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estimate the peak pressure, impulse, time of arrival, and time of duration of blast loads on buildings protected by simple barriers, 
using data generated from validated hydrocode simulations. Once verified and validated, the proposed neural-network model-based 
simulation procedure would provide a very efficient solution to predicting blast loads on the structures which are protected by blast 
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Ab s trac t 
Blast barrier walls have been shown to reduce blast loads on structures, especially in 
urban environments.  Analysis of existing test and simulation data for blast barrier 
response has revealed that a need still exists to determine the bounds of the problem 
and produce a fast-running accurate model for the effects of barrier walls on blast 
wave propagation.  Since blast experiments are very time intensive and extremely cost 
prohibitive, it is vital that computational capabilities be developed to generate the 
required data set that can be utilized to produce simplified design tools.  The 
combination of high fidelity model-based simulation with artificial neural network 
techniques is proposed in this paper to manage the challenging problem.  The 
proposed approach is demonstrated to estimate the peak pressure, impulse, time of 
arrival, and time of duration of blast loads on buildings protected by simple barriers, 
using data generated from validated hydrocode simulations.  Once verified and 
validated, the proposed neural-network model-based simulation procedure would 
provide a very efficient solution to predicting blast loads on the structures that are 
protected by blast barrier walls. 

1. INTRODUCTION 
Blast barrier walls are often implemented as an integrated protective element for increasing the 

level of protection for a structure or facility.  When designed carefully, they can increase the level 
of protection for a structure or facility in several ways.  The main protection is provided by the 
standoff between the threat and the structure or facility, since blast waves have been shown to 
decay exponentially with distance [1].  A second advantage is that blast walls can greatly reduce 
the blast loads in the environment immediately behind them [2-8].  This occurs because the blast 
pressure wave is forced to propagate over the height of the blast wall (reflecting some of the 
energy away from the building) and then expand back down the other side towards the ground 
(thereby dispersing more of the energy).  In this case, the biggest advantage is attained by making 
the blast wall similar in height and close in proximity to the structure being protected.  If the blast 
wall is too far away from the structure, the advantage of having a large standoff is attained, but the 
blast wave has time to build back to a uniform shock front propagating along the ground and the 
loads to the structure will be similar to the configuration where no blast barrier wall is present.  

Predicting blast loads on structures in an open air environment is something that is well 
understood [9, 10] and is captured by existing prediction methodologies which will be referred to 
as the TM5-1300 method [1, 9, 10].  However, the solution to blast loads on structures is greatly 
complicated by the presence of a blast barrier wall. Blast pressures and impulse are reduced due to 
the reflection and dispersion of some of the wave’s energy by the barrier.  On the other hand, 
peaks and troughs in the blast loading across the face of the building can result from interference 
between the leading wave and the portion of it reflected off the ground behind the barrier.  This 

mailto:bryan.bewick@tyndall.af.mil�


A Neural-Network Model-Based Engineering Tool for Blast Wall Protection of 
Structures 

International Journal of Protective Structures 

2 

configuration is a non-linear problem. Depending on the specific configuration of the charge 
weight, W, the charge to barrier standoff, d1, the charge to structure standoff, Z, and the barrier 
height, H, (Figure 1), there are multiple reflections of the blast wave that occur in the problem.  
For small barrier to building standoff configurations, there are at least two spikes in the reflected 
pressure loading the structure; one for the direct line of the shock front propagating over the 
barrier wall and directly towards any point on the structure, and  a second where the shock front 
propagates back to the ground and then reflects onto the structure. The effect is lessened at higher 
locations vertically on the structure.  Under certain circumstances, there can be as many as four 
significant spikes in the reflected pressure.  As the barrier to structure standoff is increased, the 
structure loads begin to resemble loads in the free-field blast propagation configuration.  The 
complexity of the problem requires enhanced multivariate, non-linear tools for modeling and 
analysis. 

 

 
 

Figure 1 Blast barrier wall configuration 

One approach to predicting blast loads with protective blast walls includes case-specific 
computational modeling with software such as LS-DYNA [11], AUTODYN [12], FEFLO [13], 
Air3D [14], SHAMRC [15, 16], CTH [17], and DYSMAS [18].  The downside to this approach is 
the logistics of performing such simulations.  If there is a single facility site configuration to 
evaluate, then this might be a good approach for an experienced computational modeler to 
perform.  If there are multiple cases to be considered, i.e. differing standoffs, charge sizes, and 
blast wall heights, then a modeling approach becomes very cumbersome and time consuming.  
Even using the most powerful of multi-processor based supercomputers, the simulations can take 
days or weeks to execute [19].  Moreover, supercomputers are typically shared resources and may 
incur lengthy wait times before a job is processed, further increasing the time before output of 
results.  Studies attempting to reduce the time required to execute a simulation by using a much 
coarser spatial mesh for the models have shown errors as much as 50% [20].  

