automation collaboration when
humans have different internal objective functions from the automation. In subjective ratings,
participants gave the highest rating to the interface where they had the most control of the
objective function [41]. They found it intuitive to adjust the weights and had higher trust in the
automation’s solution. It should be noted that these results were obtained for a pre-planning
scenario, where algorithm searches took 20-30 seconds, and the entire planning process could
take up to 15 minutes. While these experiments show that dynamic objective functions can
result in improved collaboration between humans and automation, only six participants were
involved in the study.

2.3 Summary

In summary, previous research has shown that humans and automation can collaborate to
achieve superior results in resource allocation and path planning problems, with potentially
lower workload. These results have also demonstrated the need for better methods for human
operators to express their internal objectives and desires to automated planners.

Three key gaps have been identified in the experimental research reviewed here. First,
most of the previous experiments in human-automation collaboration occurred in fairly static
environments with high certainty. Typically, the experiments involved mission pre-planning,
where targets were known in advance and information was certain and did not change during the
decision-making process. Realistic command and control missions involve highly dynamic and
uncertain environments, and collaborative control methods need to be developed that can operate
in these environments.

A second gap in the previous literature is the lack of experiments that required users to

make decisions under time-pressure. Many of the collaborative systems were developed for pre-
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planning scenarios, when operators have minutes, hours, or days to make decisions. The
algorithms in some of the experiments required seconds, if not minutes, to generate solutions.
To account for highly dynamic environments, collaborative control will be necessary during
mission replanning. The time scale for decision making will be reduced dramatically, to mere
seconds, and previous research indicates that under this type of time-pressure, operators will
often change their strategies, including those concerning the use of automation [42, 43]. While
these adjustments in strategies for managing the automation may be beneficial, research is
needed in human-automation collaborative control in time-pressured environments to understand
the strategies of operators under these conditions.

A third gap is the lack of methods for operators to express their desires to the automated
planner to ensure alignment of the objective functions of the human and automation. A number
of the participants in the experiments reviewed here complained of a mismatch between their
own goals and the plans generated by the automated planner. Few attempts have been made to
enable operators to change the way the automation works to generate and evaluate plans.

This thesis seeks to address these gaps by investigating the use of objective function
weight adjustments as a potential method for enhancing human-automation collaboration in
multi-UV control in a highly dynamic, real-time command and control environment. In the
following chapter, function allocation literature is reviewed in order to select an appropriate
taxonomy to apply in order to evaluate the potential impact of human manipulation of a dynamic
objective function. Based on this analysis, dynamic objective functions will be implemented in
an existing multiple UV simulation testbed, and a human performance experiment will be used to

evaluate the performance and workload implications of the dynamic objective function.
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3 Human-Automation Role Allocation

In this chapter, a review of function allocation literature highlights various taxonomies
for dividing responsibility between the human operator and automation. These taxonomies are
evaluated in order to select an appropriate method for modeling a collaborative human-
automation system. In order to evaluate the impact of a dynamic objective function, an existing
multiple UV simulation testbed is chosen for human performance experiments. The system is
described and then analyzed using the selected taxonomy. The taxonomy is extended to include
the proposed method for manipulating the objective function of an automated planner. Finally,
the theoretical impact of utilizing a dynamic objective function on human operator workload and
system performance is explored.

3.1 Function Allocation Taxonomies

Human-computer collaboration for controlling multiple UVs raises the issue of the
determining the appropriate roles of the human operator and automated planner. In the scope of
this thesis, an example would be determining the impact of providing the human operator with
the role of manipulating the automated planner for collaborative UV control. The field of
function allocation has traditionally focused on the question of whether a human or computer is
better suited to perform a task.

One method of comparing the capabilities of humans and computers is through
Rasmussen’s Skill, Rule, and Knowledge-based (SRK) taxonomy of cognitive control [44, 45].
Typically, automation is utilized to reduce human workload, for example, by automating skill-
based tasks such as controlling the altitude of an airplane or manufacturing a component on an
assembly line.  As computers have grown more powerful, automation has become more useful

in tasks that are cognitively demanding for humans, such as controlling unstable aircraft.
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Computers have also been shown to have the ability to plan optimal paths when the environment
is known with moderate certainty [46]. Humans, however, have the ability to conduct
knowledge-based reasoning [44] because of their superior improvisation, flexibility, and
inductive reasoning skills as compared to computers. Computers are typically unable to perform
this higher level reasoning because they simply follow a set of predetermined rules, known as
rule-based behavior [19]. Although the SRK taxonomy is descriptively useful for classifying
tasks into broad categories and enumerating the generalized strengths of humans and computers,
it lacks a prescriptive methodology for allocating functions.

One of the first formal treatments of function allocation is known as Fitts List [47]. An
example of a Fitts list is shown in Table 1. Fitts and his colleagues aimed to identify those
functions or tasks that were performed better by machines or humans.

For many years, this

paper was regarded as the seminal work in the field of function allocation, despite the fact that

the authors noted that their method was highly limiting.

Table 1. Example Fitts List

Attribute Machine Human
Speed Superior Comparatively slow
Power Output Superior in level in consistency Comparatively weak

Consistency

Ideal for consistent, repetitive
action

Unreliable, learning & fatigue a
factor

Information Capacity

Multi-channel

Primarily single channel

Memory

Ideal for literal reproduction,
access restricted and formal

Better for principles & strategies,
access versatile & innovative

Reasoning Computation

Deductive, tedious to program,
fast & accurate, poor error
correction

Inductive, easier to program,
slow, accurate, good error
correction

Sensing

Good at quantitative assessment,
poor at pattern recognition

Wide ranges, multi-function,
judgment

Perceiving

Copes with variation poorly,
susceptible to noise

Copes with variation better,
susceptible to noise

Price argued that Fitts

list remains a valuable heuristic aid to design, despite the

generalizations and the assumption that a task will be performed solely by humans or machines
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[48]. Price, however, asserted that function allocation by formula alone cannot be achieved and
that we must rely on expert judgment as the final means of making allocation decisions, based on
past experience and empirical tests. He also advocated for an iterative design process instead of
the typical one-time step of allocating functions that occurs early in the design of technical
systems. Price introduced a decision matrix for function allocation, as shown in Figure 2. This
decision matrix rejects the assumption that the choice between human and machine is zero-sum.
The six regions shown in Price’s decision matrix are: 1) there is no difference in the relative
capabilities of human & machine, 2) human performance is clearly superior than machine
performance, 3) machine performance is clearly superior to human performance, 4) machine
performance is so poor that the functions should be allocated to humans, 5) human performance
IS so poor that the functions should be allocated to machine, and 6) unacceptable performance by
both human and machine. By adding the concept that humans and machines may have
comparable or even complementary skills, Price brought the function allocation world closer to

the concept of human-automation collaboration.
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Figure 2. Decision Matrix for Function Allocation [48]
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A further attempt to describe the interactions between humans and computers is the
Levels of Automation (LOA) scale [49, 50]. Shown in Table 2, the LOA scale describes a
human-computer system that ranges from fully manual to fully automatic. At lower LOAs, the
human is very active and involved in decision-making and control, while at higher LOAs, the
human is taken more and more out of the decision-making loop. While this scale addresses the
allocation of decision-making and action selection authority, it is limited in its ability to fully
describe the many methods of collaboration between humans and automation.

Table 2. Levels of Automation [50]

Automation Level | Automation Description

1 The computer offers no assistance: human must take all decision and actions.

The computer offers a complete set of decision/action alternatives, or

narrows the selection down to a few, or

suggests one alternative, and

executes that suggestion if the human approves, or

allows the human a restricted time to veto before automatic execution, or

executes automatically, then necessarily informs humans, and

informs the human only if asked, or

Ol N[O B|lWN

informs the human only if it, the computer, decides to.

[y
o

The computer decides everything and acts autonomously, ignoring the human.

Sheridan himself argued that the LOA scale, along with Fitts List, both of which focus on
“Men are better at — Machines are better at” (MABA-MABA), is too narrow, writing that “the
public, and unfortunately too many political and industrial decision-makers, have been slow to
realize that function allocation does not necessarily mean allocation of a whole task to either
human or machine, exclusive of the other” [51]. Others agree with Sheridan that the traditional
scales of function allocation are too narrow, by assigning a task specifically to human or
machine, and that flexibility in the allocation of functions is necessary [52-55].

This concept of changing the role of the human and computer during operation has been
explored in the body of research on adjustable autonomy and adaptive automation. Both

domains focus on adjusting how automated a system is, for example, changing from a completely
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automated system, LOA 10, to management-by-consent, LOA 5 [50]. These adjustments can be
made during a mission, either with the human operator instigating the change through adjustable
autonomy [56], or with the computer automatically deciding to adjust the level of automation
through adaptive automation [37, 57]. The purpose of these adjustments is usually to prevent the
operator from becoming either too overloaded with tasks or too bored due to a lack of
stimulating tasks.

Both adaptive automation and adjustable autonomy, however, are subtly different from
the concept of an automated planner with a dynamic objective function that can be adjusted by a
human. Neither the human operator nor the computer would be controlling whether the vehicles
are more or less autonomous. Instead, the operator would be directly manipulating the method
by which the automated planner optimizes the task allocation, scheduling, and path planning of
the various UVs, which remain at the same level of automation. The purpose of these
manipulations would not be to maintain an ideal workload for the operator, but to directly impact
the plans generated and selected by the human-automation team, which would influence the
overall system performance.

In an attempt to take into account greater collaboration between humans and computers
than the previously mentioned LOA system, newer models of function allocation have been
developed. Riley [58] described an automation taxonomy that can be used in a framework to
represent human-machine systems. The taxonomy includes two factors that define the
automation levels: the level of intelligence and level of autonomy. At the highest levels of
automation and intelligence, the human and machine act as partners to command the system.
Kaber, Onal, and Endsley explored the idea of “human-centered levels of automation” in contrast

to technology-centered function allocation [59]. They reviewed numerous LOA taxonomies and,
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as opposed to automating as much as possible and leaving the “left-over” functions for the
human operator, they advocated for intermediate LOAs that keep the human operator’s SA at
higher levels. They argued that potentially higher system performance could be obtained
through human-automation collaboration, but they caution that the resulting loss of operator SA
at higher LOAs can lead to poorer performance during automation failure.

Many of these researchers have stressed the challenge of developing a framework for
designing systems that deal with the uncertainty inherent in dynamic environments [58, 60].
Constraints or preferences are typically not coded completely into the optimization algorithm’s
objective function, making the collaborative aspect even more important. Specifically,
Kirkpatrick, Dilkina, and Havens write, “domains with unmodellable [sic] aspects will benefit
from systems that allow the operator to add specific constraints and call for a revised solution”
[60]. Cummings and Bruni argue that it is rarely clear what characterizes an “optimal” solution
in uncertain scenarios, and that the definition of optimal is a constantly changing concept,
particularly in command and controls settings [24]. This theory is depicted in Figure 3, as with
increasing uncertainty in the world, additional human interaction is necessary to maintain
satisfactory performance. Also, they argue that computer-generated solutions are often
suboptimal because in optimization problems with many variables and constraints, the algorithm
may make erroneous assumptions, may become trapped in a local minima, and can only take into

account those quantifiable variables that were deemed critical in early design stages [61].

Figure 3. Human-automation interaction as a function of certainty
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The Human-Automation Collaboration Taxonomy (HACT) was developed to provide
system designers with a model that can be used to analyze collaborative human-computer
decision making systems [24, 62]. HACT extends the Parasuraman [63] information processing
model by adding to the decision-making component, as shown in Figure 4. HACT adds an
iterative data analysis stage combined with an evaluation step where operators can request more
information or analysis. Once feasible solutions are selected, either the operator or the

automation can select a final solution.

Figure 4. Human-Automation Collaboration Taxonomy Model [24]

The authors of HACT included three distinct roles in the decision-making process: the
moderator, generator, and decider. The moderator is responsible for ensuring that each phase in
the decision-making process is executed and that the process moves forward. The generator
develops feasible solutions and begins to evaluate the solutions. Finally, the decider makes the
final selection of the plan and has veto power over this selection. Each of these roles could have
different Levels of Collaboration (LOC) between human and computer, rated from -2 where the
role is entirely assumed by the automation, to 2 where the human is responsible for the role, as
shown in Table 3. A LOC of 0 is a balanced collaboration between the human and automation.

HACT’s ability to delineate degrees of collaboration between the human and computer at

different points in the decision-making process makes it well suited to model the collaborative
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replanning method used by the simulation testbed in this thesis. It also provides a basis from

which to extend the model to investigate the concept of a dynamic objective function.

Table 3. Moderator, Generator, and Decider Levels in HACT [24]

Level Who assumes the role of Who assumes the role of decider?
generator and/or moderator?

2 Human Human makes final decision, automation cannot veto

1 Mixed, but more human Human or automation can make final decision, human can veto,
automation cannot veto

0 Equally shared Human or automation can make final decision, human can veto,
automation can veto

-1 Mixed, but more automation Human or automation can make final decision, human cannot veto,
automation can veto

-2 Automation Automation makes final decision, human cannot veto

In summary, a number of different taxonomies for determining role allocation between
humans and automation have been developed. More recently, these taxonomies have moved
away from the rigid “MABA-MABA” framework to take into account the ability of humans and
computers to collaborate [52, 55]. Despite the challenges in modeling the impact of uncertainty
on collaborative systems, these taxonomies can be useful for modeling collaborative human-
automation systems and for predicting the impact of proposed changes to these systems, such as
adding a dynamic objective function tool to a collaborative multi-UV control system.

3.2 Application of Theoretical Framework to Simulation Testbed
HACT was chosen to descriptively model human-automation collaboration in the
decentralized UV testbed used in this thesis. This section begins by describing the decentralized
UV testbed. The HACT model is then applied to descriptively model the interactions between
the human operator and automated planner. Finally, the theoretical impact of adding a dynamic
objective function is analyzed by extending the HACT model.
3.2.1 Simulation Platform
This thesis utilizes a collaborative, multiple UV simulation environment called Onboard

Planning System for UxVs Supporting Expeditionary Reconnaissance and Surveillance (OPS-
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USERS), which leverages decentralized algorithms for vehicle routing and task allocation. This
simulation environment functions as a computer simulation but also supports actual flight and
ground capabilities [18]; all the decision support displays described here have operated actual
small air and ground UVs.

