Secure Channel Establishment in Disadvantaged Networks:
TLS Optimization Using Intercepting Proxies!
Sam McVeety, Roger Khazan, Joseph Cooley
Information Systems Technology Group
MIT Lincoln Laboratory
244 Wood Street, Lexington, MA 02420
email: {rkh, cooley}@Ill.mit.edu
August 18, 2009

Abstract

Transport Layer Security (TLS) is a secure communication protocol that is used in many secure
electronic applications. In order to establish a TLS connection, a client and server engage in a
handshake, which usually involves the transmission of digital certificates. In this thesis we develop a
practical speedup of TLS handshakes over bandwidth-constrained, high-latency (i.e. disadvantaged)
links by reducing the communication overhead associated with the transmission of digital certificates.
This speedup is achieved by deploying two specialized TLS proxies across such links. Working in
tandem, one proxy will replace certificate data in packets being sent across the disadvantaged link
with a short reference, while the proxy on the other side of the link will restore the certificate data
in the packet. The certificate data will be supplied by local or remote caches. Our solution preserves
the end-to-end security of TLS and is designed to be transparent to third-party applications, and
will thus facilitate rapid deployment by removing the need to modify existing installations of TLS
clients and TLS servers. Testing shows that this technique can reduce the overall bandwidth used
during a handshake by over 50%, and can reduce the time required to establish a secure channel by

over 40% across Iridium links.

The project report presented here is the MIT Master’s of Engineering thesis document by Sam
McVeety. Sam McVeety’s Master’s project and the thesis document were done in collaboration with

and under the supervision of Dr. Roger Khazan and Mr. Joseph Cooley.

1This work is sponsored by the Department of Defense under Air Force contract FA8721-05-C-0002. Opinions,
interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the
United States Government.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
18 AUG 2009 2. REPORT TYPE 00-00-2009 to 00-00-2009
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Secur e Channel Establishment in Disadvantaged Networks: TLS £b. GRANT NUMBER

Optimization Using I nter cepting Proxies
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
M assachusetts I nstitute of Technology,Lincoln L abor atory,244 W ood REPORT NUMBER
Street,L exington,M A,02420

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Sa_me as 72
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Secure Channel Establishment in Disadvantaged Networks:

TLS Optimization Using Intercepting Proxies
by
Sam McVeety
B.S., Massachusetts Institute of Technology (2008)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
August 2009

(© Massachusetts Institute of Technology 2009. All rights reserved.

AU NOT .« .
Department of Electrical Engineering and Computer Science
August 19, 2009

Certifled Dy o
Dr. Roger Khazan

Research Scientist

MIT Lincoln Laboratory

Thesis Supervisor

Certified Dy . ..o
Joe Cooley

Research Scientist

MIT Lincoln Laboratory

Thesis Supervisor

Accepted Dy ...
Dr. Christopher J. Terman
Chairman, Department Committee on Graduate Theses

Secure Channel Establishment in Disadvantaged Networks:
TLS Optimization Using Intercepting Proxies
by
Sam McVeety

Submitted to the Department of Electrical Engineering and Computer Science
on August 19, 2009, in partial fulfillment of the
requirements for the degree of
Master of Engineering

Abstract

Transport Layer Security (TLS) is a secure communication protocol that is used in many secure
electronic applications. In order to establish a TLS connection, a client and server engage in a
handshake, which usually involves the transmission of digital certificates. In this thesis we develop a
practical speedup of TLS handshakes over bandwidth-constrained, high-latency (i.e. disadvantaged)
links by reducing the communication overhead associated with the transmission of digital certificates.
This speedup is achieved by deploying two specialized TLS proxies across such links. Working in
tandem, one proxy will replace certificate data in packets being sent across the disadvantaged link
with a short reference, while the proxy on the other side of the link will restore the certificate data
in the packet. The certificate data will be supplied by local or remote caches. Our solution preserves
the end-to-end security of TLS and is designed to be transparent to third-party applications, and
will thus facilitate rapid deployment by removing the need to modify existing installations of TLS
clients and TLS servers. Testing shows that this technique can reduce the overall bandwidth used
during a handshake by over 50%, and can reduce the time required to establish a secure channel by
over 40% across Iridium links.

Thesis Supervisor: Dr. Roger Khazan
Title: Research Scientist
MIT Lincoln Laboratory

Thesis Supervisor: Joe Cooley
Title: Research Scientist
MIT Lincoln Laboratory

Acknowledgments

I would like to thank MIT Lincoln Laboratory for its generous support of this project, and Roger
Khazan for his advice and guidance. I would also like to thank Joseph Cooley for his helpful
suggestions and sage wisdom toward building the prototype, as well as his general knowledge of the

TLS network stack.