An alternative approach that can produce estimates of peak pressure and impulse extremely 
quickly (in a fraction of a second) uses empirically derived curves hand-crafted to fit data gathered 
from a set of experiments.  Specifically, experimental data have been used to develop rules and 
factors for adjusting the estimates from the TM5-1300 method of predicting loads on structures in 
free-field blast configurations.  Rose et al. [2, 3] applied this technique to data gathered from small 
scale experiments to generate prediction charts. Bogosian et al. [4, 5] added 40 live blast tests to 
the data from the Rose et al. work to expand the bounds of the prediction method. The approach 
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shows ranges of accuracy.  The methods produce higher values of uncertainty for pressure than for 
impulse.  Rickman et al. [6, 7] conducted a series of experiments and computational simulations at 
approximately 1:18 and 1:30 scales used to develop curve-fitted models of blast barrier 
effectiveness.  The final product from the Rickman et al. experiments was a series of adjustment 
factors for pressure and impulse loadings with a blast wall present.  Zhou and Hao [8] took a 
similar approach, but used simulation models (based on AUTODYN), rather than live 
experiments, to generate a database of pressure-time histories over the height of a structure for a 
range of blast barrier wall configurations. A series of logical rules were generated to select from a 
set of curves based on observations from these simulations. The above empirical models were 
evaluated using the same data used to generate the model, or using a very small sample of problem 
configurations.  As such, more work is required to validate their performance across the entire 
problem domain.  

Artificial neural networks (ANNs) have also been used as an empirically based method for 
modeling the blast loads on structures behind a protective blast barrier wall. Compared to the 
hand-crafted curve fitting approach discussed above, ANN’s have the advantage that they can 
develop much more intricate and thus accurate curves to fit a set of experimental observations, and 
they do this automatically.  In fact, in principle, there is no limit to the complexity of the curves 
(or hyper-surfaces in the case of multivariate problems) that an ANN can develop or to the number 
of independent variables they can consider, given sufficient training data and computing resources 
(such as memory and processing time) [21, 22]. However, the approach also has similar 
restrictions in that it requires a large data set to accurately develop the models, and the models are 
not able to extrapolate well beyond the bounds of the experimental data. Moreover, as is usually 
the case with empirical methods, the number of observations required to develop a model tends to 
increase geometrically with the number of independent variables describing the problem thus 
placing a practical limit on the complexity of the problem that can be considered. Remennikov and 
Rose [23] developed an ANN-based model that covered several of the values represented in Figure 
1 (d1, Z, and H) as well as the height of burst (HOB) and the height of measuring point behind the 
barrier wall, using data from miniature scale experiments for free-field propagation behind a 
barrier without a reflective structure. The model output the peak scaled pressure and the peak 
scaled impulse. The model showed good correlation with the data, but had a limited range of 
applicability due to the distribution of the available training data.  Similar work has been 
performed by the authors of this paper exploring the capability of a radial Gaussian (RGIN) neural 
networking method, using existing live experimental data [19]. The study found that existing data 
is too sparse and does not provide a good even distribution of the variable space.  

Of the direct modeling methods that have been developed for estimating the blast loading on 
buildings, ANNs appear to have the greatest potential.  As with all direct estimation models, they 
can generate results in a fraction of a second thereby allowing optimal blast mitigation designs to 
be found within a reasonable period of time.  Moreover, they can in principle develop solutions to 
nonlinear problems to any degree of accuracy (given sufficient data and training) and they can 
consider any number of independent variables within a model. However, as with all empirically-
based direct modeling methods, there is a practical limitation to the approach resulting from the 
quantity of data required to develop a model which tends to increase geometrically with the 
number of independent variables.   This effectively limits the level of accuracy that can be 
achieved and the range of problems that can be considered. Existing studies have not tested the 
practical limits of this technology, and many of them have failed to provide a thorough and 
balanced validation of their performance.  The objective of this study is to address this issue and 
thereby identify the true potential of ANN-based direct estimation of blast loading on buildings. 

