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Abstract 

Advances in autonomy have made it possible to invert the operator-to-vehicle ratio so 

that a single operator can control multiple heterogeneous Unmanned Vehicles (UVs). This 

autonomy will reduce the need for the operator to manually control each vehicle, enabling the 

operator to focus on higher-level goal setting and decision-making. Computer optimization 

algorithms that can be used in UV path-planning and task allocation usually have an a priori 

coded objective function that only takes into account pre-determined variables with set 

weightings. Due to the complex, time-critical, and dynamic nature of command and control 

missions, brittleness due to a static objective function could cause higher workload as the 

operator manages the automation. Increased workload during critical decision-making could lead 

to lower system performance which, in turn, could result in a mission or life-critical failure.  

This research proposes a method of collaborative multiple UV control that enables 

operators to dynamically modify the weightings within the objective function of an automated 

planner during a mission. After a review of function allocation literature, an appropriate 

taxonomy was used to evaluate the likely impact of human interaction with a dynamic objective 

function. This analysis revealed a potential reduction in the number of cognitive steps required to 

evaluate and select a plan, by aligning the objectives of the operator with the automated planner. 

A multiple UV simulation testbed was modified to provide two types of dynamic 

objective functions.  The operator could either choose one quantity or choose any combination of 

equally weighted quantities for the automated planner to use in evaluating mission plans. To 

compare the performance and workload of operators using these dynamic objective functions 

against operators using a static objective function, an experiment was conducted where 30 

participants performed UV missions in a synthetic environment. Two scenarios were designed, 

one in which the Rules of Engagement (ROEs) remained the same throughout the scenario and 

one in which the ROEs changed. 

The experimental results showed that operators rated their performance and confidence 

highest when using the dynamic objective function with multiple objectives.  Allowing the 

operator to choose multiple objectives resulted in fewer modifications to the objective function, 

enhanced situational awareness (SA), and increased spare mental capacity. Limiting the operator 

to choosing a single objective for the automated planner led to superior performance for 

individual mission goals such as finding new targets, while also causing some violations of 

ROEs, such as destroying a target without permission. Although there were no significant 

differences in system performance or workload between the dynamic and static objective 
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functions, operators had superior performance and higher SA during the mission with changing 

ROEs. While these results suggest that a dynamic objective function could be beneficial, further 

research is required to explore the impact of dynamic objective functions and changing mission 

goals on human performance and workload in multiple UV control. 

 

Thesis Supervisor: Mary L. Cummings 

Title: Associate Professor of Aeronautics and Astronautics 

 

 

  



5 

 

Acknowledgments 

I owe thanks to numerous people for the successful completion of this thesis. 

 

First, to my advisor Missy Cummings, for taking me on as an undergraduate researcher 4 years 

ago, believing in my potential as a graduate student, and for all of the guidance and feedback that 

you provided on my research.  You have had a tremendous impact on me, both professionally 

and personally, and I look forward to further research under your leadership in the future. 

 

To Yves Boussemart, Ryan Castonia, and Kristopher Thornburg for providing feedback on this 

thesis.  Your comments and advice were outstanding and truly helped me throughout the writing 

process. 

 

To the National Defense Science and Engineering Graduate Fellowship, through the Air Force 

Office of Scientific Research, for funding my graduate education, and the Office of Naval 

Research for supporting the development of the testbed used for this experiment. 

 

To Christin, Dan, Scott, Ian, and Pierre, for all of your help in the development of the OPS-

USERS Interface. I learned so much from all of you, had a great time (even when the system 

crashed countless times), and I couldn’t have asked for better teammates on this project. 

 

To Olivier Toupet and Karl Kulling at Aurora Flight Sciences and Andy Whitten, Cameron 

Frasier, and Jon How at the Aerospace Controls Laboratory, for all of your help in the 

development of the OPS-USERS system.  I couldn’t have done this project without all of your 

expertise and support. 

 

To my fellow HALiens past and present: Christin, Dan, Dave, Armen, Geoff, Anna, Birsen, 

Luca, Yves, Ryan, Jason, and many others, thank you for the constant support, especially during 

the Quals, as well as plenty of good times on and off the volleyball court. 

 

To my brothers in Sigma Phi Epsilon and other friends at MIT through both my undergraduate 

and graduate years. All of you have had such an impact on me as I’ve developed over the past six 

years.  I will always remember all of the memories that we had, while I look forward to more 

good times in the future. 

 

To my Mom, Dad, and brother for your unwavering love and support through all of my years in 

school.  You were the first to believe in me and your encouragement and advice have always 

lifted my spirits and pushed me to pursue my dreams.  

 

And to Bri, for being my rock through the ups and downs of school.  Whenever I got distracted 

from my work, you kept me motivated and always believed in me.  Our time together has been 

wonderful and I am forever grateful for your love and support. 

 

 

 

  



6 

 

 



7 

 

Table of Contents 

 
Abstract .......................................................................................................................................... 3 

Acknowledgments ......................................................................................................................... 5 

List of Figures .............................................................................................................................. 10 

List of Tables ............................................................................................................................... 10 

List of Acronyms ......................................................................................................................... 11 

1 Introduction ........................................................................................................................... 13 

1.1 Motivation ........................................................................................................... 13 

1.2 Problem Statement .............................................................................................. 16 

1.3 Research Objectives ............................................................................................ 16 

1.4 Thesis Organization............................................................................................. 17 

2 Background ........................................................................................................................... 19 

2.1 Motivating Experiment ....................................................................................... 19 

2.2 Human-Automation Collaboration Empirical Research ..................................... 20 

2.3 Summary ............................................................................................................. 25 

3 Human-Automation Role Allocation................................................................................... 27 

3.1 Function Allocation Taxonomies ........................................................................ 27 

3.2 Application of Theoretical Framework to Simulation Testbed ........................... 34 

3.2.1 Simulation Platform ...................................................................................... 34 

3.2.2 Replanning Interface ..................................................................................... 36 

3.2.3 HACT Application to Testbed ...................................................................... 38 

3.3 Summary ............................................................................................................. 41 

4 Human Performance Experimentation............................................................................... 43 

4.1 Experiment Objectives ........................................................................................ 43 

4.2 Experimental Hypotheses .................................................................................... 44 

4.2.1 Mission Performance..................................................................................... 44 

4.2.2 Workload ....................................................................................................... 44 

4.2.3 Subjective Appeal ......................................................................................... 45 

4.3 Participants .......................................................................................................... 46 

4.4 Testbed ................................................................................................................ 47 

4.4.1 Apparatus ...................................................................................................... 47 

4.4.2 Dynamic Objective Function Tool ................................................................ 47 

4.5 Experimental Design ........................................................................................... 50 

4.5.1 Independent Variables ................................................................................... 51 



8 

 

4.5.2 Dependent Variables ..................................................................................... 53 

4.6 Procedure ............................................................................................................. 54 

4.7 Summary ............................................................................................................. 55 

5 Results .................................................................................................................................... 57 

5.1 Interface Issue ..................................................................................................... 57 

5.2 Statistical Analysis Overview ............................................................................. 58 

5.3 Mission Performance........................................................................................... 59 

5.3.1 Overall Mission Performance........................................................................ 59 

5.3.2 Satisfaction of Rules of Engagement in Dynamic Mission........................... 61 

5.3.3 Mission Efficiency ........................................................................................ 63 

5.4 Workload ............................................................................................................. 65 

5.4.1 Utilization ...................................................................................................... 65 

5.4.2 Time Spent in the Schedule Comparison Tool (SCT)................................... 66 

5.4.3 Secondary Workload ..................................................................................... 66 

5.5 Situational Awareness ......................................................................................... 68 

5.6 Subjective Responses .......................................................................................... 70 

5.7 Operator Strategy and Top Performer Analysis .................................................. 72 

5.7.1 Operator Strategies with Dynamic Objective Function ................................ 72 

5.7.2 Top Performers .............................................................................................. 73 

5.8 Summary ............................................................................................................. 75 

6 Discussion............................................................................................................................... 79 

6.1 Performance and Situational Awareness ............................................................. 79 

6.2 Workload ............................................................................................................. 82 

6.3 Subjective Responses .......................................................................................... 83 

6.4 Changing Rules of Engagement .......................................................................... 86 

6.5 Summary ............................................................................................................. 87 

7 Conclusions ............................................................................................................................ 89 

7.1 Research Objectives and Findings ...................................................................... 89 

7.2 Recommendations and Future Work ................................................................... 91 

Appendix A: Demographic Descriptive Statistics .................................................................... 95 

Appendix B: Consent to Participate Form ............................................................................... 97 

Appendix C: Demographic Survey.......................................................................................... 101 

Appendix D: Experiment Legend ............................................................................................ 103 

Appendix E: Unmanned Vehicle Velocity and Fuel Consumption ...................................... 105 



9 

 

Appendix F: Rules of Engagement .......................................................................................... 107 

F.1   Standard Mission ................................................................................................ 107 

F.2   Dynamic Mission ................................................................................................ 107 

Appendix G: Experiment PowerPoint Tutorials ................................................................... 109 

G.1   Static (None) Objective Function Tutorial......................................................... 109 

G.2   Radio Button Objective Function Tutorial......................................................... 116 

G.3   Checkbox Button Objective Function Tutorial .................................................. 116 

Appendix H: Proficiency Tests ................................................................................................ 117 

H.1   Static (None) Objective Function Test............................................................... 117 

H.2   Radio Button Objective Function Test............................................................... 118 

H.3   Checkbox Button Objective Function Test ........................................................ 119 

H.4   Answer Key........................................................................................................ 120 

Appendix I: Questionnaires ..................................................................................................... 121 

References .................................................................................................................................. 123 

 

 

  



10 

 

List of Figures 

Figure 1. Coordinated Operations with Heterogeneous Unmanned Vehicles [12]. ......... 14 
Figure 2. Decision Matrix for Function Allocation [48]................................................... 29 
Figure 3. Human-automation interaction as a function of certainty ................................. 32 
Figure 4. Human-Automation Collaboration Taxonomy Model [24] .............................. 33 
Figure 5. Map Display ...................................................................................................... 36 
Figure 6. Schedule Comparison Tool ............................................................................... 37 
Figure 7. Modified HACT Model with Dynamic Objective Function ............................. 39 
Figure 8. Schedule Comparison Tool with Checkbox Interface ....................................... 50 
Figure 9. Schedule Comparison Tool with Radio Button Interface.................................. 50 
Figure 10. Hostile Destruction Approval Window ........................................................... 58 
Figure 11. Performance Metrics Comparison ................................................................... 60 

Figure 12. Targets Found in the First 5 Minutes Comparison .......................................... 62 
Figure 13. Target Finding and Hostile Destruction Efficiency Comparison .................... 64 
Figure 14. Utilization Comparison ................................................................................... 66 
Figure 15. Secondary Workload Metrics for Dynamic Mission Comparison .................. 68 
Figure 16. Chat Accuracy and Target Re-designation Comparison ................................. 69 
Figure 17. Performance and Confidence Self-ratings Comparison .................................. 71 

 

List of Tables 

Table 1. Example Fitts List ............................................................................................... 28 
Table 2. Levels of Automation [50] .................................................................................. 30 

Table 3. Moderator, Generator, and Decider Levels in HACT [24] ................................. 34 
Table 4. Performance Metrics Summary .......................................................................... 61 
Table 5. Targets Found in the First 5 Minutes Summary ................................................. 63 
Table 6. Target Finding and Hostile Destruction Efficiency Summary ........................... 65 
Table 7. Utilization Summary ........................................................................................... 66 
Table 8. Secondary Workload Metrics for Dynamic Mission Summary .......................... 68 
Table 9. Chat Accuracy and Target Re-designation Summary ......................................... 70 
Table 10. Performance and Confidence Self-ratings Summary........................................ 72 

Table 11. Linear Regression Results ................................................................................ 74 
Table 12. Summary of Experimental Findings ................................................................. 76 

Table 13. Velocities and Fuel Consumption for Unmanned Vehicles............................ 105 

 

  



11 

 

List of Acronyms 

ANOVA Analysis of Variance 

HACT Human-Automation Collaboration Taxonomy 

LOA Levels of Automation 

LOC Levels of Collaboration 

MABA-MABA “Men are better at – Machines are better at” 

MIT Massachusetts Institute of Technology 

OPS-USERS  Onboard Planning System for UxVs Supporting Expeditionary 

Reconnaissance and Surveillance 

 

ROE Rule of Engagement 

SA Situational Awareness 

SCT Schedule Comparison Tool 

SRK Skill, Rule, and Knowledge-based 

TLAM Tomahawk Land Attack Missiles 

UAV Unmanned Aerial Vehicle 

USV Unmanned Surface Vehicle 

UV Unmanned Vehicle 

WUAV Weaponized Unmanned Aerial Vehicle 

 

  



12 

 

 



13 

 

1 Introduction 

1.1 Motivation 

In the past decade, the use of Unmanned Vehicles (UVs) has increased dramatically for 

scientific, military, and civilian purposes.  UVs have been successfully used in dangerous and 

remote environments, with Underwater Unmanned Vehicles exploring the deepest trenches of 

the ocean (e.g., [1]) and NASA’s rovers traversing the surface of Mars [2].  Unmanned Aerial 

Vehicles (UAVs) have enabled the military to conduct long duration missions over hostile 

territory without placing a pilot in harm’s way.  Unmanned Ground Vehicles have been utilized 

by soldiers and civilian bomb squads to investigate and defuse explosive devices (e.g., [3]).  

Scientists have studied global warming by surveying the polar ice caps (e.g., [4]) with UAVs, 

while civilian agencies have employed UAVs for border patrol [5] and forest firefighting [6]. 

While these UVs contain advanced technology, they typically require multiple human 

operators, often many more than a comparable manned vehicle would require.  This barrier to 

further progress in the use of UVs can be overcome through an increase in the autonomous 

capabilities of UVs [7].  Many advanced UVs can execute basic operational and navigational 

tasks autonomously and can collaborate with other UVs to complete higher level tasks, such as 

surveying a designated area [8, 9].  The United States Department of Defense already envisions 

inverting the operator-to-vehicle ratio in future scenarios where a single operator controls 

multiple UAVs simultaneously [10].  This concept has been extended to single operator control 

of multiple heterogeneous (air, sea, land) UVs [11], as illustrated in Figure 1. 

In this concept of operations, a single operator will supervise multiple vehicles, providing 

high level direction to achieve mission goals, and will need to comprehend a large amount of 

information while under time-pressure to make effective decisions in a dynamic environment.     
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Figure 1. Coordinated Operations with Heterogeneous Unmanned Vehicles [12]. 

This large amount of data provides a challenge for system designers, as it may cause cognitive 

saturation, which has been shown to correlate with poor performance [13, 14].  The capacity of a 

single operator to control multiple UVs has been demonstrated in multiple studies [15, 16].  

Operators will be assisted by automated planners, which can be faster and more accurate than 

humans at path planning [17]  and task allocation [18] in a multivariate, dynamic, time-pressured 

environment.   

Outside of the world of UV control, path planning with the assistance of automated 

planners has become routine, with the proliferation of Global Positioning Systems on mobile 

devices and in automobile navigation systems, as well as advances in online route planners such 

as MapQuest
©

 and Google Maps
©

.  While extensive research has been conducted in the 

computer science field to develop better algorithms for planning, comparatively little research 

has occurred on the methods by which human users utilize these tools, especially when working 

in dynamic, time-critical situations with high uncertainty in information [19]. 
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Human management of the automated planner is crucial, as automated planners do not 

always generate accurate solutions, especially in the presence of unknown variables and possibly 

inaccurate prior information.  Though fast and able to handle complex computation far better 

than humans, computer optimization algorithms are notoriously “brittle” in that they can only 

take into account those quantifiable variables identified in the design stages that were deemed to 

be critical [20, 21].  In a command and control situation such as supervising multiple UVs, where 

events are often unanticipated, automated planners are unable to account for and respond to 

unforeseen problems [22, 23].   Additionally, operators can become confused when working with 

automation, unaware of how the “black box” automated planner came to its solution.  Various 

methods of human-computer collaboration have been investigated to address the inherent 

brittleness and opacity of computer algorithms [19, 21, 24, 25].  To truly assist human 

supervisors of multiple UVs, however, automated planners must be capable of dynamic mission 

replanning.  As vehicles move, new tasks emerge, and mission needs shift, the way that the 

automated planner works will need to change to assist in real-time decision making. This will 

require greater flexibility and transparency in the computer algorithms designed for supporting 

multi-UV missions. 

