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1.0 OVERVIEW 

 
Given the multicore microprocessor revolution, the architecture research community needs a 

dramatic increase in simulation capacity. We believe that architecture-level FPGA emulation 
will provide a critical modeling framework for future multiprocessor architecture research. In 
this report, we introduce the terms FAME, for FPGA Architecture Model Execution, and 
SAME for Software Architecture Model Execution, to distinguish between conventional 
simulation techniques from emerging FPGA based methods. We evaluate FPGA emulation 
approaches against conventional simulation techniques, and determine the missing 
capabilities that will require further development. In particular, we compare the various 
possible modeling approaches and evaluated their capabilities in terms of model fidelity, 
emulator performance, and design effort. We also investigate techniques to incorporate 
energy, power, and thermal models into architecture-level FPGA emulation frameworks. To 
help clear up misconceptions, we propose a FAME taxonomy to distinguish the cost-
performance of variations of these ideas. We show that FAME simulators can increase the 
number of useful architecture research experiments per day by a factor of 100 over SAME 
simulators. 
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2.0 INTRODUCTION 
 

Computer architects have long used software simulators to explore instruction set architectures, 
microarchitectures, and approaches to implementation. Compared to hardware prototyping, their 
low capital cost, relatively low-cost of implementation and ease of change have made them the 
ideal choice in the early stages of research exploration. Architects can explore many variations 
of a design simply by changing software simulator parameters, and in the era when 
uniprocessor performance was doubling every 18 months, simulation speed correspondingly 
doubled every 18 months without any special programming effort. 

 
The recent abrupt transition to multicore architectures [7], however, has both increased the 

complexity of the systems architects want to simulate and removed the straightforward path to 
simulator performance scaling. 

 
This report surveys the evolution of simulators as architectures increased in complexity 

and argues that architecture research now faces a crisis in simulation because of the new 
requirements and the consequences of the multicore revolution. We label the two paths forward 
in multicore simulation as Software Architecture Model Execution (SAME) or FPGA (Field-
Programmable Gate Array) Architecture Model Execution (FAME). While SAME certainly 
merits continued investigation, we and others in the Research Accelerator for Multiple 
Processors (RAMP) project [49] are excited by the progress and the potential of FAME. 

 
In discussions with architects outside the RAMP community, there has been confusion about 

the different approaches and goals of the various RAMP projects. Inspired by the original five 
RAID levels [36], this report proposes a four-level taxonomy of increasingly sophisticated 
FAME levels that attempts to capture the progress that has been made by the whole RAMP 
community in the last few years. 

 
The report concludes with a fallacies and pitfalls section, followed by a conclusion section 

with recommendations for future directions. 
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3.0 PROTOTYPING 
 

We begin by briefly reviewing the role of prototyping in architecture research and how 
prototyping is different from simulation. The goals of an architecture research prototype are 
quite different from that of a simulator. A research prototype is a working implementation that 
provides insight into the implementation issues behind a proposed new architecture or new 
architectural mechanisms. A simulator, on the other hand, is a model of a machine, and can be 
highly parameterized and quite abstract, to allow rapid exploration of a large design space of 
possible options. 

 
Hardware prototyping has a long history, reaching back to the very first computers built in 

universities, such as the Harvard Mark-I and EDSAC. In the 1980s, many researchers would 
build prototype chips to illustrate the value of their architectural innovations. For example, the 
case for RISC architectures was substantially strengthened by the prototype RISC chips built at 
Berkeley [37] and Stanford [23], which ran programs faster than commercial machines despite 
being produced by small academic teams. Similarly, the later Stanford DASH [30] and MIT 
Alewife [3] projects provided considerable insight into the implementation and viability of 
large-scale directory-based cache-coherent shared memory architectures. More recent 
prototyping efforts include Raw [46], TRIPS [39], Imagine [4], and Scale [27]. 

 
The process of constructing a working architectural prototype is usually far more valuable 

than the end result, helping inventors understand how a new architectural idea can be 
implemented. When completed, a successful prototype will provide a credible proof-of-concept 
to help explain the idea and convince practitioners to adopt the technology. 

 
Although prototypes are  sometimes justified as  a  way  to  gather  evaluation data  on  

much  larger and longer programs than possible with software simulators, usually this is (or 
becomes) a secondary concern. In our experience, few computer architecture prototypes 
support extensive parameterization and instrumentation due to the additional design effort and 
resources required. Even when hardware hooks are added, the supporting software 
infrastructure to exploit these features rarely materializes, either because of limited project 
resources or because experimental needs were not well understood or have changed from 
when the prototype design was frozen. Prototyping projects also tend to focus implementation 
effort on the novel mechanisms and often make expedient simplifications in other well-
understood areas (e.g., by omitting floating-point hardware or virtual memory), which limits 
the kinds of software that can be run. For these reasons, prototyping is not an alternative to 
simulation. 

 
Conversely, when the implementation of a mechanism is not well understood, it is by 

definition not possible to construct accurate simulator models. Hence, simulation and 
prototyping are complementary techniques. 

 
Despite their value, the bar for prototypes has been raised. Shrinking feature sizes have led to 

multi- gigahertz microprocessor clock rates and a rapid growth in architectural complexity. 
Consequently, the engineering skill, design effort, and fabrication cost required to build a 
compelling prototype micro- processor have risen to the point where few researchers now 
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contemplate such a project. Even when research prototypes are successfully completed, the 
quality of implementation is often markedly inferior to production designs, leading to doubts 
about the relevance of the prototype. But it is primarily the act of prototyping that yields 
valuable implementation insights, and these are often largely independent of implementation 
technology. Simulator models can be constructed using the prototype design as a guide, but 
then extrapolating to model the effect of a more realistic implementation or an advanced future 
technology. 

 
Given that most of the implementation insights are developed during the prototype design 

phase and that most of the cost is incurred during fabrication, one viable intermediate approach 
is to complete a detailed design using VLSI CAD tools without proceeding to fabrication. 
Simulator models can then be calibrated using timing, area, and power data extracted from the 
tools. This approach still requires significant engineering skill and design effort using a large 
and complex tool set, but is ultimately not as credible (or as satisfying) as a working 
prototype. 

 
Given the high cost and long turnaround of prototype chip fabrication, some researchers are 

using FPGAs to construct relatively inexpensive and malleable working prototypes. The 
timing, area, and power of an FPGA prototype are very different from a production chip 
implementation, but the hardware design process is similar enough to yield many of the same 
important insights. A promising direction is to combine FPGA prototyping with detailed VLSI 
CAD design to provide both a working prototype and believable implementation metrics. 