Operators are placed in a simulated command center where they control multiple,
heterogeneous UVs for the purpose of searching the area of responsibility for new targets,
tracking targets, and approving weapons launch. The UVs in the scenario include one fixed-
wing UAV, one rotary-wing UAV, one Unmanned Surface Vehicle (USV) restricted to water
environments, and a fixed-wing Weaponized Unmanned Aerial Vehicle (WUAYV). Once a target
is found, it is designated as hostile, unknown, or friendly, and given a priority level by the user.
Unknown targets are revisited as often as possible, tracking target movement. Hostile targets are
tracked by one or more of the vehicles until they are destroyed by the WUAV. A primary
assumption is that operators have minimal time to interact with the displays due to other mission-
related tasks.

Participants interact with the simulation via two displays. The primary interface is a Map
Display (Figure 5). The map shows both geo-spatial and temporal mission information (i.e., a
timeline of mission significant events), and supports an instant messaging “chat” communication
tool, which provides high level direction and intelligence. Icons represent vehicles, targets of all
types, and search tasks, and the symbology is consistent with MIL-STD 2525 [64].

In the Map Display, operators have two exclusive tasks that cannot be performed by
automation: target identification and approval of all WUAV weapon launches. Operators also
create search tasks, which dictate on the map those areas the operator wants the UVs to

specifically search. The performance plot in Figure 5 gives operators insight into the automated
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planner performance, as the graph shows expected (red) versus actual (blue) performance. When
the automation generates a new plan that is at least five percent “better” than the current plan, the
Replan button turns green and flashes, and a “Replan” auditory alert is played. When the Replan
button is selected, whether flashing or not, the operator is taken to the Schedule Comparison
Tool (SCT), detailed in the next section, for conducting scheduling tasks in collaboration with

the automation.

Loiter Task -+ Mini Map
Unknown
i Target
Search Task . Friendly
| Hostile
Performance Chat
Plot Message
Box

UxV Task Timeline
Figure 5. Map Display

3.2.2 Replanning Interface

The SCT display appears when the Replan button is pressed, showing three geometrical
forms colored gray, blue, and green at the top of the display (Figure 6). These colors represent
configural displays that enable quick comparison of the current, working, and proposed
schedules. The left form (gray) is the current UV schedule. The right form (green) is the latest
automation proposed schedule. The middle working schedule (blue) is the schedule that results
from user modification to the plan. The rectangular grid on the upper half of each shape
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represents the estimated area that the UVs would search according to the proposed plan. The
hierarchical priority ladders show the percentage of tasks assigned in high, medium, and low

priority levels.
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Figure 6. Schedule Comparison Tool
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When the operator first enters the SCT, the working schedule is identical to the proposed
schedule. The operator can conduct a “what-if” query process by dragging the desired
unassigned tasks into the large center triangle. This query forces the automation to generate a
new plan if possible, which becomes the working schedule. The configural display of the
working schedule alters to reflect these changes. However, due to resource shortages, it is
possible that not all tasks can be assigned to the UVs, which is representative of real world
constraints. The working schedule configural display updates with every individual query so that

the operator can leverage direct-perception interaction [65] to quickly compare the three
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schedules. This “what-if” query, which essentially is a preview display [40], represents a
collaborative effort between the human and automation [66]. Operators adjust team coordination
metrics at the task level as opposed to individual vehicle metrics, which has been shown to
improve single operator control of a small number of multiple, independent robots [67]. Details
of the OPS-USERS interface design and usability testing can be found in Fisher [26].

Operators can either choose to accept the working schedule or cancel to keep the current
schedule. Upon accepting a new schedule, the automated planner only communicates to the
vehicles via a prioritized task list, and the vehicles sort out the actual assignments amongst
themselves. This human-automation interaction scheme is one of high level goal-based control,
as opposed to more low-level vehicle-based control.

3.2.3 HACT Application to Testbed

The HACT taxonomy was applied to model the existing simulation testbed prior to the
implementation of the dynamic objective function. The testbed was assigned a level 2 moderator
because the human operator fully controls the replanning process by deciding when to replan,
modify the plan, and accept a final plan. The operator cannot change the criteria to evaluate
plans and can only modify the plans by attempting to assign tasks through the “what-if” process.
Therefore, the generator role was assigned to level -1, which indicated a mixed role, but with a
larger automation presence. Finally, the decider role was assigned to level 1, since the
automation presented a final solution to the operator, but the selection of the final solution was
completely up to the human operator and the automation did not have veto power.

The HACT framework was extended and slightly modified to illustrate two specific

human-automation collaboration methods, as shown in Figure 7. The first is the “what-if”
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sensitivity analysis tool that already exists in the OPS-USERS system. The second is the

proposed dynamic objective function tool for modifying the automated planner.
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Figure 7. Modified HACT Model with Dynamic Objective Function

The simulation testbed provides a decision support tool that enables an operator to query
the automated planner in a “what-if” manner to determine the feasibility and performance
consequences of adding a task to the schedule of the UVs. As shown, this process occurs when
the human operator is in the decider role, looking at a proposed plan that has been selected by the
automated planner. The human operator essentially modifies the constraints placed on the
schedule, by specifying that a specific task be assigned in the schedule. These changes send the
automated planner back into the generator mode, to recalculate potential solutions to the
optimization problem. Many iterations of this “what-if” loop would be required to achieve a
solution that the human operator desires, especially if the automated planner is choosing
solutions based on an objective function that does not place an emphasis on the quantities of

interest to the human operator at that point in the mission.
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As illustrated in Figure 7, a dynamic objective function method of human-computer
collaboration could result in a shorter loop within the collaborative decision-making process than
the “what-if” loop. A dynamic objective function tool would provide the operator with the
capability to modify the objective function of the automated planner. This changes the method
by which the automated planner would select the best solution, which occurs in the decider role.
In terms of the HACT framework, it would change the LOC designation for the decider role
from -1 to a more balanced collaborative level of 0. The human operator would have the ability
to modify the way that the automation evaluates plans by changing the weightings in the
objective function. Positive performance results have been shown in previous research where the
human operator could change the search space of the automation [28] or modify the way that the
automation evaluates plans [66], even under time-pressure [68]. On the other hand, some
researchers have shown that under time-pressure on the order of seconds, human judgment
degrades and higher automation roles could be beneficial [69, 70].

In a highly dynamic environment and scenario, less iterations of the longer “what-if” loop
would be necessary to achieve a solution that accomplishes what the human operator desires
because the objectives of the operator and automated planner would be aligned. Therefore,
providing the operator with a dynamic objective function could reduce the number of cognitive
steps and amount of time necessary for the combined human-automation team to evaluate and
select a new solution. This would reduce the workload of the human operator for replanning,
which could positively impact overall mission performance by freeing the operator to focus on
making other critical decisions and maintaining SA. As shown in a previous experiment, higher
operator workload, especially due to increased rates of replanning, can lead to lower system

performance [27].
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3.3 Summary

In summary, numerous function allocation taxonomies were reviewed for their
applicability to the proposed dynamic objective function. Many of these taxonomies were too
rigid, assuming that a function should be performed solely by the human or the computer, instead
of allowing for the possibility of human-automation collaboration. Other taxonomies focused
exclusively on the LOA concept in order to describe changes in the autonomy of the UVs,
instead of allowing for changes in the way that the automated system worked during a
collaborative decision-making process. Most of these taxonomies suffer from an inability to
sufficiently model the impact of uncertainty on collaborative systems.

Of the reviewed function allocation methods, the HACT was chosen to model the UV
simulation testbed used in this thesis. HACT was designed to explicitly take into account levels
of collaboration between the human and computer during various stages of the planning and
resource allocation decision-making process. The testbed was described, including the Map
View for overall operator SA and the SCT for human-automation collaboration in developing
schedules for the UVs. HACT was applied to describe the testbed in a manner that would enable
theoretical extension to a dynamic objective function capability.

The extended HACT model showed the potential for the dynamic objective function to
reduce the workload of the human operator in replanning tasks. The extension revealed the
potential for both shorter loops within the collaborative decision-making process and less
iterations of the “what-if”” loop to reach a satisfactory solution to the human operator. Changing
the objectives of the automated planner to match a dynamic mission while potentially reducing
the operator’s workload could lead to system performance benefits. These theoretical findings

were evaluated through human performance experiments, detailed in Chapter 4.
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4 Human Performance Experimentation

In order to evaluate the theoretical benefits of a dynamic objective function, derived in
the previous chapter, human performance experimentation was conducted using a previously
developed multi-UV simulation software package. The experiment tested workload and
performance hypotheses using an automated planner with a static objective function and two
versions of a dynamic objective function. This chapter describes the experimental objectives and
hypotheses, the participants, the apparatus (including the new interfaces designed to enable
manipulation of the objective function), the scenarios for the simulation, and the experimental
design and procedure.

4.1 Experiment Objectives

The objectives of this experiment focus on providing a human operator who is controlling
multiple heterogeneous UVs with the ability to modify the objective function of the automated
planner assisting in path planning and task allocation. The specific objective is to test the
effectiveness of providing this dynamic objective function manipulation capability for a search,
track, and destroy mission. The experiment evaluates the impact of the dynamic objective
function on system performance, human cognitive workload, and operator satisfaction. This
experiment addresses the gaps in experimental research identified previously, by allowing the
operator to collaborate with the automation to plan in a time-critical, dynamic, uncertain
environment and by testing different methods to enable the operator to express his or her desires

to the automated planner.
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4.2  Experimental Hypotheses
4.2.1 Mission Performance
It was hypothesized that the ability to modify the objective function of the automated

planner during the mission would enable an operator and the system to achieve higher
performance as compared to using a static, a priori coded objective function. Human and system
performance were evaluated in three ways. First, performance of the overall mission goals that
were provided to operators was evaluated. Second, system performance over time was evaluated
through mission efficiency metrics. Finally, as in real-life scenarios, changing external
conditions often require the human and the system to adapt, which are experimentally
represented through “Rules of Engagement” (ROEs). Mission performance was also measured
by adherence to these ROEs and execution of the objectives specified by the ROEs. The
following hypotheses describe the expected mission performance:

e Hypothesis 1: use of the dynamic objective function is expected to result in significant
increases in overall system performance by the end of the mission.

e Hypothesis 2: use of the dynamic objective function is expected to result in significant
increases in mission efficiency.

e Hypothesis 3: the ability to adhere to the ROEs and to perform the specified objectives in
the ROEs is expected to improve with use of the dynamic objective function as compared
to a static objective function.

4.2.2 Workload
As discussed in the extended HACT model of human-automation collaboration in
Chapter 3, collaboration through modification of the objective function of an automated planner

could potentially reduce some of the iterations in the “what-if” loop that would typically occur
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when the human operator’s desires do not match up with the objective function of the automated
planner. In this mismatch situation, the automated planner would continue to select plans for the
operator to view that do not achieve the desired goals of the operator. This can result in a longer
time spent attempting to modify the plan manually by assigning tasks individually. Therefore,
providing the operator with a dynamic objective function should reduce the amount of time
necessary for the combined operator-automated planner team to evaluate and select new plans, as
shown in previous research [39]. Workload was measured through an objective utilization
metric, through a secondary task to measure spare mental capacity, and through a subjective self-
reported workload metric on a five-point Likert scale. The following results were expected:
e Hypothesis 4: a reduction in objective and subjective mental workload is expected with
use of the dynamic objective function as compared to a static objective function.
e Hypothesis 5: use of the dynamic objective function is expected to result in significant

reductions in the amount of time spent replanning.

4.2.3 Subjective Appeal

Subjectively, it was expected that operators controlling multiple UVs in a search, track,
and destroy mission would prefer to collaborate with an automated planner featuring a dynamic
objective function over working with a static, a priori coded objective function. Increased
automation transparency and decreased “brittleness” [21] were hypothesized to contribute to
these operator preferences. However, it was acknowledged that there could have been a bias
towards the static objective function due to its simplicity and due to the need to train operators in
using the dynamic objective function tool. Additionally, to avoid additional training that could
lead to operator confusion, operators were not allowed to use both the static and dynamic

objective functions. Therefore, operators were not able to directly compare the different
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methods of collaborating with the automated planner. Operators’ subjective appeal was
determined by analyzing the participants’ responses to a survey at the end of the experiment.
The following result was expected:
e Hypothesis 6: use of the dynamic objective function is expected to result in greater
operator satisfaction with the plans generated by the automated planner and higher self-
ratings of confidence and performance.
4.3 Participants
To test these hypotheses, 30 participants were recruited from undergraduate students,
graduate students, and researchers at the Massachusetts Institute of Technology (MIT). As the
concept of multiple UV supervisory control through a decentralized network is a futuristic
concept, without current subject matter experts, it was determined that a general user base should
first be used to verify the potential of a dynamic objective function.

The 30 participants consisted of 21 men and 9 women. The age range of participants was
18-38 years with an average age of 21.30 and a standard deviation of 3.98. Only 1 participant
had served or was currently serving in the military, but a previous experiment using the OPS-
USERS system showed that there was no difference in performance or workload between
participants based on military experience [27]. Each participant filled out a demographic survey
prior to the experiment that included age, gender, occupation, military experience, average hours
of television viewing, video gaming experience, and perception of UAVS. The results of these
demographic surveys can be found in Appendix A, and the consent forms and demographic

surveys filled out by participants can be found in Appendices B and C.
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4.4  Testbed

4.4.1 Apparatus

The human performance experiment to test the dynamic objective function tool was
conducted using two Dell 17” flat panel monitors operated at 1280 x 1024 pixels and a 32-bit
color resolution. The primary monitor displayed the testbed and the secondary monitor showed a
legend of the symbols used in the system (Appendix D). The workstation was a Dell Dimension
DMO051 with an Intel Pentium D 2.80 GHz processor and a NVIDIA GeForce 7300 LE graphics
card. System audio was provided using standard headphones that were worn by each participant
during the experiment. All data regarding the human participant’s interactions with the system
for controlling the simulated UVs was recorded automatically by the system.