This thesis will investigate the impact of human-computer collaboration in the context of 

dynamic objective function manipulation for multiple UV control. Computer optimization 

algorithms, such as those used in most automated path planning and task allocation problems, 

typically have an a priori coded objective function that only takes into account pre-determined 

variables with set weightings.  In this work, human operators will be given the ability to modify 

the weightings of these optimization variables during a mission.  One significant concern in this 

concept of operations where one operator supervises multiple UVs is the potential high workload 
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for the operator, and possible negative performance consequences.  This work will investigate 

the operator workload and both human and system performance implications of providing this 

additional level of human-computer collaboration. 

1.2 Problem Statement 

To effectively supervise multiple UVs simultaneously, operators will need the support of 

significant embedded collaborative autonomy.  This autonomy will reduce the need for the 

operator to manually control each vehicle, enabling the operator to focus on higher-level goal 

setting and decision-making.  Automated planners can conduct path planning and scheduling 

faster and possibly more efficiently than humans.  Due to the complexity and dynamic nature of 

command and control missions, however, the brittleness of automated planners could cause 

overall lower system performance or higher workload as the operator manages the automation.  

This thesis seeks to determine how best to divide responsibility for mission replanning in a 

dynamic environment between the human and automation, with the ability to designate degrees 

of collaboration.  Additionally, this thesis seeks to evaluate whether there is a difference in 

system performance when a human operator controlling multiple, heterogeneous UVs 

collaborates with an automated planner that has a static objective function or a dynamic objective 

function that can be modified during the mission. 

1.3 Research Objectives 

To address this goal, the following research objectives were posed: 

 Objective 1: Determine the motivating principles for dynamic objective function 

manipulation in human-computer collaborative multi-UV control.  In order to 

achieve this objective, current research in human-computer collaboration for 

scheduling, resource allocation, and path planning was reviewed, as described in 
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Chapter 2.  Also, a theoretical model of dynamic objective function manipulation was 

developed, as outlined in Chapter 3.  

 Objective 2: Develop a tool to enable operators to dynamically modify the 

objective function of an automated planner.  From the motivating principles 

described in Objective 1, as well as mission-specific information, a dynamic objective 

function tool was designed, described in Chapter 4.  This tool was integrated into the 

Onboard Planning System for UxVs Supporting Expeditionary Reconnaissance and 

Surveillance (OPS-USERS), a previously developed multi-UV mission simulation 

testbed for evaluating the impact of embedded autonomy distributed across 

networked UVs [18, 26]. 

 Objective 3: Evaluate the effectiveness of real-time human manipulation of 

objective function in multi-UV scheduling algorithms.  To address this objective, 

human performance experimentation (Chapters 4 and 5) was conducted to analyze 

how well the dynamic objective function tool is able to support single operator multi-

UV control compared to an automated planner with a static objective function. 

1.4 Thesis Organization 

This thesis is organized into the following chapters: 

 Chapter 1, Introduction, describes the motivation and research objectives of this thesis. 

 Chapter 2, Background, provides a summary of a previous experiment that motivated this 

thesis, discusses current human-computer collaboration research, and frames the context 

of the research objectives introduced in Chapter 1. 

 Chapter 3, Human-Automation Role Allocation, provides an overview of function 

allocation literature to discuss methods for dividing responsibility for mission replanning 
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in a dynamic environment between the human and automation.  A theoretical model of 

function allocation is applied to the chosen simulation testbed.  This model is extended to 

incorporate dynamic objective function manipulation and to describe the potential 

benefits of a dynamic objective function tool. 

 Chapter 4, Human Performance Experimentation, describes the human-performance 

experiment used to test the hypotheses of this research. Details include a discussion of the 

interfaces designed to enable manipulation of the objective function of an automated 

planner for multiple UV control, objectives of the experiment, participants, procedures, 

and experimental design. 

 Chapter 5, Results, presents the statistical results of the experiment from Chapter 4. 

 Chapter 6, Discussion, compares the results of the human performance experiment with 

the hypotheses. 

 Chapter 7, Conclusions, summarizes the motivation and objectives of this research, how 

well the objectives were met, and the key contributions. Suggestions for future work are 

also provided.  
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2 Background 

This chapter discusses previous research relevant to human supervisory control of 

multiple UVs with the support of an automated planning algorithm.  Previous experimental work 

on human-automation collaboration for scheduling, path planning, and task allocation is 

described to detail both the benefits and drawbacks of collaboration with automated planners.  

Through this initial research, three gaps in previous methods of human collaboration with 

automated planners were revealed: methods for dealing with dynamic and uncertain 

environments, decision-making support under time-pressure on the order of seconds, and 

methods for operators to align the objective function of the automated planner with their desires.  

These gaps can be addressed through the development of a dynamic objective function method 

for collaborative human-automation control of multiple UVs. 

2.1 Motivating Experiment 

In a previous experiment, human operators used a simulation environment to supervise 

multiple UVs with the assistance of a decentralized automated planner with a static objective 

function [18].  This system was utilized to examine the impact of increasing automation 

replanning rates on operator performance and workload [13].  The operator was prompted to 

replan at various intervals, but could also choose to replan whenever he or she desired.  When 

replanning, the operator could accept, reject, or attempt to modify automation-generated plans 

manually.   

Results showed that the rate of replanning by the human operator had a significant impact 

on workload and performance.  Specifically, rapid replanning caused high operator workload, 

which resulted in poorer overall system performance [13].  Workload was characterized through 

a utilization metric, which measured percent busy time.  Results from the experiment also 
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showed that operators with the ability to collaborate effectively with the automated planner, 

labeled “Consenters” in the study, had significantly higher performance and lower workload 

[27]. 

Surveys conducted after each trial revealed that approximately 35% of the participants 

were frustrated by the automated planner.  Participants wrote or stated that they did not always 

understand what the automated planner was doing.  A few participants specifically wrote that 

they desired the ability to modify the way that the automated planner worked.  For example, 

participants wrote “automation [is] not very smart, [and] doesn't have same priorities I do,” and 

“the algorithm does its own thing most of the time…there was a clash between what I wanted to 

have the UAVs do and what the [algorithm] decided” [13].  Operators were unable to express 

their desires to the automated planner, which was too brittle for the dynamic environment and 

mission.  This thesis seeks to address this shortcoming by developing a method for dynamic 

objective function manipulation, which should enable operators to more effectively collaborate 

with an automated planner for multi-UV control. 

2.2 Human-Automation Collaboration Empirical Research  

This section outlines experiments which have explored the ability of humans to 

collaborate closely with an automated planner for a path-planning, scheduling, or resource 

allocation problem.  These experiments show previous attempts to develop systems that address 

the communication gap between humans and the automated systems.  Human-automation 

collaboration can be beneficial due to the uncertainty inherent in supervisory control systems, 

such as weather, target movement, changing priorities, etc.  Numerous previous experiments 

have shown the benefits of human-guided algorithms for search, such as in vehicle-routing 

problems [28-30] or trade space exploration for large scale design optimization [31].  However, 
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the inability of the human to understand the method by which the automation developed its 

solution, or whether a solution is optimal, especially in time-pressured situations, can lead to 

automation bias [32].  This automation bias can cause complacency, degradation in skills and 

performance, and potential loss of Situational Awareness (SA) [15]. 

Many researchers have found success in addressing challenging scheduling problems 

using mixed-initiative systems, where a human guides a computer algorithm in a collaborative 

process to solve a problem.  The "initiative" in such systems is shared in that both the human and 

computer can independently contribute to the formulation and analysis of solutions [33].  For 

example, a mixed-initiative tool to solve an over-constrained scheduling problem could provide 

operators with the ability to relax constraints for a sensitivity analysis.  This is essentially a 

“what-if” tool to compare the results of changes made to the schedule [34].  Scott, Lesh, and 

Klau showed that in experiments with humans utilizing mixed-initiative systems for vehicle 

routing, operator intervention can lead to better results, but there is variation in the way that 

operators interact with the system and in their success in working with the automation [29].  

Howe et al. developed a mixed initiative scheduler for the U.S. Air Force satellite control 

network, implementing a satisficing algorithm, which recommends plans despite the fact that a 

solution that satisfies all constraints does not exist [35].  The user can choose the “best” plan 

despite constraint violations and modify the plan to address mistakes and allow for emergency 

high priority requests.  The authors argued that it was difficult to express the complete objective 

function of a human through an a priori coded objective function because of the likely non-linear 

evaluations made by the human and the unavailability of all information necessary for the 

algorithm to make a decision [35].   
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Hanson et al. found that human operators paired with an algorithm for scheduling 

multiple UAVs desired a greater understanding of why the algorithm made certain 

recommendations [36].  The authors also observed that operators tend to think less in terms of 

numerical optimization when planning UAV routes, but in abstract terms about the overall goals 

or tactical objectives that they want to accomplish.  The authors argue that developing a method 

to communicate these goals to the optimization algorithm would help the user develop increased 

trust in the automation and result in solutions that match the desires of the operator.  Miller, et al. 

attempted to address this challenge through the development of the Playbook™ human-

automation integration architecture, which identified a set of common tasks performed by semi-

autonomous UVs, grouped them into “plays,” and provided the operator with a set of play 

templates to utilize [37].  This system limited the human operators’ interactions with the 

automation to selecting pre-made plays instead of directly communicating their desires to the 

automated planner.  Although this method worked successfully in an experimental setting, it may 

be too limiting for the highly complex, dynamic, and uncertain environments found in command 

and control missions. 

Much of this previous research focused on methods for humans to work with automation 

to solve a problem, such as changing the inputs to the algorithm.  Comparatively little research 

has investigated methods by which the human operator could, in real-time, change the way that 

the automation actually works in order to aid in accomplishing mission objectives.  Techniques 

for guiding optimization algorithms, for changing the constraints, and for modifying solutions 

developed by an algorithm were all described in detail.  There was a constant assumption, 

however, that the automation was static and unchanging throughout the period in which the 

human was interacting with the automation.  Despite enhanced collaboration, operator SA was 
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low and operators complained about the lack of transparency in how the automation generated 

plans [13, 19, 35, 36].  For example, Marquez concluded that an improvement to her 

collaborative lunar path planning aid would be adding additional flexibility, stating that users 

should “have the ability to change the cost function (variables or relationships) and observe how 

the [solution] itself changes based on the cost function modifications” [19].  Thus, developing a 

method for human operators to modify the objective function of the automated planner in real-

time could provide the transparency necessary to maintain operator SA, while enabling operators 

to communicate their desires to the automation. 

More recent research has increased the focus on the concept of providing the human 

operator with the ability to modify the way the automated planner works for collaborative 

decision-making.  Bruni and Cummings developed a series of studies on human interactions with 

an automated planner for mission planning with Tomahawk Land Attack Missiles (TLAM) [38, 

39].  In their experiment, human planners paired missiles, which could come from different 

launchers, with preplanned missions or targets.  This was a highly complex optimization 

problem, where operators needed to consider many pieces of information.  One of the interfaces 

tested in the experiment featured a customizable heuristic search algorithm, where the human 

operator could choose and rank criteria that would adjust the weights of variables in the objective 

function.   The authors emphasized that while heuristic algorithms are fast and will generally find 

a solution if one exists, the algorithms provide no guarantee of finding the “best” solution, as the 

algorithm can become stuck in local optima.  The interface also allowed the human operator to 

manually adjust the solution after utilizing the heuristic search algorithm to develop an initial 

solution.  Results showed that there was no statistical difference in performance between this 

method of collaborative human-automation planning as compared to a more manual method of 
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planning.  In terms of the number of information processing steps required to generate a solution, 

which relates directly to operator workload [40], the collaborative interface utilizing the 

customizable search algorithm required significantly fewer steps than the manual interface.  

Although lower workload was achieved, the mission was not time-critical on the order of 

seconds (despite the fact that subjects were timed) and was not performed in a real-time, 

dynamic environment. 

Finally, Forest et al. conducted an experiment during which operators created a schedule 

for multiple UAVs with the assistance of a human-guided algorithm [25].  The subjects were 

presented with different interfaces to pre-plan a mission based on pre-existing targets with given 

values and risks.  Certain interfaces had sliding bars that enabled the operator to modify the 

weights on the five factors that the objective function used to calculate scores for the plans: total 

target value, risk, percentage of available missiles used (utilization), distance, and mission time.  

Although the operator could utilize any of these factors to evaluate plans, the mission 

instructions encouraged operators to maximize target value while minimizing mission time. 

Results showed that, based purely on mission time and target value, the “best” plans were 

created in an interface where the human operator did not have the ability to modify the objective 

function of the automated planner [25, 41].  The authors concluded that it was likely that 

operators chose plans based on a number of additional factors, including risk or distance metrics.  

Discussions with participants after the experiment confirmed that they determined their own risk 

tolerances and included metrics beyond just time and target value in their selection of plans.  

These results show that while automation is excellent at optimizing a solution for specific goals, 

automation may be too brittle to take into account all factors that could influence the success of a 

complex command and control mission in an uncertain environment. 
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This experiment highlighted the difficulty of human-automation collaboration when 

humans have different internal objective functions from the automation.  In subjective ratings, 

participants gave the highest rating to the interface where they had the most control of the 

objective function [41].  They found it intuitive to adjust the weights and had higher trust in the 

automation’s solution.  It should be noted that these results were obtained for a pre-planning 

scenario, where algorithm searches took 20-30 seconds, and the entire planning process could 

take up to 15 minutes.  While these experiments show that dynamic objective functions can 

result in improved collaboration between humans and automation, only six participants were 

involved in the study. 

2.3 Summary 

In summary, previous research has shown that humans and automation can collaborate to 

achieve superior results in resource allocation and path planning problems, with potentially 

lower workload.  These results have also demonstrated the need for better methods for human 

operators to express their internal objectives and desires to automated planners.   

Three key gaps have been identified in the experimental research reviewed here.  First, 

most of the previous experiments in human-automation collaboration occurred in fairly static 

environments with high certainty.  Typically, the experiments involved mission pre-planning, 

where targets were known in advance and information was certain and did not change during the 

decision-making process.  Realistic command and control missions involve highly dynamic and 

uncertain environments, and collaborative control methods need to be developed that can operate 

in these environments. 

A second gap in the previous literature is the lack of experiments that required users to 

make decisions under time-pressure.  Many of the collaborative systems were developed for pre-
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planning scenarios, when operators have minutes, hours, or days to make decisions. The 

algorithms in some of the experiments required seconds, if not minutes, to generate solutions.  

To account for highly dynamic environments, collaborative control will be necessary during 

mission replanning.  The time scale for decision making will be reduced dramatically, to mere 

seconds, and previous research indicates that under this type of time-pressure, operators will 

often change their strategies, including those concerning the use of automation [42, 43].  While 

these adjustments in strategies for managing the automation may be beneficial, research is 

needed in human-automation collaborative control in time-pressured environments to understand 

the strategies of operators under these conditions. 

A third gap is the lack of methods for operators to express their desires to the automated 

planner to ensure alignment of the objective functions of the human and automation.  A number 

of the participants in the experiments reviewed here complained of a mismatch between their 

own goals and the plans generated by the automated planner.  Few attempts have been made to 

enable operators to change the way the automation works to generate and evaluate plans.   

This thesis seeks to address these gaps by investigating the use of objective function 

weight adjustments as a potential method for enhancing human-automation collaboration in 

multi-UV control in a highly dynamic, real-time command and control environment.  In the 

following chapter, function allocation literature is reviewed in order to select an appropriate 

taxonomy to apply in order to evaluate the potential impact of human manipulation of a dynamic 

objective function.  Based on this analysis, dynamic objective functions will be implemented in 

an existing multiple UV simulation testbed, and a human performance experiment will be used to 

evaluate the performance and workload implications of the dynamic objective function. 
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3 Human-Automation Role Allocation 

In this chapter, a review of function allocation literature highlights various taxonomies 

for dividing responsibility between the human operator and automation.  These taxonomies are 

evaluated in order to select an appropriate method for modeling a collaborative human-

automation system.  In order to evaluate the impact of a dynamic objective function, an existing 

multiple UV simulation testbed is chosen for human performance experiments.  The system is 

described and then analyzed using the selected taxonomy.  The taxonomy is extended to include 

the proposed method for manipulating the objective function of an automated planner.  Finally, 

the theoretical impact of utilizing a dynamic objective function on human operator workload and 

system performance is explored. 