2. METHODOLOGY 
The approach is to populate data through numerical simulations in order to generate an accurate 

and efficient ANN model-based engineering tool.  The idea behind a neural network is that it fits a 
surface (or hypersurface) to a set of observations of the performance of the real system.  Neural 
networks have many benefits.  They work well with large numbers of independent variables and 
highly non-linear problems; and can be trained to output a variety of solutions. 

The approach for the current study is to populate a 3x3x3x3 grid of the data variable space 
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using computational modeling.  The limitation of this approach is the exclusion of certain 
variables.  There are six variables which can be considered as mentioned before and illustrated in 
Figure 1; W, d1, d2, H, b, ws, and hs.  For this study, it has been determined that there are four 
independent variables used to define the problem.  The four independent variables are W, d1, Z, 
and H.  There are two dependent variables, ws, and hs, which will be input into the ANN, but they 
do not affect the number of simulations required as these data points are inherently captured within 
the confines of each simulation.  In order to completely cover the data space, the number of data 
points required is determined by the number of data points in the variable space grid raised to the 
power of the number of independent variables.  This means that a data set of 81 (34) experiments is 
required to fully encapsulate the variable space for a 3x3x3x3 grid.   

The scope entails a setup of 91 experiments of which 81 simulations were used to populate data 
with appropriate blast barrier configurations to train the neural network models.  The other 10 
simulations were used to verify and validate the accuracy of the neural network.  The problem has 
been defined by four main variables W, d1, Z, and H while holding the structure size, hs and ws, 
and the barrier thickness, b, constant.  The ranges for the series of experiment configurations are 
shown in Table 1.  The width, ws, height, hs, and roof length, lr, of the structure are shown as 
varied values to allow the neural network to produce loadings at any point on the face and roof of 
the structure. ANN models were developed for predicting peak pressure, impulse, time of arrival 
for the peak pressure, and the positive phase duration of the applied blast loads on the structure 
face and on the roof of the structure. 

 
Table 1 Range of Values for the Six Independent Variables 

  min max 
W TNT (kg) 22.68 910.42 
d1 (m) 0 7.62 
Z (d1+d2) (m) 3.048 30.48 
H (m) 1.52 6.1 
hs (m) 0 9.144 
ws (m) 0 1.52 
b (m) 0.3 0.3 
lr (m) 0 1.524 

 
The ANN training data included a grid of data history points on the surfaces where predictions 

were desired.  For the structure face, a 6x31 grid of data points for a total of 186 data points were 
collected from each experiment.  For the roof models, a 6x6 grid of data points were generated 
giving a total of 36 data points. The ANN can then predict the results at any point within the 
bounds of the defined variable space in Table 1.  For the roof loading, data were collected only for 
the first 1.524 m of the roof.  The barrier wall was considered to be infinitely long, so there would 
be no wrap-around effects included. 

3. NUMERICAL SIMULATION 
There are several existing computational codes which have invested much effort into the 

capability to accurately model the blast environment.  The codes considered are first-principle 
model-based approaches that model the detonation and burn of explosive materials, and the energy 
transferred into a blast wave. CTH [17], SHAMRC [15, 16, 24], and DYSMAS [18] have been 
evaluated for the current effort.  CTH and SHAMRC are hydrocodes that have been used 
extensively for blast modeling [24, 25].  DYSMAS is a hydrocode that was developed for 
underwater explosions.  It features a fluid solver, GEMINI [26], coupled with a US Navy version 
of DYNA2D.  While DYSMAS has been used extensively and validated for underwater explosion 
events, there is little work with the code for explosions in air, although it has been used with 
success for modeling a blast event of a field fortification [27]. 

Verification and validation of numerical software provide engineers with the tools to bound the 
amount of error that might be expected in a given simulation.  A mesh convergence study has been 
performed in this project to compare the accuracy and performance of each selected code.  The 
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error and mesh size requirements have been compared using the idea of a grid convergence index 
(GCI) [28, 29].  A 2D-axisymmetric comparison of CTH, SHAMRC and DYSMAS has been 
performed by considering a free-field airblast problem.  The results are also compared against 
existing work determining a GCI for LS-DYNA, CTH, and AUTODYN [30]. 

