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This paper is concerned with tracking of ground targets on roads

and investigates possible ways to improve target state estimation via

fusing a target’s track with information about the road along which

the target is traveling. A target track is estimated using a surveil-

lance radar whereas a digital map provides the road network of the

region under surveillance. When the information about roads is as

accurate as (or even better than) radar measurements, it is desired

naturally to incorporate such information (fusion) into target state

estimation. In this paper, roads are modeled with analytic functions

and their fusion with a target track is cast as linear or nonlinear

state constraints in an optimization procedure. The constrained op-

timization is then solved with the Lagrangian multiplier, leading to

a closed-form solution for linear constraints and an iterative solu-

tion for second-order nonlinear constraints. Geometric interpreta-

tions of the solutions are provided for special cases. Compared to

other methods, the track-to-road fusion using the constrained opti-

mization technique can be easily implemented as an add-on mod-

ule without changes to an existing tracker. For curved roads with

coarse waypoints, the nonlinear constrained solution outperforms

the piecewise linearized constrained approach. Computer simula-

tion results are presented to illustrate the algorithms.

Manuscript received October 4, 2006; revised August 3, 2007 and
June 12, 2008; released for publication on June 25, 2008.

Refereeing of this contribution was handled by Benjamin J. Slocumb.

Authors’ addresses: C. Yang, Sigtem Technology, Inc., 1343 Par-
rott Drive, San Mateo, CA 94402, E-mail: (chunyang@sigtem.com);
E. Blasch, Air Force Research Lab/RYAA, 2241 Avionics Circle,
WPAFB, OH 45433, E-mail: (erik.blasch@wpafb.af.mil).

1557-6418/08/$17.00 c° 2008 JAIF

1. INTRODUCTION

With the rapid building up of geographic informa-
tion system (GIS) including digital road maps (DRM)
and digital terrain elevation data (DTED), information
about roads becomes more accurate, up to date, and
accessible. Looking for a map in the Internet is at fin-
gertips with a least cost (i.e., distance or time) route
plotted to a destination. Road and terrain information
has been used in the past for navigation via terrain con-
tour matching. Other examples include the increasingly
popular use of digital maps for automobile navigation
with a Global Positioning System (GPS) receiver and
terrain-aided navigation for aircraft.
This paper is concerned with tracking of ground tar-

gets on roads and investigates possible ways to improve
target state estimation via fusing a target’s track with in-
formation about the road along which the target is trav-
eling. A target track is estimated using a surveillance
radar whereas a digital map provides the road network
of the region under surveillance. Target tracking is not
unfamiliar with road maps. For example, target tracks
are represented by colorful dots and lines blinking along
road networks on a big screen, often on top of a topo-
graphic or satellite image, in a situation room, in an air
traffic control tower, and on a radar operator screen.
In these applications, however, target tracks and road
networks are merely displayed together with little or no
interaction in the data processing level.
When the information about roads is as accurate as

(or even better than) radar measurements, it is naturally
desired to incorporate such information into target state
estimation. When a vehicle travels off-road or on an
unknown road, the state estimation problem is uncon-
strained. However, when the vehicle is traveling on a
known road, be it straight or curved, the state estima-
tion problem can be cast as constrained with the road
network information available from digital road/terrain
maps. In the past, such constraints are often ignored (or
left for the users to perceive it as in the display exam-
ple mentioned above). The resulting estimates, even ob-
tained with the Kalman filter, cannot be optimal because
they do not make full use of this additional information
about state constraints.
To use such state constraints, previous attempts can

be put into several groups. The first group is to incorpo-
rate road information into the state estimation process.
One technique is to reduce the system model param-
eterization. Another technique is to translate the state
constraints onto the state process and/or observation
noise covariance matrix for the estimation filter [10].
The use of variable structure IMM (VS-IMM) methods
also belongs to this group [7, 18, 19, 22]. Yet another
technique is to project a dynamic system onto linear
state constraints and then apply the Kalman filter to
the projected systems [11]. Similarly, for nonlinear state
constraints, there is the one-dimensional (1D) represen-
tation of a target motion along a curvilinear road [27].
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The technique to model bounded random variables with
truncated densities also belongs to this group, which is
easily workable with such nonlinear filters as a parti-
cle filter [2, 4, 25, 26]. Road map information can also
be integrated within Multi-Hypothesis Tracking (MHT)
[12, 13].
The second group is to treat state constraints as

pseudo measurements [8]. For a road segment, its an-
alytic model not only constrains the target position but
also the direction of the target’s velocity. Indeed, the
target velocity is closely aligned with the road orien-
tation for a linear segment and with the tangent vec-
tor at the target position for a nonlinear segment. Fur-
thermore, an estimate of centripetal acceleration can
be obtained given the curvature and the target speed
[27].
In the third group, an unconstrained Kalman filter

solution is first obtained and then the unconstrained
state estimate is projected onto the constrained sur-
face [24]. This technique can also be viewed as post-
processing (estimation or updating) correction [28] or
track-to-road fusion as referred to in this paper. In con-
ventional track fusion, two or more tracks are available,
each consisting of an estimate of the underlying tar-
get trajectory with its estimation error covariance. The
fused track is typically found that minimizes the sum
of covariance-weighted state errors squared [5, 6]. In
contrast to this conventional track fusion that operates
on individual states, fusion of tracks with roads involves
a state value (a point) and a subset of state values (an
arc or interval). In this paper, roads are modeled with
analytic functions and their fusion with a target track
is therefore formulated as linear or nonlinear state con-
straints in an optimization procedure.
Although this paper presents a new technique for

the third group, it is interesting to think of it relative
to the first group in much the same way track fusion
is compared with measurement fusion. In measurement
fusion, measurements from all sensors are made avail-
able to a centralized tracker, which has the potential to
fuse out the best estimate. However, measurement fu-
sion may not be practical for distributed sensors wherein
gathering all raw measurements is often limited by net-
work transmission bandwidth and latency. Track fusion
is frequently used as acceptable compromise between
performance and cost.
Similarly, fusion of tracks with road constraints (in

the third group) may not perform as well as an algorithm
that incorporates road maps directly into the filtering
process (in the first group). However, it has many merits
of its own. First, it is simple and can be retrofitted
into existing trackers as an add-on module without
changes to the trackers. Since the tracks are obtained
without constraints, it can easily switch between off-
road and on-road operations when road information is
available and the unconstrained tracks are deemed close
to roads. Second, an up-to-date accurate road map may
not be available to individual sensors but only at a
fusion center. In this case, the algorithm of track-to-

road fusion as presented in this paper can be applied
directly whereas those in the first group cannot. Third,
as noted in [18], the IMM methods based on road maps
do not always perform better than those without road
maps particularly when the updating interval is long. In
contrast, constraining an on-road target’s track onto a
road (fusing) has no such a problem. Fourth, the track-
to-road fusion algorithm goes beyond target tracking to
navigation for instance where it can be used to loosely
integrate GPS fixes and digital maps [16].
In this paper, we therefore focus on the third group

and in particular present an optimization procedure for
nonlinear state constraints which is shown to be superior
to the linear approximation of nonlinear state constraints
as suggested in [24].
There are a host of constrained nonlinear optimiza-