3.1 Function Allocation Taxonomies 

Human-computer collaboration for controlling multiple UVs raises the issue of the 

determining the appropriate roles of the human operator and automated planner.  In the scope of 

this thesis, an example would be determining the impact of providing the human operator with 

the role of manipulating the automated planner for collaborative UV control.  The field of 

function allocation has traditionally focused on the question of whether a human or computer is 

better suited to perform a task.   

One method of comparing the capabilities of humans and computers is through 

Rasmussen’s Skill, Rule, and Knowledge-based (SRK) taxonomy of cognitive control [44, 45].  

Typically, automation is utilized to reduce human workload, for example, by automating skill-

based tasks such as controlling the altitude of an airplane or manufacturing a component on an 

assembly line.    As computers have grown more powerful, automation has become more useful 

in tasks that are cognitively demanding for humans, such as controlling unstable aircraft.  
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Computers have also been shown to have the ability to plan optimal paths when the environment 

is known with moderate certainty [46].  Humans, however, have the ability to conduct 

knowledge-based reasoning [44] because of their superior improvisation, flexibility, and 

inductive reasoning skills as compared to computers.  Computers are typically unable to perform 

this higher level reasoning because they simply follow a set of predetermined rules, known as 

rule-based behavior [19].  Although the SRK taxonomy is descriptively useful for classifying 

tasks into broad categories and enumerating the generalized strengths of humans and computers, 

it lacks a prescriptive methodology for allocating functions. 

One of the first formal treatments of function allocation is known as Fitts List [47].  An 

example of a Fitts list is shown in Table 1.  Fitts and his colleagues aimed to identify those 

functions or tasks that were performed better by machines or humans.  For many years, this 

paper was regarded as the seminal work in the field of function allocation, despite the fact that 

the authors noted that their method was highly limiting.   

 Table 1. Example Fitts List 

Attribute  Machine Human 

Speed Superior Comparatively slow 

Power Output Superior in level in consistency Comparatively weak 

Consistency 
Ideal for consistent, repetitive 

action 

Unreliable, learning & fatigue a 

factor 

Information Capacity Multi-channel Primarily single channel 

Memory 
Ideal for literal reproduction, 

access restricted and formal 

Better for principles & strategies, 

access versatile & innovative 

Reasoning Computation 

Deductive, tedious to program, 

fast & accurate, poor error 

correction 

Inductive, easier to program, 

slow, accurate, good error 

correction 

Sensing  
Good at quantitative assessment, 

poor at pattern recognition 

Wide ranges, multi-function, 

judgment 

Perceiving 
Copes with variation poorly, 

susceptible to noise 

Copes with variation better, 

susceptible to noise 

 

Price argued that Fitts list remains a valuable heuristic aid to design, despite the 

generalizations and the assumption that a task will be performed solely by humans or machines 
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[48].  Price, however, asserted that function allocation by formula alone cannot be achieved and 

that we must rely on expert judgment as the final means of making allocation decisions, based on 

past experience and empirical tests.  He also advocated for an iterative design process instead of 

the typical one-time step of allocating functions that occurs early in the design of technical 

systems.  Price introduced a decision matrix for function allocation, as shown in Figure 2.  This 

decision matrix rejects the assumption that the choice between human and machine is zero-sum.  

The six regions shown in Price’s decision matrix are: 1) there is no difference in the relative 

capabilities of human & machine, 2) human performance is clearly superior than machine 

performance, 3) machine performance is clearly superior to human performance, 4) machine 

performance is so poor that the functions should be allocated to humans, 5) human performance 

is so poor that the functions should be allocated to machine, and 6) unacceptable performance by 

both human and machine.  By adding the concept that humans and machines may have 

comparable or even complementary skills, Price brought the function allocation world closer to 

the concept of human-automation collaboration. 

 

Figure 2. Decision Matrix for Function Allocation [48] 
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A further attempt to describe the interactions between humans and computers is the 

Levels of Automation (LOA) scale [49, 50].  Shown in Table 2, the LOA scale describes a 

human-computer system that ranges from fully manual to fully automatic.  At lower LOAs, the 

human is very active and involved in decision-making and control, while at higher LOAs, the 

human is taken more and more out of the decision-making loop.  While this scale addresses the 

allocation of decision-making and action selection authority, it is limited in its ability to fully 

describe the many methods of collaboration between humans and automation. 

Table 2. Levels of Automation [50] 

Automation Level Automation Description 

1 The computer offers no assistance: human must take all decision and actions.  
2 The computer offers a complete set of decision/action alternatives, or  
3 narrows the selection down to a few, or  
4 suggests one alternative, and  
5 executes that suggestion if the human approves, or  
6 allows the human a restricted time to veto before automatic execution, or  
7 executes automatically, then necessarily informs humans, and  
8 informs the human only if asked, or  
9 informs the human only if it, the computer, decides to.  

10 The computer decides everything and acts autonomously, ignoring the human. 

 

Sheridan himself argued that the LOA scale, along with Fitts List, both of which focus on 

“Men are better at – Machines are better at” (MABA-MABA), is too narrow, writing that “the 

public, and unfortunately too many political and industrial decision-makers, have been slow to 

realize that function allocation does not necessarily mean allocation of a whole task to either 

human or machine, exclusive of the other” [51].  Others agree with Sheridan that the traditional 

scales of function allocation are too narrow, by assigning a task specifically to human or 

machine, and that flexibility in the allocation of functions is necessary [52-55]. 

This concept of changing the role of the human and computer during operation has been 

explored in the body of research on adjustable autonomy and adaptive automation.  Both 

domains focus on adjusting how automated a system is, for example, changing from a completely 
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automated system, LOA 10, to management-by-consent, LOA 5 [50].  These adjustments can be 

made during a mission, either with the human operator instigating the change through adjustable 

autonomy [56], or with the computer automatically deciding to adjust the level of automation 

through adaptive automation [37, 57].  The purpose of these adjustments is usually to prevent the 

operator from becoming either too overloaded with tasks or too bored due to a lack of 

stimulating tasks. 

Both adaptive automation and adjustable autonomy, however, are subtly different from 

the concept of an automated planner with a dynamic objective function that can be adjusted by a 

human.  Neither the human operator nor the computer would be controlling whether the vehicles 

are more or less autonomous.  Instead, the operator would be directly manipulating the method 

by which the automated planner optimizes the task allocation, scheduling, and path planning of 

the various UVs, which remain at the same level of automation.  The purpose of these 

manipulations would not be to maintain an ideal workload for the operator, but to directly impact 

the plans generated and selected by the human-automation team, which would influence the 

overall system performance.  

In an attempt to take into account greater collaboration between humans and computers 

than the previously mentioned LOA system, newer models of function allocation have been 

developed.  Riley [58] described an automation taxonomy that can be used in a framework to 

represent human-machine systems.  The taxonomy includes two factors that define the 

automation levels: the level of intelligence and level of autonomy.  At the highest levels of 

automation and intelligence, the human and machine act as partners to command the system.  

Kaber, Onal, and Endsley explored the idea of “human-centered levels of automation” in contrast 

to technology-centered function allocation [59].  They reviewed numerous LOA taxonomies and, 
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as opposed to automating as much as possible and leaving the “left-over” functions for the 

human operator, they advocated for intermediate LOAs that keep the human operator’s SA at 

higher levels.  They argued that potentially higher system performance could be obtained 

through human-automation collaboration, but they caution that the resulting loss of operator SA 

at higher LOAs can lead to poorer performance during automation failure.   

Many of these researchers have stressed the challenge of developing a framework for 

designing systems that deal with the uncertainty inherent in dynamic environments [58, 60].  

Constraints or preferences are typically not coded completely into the optimization algorithm’s 

objective function, making the collaborative aspect even more important.  Specifically, 

Kirkpatrick, Dilkina, and Havens write, “domains with unmodellable [sic] aspects will benefit 

from systems that allow the operator to add specific constraints and call for a revised solution” 

[60].  Cummings and Bruni argue that it is rarely clear what characterizes an “optimal” solution 

in uncertain scenarios, and that the definition of optimal is a constantly changing concept, 

particularly in command and controls settings [24].  This theory is depicted in Figure 3, as with 

increasing uncertainty in the world, additional human interaction is necessary to maintain 

satisfactory performance.  Also, they argue that computer-generated solutions are often 

suboptimal because in optimization problems with many variables and constraints, the algorithm 

may make erroneous assumptions, may become trapped in a local minima, and can only take into 

account those quantifiable variables that were deemed critical in early design stages [61].   

 
Figure 3. Human-automation interaction as a function of certainty 
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The Human-Automation Collaboration Taxonomy (HACT) was developed to provide 

system designers with a model that can be used to analyze collaborative human-computer 

decision making systems [24, 62].  HACT extends the Parasuraman [63] information processing 

model by adding to the decision-making component, as shown in Figure 4.  HACT adds an 

iterative data analysis stage combined with an evaluation step where operators can request more 

information or analysis.  Once feasible solutions are selected, either the operator or the 

automation can select a final solution. 

 

Figure 4. Human-Automation Collaboration Taxonomy Model [24] 

The authors of HACT included three distinct roles in the decision-making process: the 

moderator, generator, and decider.  The moderator is responsible for ensuring that each phase in 

the decision-making process is executed and that the process moves forward.  The generator 

develops feasible solutions and begins to evaluate the solutions.  Finally, the decider makes the 

final selection of the plan and has veto power over this selection.  Each of these roles could have 

different Levels of Collaboration (LOC) between human and computer, rated from -2 where the 

role is entirely assumed by the automation, to 2 where the human is responsible for the role, as 

shown in Table 3.  A LOC of 0 is a balanced collaboration between the human and automation. 

HACT’s ability to delineate degrees of collaboration between the human and computer at 

different points in the decision-making process makes it well suited to model the collaborative 
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replanning method used by the simulation testbed in this thesis.  It also provides a basis from 

which to extend the model to investigate the concept of a dynamic objective function.  

Table 3. Moderator, Generator, and Decider Levels in HACT [24] 

Level Who assumes the role of 

generator and/or moderator? 

Who assumes the role of decider? 

2 Human Human makes final decision, automation cannot veto 

1 Mixed, but more human Human or automation can make final decision, human can veto, 

automation cannot veto 

0 Equally shared Human or automation can make final decision, human can veto, 

automation can veto 

-1 Mixed, but more automation Human or automation can make final decision, human cannot veto, 

automation can veto 

-2 Automation Automation makes final decision, human cannot veto 

 

In summary, a number of different taxonomies for determining role allocation between 

humans and automation have been developed.  More recently, these taxonomies have moved 

away from the rigid “MABA-MABA” framework to take into account the ability of humans and 

computers to collaborate [52, 55].  Despite the challenges in modeling the impact of uncertainty 

on collaborative systems, these taxonomies can be useful for modeling collaborative human-

automation systems and for predicting the impact of proposed changes to these systems, such as 

adding a dynamic objective function tool to a collaborative multi-UV control system. 

3.2 Application of Theoretical Framework to Simulation Testbed 

  HACT was chosen to descriptively model human-automation collaboration in the 

decentralized UV testbed used in this thesis.  This section begins by describing the decentralized 

UV testbed.  The HACT model is then applied to descriptively model the interactions between 

the human operator and automated planner.  Finally, the theoretical impact of adding a dynamic 

objective function is analyzed by extending the HACT model. 

3.2.1 Simulation Platform 

This thesis utilizes a collaborative, multiple UV simulation environment called Onboard 

Planning System for UxVs Supporting Expeditionary Reconnaissance and Surveillance (OPS-
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USERS), which leverages decentralized algorithms for vehicle routing and task allocation. This 

simulation environment functions as a computer simulation but also supports actual flight and 

ground capabilities [18]; all the decision support displays described here have operated actual 

small air and ground UVs. 

Operators are placed in a simulated command center where they control multiple, 

heterogeneous UVs for the purpose of searching the area of responsibility for new targets, 

tracking targets, and approving weapons launch.  The UVs in the scenario include one fixed-

wing UAV, one rotary-wing UAV, one Unmanned Surface Vehicle (USV) restricted to water 

environments, and a fixed-wing Weaponized Unmanned Aerial Vehicle (WUAV).  Once a target 

is found, it is designated as hostile, unknown, or friendly, and given a priority level by the user.  

Unknown targets are revisited as often as possible, tracking target movement.  Hostile targets are 

tracked by one or more of the vehicles until they are destroyed by the WUAV.  A primary 

assumption is that operators have minimal time to interact with the displays due to other mission-

related tasks. 

Participants interact with the simulation via two displays.  The primary interface is a Map 

Display (Figure 5).   The map shows both geo-spatial and temporal mission information (i.e., a 

timeline of mission significant events), and supports an instant messaging “chat” communication 

tool, which provides high level direction and intelligence. Icons represent vehicles, targets of all 

types, and search tasks, and the symbology is consistent with MIL-STD 2525 [64]. 

In the Map Display, operators have two exclusive tasks that cannot be performed by 

automation: target identification and approval of all WUAV weapon launches.  Operators also 

create search tasks, which dictate on the map those areas the operator wants the UVs to 

specifically search.  The performance plot in Figure 5 gives operators insight into the automated 
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planner performance, as the graph shows expected (red) versus actual (blue) performance.  When 

the automation generates a new plan that is at least five percent “better” than the current plan, the 

Replan button turns green and flashes, and a “Replan” auditory alert is played.  When the Replan 

button is selected, whether flashing or not, the operator is taken to the Schedule Comparison 

Tool (SCT), detailed in the next section, for conducting scheduling tasks in collaboration with 

the automation.  

 

Figure 5. Map Display 

3.2.2 Replanning Interface 

The SCT display appears when the Replan button is pressed, showing three geometrical 

forms colored gray, blue, and green at the top of the display (Figure 6).  These colors represent 

configural displays that enable quick comparison of the current, working, and proposed 

schedules. The left form (gray) is the current UV schedule. The right form (green) is the latest 

automation proposed schedule. The middle working schedule (blue) is the schedule that results 

from user modification to the plan. The rectangular grid on the upper half of each shape 
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represents the estimated area that the UVs would search according to the proposed plan. The 

hierarchical priority ladders show the percentage of tasks assigned in high, medium, and low 

priority levels.  

 

Figure 6. Schedule Comparison Tool 

When the operator first enters the SCT, the working schedule is identical to the proposed 

schedule. The operator can conduct a “what-if” query process by dragging the desired 

unassigned tasks into the large center triangle. This query forces the automation to generate a 

new plan if possible, which becomes the working schedule. The configural display of the 

working schedule alters to reflect these changes. However, due to resource shortages, it is 

possible that not all tasks can be assigned to the UVs, which is representative of real world 

constraints. The working schedule configural display updates with every individual query so that 

the operator can leverage direct-perception interaction [65] to quickly compare the three 
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schedules. This “what-if” query, which essentially is a preview display [40], represents a 

collaborative effort between the human and automation [66]. Operators adjust team coordination 

metrics at the task level as opposed to individual vehicle metrics, which has been shown to 

improve single operator control of a small number of multiple, independent robots [67].  Details 

of the OPS-USERS interface design and usability testing can be found in Fisher [26]. 

Operators can either choose to accept the working schedule or cancel to keep the current 

schedule.  Upon accepting a new schedule, the automated planner only communicates to the 

vehicles via a prioritized task list, and the vehicles sort out the actual assignments amongst 

themselves.  This human-automation interaction scheme is one of high level goal-based control, 

as opposed to more low-level vehicle-based control. 

3.2.3 HACT Application to Testbed 

The HACT taxonomy was applied to model the existing simulation testbed prior to the 

implementation of the dynamic objective function.  The testbed was assigned a level 2 moderator 

because the human operator fully controls the replanning process by deciding when to replan, 

modify the plan, and accept a final plan.  The operator cannot change the criteria to evaluate 

plans and can only modify the plans by attempting to assign tasks through the “what-if” process.  

Therefore, the generator role was assigned to level -1, which indicated a mixed role, but with a 

larger automation presence.  Finally, the decider role was assigned to level 1, since the 

automation presented a final solution to the operator, but the selection of the final solution was 

completely up to the human operator and the automation did not have veto power. 

The HACT framework was extended and slightly modified to illustrate two specific 

human-automation collaboration methods, as shown in Figure 7.  The first is the “what-if” 
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sensitivity analysis tool that already exists in the OPS-USERS system.  The second is the 

proposed dynamic objective function tool for modifying the automated planner. 