 
While we believe FPGA prototyping can be a valuable architecture research tool, our 

approach and the subject of this report is a very different technology: Using FPGAs to 
accelerate the execution of highly parameterized and thoroughly instrumented architecture 
simulators. We have found the difference between FPGA prototypes and FPGA simulators to be 
one of the main sources of confusion when discussing RAMP with those outside the project, 
and our goal in this report is to clarify the difference and provide taxonomy of FPGA 
simulation approaches. 
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4.0 SIMULATION TECHNIQUES 
 

A modern processor running an application workload is a complex system that is difficult to 
model analytically; yet building a prototype for each design point is prohibitively expensive, so 
software simulators have become the primary method used to evaluate architecture design 
choices. We call the machine being simulated the target and the machine on which the 
simulation runs, the host. In this section, we present a brief review of the evolution of software 
simulator technology. This technology largely followed the sophistication in computer designs 
that were enabled by Moore’s Law. 

 
4.1. Uniprocessor Simulators 

 
Much of the architecture research in the 1980s involved in-order processors, and popular 

topics were instruction set architectures (RISC vs. CISC), pipelining, and memory hierarchies. 
Instruction-set simulators were very slow and so pipelining and memory hierarchy studies relied 
on address traces to drive simulators that only simulated the portions of the computer of 
interest. Given the common needs of researchers, some shared their trace-driven simulators for 
others to use, such as the popular Dinero cache simulator [18]. Although it was time consuming 
to collect traces, some generous researchers would share them with the community. Combining 
free traces with free simulators helped many architects undertake memory hierarchy research. 

 
Enthusiasm shifted to out-of-order processors in the 1990s. Popular topics included alternative 

microarchitectures, branch predictors, and memory hierarchy studies. Address traces were no 
longer adequate for microarchitecture or memory hierarchy studies due to the complex out-of-
order nature of the processors. This complication led to the popularity of execution-driven 
simulators, which model the internal microarchitecture of the processor on a cycle-by-cycle 
basis. Alas, the speedup in host uniprocessor performance did not match the increase in target 
architectural complexity, so the simulation of each target instruction took more host clock 
cycles. In addition, Moore’s Law enabled much larger and more elaborate memory hierarchies, 
so architects needed to simulate more instructions to warm up caches properly and to gather 
statistically significant results. Moreover, as computers got faster and had more memory, 
programs of interest became bigger and ran longer, which increased the time to simulate 
benchmarks [29]. 

 
One approach to reduce simulation time is simply to reduce the size of the input data set 

so that the program runs in less time. For example, SPEC CPU 2006 offers two input sizes 
per benchmark: test run and reference run. The test run of the full suite took 6 minutes to 
run natively on the SPEC test bed machine while the reference run took 600 minutes [24]. 
Although the test run is 100 times shorter, it is designed only to check the program is 
working and is not representative of the behavior of the full reference run. By analyzing the 
program it is possible to construct a reduced input set that is more representative of the 
application behavior. For example, MinneSPEC used this approach for the SPEC CPU 2000 
suite [25]. However, this manual approach is time consuming and it is unclear how 
representative it is of the original workload. 
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Another way to reduce the simulation time is to only simulate a small sample of the full 
application run in detail. A simple scheme that was widely used was to skip some number 
of instructions at the start of a program run, assuming these represented initialization code, and 
then simulate the next N million instructions in detail, assuming these represented the steady 
state execution in the program. To quickly skip over the initialization code, a fast functional 
simulator is used that only maintains architectural state (ISA registers plus memory). At the 
start of the detailed sample, the architectural state is copied into a detailed simulator, which is 
then run for a period to warm up the microarchitectural state (caches and predictors) before 
gathering evaluation data. For large caches, the warm up time can be large and so several 
researchers proposed techniques to bound the amount of warmup time required at the start 
of each sample [28], [16], [22]. 

 
Different programs have very different execution profiles, but surprisingly many studies used 

the same initialization time and sample length for all programs in their evaluation. An obvious 
question emerged “if you can only afford to simulate X% of the program, which segment is the 
most representative to simulate?”.  SimPoints [42] finds the most representative segments to 
model in detail given a constraint on how many separate segments and total instructions to use. 
SMARTS [51] models enough small samples of the execution in detail to provide a statistical 
confidence bound that the benchmark behavior was faithfully captured. The SMARTS approach 
“fast forwards” between samples using a functional simulator that also updates large 
microarchitectural state components, such as cache tags and predictor state. At each sample 
point, the microarchitectural state is also copied into the detailed simulator, reducing the warm 
up time for each detailed sample point. 

 
To get even faster speed up for functional simulation, dynamic binary translation can be 

employed to translate target instructions into host instructions with added instrumentation 
code. Pixie [2] and Shade [15] instrumented program binaries for MIPS and SPARC to 
generate the address traces on the fly, and this technique was later adapted for functional 
execution. 

 
The complexity of building an execution-driven simulator, together with the increasing use of 

commercial instruction sets, common benchmarks, and a common research agenda led to the 
development of shared execution-driven simulator models, of which SimpleScalar is surely the 
most widely used example [8]. Architects would either use the standard options provided by 
the simulators or make modifications to the simulator to explore their inventions, and use the 
precompiled benchmark binaries as a workload. Once again, interesting free simulators let 
many architects perform the type of research that the simulator supported. 

 
4.2. Multiprocessor Simulators 

 
Another popular topic in the late 1980s and early 1990s was multiprocessors, with popular 

research topics including memory hierarchies, consistency models, coherency techniques (bus 
snooping vs. directories), and uniform versus non-uniform memory accesses. 

 
Simulating parallel target machines is considerably more complex than simulating 

uniprocessors. Part of the added complexity is simply that the target hardware is more complex, 
with multiple cores and a cache-coherent shared memory hierarchy. However, another 
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complexity is that a parallel software runtime must be present to run multithreaded or 
multiprogrammed across the multiple cores in the simulated target machine. 

 
For multiprocessor research, trace-driven simulation is still often used despite the inability of 

traces to capture the effects of timing-dependent execution interleaving, as developing a full 
system environment capable of running large workloads is difficult. 

 
As with uniprocessor simulators, many parallel simulators only modeled user-level activity of 

a single application (e.g., RSIM [35]). The SimOS project demonstrated how to run an 
operating system on top of a fast software simulator [38]. SimOS supported multiple levels of 
simulation detail, and the fastest version of SimOS used dynamic binary translation to speed 
target instruction emulation while emulating cache hierarchies in some detail [53]. This research 
was later incorporated into the commercial product Simics, which allowed researchers to study 
large application programs and the operating system running together. Augmented with detailed 
performance models developed by others [32], Simics has become a popular research tool in 
the architecture community. 

 
Although techniques such as dynamic binary translation and trace-driven simulation help with 

the interpretation of the functional behavior of each instruction, they do not help with the 
considerably more compute-intensive task of modeling microarchitecture details of the 
processor and memory hierarchy. Surprisingly, it is difficult to parallelize detailed 
multiprocessor simulations to run efficiently on parallel host machines. The need for cycle-by-
cycle interaction between components limits the parallel speedup possible due to the high cost 
of software synchronization. 