tion techniques [15]. Primal methods search through the
feasible region determined by the constraints. Penalty
and barrier methods approximate constrained optimiza-
tion problems by unconstrained problems through mod-
ifying the objective function (e.g., add a term for higher
price if a constraint is violated). Instead of the origi-
nal constrained problem, dual methods attempt to solve
an alternate problem (the dual problem) whose un-
knowns are the Lagrangian multipliers of the first prob-
lem. Cutting plane algorithms work on a series of ever-
improving approximating linear programs whose so-
lutions converge to that of the original problem. La-
grangian relaxation methods are widely used in discrete
constrained optimization problems.
In addition, moving horizon estimation reformulates

the estimation problem as quadratic programming over
a moving, fixed-size estimation window and has be-
come an important approach to constrained nonlinear
estimation [20]. Another approach to constrained linear
estimation is to exploit the Lagrangian duality. Indeed,
a constrained linear estimation problem is shown to be
a particular nonlinear optimal control problem in [9].
Constrained state estimation has also been studied from
a game-theoretical point of view (also called the mini-
max or H1 estimation) in [23].
In this paper, the constrained optimization is solved

with the Lagrangian multiplier, leading to a closed-form
solution for linear constraints and an iterative solution
for nonlinear constraints. In the latter case, we present a
method that allows for the use of second-order nonlinear
state constraints exactly. The method can provide better
approximation to higher order nonlinearities. The new
method is based on a computational algorithm that
iteratively finds the Lagrangian multiplier. The use of a
second-order constraint versus linearization is a tradeoff
between reducing approximation errors to higher-order
nonlinearities and keeping the problem computationally
tractable.
A nonlinear constraint can be approximated with

linear constraints in a piecewise fashion. By judicious
selection of the number of linear segments and their
placement (i.e., the point around which to linearize), a
reasonably good performance can be expected. In the
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limit, a nonlinear function is represented by a piece-
wise function composed of an infinite number of linear
segments. This naturally leads to the use of nonlinear
constraints. As such, the proposed nonlinear constrained
solution for curved roads is not only more accurate but
also less complicated in implementation than a piece-
wise linearized constrained approach, to be shown later
in simulation examples.
Although the main results are restricted to state

equality constraints, it can be extended to inequality
constraints. According to [24], the inequality constraints
can be checked at each time step of filtering. If the in-
equality constraints are satisfied at a given time step, no
action is taken since the inequality constrained problem
is solved. If the inequality constraints are not satisfied
at a given time step, then the constrained solution is
applied to enforce the constraints.
The paper is organized as follows. Section 2 presents

linearly constrained state estimation for fusion of tracks
with linear road segments. Section 3 presents an iter-
ative solution for fusion of tracks with nonlinear road
segments. In both cases, geometric interpretations of the
solutions are provided for special cases. In Section 4,
computer simulation results are presented to illustrate
the algorithms. Finally, Section 5 provides concluding
remarks and suggestions for future work.

2. FUSION OF TRACKS WITH LINEAR ROAD
SEGMENTS

When a road segment is straight, it can be mod-
eled as a linear state constraint. In this section, we first
summarize the results for linearly constrained state es-
timation [24] as an approach to fusion of tracks with
linear road segments. We then show that this linearly
constrained state estimation is equivalent to use of con-
straints as measurements in state update. Finally, we
provide a simple geometric interpretation of the linearly
constrained state estimation for track-to-road fusion.

2.1. Linearly Constrained State Estimation for Track-to-
Road Fusion

Consider a linear time-invariant discrete-time dy-
namic system together with its measurement as

xk+1 =Axk +Buk +wk (1a)

yk =Cxk + vk (1b)

where the subscript k is the time index, x is the state
vector, u is a known input, y is the measurement, and
w and v are state and measurement noise processes,
respectively. It is implied that all vectors and matrices
have compatible dimensions, which are omitted for
simplicity.
The goal is to find an estimate denoted by x̂k of xk

given the measurements up to time k denoted by Yk =
fy0, : : : ,ykg. Under the assumptions that the state and
measurement noises are uncorrelated zero-mean white
Gaussian with w»Nf0,Qg and v»Nf0,Rg where Q

and R are positive semi-definite covariance matrices,
the Kalman filter provides an optimal estimator in the
form of x̂k = Efxk j Ykg [3]. Starting from an initial esti-
mate x̂0 = Efx0g and its estimation error covariance ma-
trix P0 = Ef(x0¡ x̂0)(x0¡ x̂0)Tg where the superscript T
stands for matrix transpose, the Kalman filter equations
specify the propagation of x̂k and Pk over time and the
update of x̂k and Pk by measurement yk as

x̄k+1 =Ax̂k +Buk (2a)

P̄k+1 =APkA
T+Q (2b)

x̂k+1 = x̄k+1 +Kk+1(yk+1¡Cx̄k+1) (2c)

Pk+1 = (I¡Kk+1C)P̄k+1 (2d)

Kk+1 = P̄k+1C
T(CPkC

T+R)¡1 (2e)

where x̄k+1 and P̄k+1 are the predicted state and predic-
tion error covariance, respectively.
Now in addition to the dynamic system of (1), we

are given the linear state constraint equation

Dxk = d (3a)

where D is a known constant matrix of full rank, d is
a known vector, and the number of rows in D is the
number of constraints, which is assumed to be less than
the dimension of states. If D is a square matrix, the state
is fully constrained and can thus be solved by inverting
(3a). Although no time index is given to D and d in (3a),
it is implied that they can be time-dependent, leading to
piecewise linear constraints.
The information about a target traveling along a lin-

ear road segment is well modeled by (3a) and illus-
trated in Fig. 1. As shown, the road is specified by the
orientation μ defined as the angle of its normal vector
n relative to the x-axis and the distance to the origin
r. The unit vectors pointing along the road and per-
pendicular to the road are given by ¹= [¡sinμ,cosμ]T
and n= [cosμ, sinμ]T, respectively. Clearly, a target at
position p= [x,y]T with velocity v= [_x, _y]T satisfies the
linear constraints pTn= r and vTn= 0. These two equa-
tions can be easily put together into the format of (3a)
with the corresponding D and d given below.

D=
·
cosμ 0 sinμ 0

0 cosμ 0 sinμ

¸
, d=

·
r

0

¸
(3b)

The constrained Kalman filter according to [24]
is constructed by directly projecting the unconstrained
state estimate x̂k onto the constrained surface S = fx :
Dx= dg. It is formulated as the solution to the problem

³x= argmin
x2S
(x¡ x̂)TW(x¡ x̂) (4)

where W is a symmetric positive definite weighting
matrix. The time index subscript k is dropped from

16 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 3, NO. 1 JUNE 2008



Fig. 1. Road models as linear constraints.

variables in (4) for simplicity. When W= I, the cost
function of (4) is the standard least squares formulation.
IfW is chosen based on the estimation error covariance
matrix P, it becomes the weighted least squares solution.
Derived using the Lagrangian multiplier technique in

Appendix A, the solution to the constrained optimiza-
tion in (4) is given by [24]

³x= x̂¡W¡1DT(DW¡1DT)¡1(Dx̂¡d): (5)

Several interesting statistical properties of the con-
strained Kalman filter are presented in [24]. This in-
cludes the fact that the constrained state estimate as
given by (5) is an unbiased state estimate for the sys-
tem in (1) subject to the constraint in (3a) for a known
symmetric positive definite weighting matrix W. Fur-
thermore when W= P¡1, the constrained state estimate
has a smaller error covariance than that of the uncon-
strained state estimate, and it is actually the smallest for
all constrained Kalman filters of this type.