 

Figure 7. Modified HACT Model with Dynamic Objective Function 

The simulation testbed provides a decision support tool that enables an operator to query 

the automated planner in a “what-if” manner to determine the feasibility and performance 

consequences of adding a task to the schedule of the UVs.  As shown, this process occurs when 

the human operator is in the decider role, looking at a proposed plan that has been selected by the 

automated planner.  The human operator essentially modifies the constraints placed on the 

schedule, by specifying that a specific task be assigned in the schedule.  These changes send the 

automated planner back into the generator mode, to recalculate potential solutions to the 

optimization problem.  Many iterations of this “what-if” loop would be required to achieve a 

solution that the human operator desires, especially if the automated planner is choosing 

solutions based on an objective function that does not place an emphasis on the quantities of 

interest to the human operator at that point in the mission.   
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As illustrated in Figure 7, a dynamic objective function method of human-computer 

collaboration could result in a shorter loop within the collaborative decision-making process than 

the “what-if” loop.  A dynamic objective function tool would provide the operator with the 

capability to modify the objective function of the automated planner.  This changes the method 

by which the automated planner would select the best solution, which occurs in the decider role.  

In terms of the HACT framework, it would change the LOC designation for the decider role 

from -1 to a more balanced collaborative level of 0.  The human operator would have the ability 

to modify the way that the automation evaluates plans by changing the weightings in the 

objective function.  Positive performance results have been shown in previous research where the 

human operator could change the search space of the automation [28] or modify the way that the 

automation evaluates plans [66], even under time-pressure [68].  On the other hand, some 

researchers have shown that under time-pressure on the order of seconds, human judgment 

degrades and higher automation roles could be beneficial [69, 70]. 

In a highly dynamic environment and scenario, less iterations of the longer “what-if” loop 

would be necessary to achieve a solution that accomplishes what the human operator desires 

because the objectives of the operator and automated planner would be aligned.  Therefore, 

providing the operator with a dynamic objective function could reduce the number of cognitive 

steps and amount of time necessary for the combined human-automation team to evaluate and 

select a new solution.  This would reduce the workload of the human operator for replanning, 

which could positively impact overall mission performance by freeing the operator to focus on 

making other critical decisions and maintaining SA.  As shown in a previous experiment, higher 

operator workload, especially due to increased rates of replanning, can lead to lower system 

performance [27]. 
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3.3 Summary 

In summary, numerous function allocation taxonomies were reviewed for their 

applicability to the proposed dynamic objective function.  Many of these taxonomies were too 

rigid, assuming that a function should be performed solely by the human or the computer, instead 

of allowing for the possibility of human-automation collaboration.  Other taxonomies focused 

exclusively on the LOA concept in order to describe changes in the autonomy of the UVs, 

instead of allowing for changes in the way that the automated system worked during a 

collaborative decision-making process.  Most of these taxonomies suffer from an inability to 

sufficiently model the impact of uncertainty on collaborative systems. 

Of the reviewed function allocation methods, the HACT was chosen to model the UV 

simulation testbed used in this thesis.  HACT was designed to explicitly take into account levels 

of collaboration between the human and computer during various stages of the planning and 

resource allocation decision-making process.  The testbed was described, including the Map 

View for overall operator SA and the SCT for human-automation collaboration in developing 

schedules for the UVs.  HACT was applied to describe the testbed in a manner that would enable 

theoretical extension to a dynamic objective function capability. 

The extended HACT model showed the potential for the dynamic objective function to 

reduce the workload of the human operator in replanning tasks.  The extension revealed the 

potential for both shorter loops within the collaborative decision-making process and less 

iterations of the “what-if” loop to reach a satisfactory solution to the human operator.  Changing 

the objectives of the automated planner to match a dynamic mission while potentially reducing 

the operator’s workload could lead to system performance benefits.  These theoretical findings 

were evaluated through human performance experiments, detailed in Chapter 4.  



42 

 

 

  



43 

 

4 Human Performance Experimentation 

In order to evaluate the theoretical benefits of a dynamic objective function, derived in 

the previous chapter, human performance experimentation was conducted using a previously 

developed multi-UV simulation software package.  The experiment tested workload and 

performance hypotheses using an automated planner with a static objective function and two 

versions of a dynamic objective function.  This chapter describes the experimental objectives and 

hypotheses, the participants, the apparatus (including the new interfaces designed to enable 

manipulation of the objective function), the scenarios for the simulation, and the experimental 

design and procedure. 

4.1 Experiment Objectives 

The objectives of this experiment focus on providing a human operator who is controlling 

multiple heterogeneous UVs with the ability to modify the objective function of the automated 

planner assisting in path planning and task allocation.  The specific objective is to test the 

effectiveness of providing this dynamic objective function manipulation capability for a search, 

track, and destroy mission.  The experiment evaluates the impact of the dynamic objective 

function on system performance, human cognitive workload, and operator satisfaction.  This 

experiment addresses the gaps in experimental research identified previously, by allowing the 

operator to collaborate with the automation to plan in a time-critical, dynamic, uncertain 

environment and by testing different methods to enable the operator to express his or her desires 

to the automated planner. 

 

 

 



44 

 

4.2 Experimental Hypotheses 

4.2.1 Mission Performance  

It was hypothesized that the ability to modify the objective function of the automated 

planner during the mission would enable an operator and the system to achieve higher 

performance as compared to using a static, a priori coded objective function.  Human and system 

performance were evaluated in three ways.  First, performance of the overall mission goals that 

were provided to operators was evaluated.  Second, system performance over time was evaluated 

through mission efficiency metrics.  Finally, as in real-life scenarios, changing external 

conditions often require the human and the system to adapt, which are experimentally 

represented through “Rules of Engagement” (ROEs).  Mission performance was also measured 

by adherence to these ROEs and execution of the objectives specified by the ROEs.  The 

following hypotheses describe the expected mission performance: 

 Hypothesis 1: use of the dynamic objective function is expected to result in significant 

increases in overall system performance by the end of the mission. 

 Hypothesis 2: use of the dynamic objective function is expected to result in significant 

increases in mission efficiency. 

 Hypothesis 3: the ability to adhere to the ROEs and to perform the specified objectives in 

the ROEs is expected to improve with use of the dynamic objective function as compared 

to a static objective function. 

4.2.2 Workload 

As discussed in the extended HACT model of human-automation collaboration in 

Chapter 3, collaboration through modification of the objective function of an automated planner 

could potentially reduce some of the iterations in the “what-if” loop that would typically occur 
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when the human operator’s desires do not match up with the objective function of the automated 

planner.  In this mismatch situation, the automated planner would continue to select plans for the 

operator to view that do not achieve the desired goals of the operator.  This can result in a longer 

time spent attempting to modify the plan manually by assigning tasks individually.  Therefore, 

providing the operator with a dynamic objective function should reduce the amount of time 

necessary for the combined operator-automated planner team to evaluate and select new plans, as 

shown in previous research [39].  Workload was measured through an objective utilization 

metric, through a secondary task to measure spare mental capacity, and through a subjective self-

reported workload metric on a five-point Likert scale.  The following results were expected: 

 Hypothesis 4: a reduction in objective and subjective mental workload is expected with 

use of the dynamic objective function as compared to a static objective function. 

 Hypothesis 5: use of the dynamic objective function is expected to result in significant 

reductions in the amount of time spent replanning.  

4.2.3 Subjective Appeal 

Subjectively, it was expected that operators controlling multiple UVs in a search, track, 

and destroy mission would prefer to collaborate with an automated planner featuring a dynamic 

objective function over working with a static, a priori coded objective function.  Increased 

automation transparency and decreased “brittleness” [21] were hypothesized to contribute to 

these operator preferences.  However, it was acknowledged that there could have been a bias 

towards the static objective function due to its simplicity and due to the need to train operators in 

using the dynamic objective function tool.  Additionally, to avoid additional training that could 

lead to operator confusion, operators were not allowed to use both the static and dynamic 

objective functions.  Therefore, operators were not able to directly compare the different 
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methods of collaborating with the automated planner.  Operators’ subjective appeal was 

determined by analyzing the participants’ responses to a survey at the end of the experiment.  

The following result was expected: 

 Hypothesis 6: use of the dynamic objective function is expected to result in greater 

operator satisfaction with the plans generated by the automated planner and higher self-

ratings of confidence and performance. 

4.3 Participants 

To test these hypotheses, 30 participants were recruited from undergraduate students, 

graduate students, and researchers at the Massachusetts Institute of Technology (MIT). As the 

concept of multiple UV supervisory control through a decentralized network is a futuristic 

concept, without current subject matter experts, it was determined that a general user base should 

first be used to verify the potential of a dynamic objective function.  

The 30 participants consisted of 21 men and 9 women.  The age range of participants was 

18-38 years with an average age of 21.30 and a standard deviation of 3.98.  Only 1 participant 

had served or was currently serving in the military, but a previous experiment using the OPS-

USERS system showed that there was no difference in performance or workload between 

participants based on military experience [27].  Each participant filled out a demographic survey 

prior to the experiment that included age, gender, occupation, military experience, average hours 

of television viewing, video gaming experience, and perception of UAVs.  The results of these 

demographic surveys can be found in Appendix A, and the consent forms and demographic 

surveys filled out by participants can be found in Appendices B and C. 
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4.4 Testbed 

4.4.1 Apparatus 

The human performance experiment to test the dynamic objective function tool was 

conducted using two Dell 17” flat panel monitors operated at 1280 x 1024 pixels and a 32-bit 

color resolution.  The primary monitor displayed the testbed and the secondary monitor showed a 

legend of the symbols used in the system (Appendix D).  The workstation was a Dell Dimension 

DM051 with an Intel Pentium D 2.80 GHz processor and a NVIDIA GeForce 7300 LE graphics 

card.  System audio was provided using standard headphones that were worn by each participant 

during the experiment.  All data regarding the human participant’s interactions with the system 

for controlling the simulated UVs was recorded automatically by the system. 

4.4.2 Dynamic Objective Function Tool 

The automated planner in the original testbed used a static objective function to evaluate 

schedules for the UVs based on maximizing the number of tasks assigned, weighted by priority, 

while minimizing switching times between vehicles based on arrival times to tasks.  A new 

dynamic objective function was developed for the automated planner that was used in this 

experiment.  Five non-dimensional quantities were chosen as options for evaluating mission 

plans.  The human operators were given the ability to choose the quantities that were high 

priority, either with guidance from the ROEs or due to their own choices on which aspects of the 

mission were most important to them at the time.  The five quantities were: 

 Area Coverage: When this quantity was set to high priority, the vehicles covered as much 

area as possible. The UVs would ignore operator-generated search tasks in favor of using 

their algorithms to “optimally” explore the unsearched area for new targets. Previously 

found targets would also not be actively tracked, to free vehicles for the search. 
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 Search/Loiter Tasks: As opposed to allowing the automation to conduct the search for 

new targets on its own, operators could create search tasks to direct the automation to 

send vehicles to explore specific regions of the map.  Loiter tasks could also be created to 

direct the WUAV to circle at a particular spot.  This quantity for evaluating mission plans 

was based on the number of assigned search or loiter tasks in a schedule as compared to 

all available search or loiter tasks.  When this quantity was selected, the vehicles 

performed search tasks that the operator created and the WUAV went to specific loiter 

points created by the operator. 

 Target Tracking: This quantity was based on the number of targets assigned to be tracked 

in a schedule as compared to all available targets. 

 Hostile Destruction: This quantity was based on the number of assigned hostile 

destruction tasks as compared to all actively tracked hostile targets that were eligible for 

destruction.  Once a hostile target was found and tracked by one of the regular UVs, it 

was eligible to be destroyed by the WUAV.  The WUAV was only tasked to destroy 

these hostiles if this quantity was selected. 

 Fuel Efficiency: This quantity was based on the fuel efficiency of the UVs.  Operators 

could change the weighting of this quantity in order to vary the velocity of the UVs 

linearly between the cruise and maximum velocity of each UV.  The simulated fuel 

consumption of each UV varied quadratically with velocity.  Guided by the ROEs or their 

own desires, operators could select this quantity as high priority, so that the vehicles 

traveled more slowly, but also burned fuel more slowly and did not have to refuel as 

often.  The fuel consumptions and velocities of the four UVs used in this experiment are 

detailed in Appendix E. 
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For this experiment, only a binary choice of “on” or “off” was allowed for each quantity, 

with weightings set in advance for the “on” and “off” condition, as opposed to allowing 

operators to set a weighting anywhere between 0.0 and 1.0 for each quantity.  Tversky and 

Kahneman [71] explained that a human who estimates a numerical value when starting from 

different initial values often makes insufficient adjustments based on the initial value, a 

phenomenon known as the “anchoring and adjustment” heuristic.  To avoid this issue, operators 

were limited to a binary choice on each quantity. 

The weightings for the “on” and “off” condition were chosen after pilot testing the 

system in order to achieve schedule selection and UV behavior that was intuitive to human 

operators.  Selecting a quantity gave it a weighting of 1.0 in the objective function of the 

automated planner, while de-selecting a quantity gave it a weighting of 0.05.  The exception was 

the hostiles destroyed quantity, which received a weighting of 0 when it was de-selected, to 

prevent the automation from planning to destroy hostile targets without operator permission. 

The ability to modify the objective function was implemented in the Schedule 

Comparison Tool (SCT) through two different interfaces.  The first method for modifying the 

dynamic objective function was through a Checkbox button interface, shown in Figure 8.  

Operators could select any of the five quantities, in any combination, through the “Plan 

Priorities” panel on the right side of the SCT.  The second method utilized a Radio button 

interface, shown in Figure 9.  Operators could only select one of the quantities at a time, as their 

highest priority for evaluating potential UV schedules.  These two interfaces, along with the 

static objective function interface (Figure 6), were the three possible types of SCT that operators 

could use in the human performance experimentation. 
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Figure 8. Schedule Comparison Tool with Checkbox Interface 

 
Figure 9. Schedule Comparison Tool with Radio Button Interface 

4.5 Experimental Design 

Three scenarios were designed for this experiment: a practice scenario and two test 

scenarios.  Each scenario involved controlling four UVs (one of which was weaponized) in a 

mission to conduct surveillance of an area in order to search for targets, track these targets, and 

destroy any hostile targets found (when instructed).  The area contained both water and land 
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environments and targets could be either tanks on the ground or boats in the water.  The vehicles 

automatically returned to the base when necessary to refuel and were equipped with sensors 

(either radar or cameras) which would notify the operator when a target was detected so that the 

operator could view sensor information in order to designate the target and give it a priority 

level.  Perfect sensor operation was assumed, in that there were no false detections or missed 

target detections.   

Each scenario had 10 targets that were initially hidden to the operator.  These targets 

always had a positive velocity and moved on pre-planned paths throughout the environment 

(unknown to the operator), at roughly 5% of the cruise velocity of the WUAV.  Each scenario 

had three friendly targets, three hostile targets, and four unknown targets.  The operator received 

intelligence information on the unknown targets through the chat window, revealing that two of 

the targets were friendly and two were hostile.  Upon receiving this intelligence, the operator 

could re-designate the targets.  The operator would also be asked by the “Command Center” 

through the chat window to create search tasks in specified quadrants at various times throughout 

the mission.  The scenarios were all different, but of comparable difficulty, so that operators 

would not learn the locations of targets between missions. 

4.5.1 Independent Variables 

The experimental design was a 3x2 repeated measures nested design with two 

independent variables: the type of objective function used by the automated planner and the type 

of mission.  The objective function type had three levels: “None”, “Radio”, and “Checkbox.”  

The None level used the original testbed objective function as described earlier in this chapter, 

which was set a priori and the operator did not have the opportunity to modify it.  The Radio 

level allowed the operator to change the objective function by choosing one of the quantities to 
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be most important at the time.  For example, if the operator chose area coverage due to a change 

in the ROEs, the automated planner optimized the usage of the vehicles for covering the most 

unsearched area while setting the weights of the other variables to the lowest setting.  Finally, in 

the Checkbox level, the operator was allowed to select any combination of the five quantities to 

be equally important.  This was a between-subjects factor, in that a particular subject only 

experienced one type of objective function representation, to avoid training biases. 

The second independent variable was Mission Type.  There were two levels: a Standard 

Mission and a Dynamic Mission.  For the Standard Mission, operators were given a set of ROEs 

that did not change throughout the mission.  The ROEs instructed operators on aspects of the 

mission that were most important at the time in order to guide their high level decision making.  

The ROEs also specified when hostile target destruction was permitted.  For the Dynamic 

Mission, every 5 minutes during the 20 minute mission, new ROEs were presented to the 

operator and the operator needed to decide whether and how to change the objective function 

under the new ROEs (if they had the interface that allowed for manipulation of the objective 

function), as well as possibly altering their tasking strategies. 