 
As with uniprocessors, researchers have considered using reduced input sets or sampling to 

reduce multiprocessor simulation time. Alas, mixed mode simulation and sampling does not 
work well for multiprocessor simulations [9]. For uniprocessors, the program execution should 
be the same no matter what the underlying microarchitecture, and so the architectural state of 
the processor is correct at the beginning of any sample point for any target microarchitecture. 
Such is not the case for multiprocessors, because software thread interleavings change 
depending on the behavior of the microarchitecture in each core. For example, if you were 
interested in exploring the impact of relaxed consistency models on multithreaded programs, 
you might never see the interesting events if the functional simulation used sequential 
consistency to obtain sample start points. Sampling can give representative results for 
multiprogrammed workloads, since processes running on different cores generally do not 
interact via shared memory. Others have argued that transaction-oriented software such as 
databases are also amenable to sample-based simulation, since any sample is representative of 
some legal overlap of independent transactions [52]. 

 
4.3. The Static Software Premise 

 
Implicit in many of the techniques used to reduce simulation time (traces, reduced inputs sets, 

sampling) was the assumption that software changes slowly and is independent of the target 
architecture. Thus, suites like SPEC with two-dozen old programs were reasonable benchmarks 
for architectures of the future, as long as SPEC suite changed every four to five years to reduce 
gamesmanship by compiler writers and architects. Similarly, research groups would create their 
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own long-lasting benchmark suites, and some of these became popular, for example, SPLASH 
and SPLASH 2 [54] for multithreaded programs. Parsec and STAMP are modern examples of 
such parallel benchmark suites [10] [13]. 

 
New programs, new programming models, and new programming languages have been largely 

ignored. The argument was either that architects should wait for them to prove their popularity 
and become well- optimized before paying attention to novel systems–which could take a 
decade–or that there was nothing you would do differently for them than you would for old 
programs written in the old programming languages. Since benchmarking rules prohibited 
changing the program, architects generally treated the programs as static artifacts to measure 
without understanding either the problems being solved or the algorithms and data structures 
being used. In fact, many architectural studies have simply used precompiled binaries distributed 
with the shared simulator infrastructure. 
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5.0 THE MULTICORE REVOLUTION 

 
As has been widely reported, the end of ideal technology scaling together with the 

practical power limit for air-cooled sockets forced all microprocessor manufacturers to switch 
to multiple processors per chip [7]. The path to more performance for such multicore designs 
is increasing the number of cores every technology generation, with the cores themselves 
essentially going no faster. 

 
There are four subtle impacts of the multicore era on architecture simulation. First, simulators 

will no longer get faster every 18 months without effort. Like all other programmers, simulator 
developers will need to discover how to get more performance from more cores. Second, the 
design space of possible future multicore architectures is vast, so it’s much harder to develop a 
standard simulator that many can use to do architecture investigation. Third, parallel application 
performance can be very non-deterministic and multiple different runs of the same code might 
be required to gain confidence in reported performance numbers [5]. Fourth, to cope with power 
limits, microprocessors now use many techniques to improve power-performance that will 
require extended simulation time. For example, dynamic voltage scaling and frequency scaling 
per core means that clock cycles and instructions per clock cycle are no longer accurate 
measures of performance. Recent Intel microprocessors even offer “Turbo” modes that will 
allow some cores to run at much higher clock rates temporarily if current operating temperature 
allows. These modes will be turned on opportunistically by the hardware, without even the 
operating system being aware. The time constants for studying power and temperature will 
require very long simulations: from 1 to 100 seconds of target time. 

 
Given the multicore revolution, we claim that the biggest architectural research challenges 

now deal with multiple processors rather than increasingly sophisticated single processors. 
Indeed, there is even a commercial movement towards “manycore” architectures that use many 
simpler processors, such as the IBM Cell, Intel Larrabee, and Sun Niagara [21], [40], [26]. 
Hence, architecture investigations now need to be able to look at many processors in addition 
to memory hierarchy and processor design. The number of cores per chip, sophistication of 
these cores, and even the instruction sets of the cores are all open to debate. Issues that have 
received little recent attention, like on-chip interconnect, are vital. Moreover, power is at least 
as important a resource to conserve today as chip area was in the past. 

 
Perhaps the greatest changes will actually be above the hardware, in the new software stack. 

Software researchers and practitioners are trying to address the grand challenge of the 
multicore revolution: to make it as easy to write programs that are efficient, portable, correct, 
and scale as the number of cores per microprocessor increases, as it has been to write 
programs for sequential computers [7]. Hence, old programs and operating systems are being 
rewritten to be compatible with increasingly parallel microprocessors. New programming 
models, new programming languages, and new applications are being invented, and given the 
urgency of the multicore challenge, architects cannot ignore them. Creating portable parallel 
programs that maintain high-performance has long been a challenge, so techniques like 
autotuning are becoming popular [17]. Rather than thinking of the program as a static object, 
autotuning adapts the program to the features of the computer on which it is running and 
perhaps even to the input data to the program. Such self-adaptation can happen at the time the 
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computer is announced, at the time software is installed onto a particular example of that 
computer–depending on the number of cores, clock rate, amount of memory, and types of 
compilers installed–or even during the execution of the program. 

 
In these revolutionary times, we draw four conclusions about the future of simulation: 

 
1. Given software churn, new techniques like autotuning, new issues like temperature and 

power, and the increasing number of cores, architecture research in the multicore era 
requires simulation of many more target instructions than it did for the uniprocessor 
era. 

2. Given the natural non-determinism of parallel programs running on a parallel operating 
system, to be sure of the significance of any results, architects need to run programs 
many times and then use averages with confidence intervals, which again increases the 
number of instructions that should be simulated [5]. 

3. Given our lack of intuition about how new parallel programs will behave on novel 
hardware and new metrics like power and absolute time (instead of clock cycles), we’ll 
need to simulate this greater number of instructions at a greater level of detail than in 
the past. 

4. Given this lack of understanding, we also need to run experiments for all portions of the 
computer and with added instrumentation, since we don’t yet know what components or 
metrics can be safely ignored in novel multicore computers running novel applications. 
 

Multiplying these four conclusions together suggests an upsurge in the demand for 
simulation over what can be done with traditional software simulators today by many orders 
of magnitude. 

 
To put into perspective how many instructions are actually being simulated per processor 

using software simulators today, Table 1 compares the number of instructions simulated per 
benchmark run per paper from the 2008 International Symposium on Computer Architecture 
(ISCA) to the same conference a decade earlier. Recent papers simulate many more instructions 
and more cores if you compare medians, but the number of instructions per core per benchmark 
run was just 100 million in 2008 vs. 267 million in 1998. We assume that the authors didn’t 
simulate more instructions because they didn’t need more to generate accurate conclusions from 
their experiments. However, we see no evidence of the dramatic rise in simulation time that we 
argue is needed for the multicore challenge. In fact, it is heading in the other direction: these 
numbers correspond to about 0.05 seconds of target execution time in 2008 vs. about 0.50 
seconds in 1998. 