2.2. Track-to-Road Fusion Architectures1

According to (4), the fusion of a target track (an
unconstrained state estimate) x̂k with a road segment

1This subsection is added based on the editor’s comments.

Fig. 2. Track-to-road fusion architectures.

represented by a surface in the state space S is cast as
a constrained least squares optimization problem, yield-
ing the constrained solution ³x and its estimation error
covariance P³x. This leads to two possible implementa-
tion schemes. One is the open-loop architecture with-
out feedback as shown in Fig. 2(a) and the other is
the closed-loop architecture with feedback as shown in
Fig. 2(b).
In the open-loop architecture of Fig. 2(a), the uncon-

strained solution can be used to help select the proper
road constraints prior to fusion and the fused solution
may be further used to refine road constraints for future
target movements. However, the fused state is not fed
back to the unconstrained tracker.
In contrast, the closed-loop architecture of Fig. 2(b)

feeds back the fused state to the unconstrained Kalman
tracker (i.e., to replace the state with the fused state).
This has the advantage of keeping the one-step-ahead
prediction closely aligned to the road estimates.
There are several issues to trade off when making

the choice of one architecture versus the other. The
closed-loop scheme needs to alter the unconstrained
filter and its implementation therefore requires inter-
nal access. Further, a two-way data link may be nec-
essary if the tracker and the fusion center are not
co-located.
The open-loop architecture is simple and can be

retrofitted into existing trackers as an add-on module
without changes to the trackers. Since the tracks are ob-
tained without constraints, it can easily switch between
off-road and on-road operations. It is particularly useful
for cases where no up-to-date accurate road map (e.g.,
the latest satellite imagery) is available to individual sen-
sors but at a fusion center. In this paper, the open-loop
scheme is implemented in the simulation examples pre-
sented in Section 4.
As shown in Fig. 2, an important step leading to the

track-to-road fusion is the road constraint generation. It
consists of two major parts, namely, creating an analytic
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representation for a given road segment and selecting
the correct road segment(s) for fusion.
In a digital geographic database, road network is

stored as a series of waypoints, a layer of the vector map
(VMAP). The waypoints are typically extracted from
survey data and aerial imagery among others and the
density or spacing of waypoints is determined by the
map resolution, which may be nonuniform. Although
local survey data may contain the radius and turn center
of a curved road segment, the waypoints themselves do
not define the functions representing the road. To apply
the road-constrained optimal fusion method, it is nec-
essary to generate the constraint function based on the
waypoints in the database. The most typical approach
would use linear segments to connect the waypoints as
evident from Google Map, MapQuest, or MSN Maps
when zooming in. The waypoint connections defines a
line representing road, which can be a simple line con-
necting two waypoints or a tangent passing through a
waypoint. Alternately, a spline (a piecewise polynomial
function) can be used to define the road in between
the points, leading to a nonlinear function defining the
road.
Ideally, the number of waypoints used to define the

road is generated such that the maximum error between
the actual road and the mathematical model for the
road (linear segments, spline, etc.) is less than some
allowable value. However, waypoints in most digital
maps are pre-determined and fixed. Depending on the
map resolution and sensor accuracy, when the error
associated with the constraints becomes larger than
the error in the sensor measurement, the benefits of
using such constraints diminish. It is therefore desired
to have a road modeling system that generates the
waypoints to support “adaptive sampling” so that the
error between the road and the road model is always
less than some limit. The use of an analytic nonlinear
representation, rather than fixed waypoints with linear
segments, is a possible way toward adaptive sampling
and resampling.
The second aspect of the road constraint generation

shown in Fig. 2 is constraint selection, which identifies
which road the target is on and the closest waypoints
on the road and then produces the constraint function
for those points of the road. Similar to the problem
of target tracking with measurement origin uncertain-
ties where data association is applied prior to mea-
surement updating, the track-to-road fusion necessitates
road constrained data association (RCDA) especially
with closely spaced roads and around intersections. This
association can be either measurement-based or pre-
dicted state-based and a data history may be needed
to ascertain the winning hypothesis.
For an identified road, it then comes to select a piece-

wise constraint model. Without pre-determined analytic
models available for the road segment, it is possible to

perform on-line synthesis. For example, from two clos-
est waypoints to a measurement, a line representation
can be computed for those points. Or a spline repre-
sentation of the road can be computed for the nearest
three points of the digital map. A nonlinear represen-
tation (from the spline for instance) further allows for
piecewise linearization with the point for the lineariza-
tion chosen near the measurement or near the estimated
track state. Iterative linearization can be used to refine
the linearized constraints if necessary.
For lines between fixed waypoints or piecewise lin-

earized segments from a nonlinear model, the linear
constrained optimization method of this section can be
applied. For curved roads, the nonlinear optimization
method presented in Section 3 can be used advanta-
geously when a nonlinear representation of a road is
available.
The aspects of constraint modeling and selection

are not further discussed in this paper. Another impor-
tant issue that is not addressed either in this paper is
possible errors in digital maps such as bias and mis-
orientation for linear road segments and erroneous ra-
dius and turn center for curved segments. We leave it for
future treatment but focus on fusion methodology in this
paper.

2.3. Linear Road Constraint as Pseudo Measurement

As described above, the linear constrained estimator
(5) can be obtained by different methods. It is shown
in this section that it is also equivalent to the solution
where the linear state constraints are considered as
pseudo measurements.
For the linear time-invariant discrete-time dynamic

system (1a) and its measurement (1b), consider the lin-
ear state constraint (3) as an additional measurement
to the system, which can be used to perform the fil-
ter measurement update (2c) and (2d) right after (1b)
without the filter time propagation (2a) and (2b) (i.e.,
stay the same). To apply (2), we identify the following
equivalence:

C=D, R= 0, yk = d: (6)

Consider (x̂(i)k ,P
(i)
k ) as the constrained state and co-

variance after the ith iteration update with the con-
straints at time k. With this notation, (x̂(i)k ,P

(i)
k ) = (x̂k,Pk)

estimate for i= 0 is the unconstrained state estimate and
covariance at time k. The Kalman filter gain is given
by

K(i+1)k = P(i)k D
T(DP(i)k D

T)¡1: (7)

The updated state and error covariance becomes:

x̂(i+1)k = x̂(i)k +P
(i)
k D

T(DP(i)k D
T)¡1(d¡Dx̂(i)k ) (8)

P(i+1)k = P(i)k ¡P(i)k DT(DP(i)k DT)¡1DP(i)k : (9)
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If we choose W= (P(i)k )
¡1, (8) becomes

x̂(i+1)k = x̂(i)k +W
¡1DT(DW¡1DT)¡1(d¡Dx̂(i)k )

(10a)

= x̂(i)k ¡W¡1DT(DW¡1DT)¡1(Dx̂(i)k ¡d)
(10b)

= x̂k ¡W¡1DT(DW¡1DT)¡1(Dx̂k ¡d)
(10c)

which is exactly the same as the solution given by (5).
This equivalence affords a possible way to incorpo-

rate uncertainty in road modeling such as bias, width,
and mis-orientation through pseudo measurement error
covariance matrix R. In the ideal case where roads are
assumed to be known perfectly, this R is set to zero. In-
equality constraint is another way to handle uncertainty
if errors are within certain known bounds. Furthermore,
when the track-to-road fusion is based on optimization
with a least-squares criterion, it is possible to introduce
weightings to account for directional errors given by
covariance matrices of the track and/or the road.