Contents

1 Introduction 10
1.1 Problem Statement L 10
1.2 Technical Underpinnings 11

1.21 IP Layer e 12
1.2.2 TCP Layer 12
1.2.3 Transport Layer Security 13
1.2.4 Intercepting Proxies 18
1.2.,5 Disadvantaged Links Lo L oo 19
1.2.6 Supporting Software L 19
1.3 Roadmap e 22

2 System Design 23

2.1 Packet Processing Overview 23
2.1.1 Capturing and Queuing Packets oo 23
2.1.2 Altering Packets L 24
2.1.3 Generating Packets 24

2.2 Performance, Correctness, and Security 24
2.2.1 Consistent Proxy State o 24
2.2.2 Communicating Proxy State 25
2.2.3 TCP Fragmentation 25
2.2.4 Transmission Reliability Mechanisms 26
2.2.5 Security e 27

2.3 Server-Only Authentication 27
2.3.1 OVerview e 27
2.3.2 Client Hello Extensions 29
2.3.3 TLS Message: Compressed Certificate 31
2.3.4 Reliability Analysis. L 32

2.4 Server-Client Authenticationo
241 Overview s

2.4.2 Client Hello Extensions, Take 2

Software Implementation

3.1 Architecture
3.1.1 Class Design oo e
3.1.2 Netfilter Modules

3.2 Code Implementation
3.2.1 Environment Setup
3.22 Control Flow e
3.2.3 Key Processing Concepts
3.2.4 Server-Only Authentication Implementation
3.2.5 Server-Client Authentication Implemenation

Experimentation

4.1 Test-bed Setup L
411 Servers
4.1.2 Link Emulation L
4.1.3 Opensslo

4.2 Code Profiling
4.2.1 Userspace Processing o
4.2.2 Context Switching L

4.3 Baseline Latency Comparison 00
4.3.1 Userspace Processing L o
4.3.2 Context Switching L

4.4 Latency Comparison o
4.4.1 Processing (Needn’t Be) Expensive
4.4.2 Bandwidth Savings Beget Latency Savings
4.4.3 Better Performance for Server-Client Authentication

4.5 Bandwidth Comparison
4.5.1 Certificate Chains

4.6 Robustness

Conclusions

5.1 Benefits of Proxied Links

5.2 Applications

39
39
39
40
40
40
40
42
46
48

50
a0
50
o1
ol
51
52
52
92
52
53
93
93
95
%)
%)
o7
o7

5.3.1
5.3.2
5.3.3
5.3.4

Auxiliary Architecture

A.1 Handshake Execution

A2 Packet Capture

A.3 Data Post-Processing
A4 Graph Creation e
AL File List o e e

A6 Command-line Flags e
A.7 Database Schema
A.8 Test Certificates

Aside: TLS Round Alteration

Development Environment

C.1 Imstallation s

63
63
63
64
65
65
66
66
67

69

71

List of Figures

1-1
1-2
1-3
1-4
1-5

3-1
3-2
3-3
3-4

4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9

Network Stack. 13
A Server-Only TLS Handshake. 16
A Server-Client-Authenticating TLS Handshake. 18
Proxies Deployed for a Mobile Phone. 20
Data Flow in a Netfilter System. 22
TLS Data Alignment. e e 26
Transmission Failsafe. 27
Certificate Compression Via Proxies. 28
Server Name Extension Specification. oL 0oL 30
ClientHello Extension: CPI. 31
Server-Only Handshake: First Two Rounds. 32
Proxies Deployed Across a Satellite Link. 36
A Server-Client-Authenticating TLS Handshake. 37
Data Flow in a Netfilter System. 40
Scatter-Gather in Action. L 44
Packet Completeness Code. 45
Netfilter Callback. 46
Preprocessing Predicated on Kernel Version. 51
Server-Only Handshake Performance, High Latency. 54
Server-Only Handshake Performance, Low Latency. 54
Server-Client-Authenticating Handshake Performance, High Latency. 56
Server-Client-Authenticating Handshake Performance, Low Latency. 56
Server-Only Bandwidth Performance. 56
A Compressed Certificate Chain.o 57
A Normal Certificate Chain. 57
Fallback Packet Flow. 58

B-1 A Server-Transparent Round Alteration

List of Tables

1.1
1.2
1.3
14
1.5
1.6

2.1
2.2

4.1

IP Packet (Header + Data) 12
TCP Packet (Header + Data) 13
TLS Record Types o o i i it e e 14
TLS Record o 14
TLS Message Types o o v v vt i e e e e e 14
TLS MeSSage . .« v v v v v e e e e e 15
TLS Message: CompressedCertificate 32
Server-only Authentication Use Cases 33
Simulated Wireless Link Parameters 53

Chapter 1

Introduction

We begin with a problem statement that describes the scope of the project. Next, we outline the
various concepts in security and information technology that our project builds upon and list the

open-source tools that aided us in our research.

1.1 Problem Statement

Transport Layer Security (TLS) encryption [9] is a means of establishing and using a secure com-
munication link between two endpoints via a mutually understood cipher. For the purposes of this
project, a fundamental building block of TLS is the digital certificate, which consists of a public key
that is signed by a trusted third party (certificate authority) allowing the validity of the certificate
to be verified. As is standard in public key encryption, the owner of a certificate also knows the
private key that corresponds to the public key in the certificate; this allows the owner to digitally
sign messages in a way that can be verified by any party possessing the public key.

Creating a TLS connection between a server and a client begins with a handshake protocol,
toward the end of authenticating each other and computing an authentic, shared master secret.
During the handshake protocol, the server and client exchange digital certificates in the clear, along
with auxiliary information. Certificates are large blocks of data, which (depending on the length
of the session) often comprise a large part of the total data communicated over the lifetime of the
secure connection. For example, a certificate can represent over 50% of the bandwidth used in a given
handshake. The TLS protocol dictates that certificates be transmitted whenever a new session is
begun. However, these certificates often have very long lifetimes (1-2 years), making their exchange
at the start of every TLS handshake a redundant exercise (as this could happen every five minutes).