  



11 

ISCA 1998 
Total 

Instructions Cores Instructions 
per Core Programs 

100M 1 100M SPEC95 
100M 1 100M SPEC95 
100M 1 100M SPEC95, NAS, CMU 
100M 1 100M SPEC95 
171M 1 171M SPEC95, SPLASH2 
200M 1 200M SPEC95 
236M 1 236M SPEC95 
267M 1 267M SPEC95 
267M 1 267M SPEC95 
267M 1 267M SPEC95 
267M 1 267M SPEC95 
325M 1 325M SPEC95 
860M 1 860M OLTP/DB, SPEC95 
900M 1 900M OLTP/DB 

1000M 1 1000M Synthetic 
84000M 8 10500M SPLASH2, Pmake 

267M 1 267M MEDIAN 
 

 

Table 1.  Number of instructions simulated per core per benchmark 
 

 

 
  

ISCA 2008 
Total 

Instructions Cores Instructions 
per Core Programs 

150M 16 9M SPEC2006 
50M 4 12M SPEC2000 

240M 16 15M SPLASH-2 
500M 16 31M Traffic Patterns 
650M 16 40M SPEC2000 

2300M 32 72M STAMP+SPLASH 
100M 1 100M SPEC2000 
100M 1 100M SPEC2000 

1600M 16 100M SPEC2000 
1000M 8 125M SPLASH-2, 

SPECJBB 
2500M 16 160M Hashtable, Rbtree 
1000M 4 250M MinneSPEC 
2000M 8 250M SPEC2000 
1000M 1 1000M MinneSPEC 

12000M 1 12000M SPEC2000 
825M 16 100M MEDIAN 
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6.0 SOFTWARE ARCHITECTURE MODEL EXECUTION (SAME) 
 

As mentioned above, the performance challenge for software simulators is turning the 
increasing number of host cores into higher simulated target instructions per second. We 
believe the challenge will be far harder for detailed simulation than for functional simulation, 
as there is naturally much more communication between components in a target cycle. 

 
Figure 1 demonstrates the impact on simulation speed as the number of cores and level of 

detail increases: functional only, functional plus caches, and functional plus caches plus detailed 
memory system model on a log-log scale. The MIPS gap between simulating 1 core at 
functional level and 64 cores at detailed memory is 150,000. We used an interleaving factor of 
3, meaning we simulate 3 instructions of one target core before switching to the next to 
improve host cache locality (there was up to a 10% increase in simulation speed between 3 and 
1, and larger interleaves gave diminishing returns). The parallel program run on the target 
computer was a Cholesky Factorization kernel. Simics was run on a 2.33 GHz Clovertown host 
processor. Note that the data point for cache level simulation for one core (5.4) seems low by 
factors of 3 or 4; we believe this is due to the constant overhead of simulating some shared 
components of the target cache hierarchy. 
 

The slowdown is almost a factor of 100 when adding caches and almost 2000 when adding 
caches and the detailed memory model. Another critical factor, however, is the number of cores 
simulated, with 64 cores simulating about 80 times slower than a single core. The total 
slowdown per core of functional simulation of 1 core versus detailed memory simulation of 64 
cores is about 150,000. 

 
The opportunity for a SAME simulator is to leverage the natural parallelism in the target 

machines to run the simulator faster on the multicore hardware of the host machine. The 
difficulty of this challenge is demonstrated by the Electronic CAD industry. Despite the 
availability of parallel servers for more than a decade, and even though there is massive 
potential parallelism in the system being simulated, most of the state-of-the-art register-
transfer language (RTL) simulators are still not parallelized. Note that the market for RTL 
simulators is likely much larger than for architecture simulators, so it’s hard to be hopeful for 
commercial progress on this topic. 
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Figure 1:  Simulated target MIPS/core on Simics under varied numbers of cores 

 
An alternative approach would be to use a cluster to emulate a multicore computer, 

perhaps with one node of cluster for each processor, and then use the cluster network for 
communication between cores. As most clusters typically interconnect via hierarchies of 
Ethernet switches, a major challenge will be to prevent the network from becoming a 
bottleneck. We believe the issue is more the latency of synchronization rather than data 
bandwidth. For example, the Wisconsin Wind Tunnel project spent 40% of the time in the 
network in their simulations [33].  Since they were using the low-latency Myrinet network and 
much slower computers, we expect it to be much worse today given higher latency Ethernet 
networks and multi-gigahertz processors.  Once again, we expect the challenge will be greater 
as the level of detail required increases. 

 
While we encourage others to make progress on this important but difficult problem, we 

are more excited by an alternative approach. 
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7.0 FPGA ARCHITECTURE MODEL EXECUTION (FAME) 
 

As observed by the Research Accelerator for Multiple Processors (RAMP) Project [49], 
FPGA technology offers a promising vehicle for architectural investigation. 

 
The first advantage is that a program written in a Hardware Description Languages (HDL) 

like Verilog or VHDL naturally runs in parallel on an FPGA, while a program written in 
languages like C or Java naturally runs sequentially on a computer. Indeed, the programmer 
needs to do extra work to prevent parallelism in an HDL on an FPGA. A second advantage is 
relative to hardware development, changing an FPGA is very fast. You only need go through 
the sequence of CAD programs and download the contents into a FPGA, which can take less 
than one hour for a small design. Hence, you can “tape out” a new design every day, as 
opposed to every three to six months with real hardware. (You also don’t have to pay the 
millions of dollars for new masks and to fabricate chips.) This flexibility also makes it easy to 
add runtime measurements without slowing down simulation since FPGAs are naturally 
parallel. Third, the FPGA hardware is relatively inexpensive. At the low end is a $750 board 
with a small FPGA (Virtex 5 XUP board) to a $15,000 board with four medium-sized FPGAs 
(BEE3). Fourth, relative to software simulators, FPGAs are fast: today’s FPGA-based 
simulators run at about 100 target MIPS with timing models. Finally, like microprocessors and 
other CMOS-based devices, FPGAs also take advantage of any advances in device geometry 
and the resulting increased transistor count and on-chip functionality and thus are roughly 
doubling in capacity every 2 years. Hence, rather than a processor taking many FPGAs as in the 
past, depending on processor complexity and size of FPGA, now many processors can fit on a 
single FPGA. Looking forward, we would expect the number of cores per FPGA to double 
roughly every two years. This trend is a great match to the multicore challenge. 

 
There are downsides to using FPGAs as well. Simulator developers need to learn a HDL and 

FPGA CAD tools. Moreover, FPGA CAD tools are often of poorer quality than software tools 
(or even ASIC tools) and typically have longer run times, so they can be frustrating to use. 
While such problems in the past led universities to make their own CAD tools, the FPGA 
industry keeps internal formats proprietary, thereby preventing third parties from developing 
their own CAD tools. Finally, compared to hardware, logic is inefficient in FPGAs unless 
you can find equivalent hardware primitives on FPGAs, such as DSPs and RAMs. In 
practice, FPGAs are bad at logic such as pipeline forwarding but good at state storage such as 
register files and caches. 