2.4. Geometric Interpretation

Assume that the state dimension is n and the number
of linear constraints is m< n. For x 2 Rn, the constraint
S = fx :Dx= dg constitutes a surface in Rn. It is shown
in Appendix B that for the case whereW= I, the linear
constrained estimation (5) is the orthogonal projection
of the unconstrained estimate onto the constraining sur-
face. This offers a geometric interpretation and provides
a theoretical justification of the intuitive practice of find-
ing a point along the road that is of the shortest distance.
The theory still holds for W 6= I. The proof is given

in Appendix C. The results presented in this and pre-
vious sections complement the work of [24], providing
an interesting geometric interpretation to the linear con-
strained estimation by estimate projection.

3. FUSION OF TRACKS WITH NONLINEAR ROAD
SEGMENTS

When a road segment is curved, it can be modeled
as a nonlinear state constraint. In this section, we first
analyze the linearizing approach and the associated con-
straint approximation error. We then present an iterative
solution to a second order state constraint. Finally, we
offer a geometric interpretation of the solution under a
circular constraint and outline a simple approach to a
more general second order state constraint problem of
practical significance.

3.1. Approximation Errors in Constraint Linearization

To deal with nonlinearity, a simple approach is to
project the unconstrained state estimate onto linearized

state constraints. Once the constraints are linearized,
the results presented in the previous section for linear
cases can be applied. However, linearization introduces
constraint approximation error, which is a function of
the nonlinearity and, more importantly, of the point
around which the linearization takes place. This may
lead to an undesired divergence problem as analyzed
below.
Consider the nonlinear state constraint of the form

g(x) = d: (11)

We can expand the nonlinear state constraints about
a constrained state estimate ³x and for the ith row of (11),
we have

gi(x)¡ di = gi(³x) + g0i(³x)T(x¡ ³x)

+
1
2!
(x¡ ³x)Tg00i (³x) + (x¡ ³x)+ ¢ ¢ ¢ ¡ di = 0

(12)

where the superscripts 0 and 00 denote the first and second
partial derivatives.
Keeping only the first-order terms as suggested in

[24], some rearrangement leads to

g0(³x)Tx¼ d¡ g(³x)+ g0(³x)T³x (13)

where g(x) = [: : :gi(x) : : :]
T, d= [: : :di : : :]

T, and g0(x) =
[: : :g0i(x) : : :]. An approximate linear constraint is there-
fore formed by replacing D and d in (3) with g0(x)T and
d¡ g(³x) +g0(³x)T³x, respectively.
Fig. 3 illustrates this linearization process and iden-

tifies possible errors associated with linear approxima-
tion of a nonlinear state constraint. As shown, a previous
constrained state estimate ³x¡ lies somewhere on the con-
strained surface but is away from the true state x. The
projection of the unconstrained state estimate x̂ onto the
approximate linear state constraint produces the current
constrained state estimate ³x+, which is however subject
to the constraint approximation error. Clearly, the fur-
ther away is ³x¡ from x, the larger is the approximation-
introduced error. More critically, such an approximately
linear constrained estimate may not satisfy the original
nonlinear constraint specified in (11). It is therefore de-
sired to reduce this approximation-introduced error by
including higher-order terms while keeping the prob-
lem computationally tractable. One possible approach
is presented in the next section.
As discussed in Section 2.2, when waypoints of

a digital map are used to construct linear constraints
directly, their modeling error is related to a large extent
to the coarseness of waypoints, which is determined in
turn by the map resolution.
Working with an analytic road model, simply curve-

fitted from fixed waypoints for instance, provides
the opportunity for possible “iterated linearization” or
“adaptive sampling” so as to maintain small uniform lin-
earization errors. As shown in Fig. 3, when the lineariza-
tion point is far away from the true state, the lineariza-
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Fig. 3. Errors in linear approximation of nonlinear state constraints.

tion is poor. In this particular case, the linearization
point is the predicted state ³x¡, which happens to be on
road. However, due to target motion, this predicted state
is offset from the true state x. The linear constrained
state estimate ³x+ is now “closer” to the true state than
the predicted one and can be used to re-linearize the
function as done in an iterated extended Kalman filter.
This iterated linearization may reduce linearization error
in a sense but cannot guarantee a smaller state estima-
tion error because the linear constrained state estimate
and its iterations may not always fall onto the road.
At a first glance, a curved road can be well approxi-

mated with a sufficient number of waypoints where the
linearization points are critically placed (i.e., the way-
point sample rate is sufficient to keep the error between
the road and the road model small). In the limit, a piece-
wise linear approximation converges to a continuous
function; and the direct use of a nonlinear constraint
itself, rather than its approximation, becomes natural.
In practical cases, however, only a limited number of

waypoints are available. For sharp turns, linear approx-
imation errors dominate. As shown later in Section 4.1,
the selection of a linear segment and in particular the
transition from one segment to another is a rather in-
volved process. On the other hand, the track-to-road
fusion is considerably simplified with nonlinear con-
strained optimization as described below.

3.2. Iterative Solution to Second-Order Constraints

Naturally formed roads tend to have more bends
and turns of irregular shapes (high nonlinearity). Even
highways have to follow terrain contours when crossing
mountains. Locally, however, it suffices to represent a
curved road segment by a second-order state constraint
function as

f(x) = [xT 1]
·
M m

mT m0

¸·
x

1

¸
= xTMx+mTx+ xTm+m0 = 0 (14)

which can be viewed as a second-order approximation
to an arbitrary nonlinearity in a digital terrain map.