Even if the certificate size is small compared to the aggregate data exchange over the session,
it still impacts the speed with which the connection can be established. If we could eliminate the

overhead of certificate exchange for a large number of TLS handshakes, we conjecture that the

10

overall speedup would be non-trivial. Matthew Low’s summer project at MIT Lincoln Laboratory,

L. Tt is highly desirable to reduce this

which regards certificate caching, supports this hypothesis
response time as much as possible, even if the cost of transmitting the certificate can be amortized to
a negligible cost over the lifetime of the connection, because this corresponds to the delay before any
content reaches the client. Whatever the type of content, the user cannot continue work (viewing a
web page, filling out a web form) until the handshake is complete.

We note that the problem of certificate size will continue to be relevant even as technology
improves. Wireless bandwidth continues to be an issue for mobile devices, and as computational
power grows (and correspondingly, our ability to break encryption schemes of a given strength) this
necessitates the use of larger certificates, such that this issue will continue to be relevant in the
coming years. Additionally, we acknowledge the fact that TLS supports the reuse of session IDs,
allowing connection resumption within a given amount of time. However, there are a number of
problems with this approach, enumerated by Schacham and Boneh [15]. These problems include
dependence on server-maintained state, as well as the prevalence of obsolete TLS implementations
which do not support session resumption.

Our solution uses a set of proxies to cache certificates on the downstream side of a disadvantaged
link. This allows the proxy on the upstream side to compress the certificate(s) in future handshakes
by replacing them with small references, because the downstream proxy will intercept the message
and insert the full certificate(s) on its side of the link. It is possible to deploy these proxies in a way
that is transparent to the two endpoints, such that TLS security is necessarily maintained between
the endpoints.

Proxy transparency obviates the need of either client or server to support an extension to the
TLS protocol, because all of the custom operations take place within the scope of the proxies. Thus,
we conjecture that this solution will be robust in practice, as any IP link can be modified to support
the proxied setup without altering third party code on either the client or server. That being said,
there is a limit to what we can accomplish using only the intercepting proxies, without modifying
the client or server. Accordingly, we will also look at the possible benefits that can be derived from
altering the client TLS implementation (but not the server), as this approach is still practical on a

variety of platforms, including mobile phones.

1.2 Technical Underpinnings

We briefly review the major specifications that our project depends on. Citations are provided for
further information.

TLS relies on other protocols to transport its messages between endpoints. In this section we

IMatthew Low (with Joseph Cooley and Roger Khazan), A Communication Efficient TLS Extension, MIT Lincoln
Laboratory Summer Project, 2008

11

Table 1.1: IP Packet (Header + Data)

[Bits [03] 4-7 \ 8-15 | 16-18 | 19-31 \

0 Version \ Header Length \ Service Type Total Length
32 Identification Flags \ Fragment Offset
64 Time to Live \ Protocol Header Checksum
96 Source Address
128 Destination Address
160 Options (Optional)

160/192+ Data (e.g. TCP)

review them, starting with the IP protocol. Once we have outlined this network stack, we provide
further background on the TLS protocol itself. Additionally, we include specific definitions of other

entities which are essential to this project, in particular, the proxies that we use.

1.2.1 IP Layer

The Internet Protocol (IP) [12] is a connectionless protocol designed to allow two systems to com-
municate over a computer network. For our purposes, all relevant Internet traffic is routed over
IP. This is a general purpose protocol which, given an address (e.g. 192.168.10.1) and a payload,
attempts to deliver a given packet of data from one computer to another. IP provides no guarantees
about delivery, save for a checksum which allows for rudimentary corruption detection. Within IP,
there are fields denoting the entire length of the packet, the source and destination addresses, as
well as a checksum over the contents of the packet.

The total length field in an IP packet is the only length field in the packet with a constant offset
from the beginning. We will use this fact when parsing packets.

Table 1.1 shows the byte arrangement in the IP header, attached to a payload containing data
(e.g. a TCP packet.)

1.2.2 TCP Layer

The Transport Control Protocol (TCP) [13] is a communication protocol over which data delivery
is accomplished in a FIFO, gap-free manner. TCP is a connection-based protocol: it begins with a
three-part handshake that establishes a connection between two computers. During this handshake,
each computer randomly generates a SYN number, which corresponds to the starting point of each
computer’s respective data stream. Thereafter, all packets that the computers send are tagged with
the appropriate offset from the SYN number (called sequence numbers) such that the other computer
can determine the intended data ordering. The receiving computer then acknowledges the receipt
of packets up to a given sequence number with ACK messages. Table 1.2 shows the byte order of a
TCP packet header and data payload.

These sequence numbers are particularly important for building a proxy system in the presence

12

Table 1.2: TCP Packet (Header + Data)

[Bits] 0-3 | 47]815 [16-23] 24-31 |
0 Source Port | Destination Port
32 Sequence Number
64 Acknowledgement Number
96 Data Offset (Header Length) | Reserved | Flags Window Size
128 Checksum Urgent Pointer
160 Options (Optional)
160/192+ Data (e.g. TLS)
TLS
TCP
P
Link Layer (Ethernet)
Hardware

Figure 1-1: Network Stack.

of TCP, as they are the only way to correlate packets with each other and thus with the appropriate
TCP connection. Accordingly, the proxy system specially indexes the SEQ and ACK numbers of

packets so that it can quickly identify consecutive packets in a given stream.