 
Given the multicore revolution and the need to simulate many more instructions at a finer level 

of detail, FPGA Architecture Model Execution (FAME) simulators offer a promising direction. 
In our discussion with other architects, there has been confusion about the terms, how our 
ideas relate to prior work using FPGAs for architecture prototyping and chip simulation, and 
what can, and cannot be done using FAME. This section and the following try to address these 
issues. 

 
Just as in software simulation, there are various options in implementing a FAME simulator 

that have a big impact on cost and performance. 
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1) Direct vs. Decoupled. One of the first uses of FPGAs was to simulate the logic of a new 
chip design, to help find bugs in the logical design before the chip was taped out. 
Quickturn was one of the early products to offer this service. By running at about 1 
MHz to 2 MHz, Quickturn boxes could run much larger test programs than could be 
simulated by ECAD logic programs. The current version of this product is the Cadence 
Palladium. We describe this modeling style as a Direct implementation, where the host is 
directly implementing the RTL of the target machine with a one-to-one mapping between 
target clock cycles and host clock cycles. 
 
The most powerful FAME option, which improves efficiency and enables the other 
options, is to adopt a Decoupled design, where a single target clock cycle can be 
implemented in many or even a variable number of host clock cycles. Models now have 
to use additional host logic to model target time correctly, and a method is needed to 
exchange target timing information between modules, as different modules in a design 
may then run with different target to host clock cycle ratios. One example of this 
approach is in the Green Flash climate supercomputer project [50], which requires 
software to be tuned for each candidate architecture design point. The processor core is 
generated by the Tensilica processor generator tools and mapped to FPGA boards 
directly, but a decoupled timing model is used to model the memory system to make the 
target DRAM performance more realistic. 
 

2) Full RTL vs. Abstract. For the direct mapping case, the full RTL of the target machine is 
required. 

 
Instead of implementing the full RTL of a real hardware design, an Abstract simulator 
uses higher- level descriptions of pieces of the design. HASIM [20] is an example of 
the Abstract FAME option, where a processor model is divided into separate functional 
and timing models that do not correspond to structural components in the target 
machine. 
This FAME option clearly reduces the difficulty of performing an architectural 
experiment, since the full RTL design is not required. More importantly, it allows 
parameterized components and timing models, such as memory hierarchy models. Since 
these parameters can be set at runtime in the FAME implementation without 
resynthesizing the design, this upgrade dramatically increases the number of architecture 
experiments that can be performed per day, since in practice successfully synthesizing a 
design and loading it into onto an FPGA board needs a skilled person involved to 
make sure every step happens correctly. 
 

3) Single-Threaded vs. Multi-Threaded. A standard approach to obtain greater 
performance from a processor is to switch threads every clock cycle so that all 
dependencies are resolved by the next time that thread is executed [6], [11]. This 
FAME option introduces the concept of host Multi-threading as a powerful technique 
to improve utilization of FPGA resources by the simulator. When the target system 
contains multiple instances of the same component (e.g., multiple processors in a 
manycore design), the host model can be designed so that one physical FPGA pipeline 
can model multiple target components by interleaving their execution using multi-
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threading. For example, a single FPGA processor pipeline might model 64 target 
processor cores. Or, a single FPGA router pipeline might model 16 on-chip routers. 
One advantage of this approach is that it can hide emulation system communication 
latencies that may otherwise slow the emulation. For example, while one processor 
target model is making a request to a memory module, we can interleave the activity of 
63 other target processor models. Provided modeling of the memory access takes 
fewer than 64 FPGA clock cycles, the emulation will not see a stall. Multi-threaded 
emulation adds additional design complexity, but can provide a significant 
improvement in emulator throughput. 

 
Many of these choices make sense in combination. Inspired by the five levels of RAID, 

the next four sections present a  four-level taxonomy of FAME that improves cost, 
performance, or flexibility at each new level. The four levels are distinguished by their 
choices from the three options above, so we can number the levels with a three-bit binary 
number.  The least-significant bit represents Direct (0) vs. Decoupled (1), the middle bit 
represents Full-RTL (0) vs. Abstract (1), and the most-significant bit represents Single-
Threaded (0) vs. Multi-Threaded (1).  Table 2 summarizes the levels and gives examples 
and the strengths of each level. Each new FAME Level lowers cost and usually improves 
performance over the previous level. 

 
Table 2.  Summary of four levels of FAME 

Level Name Example Strength Experiments/ 
day / $1000 

000 Direct FAME Quickturn / Palladium Debugging logical design 0.001 
001 Decoupled FAME GreenFlash Higher clock rate; lower cost 0.667 
011 Abstract FAME HASIM Simpler, parameterizable design; 

faster synthesis; lower cost 
60 

111 Multi-threaded FAME RAMP Gold Lower cost; may improve clock 
rate 

1080 

 
To quantify the cost-performance difference of the four FAME levels, we propose as a 

performance measure the number of simulation experiments that can be performed per day. 
Given the comments above about power, dynamic frequency per core, increasing number of 
cores and so on, we believe the minimum useful experiment is simulating 1 second of target 
execution time at the finest level of detail for 16 cores at a clock rate of 2 GHz with shared 
memory and cache coherency. You can think of this as an approximate unit to measure an 
experiment. The same experiment but running for 10 seconds is 10 units, the same experiment 
but running for 1 second at 64 cores is 4 units, and so on. Note that in addition to host 
simulation time, you must include the time to set up the experiment. To get a cost-performance 
metric, we simply divide the number of experiments per day by the cost of that FAME system. 
To keep the numbers from getting too small, we calculate experiments per day per $1000 of the 
cost of the FAME system. The last column of Table 2 estimates this metric for 2009 prices. 
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7.1. Direct FAME (Level 000): (e.g., Quickturn/Palladium) 
 

The common characteristic of Direct FAME systems is that they are designed to model a 
single chip down to the gate level with a one-to-one mapping of target cycles to host cycles. 
The current examples of Direct FAME systems include Cadence Palladium and Mentor 
Graphics Veloce, which cost millions of dollars. They are no longer based on commercial 
FPGAs because the extra features like DSPs and block RAMs are not useful at this level, so the 
companies design their own custom simpler, denser FPGAs1

 
. 

We consider Direct FAME a type of simulator model, because the RTL is for a target machine 
designed to be fabricated in some custom chip technology. This is in contrast to the FPGA 
architecture described above, where the FPGA prototype is itself the final target 
implementation and hence where the RTL will be tuned to work well on the FPGA. For the 
same reason, we do not consider FPGA computers such as Xilinx Microblaze or Convey HC-1 
as FAME systems. 