4.4.2 Dynamic Objective Function Tool

The automated planner in the original testbed used a static objective function to evaluate
schedules for the UVs based on maximizing the number of tasks assigned, weighted by priority,
while minimizing switching times between vehicles based on arrival times to tasks. A new
dynamic objective function was developed for the automated planner that was used in this
experiment. Five non-dimensional quantities were chosen as options for evaluating mission
plans. The human operators were given the ability to choose the quantities that were high
priority, either with guidance from the ROEs or due to their own choices on which aspects of the
mission were most important to them at the time. The five quantities were:

o Area Coverage: When this quantity was set to high priority, the vehicles covered as much
area as possible. The UVs would ignore operator-generated search tasks in favor of using
their algorithms to “optimally” explore the unsearched area for new targets. Previously

found targets would also not be actively tracked, to free vehicles for the search.
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Search/Loiter Tasks: As opposed to allowing the automation to conduct the search for
new targets on its own, operators could create search tasks to direct the automation to
send vehicles to explore specific regions of the map. Loiter tasks could also be created to
direct the WUAV to circle at a particular spot. This quantity for evaluating mission plans
was based on the number of assigned search or loiter tasks in a schedule as compared to
all available search or loiter tasks. When this quantity was selected, the vehicles
performed search tasks that the operator created and the WUAV went to specific loiter
points created by the operator.

Target Tracking: This quantity was based on the number of targets assigned to be tracked
in a schedule as compared to all available targets.

Hostile Destruction: This quantity was based on the number of assigned hostile
destruction tasks as compared to all actively tracked hostile targets that were eligible for
destruction. Once a hostile target was found and tracked by one of the regular UVs, it
was eligible to be destroyed by the WUAV. The WUAV was only tasked to destroy
these hostiles if this quantity was selected.

Fuel Efficiency: This quantity was based on the fuel efficiency of the UVs. Operators
could change the weighting of this quantity in order to vary the velocity of the UVs
linearly between the cruise and maximum velocity of each UV. The simulated fuel
consumption of each UV varied quadratically with velocity. Guided by the ROEs or their
own desires, operators could select this quantity as high priority, so that the vehicles
traveled more slowly, but also burned fuel more slowly and did not have to refuel as
often. The fuel consumptions and velocities of the four UVs used in this experiment are

detailed in Appendix E.



For this experiment, only a binary choice of “on” or “off” was allowed for each quantity,
with weightings set in advance for the “on” and “off” condition, as opposed to allowing
operators to set a weighting anywhere between 0.0 and 1.0 for each quantity. Tversky and
Kahneman [71] explained that a human who estimates a numerical value when starting from
different initial values often makes insufficient adjustments based on the initial value, a
phenomenon known as the “anchoring and adjustment” heuristic. To avoid this issue, operators
were limited to a binary choice on each quantity.

The weightings for the “on” and “off” condition were chosen after pilot testing the
system in order to achieve schedule selection and UV behavior that was intuitive to human
operators. Selecting a quantity gave it a weighting of 1.0 in the objective function of the
automated planner, while de-selecting a quantity gave it a weighting of 0.05. The exception was
the hostiles destroyed quantity, which received a weighting of 0 when it was de-selected, to
prevent the automation from planning to destroy hostile targets without operator permission.

The ability to modify the objective function was implemented in the Schedule
Comparison Tool (SCT) through two different interfaces. The first method for modifying the
dynamic objective function was through a Checkbox button interface, shown in Figure 8.
Operators could select any of the five quantities, in any combination, through the “Plan
Priorities” panel on the right side of the SCT. The second method utilized a Radio button
interface, shown in Figure 9. Operators could only select one of the quantities at a time, as their
highest priority for evaluating potential UV schedules. These two interfaces, along with the
static objective function interface (Figure 6), were the three possible types of SCT that operators

could use in the human performance experimentation.
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Figure 9. Schedule Comparison Tool with Radio Button Interface

4.5 Experimental Design

Three scenarios were designed for this experiment: a practice scenario and two test
scenarios. Each scenario involved controlling four UVs (one of which was weaponized) in a
mission to conduct surveillance of an area in order to search for targets, track these targets, and

destroy any hostile targets found (when instructed). The area contained both water and land
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environments and targets could be either tanks on the ground or boats in the water. The vehicles
automatically returned to the base when necessary to refuel and were equipped with sensors
(either radar or cameras) which would notify the operator when a target was detected so that the
operator could view sensor information in order to designate the target and give it a priority
level. Perfect sensor operation was assumed, in that there were no false detections or missed
target detections.

Each scenario had 10 targets that were initially hidden to the operator. These targets
always had a positive velocity and moved on pre-planned paths throughout the environment
(unknown to the operator), at roughly 5% of the cruise velocity of the WUAV. Each scenario
had three friendly targets, three hostile targets, and four unknown targets. The operator received
intelligence information on the unknown targets through the chat window, revealing that two of
the targets were friendly and two were hostile. Upon receiving this intelligence, the operator
could re-designate the targets. The operator would also be asked by the “Command Center”
through the chat window to create search tasks in specified quadrants at various times throughout
the mission. The scenarios were all different, but of comparable difficulty, so that operators
would not learn the locations of targets between missions.

4.5.1 Independent Variables

The experimental design was a 3x2 repeated measures nested design with two
independent variables: the type of objective function used by the automated planner and the type
of mission. The objective function type had three levels: “None”, “Radio”, and “Checkbox.”
The None level used the original testbed objective function as described earlier in this chapter,
which was set a priori and the operator did not have the opportunity to modify it. The Radio

level allowed the operator to change the objective function by choosing one of the quantities to
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be most important at the time. For example, if the operator chose area coverage due to a change
in the ROEs, the automated planner optimized the usage of the vehicles for covering the most
unsearched area while setting the weights of the other variables to the lowest setting. Finally, in
the Checkbox level, the operator was allowed to select any combination of the five quantities to
be equally important. This was a between-subjects factor, in that a particular subject only
experienced one type of objective function representation, to avoid training biases.

The second independent variable was Mission Type. There were two levels: a Standard
Mission and a Dynamic Mission. For the Standard Mission, operators were given a set of ROEs
that did not change throughout the mission. The ROEs instructed operators on aspects of the
mission that were most important at the time in order to guide their high level decision making.
The ROEs also specified when hostile target destruction was permitted. For the Dynamic
Mission, every 5 minutes during the 20 minute mission, new ROEs were presented to the
operator and the operator needed to decide whether and how to change the objective function
under the new ROEs (if they had the interface that allowed for manipulation of the objective
function), as well as possibly altering their tasking strategies.

For example, the operator may have received an original ROE stating that they should
“Search for new targets and track all targets found.” Then, a new ROE may have come in stating
“Destroy all Hostile Targets Immediately.” Participants could adjust the objective function of
the automated planner to reflect the changed ROE, for example by increasing the weighting of
the “Destroy Hostiles” quantity or lowering the weightings of other quantities. The ROEs for the
Standard and Dynamic missions are listed in Appendix F. This was a within-subjects factor, as
each subject experienced both a Standard and Dynamic mission. These missions were presented

in a randomized and counterbalanced order to avoid learning effects.
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4.5.2 Dependent Variables

The dependent variables for the experiment were mission performance, mission
efficiency, primary workload, secondary workload, situational awareness (SA), and subjective
ratings of performance, workload, and confidence. Overall mission performance was measured
by taking the following four metrics: percentage of area coverage, percentage of targets found,
percentage of time that targets were tracked, and number of hostile targets destroyed. Mission
efficiency measured the performance metrics over time, which included average time to target
detection and average time from hostile detection to destruction. Adherence to the ROEs
presented to the operator during the Dynamic Mission (Appendix F) was also measured by the
following metrics: 1) number of targets destroyed when hostile target destruction was forbidden,
2) percentage of area covered during the first 5 minutes of the mission, when covering area to
find new targets was the highest priority, 3) percentage of targets found during the first 5 minutes
of the mission, and 4) percent of time that targets were tracked between 10 and 15 minutes, when
tracking all previously found targets was the highest priority.

The primary workload measure was a utilization metric calculating the ratio of the total
operator “busy time” to the total mission time. For utilization, operators were considered “busy”
when performing one or more of the following tasks: creating search tasks, identifying and
designating targets, approving weapons launches, interacting via the chat box, and replanning in
the SCT. All interface interactions were via a mouse with the exception of the chat messages,
which required keyboard input.

Another method for measuring workload was measuring the spare mental capacity of the
operator through reaction times to a secondary task. Secondary workload was measured via

reaction times to text message information queries, as well as reaction times when instructed to
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create search tasks via the chat tool. Such embedded secondary tools have been previously
shown to be effective indicators of workload [72].

SA was measured through the accuracy percentage of responses to periodic chat box
messages querying the participant about aspects of the mission. Additionally, 4 of the targets
were originally designated as unknown. Chat messages would provide intelligence information
to the operator about whether these targets were actually hostile or friendly (based on their
location on the map). It was up to the operator to re-designate these targets based on this
information. Therefore, a second measure of SA was the ratio of correct re-designations of
unknown targets to number of unknown targets found.

Finally, a survey was provided at the end of each mission asking the participant for a
subjective rating of their workload, performance, confidence, and satisfaction with the plans
generated by the automated planner on a Likert scale from 1-5. Subjective ratings are crucial,
both for providing an additional measure of workload and for evaluating whether the addition of
the dynamic objective function influenced the operator’s confidence and trust in the collaborative
decision-making process, factors which have been shown to influence system performance [73].

4.6 Procedure

In order to familiarize each subject with the interface, a self-paced, slide-based tutorial
was provided (Appendix G). Subjects then conducted a fifteen-minute practice session during
which the experimenter walked the subject through all the necessary functions to use the
interface. Each subject was given the opportunity to ask the experimenter questions regarding
the interface and mission during the tutorial and practice session. Each subject also had to pass a

proficiency test, which was a 5-question slide-based test (Appendix H). If the subjects did not
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pass the proficiency test, they were given time to review the tutorial, after which they could take
a second, different proficiency test. All subjects passed on either the first or second test.

The actual experiment for each subject consisted of two twenty-minute sessions, one for
each of the two different mission types. The order of the mission types presented to the subject
was counterbalanced and randomized to prevent learning effects. During testing, the subject was
not able to ask the experimenter questions about the interface and mission. All data and operator
actions were recorded by the interface and Camtasia® was used to record the operator’s actions
on the screen. Finally, a survey was administered at the end of each mission to obtain the
participant’s subjective evaluation of their workload, performance, and confidence, along with
general comments on using the system (Appendix I). Subjects were paid $10/hour for the
experiment and a performance bonus of a $100 gift card was given to the individual who
obtained the highest mission performance metrics (to encourage maximum effort).

4.7 Summary

Once the experiment was completed, data had been collected for each of the
performance, workload, SA, and subjective rating metrics for all 30 participants. In order to
evaluate the hypotheses presented in this chapter, the data needed to be formally analyzed using
appropriate inferential statistical tests. The statistical tests utilized, and the results of those tests,

are presented in Chapter 5.
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5 Results

This chapter presents the statistical results of the experiment described in Chapter 4. The
experiment included two independent variables: Objective Function Type (None, Radio, or
Checkbox) and Mission Type (Standard or Dynamic). Numerous dependent variables were
considered in the analysis of the data in order to capture and measure performance, workload,
SA, and subjective ratings of performance, workload, and confidence, as described in Chapter 4.
First, a system design issue that was identified during the experiment is discussed. Then, an
analysis of the dependent variables is presented. Finally, the impact of family-wise error rates is
described, along with a summary of the important findings.

5.1 Interface Issue

During the experiment, an issue was uncovered that impacted the performance of
operators using the None objective function during the Dynamic mission. For the first 10
minutes of the Dynamic mission, the ROEs stated “Do not destroy any hostiles.” Operators
using the Radio or Checkbox objective functions were trained to modify the objective function
during this time period so that tasks would not be created to destroy hostile targets. Operators
using the None objective function type, however, had no way to prevent the automated planner
from creating hostile destruction tasks. When the system opened the window shown in Figure
10, requesting permission for the WUAV to destroy a hostile target, the operator was trained to
click the “Cancel: Redesignate to Unknown” button if the ROEs did not permit destruction of
hostile targets at the time. The result of clicking this button was that the target which was
previously designated as hostile was then changed in designation to unknown.

Results from the experiment showed that all 10 participants using the None objective

function clicked the “Cancel” button at least once during the Dynamic mission, with 9 of the 10
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operators clicking it at least twice. Of all of the trials using the Radio and Checkbox objective

function, there was only one “Cancel.”

Figure 10. Hostile Destruction Approval Window

Operators had the option to re-designate these targets back to hostile at any point in the
mission, especially once the ROEs changed to permit the destruction of hostile targets. Some of
the operators using the None objective function did perform this action successfully, however,
many did not, due to inadequate system design and training. Therefore, it was decided that the
total hostile targets destroyed and the hostile destruction efficiency metrics would only be used
to compare the performance of the operators using the Checkbox and Radio objective functions
during Dynamic Missions. Total hostile targets destroyed and hostile destruction efficiency
metrics were still used to evaluate the performance of all operators during the Standard Mission.

5.2  Statistical Analysis Overview

All dependent variables were recorded by the computer simulation. For all metrics other

than those noted below, a 3 x 2 repeated measures Analysis of Variance (ANOVA) model was

used for parametric dependent variables (a = 0.05). Unless otherwise noted, all metrics met the
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homogeneity of variance and normality assumptions of the ANOVA model. For dependent
variables that did not meet ANOVA assumptions, non-parametric analyses were used.

Due to the confusion among the operators using the “None” Objective Function type
during hostile destruction tasks in the Dynamic mission, a separate analysis was done for the
Standard and Dynamic missions for all metrics related to the destruction of hostile targets. A
single factor repeated measures ANOVA model was used for parametric dependent variables
related to hostile destruction (a = 0.05). For analyzing the results of the Dynamic missions,
results were only compared between the Radio and Checkbox Objective Function types.

5.3 Mission Performance

As outlined in Section 4.5.2, performance was measured by 1) overall mission
performance metrics, computed at the end of the mission; 2) satisfaction of the ROEs that were
presented to the operator at 5 minute intervals during the Dynamic Mission; and 3) by mission
efficiency metrics, which measure performance over time.