Similar to (4), we can formulate the projection of
an unconstrained state estimation onto a nonlinear con-
straint surface as the constrained least-squares optimiza-
tion problem

x̂= argmin
x
(z¡Hx)T(z¡Hx) (15a)

subject to f(x) = 0: (15b)

If we let W=HTH and z=Hx̂, the formulation in
(15) becomes the same as in (4). In a sense, (15) is a
more general formulation because it can also be inter-
preted as a nonlinear constrained measurement update
or a projection in the predicted measurement domain.
The solution to the constrained optimization (15)

can be obtained again using the Lagrangian multiplier
technique, which is detailed in Appendix D, as

x̂=G¡1V(I+¸§T§)¡1e(¸) (16a)

q(¸) =
X
i

e2i (¸)¾
2
i

(1+¸¾2i )
2
+2

X
i

ei(¸)tj
1+¸¾2i

+m0 = 0

(16b)

whereG is an upper right diagonal matrix resulting from
the Cholesky factorization of W=HTH as

W=GTG (16c)

V, an orthonormal matrix, and§, a diagonal matrix with
its diagonal elements denoted by ¾i, are obtained from
the singular value decomposition (SVD) of the matrix
LG¡1 as

LG¡1 =U§VT (16d)

where U is the other orthonormal matrix of the SVD
and L results from the factorization M= LTL, and

e(¸) = [: : :ei(¸), : : :]
T =VT(GT)¡1(HTz¡¸m)

(16e)

t= [: : : ti : : :]
T =VT(GT)¡1m: (16f)

As a nonlinear equation in ¸, it is difficult to find a
closed-form solution in general for the nonlinear equa-
tion q(¸) = 0 in (16b). Numerical root-finding algo-
rithms may be used instead. For example, the Newton’s
method is used below. Denote the derivative of q(¸) with
respect to ¸ as

_q(¸) = 2
X
i

ei(¸)_ei(1+¸¾
2
i )¾

2
i ¡ e2i (¸)¾4i

(1+¸¾2i )
3

+2
X
i

_eiti(1+¸¾
2
i )¡ ei(¸)ti¾2i

(1+¸¾2i )
2

(17a)

where
_e= [: : : _ei : : :]

T =¡VT(GT)¡1m: (17b)

Then the iterative solution for ¸ is given by

¸k+1 = ¸k ¡
q(¸k)
_q(¸k)

starting with ¸0 = 0:

(18)
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The iteration stops when j¸k+1¡¸kj< ¿ , a given
small value or the number of iterations reaches a pre-
specified number. Then bringing the converged La-
grangian multiplier ¸ back to (16a) provides the con-
strained optimal solution.
Now consider the special case where W=HTH,

z=Hx̂, and m= 0, that is, a quadratic constraint on the
state. Under these conditions, t= 0 and e is no longer
a function of ¸ so its derivative relative to ¸ vanishes,
_e= 0. The quadratic constrained solution is then given
by

³x= (W+¸M)¡1Wx̂ (19a)

where the Lagrangian multiplier ¸ is obtained iteratively
as in (18) with the corresponding q(¸) and _q(¸) given
by

q(¸) =
X
i

e2i ¾
2
i

(1+¸¾2i )
2
+m0 = 0 (19b)

_q(¸) =¡2
X
i

e2i ¾
4
i

(1+¸¾2i )
3
: (19c)

The solution of (19) is also called the constrained
least squares [17: pp 765—766], which was previously
applied for the joint estimation of angles of arrival and
calibration of channel biases of a linear array [29].
Similar techniques have been used for the design of
filters for radar applications [1] and in robust minimum
variance beamforming [14]. WhenM= 0, the constraint
in (14) degenerates to a linear one. The constrained
solution is still valid. However, the iterative solution
for finding ¸ is no longer applicable but a closed-form
solution is available instead as given in (5).

3.3. Geometric Interpolation for Simple Cases

Consider a simple example where a target travels
along a circle. For this case, in fact, a closed-form
solution can be derived. Assume that W= I, M= I,
m= 0, and m0 =¡r2. Let p be the position components
of the state x, to which the constraint is applied. The
nonlinear constraint can be equivalently written as:

pTp= r2: (20)

The quadratic constrained estimate given in (19a)
becomes:

³p= (W+¸M)¡1Wp̂= (1+¸)¡1p̂ (21)

where ¸ is the Lagrangian multiplier.
Bringing (21) back to (20) gives:

³pT³p=
μ

p̂
1+¸

¶T p̂
1+¸

= r2: (22)

One solution for ¸ is:

¸=

p
p̂Tp̂
r

¡ 1 = kp̂k2
r
¡ 1 (23)

where k ¢ k2 stands for the L2-norm or length for the
vector.

Bringing the solution for ¸ in (23) back to (21) gives:

³p= r
p̂
kp̂k2

: (24)

This indicates that for this particular case with a cir-
cular constraint, the constraining results in normaliza-
tion.
This further suggests a simple solution for some

practical applications. When a target is traveling along
a circular path (or approximately so), one can first
find the equivalent center of the circle around which
to establish a new coordinate system. Then express
the unconstrained solution in the new coordinate and
normalize it as the constrained solution. Finally convert
it back to the original coordinates. For non-circular but
second-order paths, eigenvalue-based scaling may be
effected following coordinate translation and rotation
in order to apply this circular normalization. Reverse
operations are in order to transform back to the original
coordinates. For applications of high dimensionality, the
scalar iterative solution of (17) may be more efficient.

4. SIMULATION RESULTS

In this section, two simulation examples are pre-
sented in the context of on-road ground vehicle tracking.
The first example compares linearized and nonlinear
constraining schemes for a simple tracker and the sec-
ond example compares unconstrained and constrained
IMM trackers.

4.1. Linearized versus Nonlinear Constraints for a
Simple Tracker

In this simulation example, a ground vehicle is as-
sumed to travel along a circular road segment as shown
in Fig. 3. The turn center is chosen as the origin of the
x-y coordinates and the turn radius is r = 100 m. The
target maintains a constant turn rate of 5.7296 deg/s
with an equivalent linear speed of 10 m/s. The initial
state is

xk=0 = [x _x y _y]T = [100 m 0 m/s 0 m 10 m/s]T:

(25)

The vehicle is tracked by a radar sensor with a sam-
pling interval of T = 1 s. The sensor provides position
measurements of the vehicle as

yk =
·
1 0 0 0

0 0 1 0

¸
xk + vk (26)

where the measurement error v»N(0,R) is a zero-
mean Gaussian noise, independent in the x- and y-
axis. The covariance matrix R= diag([¾2x ¾

2
y ]) uses the

particular values of ¾x = ¾y = 7 m in the simulation. To
use the position measurement model (26), it is assumed
that the radar-produced measurements in a polar frame
are converted to the Cartesian frame and the errors
associated with the conversion are ignored.
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Fig. 4. Sample trajectories for linear constrained Kalman filter.