 
Let’s assume we could simulate the gates of 16 cores on a $1 million Direct FAME system 

at 2 MHz. Each run would then take 2 GHz/2 MHz =1000 seconds or 17 minutes. Because there 
are no parameters, we would have to go through the CAD tool chain for each experiment to 
resynthesize the design. Given the large number of FPGAs and larger and more complicated 
description of a hardware-ready RTL design, it takes up to 30 hours to set up a new design2

 

. 
Let’s assume Direct FAME can do one experiment per day. The number of experiments per 
day per $1000 is then 1/1000 or 0.001.  Note that in addition to low cost-performance, Direct 
FAME takes a great deal of effort for an architect to change the RTL for another experiment, 
unlike some of the later FAME Levels. 

Although helpful in debugging the designs of a complete microprocessor intended for 
fabrication, Direct FAME is too expensive and time consuming to use for early-stage 
architectural investigations. 

 
7.2. Decoupled FAME (Level 001) (e.g., Green Flash) 

 
When a custom microprocessor RTL design is directly synthesized to an FPGA, certain ASIC 

features, such as associative structures or multiport register files, can consume considerable 
FPGA resources. For example, Green Flash [50] can fit two Tensilica cores with floating-point 
units per medium-sized FPGA, and it runs at 50 MHz3

 

. The system memory is implemented in 
DRAM connected to the FPGAs which runs much faster, however, and so decoupling is used 
to make the DRAM timing match the intended target machine DRAM timing. 

To perform a 16-core experiment, it would take two BEE3 boards, which cost academics 
about $15,000 per board, plus the FPGAs and DRAMs, which cost about $3000 per board. 
Commercial pricing is higher, perhaps two to three times, and is negotiated on a per-customer 
basis.  It would take about 2 GHz/50 MHz or 40 seconds to run the experiment. It takes 8 

                                                      
1 Kees Vissers. Private communication, June 2009. 
2 Chuck Thacker. Private communication, May 2009. 
3 John Shalf. Private communication, June 2009. 
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hours to synthesize and place and route the design. Since this level has a few timing 
parameters, such as DRAM latency and bandwidth, Green Flash can run about 24 experiments 
per synthesis [41]. Thus, the number of experiments per day per $1000 is 24/36 or 0.667. 
Decoupled FAME (Level 001) improves the cost-performance over Direct FAME (Level 000) 
by a factor of almost 700×. This speedup is mostly due to the fact that the processor cores fit on 
a single FPGA so they don’t incur the FPGA partitioning costs that slows Direct FAME 
systems that model designs at the gate level and because Decoupled FAME uses a simple 
timing model to avoid resynthesis for multiple memory system experiments. 

 
It is both a strength and a weakness of Decoupled FAME that the full target RTL is modeled. 

The strength is that the model is guaranteed to be cycle accurate. Also the same RTL design can 
be pushed through a VLSI flow to obtain custom layout to yield reasonable area, power and 
timing numbers [43]. The weakness is that designing the full RTL for a system is labor-
intensive, and rerunning the tools is slow. This makes Decoupled FAME less suitable for 
early-stage architecture exploration, where the designer is not ready to commit to a full RTL 
design. 

 
Hence, Decoupled FAME will take a great deal of effort to perform a wider range of 

experiments compared to the higher levels of Abstract and Multithreaded FAME. These higher 
levels, however, require decoupling to implement their timing models, and hence we assume 
that all the following levels are decoupled (or odd-numbered in our binary numbering system). 

 
7.3. Abstract FAME (Level 011) (e.g., HASIM) 

 
Abstract FAME allows high-level descriptions for that early-stage exploration, which in turn 
simplifies the design and thereby reduces the synthesis time to less than 1 hour, and it fits onto a 
single BEE3 board. More importantly, it allows the exploration of many design parameters 
without having to resysthesize at all, which dramatically improves cost-performance.  Often in 
this level of FAME a processor model is divided into separate functional and timing models that 
do not correspond to structural components in the target machine.  In some cases, the timing 
and functional models can be implemented on different platforms completely.  For instance, a 
complex timing model could be mapped to an FPGA with the relatively simpler functional 
model running in software on a general purpose processor. 

 
Let’s assume we need 1 BEE3 board for 16 cores, so the cost is $18,000. To simulate cache 

coherency, the simulator will take several host cycles per target cycle for every load or store to 
perform the snooping on the addresses. Let’s assume the average number of host cycles per 
target instruction is 4 and the host clock rate is 100 MHz. The time for one experiment is then 2 
GHz /100 MHz * 4 = 80 seconds. Since a person does not have to be involved to run the CAD 
tools and load the FPGAs, the number of experiments per day is 24 hours / 80 seconds = 1080. 
The number of experiments per day per $1000 is then about 1080/18, or 60. Abstract FAME 
(Level 011) makes a dramatic improvement in this metric over lower FAME levels: by a factor 
of almost 100 over Decoupled FAME (Level 001) and a factor of 60,000 over Direct FAME 
(Level 000). 
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In addition to the advance in cost-performance, Abstract FAME allows many people to 
perform architecture experiments without having to modify the RTL, which greatly lowers the 
effort for experiments and greatly increases the number of people who can perform 
architecture experiments. 

 
Once again, the advantages of abstract designs and decoupled designs are so great then we 

assume that any further level is both Abstract and Decoupled. 
 
7.4. Multithreaded FAME (Level 111): (e.g., RAMP Gold) 

 
The main cost of Multithreaded FAME is more RAM to hold copies of the state of each 

thread, but RAM is one of the strengths of FPGAs. Hence, Multithreaded FAME increases 
the number of cores that can be simulated efficiently per FPGA. Multithreading can also 
increase the clock rate of the host simulator by removing items that could be on the critical 
path, such as forwarding logic for pipelined execution. 

 
Since we are multiplexing a single FPGA, we can use the much less expensive XUP 

board, which costs $750. Due to the multithreaded design, we assume that each instruction 
takes 1 host clock cycle per core, or 16 host clock cycles per multiprocessor instruction per host 
pipeline. We believe we can include three pipelines on such an FPGA, so we would need to 
add host cache coherence for 3 pipelines, which is not too hard to do. The time for one 
experiment is then 2 GHz /100 MHz * 16 / 3 = 107 seconds. The number of experiments per 
day is 24 hours / 107 seconds = 810. The number of experiments per day per $1000 is then 
about 810 / .75 or 1080. Multithreaded FAME (Level 111) improves this metric by a factor of 
almost 20 over Abstract FAME (Level 011), by a factor of about 1500 over Decoupled FAME 
(Level 001), and by a factor of more than 1,000,000 over Direct FAME (Level 000). 

 
In addition, Multithreaded FAME lowers the entry point cost for people who want to do 

experiments by a factor of 24 to 48 versus Abstract or Decoupled FAME, making it possible 
for many more researchers to do parallel architecture research, which is just what we need in 
these demanding times. 