Results from the two studies showed that LS-DYNA, CTH, and DYSMAS appear to be good 
options in regard to the rate of convergence and accuracy for both pressure and impulse.  Due to 
the volume of data required to train the desired neural networks, an efficient scalable code is 
desired.  DYSMAS has ultimately been chosen due to its superior performance in regards to the 
trade-offs between the efficiency and accuracy for creating a large database of simulation results. 

For validation of the accuracy, the simulation of a live blast experiment was considered.  The 
problem chosen was performed by the Air Force Research Laboratory at Tyndall AFB, FL.  The 
experiment setup includes a metal revetment blast barrier wall in front of a rigid faced structure.  
The computational domain for modeling the blast barrier configuration was set up with a half 
symmetry model.  The bare explosive charge was placed as a hemispherical charge on the ground 
level.  The planes that do not act as planes of symmetry were modeled using outflow boundary 
conditions.  Figure 2 shows the overlay of the simulation results as compared with the live blast 
data gathered from reflective pressure gauges. As can be seen, the peak pressures are predicted 
very well, while the impulse shows a little more variation. 

 

 

(a)               (b) 
Figure 2 Overlay of reflective pressure gauges at the (a) base of the structure and (b) at 

mid-height 

 

4. NEURAL NETWORK DEVELOPMENT 

4.1 Blast Barrier Simulation Problem Setup 
The convergence studies and live blast data validation experiments provided confidence in the 
accuracy of DYSMAS for modeling blast shock wave propagation.  For this reason, the study was 
carried out using DYSMAS.  For each simulation completed in the current study, a common 
format was used.  The blast wall simulations were all set up as half symmetry.  For each 
simulation,  the standoff behind the bare hemispherical surface charge opposite the blast wall was 
set to 1.524 m.  The width of the simulation was also set to 1.524 m (correlates to ws) due to 
restrictions of performing large numbers of memory intensive simulations.  The structure height, 
hs, was set to 9.144 m due to the restrictions of the number of input variables the ANN could 
manage without requiring an excessive number of training patterns.    The thickness of the blast 
barrier, b, was set to 30.48 cm as a sensitivity study found that the thickness of the blast wall has 
only a minor effect on the blast load to the structure behind the blast wall.  Refer to Figure 1 for 
domain configuration and variable definitions. 

Tracer data collection points were collected at evenly spaced increments on the face of the 
barrier, the face of the structure, and on the first 1.524 m of the roof of the structure.  The data 
tracer points were placed at 30.48 cm increments on each face.  On the structure face, there were 
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31 tracer points over the height of the structure and 6 tracer points over the width for a total of 186 
data collection points on the structure face for each simulation.  On the roof structure, an evenly 
spaced grid had 6 tracer points over the length, and 6 tracer points over the width for a total of 36 
tracer points 

In order to produce a model with a good all-round performance, it is important to train the ANN 
with data that covers all regions of the variable space.  As outlined in Table 1, there are six 
variables to be considered as input into the ANN model.  Two of these, the locations on the 
structure face ls and ws, are inherent in each simulation and, thus, do not require extra simulations 
to fill that part of the variable space.  Generally, experience shows that collecting data that covers 
a grid configured such that there are 3 values on each variable axis of the data space is required at 
a minimum to get accurate results from an ANN model.  Moving to denser grids will provide extra 
information that will usually allow the ANN to develop a more accurate model although this can 
be quite cumbersome.  In order to completely cover the data space, the number of data points 
required is determined by the number of data points in the variable space grid raised to the power 
of the number of independent variables.  For the current study, there are four independent 
variables.  Thus, for a 3x3x3x3 grid, there are 34 = 81 simulations required.  To collect enough 
data for a 5x5x5x5 grid would require 54 = 625 simulations.  Due to the sheer volume of 
computational memory and time required, this study focused on developing the 3x3x3x3 grid with 
81 simulations.  An additional 10 simulations were completed at randomly selected points in the 
variable space; 5 as test conditions, and 5 used to show the effect of increasing the density of data 
points. 

This study has considered four main approaches to the problem.  In each case, training of the 
ANN models was performed using a sample of the data collected from each simulation.  For the 
structure face, data from 36 of the 186 tracer points were used to develop the training patterns.  In 
the first approach presented, an evenly spaced 6x6 grid of the tracer points on the structure face 
was used to train the ANN model.  The effects of using blast scaling were also explored.  The 
second approach considered the effect of biasing the collection of data from the grid on the 
structure faces to collect more data in the ranges that showed the greatest error from approach one.  
In approach three, an assessment was made of the effect of using additional simulations to increase 
the density of the training patterns in the variable space.  An additional 5 randomly generated 
simulations were used to generate these additional training patterns.  The fourth focus area 
examined the effect of blast walls on the roof loads.  For the roof portion, 9 of the 36 tracer points 
collected in each simulation on the surface of the roof were used for training purposes. 