1.2.3 Transport Layer Security

Transport Layer Security (TLS) [9] is the newest iteration of a ubiquitous protocol which allows
two computers to establish a secure channel between them. Once the channel is established, all
data transmitted across it is guaranteed to be authenticated and confidential. Connections begin
with a handshake, during which certificates and other information are exchanged in order to create
a mutual secret by which the computers can securely communicate. For our purposes, the TLS
protocol runs on top of TCP, as shown in Figure 1-1, such that a TCP connection must first be
established, before a TLS handshake can occur.

We define a round as a one-way transmission of information, after which the transmitting party
must wait for a response from the receiver before continuing. The TLS handshake consists of two
main tiers of granularity, namely, records and messages [9]. Over the course of a handshake, a record
acts as a container for one or more messages. Messages correspond to a specific piece of information,
such as a Certificate or a ClientHello message. Differing implementations of TLS alternately enforce

a one-to-one or one—to—many Correspondence between records and messages.

1.2.3.1 Records

TLS attempts to send all the information of a given round as a single packet, which may be frag-
mented by a lower level protocol. Each TLS packet contains one or more records, which correspond

to the state that a given TLS connection is in (initializing, established, terminating, etc.). A com-

13

Table 1.3: TLS Record Types
| Hex [Code | Record \

0x14 20 ChangeCipherSpec
0x15 21 Alert

0x16 22 Handshake

0x17 23 Application

Table 1.4: TLS Record

(Bytes [0|] | D EIE
0-4 Record Type \ Major Version \ Minor Version | Record Length
4-7 Record Data (TLS Message(s))

Record Data (TLS Message(s))

plete list of TLS record types is shown in Table 1.3. TLS Records have a small header containing
the version information as well as the record type and length. This is shown in Table 1.4.
In this project, we will mainly be dealing with handshake records, as these are the records which

contain messages related to digital certificates.

1.2.3.2 Messages

Within each record, there is at least one message, which constitutes a given action related to the
connection. A list of TLS message types and their corresponding codes is shown in Table 1.5. Mes-
sages contain a very small header, which simply contains a message type and a 3-byte length. This
is illustrated in Table 1.6. Of primary interest to us is the Certificate message, which communicates
a digital certificate between parties. We will also look at the ClientHello message, as we attempt
to optimize our system. The ClientHello message supports a number of extensions, which we will

examine in more detail in Chapter 2.

Table 1.5: TLS Message Types
’ Code \ Message

0 HelloRequest

1 ClientHello

2 ServerHello

11 Certificate

12 ServerKeyExchange
13 CertificateRequest
14 ServerHelloDone

15 CertificateVerify

16 ClientKeyExchange
20 Finished

14

Table 1.6: TLS Message

| Bytes || 0 [1]2] 3 |
0-3 Message Type | Data Length
4-7 Message Data
Message Data

1.2.3.3 Digital Certificates

Public Keys and Secure Communications Most modern asymmetric public key encryption
implementations use the RSA algorithm [14]. RSA encryption relies on two corresponding pieces of
information - a public key and a private key, which can alternately be used to compute and invert
a trapdoor function. These keys are used as an asymmetric means of encryption, where Alice can
securely send information to Bob by encrypting data using Bob’s public key. Bob can then decrypt
the data using his private key.

Digital Signatures Digital signatures allow the owner of a private key to digitally sign information
in a way that cannot easily be forged. Anyone possessing the corresponding public key can then
verify that the information was signed by the private key in question [10].

Note that the ability to create a digital signature is not a proof of identity, per se, but rather a
proof of possessing a given private key. In order to achieve some measure of authentication through
digital signatures, a trusted signing authority (i.e. Verisign), which has a widely distributed public
signing key, can verify Alice’s credentials and sign Alice’s public key, effectively indicating that

Verisign believes the owner of the corresponding private key to be Alice.

Certificates A certificate packages a public key, identifying information, and a digital signature
into a single entity, meant for distribution; the signature is that of a trusted authority, indicating
that the authority believes that the identifying information corresponds to the owner of the private
key.

Take the following example. Say that all computers on Earth ship with the root certificate for
Certificate Authority C. Accordingly, if C signs Alice’s certificate A, then Alice can transmit A to
any computer that has C, which can then verify that C’s signature on A is valid. If the user trusts
the authority, they should also believe that Alice is who she says she is.

Additionally, if the user also trusts Alice to verify the credentials of others, then Alice can now
sign Bob’s certificate B, which can then be verified by possessing both C and A. In this way,

authentication can be chained from a single root trusted authority through trusted intermediaries.

x.509 Certificates The x.509 format [11] is a standard way of formatting certificate information,

such that all entities involved can easily verify the owner of a given certificate and perform actions

15

Client Server

ClientHello =—=—————o >
ServerHello
Certificate
<o==mm——- ServerHelloDone
ClientKeyExchange
[ChangeCipherSpec]
Finished @ —==————= >
[ChangeCipherSpec]
D — Finished
Application Data <——mm——- > Application Data

Figure 1-2: A Server-Only TLS Handshake.

with its public key.
In practice, some of the details are a bit archaic, which is why we offload most of this processing

to an openssl library [4], which is designed to work with differing certificate formats.

1.2.3.4 TLS Handshakes

A TLS connection begins with a handshake protocol, during which information is exchanged between
client and server in an attempt to authenticate each other and create a secure channel.