The radar implements a simple tracker based on the
following discrete-time second-order kinematic model
(nearly constant velocity)

xk+1 =

26664
1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

37775xk +
26664
1
2T

2 0

T 0

0 1
2T

2

0 T

37775wk
(27)

where the process noise w»N(0,Q) is also a zero-mean
Gaussian noise, independent of the measurement noise
v. The covariance matrix Q= diag([¾2ẍ ¾

2
ÿ ]) uses the

particular values of ¾ẍ = ¾ÿ = 0:32 m/s
2 in the simula-

tion.
When represented in a Cartesian coordinate system,

a target traveling along a curved road is certainly subject
to acceleration in both the x- and y-axis. However, no
effect is made in this simulation to optimize the tracker
for maneuver but merely to select Q and the initial
conditions so as to focus on constraining the estimates.
The use of an IMM filter [5] with “coordinated turn”
models will be presented next in Section 4.2. The initial
state is selected to be the same as the true state, i.e.,
x̂0 = x0 for this example, again to focus on the aspect
of track-to-road fusion, not on that of tracker design.
The initial estimation error covariance is selected to be

P0 = diag([5
2 m2 12 (m/s)2 52 m2 12 (m/s)2]):

(28)

Fig. 4 shows sample trajectories of the linear con-
strained Kalman filter. There are 5 curves and 2 series

of data points in the figure. The true state is represented
by a series of dots (¢) at consecutive sampling instants,
which is plotted on the solid line being the road seg-
ment. The corresponding measurements are a series of
circles (o).
The estimates of the unconstrained Kalman filter are

shown as the connected triangles (4) whereas those
of linearly constrained Kalman filters are shown as the
connected crosses (£), stars (*), and pluses (+) for three
linear approximations of the nonlinear constraint of the
curved road, respectively.
In the first approximation (the line with cross £ la-

beled “linear constraint 1”), a single linearizing point at
μ1 = 10

± is chosen to cover the entire curved road, where
μ is the angle made relative to the x-axis, positive in the
counter-clock direction. The linearized state constraint
at μ1 can be written as·

cosμ1 0 sinμ1 0

0 cosμ1 0 sinμ1

¸
x=

·
r

0

¸
: (29)

Although all estimates are faithfully projected by the
constrained filter onto this linear constraint, tangential
to the curve at the linearizing point, it runs away from
the true trajectory and the resulting errors continue to
grow. The apparent divergence is caused by the choice
of linearization.
In the second approximation (the line with star *

labeled “linear constraint 2”), two linearizing points at
μ1 = 15

± and μ2 = 80
± are chosen to cover the curved

road with two linear segments. The switching point
from one linear segment to the other in this case is
at μ = 45±. As shown, the estimates are projected onto
one of the two linear segments. Except near the corner
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Fig. 5. Linear constrained position errors versus time.

where the two linear approximations intersect (which
is far away from both linearizing points), the linear
constrained estimates typically outperform the uncon-
strained estimates (closer to the true state). This is better
illustrated in Fig. 5 where the upper plot is for the ab-
solute position error in x while the lower plot is for the
absolute position error in y, both plotted as a function
of time.
Still with two linearizing points and the same switch-

ing point at μ = 45±, the third approximation (the line
with plus+labeled “linear constraint 3”) adjusts lineariz-
ing points to μ1 = 20

± and μ2 = 70
±. A better overall

performance is achieved as shown in Fig. 5.
It is clear from Fig. 4 that a nonlinear constraint can

be approximated with linear constraints in a piecewise
fashion. By judicious selection of the number of linear
segments and their placement (i.e., the point around
which to linearize), a reasonably good performance
can be expected. In the limit, a nonlinear function is
represented by a piecewise function composed of an
infinite number of linear segments. This naturally leads
to the use of nonlinear constraints.
Fig. 6 shows sample trajectories of the nonlinear

constrained Kalman filter. There are 2 curves and 4
series of data points in the figure. The true state is
still represented by a series of dots (¢) at the sampling
instants, which is plotted on the solid line of road
segment. The corresponding measurements are again a
series of circles (o). The unconstrained Kalman filter
is shown as the connected crosses (£) whereas the
estimates of nonlinearly constrained Kalman filters are
shown as a series of pluses (+) and stars (*) for two
implementations, respectively.

The first implementation (the series of pluses +)
only applies the nonlinear constraint to the position
estimate whereas the second implementation (the se-
ries of stars *) applies constraints to both the position
and velocity estimates. In fact, we encounter a hybrid
(mixed) linear and nonlinear state constraint situation.
The constrained position estimate is given by (19) for
the quadratic case (equivalent to (24) for a circular
road). Since the velocity direction is along the tangent
of the road curve, the constrained velocity estimate is
obtained by the following projection

v̂constrained = (v̂
T
unconstrained¹)¹ (30)

where v̂= [ _̂x _̂y]T is the estimated velocity vector and
¹= [¡sinμ cosμ]T is the constrained unit direction
vector associated with the constrained position at μ =
tan¡1(ŷ=x̂).
In the present simulation, the open-loop architecture

without feedback is used. In this implementation, the
unconstrained estimation error covariance is not mod-
ified after the constrained estimate is obtained using
the projection algorithms (19). The implementation is
therefore pessimistic (suboptimal) in the sense that it
does not take into account the reduction in the estima-
tion error covariance brought in by constraining. One
consequence of this simplification is more volatile state
estimates. To quantify this effect, one approach is to
project the unconstrained probability density function
(i.e., a normal distribution with support on the whole
state space) onto the nonlinear constraint. Statistics can
then be calculated from the constrained probability den-
sity function with the constraint as its support. Again,
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Fig. 6. Sample trajectories for nonlinear constrained Kalman filter.

Fig. 7. Nonlinear constrained position errors versus time.

the resulting error ellipse represented by the covariance
matrix is only an approximation to the second order.
As explained in Section 2.2, the open-loop architecture
without feedback has many merits of its own and it
here provides a reference point for fusion architecture
study.
As shown in Fig. 6, both the nonlinear constrained

estimates fall onto the road as expected. Overall the

position and velocity constrained estimates are better
(closer to the true state) than the position-only con-
strained estimates. This is illustrated in Fig. 7 where the
upper plot is for the absolute position error in x while
the lower plot is for the absolute position error in y.
A Monte Carlo simulation is used to generate the

root mean square (RMS) errors of state estimation.
The results are based on a total of 100 runs across 16
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Fig. 8. Convergence in iterative Lagrangian multiplier.

TABLE I
RMS Estimation Errors

RMS Estimation Error

Estimators Position (m) Velocity (m/s)

Unconstrained 8.4 4.3
Best Linear Constrained 5.5 2.5
Nonlinear Constrained 1.8 0.4

updates and summarized in Table I. The performance
improvement of the nonlinear constrained filter over the
linearized constrained filter is demonstrated.
Finally for this simulation example, we use Fig. 8

to show an example of the Lagrangian multiplier as it
is calculated iteratively using (19). The runs for five
unconstrained state estimates are plotted in the same
figure and to make it fit, the normalized absolute values
of ¸ are taken. As shown, starting from zero, it typically
takes 4 iterations for the algorithm to converge in the
example presented.

4.2. Unconstrained Versus Constrained IMM Trackers

In the previous example, a nearly constant velocity
model (27) was used in the filter. Obviously, a tracker
that uses a maneuvering model can do better in tracking
a turning target. However, it may still not be able to
produce a track that falls on road all the time. The track-
to-road fusion algorithm described in this paper can be
applied in conjunction with a maneuvering target tracker
to further improve target state estimation as illustrated
in the following simulation example.

An IMM filter is constructed based on the “coor-
dinated turn” models. For a ground vehicle, its wide
turning maneuver is reasonably well modeled by a co-
ordinated turn, i.e., at a constant turn rate with a con-
stant speed. For the state vector xk defined in (25), the
coordinated turn model is given by

xk+1 =

26666664
1

sin!T
!

0 ¡1¡ cos!T
!

0 cos!T 0 ¡sin!T
0

1¡ cos!T
!

1
sin!T
!