4.2 Approach One:  Evenly Spaced Training Grid 
The first approach was to train four ANNs for predicting peak pressure, p (MPa), impulse, i (MPa-
ms), time of arrival, toa (ms), and positive phase duration, tdur (ms), respectively using training 
data based on an evenly spaced grid on the structure face.  The independent input variables were d1 
(m), Z (m), h (m), and W (kg-TNT) and the height, hs (m) and width, ws (m) on the structure face  
The ANNs were trained using data from the primary 81 simulations performed. 
The specific type of ANN adopted for this study was RGIN, a radial Gaussian architecture with an 
incremental learning paradigm [21, 22].  RGIN networks function as a three layer feed forward 
system.  The three layers are the input variables, hidden neurons, and the output variable.  RGIN 
networks represent the data as a composite of radial-Gaussian functions.  The hidden neuron 
portion of the feed forward system represents the number of radial-Gaussian functions used to fit 
the data.  Each time a hidden neuron is added, a new radial-Gaussian function is added onto the 
system to capture the section of the problem with the largest residual errors.  Development of an 
RGIN network progresses one hidden neuron at a time.  Each hidden neuron is added so that the 
centroid of its radial Gaussian function is positioned over the largest error data point, its amplitude 
is equal to that error, and its spread is set to a value that reduces the sum of the absolute values of 
all residual errors as much as possible.  The RGIN approach has been shown to work well with 
large sets of data [19, 31].   A schematic of this type of network for a single independent variable 
is illustrated in Figure 3 where the dashed blue curves each represent the function implemented by 
a single hidden neuron, the red line is the combined output from the network, and the asterisks 
represent the target points for training.   
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Figure 3 Schematic of RGIN Neural Network 

Initial testing of ANN models was conducted with data from tracer points in between those 
used for training.  Since this is not a fully accurate depiction of the validity for the ANN models, 
this approach was used for qualitative comparison of the different approaches to the ANN models.  
Figure 4 shows the training progress of the ANN approach to predicting the impulse loading to the 
structure face.  It is typical of the results for the other three ANN models for the impulse, time of 
arrival, and positive phase duration.  The mean absolute error was 40 kPa-ms, which relates to 
about 6% error.  The correlation factor for each ANN was 0.9814, 0.9938, 0.9681, and 0.9806 for 
the peak pressure prediction, impulse prediction, positive phase duration prediction, and time of 
arrival prediction respectively.  The mean absolute error for each ANN was 0.644 MPa, 0.040 
MPa-ms, 2.22 ms, and 0.864 ms for the peak pressure prediction, impulse prediction, positive 
phase duration prediction, and time of arrival prediction respectively. 

 

 

Figure 4 Training progress for RGIN ANN on impulse load to structure prediction 

The initial ANN development showed very good correlation with the sample data points.  One 
point of interest to be considered is the effect of using blast scaling.  Blast scaling is a common 
practice for reducing the number of input variables and simplifying blast problems [1].  It is also 
commonly used to alter full-scale experiments into small-scale experiments.  This practice helps 
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cut costs for construction, and the difficulty of having large scale ranges capable of performing 
large scale detonations.  The blast scaling concept relates all dimensions of a blast configuration 
through the charge weight by scaling the distances by W -1/3.  Cubed root scaling removes the 
charge weight as a variable.  This concept has been used with reasonably good correlation for 
several other blast wall effectiveness efforts [2-8].  The expectation was that with fewer input 
variables, the ANN might be able to converge on an acceptable solution more quickly for a given 
number of hidden neurons (radial-Gaussian functions).  Figure 5 shows the results of the ANN 
models trained with 500 hidden neurons for both the scaling and non-scaling versions of the 
network.  While both results show good correlation, the scaled version has more errors in the mid 
and low peak pressure range. This does not show in the correlation coefficient since most of the 
errors are in the low and mid range biasing the measure of the correlation coefficient. Also, the 
non-scaled version has a higher kurtosis, meaning that the errors are a factor of a few outlier data 
points as opposed to many moderate sized errors as in the scaled version. 