5.3.1 Overall Mission Performance

The four overall mission performance metrics were percentage of area coverage,
percentage of targets found, percentage of time that targets were tracked, and number of hostile
targets destroyed. The omnibus area coverage test was not significant for Mission Type, F(1,27)
= 0.328, p = 0.571, nor for Objective Function Type, F(2,27) = 0.344, p = 0.712. For the
percentage of targets found, non-parametric tests were needed. The Mann-Whitney dependent
test on the percentage of targets found showed a significant difference across Mission Type, Z =
-2.795, p = 0.005, where more targets were found in the Dynamic Mission Type. The Kruskal-
Wallis omnibus test on the percentage of targets found was not significant for Objective Function

Type, ¥*(2, N=60) = 3.599, p = 0.165. The omnibus percentage of time that targets were tracked
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test was not significant for Mission Type: F(1,27) = 1.115, p = 0.300, nor for Objective Function

Type, F(2,27) = 1.961, p = 0.160.

For the number of hostile targets that were destroyed, non-parametric tests were needed.

A separate analysis was performed for the Standard and Dynamic Mission Types, where the

Dynamic Mission excluded the “None” Objective Function Type. For the Standard Mission, the

omnibus Kruskal-Wallis test was not significant for Objective Function Type, x*(2, N=30) =

3.729, p = 0.155. For the Dynamic Mission, the Mann-Whitney independent test was not

significant for Objective Function Type, Z = -1.592, p = 0.111. The boxplots in Figure 11

illustrate the results for the performance metrics, and Table 4 summarizes the key statistics.
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Table 4. Performance Metrics Summary

Metric Mission Objective Mean Median Std Dev
Type Function
% Area Standard None 60.6% 58.9% 9.7%
Coverage Radio 62.0% 64.3% 8.1%
Checkbox 64.3% 63.2% 11.2%
Dynamic None 59.5% 58.7% 10.3%
Radio 61.1% 62.1% 11.8%
Checkbox 62.7% 64.6% 14.0%
% Targets Standard None 72.0% 70.0% 11.4%
Found Radio 87.0% 90.0% 9.5%
Checkbox 84.0% 90.0% 15.1%
Dynamic None 90.0% 95.0% 11.6%
Radio 91.0% 90.0% 7.4%
Checkbox 89.0% 90.0% 7.4%
% Time Standard None 89.5% 90.7% 7.6%
Targets Radio 84.8% 87.2% 87.2%
Tracked Checkbox 91.1% 93.6% 5.9%
Dynamic None 87.5% 87.8% 6.3%
Radio 85.0% 87.3% 7.7%
Checkbox 88.5% 89.3% 4.4%
Hostiles Standard None 2.7 3.0 0.9
Destroyed Radio 35 3.5 0.9
Checkbox 3.4 3.5 1.0
Dynamic None - - -
Radio 3.2 3.5 0.9
Checkbox 3.9 4 0.7

5.3.2 Satisfaction of Rules of Engagement in Dynamic Mission

As described in Section 4.5.2, satisfaction of the ROEs was measured by 1) number of
targets destroyed when hostile target destruction was forbidden, 2) percentage of area covered
during the first 5 minutes of the mission, when covering area to find new targets was the highest
priority, 3) percentage of targets found during the first 5 minutes of the mission, and 4) percent
of time that targets were tracked between 10 and 15 minutes, when tracking all previously found
targets was the highest priority. No significant differences were found for the percentage of area
covered during the first 5 minutes and for the percent of time that targets were tracked between

10 and 15 minutes.
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With regards to the restriction during the first ten minutes of the Dynamic mission that no
hostile targets were to be destroyed, it was found that of the 30 trials of the Dynamic mission, 3
test subjects violated this ROE and destroyed a hostile target before it was permitted. All 3 of
these test subjects used the Radio Objective Function.

The percentage of all targets found in the first 5 minutes of the Dynamic mission was
analyzed, as the highest priority of operators during this time period was to search for new
targets. The omnibus test on targets found in the first 5 minutes was significant for Objective
Function Type, F(2,27) = 4.517, p = 0.02. Tukey pairwise comparisons showed that the Radio
Objective Function was different from Checkbox and None Objective Functions (p = 0.02 and p
= 0.012, respectively), but the Checkbox and None Objective Functions were not statistically
different (p = 0.823). Operators who used the Radio Objective Function found more targets in
the first 5 minutes of the Dynamic mission. The boxplots in Figure 12 illustrate the results for

number of targets found in the first 5 minutes, and Table 5 summarizes the key statistics.
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Table 5. Targets Found in the First 5 Minutes Summary

Objective Mean Median Std Dev
Function
None 5.8 55 0.9
Radio 7.0 7.0 1.0
Checkbox 5.9 6.0 1.0

5.3.3 Mission Efficiency

Finally, performance was measured by efficiency metrics, which characterize
performance over time. The efficiency metrics were the average time to target detection and the
average time from when a hostile target was detected to its destruction, as calculated using the
formulas shown in Equations 1 and 2 respectively. Each metric is calculated in a three step
process. First, for each target, the time to either find the target or to destroy the target after it
was designated as hostile is divided by the amount of time the target was available. In the case
of finding a target, it was available to be found the entire simulation. If a target was not found or
not destroyed, it is given a ratio of 1. Second, the ratios are summed and divided by the total
number of targets found or hostiles destroyed. This metric shows both speed and quantity of
either targets found or hostiles destroyed, where a lower score is better. Third, the metric is
normalized by dividing by the total number of targets available (10 targets) or hostiles available
(5 targets). To make the efficiency metric such that a higher score is better, it is subtracted from

1, so the maximum value is 1 and the minimum value is O.

1 2?21%
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Where:

T = Total Simulation Time (1200 seconds)

N* = total number of targets available in simulation (10 targets)

H* = total number of hostile targets available in simulation (5 targets)

N = total number of targets found during simulation

H = total number of hostile targets found during simulation

f; = Time in seconds that target i was found (set to 1200 if never found)

r; = Time in seconds that a hostile target was re-designated as hostile (set to 0 if never found or re-designated)
d; = Time in seconds that a hostile target was destroyed (set to 1200 if never destroyed)

The omnibus target finding efficiency test was significant for Mission Type, F(1,26) =
32.687, p < 0.001 and also significant for Objective Function Type, F(2,26) = 3.776, p = 0.036.
Tukey pairwise comparisons showed that the Radio Objective Function was different from the
None Objective Function (p = 0.011), but there was no significant difference between the
Checkbox and either the Radio or None Objective Functions (p = 0.134 and p = 0.230,
respectively). Operators using the Radio Objective Function had the highest target finding
efficiency and all operators had a higher target finding efficiency during the Dynamic Mission.
The omnibus hostile destruction efficiency test was not significant for Objective Function Type
in the Standard Mission, F(2,26) = 0.971, p = 0.392, and was only marginally significant in the
Dynamic Mission, F(1,18) = 4.329, p = 0.052. The boxplots in Figure 13 illustrate the results for

the efficiency metrics, and Table 6 summarizes the key statistics.
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Table 6. Target Finding and Hostile Destruction Efficiency Summary

Metric Mission Objective Mean Median Std Dev
Type Function
Target Finding | Standard None 0.938 0.937 0.013
Efficiency Radio 0.957 0.961 0.011
Checkbox 0.948 0.954 0.018
Dynamic None 0.965 0.970 0.014
Radio 0.969 0.971 0.010
Checkbox 0.965 0.969 0.009
Hostile Standard None 0.779 0.791 0.104
Destruction Radio 0.826 0.842 0.086
Efficiency Checkbox 0.838 0.851 0.098
Dynamic None - - -
Radio 0.758 0.814 0.122
Checkbox 0.844 0.855 0.045
5.4 Workload

Primary workload was measured through utilization, calculating the ratio of the total
operator “busy time” to total mission time. Time spent replanning in the SCT was evaluated as a
component of workload. In addition to these primary workload metrics, secondary workload
was measured via reaction times to text message information queries, as well as reaction times
when instructed to create search tasks via the chat tool.

5.4.1 Utilization

The omnibus utilization test was significant for Mission Type, F(1,27) = 5.216, p =
0.030, but was not significant for Objective Function Type, F(2,27) = 1.122, p = 0.340. Operator
utilization was higher during the Dynamic mission than the Standard mission. The boxplot in

Figure 14 illustrates the results for utilization, and Table 7 summarizes the key statistics.
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Table 7. Utilization Summary

Mission Objective Mean (%0) Median (%) | Std Dev (%)
Type Function

Standard None 40.1 36.1 9.8
Radio 42.8 39.4 9.6
Checkbox 38.5 39.8 8.8
Dynamic None 44.9 43.7 6.4
Radio 45.8 45.8 54
Checkbox 40.8 40.9 7.4

5.4.2 Time Spent in the Schedule Comparison Tool (SCT)

Operators using either of the dynamic objective functions (Checkbox or Radio)
potentially had more to do while in the Schedule Comparison Tool (SCT), such as modifying the
weightings of the objective function. There was, however, no significant difference in average
time spent in the SCT among the three types of objective function, F(2,27) = 2.039, p = 0.150.
As can be expected due to the increased complexity of the Dynamic Mission as compared to the
Standard Mission, there was a significant difference in the average time spent in the SCT
between the two mission types, F(1,27) = 20.786, p < 0.001. Operators spent more time, on
average, in the SCT during the Dynamic Mission as compared to the Standard Mission.

5.4.3 Secondary Workload

For the Standard Mission, there were no significant differences in chat message response
time or in reaction time to creating a search task when prompted. For the Dynamic Mission,
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there were four measures of secondary workload: a chat message question requiring a response at
235 seconds, a prompt to create a search task at 300 seconds, another prompt to create a search
task at 725 seconds, and finally, a chat message question requiring a response at 1104 seconds.

The omnibus test for the reaction time to the chat question at 235 seconds was significant
for Objective Function Type, F(2,26) = 8.839, p = 0.001. Tukey pairwise comparisons showed
that the None Objective Function was different from Checkbox and Radio Functions (p = 0.001
and p = 0.002, respectively), but the Checkbox and Radio Objective Functions were not
statistically different (p = 0.703). Operators using the None Objective Function had slower
reaction times to answer the chat question at 235 seconds.

The omnibus test for the reaction time to the chat question at 1104 seconds was
significant for Objective Function Type, F(2,26) = 3.411, p = 0.048. Tukey pairwise
comparisons showed that the Checkbox Objective Function was different from the None
Objective Function (p = 0.022), but there were no significant differences between the Radio and
either the Checkbox or None Objective Functions (p = 0.056 and p = 0.712, respectively).
Generally, operators using the Checkbox objective function had faster reaction times to answer
the chat question at 1104 seconds.

All other reaction times were not significantly different. Figure 15 illustrates the reaction
times for the four secondary workload measures during the Dynamic mission, showing the
average reaction times to each prompt. Table 8 summarizes the key statistics for the two chat

message reaction times analyzed above.
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Table 8. Secondary Workload Metrics for Dynamic Mission Summary

Metric Objective Mean (s) Median (s) Std Dev (s)
Function

Chat Message None 21.81 24.69 9.80
Reaction Time at 235 Radio 8.94 7.88 4.36
seconds Checkbox 8.82 6.21 6.38
Chat Message None 11.50 9.14 5.62
Reaction Time at Radio 10.23 7.98 4.94
1104 seconds Checkbox 6.21 5.69 1.63

5.5 Situational Awareness
SA was measured through two metrics: the accuracy of responses to periodic chat box
messages querying the participant about aspects of the mission and the accuracy of re-
designations of unknown targets based on chat intelligence information. For both metrics, non-
parametric tests were needed.
The Mann-Whitney dependent test on chat accuracy showed no significant differences
across Mission Type, Z = 0.0, p = 1.0. The Kruskal-Wallis omnibus test on chat accuracy was

significant for Objective Function Type, x2(2, N=60) = 6.167, p = 0.046. Further Mann-Whitney
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independent pairwise comparisons showed that the Checkbox Objective Function was different
from the None Objective Function (p = 0.013) and marginally significantly different from the
Radio Objective Function (p = 0.057). There was no significant difference between the Radio
and None Objective Functions (p = 0.551). Operators using the Checkbox Objective Function
had higher chat accuracy than the None and Radio Objective Function users.

The Mann-Whitney dependent test on re-designation accuracy showed a significant
difference across Mission Type, Z = -2.482, p = 0.013, where operators had higher re-
designation accuracy during the Dynamic Mission. The Kruskal-Wallis omnibus test on the re-
designation accuracy was also significant for Objective Function Type, x*(2, N=60) = 10.392, p
= 0.006. Further Mann-Whitney independent pairwise comparisons showed that the None
Objective Function was different from Checkbox and Radio Objective Functions (p = 0.003 and
p = 0.019 respectively), but the Checkbox and Radio Objective Functions were not statistically
different (p = 0.342). Operators using the None Objective Function had lower re-designation
accuracy than operators using either the Checkbox or Radio Objective Function. The boxplots in
Figure 16 illustrate the results for chat accuracy and re-designation accuracy, and Table 9

summarizes the key statistics for both chat accuracy and re-designation accuracy.
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Figure 16. Chat Accuracy and Target Re-designation Comparison
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Table 9. Chat Accuracy and Target Re-designation Summary

Metric Mission Objective Mean (%0) Median (%) | Std Dev (%)
Type Function
Chat Question Standard None 80% 100% 35.0%
Accuracy Radio 75% 75% 26.4%
Checkbox 95% 100% 15.8%
Dynamic None 70% 50% 25.8%
Radio 85% 100% 33.7%
Checkbox 95% 100% 15.8%
Target Re- Standard None 40.0 33.3 29.6
designation Radio 62.5 66.7 20.9
Accuracy Checkbox 65.0 66.7 11.0
Dynamic None 46.7 45.9 45.8
Radio 76.7 87.5 28.2
Checkbox 90.0 100 175

5.6 Subjective Responses

A survey was provided at the end of each mission asking the participant for a subjective
rating of his or her workload, performance, confidence, and satisfaction with the plans generated
by the automated planner on a Likert scale from 1-5 (1 low, 5 high). Non-parametric tests were
needed for this Likert scale data. There were no significant differences among the ratings of
workload and satisfaction with the plans generated by the automated planner.