For example, the operator may have received an original ROE stating that they should 

“Search for new targets and track all targets found.”  Then, a new ROE may have come in stating 

“Destroy all Hostile Targets Immediately.”  Participants could adjust the objective function of 

the automated planner to reflect the changed ROE, for example by increasing the weighting of 

the “Destroy Hostiles” quantity or lowering the weightings of other quantities.  The ROEs for the 

Standard and Dynamic missions are listed in Appendix F.  This was a within-subjects factor, as 

each subject experienced both a Standard and Dynamic mission.  These missions were presented 

in a randomized and counterbalanced order to avoid learning effects. 
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4.5.2 Dependent Variables 

The dependent variables for the experiment were mission performance, mission 

efficiency, primary workload, secondary workload, situational awareness (SA), and subjective 

ratings of performance, workload, and confidence.  Overall mission performance was measured 

by taking the following four metrics: percentage of area coverage, percentage of targets found, 

percentage of time that targets were tracked, and number of hostile targets destroyed.  Mission 

efficiency measured the performance metrics over time, which included average time to target 

detection and average time from hostile detection to destruction.  Adherence to the ROEs 

presented to the operator during the Dynamic Mission (Appendix F) was also measured by the 

following metrics: 1) number of targets destroyed when hostile target destruction was forbidden, 

2) percentage of area covered during the first 5 minutes of the mission, when covering area to 

find new targets was the highest priority, 3) percentage of targets found during the first 5 minutes 

of the mission, and 4) percent of time that targets were tracked between 10 and 15 minutes, when 

tracking all previously found targets was the highest priority. 

  The primary workload measure was a utilization metric calculating the ratio of the total 

operator “busy time” to the total mission time.  For utilization, operators were considered “busy” 

when performing one or more of the following tasks: creating search tasks, identifying and 

designating targets, approving weapons launches, interacting via the chat box, and replanning in 

the SCT.  All interface interactions were via a mouse with the exception of the chat messages, 

which required keyboard input. 

Another method for measuring workload was measuring the spare mental capacity of the 

operator through reaction times to a secondary task.  Secondary workload was measured via 

reaction times to text message information queries, as well as reaction times when instructed to 
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create search tasks via the chat tool. Such embedded secondary tools have been previously 

shown to be effective indicators of workload [72].   

SA was measured through the accuracy percentage of responses to periodic chat box 

messages querying the participant about aspects of the mission.  Additionally, 4 of the targets 

were originally designated as unknown.  Chat messages would provide intelligence information 

to the operator about whether these targets were actually hostile or friendly (based on their 

location on the map).  It was up to the operator to re-designate these targets based on this 

information.  Therefore, a second measure of SA was the ratio of correct re-designations of 

unknown targets to number of unknown targets found. 

Finally, a survey was provided at the end of each mission asking the participant for a 

subjective rating of their workload, performance, confidence, and satisfaction with the plans 

generated by the automated planner on a Likert scale from 1-5.  Subjective ratings are crucial, 

both for providing an additional measure of workload and for evaluating whether the addition of 

the dynamic objective function influenced the operator’s confidence and trust in the collaborative 

decision-making process, factors which have been shown to influence system performance [73]. 

4.6 Procedure 

In order to familiarize each subject with the interface, a self-paced, slide-based tutorial 

was provided (Appendix G).  Subjects then conducted a fifteen-minute practice session during 

which the experimenter walked the subject through all the necessary functions to use the 

interface.  Each subject was given the opportunity to ask the experimenter questions regarding 

the interface and mission during the tutorial and practice session.  Each subject also had to pass a 

proficiency test, which was a 5-question slide-based test (Appendix H).  If the subjects did not 
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pass the proficiency test, they were given time to review the tutorial, after which they could take 

a second, different proficiency test.  All subjects passed on either the first or second test. 

The actual experiment for each subject consisted of two twenty-minute sessions, one for 

each of the two different mission types.  The order of the mission types presented to the subject 

was counterbalanced and randomized to prevent learning effects.  During testing, the subject was 

not able to ask the experimenter questions about the interface and mission.  All data and operator 

actions were recorded by the interface and Camtasia
©

 was used to record the operator’s actions 

on the screen.  Finally, a survey was administered at the end of each mission to obtain the 

participant’s subjective evaluation of their workload, performance, and confidence, along with 

general comments on using the system (Appendix I).  Subjects were paid $10/hour for the 

experiment and a performance bonus of a $100 gift card was given to the individual who 

obtained the highest mission performance metrics (to encourage maximum effort). 

4.7 Summary 

Once the experiment was completed, data had been collected for each of the 

performance, workload, SA, and subjective rating metrics for all 30 participants. In order to 

evaluate the hypotheses presented in this chapter, the data needed to be formally analyzed using 

appropriate inferential statistical tests. The statistical tests utilized, and the results of those tests, 

are presented in Chapter 5. 
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5 Results 

This chapter presents the statistical results of the experiment described in Chapter 4.  The 

experiment included two independent variables: Objective Function Type (None, Radio, or 

Checkbox) and Mission Type (Standard or Dynamic).  Numerous dependent variables were 

considered in the analysis of the data in order to capture and measure performance, workload, 

SA, and subjective ratings of performance, workload, and confidence, as described in Chapter 4.  

First, a system design issue that was identified during the experiment is discussed.  Then, an 

analysis of the dependent variables is presented.  Finally, the impact of family-wise error rates is 

described, along with a summary of the important findings. 

5.1 Interface Issue 

During the experiment, an issue was uncovered that impacted the performance of 

operators using the None objective function during the Dynamic mission.  For the first 10 

minutes of the Dynamic mission, the ROEs stated “Do not destroy any hostiles.”  Operators 

using the Radio or Checkbox objective functions were trained to modify the objective function 

during this time period so that tasks would not be created to destroy hostile targets.  Operators 

using the None objective function type, however, had no way to prevent the automated planner 

from creating hostile destruction tasks.  When the system opened the window shown in Figure 

10, requesting permission for the WUAV to destroy a hostile target, the operator was trained to 

click the “Cancel: Redesignate to Unknown” button if the ROEs did not permit destruction of 

hostile targets at the time.  The result of clicking this button was that the target which was 

previously designated as hostile was then changed in designation to unknown. 

Results from the experiment showed that all 10 participants using the None objective 

function clicked the “Cancel” button at least once during the Dynamic mission, with 9 of the 10 
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operators clicking it at least twice.  Of all of the trials using the Radio and Checkbox objective 

function, there was only one “Cancel.” 

 
Figure 10. Hostile Destruction Approval Window 

Operators had the option to re-designate these targets back to hostile at any point in the 

mission, especially once the ROEs changed to permit the destruction of hostile targets.  Some of 

the operators using the None objective function did perform this action successfully, however, 

many did not, due to inadequate system design and training.  Therefore, it was decided that the 

total hostile targets destroyed and the hostile destruction efficiency metrics would only be used 

to compare the performance of the operators using the Checkbox and Radio objective functions 

during Dynamic Missions.  Total hostile targets destroyed and hostile destruction efficiency 

metrics were still used to evaluate the performance of all operators during the Standard Mission.  

5.2 Statistical Analysis Overview 

All dependent variables were recorded by the computer simulation.  For all metrics other 

than those noted below, a 3 x 2 repeated measures Analysis of Variance (ANOVA) model was 

used for parametric dependent variables (α = 0.05).  Unless otherwise noted, all metrics met the 



59 

 

homogeneity of variance and normality assumptions of the ANOVA model. For dependent 

variables that did not meet ANOVA assumptions, non-parametric analyses were used. 

  Due to the confusion among the operators using the “None” Objective Function type 

during hostile destruction tasks in the Dynamic mission, a separate analysis was done for the 

Standard and Dynamic missions for all metrics related to the destruction of hostile targets.  A 

single factor repeated measures ANOVA model was used for parametric dependent variables 

related to hostile destruction (α = 0.05).  For analyzing the results of the Dynamic missions, 

results were only compared between the Radio and Checkbox Objective Function types.   

5.3 Mission Performance 

As outlined in Section 4.5.2, performance was measured by 1) overall mission 

performance metrics, computed at the end of the mission; 2) satisfaction of the ROEs that were 

presented to the operator at 5 minute intervals during the Dynamic Mission; and 3) by mission 

efficiency metrics, which measure performance over time. 

5.3.1 Overall Mission Performance 

The four overall mission performance metrics were percentage of area coverage, 

percentage of targets found, percentage of time that targets were tracked, and number of hostile 

targets destroyed.  The omnibus area coverage test was not significant for Mission Type, F(1,27) 

= 0.328, p = 0.571, nor for Objective Function Type, F(2,27) = 0.344, p = 0.712.  For the 

percentage of targets found, non-parametric tests were needed.  The Mann-Whitney dependent 

test on the percentage of targets found showed a significant difference across Mission Type, Z = 

-2.795, p = 0.005, where more targets were found in the Dynamic Mission Type.  The Kruskal-

Wallis omnibus test on the percentage of targets found was not significant for Objective Function 

Type, χ
2
(2, N=60) = 3.599, p = 0.165.  The omnibus percentage of time that targets were tracked 
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test was not significant for Mission Type: F(1,27) = 1.115, p = 0.300, nor for Objective Function 

Type, F(2,27) = 1.961, p = 0.160. 

For the number of hostile targets that were destroyed, non-parametric tests were needed.  

A separate analysis was performed for the Standard and Dynamic Mission Types, where the 

Dynamic Mission excluded the “None” Objective Function Type.  For the Standard Mission, the 

omnibus Kruskal-Wallis test was not significant for Objective Function Type, χ
2
(2, N=30) = 

3.729, p = 0.155.  For the Dynamic Mission, the Mann-Whitney independent test was not 

significant for Objective Function Type, Z = -1.592, p = 0.111.  The boxplots in Figure 11 

illustrate the results for the performance metrics, and Table 4 summarizes the key statistics.  

 
 

        (a) Area Coverage     (b) Targets Found 
 

 
 

  (c) Time Targets Tracked    (d) Hostiles Destroyed 

 
Figure 11. Performance Metrics Comparison 
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Table 4. Performance Metrics Summary 

Metric Mission 

Type 

Objective 

Function 

Mean Median Std Dev 

% Area 

Coverage 

Standard 

 

None 60.6% 58.9% 9.7% 

Radio 62.0% 64.3% 8.1% 

Checkbox 64.3% 63.2% 11.2% 

Dynamic 

 

None 59.5% 58.7% 10.3% 

Radio 61.1% 62.1% 11.8% 

Checkbox 62.7% 64.6% 14.0% 

% Targets 

Found 

Standard None 72.0% 70.0% 11.4% 

Radio 87.0% 90.0% 9.5% 

Checkbox 84.0% 90.0% 15.1% 

Dynamic 

 

None 90.0% 95.0% 11.6% 

Radio 91.0% 90.0% 7.4% 

Checkbox 89.0% 90.0% 7.4% 

% Time 

Targets 

Tracked 

Standard None 89.5% 90.7% 7.6% 

Radio 84.8% 87.2% 87.2% 

Checkbox 91.1% 93.6% 5.9% 

Dynamic 

 

None 87.5% 87.8% 6.3% 

Radio 85.0% 87.3% 7.7% 

Checkbox 88.5% 89.3% 4.4% 

Hostiles 

Destroyed 

Standard None 2.7 3.0 0.9 

Radio 3.5 3.5 0.9 

Checkbox 3.4 3.5 1.0 

Dynamic 

 

None - - - 

Radio 3.2 3.5 0.9 

Checkbox 3.9 4 0.7 

 

5.3.2 Satisfaction of Rules of Engagement in Dynamic Mission 

As described in Section 4.5.2, satisfaction of the ROEs was measured by 1) number of 

targets destroyed when hostile target destruction was forbidden, 2) percentage of area covered 

during the first 5 minutes of the mission, when covering area to find new targets was the highest 

priority, 3) percentage of targets found during the first 5 minutes of the mission, and 4) percent 

of time that targets were tracked between 10 and 15 minutes, when tracking all previously found 

targets was the highest priority.  No significant differences were found for the percentage of area 

covered during the first 5 minutes and for the percent of time that targets were tracked between 

10 and 15 minutes. 
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With regards to the restriction during the first ten minutes of the Dynamic mission that no 

hostile targets were to be destroyed, it was found that of the 30 trials of the Dynamic mission, 3 

test subjects violated this ROE and destroyed a hostile target before it was permitted.  All 3 of 

these test subjects used the Radio Objective Function. 

The percentage of all targets found in the first 5 minutes of the Dynamic mission was 

analyzed, as the highest priority of operators during this time period was to search for new 

targets.  The omnibus test on targets found in the first 5 minutes was significant for Objective 

Function Type, F(2,27) = 4.517, p = 0.02.  Tukey pairwise comparisons showed that the Radio 

Objective Function was different from Checkbox and None Objective Functions (p = 0.02 and p 

= 0.012, respectively), but the Checkbox and None Objective Functions were not statistically 

different (p = 0.823).  Operators who used the Radio Objective Function found more targets in 

the first 5 minutes of the Dynamic mission.  The boxplots in Figure 12 illustrate the results for 

number of targets found in the first 5 minutes, and Table 5 summarizes the key statistics. 

 

 
Figure 12. Targets Found in the First 5 Minutes Comparison 
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Table 5. Targets Found in the First 5 Minutes Summary 

Objective 

Function 

Mean Median Std Dev 

None 5.8 5.5 0.9 

Radio 7.0 7.0 1.0 

Checkbox 5.9 6.0 1.0 

 

 

5.3.3 Mission Efficiency 

Finally, performance was measured by efficiency metrics, which characterize 

performance over time.  The efficiency metrics were the average time to target detection and the 

average time from when a hostile target was detected to its destruction, as calculated using the 

formulas shown in Equations 1 and 2 respectively.  Each metric is calculated in a three step 

process.  First, for each target, the time to either find the target or to destroy the target after it 

was designated as hostile is divided by the amount of time the target was available.  In the case 

of finding a target, it was available to be found the entire simulation.  If a target was not found or 

not destroyed, it is given a ratio of 1.  Second, the ratios are summed and divided by the total 

number of targets found or hostiles destroyed.  This metric shows both speed and quantity of 

either targets found or hostiles destroyed, where a lower score is better.  Third, the metric is 

normalized by dividing by the total number of targets available (10 targets) or hostiles available 

(5 targets).  To make the efficiency metric such that a higher score is better, it is subtracted from 

1, so the maximum value is 1 and the minimum value is 0. 

  (1) 

  (2) 
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Where: 
 T = Total Simulation Time (1200 seconds) 

 N* = total number of targets available in simulation (10 targets) 

 H* = total number of hostile targets available in simulation (5 targets) 

 N = total number of targets found during simulation 

 H = total number of hostile targets found during simulation 

 fi = Time in seconds that target i was found (set to 1200 if never found) 

 ri = Time in seconds that a hostile target was re-designated as hostile (set to 0 if never found or re-designated) 

 di = Time in seconds that a hostile target was destroyed (set to 1200 if never destroyed) 

 

The omnibus target finding efficiency test was significant for Mission Type, F(1,26) = 

32.687, p < 0.001 and also significant for Objective Function Type, F(2,26) = 3.776, p = 0.036.  

Tukey pairwise comparisons showed that the Radio Objective Function was different from the 

None Objective Function (p = 0.011), but there was no significant difference between the 

Checkbox and either the Radio or None Objective Functions (p = 0.134 and p = 0.230, 

respectively).  Operators using the Radio Objective Function had the highest target finding 

efficiency and all operators had a higher target finding efficiency during the Dynamic Mission. 

The omnibus hostile destruction efficiency test was not significant for Objective Function Type 

in the Standard Mission, F(2,26) = 0.971, p = 0.392, and was only marginally significant in the 

Dynamic Mission, F(1,18) = 4.329, p = 0.052.  The boxplots in Figure 13 illustrate the results for 

the efficiency metrics, and Table 6 summarizes the key statistics.  

 

Figure 13. Target Finding and Hostile Destruction Efficiency Comparison 
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Table 6. Target Finding and Hostile Destruction Efficiency Summary 

Metric Mission 

Type 

Objective 

Function 

Mean Median Std Dev 

Target Finding 

Efficiency 

Standard None 0.938 0.937 0.013 

Radio 0.957 0.961 0.011 

Checkbox 0.948 0.954 0.018 

Dynamic 

 

None 0.965 0.970 0.014 

Radio 0.969 0.971 0.010 

Checkbox 0.965 0.969 0.009 

Hostile 

Destruction 

Efficiency 

Standard None 0.779 0.791 0.104 

Radio 0.826 0.842 0.086 

Checkbox 0.838 0.851 0.098 

Dynamic 

 

None - - - 

Radio 0.758 0.814 0.122 

Checkbox 0.844 0.855 0.045 

 

 

 

5.4 Workload 

Primary workload was measured through utilization, calculating the ratio of the total 

operator “busy time” to total mission time.  Time spent replanning in the SCT was evaluated as a 

component of workload.  In addition to these primary workload metrics, secondary workload 

was measured via reaction times to text message information queries, as well as reaction times 

when instructed to create search tasks via the chat tool. 