There are two types of TLS handshakes, each of which requires that the server authenticate
itself to the client. One additionally requires client authentication; the other does not. The server-
only handshake can be seen in Figure 1-2, where each line corresponds to a different TLS message.
This project supports both types of handshake, though we begin by focusing on the server-only
authentication handshake. Once the server-only authentication case is covered, we continue to the
server-client authentication handshake.

TLS uses a combination of random numbers to create a shared master secret between client and
server. These random numbers are session-specific, while certificates have a much longer lifetime.
Accordingly, it is possible to reuse the parts of the handshake that can be directly computed from
a certificate, over the course of several handshakes. The rest of the information cannot be reused.

Below, we briefly outline the different TLS message types used in the server-only handshake, and

their effect on the handshake.

ClientHello In order to initiate a handshake, the client sends a ClientHello message to the server.
The message lists various compatibility information about the client, including supported ciphers
(such as RSA) and its TLS protocol version. The client also generates a random number and includes

this in the message.

16

ServerHello The server responds to the client with its selection of protocol version and cipher,

as well as its own random number.

Certificate The server sends its certificate in the same round as the ServerHello message.

ServerHelloDone This message simply marks the end of the round for the server, prompting a

response from the client.

ClientKeyExchange In an RSA-based handshake, the client creates and transmits a PreMaster-
Secret in a ClientKeyExchange message, encrypted using the server’s RSA key. Using the PreMas-
terSecret and the random numbers from the ServerHello and ClientHello messages, both client and
server calculate a shared master secret. The rest of the exchange will be encrypted according to this

secret.

ChangeCipherSpec Though technically not a handshake record, the ChangeCipherSpec record
appears in the same round as the final handshake negotiations. It simply states that all transmissions

from now on will be encrypted.

Finished The Finished message is sent by both client and server, and is the first message that is
encrypted using their shared master secret. The message contains a message authentication code
(MAC) over the entire handshake, to ensure that both client and server have been receiving messages
with total fidelity. If any of the handshake messages have been altered in transit, this step will fail,
and the connection will be torn down.

The MAC in the Finished message means that one cannot selectively alter pieces of the handshake
in transit without being detected, and causing the endpoints to abort the connection. Therefore
from the points of view of the client and the server, our proxies will have to be transparent in their

processing of the TLS handshake.

1.2.3.5 Server-Client Authentication Specific Messages

In server-client authentication handshakes, additional message types are used to authenticate the

client to the server. A diagram of the overall handshake is shown in Figure 1-3.

CertificateRequest The CertificateRequest message simply indicates that a server requires client

authentication.

CertificateVerify The CertificateVerify message is the crucial step in authenticating the client

to the server. The client signs all handshake messages that it has received, and transmits these to

17

Client Server

ClientHello —=—=————- >
ServerHello
Certificate
CertificateRequest
<———————- ServerHelloDone
ClientKeyExchange
Certificate
CertificateVerify
[ChangeCipherSpec]
Finished = —-====——= >
[ChangeCipherSpec]
——==———= Finished
Application Data <——————= > Application Data

Figure 1-3: A Server-Client-Authenticating TLS Handshake.

the server. Per our earlier discussion of digital signatures, the client will only be able to create a
valid signature if it possesses the private key corresponding to the certificate that it sends.
Since the CerticateVerify message requires the client’s private key, a proxy cannot sign a message

on behalf of the client.

1.2.4 Intercepting Proxies

This project will make heavy use of intercepting proxies, which we define as an intercepting process
operating at the IP level, through which all traffic passes.

Traffic is directed through the proxy within the network stack, so that it is independent of the
presence of other third-party applications. The proxies do not necessarily have to reside on a separate
box from the client or server — they can run locally, or be simulated at the OS level if need be.

Our proxies make small modifications to the packets that they intercept. These modifications
include certificate compression as well as tagging a packet with additional information that it did
not originally contain.

Additionally, we require that our proxies be transparent, that is, that the endpoints cannot
explicitly detect the modifications that the proxies make. In order to accomplish this, we use
proxies in pairs, such that whenever the first proxy makes a modification to a packet, the second
proxy undoes this modification before forwarding the packet. Using this technique, the proxies can
communicate with each other without compromising the end-to-end protocol between the connection

endpoints.

18

1.2.5 Disadvantaged Links

We examine the efficacy of modifying the TLS handshake protocol over disadvantaged links that
feature constraints regarding latency and/or bandwidth. Given the correspondence between encryp-
tion strength and certificate size, the bandwidth utilization of a given connection quickly becomes a
concern as the size of the certificate scales, as compression can make the difference between sending
one packet or many. We accomplish this compression by caching certificates on each end of the
disadvantaged link. For high-latency, low-bandwidth connections, we will examine the effect that

smaller messages have on the speed of the handshake.

1.2.5.1 Mobile Phones

As a case study of disadvantaged links, we briefly discuss mobile phones. As Internet-capable
phones become increasingly popular, the problem of establishing fast and secure connections for
mobile phones is a very important one. We note that our solution is particularly relevant in this
case, given that the available bandwidth, even over 3G networks, is small, and the set of secure
websites that are used is likely to be small, such that many users will be requesting the same server
certificates repeatedly.

Furthermore, even in future high-bandwidth networks, carriers will still seek to reduce their cost-
per-bit, as well as to increase the number of concurrent users on their network. Reducing bandwidth
usage in TLS handshakes offers an improvement in both of these categories.