The Mann-Whitney dependent test on subjective performance rating was not significant
for Mission Type, Z = -0.215, p = 0.830. The Kruskal-Wallis omnibus test on the performance
rating was, however, significant for Objective Function Type, XZ(Z, N=60) = 15.779, p < 0.001.
Further Mann-Whitney independent pairwise comparisons showed that the Checkbox Objective
Function was different from None and Radio Objective Functions (p < 0.001 and p = 0.008
respectively), but the None and Radio Objective Functions were not statistically different (p =
0.224). Operators using the Checkbox Objective Function had the highest self-ratings of

performance.
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Similar results were obtained for subjective ratings of confidence. The Mann-Whitney
dependent test on the confidence rating was not significant for Mission Type, Z = -1.057, p =
0.291. The Kruskal-Wallis omnibus test on the confidence rating was, however, significant for
Objective Function Type, y*(2, N=60) = 12.540, p = 0.002. Further Mann-Whitney independent
pairwise comparisons showed that the Checkbox Objective Function was different from None
and Radio Objective Functions (p = 0.001 and p = 0.011 respectively), but the None and Radio
Objective Functions were not statistically different (p = 0.430).

Operators using the Checkbox Objective Function rated their performance and
confidence as higher than operators using the other objective functions. It should be noted that
there was a significant effect on confidence ratings for the order that the Mission Types were
shown to the operator (p = 0.026). Confidence ratings were higher when operators saw the
Standard Mission prior to the Dynamic mission, as opposed to seeing the Dynamic Mission prior
to the Standard Mission.

The plots in Figure 17 illustrate the self-rating results and Table 10 summarizes the key

statistics for performance and confidence self-ratings.
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Table 10. Performance and Confidence Self-ratings Summary

Metric Mission | Objective Mean Median Mode Std Dev
Type Function

Performance | Standard None 2.8 3 3 0.6
self-rating Radio 3.1 3 3 0.7
Checkbox 3.9 4 4 0.6
Dynamic None 3.0 3 3 0.5
Radio 3.2 3 3 0.8
Checkbox 3.7 4 3,4 0.8
Confidence Standard None 2.6 3 3 1.0
self-rating Radio 2.9 3 2 0.9
Checkbox 3.7 4 4 0.5
Dynamic None 2.6 3 3 0.5
Radio 2.8 3 3 0.6
Checkbox 3.2 3 4 1.0

5.7 Operator Strategy and Top Performer Analysis

A further analysis of the strategies of the participants was conducted, focusing on those
participants who used either the Radio or Checkbox objective function. In addition, a set of
analyses were performed to determine if there were additional trends in the data that predicted
high performance, based on operator strategy or demographic factors.

5.7.1 Operator Strategies with Dynamic Objective Function

Investigating the number of objective function modifications made by operators using the
dynamic objective functions, we find a significant difference between the strategies adopted by
participants using the Checkbox versus the Radio objective function. Radio operators made
more total modifications to the objective function than Checkbox operators, F(1,17) = 26.094, p
< 0.001. In fact, Radio operators modified the objective function more than double the amount
that Checkbox operators did, with an average of 28.3 modifications over the 20 minute
simulation as compared to 12.4 modifications for the Checkbox operators.

Of all of their SCT sessions, Radio operators made at least one modification to the

objective function 66.8% of the time, as compared to 35.5% of SCT sessions for Checkbox
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operators. Radio operators modified the objective function more times per SCT session as well
(F(1,17) = 23.395, p < 0.001), making on average of 0.85 modifications per session, as compared
to 0.45 modifications per session for Checkbox operators. All of these values were calculated
with combined data from the Standard and Dynamic Mission Types.

5.7.2 Top Performers

A set of linear regression analyses was performed to see if there were any significant
predictor variables for high (or low) system performance and operator workload. The linear
regression estimates coefficients of a linear equation, with one or more predictor variables, that
best predict the value of the dependent variable. The system performance and operator workload
dependent variables were percentage of area coverage, percentage of targets found, percentage of
time that targets were tracked, number of hostile targets destroyed, and operator utilization.

As there would be 5 linear regressions, the typical oo = 0.05 significance level was
reduced to o = 0.01 using the Bonferroni correction [74]. A backwards elimination linear
regression was utilized, which removed predictor variables that did not meet a significance level
of a = 0.01, so that the most parsimonious model was derived for predicting the dependent
variables. Potential predictor variables included both demographic information and strategy
information derived from experimental data. These variables were age, gender, gaming
experience, perception of UAVs, comfort with computers, recent amount of sleep,
occupation/education level, total number of objective function modifications, number of
objective function modifications per SCT session, and the percentage of SCT sessions with at
least one objective function modification.

Table 11 shows the results from the 5 backwards elimination linear regressions, including

the variables which were significant predictors of the performance and workload metrics. The
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normality, homogeneity of variance, linearity, and independence assumptions of a linear
regression were met by the 3 regressions that found significant predictor variables. There were

no significant predictor variables for the number of targets found and the number of hostiles

destroyed.
Table 11. Linear Regression Results
Dependent R’ Bo Education Total Mods per | Percent of
Variable Level Objective SCT SCT
Function Session Sessions
Mods with a Mod
Area Coverage | 0.459 | B=0.738 | B=-0.067 B=0.012 B=-0.382 -
p <0.001 p =0.001 p <0.001 p <0.001
Targets Found 0 B=0.876 - - - -
p <0.001
Time Targets | 0.172 | p=0.938 - - - B=-0.132
Tracked p <0.001 p =0.010
Hostiles 0 B=3.474 - - - -
Destroyed p <0.001
Utilization 0.261 | p=0.346 - B =0.004 - -
p <0.001 p =0.001

For the area coverage regression, 3 significant predictor variables were found. The first
is education level, where the test participants reported whether they were an undergraduate,
master’s, or Ph.D student. These categories were numbered 1, 2, or 3, respectively, along with a
category of 4 for “Non-student/other” (demographic data can be found in Appendix A). A
negative relationship was found between increasing education level and total area coverage. For
example, moving from undergraduate to a master’s level student would result in a 6.7% decrease
in area coverage through this linear model.

The second significant predictor variable for area coverage was the total number of
objective function modifications. A positive relationship was found between increasing number
of total modifications with area coverage percentage.

The linear model predicted a 1.2%

increase in area coverage for each additional modification to the objective function. Finally, the
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third significant predictor variable was the average number of modifications per SCT session. A
negative relationship was found between increasing average modifications per SCT session with
area coverage, in that an increase of 1 in the average number of modification per SCT session
would predict a 38.2% decrease in area coverage.

For the linear regression on the percentage of time that targets were tracked, the only
significant predictor variable was the percent of SCT sessions with an objective function
modification. A negative relationship was found between these two quantities, in that an
increase of 1% in the percent of SCT sessions with an objective function modification would
result in a 0.00132% reduction in the percentage of time that targets were tracked.

Finally, for the linear regression on utilization, the only significant predictor variable was
the total number of objective function modifications. A positive relationship was found between
these two quantities, in that the linear model predicted a 0.4% increase in utilization for each
additional modification to the objective function.

5.8 Summary

Results from the human performance experiment led to a range of results. The analysis
indicated that operators using the Checkbox and Radio objective functions had superior results in
some of the metrics, while there were no significant differences in other metrics. These results
can aid in evaluating the impact of the dynamic objective function based on theoretical
predictions in Chapter 3. Results also indicated that operators generally performed better in the
Dynamic mission over the Standard Mission. All of the results are summarized in Table 12,

where the conditions with superior results are shown in bold.
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Table 12. Summary of Experimental Findings

Category Metric Objective Function Type Mission Type
System % Area Coverage Indistinguishable Indistinguishable
Performance (p=0.571) (p=0.712)
% Targets Found Indistinguishable Dynamic Mission
(p = 0.165) (p = 0.005)
% Time Targets Indistinguishable Indistinguishable
Tracked (p = 0.160) (p = 0.300)
Hostiles Destroyed Indistinguishable N/A
(p=0.155 & p =0.111)
Adherence | Hostiles Destroyed Checkbox and None N/A
to ROEs when restricted (0 errors)
% Area Coverage Indistinguishable N/A
during first 5 min (p = 0.687)
Targets Found Radio N/A
during first 5 min (p =0.020)
% Time Targets Indistinguishable N/A
Tracked between (p =0.107)
10-15 min
Mission Target Finding Radio Dynamic Mission
Efficiency Efficiency (p=0.011) (p <0.001)
Hostile Indistinguishable N/A
Destruction (p =0.392 and p = 0.052)
Efficiency
Primary Utilization Indistinguishable Dynamic Mission
Workload (p = 0.340) (p =0.030)
Time spent in SCT Indistinguishable Dynamic Mission
(p = 0.150) (p <0.001)
Secondary | Chat reaction time Checkbox and Radio N/A
Workload at 235 seconds (p =0.001 and p = 0.002)
Chat reaction time Checkbox N/A
at 1104 seconds (p =0.048)
Situational Target re- Checkbox and Radio Dynamic
Awareness designation (p=0.003 and p = 0.019) (p=0.013)
accuracy
Chat question Checkbox Indistinguishable
accuracy (p = 0.046) (p = 1.000)
Subjective Performance Checkbox Indistinguishable
Ratings (p <0.001) (p = 0.830)
Confidence Checkbox Indistinguishable
(p =0.002) (p=0.291)
Workload Indistinguishable Indistinguishable
(p =0.413) (p=1782)
Satisfaction with Indistinguishable Indistinguishable
AP plans (p =0.254) (p=0.197)
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It should be noted that a large number of statistical tests were used in the analysis of data
from this experiment, due to the number of dependent variables and 3x2 nested experimental
design. In a generous accounting of the number of tests, where each omnibus test is counted as a
single “test”, and where n pairwise comparisons after a significant omnibus test are only counted
as n-1 tests, there were approximately 36 tests. There is an inherent danger in conducting a large
amount of statistical tests, as it has an impact on the family-wise error rate. As opposed to
having 95% confidence in the conclusions of each test, when o = 0.05, the actual confidence
level goes to 0% with 36 tests. A confidence level of 95% implies that there is a 1 in 20 chance
of a Type | error, thus with 36 tests, it is likely that 2 tests will be false positives.

Utilizing the Bonferroni procedure [74], it can be shown that to obtain a family
confidence coefficient of at least 95%, each test must achieve a confidence coefficient of 1-a/g,
where g is the number of tests. Thus, only tests which are significant at the «=0.0014 level
should be considered significant. Taking this into account, only a few of the statistical tests on
the dependent variables would remain significant. The results would still show that operators
using the Checkbox interface rated their performance and confidence higher than operators using
the None interface (p < 0.001 in both cases). Also, there would still be significant differences in
target finding efficiency and average time spent in the SCT between the Dynamic and Standard
missions (p < 0.001). Finally, operators using the Radio objective function made significantly
more total modifications to the objective function and made more modifications per SCT session
as compared to operators using the Checkbox objective function (p < 0.001). For this analysis,
however, statistical tests that were significant at the o = 0.05 level will still be recognized.

Chapter 6 provides further discussion of these results and evaluation of the results in the

context of the experiment hypotheses.
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6 Discussion

This chapter discusses the results presented in Chapter 5 and compares them to the
hypotheses outlined in Chapter 4. Performance, workload, and situational awareness results are
compared across the different Objective Function Types and analyzed in relation to the model
presented in Chapter 3. Subjective responses gathered through surveys are reported and
evaluated. The effect of changing Rules of Engagement is analyzed. Throughout the chapter,
operator strategy and demographic predictors of performance are discussed.

6.1 Performance and Situational Awareness

Performance was characterized by overall mission performance metrics, adherence to the
ROEs, and by efficiency metrics, as described in section 4.2.1. Situational awareness was
measured by the accuracy of responses to chat box queries and the accuracy of re-designating
unknown targets based on chat message information.

The results did not indicate any statistically significant differences in the overall mission
performance metrics among the different types of objective function at the o = 0.05 level. In
comparing the situational awareness of the operators, which has been shown to be an important
attribute in operator performance [40, 75], the results show that operators using the Checkbox
objective function had significantly higher target re-designation accuracy and chat accuracy than
the operators using the None objective function. While the addition of the capability to modify
the objective function did not significantly increase system performance, as predicted in
hypothesis 1, it may in fact have enhanced SA.

It is likely that the use of the Checkbox interface, which supports multi-objective
optimization and provides the operator with a choice of objectives to optimize, enhanced

operator SA. Level 1 SA, perception of changes in the environment, is supported by the multi-
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objective function because it encourages operators to maintain awareness of changes to either the
environment or the mission goals to align the objective function with these changes. Level 3 SA,
projection of future states, is also supported by the multiple objective function because the use of
this objective function best aids operators in understanding what UV actions will result from a
selected plan.

In terms of the efficiency metrics that characterize performance over time, the results
indicated that operators using the Radio objective function had significantly better target finding
efficiency as compared to operators using the None objective function, whereas there was no
significant difference for hostile destruction efficiency. This supports hypothesis 2, which
predicted that there would be an increase in mission efficiency with the use of a dynamic
objective function. A similar result was found in terms of following the ROEs, which guide the
operator’s high level decision-making by indicating what is most important to accomplish and
what is restricted during each time period. Operators using the Radio objective function found
more targets in the first 5 minutes of the Dynamic mission, which was one of the primary goals
set by the ROEs. These results support hypothesis 3, which predicted that providing the operator
with a dynamic objective function would enhance the operator’s ability to perform the specified
objectives in the ROEs.

It is likely that the Radio objective function, which requires the operator to choose a
single objective to optimize, is best for adhering to a single mission goal, such as finding targets
as fast as possible. By providing the capability to directly modify the goals of the optimization
algorithm, the objectives of the automated planner and the operator were aligned towards this
single mission. The plans that the automated planner selected for the operator to review were

likely very focused on this single objective, removing several mental steps from the human-
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automation collaboration process discussed in Chapter 4 and resulting in superior pursuit of the
mission objective.