 
7.5. Hybrid FAME Simulators 

 
Although these layers are presented as completely separate approaches for pedagogic reasons, 

real systems will combine modules at different levels together, or even use hybrid designs with 
some portions in FPGA and others in software. 

 
An example of a mixed FPGA-only design is often used by System-on-a-Chip IP providers 

to provide a fast emulation of their IP block to customers, where the RTL mapped to the FPGA 
is the same as will be mapped to the final ASIC implementation (FAME Level 001), but the 
rest of the system is described at an abstract level (FAME Level 011). 

 
An example of a mixed FAME/SAME system is the Protoflex system [14]. It uses a FPGA-

system to simulate the state of the memory hierarchy throughout the run of the program, and 
then uses a software simulator to investigate performance of short but interesting stretches of the 
program. Note that the FPGA portion is abstract, in that it does not use full RTL of the 
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design, yet it does not offer a timing model, so it does not fit cleanly into the FAME 
taxonomy above. 
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8.0   DESCRIPTION OF RAMP GOLD 
 

An example of Multithreaded FAME is RAMP Gold [45]. RAMP Gold is a prototyping 
platform developed in collaboration with the Berkeley Parallel Computing Laboratory for 
experimental development of next generation single-socket multicore architectures.  It will be 
used to validate micro-architecture mechanisms and to provide an early platform for operating 
system, library, and application development.  RAMP Gold v1.0 is implemented on a single 
Xilinx Virtex5 LX110T FPGA. The FPGA board connects to a PC server through a 1 
Gbps Ethernet link. This front-end server is responsible for all simulation controls, such as 
loading executable binaries and dumping simulation statistics. The front-end machine also serves 
complex system calls whose functionality is not implemented in the simulated target software 
kernel, such as file I/O. 

 
Inside the FPGA, we currently use a single-channel 233 MHz DDR2 memory controller 

based on the BEE3 memory controller [1]. It supports up to a 2GB dual-rank SODIMM. We use 
the 2GB DRAM for both target memory and some simulated microarchitectural state, such as 
target cache tags and data. On top of the memory controller, there is a host cache whose 
purpose is only to accelerate the simulation it does not affect the timing of the target memory 
system. 

 
The simulation engine includes two basic models: a processor model and memory system 

model. Each processor model emulates a single in-order issue 32-bit SPARC V8 CPU. The 
functional model is built on our previous work in [44], which is highly optimized for the 
Xilinx Virtex 5 family of FPGAs and runs at over 100 MHz. Every functional model 
simulates up to 64 target processors using host multithreading. The functional model 
implements the full SPARC V8 ISA, including floating-point and precise exceptions. It also 
has been verified against the SPARC V8 verification suite. All integer instructions, double 
precision floating-point multiply, add/subtract and conversions are implemented in hardware. 
Complex floating-point operations, such as FDIV, cause traps and are emulated in the simulated 
supervisor. The timing model emulates a classic five-stage pipeline. For instance, it models 
pipeline stalls such as the load-use delay and the branch delay slot. The number of cores being 
simulated can be configured at runtime without resynthesizing the simulator. 

 
The processor-timing model is connected to a configurable model of the memory hierarchy. 

The target system has split first-level instruction and data caches connected to a unified L2 
cache, which can be configured as private or shared. Many cache parameters, including cache 
size, line size, associatively, and hit latency, are configured at runtime; within reasonable limits, 
varying them does not require resynthesis. In the current version of the model, the write-back 
and write-allocate policies are fixed, and replacement is pseudorandom; these restrictions are 
only for design simplicity and are not the result of inherent limitations in RAMP Gold. 

 
In RAMP Gold v1, the target caches are automatically kept coherent because the underlying 

host is coherent; protocol transitions are not modeled, nor is contention for the interconnect. 
Constructing a cycle- accurate model of a coherence protocol is among our planned future work. 
Note that one of the advantages of the higher FAME levels is that a complete working RTL 
design is not required before beginning architectural exploration. The underlying memory 
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functional model keeps our shared memory design functionally correct, even if timing is 
incorrect. As with software simulators, timing model validation will be required to ensure 
reasonable accuracy is achieved. 

 
In addition to hardware simulation models, RAMP Gold also provides a systematic design 

and verification environment. Our target compiler tool chain is directly built from the latest 
GCC without any modification. Newlib provides a lightweight C library that is ABI-
compatible with OpenSolaris, so the same single-threaded application binary can run on RAMP 
Gold and Sun servers. Multi-threaded binaries are object-code compatible but must be linked 
against a different implementation of POSIX threads. 
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9.0 HANDLING DYNAMIC CLOCK FREQUENCY, POWER, AND TEMPERATURE 

IN FAME 
 

    Modern simulators must now offer the ability for each portion of the computer to run at 
different clock frequencies, to estimate power usage, and to model temperature. Given the 
naturally parallel nature of FPGAs, we believe these will be much easier to handle in FAME 
than in SAME. To make this point, we describe our plan for them in RAMP Gold. 

 
To model dynamic clock frequency changes, we’ll use a much faster target timebase–say, 16 

GHz–and track time via that master clock. The control portions of each RAMP Gold 
component will then simply use the very fast clock to coordinate and account for events. Note 
that even if a component had a clock that is not a multiple of the master clock, we would 
simply round up to the next master clock cycle. Hence, the master clock rate just needs to be 
fast enough that such “quantization errors” are too small to appreciably affect the results. 
Fortunately, quantization errors don’t accumulate. 

 
Like others, our approach to power is to record which components are active over time and 

then plug them into a formula that estimates the power of a component given its activity [12]. 
These component power models can come from CAD tools if the components are actually 
designed. If not, they are estimated by higher-level models of components [12], although there is 
concern about the accuracy of these higher- level models. One advantage of FAME is that there 
is little simulation time penalty to supply the lower level activity parameters that are needed by 
the more accurate, lower-level power models. Hence, it may prove easier to have more accurate 
power estimates for FAME than for SAME. 

 
We can use a standard approach to simulating temperature, by taking the estimates of energy 

consumed for every, say, 10 milliseconds of target time and plug these into a thermal 
simulation. This floating-point intensive calculation can be offloaded to the host workstation 
rather than on FAME itself [34]. We believe the relatively slow change of temperature will 
allow us to retain fast simulation with the decoupled but high performance nature of GPU 
computing. 
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10.0 FAME VS. SAME: PRELIMINARY PERFORMANCE COMPARISON 
 

Simics is a popular architecture simulator which has often been used by architects to 
prototype and evaluate new microarchitectural ideas. Figure 2 compares performance of Simics 
to RAMP Gold for 16 processors for functional and timing variations for a functional single 
pipeline per FGPA. The RAMP Gold detailed memory model is an estimate, and the parallel 
program run on the target computer was a Cholesky Factorization kernel for this data. When 
running on a high-end workstation and simulating 16 SPARC processor cores in a purely 
functional mode, Simics can achieve approximately 42 MIPS per core of simulated performance. 
When simulating the cache, the rate is 0.56 MIPS per core, or a slowdown of nearly 100. 
Moreover, the addition of the GEMS (General Execution-driven Multiprocessor Simulator) 
modules that accurately model timing drops performance to 0.024 MIPS per core, a slowdown 
of 2000 over functional simulation. For RAMP Gold, it is 4.0 MIPS per core for the functional 
simulator and 3.2 MIPS per core for the version with timing and an (estimated) MIPS per core 
of about 2.0 with detailed memory, a slowdown of about 1.2 and 2, respectively.  
 