5.4.1 Utilization 

The omnibus utilization test was significant for Mission Type, F(1,27) = 5.216, p = 

0.030, but was not significant for Objective Function Type, F(2,27) = 1.122, p = 0.340.  Operator 

utilization was higher during the Dynamic mission than the Standard mission.  The boxplot in 

Figure 14 illustrates the results for utilization, and Table 7 summarizes the key statistics. 
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Figure 14. Utilization Comparison 

Table 7. Utilization Summary 

Mission 

Type 

Objective 

Function 

Mean (%) Median (%) Std Dev (%) 

Standard None 40.1 36.1 9.8 

Radio 42.8 39.4 9.6 

Checkbox 38.5 39.8 8.8 

Dynamic 

 

None 44.9 43.7 6.4 

Radio 45.8 45.8 5.4 

Checkbox 40.8 40.9 7.4 

 

5.4.2 Time Spent in the Schedule Comparison Tool (SCT) 

Operators using either of the dynamic objective functions (Checkbox or Radio) 

potentially had more to do while in the Schedule Comparison Tool (SCT), such as modifying the 

weightings of the objective function.  There was, however, no significant difference in average 

time spent in the SCT among the three types of objective function, F(2,27) = 2.039, p = 0.150.  

As can be expected due to the increased complexity of the Dynamic Mission as compared to the 

Standard Mission, there was a significant difference in the average time spent in the SCT 

between the two mission types, F(1,27) = 20.786, p < 0.001.  Operators spent more time, on 

average, in the SCT during the Dynamic Mission as compared to the Standard Mission. 

5.4.3 Secondary Workload  

For the Standard Mission, there were no significant differences in chat message response 

time or in reaction time to creating a search task when prompted.  For the Dynamic Mission, 
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there were four measures of secondary workload: a chat message question requiring a response at 

235 seconds, a prompt to create a search task at 300 seconds, another prompt to create a search 

task at 725 seconds, and finally, a chat message question requiring a response at 1104 seconds. 

The omnibus test for the reaction time to the chat question at 235 seconds was significant 

for Objective Function Type, F(2,26) = 8.839, p = 0.001.  Tukey pairwise comparisons showed 

that the None Objective Function was different from Checkbox and Radio Functions (p = 0.001 

and p = 0.002, respectively), but the Checkbox and Radio Objective Functions were not 

statistically different (p = 0.703).  Operators using the None Objective Function had slower 

reaction times to answer the chat question at 235 seconds. 

The omnibus test for the reaction time to the chat question at 1104 seconds was 

significant for Objective Function Type, F(2,26) = 3.411, p = 0.048.  Tukey pairwise 

comparisons showed that the Checkbox Objective Function was different from the None 

Objective Function (p = 0.022), but there were no significant differences between the Radio and 

either the Checkbox or None Objective Functions (p = 0.056 and p = 0.712, respectively).  

Generally, operators using the Checkbox objective function had faster reaction times to answer 

the chat question at 1104 seconds. 

All other reaction times were not significantly different.  Figure 15 illustrates the reaction 

times for the four secondary workload measures during the Dynamic mission, showing the 

average reaction times to each prompt.  Table 8 summarizes the key statistics for the two chat 

message reaction times analyzed above. 
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Figure 15. Secondary Workload Metrics for Dynamic Mission Comparison 

Table 8. Secondary Workload Metrics for Dynamic Mission Summary 

Metric Objective 

Function 

Mean (s) Median (s) Std Dev (s) 

Chat Message 

Reaction Time at 235 

seconds 

None 21.81 24.69 9.80 

Radio 8.94 7.88 4.36 

Checkbox 8.82 6.21 6.38 

Chat Message 

Reaction Time at 

1104 seconds 

None 11.50 9.14 5.62 

Radio 10.23 7.98 4.94 

Checkbox 6.21 5.69 1.63 

 

5.5 Situational Awareness 

SA was measured through two metrics: the accuracy of responses to periodic chat box 

messages querying the participant about aspects of the mission and the accuracy of re-

designations of unknown targets based on chat intelligence information.  For both metrics, non-

parametric tests were needed.   

The Mann-Whitney dependent test on chat accuracy showed no significant differences 

across Mission Type, Z = 0.0, p = 1.0.  The Kruskal-Wallis omnibus test on chat accuracy was 

significant for Objective Function Type, χ
2
(2, N=60) = 6.167, p = 0.046.  Further Mann-Whitney 



69 

 

independent pairwise comparisons showed that the Checkbox Objective Function was different 

from the None Objective Function (p = 0.013) and marginally significantly different from the 

Radio Objective Function (p = 0.057).  There was no significant difference between the Radio 

and None Objective Functions (p = 0.551).  Operators using the Checkbox Objective Function 

had higher chat accuracy than the None and Radio Objective Function users. 

 The Mann-Whitney dependent test on re-designation accuracy showed a significant 

difference across Mission Type, Z = -2.482, p = 0.013, where operators had higher re-

designation accuracy during the Dynamic Mission.  The Kruskal-Wallis omnibus test on the re-

designation accuracy was also significant for Objective Function Type, χ
2
(2, N=60) = 10.392, p 

= 0.006.  Further Mann-Whitney independent pairwise comparisons showed that the None 

Objective Function was different from Checkbox and Radio Objective Functions (p = 0.003 and 

p = 0.019 respectively), but the Checkbox and Radio Objective Functions were not statistically 

different (p = 0.342).  Operators using the None Objective Function had lower re-designation 

accuracy than operators using either the Checkbox or Radio Objective Function.  The boxplots in 

Figure 16 illustrate the results for chat accuracy and re-designation accuracy, and Table 9 

summarizes the key statistics for both chat accuracy and re-designation accuracy.  

 
Figure 16. Chat Accuracy and Target Re-designation Comparison 
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Table 9. Chat Accuracy and Target Re-designation Summary 

Metric Mission 

Type 

Objective 

Function 

Mean (%) Median (%) Std Dev (%) 

Chat Question 

Accuracy 

Standard None 80% 100% 35.0% 

Radio 75% 75% 26.4% 

Checkbox 95% 100% 15.8% 

Dynamic 

 

None 70% 50% 25.8% 

Radio 85% 100% 33.7% 

Checkbox 95% 100% 15.8% 

Target Re-

designation 

Accuracy 

Standard None 40.0 33.3 29.6 

Radio 62.5 66.7 20.9 

Checkbox 65.0 66.7 11.0 

Dynamic 

 

None 46.7 45.9 45.8 

Radio 76.7 87.5 28.2 

Checkbox 90.0 100 17.5 

 

5.6 Subjective Responses 

A survey was provided at the end of each mission asking the participant for a subjective 

rating of his or her workload, performance, confidence, and satisfaction with the plans generated 

by the automated planner on a Likert scale from 1-5 (1 low, 5 high).  Non-parametric tests were 

needed for this Likert scale data.  There were no significant differences among the ratings of 

workload and satisfaction with the plans generated by the automated planner. 

The Mann-Whitney dependent test on subjective performance rating was not significant 

for Mission Type, Z = -0.215, p = 0.830.  The Kruskal-Wallis omnibus test on the performance 

rating was, however, significant for Objective Function Type, χ
2
(2, N=60) = 15.779, p < 0.001.  

Further Mann-Whitney independent pairwise comparisons showed that the Checkbox Objective 

Function was different from None and Radio Objective Functions (p < 0.001 and p = 0.008 

respectively), but the None and Radio Objective Functions were not statistically different (p = 

0.224).  Operators using the Checkbox Objective Function had the highest self-ratings of 

performance. 
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Similar results were obtained for subjective ratings of confidence.  The Mann-Whitney 

dependent test on the confidence rating was not significant for Mission Type, Z = -1.057, p = 

0.291.  The Kruskal-Wallis omnibus test on the confidence rating was, however, significant for 

Objective Function Type, χ
2
(2, N=60) = 12.540, p = 0.002.  Further Mann-Whitney independent 

pairwise comparisons showed that the Checkbox Objective Function was different from None 

and Radio Objective Functions (p = 0.001 and p = 0.011 respectively), but the None and Radio 

Objective Functions were not statistically different (p = 0.430).   

Operators using the Checkbox Objective Function rated their performance and 

confidence as higher than operators using the other objective functions.  It should be noted that 

there was a significant effect on confidence ratings for the order that the Mission Types were 

shown to the operator (p = 0.026).  Confidence ratings were higher when operators saw the 

Standard Mission prior to the Dynamic mission, as opposed to seeing the Dynamic Mission prior 

to the Standard Mission. 

The plots in Figure 17 illustrate the self-rating results and Table 10 summarizes the key 

statistics for performance and confidence self-ratings. 

 

 

Figure 17. Performance and Confidence Self-ratings Comparison 
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Table 10. Performance and Confidence Self-ratings Summary 

Metric Mission 

Type 

Objective 

Function 

Mean Median Mode Std Dev 

Performance 

self-rating 

Standard None 2.8 3 3 0.6 

Radio 3.1 3 3 0.7 

Checkbox 3.9 4 4 0.6 

Dynamic 

 

None 3.0 3 3 0.5 

Radio 3.2 3 3 0.8 

Checkbox 3.7 4 3, 4 0.8 

Confidence 

self-rating 

Standard None 2.6 3 3 1.0 

Radio 2.9 3 2 0.9 

Checkbox 3.7 4 4 0.5 

Dynamic 

 

None 2.6 3 3 0.5 

Radio 2.8 3 3 0.6 

Checkbox 3.2 3 4 1.0 

 

5.7 Operator Strategy and Top Performer Analysis 

A further analysis of the strategies of the participants was conducted, focusing on those 

participants who used either the Radio or Checkbox objective function.  In addition, a set of 

analyses were performed to determine if there were additional trends in the data that predicted 

high performance, based on operator strategy or demographic factors.  

5.7.1 Operator Strategies with Dynamic Objective Function 

Investigating the number of objective function modifications made by operators using the 

dynamic objective functions, we find a significant difference between the strategies adopted by 

participants using the Checkbox versus the Radio objective function.  Radio operators made 

more total modifications to the objective function than Checkbox operators, F(1,17) = 26.094, p 

< 0.001.  In fact, Radio operators modified the objective function more than double the amount 

that Checkbox operators did, with an average of 28.3 modifications over the 20 minute 

simulation as compared to 12.4 modifications for the Checkbox operators.   

Of all of their SCT sessions, Radio operators made at least one modification to the 

objective function 66.8% of the time, as compared to 35.5% of SCT sessions for Checkbox 
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operators.  Radio operators modified the objective function more times per SCT session as well 

(F(1,17) = 23.395, p < 0.001), making on average of 0.85 modifications per session, as compared 

to 0.45 modifications per session for Checkbox operators.  All of these values were calculated 

with combined data from the Standard and Dynamic Mission Types. 

5.7.2 Top Performers 

A set of linear regression analyses was performed to see if there were any significant 

predictor variables for high (or low) system performance and operator workload.  The linear 

regression estimates coefficients of a linear equation, with one or more predictor variables, that 

best predict the value of the dependent variable.  The system performance and operator workload 

dependent variables were percentage of area coverage, percentage of targets found, percentage of 

time that targets were tracked, number of hostile targets destroyed, and operator utilization. 

As there would be 5 linear regressions, the typical  = 0.05 significance level was 

reduced to  = 0.01 using the Bonferroni correction [74].  A backwards elimination linear 

regression was utilized, which removed predictor variables that did not meet a significance level 

of  = 0.01, so that the most parsimonious model was derived for predicting the dependent 

variables.  Potential predictor variables included both demographic information and strategy 

information derived from experimental data.  These variables were age, gender, gaming 

experience, perception of UAVs, comfort with computers, recent amount of sleep, 

occupation/education level, total number of objective function modifications, number of 

objective function modifications per SCT session, and the percentage of SCT sessions with at 

least one objective function modification. 

Table 11 shows the results from the 5 backwards elimination linear regressions, including 

the variables which were significant predictors of the performance and workload metrics.  The 
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normality, homogeneity of variance, linearity, and independence assumptions of a linear 

regression were met by the 3 regressions that found significant predictor variables.  There were 

no significant predictor variables for the number of targets found and the number of hostiles 

destroyed. 

Table 11. Linear Regression Results 

Dependent 

Variable 

R
2
 β0 Education 

Level 

Total 

Objective 

Function 

Mods 

Mods per 

SCT 

Session 

Percent of 

SCT 

Sessions 

with a Mod 

Area Coverage 0.459 β = 0.738 

p < 0.001 

β = -0.067 

p = 0.001 

β = 0.012 

p < 0.001 

β = -0.382 

p < 0.001 

- 

Targets Found 0 β = 0.876 

p < 0.001 

- - - - 

Time Targets 

Tracked 

0.172 β = 0.938 

p < 0.001 

- - - β = -0.132 

p = 0.010 

Hostiles 

Destroyed 

0 β = 3.474 

p < 0.001 

- - - - 

Utilization 0.261 β = 0.346 

p < 0.001 

- β = 0.004 

p = 0.001 

- - 

 

For the area coverage regression, 3 significant predictor variables were found.  The first 

is education level, where the test participants reported whether they were an undergraduate, 

master’s, or Ph.D student.  These categories were numbered 1, 2, or 3, respectively, along with a 

category of 4 for “Non-student/other” (demographic data can be found in Appendix A).  A 

negative relationship was found between increasing education level and total area coverage.  For 

example, moving from undergraduate to a master’s level student would result in a 6.7% decrease 

in area coverage through this linear model. 

The second significant predictor variable for area coverage was the total number of 

objective function modifications.  A positive relationship was found between increasing number 

of total modifications with area coverage percentage.  The linear model predicted a 1.2% 

increase in area coverage for each additional modification to the objective function.  Finally, the 



75 

 

third significant predictor variable was the average number of modifications per SCT session.  A 

negative relationship was found between increasing average modifications per SCT session with 

area coverage, in that an increase of 1 in the average number of modification per SCT session 

would predict a 38.2% decrease in area coverage. 

For the linear regression on the percentage of time that targets were tracked, the only 

significant predictor variable was the percent of SCT sessions with an objective function 

modification.  A negative relationship was found between these two quantities, in that an 

increase of 1% in the percent of SCT sessions with an objective function modification would 

result in a 0.00132% reduction in the percentage of time that targets were tracked. 

Finally, for the linear regression on utilization, the only significant predictor variable was 

the total number of objective function modifications.  A positive relationship was found between 

these two quantities, in that the linear model predicted a 0.4% increase in utilization for each 

additional modification to the objective function. 