There was, however, a tradeoff between performing the specified mission goals in the
ROEs and adherence to the restrictions of the ROEs. During the Dynamic mission, the only 3
operators who violated the ROEs by destroying a hostile target during the first 10 minutes of the
mission were operators using the Radio objective function. It is unclear whether these mistakes
were due to lack of experience with the system, insufficient training, poor system design, or the
increased number of modifications to the objective function necessary when using the Radio
objective function.

Additionally, a number of significant predictor variables for performance metrics were
found based on demographics and operator strategy. In terms of demographics, lower
educational levels predicted higher area coverage. It is possible that undergraduate students were
more familiar with mathematical optimization algorithms and therefore were more comfortable
with manipulating objective functions to achieve greater area coverage. It is also possible that
students above the undergraduate level were exhibiting automation bias [32], through poor
understanding of how the automation generated plans or whether a plan would lead to better area
coverage. In terms of objective function manipulation strategy, operators that were more
parsimonious with the number of objective function modifications that they made per SCT
session had higher area coverage and higher percentage of time that targets were tracked. By
modifying the objective function fewer times per SCT session, operators likely had more time in
the Map View to observe the vehicles and targets, leading to better decision-making. In contrast,
the overall number of objective function modifications did predict higher area coverage, as

human guidance of automated planners has been shown to enhance search [28].
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It has been shown in these results that providing the operator with the ability to modify
the objective function of the automated planner could enhance performance, especially if the
operator has multi-objective optimization choices, but could also increase the likelihood of
mistakes if the operator is limited to single-objective optimization.

6.2 Workload

Workload was measured via an objective workload metric of operator utilization, a
secondary workload metric that measured spare mental capacity, and a subjective workload
measure intended to capture the mental workload that participants associated with each mission.
There were no significant differences among the different objective function types in operator
utilization or in the participants’ self-rating of how busy they were. It was found that there was
no significant difference in average time spent in the SCT among the three types of objective
function, contradicting hypothesis 5, which predicted less time spent replanning when using a
dynamic objective function.

It should be noted that Radio objective function operators had a higher percentage of SCT
sessions where they modified the objective function at least once, made double the total number
of changes to the objective function, and had a higher average number of modifications per SCT
session. Based on these metrics, it appears that operators may have been working harder,
although this workload difference was not reflected in the time spent replanning. Although it has
been shown that time spent on a task can be an effective predictor of mental workload [16, 40], it
is not a perfect correlation, in that a task can require more cognitive resources without a change
in task execution time.

Also, although subjective workload measures have been used effectively in previous

human supervisory control experiments [59, 76] where they have been shown to be a reliable
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indicator of cognitive workload, these measures are difficult to employ because people rate their
own workload differently. The objective function type was a between-subjects factor in this
experiment, adding to the difficulty in comparing subjective workload evaluations.

An additional method of measuring cognitive workload was through reaction times to
accomplish embedded secondary tasks. The results show that at two points during the dynamic
mission, operators using the Checkbox objective function had significantly faster reaction times
to a secondary task than the operators using the None objective function. At one of those points,
the operators using the Radio objective function were also significantly faster. As shown in
previous research [72], an embedded secondary tool can provide an effective indicator of
workload by measuring the spare mental capacity of the operator. These results could indicate
that at certain points during the mission, operators with access to a dynamic objective function
were less overloaded than operators using a static objective function. This higher level of spare
mental capacity could indicate that the dynamic objective function reduced the operator’s mental
workload, which is consistent with hypothesis 4, predicting a reduction in mental workload with
use of a dynamic objective function.

6.3 Subjective Responses

Participants were asked to rate their performance, confidence, and satisfaction with the
plans generated by the automated planner on a Likert scale from 1-5. Participants were also
given open-ended questions to prompt them to give general feedback (Appendix I). The
responses pertaining directly to collaboration with the automated planner through a dynamic
objective function, as well as other comments about the experiment and interface as a whole, are

discussed here.
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Results indicated that operators using the Checkbox objective function had significantly
higher confidence and performance self-ratings than both the Radio and None objective function.
These results are consistent with hypothesis 6, which stated that use of a dynamic objective
function is expected to result in greater operator satisfaction with the plans generated by the
automated planner and higher self-ratings of confidence and performance. There was, however,
no significant difference in the ratings for operator satisfaction with the plans generated by the
automated planner. All of these measures are between-subjects, as each participant only
interacted with a single objective function. Therefore, the subjective self-ratings were isolated
evaluations of the objective functions instead of a direct comparison. Despite this issue, the use
of a dynamic objective function likely contributed to increased automation transparency and
decreased “brittleness,” which led to these operator preferences. Although the potential for bias
towards the static objective function due to its simplicity was acknowledged as a possibility in
section 4.2.3, this bias was not apparent in the results.

The Radio objective function limited operators to choosing only one of the five quantities
(area coverage, search/loiter tasks, target tracking, hostile destruction, fuel efficiency) at a time
to be their highest priority for evaluating plans. The Checkbox objective function enabled
operators to choose any combination of these quantities as high priority. By providing operators
using the Checkbox objective function with multi-objective optimization and the capability to
communicate their goals to the automated planner, it reduced the number of times that the
operator had to modify the objective function of the automated planner. The operators using the
limited Radio objective function only had single objective optimization capabilities and were
forced to perform numerous “what-if’s” on the objective function, more than double the

modifications of Checkbox operators, to obtain acceptable plans from the automated planner.
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This may indicate why operators using the Checkbox objective function generally rated their
confidence and performance higher.

Beyond quantitative subjective data, qualitative evaluations of the system and experiment
were also obtained from all participants. Ninety-seven percent of participants indicated that they
understood the changes in the ROEs and how to manipulate the system to adhere to the new
rules. Also, 87% of participants felt that the automated planner was fast enough for this
dynamic, time-pressured mission. Four of the 10 participants who used the Radio objective
function complained in writing about the restriction to only select one variable as their top
priority and more complained verbally during training. This feeling of restriction in objective
function choice is likely related to the lower subjective ratings of the Radio objective function.

As was shown in previous experiments [13], a common complaint from participants was
a desire for increased vehicle-level control, as opposed to only task-level control. Fifty-three
percent of all subjects wrote about wanting to manually assign vehicles to certain tasks because
they disagreed with an assignment made by the automated planner. These comments could be
due to the fact that the automated planner was taking into account variables that the human did
not comprehend, such as the need to refuel soon, or the speed or capabilities of the vehicle. The
participants were also frustrated because of sub-optimal automation performance, as one
participant wrote, “the automated planner is fast, but doesn’t generate an optimal plan” while
another wrote, “I did not always understand decisions made by the automated planner...namely
it would not assign tasks...while some vehicles were seemingly idle.” Finally, one participant
wrote, “the automated planner makes some obviously poor decisions...I feel like a lot is hidden

from me in the decision making...I felt like I had to trick it into doing things.”
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Three of the 20 participants who used one of the dynamic objective functions noted that
although they were told that the weightings of each variable were the same if that variable was
checked, the automated planner seemed to favor certain variables over others. This could once
again be due to sub-optimal automation performance or design and should be investigated in
further research.

6.4 Changing Rules of Engagement

Although not a primary focus of this research, it was shown that the second independent
variable in the experiment, Mission Type, was a significant factor in the analysis of many of the
dependent variables. For the Standard Mission, the ROEs were presented to the operator once at
the start of the mission and did not change. For the Dynamic Mission, every 5 minutes during
the 20 minute mission, new ROEs were presented to the operator. These ROEs gave the operator
guidance on what was most important to accomplish during that time period and what actions
they were restricted from taking.

As can be expected, operators conducting the more complicated Dynamic mission had
significantly higher utilization and spent significantly more time in the SCT on average. An
interesting and unexpected result was that regardless of the objective function used, operators
found significantly more targets and had higher target finding efficiency in the Dynamic mission
as compared to the Standard mission. Additionally, operators had significantly higher accuracy
in the re-designation of unknown targets in the Dynamic mission, which is a measure of SA.

Despite the fact that operators were working harder during the Dynamic mission, they
also performed better. It is possible that the scenarios designed for each mission, which had
different target locations and paths, were of different perceived difficulty levels despite the fact

that they were designed to be of comparable difficulty. Another possibility is that more frequent

86



reminders of mission goals, through the changing ROEs, could have played a role in this increase
in performance. The ROE changes provided more specific goals to the operator, guiding them in
how to conduct the mission, which led to higher performance. The ROE changes influenced the
internal objective function of the human operator, who then communicated his or her objectives
to the automated planner, which generated new plans for the vehicles, subject to the operator’s
approval. Further research is necessary to evaluate whether more frequent reminders of goals
can lead to higher performance in an unmanned vehicle supervisory control setting.
6.5 Summary

Results from the human performance experiment provided insight into methods of
collaboration between a human operator and automated planner for conducting supervisory
control of a network of decentralized UVs. The results indicated that the original hypotheses
were generally correct, in that providing an operator with the ability to modify the weightings of
the variables in the objective function of an automated planner resulted in enhanced SA,
increased spare mental capacity, and increased subjective ratings of the human-automation
collaboration. There were caveats to these results, including the fact that target finding
efficiency and adherence to changing mission objectives increased with use of a single-objective
optimization function, but some operators violated the ROEs while using this single-objective
function.

One potential confound in this experiment is that by the nature of the experiment,
operators should have been able to adhere to changing mission objectives better with a dynamic
objective function. Theoretically, a static objective function would be inferior if the mission
goals and ROEs were changing throughout the mission. Therefore, a comparison between a

static and dynamic objective function in terms of adherence to changing mission goals may be
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unfair. It is clear, however, that the dynamic objective function with multiple objective
optimization capabilities resulted in superior SA, spare mental capacity, and subjective ratings.

In addition, the results provided new information on the impact of changing mission
goals on human-automation collaboration. While it was expected that changing mission goals
would cause a higher cognitive workload, the results indicated that operators also had higher SA
and performed better in terms of finding new targets. Further research is necessary to analyze
the impact of changing mission goals on the human operator and how they influence overall
system performance.

Two methods of implementing a dynamic objective function were implemented and
compared, one with single objective optimization and one with multiple objective optimization.
By providing the operator with more choice in communicating his or her goals to the automation,
through multi-objective optimization, the operator could communicate to the automation faster,
did not have to work as hard, and felt more confident about his or her actions.

Finally, the results have shown an interesting trend that increasing levels of education
predicted lower system performance. A controlled experiment investigating the impact of
education level on multiple UV supervisory control would need to be run to draw any substantial
conclusions on this topic. It is, however, of interest to current military operations, where the
demand for increased UAV missions is driving a trend towards placing enlisted military
personnel in UAV operator roles.

Chapter 7 will discuss the implications these results have on the initial research

objectives and the design of future collaborative UV systems.
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7 Conclusions

There is an increasing demand to use UVs for a variety of civilian and military purposes.
To keep up with this demand, as well as reduce the expense of operating UVs and enhance the
capabilities of UVs through better coordination, human operators will need to supervise multiple
UVs simultaneously. In order to successfully conduct this form of supervisory control, operators
will need the support of significant embedded collaborative autonomy. Automated planners are
useful in this mission, as they are more effective than humans at certain aspects of path planning
and resource allocation in time-pressured, multivariate environments. While reducing the need
for manual control and allowing the operator to focus on goal-based control, automated planners
can also be “brittle” when dealing with uncertainty, which can cause lower system performance
or higher workload as the operator manages the automation. Therefore, this research was
motivated by the desire to reduce mental workload and maintain or improve overall system
performance in supervisory control of multiple UVs.

The design and testing of an interface to provide an operator with the ability to modify
the objective function of the automated planner demonstrated the potential for new methods of
human-automation collaboration in UV control. A dynamic objective function increases the
transparency and reduces the “brittleness” of the automated planner, which enhances the ability
of a human operator to successfully work with the automation. It provides the operator with a
convenient method to communicate his or her goals to the automation, especially in light of
changing mission goals.

7.1 Research Objectives and Findings
The objectives of this research were to determine the motivating principles for dynamic

objective function manipulation, develop an interface to provide operators with this capability,
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and to evaluate the effectiveness of real-time human manipulation of the objective function of a
scheduling and resource allocation algorithm. The goal was to address these objectives through
the following methods:
e Review current research in human-computer collaboration for scheduling, resource
allocation, and path planning, in order to develop a theoretical model of dynamic
objective function manipulation (Chapter 3).
¢ Design a dynamic objective function tool and integrate the tool into an existing multi-
UV mission simulation testbed (Chapter 4).
e Use a human performance experiment to evaluate the impact of real-time human
manipulation of a dynamic objective function on system performance, workload, and
subjective appeal (Chapters 4-6).
The review of previous research in Chapter 2 motivated this research by revealing gaps in
the human-automation collaboration literature, including the lack of experiments featuring a
dynamic and uncertain environment, time-pressure for decision-making, and methods for
enabling an operator to express his or her desires to the automated planner. The human-
automation collaboration model that was extended in Chapter 3 to include the concept of
objective function manipulation illustrated the many cognitive steps that are involved in
generating, evaluating, and selecting plans for multiple UV control. The model also showed the
potential for a reduction in the number of cognitive steps required to evaluate plans through the
use of a dynamic objective function. Chapter 4 introduced the dynamic objective function tool
that was developed and integrated into an existing simulation testbed. The impact of real-time
human manipulation of a dynamic objective function was evaluated through a human

performance experiment.
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The results of this experiment established that a dynamic objective function with a single
objective improved adherence to changing mission priorities, but also led to ROE violations. It
is possible that the single objective method assisted in causing the violations, either because the
operators were focused on a single objective or because the method required extensive
interaction to achieve an acceptable plan, increasing the chance of error. Secondary results of
the experiment indicated that changing mission goals, as expected, caused higher cognitive
workload, but unexpectedly resulted in superior performance and higher SA. Additionally, an
undergraduate education was shown to be a predictor of higher system performance over higher
levels of education.