 

Figure 2:  Three levels of functionality for Simics vs. RAMP 
 

Note that this is the current performance of RAMP Gold for a single functional pipeline per 
FGPA, and we expect future versions of RAMP Gold will have 2 to 4 piplines per FPGA, 
which should improve performance considerably. 

 
Figure 2 serves to illustrate the basic argument for FAME:  Although functional simulation 

can be very fast, even faster than FAME simulation, the huge slowdown for the detailed level 
of SAME simulation allows FAME simulation to be a factor of 100 faster since it doesn’t 
slow down nearly as quickly as the level of detail is increased. 
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11.0   FALLACIES AND PITFALLS 
 

In discussions with others, we have heard some common misconceptions about FAME. We 
list them below as fallacies or pitfalls. 

 
Fallacy: Because logic is relatively slow in FPGAs, which leads to a slow clock cycle, 
yet DRAMs run at full speed, you can’t believe performance measurements from FAME 
simulators.  

 
Although this criticism does apply to FPGA prototypes and Direct FAME, the primary reason 

for Decoupled and higher FAME levels is to overcome this exact weakness by separating timing 
simulation from functional simulation. Just as the speed of the host computer running the 
SAME simulator is obviously distinct from the modeled performance of the target machine 
being simulated, the clock rates of the host FPGA board and DRAMs are also obviously 
independent from target machine performance for Decoupled and higher-level FAME 
simulators. 
 

Fallacy:  You can’t simulate out-of-order processors using FAME. 
 
In fact, HASIM has a uniprocessor Out-Of-Order architectural model that runs the full 

SPEC2006 benchmark suite4

 
. 

Fallacy:  You can’t run the operating system natively on FAME. 
 

RAMP Gold is fully compatible with the SPARC V8 specification. It implements all types 
of instructions and traps required to boot an OS. The functional model design of RAMP Gold 
passes the SPARC V8 verification test suite required by the SPARC certification test. 
Currently, we are running a thin OS layer called the Proxy Kernel on RAMP Gold. The Proxy 
Kernel supports all system calls required by Newlib, a lightweight C library that is ABI-
compatible with OpenSolaris. User-mode applications running on RAMP Gold can make I/O 
requests by calling standard C functions such as fread, fwrite, and printf. In the future, we 
plan to enhance the current RAMP Gold MMU to boot the Linux 2.6 kernel and bring up 
Debian user applications. 

 
Fallacy:  FAME is too expensive for most researchers to use. 

 
At $750 for an XUP board, Multithreaded FAME costs less than a laptop, which makes it 

highly affordable, so almost anyone can afford to do parallel architecture research. 
 

Fallacy:  Surely industry must have solved this problem already. 
 

Industry largely does evolutionary design. Hence, they heavily instrument current 
microarchitectures so that engineers can stress test real chips at high speeds to look for 
opportunities for improvements in subsequent versions. Note that industry’s track record is not 

                                                      
4 Joel Emer. Private communication, June 2009.  
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as good when creating new microarchitectures, such as the cancelled Intel Prescott, or new 
instruction sets, such as the HP/Intel Itanium. Given the multicore revolution, industry may 
not be able to rely on evolutionary design as much as it has in the past. 

 
Pitfall: Use an FPGA prototype as the simulated target machine. 

 
For FPGA prototypes or Direct FAME, people often map ’simplified’ or ’FPGA optimized’ 

RTLs due to implementation efficiency and target RTL availability. Further, people may use 
the implementation on FPGA as their simulated target architecture. However, those FPGA 
implementations are quite different from the real target. For example, a cache-coherent SMP 
target machine would usually employ a more advanced interconnect than a snooping bus, 
which is easiest to implement on FPGAs. In addition, the memory access latencies are 
significantly lower on FPGAs, because the processors on FPGAs run much slower than the 
host memory interface. 
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12.0   CONCLUSION AND RECOMMENDATIONS 
 

Although Software Architectural Model Execution (SAME) simulators are important tools for 
computer systems research, we believe Multithreaded FPGA Architectural Model Execution 
(FAME) simulators offer the most cost-effective approach to exploring the multicore design 
space, as they provide the best combination of simulation speed and architectural flexibility 
[49]. As a specific example, RAMP Gold simulates 16 cores with a detailed memory model 
about 100 times faster than Simics+GEMS. Using architecture experiments per day per 
$1000 as a cost-performance metric within the FAME taxonomy, a Multithreaded FAME 
(Level 111) such as RAMP Gold is about 1,000,000 times better than Direct FAME (Level 
000) such as Cadence Palladium, 1500 times better than Decoupled FAME (Level 001) 
such as Green Flash, and 20 times better than Abstract FAME such as HASIM (Level 011). 

 
Like times past when sharing of simulators and useful simulation artifacts, such as traces 

or tools, lead to an increase in the number of researchers working on a problem, we hope 
that Multithreaded FAME simulators like RAMP Gold will increase the number working on 
the multicore challenge, for the IT industry certainly could use more help with the multicore 
challenge. 

 
There are many opportunities and remaining obstacles for FAME to become useful.  We 
conclude by listing them here: 
 
As it is usually the case that the timing model circuitry is slower than functional simulation, 
and the functional model is underutilized, we would recommend arranging multiple timing 
models to share one functional pipeline.   
 
As FPGAs get larger, to improve host simulation time without increasing the number of 
cores of the target architecture, we recommend adding multiple functional pipelines per FPGA. 
This change implies a cache coherency scheme for the host.   
 
Given the relatively high bandwidth of host DRAM compared to the low host clock rates of 
FPGAs, we recommend simplifying the host memory hierarchy, to increase the number of 
pipelines per FPGA, thus reducing the difficulty of building coherency. 
 
Both simulators and instruction-set-level virtual machines, such as those from Xen and 
VMware, run whole software stacks without the software being any the wiser. What 
techniques developed for Virtual Machines can be borrowed by FAME to improve cost 
performance or software compatibility? 
 
While FPGAs allow emulation of many processors, there is no equivalent to the emulation 
of lots of memory. One idea to consider is using Flash memory as main memory. Another 
approach would be to borrow the separation of physical memory from machine memory from 
virtual machines to share identical memory pages between cores. 
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