In this case, the disadvantaged link exists between the phone and the cell tower, necessitating
that certificate data be cached locally, on the phone itself. Since our solution is entirely transparent
to third-party applications, the proxy can be readily adapted to any phone that supports TLS.

This is illustrated in Figure 1-4, with Proxy C and Proxy S acting as client-side and server-side

proxies, respectively.

1.2.6 Supporting Software

We relied on the following tools and libraries in order to prototype and develop this project. For
each tool, we will cover its basic functionality and then explain the ways in which it was particularly

useful for this project.

1.2.6.1 Wireshark

The successor to the Ethereal project, Wireshark is a packet capture tool which allows us to capture
and inspect live network traffic, including traffic over TLS [6].
We use Wireshark in all phases of development. First, we use it to examine the structure of TLS

handshake packets, and ensure that we are parsing them correctly. After we start to alter packets,

19

Figure 1-4: Proxies Deployed for a Mobile Phone.

we use it to look at the changes and ensure that they appear on actual network devices as they are
supposed to.

Though somewhat excessive for this task, Wireshark is also a useful tool for ensuring that our
test machines are configured with the correct routes, such that packets are passing through the
appropriate gateways.

The Wireshark source code also provided inspiration for our methods of parsing TLS traffic.

1.2.6.2 Openssl

Openssl is an all-purpose cryptography project that provides a multitude of libraries and utilities
for creating and maintaining applications which use cryptography [4].
The software provided by openssl proved itself useful in many different ways throughout the

project.

Certificate Generation Openssl allowed us to create test certificates to use in TLS transactions.
Rather than turning to a signing authority, we created our own trusted authority using openssl, and

signed our own certificates with this authority.

s_client and s_server Two of the command line programs that are included with openssl allow
for the simulation of a rudimentary TLS client and server. Running s_server deploys an extremely

lightweight TLS server with a slew of user-configurable parameters, including the supported encryp-

20

tion algorithms and optional client authentication. s_client functions as a simple TLS client which
can connect to an arbitrary TLS server. Both applications include debugging and logging tools.
These programs allowed us to test different parameters of the handshake in a standard and

repeatable way, and check that our proxies’ meddling is indeed transparent to the endpoints.

x.509 Handling Openssl provides an extensive library for handling x.509 certificates, which allows
one to manipulate all aspects of the certificate.

We use this to parse certificates in a unified way, since a variety of subtly different certificate
implementations exist on the Internet today. Rather than handle each certificate on a case-by-case

basis, we let openssl perform this logic for us.

1.2.6.3 SQLite

SQLite is a lightweight transactional database which is both fast and reliable [2].

SQLite allows us to rapidly prototype any classes which require data storage, as a lightweight
framework for reading and writing local data. This precludes the need to develop our own data
format for storing certificates and state information.

Additionally, SQLite supports triggers, which allow us to conditionally run operations when
certain events occur. We can use this functionality to periodically update or purge the records in

our database, to ensure longevity of the system.

1.2.6.4 Netfilter

Netfilter is a set of Linux kernel modules which allow one to connect directly into the network stack
at the IP layer [3]. Netfilter code is written using a series of hooks, which specify a point at which
to capture upstream or downstream traffic as it interacts with the rest of the system.

Netfilter is ideal for our purposes, as it allows us to inspect and alter IP packets before they reach
any third party applications on the system. We use a queuing mechanism provided by netfilter to
capture packets in kernelspace, hand them off to userspace for processing, and then return them
to kernelspace for transmission. The processing that takes place in userspace is the main logic
developed in this project.

The data flow for netfilter can be seen in Figure 1-5.

1.2.6.5 getopt

getopt is a basic library for parsing command-line options that are passed to a given program [1].
In the project, we used this library to allow us to easily pass command-line parameters to our
program in a clean and efficient way. This meant that we didn’t have to write any specialized code

for command-line parsing, and could quickly add additional options when necessary.

21

Proxy

Userspace

(Processing)

oo

Kernelspace

Nefilter

Network Traffic Network Traffic

Figure 1-5: Data Flow in a Netfilter System.

1.3 Roadmap

Having outlined the problem that we wish to solve and surveyed the relevant tools, we now seek to
more specifically design how we will be using those tools to create a functional system. Since we
are dealing with a secure communication protocol, it is important that the design be robust. After
outlining the design, we delve into some of the more nuanced aspects of the actual implementation.

Having built a working system, we run a series of experiments to test its efficacy. Finally, we analyze

these results and discuss the possible direction of future work.

22

Chapter 2

System Design

In order to accomplish data compression and expansion, we will look in detail at each step in the
processing of packets. Beyond that, we will look at the different cases for TLS handshakes that we

will be modifying, and the different pieces of information that we can bootstrap upon.

2.1 Packet Processing Overview

We will be using netfilter [3] to intercept packets as they pass through the intercepting proxy. Given
a packet, we must first identify whether it is relevant, and then process it accordingly. The processing

should take place in discrete steps, so as to increase the clarity of the code and speed of debugging.

—_

. Identify packet as a TLS handshake record;

2. Detect certificates and other relevant fields;

w

. Compress/expand certificates; alter the packet;

4. Forward the resulting packet.

2.1.1 Capturing and Queuing Packets

As described in Section 1.2.6.4, netfilter allows us to process packets in the following way. The
network hooks operate in kernel space, where we can intercept entire packets. However, in order to
use the auxiliary libraries that we want, such as sqlite, openssl, etc., we need to process the packets in
userspace. To allow for this functionality, we use the netfilter queuing mechanism, which intercepts
packets and then sends them to queue processing in userspace, which then hands the packets back

to the kernel when it is done with them.