Finally, operators using a dynamic objective function with multi-objective capabilities
needed fewer modifications to the objective function to achieve an acceptable plan, had
enhanced SA, and had increased spare mental capacity, indicating lower workload. One of the
most revealing results of the experiment were the subjective ratings of the interfaces, showing
that operators clearly preferred the dynamic objective function with multi-objective capabilities,
which gave them the most flexibility in communicating their goals and desires to the automated
planner. Developing an appropriate level of trust between the human and automated planner is
crucial for successful human-automation collaboration [77], and providing the capability to
modify the objective function for multi-objective optimization can aid in developing this trust.

7.2 Recommendations and Future Work

Though the results of this thesis indicate that dynamic objective function manipulation

shows potential for improved performance with reduced mental workload and increased

subjective appeal in a human-automation collaboration for multi-UV control, further

91



investigation is required. The following are recommendations for future work based on the

research presented in this thesis:

92

As described in Section 5.1, a system-level re-design of the interface for the OPS-
USERS testbed is required to incorporate the concept of changing ROEs. The
interface was originally designed assuming that the destruction of hostile targets
would always be permitted, which is why the only options provided to an operator
when asked to approve the destruction of a hostile target are to either approve the
destruction or re-designate the target as unknown. Adding the capability to designate
a hostile target as “ineligible for destruction” or a way to remind the operator that a
target was re-designated from hostile to unknown would be helpful.

An additional design recommendation for the OPS-USERS testbed, based on
suggestions from participants, is to develop additional methods to provide feedback to
the operator about why a task could not be assigned. Often times, constraints in
available UVs, the time required to travel to a task’s location, re-fueling constraints,
or the time required to conduct a task causes the automation to reject a task that the
operator attempted to assign in a “what-if” query. If the reason for the rejection could
be communicated to the operator visually and/or verbally, it would decrease operator
frustration with the automation.

A direct method of obtaining subjective user feedback that directly compares the
various objective function types should be considered. This would result in a within-
subjects experimental design where each participant conducts multi-UV missions

with each of the objective functions.



Further investigation of the types of dynamic objective functions that can be
implemented is warranted. More options for manipulating the values of the
weightings in the objective function should be investigated, as opposed to just
allowing goal manipulation at a binary level of “on” or “off.” For example, rating
each value as “high,” “medium,” or “low” or ranking the values in priority order
could be explored.

It is unclear from this thesis whether the changing ROEs guided the human in how to
conduct the mission, leading to enhanced performance, or whether it was simply the
act of reminding the operator of his or her goals that led to superior performance. An
experiment could be run to determine whether more frequent reminders of goals leads
to enhanced performance.

It remains an open question whether the participants simply set the objective function
weightings better than the a priori coded objective function, or whether the operator’s
manipulations of the objective function actually took the system performance beyond
a level that could be achieved autonomously. Further investigation is necessary to
determine the optimal settings for the objective function of the automated planner.
This would require, for example, Monte Carlo simulations using a recently developed
human operator model [78] to work with the automated planner. This would be
difficult to pursue, however, for 2 reasons: 1) the definition of “optimal” will be very
difficult to define in a complex command and control scenario and 2) the dynamic
and uncertain nature of the simulation may prevent the development of an optimal

policy for the objective function weightings.
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Appendix A: Demographic Descriptive Statistics

Category N Min Max Mean Std. Dev.
Age (years) 30 18 38 21.30 3.98
Rating of past 2 nights 30 1 4 2.23 0.82
of sleep (1-4)
Rating of TV watching 30 1 5 2.30 0.99
(1-5)
Rating of gaming 30 1 5 2.37 1.25
experience (1-5)
Rating of comfort level 30 2 4 3.40 0.68
with computers (1-4)
Rating of perception of 30 2 5 3.80 0.85
unmanned vehicles (1-5)
Occupation Undergraduate: 18 - - - -
(Student/Other) Masters: 6

Ph.D: 4

Non-student: 2

Military experience 1/29 - - - -
(Y/N)
Gender (M/F) 21/9 - - - -
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Appendix B: Consent to Participate Form
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Appendix C: Demographic Survey

Pre-experiment Survey

Page 1

1. Subject number:___
2. Age:
3. Gender: M F
4.  Occupation:

if student, (circle one): Undergrad Masters PhD
5. Military experience (circle one): No Yes

If yes, which branch:

Years of service:

6. Give an overall rating of your past two nights of sleep.

Poor Fair Good Great
7. Onaverage, how much TV do you watch daily?

Never watch TV Infrequently watch TV About 1 hour About 2 hours More than 2 hours

8. How often do you play computer games?
Rarely play games  Play games once a month Weekly gamer A few times a week gamer  Daily gamer
Types of games played:

9. Rate your comfort level with using computers.
Not comfortable Somewhat comfortable Comfortable Very Comfortable

10. What is your perception toward unmanned vehicles?

Intense dislike Dislike Neutral Like Really Like
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Pre-experiment Survey

Page 2

1. Subject number:

2.  How confident were you about the plans you created?

Not Confident Somewhat Confident Confident Very Confident Extremely Confident

Comments:

3.  How did you feel you performed overall?

Very Poor Poor Satisfactory Good Excellent

4. How busy did you feel during the practice mission?

Extremely Busy Busy Not Busy Idle

5. Do you understand how to create search tasks?

No Somewhat Yes

6. Do you understand how to use the target identification window?

No Somewhat Yes

7. Do you understand how to approve a weapon launch on hostile targets?

No Somewhat Yes

8. Do you understand how to use the Schedule Comparison Tool (SCT)?
No Somewhat Yes
9. Do you understand that you must accept a plan in order for the unmanned vehicles to perform new search, track and
destroy tasks?

No Somewhat Yes

10. Do you understand how to modify the objective function of the automated planner?

No Somewhat Yes

Now is the time to ask the experiment administrator any questions you have about the mission or interface.
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Appendix D: Experiment Legend

Legend

UxV Symbols

Weaponized Unmanned Aerial Vehicle (WUAV)
*  Primary Mission: Detect and Destroy
Haostiles

=

Unmanned Surface Vehicle 1 (USV)
*  Primary Mission: Search and Track

Unmanned Aerial Vehicles 2 & 3 (UAVs)
*  Primary Mission: Search and Track

fi e—

Base — Refueling Location

=)

-y

Search Task Symbols

High Priority

Medium Priority

Low Priority

Loiter Symbols

High Priority Medium Priority Low Priority
Target Symbols
Hostile Unknown Friendly

G
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Legend

Destroyed Hostile
Lost Target Target

Performance Plot

Red is
Proposed
Performance
calculated by the
computer algorithm

Blue is
Actual
Performance

PERFORMANCE

;

Current Time

Red above Blue, you have work to do.

Blue above Red, you're getting ahead!

Your Mission Score

Overall Mission Score will be calculated by:
* % Area Covered by Mission End

s % Targets Found

e % Time Targets Tracked

» % Hostile Targets Destroyed

» Reaction Time for Replan Prompt

s (Chat Box Response Time and Accuracy
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Appendix E: Unmanned Vehicle Velocity and Fuel Consumption

Data was obtained on the MQ-1 Predator to aid in setting the cruise and maximum
velocities, and cruise and maximum fuel consumption for the UAVs used in the simulation for
this experiment. The cruise speed of a Predator is 84 miles per hour, the maximum speed is 135
miles per hour, and the fuel capacity is 100 gallons [79]. The range of the predator is 2,302
miles [80]. The maximum speed to cruise speed ratio for the Predator is approximately 1.6.

The general equation for the drag of a solid object moving through a fluid [81] is:

C,pAV?
D= dPZ

D = Drag Force

Cq = Coefficient of Drag

p = density of fluid (air in this case)

A = cross-sectional area of the object

V = velocity of the object

This equation reveals that drag increases with the square of speed. Based on the
aerodynamics assumption that fuel consumption increases linearly with drag, and the fact that the
maximum speed to cruise ratio of the Predator is 1.6, we can calculate that the maximum fuel
consumption of the Predator should be approximately 2.5 times the cruise fuel consumption.
Speeds and fuel consumptions were set for the UAVs in the simulation to match this 1.6 ratio
between cruise and maximum speed and the 2.5 ratio between cruise and maximum fuel
consumption, as shown in Table 13. Note that the units of these numbers are based on the

simulation environment and not on any real-life units.

Table 13. Velocities and Fuel Consumption for Unmanned Vehicles

Unmanned Vehicle Cruise Max Cruise Fuel Max Fuel Fuel
Type Velocity Velocity | Consumption | Consumption | Capacity
WUAV 100 160 0.01 0.025 7
usv 25 50 0.01 0.025 3
Fixed-wing UAV 75 120 0.01 0.025 4
Helicopter UAV 75 120 0.01 0.025 4
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Appendix F: Rules of Engagement

F.1 Standard Mission
The following Rules of Engagement were sent through the Chat Window to the operator
as soon as the mission began and did not change during the 20 minute mission:
e Track all found targets and destroy all hostile targets found.
F.2 Dynamic Mission
The following Rules of Engagement were sent through the Chat Window to the operator
at the specified times:
e START: Cover as much area as possible to find new targets. Tracking found targets is
low priority. Do not destroy any hostiles.
e FIVE MINUTES: Conduct search tasks in SE and SW Quadrants. 2nd priority: Track
all targets previously found. Do not destroy any hostiles.
e TEN MINUTES: Track all targets closely - it is important not to lose any targets! 2nd
priority: conserve fuel. 3rd priority: destroy hostile targets.

e FIFTEEN MINUTES: All Hostile Targets are now high priority - destroy all hostiles!

107



108



Appendix G: Experiment PowerPoint Tutorials

G.1 Static (None) Objective Function Tutorial

November 2000
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« Target 1D Windaw appears. for editng desigration o oty evel

Target ID Video—Click on the Picture to Watch

L)

b=

] T —wuay T
=y T
g e
a3 | | =
P T IEE o B P A
L T — 20/44

Changing Target Designation Video

Right clicking & target dlows you 1o et the tarpet designation and pricrity level.
The wideo below shows how 1o chanos an unknown troe into a hostle, hioh
pricrity target. The unknown target has been right dicked to bring up the Target

1D 'Wirdow. ickt}hugil;tumhu watch ks

PN iiismina ismraseseinsasin 21/44

e -
51 T wa

Target Concentric Rings for possible new location

s

Blue Concentric ings appear automatically for Iangets Iat have not Deen wsited
i & while that might soon becane lost tangets. The blwe concentric rings shown
the dgorithm’s bist estimate of whene the
target might be.  The darker the blue, the more probabie the position of the
target. A Ly should be assigned a seardh task near this location ASAP, lest the
target bacom e Iost,

Lost Targets

Targets Dacome st if LS do not tradk thiem for & whibe,
Lost targets appear dmmer. The probability distnbution (bhue conceniric rings)
appear before the target becomes lost and dims.

Compare the gray colar of lost Target L on the left to Tarpet A on the right that is
ik ot

Lost Target Target (not lost)
1

S

Itcan t3ke anywhere from 30 to 120 seconds for a target to become lst,
depending on tanpets speed and vehide hpe. Revisiting tangets mone aften
prevents targets from becoming lost.

A lost arget is removed Fom the map and the schedule queue sfter fhe Liis have
revisited be losticon fve times with no success of finding the lost target.

ﬂ BT s i, 23/44
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Approving Weapon Laundh Timeline

OV RFLTE ] [FRCEH
‘Weapon Launch Approval Window ::J:\I'i l I
——— 1|
Honti Torgel CLUEY | | 1§ |
- uava I | |

The tmeine gves temporal informiaton for sach Uy for the nest ten minutes
into the future indcated inthe format hours minutes:seconds.

] Green bars inthe Timeline indicate times of refusling, and blue bars indicate
times performing a tasic  The lether of the task (whether Search Task or Target
Destroyed targets Track Task) Bppears in the biee bar. Each U/ i mitad to bwo task

sppesr asbiack symbols assignments at a time, \White space indicates idie tme or time raveling
an Be Mag View between tasks. The timeine marches forward as time goes on.

Operator approual Must be givan befre the WUAY i allowed to destroy 3 hastie
taget The Missie Launch Apgeoval Window pops up automatically when the
Wmmmmwwfammamamﬂwmsmmm
s sights as the "ayes on.” Pan the screen for a direct view of the target, and
click the red Approve Launch button 1o destoy the et

e e x4 m L 20144

The tmEing wil Degin 1o gray-out,
ndic ating the end of the mission. The
FrESsion end Hme ooours at the Do der
Fom white 1o gray,

Coverage Area Overlay Performance Plot
The Frobaliey DEIMARIn Oherioy. o3 be med oDy The Performance Piot shows the auto-planner's computation of the curent
ﬁw tm.semﬂf;dmis schedule’s parfommance in campanson to the actual oyerall performance of
Ehit YOurS. the curment schedule. The plot marches rward a5 time goes on, much ke
the Timdine.
i
Redis O
Proposed =
Parformance -4 IRt AbCrve B, you
caloulated by the = nave work 1o do
computer dgonthm o Bue above Red,
o wourre getiing ahead!
Bhels L
Actual E
" Performancs
The periwinkhe: blua ooloring ower the The typical gray ooionng o
map shows the area that has not been shows 2 path that was just Lt
wisited recently, These biue arss are wisited by a L, and this
more gy to have hidden tangets because coverage area mast iy does ntTime
& Lb Nas not visited there yet, et condin hicden tangets, Curre
PIW i s pesnaion 27144 m PR e 28/44

Replan Overview of the Schedule Comparison Tool

The Replan buthan in the lower left comer of the Map Display will tum green when » Schedule Comparison Tool Display
a newi plan is available from the asto-gannen You will near the awditory "Replan® + Configural Display
dert. Click to haar the "Replan” Alert — Ll P

* Number on Bars Festure

* Multi-Color Bars Feature

+ Assigning Unassigned Tasks
= Nathing to Assign

= Selecting a Task

o Switching Schedules

—-'_.-l‘
As the Replan button ims green and you hear the alert, a new proposed
schedulais available that requires you to hit the replan button to see it

The: auto- planmer prompts you o replan when it has generated a bettar schedule for
the Uk, New tangets and tasks in the scenano often result in a new proposed
schedule,

m [ 29/44 i | || 30/44
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Schedule Comparison Tool (SCT) Assigning Unassigned Tasks

Oinoe you dick the replan button, the Sdhedule Compartson Tool (SCT) appears, Aesion a task by dragging it into center "Assion” area. Doing this queries the
Showing 8 Perfarmance ovesview f_” ree scheduies; e CurrentSchedule Anonomous planner to see If the task can be assigned or not,  If the task does
(gr2y), the \nrvorlungscheu ule (Biue), 2nd the Proposed Schedule ghven by the nct pop badk out, the auto-planne was able to schedule the task. Sometmes 2
Sutomaon; green). - —— - different task pops qut because ithe auto-planner had to un - sk in
arder for the task you dragged in to becom e assignad.  This will be reflected in
the higrarchical bars as tasks pop In and cut of the schedule query “Assign® area,

Afer using the SCT, you must elick
Accept in omer to mplerment the
working schedule you aeatid and o
rebum o the Map Display.