 

 
(a) 

 
(b) 

Figure 5 Peak Pressure Results for (a) scaled input (5 input variables) and (b) non-scaled 
input (6 input variables) 
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The non-scaled version produces better results than the scaled version. This is not an 
implication on the validity of the practice of cubed-root scaling, but rather a depiction of the 
ability of the ANN to learn the training patterns. When cube-root scaling is applied, the errors due 
to the charge size are hidden in the other variables.  With the 6 variables, the ANN is able to learn 
the patterns better.  Therefore, all following work was performed without the use of cube-root 
scaling. 

4.3 Approach Two:  Biased Spacing of Training Grid 
Analysis of the results from approach one showed a bias of the absolute errors towards the base of 
the structure, in particular for points below the height of the barrier, as depicted in respect to peak 
pressure predictions in Figure 6. To address this problem, the second approach used tracer points 
that were biased in location on the face of the structure towards its base. The location of the tracers 
on the width of the structure remained the same, however. This provided the ANN with more 
training data in the areas that had shown the greatest absolute errors in the peak pressure 
predictions. 
 

 

Figure 6 Bias of peak pressure errors towards heights on the structure face below the 
height of the blast wall 

Table 2 shows the comparison of the behavior of the evenly spaced grid in comparison with the 
biased grid with 500 hidden neurons. 
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Table 2 Statistical comparison of an evenly distributed grid of training points and a biased 
grid 

Statistical Measure NB: yellow indicates winning pattern set 

 
Correlation 

Factor MAE RMSE Std 
Deviation Kurtosis 

ANN 
Model Even Bias Even Bias Even Bias Even Bias Even Bias 

Pressure 
(MPa) 0.981 0.987 0.06 0.04 0.21 0.17 1.09 1.06 15.07 14.8 

Impulse 
(MPa-ms) 0.993 0.995 0.04 0.08 0.42 0.36 3.79 3.78 4.13 3.74 

Time of 
Arrival 
(ms) 

0.980 0.979 0.86 1.41 5.25 5.36 26.9 26.7 3.76 3.40 

Duration 
(ms) 0.968 0.961 2.22 1.92 7.96 8.78 31.6 31.8 -0.31 -0.24 

 
The analysis of biasing the grid of training points lower on the structure face produces some 

interesting results.  The peak pressure ANN is improved by all accounts when using the biased 
grid.  The correlation is stronger, the mean absolute error (MAE) is reduced and it shows a more 
linear behavior with fewer large error occurrences. The impulse ANN is also improved by biasing 
the grid with the exception of the MAE which doubles.  Despite the MAE increase, it shows a 
more linear distribution with fewer occurrences of large errors.  There are more occurrences of 
small errors, but the general fit is better. The time of arrival ANN has stronger correlation, and 
smaller MAE and root mean square error (RMSE) for the evenly spaced grid, although the 
standard deviation and kurtosis are better with the biased grid. The evenly spaced grid shows 
better correlation in general, but the biased grid shows better results for high values of the time of 
arrival. The duration ANN shows better results for the evenly spaced grid despite a lower MAE 
with the biased grid. 

4.4 Approach Three:  Effect of Additional Training Patterns 
The aim of the third approach is to explore the value in expanding the amount of data within the 
variable space used to train the ANN models.  As described in Section 4.1, increasing the density 
of training patterns should increase the accuracy of the ANN model.  In addition to the primary 81 
simulations that were generated, 5 additional simulations were completed, with randomly selected 
values for W, d1, Z, and H, to use for the study of the effect of the number of training patterns.  In 
particular, these experiments would indicate whether increasing from a 3x3x3x3 grid to a 5x5x5x5 
grid (that is, increasing the number of simulations performed to generate training patterns from 81 
to 625) would be worth the time and computational cost. 
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Table 3 Statistical comparison of biased grid models and the biased grid models with 5 
extra simulations 