5.8 Summary 

Results from the human performance experiment led to a range of results.  The analysis 

indicated that operators using the Checkbox and Radio objective functions had superior results in 

some of the metrics, while there were no significant differences in other metrics.  These results 

can aid in evaluating the impact of the dynamic objective function based on theoretical 

predictions in Chapter 3.  Results also indicated that operators generally performed better in the 

Dynamic mission over the Standard Mission.  All of the results are summarized in Table 12, 

where the conditions with superior results are shown in bold. 
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Table 12. Summary of Experimental Findings 

Category Metric Objective Function Type Mission Type 

System 

Performance 

% Area Coverage Indistinguishable 

(p = 0.571) 

Indistinguishable 

(p = 0.712) 

% Targets Found Indistinguishable 

(p = 0.165) 
Dynamic Mission 

(p = 0.005) 

% Time Targets 

Tracked 

Indistinguishable 

(p = 0.160) 

Indistinguishable 

(p = 0.300) 

Hostiles Destroyed Indistinguishable 

(p = 0.155 & p = 0.111) 

N/A 

Adherence 

to ROEs 

Hostiles Destroyed 

when restricted 
Checkbox and None 

(0 errors) 

N/A 

 % Area Coverage 

during first 5 min 

Indistinguishable 

(p = 0.687) 

N/A 

 Targets Found 

during first 5 min 
Radio 

(p = 0.020) 

N/A 

 % Time Targets 

Tracked between 

10-15 min 

Indistinguishable 

(p = 0.107) 

N/A 

Mission 

Efficiency 

Target Finding 

Efficiency 
Radio 

(p = 0.011) 

Dynamic Mission 

(p < 0.001) 

 Hostile 

Destruction 

Efficiency 

Indistinguishable 

(p = 0.392 and p = 0.052) 

N/A 

Primary 

Workload 

Utilization Indistinguishable 

(p = 0.340) 
Dynamic Mission 

(p = 0.030) 

 Time spent in SCT Indistinguishable 

(p = 0.150) 
Dynamic Mission 

(p < 0.001) 

Secondary 

Workload 

Chat reaction time 

at 235 seconds 
Checkbox and Radio 

(p = 0.001 and p = 0.002) 

N/A 

 Chat reaction time 

at 1104 seconds 
Checkbox 

(p = 0.048) 

N/A 

Situational 

Awareness 

Target re-

designation 

accuracy 

Checkbox and Radio 

(p = 0.003 and p = 0.019) 

Dynamic 

(p = 0.013) 

 Chat question 

accuracy 
Checkbox 

(p = 0.046)  

Indistinguishable 

(p = 1.000) 

Subjective 

Ratings 

Performance Checkbox 

(p < 0.001) 

Indistinguishable 

(p = 0.830) 

 Confidence Checkbox 

(p = 0.002) 

Indistinguishable 

(p = 0.291) 

 Workload Indistinguishable 

(p = 0.413) 

Indistinguishable 

(p = 782) 

 Satisfaction with 

AP plans 

Indistinguishable 

(p = 0.254) 

Indistinguishable 

(p = 0.197) 
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It should be noted that a large number of statistical tests were used in the analysis of data 

from this experiment, due to the number of dependent variables and 3x2 nested experimental 

design.  In a generous accounting of the number of tests, where each omnibus test is counted as a 

single “test”, and where n pairwise comparisons after a significant omnibus test are only counted 

as n-1 tests, there were approximately 36 tests.  There is an inherent danger in conducting a large 

amount of statistical tests, as it has an impact on the family-wise error rate.  As opposed to 

having 95% confidence in the conclusions of each test, when  = 0.05, the actual confidence 

level goes to 0% with 36 tests.  A confidence level of 95% implies that there is a 1 in 20 chance 

of a Type I error, thus with 36 tests, it is likely that 2 tests will be false positives. 

Utilizing the Bonferroni procedure [74], it can be shown that to obtain a family 

confidence coefficient of at least 95%, each test must achieve a confidence coefficient of 1- /g, 

where g is the number of tests.  Thus, only tests which are significant at the =0.0014 level 

should be considered significant.  Taking this into account, only a few of the statistical tests on 

the dependent variables would remain significant.  The results would still show that operators 

using the Checkbox interface rated their performance and confidence higher than operators using 

the None interface (p < 0.001 in both cases).  Also, there would still be significant differences in 

target finding efficiency and average time spent in the SCT between the Dynamic and Standard 

missions (p < 0.001).  Finally, operators using the Radio objective function made significantly 

more total modifications to the objective function and made more modifications per SCT session 

as compared to operators using the Checkbox objective function (p < 0.001).  For this analysis, 

however, statistical tests that were significant at the  = 0.05 level will still be recognized. 

Chapter 6 provides further discussion of these results and evaluation of the results in the 

context of the experiment hypotheses. 
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6 Discussion 

This chapter discusses the results presented in Chapter 5 and compares them to the 

hypotheses outlined in Chapter 4.  Performance, workload, and situational awareness results are 

compared across the different Objective Function Types and analyzed in relation to the model 

presented in Chapter 3.  Subjective responses gathered through surveys are reported and 

evaluated.  The effect of changing Rules of Engagement is analyzed.  Throughout the chapter, 

operator strategy and demographic predictors of performance are discussed. 

6.1 Performance and Situational Awareness 

Performance was characterized by overall mission performance metrics, adherence to the 

ROEs, and by efficiency metrics, as described in section 4.2.1.  Situational awareness was 

measured by the accuracy of responses to chat box queries and the accuracy of re-designating 

unknown targets based on chat message information.   

The results did not indicate any statistically significant differences in the overall mission 

performance metrics among the different types of objective function at the  = 0.05 level.  In 

comparing the situational awareness of the operators, which has been shown to be an important 

attribute in operator performance [40, 75], the results show that operators using the Checkbox 

objective function had significantly higher target re-designation accuracy and chat accuracy than 

the operators using the None objective function.  While the addition of the capability to modify 

the objective function did not significantly increase system performance, as predicted in 

hypothesis 1, it may in fact have enhanced SA.   

It is likely that the use of the Checkbox interface, which supports multi-objective 

optimization and provides the operator with a choice of objectives to optimize, enhanced 

operator SA.  Level 1 SA, perception of changes in the environment, is supported by the multi-
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objective function because it encourages operators to maintain awareness of changes to either the 

environment or the mission goals to align the objective function with these changes.  Level 3 SA, 

projection of future states, is also supported by the multiple objective function because the use of 

this objective function best aids operators in understanding what UV actions will result from a 

selected plan. 

In terms of the efficiency metrics that characterize performance over time, the results 

indicated that operators using the Radio objective function had significantly better target finding 

efficiency as compared to operators using the None objective function, whereas there was no 

significant difference for hostile destruction efficiency.  This supports hypothesis 2, which 

predicted that there would be an increase in mission efficiency with the use of a dynamic 

objective function.  A similar result was found in terms of following the ROEs, which guide the 

operator’s high level decision-making by indicating what is most important to accomplish and 

what is restricted during each time period.   Operators using the Radio objective function found 

more targets in the first 5 minutes of the Dynamic mission, which was one of the primary goals 

set by the ROEs.  These results support hypothesis 3, which predicted that providing the operator 

with a dynamic objective function would enhance the operator’s ability to perform the specified 

objectives in the ROEs. 

It is likely that the Radio objective function, which requires the operator to choose a 

single objective to optimize, is best for adhering to a single mission goal, such as finding targets 

as fast as possible.  By providing the capability to directly modify the goals of the optimization 

algorithm, the objectives of the automated planner and the operator were aligned towards this 

single mission.  The plans that the automated planner selected for the operator to review were 

likely very focused on this single objective, removing several mental steps from the human-
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automation collaboration process discussed in Chapter 4 and resulting in superior pursuit of the 

mission objective. 

  There was, however, a tradeoff between performing the specified mission goals in the 

ROEs and adherence to the restrictions of the ROEs.  During the Dynamic mission, the only 3 

operators who violated the ROEs by destroying a hostile target during the first 10 minutes of the 

mission were operators using the Radio objective function.  It is unclear whether these mistakes 

were due to lack of experience with the system, insufficient training, poor system design, or the 

increased number of modifications to the objective function necessary when using the Radio 

objective function. 

Additionally, a number of significant predictor variables for performance metrics were 

found based on demographics and operator strategy.  In terms of demographics, lower 

educational levels predicted higher area coverage.  It is possible that undergraduate students were 

more familiar with mathematical optimization algorithms and therefore were more comfortable 

with manipulating objective functions to achieve greater area coverage.  It is also possible that 

students above the undergraduate level were exhibiting automation bias [32], through poor 

understanding of how the automation generated plans or whether a plan would lead to better area 

coverage.  In terms of objective function manipulation strategy, operators that were more 

parsimonious with the number of objective function modifications that they made per SCT 

session had higher area coverage and higher percentage of time that targets were tracked.  By 

modifying the objective function fewer times per SCT session, operators likely had more time in 

the Map View to observe the vehicles and targets, leading to better decision-making.  In contrast, 

the overall number of objective function modifications did predict higher area coverage, as 

human guidance of automated planners has been shown to enhance search [28]. 
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It has been shown in these results that providing the operator with the ability to modify 

the objective function of the automated planner could enhance performance, especially if the 

operator has multi-objective optimization choices, but could also increase the likelihood of 

mistakes if the operator is limited to single-objective optimization. 

6.2 Workload 

Workload was measured via an objective workload metric of operator utilization, a 

secondary workload metric that measured spare mental capacity, and a subjective workload 

measure intended to capture the mental workload that participants associated with each mission.  

There were no significant differences among the different objective function types in operator 

utilization or in the participants’ self-rating of how busy they were.  It was found that there was 

no significant difference in average time spent in the SCT among the three types of objective 

function, contradicting hypothesis 5, which predicted less time spent replanning when using a 

dynamic objective function.   

It should be noted that Radio objective function operators had a higher percentage of SCT 

sessions where they modified the objective function at least once, made double the total number 

of changes to the objective function, and had a higher average number of modifications per SCT 

session.  Based on these metrics, it appears that operators may have been working harder, 

although this workload difference was not reflected in the time spent replanning.  Although it has 

been shown that time spent on a task can be an effective predictor of mental workload [16, 40], it 

is not a perfect correlation, in that a task can require more cognitive resources without a change 

in task execution time. 

  Also, although subjective workload measures have been used effectively in previous 

human supervisory control experiments [59, 76] where they have been shown to be a reliable 
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indicator of cognitive workload, these measures are difficult to employ because people rate their 

own workload differently.  The objective function type was a between-subjects factor in this 

experiment, adding to the difficulty in comparing subjective workload evaluations. 

An additional method of measuring cognitive workload was through reaction times to 

accomplish embedded secondary tasks.  The results show that at two points during the dynamic 

mission, operators using the Checkbox objective function had significantly faster reaction times 

to a secondary task than the operators using the None objective function.  At one of those points, 

the operators using the Radio objective function were also significantly faster.  As shown in 

previous research [72], an embedded secondary tool can provide an effective indicator of 

workload by measuring the spare mental capacity of the operator.  These results could indicate 

that at certain points during the mission, operators with access to a dynamic objective function 

were less overloaded than operators using a static objective function.  This higher level of spare 

mental capacity could indicate that the dynamic objective function reduced the operator’s mental 

workload, which is consistent with hypothesis 4, predicting a reduction in mental workload with 

use of a dynamic objective function. 

6.3 Subjective Responses 

Participants were asked to rate their performance, confidence, and satisfaction with the 

plans generated by the automated planner on a Likert scale from 1-5.  Participants were also 

given open-ended questions to prompt them to give general feedback (Appendix I).  The 

responses pertaining directly to collaboration with the automated planner through a dynamic 

objective function, as well as other comments about the experiment and interface as a whole, are 

discussed here. 
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Results indicated that operators using the Checkbox objective function had significantly 

higher confidence and performance self-ratings than both the Radio and None objective function.  

These results are consistent with hypothesis 6, which stated that use of a dynamic objective 

function is expected to result in greater operator satisfaction with the plans generated by the 

automated planner and higher self-ratings of confidence and performance.  There was, however, 

no significant difference in the ratings for operator satisfaction with the plans generated by the 

automated planner.  All of these measures are between-subjects, as each participant only 

interacted with a single objective function.  Therefore, the subjective self-ratings were isolated 

evaluations of the objective functions instead of a direct comparison.  Despite this issue, the use 

of a dynamic objective function likely contributed to increased automation transparency and 

decreased “brittleness,” which led to these operator preferences.  Although the potential for bias 

towards the static objective function due to its simplicity was acknowledged as a possibility in 

section 4.2.3, this bias was not apparent in the results. 

The Radio objective function limited operators to choosing only one of the five quantities 

(area coverage, search/loiter tasks, target tracking, hostile destruction, fuel efficiency) at a time 

to be their highest priority for evaluating plans.  The Checkbox objective function enabled 

operators to choose any combination of these quantities as high priority.  By providing operators 

using the Checkbox objective function with multi-objective optimization and the capability to 

communicate their goals to the automated planner, it reduced the number of times that the 

operator had to modify the objective function of the automated planner.  The operators using the 

limited Radio objective function only had single objective optimization capabilities and were 

forced to perform numerous “what-if’s” on the objective function, more than double the 

modifications of Checkbox operators, to obtain acceptable plans from the automated planner.  



85 

 

This may indicate why operators using the Checkbox objective function generally rated their 

confidence and performance higher. 

Beyond quantitative subjective data, qualitative evaluations of the system and experiment 

were also obtained from all participants.  Ninety-seven percent of participants indicated that they 

understood the changes in the ROEs and how to manipulate the system to adhere to the new 

rules.  Also, 87% of participants felt that the automated planner was fast enough for this 

dynamic, time-pressured mission.  Four of the 10 participants who used the Radio objective 

function complained in writing about the restriction to only select one variable as their top 

priority and more complained verbally during training.  This feeling of restriction in objective 

function choice is likely related to the lower subjective ratings of the Radio objective function. 

As was shown in previous experiments [13], a common complaint from participants was 

a desire for increased vehicle-level control, as opposed to only task-level control.  Fifty-three 

percent of all subjects wrote about wanting to manually assign vehicles to certain tasks because 

they disagreed with an assignment made by the automated planner.  These comments could be 

due to the fact that the automated planner was taking into account variables that the human did 

not comprehend, such as the need to refuel soon, or the speed or capabilities of the vehicle.  The 

participants were also frustrated because of sub-optimal automation performance, as one 

participant wrote, “the automated planner is fast, but doesn’t generate an optimal plan” while 

another wrote, “I did not always understand decisions made by the automated planner…namely 

it would not assign tasks…while some vehicles were seemingly idle.”  Finally, one participant 

wrote, “the automated planner makes some obviously poor decisions…I feel like a lot is hidden 

from me in the decision making…I felt like I had to trick it into doing things.” 
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Three of the 20 participants who used one of the dynamic objective functions noted that 

although they were told that the weightings of each variable were the same if that variable was 

checked, the automated planner seemed to favor certain variables over others.  This could once 

again be due to sub-optimal automation performance or design and should be investigated in 

further research. 

6.4 Changing Rules of Engagement 

Although not a primary focus of this research, it was shown that the second independent 

variable in the experiment, Mission Type, was a significant factor in the analysis of many of the 

dependent variables.  For the Standard Mission, the ROEs were presented to the operator once at 

the start of the mission and did not change.  For the Dynamic Mission, every 5 minutes during 

the 20 minute mission, new ROEs were presented to the operator.  These ROEs gave the operator 

guidance on what was most important to accomplish during that time period and what actions 

they were restricted from taking. 

 As can be expected, operators conducting the more complicated Dynamic mission had 

significantly higher utilization and spent significantly more time in the SCT on average.  An 

interesting and unexpected result was that regardless of the objective function used, operators 

found significantly more targets and had higher target finding efficiency in the Dynamic mission 

as compared to the Standard mission.  Additionally, operators had significantly higher accuracy 

in the re-designation of unknown targets in the Dynamic mission, which is a measure of SA. 

Despite the fact that operators were working harder during the Dynamic mission, they 

also performed better.  It is possible that the scenarios designed for each mission, which had 

different target locations and paths, were of different perceived difficulty levels despite the fact 

that they were designed to be of comparable difficulty.  Another possibility is that more frequent 
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reminders of mission goals, through the changing ROEs, could have played a role in this increase 

in performance.  The ROE changes provided more specific goals to the operator, guiding them in 

how to conduct the mission, which led to higher performance.  The ROE changes influenced the 

internal objective function of the human operator, who then communicated his or her objectives 

to the automated planner, which generated new plans for the vehicles, subject to the operator’s 

approval.  Further research is necessary to evaluate whether more frequent reminders of goals 

can lead to higher performance in an unmanned vehicle supervisory control setting. 

6.5 Summary 

Results from the human performance experiment provided insight into methods of 

collaboration between a human operator and automated planner for conducting supervisory 

control of a network of decentralized UVs.  The results indicated that the original hypotheses 

were generally correct, in that providing an operator with the ability to modify the weightings of 

the variables in the objective function of an automated planner resulted in enhanced SA, 

increased spare mental capacity, and increased subjective ratings of the human-automation 

collaboration.  There were caveats to these results, including the fact that target finding 

efficiency and adherence to changing mission objectives increased with use of a single-objective 

optimization function, but some operators violated the ROEs while using this single-objective 

function. 

One potential confound in this experiment is that by the nature of the experiment, 

operators should have been able to adhere to changing mission objectives better with a dynamic 

objective function.  Theoretically, a static objective function would be inferior if the mission 

goals and ROEs were changing throughout the mission.  Therefore, a comparison between a 

static and dynamic objective function in terms of adherence to changing mission goals may be 
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unfair.  It is clear, however, that the dynamic objective function with multiple objective 

optimization capabilities resulted in superior SA, spare mental capacity, and subjective ratings. 