0 sin!T 0 cos!T

37777775xk

+

26664
1
2T

2 0

T 0

0 1
2T

2

0 T

37775wk (31)

where ! is the turn rate considered to be a known
modeling parameter and wk is defined as for (27).
For the IMM filter, three models are specified by

choosing different values for !. In the first model,
setting ! = 0 in (31) leads to the nearly constant velocity
or non-maneuver model (27). In the second model,
! = 5:7 deg/s represents a left turn maneuver while in
the third model, ! =¡5:7 deg/s represents a right turn
maneuver. The three models have an equal initial model
probability of 1/3 and the model transition probability
matrix is taken as

¦ =

2640:8 0:1 0:1

0:1 0:8 0:1

0:1 0:1 0:8

375 : (32)
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Fig. 9. Sample trajectories for unconstrained versus constrained IMM.

The three interacting filters inside the IMM tracker
are identically initialized as x̂i »N(x0,P0) for i= 1,2,3.
The same sensor model as (26) is used for generat-
ing radar measurements in this simulation. Hybrid con-
straints are applied with the nonlinear constraint (14)
for position estimates and the linear constraint (30) for
velocity estimates. In the Monte Carlo simulation, the
truth track of the target remains the same but the initial
estimate is drawn from the distribution for each run as
described above. So is the measurement noise at each
sampling instant for each run.
Fig. 9 shows sample trajectories wherein the tar-

get starts from an initial position at (x0,y0) = (100 m,
¡100 m) heading due north along a straight road with
_y = 10 m/s. At k = 10 s, it follows the curve and makes
a left turn at a rate of 5.7 deg/s for 16 s. At k = 17 s,
it comes to another straight road heading due west with
_x=¡10 m/s for 5 s.
The true state is represented by a series of dots (¢)

plotted on the solid line of road segment. The corre-
sponding measurements are a series of circles (o). The
unconstrained IMM filter is shown as a series of con-
nected stars (*) whereas the constrained IMM filter is
shown as a series of connected crosses (£). When the
target is on linear road segments, the linear constrained
solution (5) is applied to the combined state of the IMM
filter while on the curved road segment, a hybrid con-
strained solution is used (nonlinear for position and lin-
ear for velocity). From Fig. 9, the typical behavior of
an unconstrained IMM filter can be seen. It converges
rather quickly from the initialization of large errors, de-
velops an overshoot right after the maneuver but cor-
rects itself towards the true trajectory, and converges

again after the maneuver terminated. However, these
unconstrained IMM estimates (*) are off road while the
target is on road.
In contrast, the constrained IMM estimates (£) are

always on road even though they do not fall exactly on
top of the true positions (¢). As a result, the constrained
position errors are smaller than the unconstrained ones
as shown in Fig. 10, which are obtained by a Monte
Carlo simulation with 100 runs. In particular, the ve-
locity errors of the unconstrained IMM solution grow
during the maneuver period whereas those of the con-
strained solution appear to be uniform.
The RMS errors averaged over the entire trajectory

are summarized in Table II. The values in Table II
are bigger than those in Table I because of larger
initialization errors and longer simulation run. It shows
an improvement of approximately 3 folds in position
and in velocity.

5. CONCLUSIONS

In this paper, we presented an approach to incorpo-
rating road information into target tracking via track-to-
road fusion. In this approach, road segments were mod-
eled with analytic functions and their fusion with a tar-
get track was cast as a linearly or nonlinearly state con-
strained optimization procedure. With the Lagrangian
multiplier, a closed-form solution was found for linear
constraints and an iterative solution for nonlinear con-
straints. Geometric interpretations of the solutions were
provided for simple cases. Computer simulation results
demonstrate the performance of the algorithms.
Future work includes both algorithms development

and practical applications. It is of interest to extend
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Fig. 10. Position and velocity error RMS versus time (100 Monte Carlo runs).

the iterative method presented in the paper for second-
order nonlinear state constraints to other types of non-
linear constraints of practical significance and to search
for more efficient root-finding algorithms to solve for
the Lagrangian multiplier. Similarly, the simple fusion
of a single track to a single road as presented in this
paper is being extended to multiple targets moving
along closely-spaced road networks with intersections
and by-passes. In this case, the fusion (or constrain-
ing) can take place in the measurement level as well
as in the track level, involving road constrained data
association (RCDA). Results will be reported in future
papers.
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APPENDIX A

To solve the constrained optimization problem in
(4), we form the cost function including the Lagrangian
multiplier

J(x,¸) = (x¡ x̂)TW(x¡ x̂) +2¸T(Dx¡d): (A1)

The first order conditions necessary for a minimum
are given by

@J

@x
= 0)W(x¡ x̂) +DT¸= 0 (A2a)

TABLE II
RMS Estimation Errors

RMS Estimation Error

Estimators Position (m) Velocity (m/s)

Unconstrained IMM 9.0 6.2
Nonlinear Constrained IMM 3.2 1.7

@J

@¸
= 0)Dx¡d= 0: (A2b)

The solution for the optimal Lagrangian multiplier
¸ can be found first as

¸= (DW¡1DT)¡1(Dx̂¡d): (A3)

Bringing this solution back to (A1) leads to the
constrained solution of the state in (5).
Note that the above derivation does not depend on

the conditional Gaussian nature of the unconstrained
estimate x̂. It was shown in [24] that when W= I,
the solution in (5) is the same as what is obtained by
the mean square method, which attempts to minimize
the conditional mean square error subject to the state
constraints, that is,

min
x
Efkx¡ x̂k22 j Yg such that Dx= d: (A4)

Furthermore, when W= P¡1, i.e., the inverse of the
unconstrained state estimation error covariance, the so-
lution in (5) reduces to the result given by the maximum
conditional probability method

max
x
lnProbfx j Yg such that Dx= d: (A5)
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Fig. B1. Geometrical interpretation of linear constrained solution.

More results and proofs can be found in [24].

APPENDIX B

For x 2Rn, the constraint surface S = fx :Dx= dg
with the number of linear constraints m< n is not a
subspace simply because for d 6= 0, the null vector is
not inside S. To construct a subspace, first find an
arbitrary point x0 2 S and then define » = x¡ x0. This
is equivalent to shifting the origin of the coordinates to
x0, thus performing an affine transformation, denoted
by T. For all x 2 S, the corresponding shifted vector »
has the following property:

D» =D(x¡ x0) =Dx¡Dx0 = d¡d= 0: (B1)

In other words, the constraint surface after the affine
transformation T becomes a subspace, denoted by L=
TS = f» :D» = 0g, which has a dimension n¡m. The
affine transformation is illustrated in Fig. B1.
We are now to express L. But first, the row vectors

of D can be expressed as:

DT = [d1 d2 ¢ ¢ ¢dm]: (B2)

Since D is of full rank by assumption, the row
vectors of D can be used as the non-orthogonal basis
for a subspace denoted by D = spanfd1,d2, : : : ,dmg. In
light of (B1) and by definition of L, it is easy to see that
D is an orthogonal complement of L, that is, D ?L and
D©L=Rn where © stands for direct sum between two
orthogonal subspaces.
For ± 2D, it can be written as:

± =
mX
i=1

cidi = [d1 d2 ¢ ¢ ¢dm]

266664
c1

c2
...