Youmay always Cancel and mium o the
Map Diglay. Howeve, the proposed glan
will nat be mmmunicated to S s,

In e 5CT interface, the Smeline has been grayed cut o indicate that it is fa tmaiine
for tha “Currant Sdveckl le” and will only cormispond to fie "Coment Schaduls.®

Aocept o
I retum bo the Map Display.

T s 31/44 m M o 12/44

Yiows miay dick: the Regd fttioes @ 9o o e SCT anytime you ke, &wen you finksh assigning tasks and warking wath the schedule, Click
without being prompted. : imphament the plan (or Cancel), and you

]

Assigning Unassigned Tasks Video—Click the Picture to Watch Configural Display

The top rectangle regressnts
the "map” area that will be
covirad I & given schedue

The more coorful the arsa, the
better seanched it is.

The bottom hierarchical laddar shows
the percatages of high,
medium, and low priorty

tasks to be completed fr High—

Medium=—=

The more coor-filled a rectangle
Is, the more of that Low—
task-pricrity is being doe.

When a sk & assigned, the carresponding ladder rung rectangle changes
size in a "ghosting effect” to vasally show wihat has dhanged, The
darker color is the new Size, whereas the lighter overlay is the dd sire.

iz m?l P i R

Ghosting Effect Video—Pay Attention to the Working Schedule Configural Display

Area Covered

Companng thess three schedules
"Proposed” cover more aea than
Tashs Completed

Companng these three schedules; both “Working” and " Propossd” perfom miore
high pricnty tasks than "Cume: “Worling® nas just been alterad (as shown Dy
the: ghesting dhange in the high priorty ladder rung).

above aoample: both "Working” and

"Working” starts out idenficd to "Proposed” and changes as you work on it

ir T 15/44 IEI [ [ S 36/44
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Configural Display "Numbers on Bars" Feature

Configural Display "“Multi-Color Bars" Feature
The ratio of tasks assigned to total tasks will show up on the bars of the
heeranchical lacder when the optiona " Numbers on Bars” checkbon i sebec tad,
For exampie, an the hich prionty bar, 2 of the 4 high pric

The priity level of the bars on the hierarchical ladder will show up for quick
prioeity r
v tasks are assigned,

ecognition wihnen the “Multi-Color Bars” check Do s selected, Itis your
chouce to use ths feature,

]

2

Nothing to Assign

Accept to orocesd wih N2 compiztely asigned sMedue generated by M auo-
planner 1f you da not chocse Accept, the

The red X appsaring In the "map” of sadh Configurdl
's will Pt raceve tha communication of lncaton of the cumenty selected task.
g they nesd bo perfarm,  Buk, you still have e option to Cancel,
i ;

isplay camespands o the

mili | Im

i . 40/44
Switching Schedules Main parts of your role
Identifying Targets
e S : = | Creating Search Tasks
Click Manitorin gthe Map Display
to — Saarh —
Switch b W iy
. 2% ry - "
by | 5
=" ] "
==l Approving Weapons Lau nch
Using the Schedule Comparison Tool
Tasks viewed = Norking™
Scherdule, To view unassigned tasks for either the “Cument” o “Proposed
Schedules, dicking o each schedule's configural display will st the "Working™
Schadule a2 equivaint to the seiec ted schedule (Brasing the old "“Working™).
] == -
] S 41114 ] BIiF . a4

115



Your Mission Score

Overall Mission Score will be calculated by:
e Chat Box Response Time and Accuracy
« Adherence to the Rules of Engagement
* % Area Covered when instructed
+ % Targets Found when instructed
= % Time Targets Tracked when instructed
+ % Hostile Targets Destroyed when instructed

This overall score is different from the performance plot, which shows
the auto-planner’s perspective of how well the current schedule is
performing.

Player with the high score wins a $100 Best Buy Gift Card!

| SEARCH, TRACK, DESTROY |

ﬁ;j T - 43/44

Interactive Practice

You will now have approx. 15 minutes to practice
with the actual interface and to ask questions.

After practicing, you will perform as the multi-UxV
operator for 2 twenty-minute missions.

HAVE FUN!

@] L E— 3441

G.2 Radio Button Objective Function Tutorial

Extra slides specific to the Radio Objective Function:

Changing the Priorities of the Automated Planner

Changing the Priorities of the Automated Planner

Change the priorities of the Automated Planner using the "Plan Priorities” radio
buttons in the SCT. You can choose anly one of the options at a time by clicking
in the radio buttons.

After changing any of the Priorities,
you must click Recalculate to
submit the Priorities to the
Automated Planner and to view the
new optimal plan

1f you click Accept to exit the SCT, your Plan Priorities will be saved and you will
be prompted to replan when a plan is created that is “better,” based on the
Priorities that were saved. If you click Cancel, the Priorities revert to the last
saved Priorities from when you accepted a plan in the SCT.

i!] ] yp— . 32/46

Plan Priorities Area Coverage: When selected, the vehicles will
cover as much area as possible, neglecting search
tasks and tracking targets in order to optimally
search the area.

Search/Loiter Tasks: When selected, the
vehicles will perform search tasks that you have
Target Tracking created and the WUAV will go to specific loiter
points that you have created.

Target Tracking: When selected, the vehicles
will track already found targets. Hostiles must be
tracked by a UxV before they can be destroyed
[ Recaicuise | Hostile Destruction: Once a hostile target is
found and tracked by one of the regular Uxvs, it is
eligible to be destroyed by the WUAV - the WUAV
will only be tasked to destroy these hostiles if this
Plan Priority is selected

Fuel Efficiency: When selected, the vehicles will
travel more slowly, but also burn fuel more slowly
and not have to refuel as often.

Arsa Coverage

SearchiLoiter Tasks

Hostile Destruction

Fuel Efficiency

El L 33446

G.3 Checkbox Button Objective Function Tutorial

Extra slides specific to the Checkbox Objective Function:

Changing the Priorities of the Automated Planner

Change the priorities of the Automated Planner using the “Plan Priorities”
checkboxes in the SCT. You can choose any combination of the options by clicking
in the checkboxes.

After changing any of the Priorities,
you must click Recalculate to
submit the Priorities to the
Automated Planner and to view the
new optimal plan

If you click Accept to exit the SCT, your Plan Priorities will be saved and you will
be prompted to replan when a plan is created that is “better,” based on the
Priorities that were saved. If you click Cancel, the Priorities revert to the last
saved Priorities from when you accepted a plan in the SCT.

] T T
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Changing the Priorities of the Automated Planner

Area Coverage: When selected, the vehicles will
cover as much area as possible, neglecting search
tasks and tracking targets in order to optimally
search the area.

Search/Loiter Tasks: When selected, the
vehicles will perform search tasks that you have
created and the WUAV will go to specific loiter

Plan Priorities

Target Tracking

Hostie Destruction points that you have created.
Target Tracking: When selected, the vehicles
Pt By will track already found targets. Hostiles must be

tracked by a UxV before they can be destroyed.

e —| Hostile Destruction: Once a hostile target is
found and tracked by one of the regular UxVs, it is
eligible to be destroyed by the WUAV — the WUAV
will only be tasked to destroy these hostiles if this
Plan Priority is selected
Fuel Efficiency: When selected, the vehicles will
travel more slowly, but also burn fuel more slowly
and not have to refuel as often.

ir .. _ 33/46




Appendix H: Proficiency Tests

H.1 Static (None) Objective Function Test

MNovembar 2000

OPS-USERS

Satisfactory Proficiency Test

@ Andrew Clare IMid]

achrafimit e | +1517.751.0597 | hitp hakbmi o

Question #2 of 5

Yow recave ihe folloning Chal Messape.
"Lk Emels i e WE quadrand are Frawdies.”

What should your next action in the Map View [ses below) be based on
this message?

¥

ﬁ;l [T 3

Question #4 of 5

Which Schedule has the most high priority tasks assigned?

Wiv

i

Question #1 of 5

You recene the folowing Ghat Message:
"TEsk the Weaponired LA VD fowEr i ihe W quiadrant F ihe IWLMIY i et

What pop-up window do you need Lo access to oreate aloiter bask?

4] [T

2
Question #3 of 5
You receive the follawing Chat Message
‘RULES OF ENGAGEMENT: Tack &7 {argefs previowsly fownd. Do nof destroy
Ay foslies,
A FEwe ITILTES FIEET O Winoow Beiow Sppes.
Which button should you click?
e 4
[ [T
Question #5 of 5
You made & selaf changes lo The working schedule by draggw
Assign area. These changes are reflected below in fhe SCT.
T oar F: You must chck the Accepl Bulton lo implement the Working
Schedule that you created.
[ [T ‘
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H.2 Radio Button Objective Function Test

Question #1 of 5

November 2000

OPS-USERS

Satisfactory Proficiency Test

EI] Andrew Clare IMis}

acarofimit edu | +1817. 25306490 | bitp/ okl ik ad

You recene the folfowing That Message:
"TEsk fhe Weaponired LA VD iower i the MW quadand Ifihe LAY B iale

What pop-up window do you need bo acoess bo oreabe aloiber Lask?

- - rt
s . H -+
N o ] w .
M #

. e

A | T
I —w
Bl o L ]

|| ir

Question #2 of 5

Yow recenie the followng

Chat Messape:

"Lirkraomwe &

mels i the NE quadiant are Frandies. ™

What should your next action in the Map View (see below) be based on
this messaga?

7

Tk

|| T T n

Question #3 of 5

You

the following Chel Message

"RULES OF ENGAGEMENT: All Hosile Targels pre mow high prioniy - de

In the SCT, what must you change on the Plan Prioritiesin order to ba
able to destroy hostile targets? (once a Hostile Targst is being tracked)

Besspivionsr Tashy
Target Tractng

Vet Destracten

el Ffmary

| Al i

Question #4 of 5

‘Question #5 of 5

Which Schedule has the most high priority tasks assigned?

4 T e P

I the Blan Provities, Ares Coverage is selected,

T or Fr The vehicles will cover as much area as possible, rejecting search
tasks and tracking targets in order to optimally search the area.

A Wiy
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H.3

Movember 2009

OPS-USERS

Satisfactory Proficiency Test

Andrew Clare
adaraPoit. aty | +1-617.251.0997 | hetpc/ akb ot afy

Fou reray e ihe foloweng Chat Message;

"Uinkrow Eapets i ghe NE quadant are Frandlies.”

What should your next action in the Map View (ses below) be based on
this message?

F_ﬂl BIT oo . 3

Question #4 of 5
Which Schedule has the most high priority tasks assigned?

Checkbox Button Objective Function Test

Question #1 of 5

You recene the follawing That Message:
"Iask the Wegponized LAV D ioiter in the MW quadiant if the WLV &5 e ™

What pop-up window do you peed Lo access bo creste aloiter tad?

]

IE] 1'Iir T 2

Question #3 of 5

You recaive the falloving Chit Massage

Targets are now high priorly - destroy all

RLULES OF ENGAGEMENT AN §
ho i

In the SCT, what must you change on the Plan Prioritiesin order to be
ahble to destroy hostile targets?

Plan Priciitias

BnarehiLoder Tanis

Trasking

& L EE—— [

Question #5 of 5

I &he Blan Priovites, Area Coverage 5 seledied,

Tor F: The vehicles will cover as much area as possible, rejecling search
tasks and tracking targets in order to optimally saarch the area

119



H.4 Answer Key

PASSING = 4 out of 5 correct!
OPS-USERS QUIZ ANSWER KEY - Quiz #1

Static

1. Search Task Window

2. Right click on Unknown Target G, re-designate to friendly
3. “Cancel: Re-designate to Unknown” Button

4. Working Schedule

5. True

Checkbox

1. Search Task Window

2. Right click on Unknown Target G, re-designate to friendly
3. Check “Hostile Destruction”

4. Working Schedule

5. True

R
1. Search Task Window

2. Right click on Unknown Target G, re-designate to friendly
3. Click “Hostile Destruction”

4. Working Schedule

5. True
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Appendix I: Questionnaires

Scenario Feedback Survey

Round 1

1. Subject number:
2. How confident were you about the plans that you created?
Not Confident Somewhat Confident Confident Very Confident Extremely Confident

Comments:

3. How did you feel you performed overall?

Very Poor Poor Satisfactory Good Excellent
4. How busy did you feel during the mission?
Idle Not Busy Busy Very Busy Extremely Busy

5. How satisfied were you with the plans created by the Automated Planner?

Very Unsatisfied Unsatisfied Satisfied Very satisfied Extremely satisfied
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Scenario Feedback Survey

Round 2

1. Subject number:

2. How confident were you about the plans that you created?

Not Confident Somewhat Confident Confident Very Confident Extremely Confident

Comments:

3.  How did you feel you performed overall?

Very Poor Poor Satisfactory Good Excellent

4. How busy did you feel during the mission?
Idle Not Busy Busy Very Busy Extremely Busy

5. How satisfied were you with the plans created by the Automated Planner?
Very Unsatisfied Unsatisfied Satisfied Very satisfied Extremely satisfied
Questions about the Experiment Overall

1. Were there aspects of the interface that you particularly liked or disliked?

2. Did you understand the changes in the Rules of Engagement? Did you feel like you could implement those changes via
the interface?

3. Didyou feel that the Automated Planner was fast enough?

4. Did you feel that you understood how manipulating the Plan Priorities affected the plans created by Automated
Planner?

5. Other comments:
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