23

We queue packets simply, by differentiating only between packets headed in one direction versus
the other. These are placed in separate queues according to their arrival order and handed off to

userspace, keeping the netfilter code lightweight.

2.1.2 Altering Packets

When netfilter intercepts a packet, it is given to us in the form of a continuous buffer. Accordingly,
it must be returned in a similar form. Since many of our processing techniques alter the length of
the packet, we must copy the data into an appropriately sized buffer.

Beyond using a new buffer, we also have to mind the length fields defined in various protocol

headers. All of these must be changed to agree with the altered data.

2.1.3 Generating Packets

When we are reconstructing compressed certificates, it may become necessary to dynamically gen-
erate entire packets and then inject them into the network. This is somewhat trickier than altering
queued packets, as the netfilter functionality cannot be used to generate new packets. Instead, we
start by copying an existing packet, and alter the copied packet’s header to properly place it in the

TCP sequence. Then we can use a network library to transmit the packet.

2.2 Performance, Correctness, and Security

We examine the correctness of our system with regard to its required functionality, casting an eye

toward performance bounds. Additionally, we show that the system retains the security of TLS.

2.2.1 Consistent Proxy State

Taking the requirements from Section 1.1 into account, it is clear that the server-side proxy must
have at least some knowledge of the state of the client-side proxy in order to decide whether or not to
compress the certificate(s). Ideally, the server-side proxy will always know if the client-side proxy has
a cached copy of a given certificate, and will keep this information up-to-date. With a few further
assumptions, it turns out that we can indeed achieve this degree of awareness in the server-side

proxy, and design our communication protocol accordingly. Abstractly, these assumptions are:

1. Given a collection of server certificates, it is possible to identify a server certificate uniquely,
given only the server domain name and the expectation that the certificate is valid for the

current date;

2. The data transmitted by the TLS client in its ClientHello message uniquely identifies the

domain name of the server.

24

2.2.2 Communicating Proxy State

In practice, the assumptions from Section 2.2.1 hold true, such that we can incorporate them into
our design.

We have the ability to communicate some amount of information from client-side proxy to server-
side proxy via the ClientHello message, before the Certificate message is sent. If we use this infor-
mation to its fullest extent (detailed below), the server-side proxy can gather all relevant knowledge
about the state of the client-side proxy at the cost of very few bits. To use this information, the
server-side proxy keeps a persistent database of its record of the client-side proxy’s state (i.e., what
certificates the client-side proxy possesses).

What we propose is that the client-side proxy modify the ClientHello message to include a short
list of certificates that it anticipates that the server will return. Clearly, the viability of such a
system rests on making such predictions accurately. In our implementation, we find a solution to

this problem that meets these requirements.

2.2.3 TCP Fragmentation

One problem that we encountered during implementation is the prevalence of TCP fragmentation
over the course of the TLS handshake. This results from the fact that some TLS payloads exceed
the pre-defined maximum segment size (MSS) for the TCP protocol, forcing them to be fragmented
over several packets.

At the IP proxy level, there is no good way to tell whether the TCP payload of a packet is a
continuation of the previous packet’s payload or not. This is exemplified in Figure 2-1, where TLS
record boundaries do not line up with TCP packet boundaries, and the length of each record is only
reported at the beginning of the record itself. For example, if we received TCP Packet 2 out of
order, the payload would begin in the middle of TLS Record 1, without any additional information
to guide us.

The best solution to this is to ensure that the packets have all been received in order, first, and
then to scan across their payloads to determine whether one TCP packet is the continuation of
another. We would do this by starting with TCP Packet 1, and reading the length of TLS Record 1.
Reading the TLS Record would cause us to wait for the next packet, and then to continue reading
to the end of the record.

Hence, we can only begin our processing at the start of a packet that coincides with the start of
a TLS record.

As an example of this mechanism at work, consider the following situation. Packets 17, 18, and
19 are consecutive segments of a TCP stream. A TLS record spans packets 17 and 18. Packet 19

contains a single TLS record. If the proxy received these packets out-of-order, such they arrived as

25

IP Packet 1 IP Packet 2
TCP Packet 1 TCP Packet 2
TLS Record 1 TLS Record 2 TLS Record 3
TLS Message 1 \ TLS Message 2 | TLS Message 3 | TLS Message 4

Figure 2-1: TLS Data Alignment.

17, 19, and 18, they would be processed in the following way.

1. Proxy receives 17 and discovers its payload is incomplete; it is requeued.
2. Proxy receives 19 and discovers it is complete; it is forwarded.

3. Proxy receives 18 and cannot process it (as it begins in the middle of a TLS record); the

contents are stored and the packet is dropped.

4. Proxy receives 17 (again) and combines it with 18 for processing; the resulting packet is

forwarded.

2.2.4 Transmission Reliability Mechanisms

In order to create a robust system, we must incorporate resilience to failed packets, whether they
are dropped or altered in transit.