Statistical Measure NB: yellow indicates winning pattern set 

 
Correlation 

Factor MAE RMSE Std Deviation Kurtosis 

ANN Model Extra Bias Extra Bias Extra Bias Extra Bias Extra Bias 
Pressure 

(MPa) 0.990 0.987 0.012 0.040 0.154 0.173 1.065 1.061 14.74 14.78 

Impulse 
(MPa-ms) 0.996 0.995 0.053 0.080 0.339 0.355 3.782 3.775 3.87 3.74 

Time of 
Arrival (ms) 0.977 0.979 1.269 1.414 5.666 5.356 26.82 26.72 3.77 3.40 

Duration 
(ms) 0.963 0.961 0.337 1.918 8.549 8.781 31.73 31.81 -0.23 -0.24 

 
Figure 7 Training progression of impulse ANN compared to the model with extra training 

patterns 

Table 3 indicates that the ANN models are improved in almost every aspect with the addition of 
the five extra simulations from which several additional training patterns were selected.  The 
standard deviation and kurtosis are slightly higher for the impulse ANN, but all other measures are 
less. Figure 7 indicates that the impulse ANN is learning better with the extra training patterns.  
All measures suggest that expanding to a 5x5x5x5 grid, if possible, will yield significantly 
improved results. 

4.5 Testing 
The approaches presented to this point have been compared using data that exists at points 
between the tracers used for training the ANN models.  It is also important, however, to gauge the 
behavior of the ANN models against a blind set of data that exists in the variable space between 
the blast wall and structure configurations used to train the ANN models. To this end, 5 additional 
randomly generated test simulations were completed to gauge the effectiveness of the ANN 
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models to the test data. The configurations of the test simulations are outlined in Table 4 and can 
be compared against the variable extents in Table 1. 

 
Table 4 Test simulation configurations 

W (kg-TNT) h (m) d1 (m) Z (m) 

680.87 2.64 7.14 29.17 
586.62 2.35 5.16 22.31 
839.80 3.98 5.16 14.30 
560.65 4.60 0.93 7.36 

128.99 4.14 7.38 20.67 

 
The test produces mixed results.  The peak pressure is the most accurate followed by the time 

of arrival, impulse, and the positive phase duration respectively. Table 5 displays the behavior and 
Figure 8 and Figure 9 show the performance of the peak pressure and the impulse ANN models. 

 
Table 5 Comparison of ANN model correlation with test data 

ANN Model Correlation 
Factor 

MAE RMSE Standard 
Deviation 

Kurtosis 

Peak Pressure (MPa) 0.942 0.044 0.117 0.343 1.229 
Impulse (MPa-ms) 0.784 1.486 1.743 2.495 -0.999 

Time of Arrival (ms) 0.851 2.010 5.820 15.555 -1.430 

Duration (ms) 0.504 24.984 27.067 17.534 -0.633 

 

 

Figure 8 Correlation of ANN model with test data for peak pressure 
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Figure 9 Correlation of ANN model with test data for impulse 
 
The results tend to be in line with what might be expected.  The peak pressure and the time of 

arrival are the most accurate, which is intuitive because these values are not as likely to be effected 
by multiple reflections.  The impulse and duration however are very susceptible to errors due to 
multiple reflections and their performance is less accurate than the ANN models for pressure and 
time of arrival. 

4.6 Prediction of Roof Loads 
Blast loads applied to roof structures are predicted by applying an increase factor to the free-field 
incident pressure based on the standoff, height of the building, and the length of the building to be 
loaded as shown in Figure 10 [9, 10].  

 

 

Figure 10 Factors for predicting blast loading to roofs 
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hs.  
In order to study the effects of protective blast walls on the blast loading of roofs, data on the 

first 1.524 m of the structures were collected during all of the simulations generated for the 
structure loading ANN’s formulated in this work.  A pragmatic evaluation of the variables 
provides insight into the effects on the properties that define a blast loading.  In general, the peak 
pressure and time of arrival are less affected by the presence of a blast wall as opposed to the 
impulse and duration. This is seen in the results from the roof load ANN development (Table 6). 

 
Table 6 Comparison of ANN model predictions with test data 

Statistical Measure NB: yellow indicates winning pattern set 

 
Correlation 

Factor MAE RMSE Std. Deviation Kurtosis 

ANN Model Even Extra Even Extra Even Extra Even Extra Even Extra 
Pressure 

(MPa) 0.989 0.989 0.038 0.034 0.014 0.014 0.071 0.071 9.20 9.06 

Impulse 
(MPa-ms) 0.627 0.601 0.009 0.031 1.191 1.214 1.099 1.094 156.8 159.8 

Time of 
Arrival (ms) 0.942 0.948 9.629 0.501 3.785 3.548 21.1 21.2 3.693 3.617 

Duration 
(ms) 0.886 0.903 3.18 9.46 7.28 6.76 34.1 33.2 -0.46 -0.42 

 
The ANN models for peak pressure, time of arrival, and duration all show good correlation and 

display improvement with the addition of extra training patterns as outlined in previous sections.  
The impulse ANN does not show good correlation.  Other than the standard deviation being 
decreased, all the statistical measures become worse by the addition of extra training patterns for 
the impulse ANN model. 