cm

377775=DTc: (B3)

Then for » 2 L, we have
h±,»i= hDTc,»i= ±T» = cTD» = 0 (B4)

where ha,bi= aTb is the inner product defined on Rn.
By the principle of orthogonality, an arbitrary vector

» can be decomposed into its projections onto the
orthogonal complements D and L, denoted by »D and
»L, respectively, as

» = »D+ »L: (B5)

Adding x0 to both sides of (B5), we can express the
vectors in the original coordinates as:

x= »+ x0 = »D+ »L+ x0 = »D + x
¤: (B6)

The projection of the arbitrary vector on the con-
straint subspace L and the constraint surface S can be
obtained, respectively, as:

»L = »¡ »D (B7a)

x¤ = x¡ »D: (B7b)

To obtain »D, express it as a linear combination
of the non-orthogonal bases of DT with the coefficient
vector c as:

»D =
mX
i=1

cidi = [d1 d2 ¢ ¢ ¢dm]

266664
c1

c2
...

cm

377775=DTc: (B8)

Again, by the principle of orthogonality, the projec-
tion error vector »¡ »D is orthogonal to D, i.e., each
and every basis of it:

h»¡ »D,dii= h»¡DTc,dii= dTi (»¡DTc) = 0,
i= 1, : : : ,m: (B9)
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Stacking these orthogonality conditions, we obtain266664
dT1
dT2
...

dTm

377775(»¡DTc) = 0 or D(»¡DTc) = 0:

(B10)

Since DDT is an m£m matrix and invertible, the coef-
ficient vector can be obtained as:

c= (DDT)¡1D»: (B11)

Bringing (B11) back to (B8) gives the projection
vector as:

»D =D
T(DDT)¡1D» = P» (B12)

where P=DT(DDT)¡1D is usually referred to as the
projection matrix onto D and (I¡P) is the projection
matrix onto L.
Bringing (B12) back to (B7) gives

»L = »¡P» = (I¡P)» (B13a)

x¤ = x¡P» = x¡P(x¡ x0): (B13b)

Bringing the expression for P into (B13b) gives

x¤ = x¡DT(DDT)¡1D(x¡ x0)
= x¡DT(DDT)¡1(Dx¡Dx0)
= x¡DT(DDT)¡1(Dx¡d) (B14)

where Dx0 = d is used to arrive at the last equation
because of x0 2 S.
Clearly, (B14) is exactly the same as (5) when W=

I. This offers a geometric interpretation that the linear
constrained estimation is the orthogonal projection of
the unconstrained estimate onto the constrained surface.
It provides a theoretical justification of the intuitive
practice of finding a point along the road that is of the
shortest distance.

APPENDIX C

When W 6= I, we can rewrite the weighted square
error formulation as

³x= argmin
x2S
(x¡ x̂)TW(x¡ x̂)

= argmin
x2S
[W1=2(x¡ x̂)]TW1=2(x¡ x̂) = argmin

z2S̄
zTz

(C1)

where W=W1=2W1=2 is a symmetric positive definite
weighting matrix. This can be understood as if we
perform an equivalent un-weighted optimization on the
transformed state:

z=W1=2x: (C2)

The constraint can be written as:

Dx=DW¡1=2W1=2x=Mz= d (C3)

where M=DW¡1=2 by definition. The constrained sur-
face S̄ = fz :Mz= dg is used in the last equality of (C1).
Since the constrained solution in (B14) holds for z

with M and d, we have

z¤ = z¡MT(MMT)¡1(Mz¡d): (C4)

Putting (C2) and (C3) into (C4) gives

W1=2x¤ =W1=2x¡W¡1=2DT(DW¡1=2W¡1=2DT)¡1

£ (DW¡1=2W1=2x¡d): (C5)

Multiplying both sides byW¡1=2 gives the weighted
constrained solution as:

x¤ = x¡W¡1DT(DW¡1DT)¡1(Dx¡d) (C6)

which is exactly the same as (5).
It is interesting to note that the use of W= P¡1 has

the effect of pre-whitening in the sense that

EfzzTg= P¡1=2EfxxTgP¡1=2 = P¡1=2PP¡1=2 = I:
(C7)

APPENDIX D

Construct the Lagrangian with the Lagrangian mul-
tiplier ¸ as

J(x,¸) = (z¡Hx)T(z¡Hx)+¸f(x): (D1)

Taking the partial derivatives of J(x,¸) with respect
to x and ¸, respectively, setting them to zero leads to
the necessary conditions

¡HTz+¸m+(HTH+¸M)x= 0 (D2a)

xTMx+mTx+ xTm+m0 = 0: (D2b)

Assume that the inverse matrix of HTH+¸M ex-
ists. Then, x can be solved from (D2a), giving the con-
strained solution in terms of the unknown ¸ as

x= (HTH+¸M)¡1(HTz¡¸m) (D3)

which reduces to the unconstrained least-squares solu-
tion when ¸= 0.
Assume that the matrix M admits the factorization

M= LTL and apply the Cholesky factorization to W=
HTH as

W=GTG (D4)

where G is an upper right diagonal matrix. We then
perform the SVD [17] of the matrix LG¡1 as

LG¡1 =U§VT (D5)

where U and V are orthonormal matrices and § is a
diagonal matrix with its diagonal elements denoted by
¾i. For a square matrix, this becomes the eigenvalue
decomposition.
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Introduce two new vectors

e(¸) = [: : :ei(¸), : : :]
T =VT(GT)¡1(HTz¡¸m)

(D6a)

t= [: : : ti : : :]
T =VT(GT)¡1m: (D6b)

With these factorizations and new matrix and vec-
tor notations, the constrained solution in (D3) can be
simplified into (16a), which is repeated below for easy
reference as

x=G¡1V(I+¸§T§)¡1e(¸): (D7)

The first and second order terms of x in (D2b) can
be expressed in ¸ as:

xTMx= e(¸)T(I+¸§T§)¡T§T§(I+¸§T§)¡1e(¸)

=
X
i

e2i (¸)¾
2
i

(1+¸¾2i )
2

(D8a)

mTx= tT(I+¸§T§)¡1e(¸) =
X
i

ei(¸)ti
1+¸¾2i

(D8b)

xTm= e(¸)T(I+¸§T§)¡1t=
X
i

ei(¸)ti
1+¸¾2i

: (D8c)

Bringing these terms into the constrained equation
in (D2b) gives rise to the constraint equation, now ex-
pressed in terms of the unknown Lagrangian multiplier
¸, as

q(¸) = (zTH¡¸mT)(HTH+¸M)¡2(HTz¡¸m)
+mT(HTH+¸M)¡1(HTz¡¸m)
+ (zTH¡¸mT)(HTH+¸M)¡1m+m0

= e(¸)T(I+¸§T§)¡1§T§(I+¸§T§)¡1e(¸)

+ tT(I+¸§T§)¡1e(¸) + e(¸)T(I+¸§T§)¡1t+m0

=
X
i

e2i (¸)¾
2
i

(1+¸¾2i )2
+2
X
i

ei(¸)tj
1+¸¾2i

+m0 = 0: (D9)

which is (16b) given in Section 3.
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