In addition, the results provided new information on the impact of changing mission 

goals on human-automation collaboration.  While it was expected that changing mission goals 

would cause a higher cognitive workload, the results indicated that operators also had higher SA 

and performed better in terms of finding new targets.  Further research is necessary to analyze 

the impact of changing mission goals on the human operator and how they influence overall 

system performance. 

Two methods of implementing a dynamic objective function were implemented and 

compared, one with single objective optimization and one with multiple objective optimization.  

By providing the operator with more choice in communicating his or her goals to the automation, 

through multi-objective optimization, the operator could communicate to the automation faster, 

did not have to work as hard, and felt more confident about his or her actions.   

 Finally, the results have shown an interesting trend that increasing levels of education 

predicted lower system performance.  A controlled experiment investigating the impact of 

education level on multiple UV supervisory control would need to be run to draw any substantial 

conclusions on this topic.  It is, however, of interest to current military operations, where the 

demand for increased UAV missions is driving a trend towards placing enlisted military 

personnel in UAV operator roles. 

Chapter 7 will discuss the implications these results have on the initial research 

objectives and the design of future collaborative UV systems.  
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7 Conclusions 

There is an increasing demand to use UVs for a variety of civilian and military purposes.  

To keep up with this demand, as well as reduce the expense of operating UVs and enhance the 

capabilities of UVs through better coordination, human operators will need to supervise multiple 

UVs simultaneously.  In order to successfully conduct this form of supervisory control, operators 

will need the support of significant embedded collaborative autonomy.  Automated planners are 

useful in this mission, as they are more effective than humans at certain aspects of path planning 

and resource allocation in time-pressured, multivariate environments.  While reducing the need 

for manual control and allowing the operator to focus on goal-based control, automated planners 

can also be “brittle” when dealing with uncertainty, which can cause lower system performance 

or higher workload as the operator manages the automation.  Therefore, this research was 

motivated by the desire to reduce mental workload and maintain or improve overall system 

performance in supervisory control of multiple UVs. 

The design and testing of an interface to provide an operator with the ability to modify 

the objective function of the automated planner demonstrated the potential for new methods of 

human-automation collaboration in UV control.  A dynamic objective function increases the 

transparency and reduces the “brittleness” of the automated planner, which enhances the ability 

of a human operator to successfully work with the automation.  It provides the operator with a 

convenient method to communicate his or her goals to the automation, especially in light of 

changing mission goals. 

7.1 Research Objectives and Findings 

The objectives of this research were to determine the motivating principles for dynamic 

objective function manipulation, develop an interface to provide operators with this capability, 
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and to evaluate the effectiveness of real-time human manipulation of the objective function of a 

scheduling and resource allocation algorithm.  The goal was to address these objectives through 

the following methods: 

 Review current research in human-computer collaboration for scheduling, resource 

allocation, and path planning, in order to develop a theoretical model of dynamic 

objective function manipulation (Chapter 3).  

 Design a dynamic objective function tool and integrate the tool into an existing multi-

UV mission simulation testbed (Chapter 4). 

 Use a human performance experiment to evaluate the impact of real-time human 

manipulation of a dynamic objective function on system performance, workload, and 

subjective appeal (Chapters 4-6). 

The review of previous research in Chapter 2 motivated this research by revealing gaps in 

the human-automation collaboration literature, including the lack of experiments featuring a 

dynamic and uncertain environment, time-pressure for decision-making, and methods for 

enabling an operator to express his or her desires to the automated planner.  The human-

automation collaboration model that was extended in Chapter 3 to include the concept of 

objective function manipulation illustrated the many cognitive steps that are involved in 

generating, evaluating, and selecting plans for multiple UV control.  The model also showed the 

potential for a reduction in the number of cognitive steps required to evaluate plans through the 

use of a dynamic objective function.  Chapter 4 introduced the dynamic objective function tool 

that was developed and integrated into an existing simulation testbed.  The impact of real-time 

human manipulation of a dynamic objective function was evaluated through a human 

performance experiment. 
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The results of this experiment established that a dynamic objective function with a single 

objective improved adherence to changing mission priorities, but also led to ROE violations.  It 

is possible that the single objective method assisted in causing the violations, either because the 

operators were focused on a single objective or because the method required extensive 

interaction to achieve an acceptable plan, increasing the chance of error.  Secondary results of 

the experiment indicated that changing mission goals, as expected, caused higher cognitive 

workload, but unexpectedly resulted in superior performance and higher SA. Additionally, an 

undergraduate education was shown to be a predictor of higher system performance over higher 

levels of education. 

Finally, operators using a dynamic objective function with multi-objective capabilities 

needed fewer modifications to the objective function to achieve an acceptable plan, had 

enhanced SA, and had increased spare mental capacity, indicating lower workload.  One of the 

most revealing results of the experiment were the subjective ratings of the interfaces, showing 

that operators clearly preferred the dynamic objective function with multi-objective capabilities, 

which gave them the most flexibility in communicating their goals and desires to the automated 

planner.  Developing an appropriate level of trust between the human and automated planner is 

crucial for successful human-automation collaboration [77], and providing the capability to 

modify the objective function for multi-objective optimization can aid in developing this trust. 

7.2 Recommendations and Future Work 

Though the results of this thesis indicate that dynamic objective function manipulation 

shows potential for improved performance with reduced mental workload and increased 

subjective appeal in a human-automation collaboration for multi-UV control, further 
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investigation is required.  The following are recommendations for future work based on the 

research presented in this thesis: 

 As described in Section 5.1, a system-level re-design of the interface for the OPS-

USERS testbed is required to incorporate the concept of changing ROEs.  The 

interface was originally designed assuming that the destruction of hostile targets 

would always be permitted, which is why the only options provided to an operator 

when asked to approve the destruction of a hostile target are to either approve the 

destruction or re-designate the target as unknown.  Adding the capability to designate 

a hostile target as “ineligible for destruction” or a way to remind the operator that a 

target was re-designated from hostile to unknown would be helpful. 

 An additional design recommendation for the OPS-USERS testbed, based on 

suggestions from participants, is to develop additional methods to provide feedback to 

the operator about why a task could not be assigned.  Often times, constraints in 

available UVs, the time required to travel to a task’s location, re-fueling constraints, 

or the time required to conduct a task causes the automation to reject a task that the 

operator attempted to assign in a “what-if” query.  If the reason for the rejection could 

be communicated to the operator visually and/or verbally, it would decrease operator 

frustration with the automation. 

 A direct method of obtaining subjective user feedback that directly compares the 

various objective function types should be considered. This would result in a within-

subjects experimental design where each participant conducts multi-UV missions 

with each of the objective functions. 
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 Further investigation of the types of dynamic objective functions that can be 

implemented is warranted.  More options for manipulating the values of the 

weightings in the objective function should be investigated, as opposed to just 

allowing goal manipulation at a binary level of “on” or “off.”  For example, rating 

each value as “high,” “medium,” or “low” or ranking the values in priority order 

could be explored. 

 It is unclear from this thesis whether the changing ROEs guided the human in how to 

conduct the mission, leading to enhanced performance, or whether it was simply the 

act of reminding the operator of his or her goals that led to superior performance.  An 

experiment could be run to determine whether more frequent reminders of goals leads 

to enhanced performance. 

 It remains an open question whether the participants simply set the objective function 

weightings better than the a priori coded objective function, or whether the operator’s 

manipulations of the objective function actually took the system performance beyond 

a level that could be achieved autonomously.  Further investigation is necessary to 

determine the optimal settings for the objective function of the automated planner.  

This would require, for example, Monte Carlo simulations using a recently developed 

human operator model [78] to work with the automated planner.  This would be 

difficult to pursue, however, for 2 reasons: 1) the definition of “optimal” will be very 

difficult to define in a complex command and control scenario and 2) the dynamic 

and uncertain nature of the simulation may prevent the development of an optimal 

policy for the objective function weightings. 
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Appendix A: Demographic Descriptive Statistics 

Category N Min Max Mean Std. Dev. 

Age (years) 30 18 38 21.30 3.98 

Rating of past 2 nights 

of sleep (1-4) 

30 1 4 2.23 0.82 

Rating of TV watching 

(1-5) 

30 1 5 2.30 0.99 

Rating of gaming 

experience (1-5) 

30 1 5 2.37 1.25 

Rating of comfort level 

with computers (1-4) 

30 2 4 3.40 0.68 

Rating of perception of 

unmanned vehicles (1-5) 

30 2 5 3.80 0.85 

Occupation 

(Student/Other) 

Undergraduate: 18 

Masters: 6 

Ph.D: 4 

Non-student: 2 

- - - - 

Military experience 

(Y/N) 

1/29 - - - - 

Gender (M/F) 21/9 - - - - 
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Appendix B: Consent to Participate Form 
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Appendix C: Demographic Survey 

Pre-experiment Survey 

Page 1 

 
1. Subject number:_____ 
 
2. Age:_____ 
 
3. Gender:      M     F 

 

4. Occupation:______________________________ 
 

if student, (circle one):        Undergrad               Masters PhD 
 

5. Military experience (circle one):  No Yes   
 

If yes, which branch:________ 
 
        Years of service:________ 
 

6. Give an overall rating of your past two nights of sleep. 
 

Poor  Fair  Good   Great 
 

7. On average, how much TV do you watch daily?     
 

Never watch TV      Infrequently watch TV About 1 hour About 2 hours More than 2 hours 

 
8. How often do you play computer games?   

 

Rarely play games       Play games once a month       Weekly gamer       A few times a week gamer       Daily gamer 

 

Types of games played: 

 

9. Rate your comfort level with using computers. 
 
Not comfortable  Somewhat comfortable  Comfortable  Very Comfortable 

 
10. What is your perception toward unmanned vehicles? 
 

Intense dislike            Dislike            Neutral            Like            Really Like 
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Pre-experiment Survey 

Page 2 

1. Subject number:_____ 
 

2. How confident were you about the plans you created? 

Not Confident        Somewhat Confident        Confident        Very Confident        Extremely Confident  

Comments: 

 

3. How did you feel you performed overall? 

Very Poor           Poor          Satisfactory         Good          Excellent 

 

4. How busy did you feel during the practice mission? 

Extremely Busy               Busy                 Not Busy               Idle 
 

5. Do you understand how to create search tasks? 

No  Somewhat Yes 
 

6. Do you understand how to use the target identification window? 

No  Somewhat Yes 
 

7. Do you understand how to approve a weapon launch on hostile targets? 

No  Somewhat Yes 
 

8. Do you understand how to use the Schedule Comparison Tool (SCT)? 

No  Somewhat Yes 
 

9. Do you understand that you must accept a plan in order for the unmanned vehicles to perform new search, track and 
destroy tasks? 

No  Somewhat Yes 
 

10. Do you understand how to modify the objective function of the automated planner? 

No  Somewhat Yes 
 
 

Now is the time to ask the experiment administrator any questions you have about the mission or interface. 
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Appendix D: Experiment Legend 
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Appendix E: Unmanned Vehicle Velocity and Fuel Consumption 

Data was obtained on the MQ-1 Predator to aid in setting the cruise and maximum 

velocities, and cruise and maximum fuel consumption for the UAVs used in the simulation for 

this experiment.  The cruise speed of a Predator is 84 miles per hour, the maximum speed is 135 

miles per hour, and the fuel capacity is 100 gallons [79].  The range of the predator is 2,302 

miles [80].  The maximum speed to cruise speed ratio for the Predator is approximately 1.6. 

The general equation for the drag of a solid object moving through a fluid [81] is: 

 

D = Drag Force 

Cd = Coefficient of Drag 

 = density of fluid (air in this case) 

A = cross-sectional area of the object 

V = velocity of the object 

 

This equation reveals that drag increases with the square of speed.  Based on the 

aerodynamics assumption that fuel consumption increases linearly with drag, and the fact that the 

maximum speed to cruise ratio of the Predator is 1.6, we can calculate that the maximum fuel 

consumption of the Predator should be approximately 2.5 times the cruise fuel consumption.  

Speeds and fuel consumptions were set for the UAVs in the simulation to match this 1.6 ratio 

between cruise and maximum speed and the 2.5 ratio between cruise and maximum fuel 

consumption, as shown in Table 13.  Note that the units of these numbers are based on the 

simulation environment and not on any real-life units. 

Table 13. Velocities and Fuel Consumption for Unmanned Vehicles 

Unmanned Vehicle 

Type 

Cruise 

Velocity 

Max 

Velocity 

Cruise Fuel 

Consumption 

Max Fuel 

Consumption 

Fuel 

Capacity 

WUAV 100 160 0.01 0.025 7 

USV 25 50 0.01 0.025 3 

Fixed-wing UAV 75 120 0.01 0.025 4 

Helicopter UAV 75 120 0.01 0.025 4 
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Appendix F: Rules of Engagement 

F.1   Standard Mission 

The following Rules of Engagement were sent through the Chat Window to the operator 

as soon as the mission began and did not change during the 20 minute mission: 

 Track all found targets and destroy all hostile targets found. 

F.2   Dynamic Mission 

The following Rules of Engagement were sent through the Chat Window to the operator 

at the specified times: 

 START: Cover as much area as possible to find new targets. Tracking found targets is 

low priority. Do not destroy any hostiles. 

 FIVE MINUTES:  Conduct search tasks in SE and SW Quadrants.  2nd priority: Track 

all targets previously found. Do not destroy any hostiles. 

 TEN MINUTES:  Track all targets closely - it is important not to lose any targets!  2nd 

priority: conserve fuel.  3rd priority: destroy hostile targets. 

 FIFTEEN MINUTES:  All Hostile Targets are now high priority - destroy all hostiles! 
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Appendix G: Experiment PowerPoint Tutorials 

G.1   Static (None) Objective Function Tutorial 
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G.2   Radio Button Objective Function Tutorial 

Extra slides specific to the Radio Objective Function: 

 

G.3   Checkbox Button Objective Function Tutorial 

Extra slides specific to the Checkbox Objective Function: 
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Appendix H: Proficiency Tests 

 H.1   Static (None) Objective Function Test 
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H.2   Radio Button Objective Function Test 
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H.3   Checkbox Button Objective Function Test 
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H.4   Answer Key 

PASSING = 4 out of 5 correct! 

OPS-USERS QUIZ ANSWER KEY – Quiz #1 

 

Static 

1. Search Task Window 

2. Right click on Unknown Target G, re-designate to friendly 

3. “Cancel: Re-designate to Unknown” Button 

4. Working Schedule 

5. True 

 

Checkbox 

1. Search Task Window 

2. Right click on Unknown Target G, re-designate to friendly 

3. Check “Hostile Destruction” 

4. Working Schedule 

5. True 

 

Radio 

1. Search Task Window 

2. Right click on Unknown Target G, re-designate to friendly 

3. Click “Hostile Destruction” 

4. Working Schedule 

5. True 
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Appendix I: Questionnaires 

Scenario Feedback Survey 
 

Round 1 
 

1. Subject number:_____ 
 

2. How confident were you about the plans that you created? 
 

Not Confident        Somewhat Confident        Confident        Very Confident        Extremely Confident  

Comments: 

 

3. How did you feel you performed overall? 
 

              Very Poor           Poor          Satisfactory         Good          Excellent 

 

4. How busy did you feel during the mission? 
 

               Idle    Not Busy   Busy             Very Busy       Extremely Busy 
 

 
5. How satisfied were you with the plans created by the Automated Planner? 

 
             Very Unsatisfied           Unsatisfied          Satisfied         Very satisfied Extremely satisfied 
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Scenario Feedback Survey 

Round 2 

1. Subject number:_____ 
 

2. How confident were you about the plans that you created? 

Not Confident        Somewhat Confident        Confident        Very Confident        Extremely Confident  

Comments: 

 

3. How did you feel you performed overall? 

 
              Very Poor           Poor          Satisfactory         Good          Excellent 

 

4. How busy did you feel during the mission? 

 
               Idle    Not Busy   Busy             Very Busy       Extremely Busy 
 
 

5. How satisfied were you with the plans created by the Automated Planner? 
 
             Very Unsatisfied           Unsatisfied          Satisfied         Very satisfied Extremely satisfied 
 

Questions about the Experiment Overall 

1. Were there aspects of the interface that you particularly liked or disliked? 
 
 
 
 
2. Did you understand the changes in the Rules of Engagement? Did you feel like you could implement those changes via 

the interface? 
 
 
 

 
3. Did you feel that the Automated Planner was fast enough? 

 
 
 
 

4. Did you feel that you understood how manipulating the Plan Priorities affected the plans created by Automated 
Planner? 

 
 

 
 

5. Other comments: 
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