5. DISCUSSION 
In all the cases as discussed above, the pressure and time of arrival functions are captured by the 
ANN approach.  The impulse and positive phase duration ANNs are less accurate however.  The 
results suggest that it would be beneficial to increase the number of training patterns input into the 
neural networks.  The current results are produced using a 3x3x3x3 grid covering the variable data 
space.  The 3x3x3x3 grid represents 81 experiments with 30 data points embedded in each 
experiment for a total of 2,430 training patterns.  Increasing to a 5x5x5x5 grid of the variable data 
space would increase the number of experiments to 625 with 30 data points embedded in each 
experiment for a total of 18,750 training patterns. 

The implications of increasing the density of the grid of training data is the difficulty in 
generating the amount of data required.  The problem is magnified when the bounds of the model 
are desired to be expanded from the current range.  By examining the charge weight variable, the 
implications can be demonstrated.  The current range for the charge weight is 22.68 kg to 910.42 
kg.  Assuming an evenly distributed grid spacing, the density for a 3x3 grid would require 
experiments with the charge weight incremented 443.87 kg.  Increasing to the 5x5x5x5 grid would 
have the charge weight incremented by 221.935 kg.  After the 5x5x5x5 grid is established, the 
bounds of the model can be extended by maintaining a consistent density of the data in the grid of 
training data.  Thus, for each 221.35 kg incremental increase in the range of the charge weight, 
there will be 256 (44) experiments required to maintain a consistent density. 

The computational modeling used to produce the simulations for the 3x3x3x3 grid was 
completed using DoD supercomputers.  The simulations ranged from 12 processors up to 164 
processors with an average wall clock time of 60 hours.  The total number of processor hours, 
equal to the number of processors multiplied by the wall clock time, required for the simulations 
populating the 3x3x3x3 grid of data was approximately 1.5 million hours.  This exhibits both the 
large investment required to produce accurate numerical simulations and the need for a quick 
engineering tool for efficient and accurate predictions.  The limitations of applying a neural 
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network modeling technique reside predominantly in the investment to produce the data required 
for training the ANN model. 

6. CONCLUSION 
Blast design and assessment of structures protected by blast barrier walls require aids to develop 
beneficial configurations. CFD modeling, as demonstrated, can be a very accurate approach to 
predict blast wave and structure interaction. In order to produce those accurate results, there is a 
very large overhead of hardware requirements, modeling expertise, and wall clock time. ANNs 
provide an efficient tool to aid in optimizing site layout and structural design for terrorist type 
threats. The advantage of the ANN approach is that it can provide good results in a fraction of a 
second, allowing optimal design solutions to be sought.  The downside is that ANNs require a 
large set of data to achieve acceptable levels of accuracy, and this data set can be expensive to 
collect. 

The results of this study show the development of an ANN methodology for a range of values 
for the variables of charge weight, charge to barrier standoff, barrier to structure standoff, barrier 
height, and location on the structure face as well as roof loads. The development was performed 
on a 3x3x3x3 grid of the variable data space. Experience and the results of this study show that 
moving to a 5x5x5x5 grid of the variable space would provide improved results. The significance 
of this study is that it displays the ANN technology at the edge of its applicability. A total of 81 
simulations were required for the 3x3x3x3 grid, whereas 625 would be required for a 5x5x5x5 
grid. The 5x5x5x5 grid would provide improved results for the bounds of the current problem. 
Furthermore, if the scope of the model was to be expanded in terms of the range of the variables, 
then a corresponding increase in the size of the training data set would be required if the same 
level of accuracy was to be maintained    

The ANN technology shows the capability to model the nonlinear blast loading function in an 
environment with a blast barrier protective wall.  The ANN performance has been presented for a 
3x3x3x3 grid of the variable space.  There are differing degrees of non-linearity for the predicted 
values of each of the variables considered.  Peak pressure and time of arrival show the most 
predictable responses. Impulse and positive phase duration have a higher degree of non-linearity 
that proves more difficult for the ANN approach to learn.  Based on the 6 input variables (W, d1, Z, 
H, ws, and hs) the ANN provides a fast-running tool that is able to give an idealized blast load to 
structural components. 
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