A salient problem arises in the case of dropped packets, as we may be intentionally altering
the TCP state markers. We develop the technique of packet predication, where all of our altered
packets are sent, predicated on the receipt of one or more normal packets that are required for the
transaction. In other words, all of the actions that the proxy takes can be expressed as, “When
I receive packet A, do action B.” This allows us to retain the delivery guarantees of TCP, as the
failure of action B will necessarily cause a normal packet (in this case, A) to fail. This will cause
the normal packet to be re-sent, triggering B again. The underlying TCP connection is a best-effort

attempt to deliver these packets, so that our system’s functionality cascades from that.

2.2.4.1 Failsafe

No system is perfect, and we acknowledge the possible existence of bugs in our proxy. In accordance
with this, we have an additional failsafe mechanism, where both proxies keep track of the IP packets
that they have already forwarded. If the proxy has never seen a given packet before, the normal
control flow dictates the way in which it is processed. However, if the proxy has seen the packet
before, it assumes that something has gone wrong, and short-circuits any processing that would
normally take place, in favor of forwarding the unaltered packet. This allows the system as a whole
to fail gracefully, and fall back to simply forwarding packets unaltered. This concept is illustrated

in Figure 2-2.

26

Figure 2-2: Transmission Failsafe.

2.2.5 Security

Since we are building our proxy system to coexist with the TLS protocol, we get to keep the
guarantees of security from TLS “for free”. Our interference in the transmission can be no more
invasive than any man-in-the-middle attack, which the TLS protocol is designed to be resilient
against. Put another way, our software is no more than a man-in-the-middle, and so it cannot

compromise the security of a TLS connection any more than any other man-in-the-middle.

2.3 Server-Only Authentication

We first examine the case where a server authenticates itself to a client, and the two parties create

a shared secret in order to establish a secure channel. Recall that this is shown in Figure 1-2.

2.3.1 Overview

The server is the origin of its certificate with regard to the handshake, and this certificate must
somehow make its way to the client. We would like for this transmission not to be redundant, in
that, if a client (or, rather, the client’s proxy) has ever received the server’s certificate, it will never
need to receive that same certificate again. Essentially, what we want is the ability for a client-side
proxy to be able to cache a certificate at its end of the disadvantaged link, such that all subsequent

handshakes that contain the certificate are modified as follows; also illustrated in Figure 2-3:
1. Servers send unmodified TLS packets containing their certificates;
2. Server-side proxy compresses the certificates by replacing them with short references;
3. (Thus, Certificates do not traverse the (disadvantaged) link between proxies;)

4. Client-side proxy reconstructs the original TLS packet by replacing certificate references with

cached certificates;

27

Figure 2-3: Certificate Compression Via Proxies.

5. Clients receive identical packets to the ones that the servers sent.

Given this as the basic idea of what we want to do, it is clear that we will have to include some
amount of auxiliary information in the exchange. We can do much better than repeatedly sending
the entire certificate, as the number of bits required to uniquely identify a given certificate is much
smaller than the size of the certificate itself. We need a protocol for interproxy communication.

There are two principal approaches to the problem of keeping the proxies synchronized and

communicating auxiliary information between them:

1. Piggyback on the existing TLS protocol between proxies, so as to preserve all of the guarantees

of TLS while conveying the necessary auxiliary information;

2. Create a new protocol over TCP that is designed expressly for interproxy communication.

It should be clear that the first approach is probably the simpler one, while the second approach
is more extensible. We will implement the first approach in this project, because it relies on the
transmission guarantees of the TLS protocol and is simpler.

We briefly digress here to discuss the necessity that the proxy operations be transparent to the
endpoints. At base, this is required by the TLS handshake, which performs a Message Authentication
Code (MAC) step at the end of the handshake (in the Finished message, see 1.2.3.4) to ensure the

28

integrity of the handshake data. Here, an encrypted trapdoor function of all of the handshake data is
calculated, and the client and server compare their values. If there is any mismatch, the connection
is aborted. Accordingly, the data that reaches the client and server endpoints must be identical to

the data that each of them transmits; the proxies cannot leave any fingerprints on the data.

2.3.2 Client Hello Extensions

The ClientHello message standard includes a mechanism for including additional information, called
extensions [7). Effectively, this format allows for a list of arbitrary values (prepended by extension
types) to be tacked on to the end of a ClientHello message in a backwards compatible way. The
receiving server can ignore extensions that it does not know how to handle.

In modern TLS implementations, ClientHello extensions are used for Server Name Indication
as well as session resumption, and we in turn can use a ClientHello extension to transmit our own
interproxy message within the confines of the TLS protocol.

For a given message, the extension list has the following format:

EXTENSIONS LENGTH (2 bytes)
EXTENSION 1 TYPE (2 bytes)
EXTENSION 1 LENGTH (2 bytes)

EXTENSION 1 DATA
EXTENSION 2 TYPE (2 bytes)
EXTENSION 2 LENGTH (2 bytes)

EXTENSION 2 DATA

2.3.2.1 Extension 1: Server Name Indication

The Server Name Indication (SNI) extension was created to allow the client to specify a domain
name when initiating a TLS handshake with a given server [7]. This is a useful feature, because
the IP and TCP headers can only specify an IP address, so that there was no way to disambiguate
between multiple virtual domains before this extension.

This extension is additionally used by web browsers, since certificates are tied specifically to
domain names rather than IP addresses; the latter can be transient. We assume that there is only
one certificate for a given domain, and will use SNI in a similar fashion, to correlate certificates with
a handshake at the ClientHello round. Note that without SNI, we would only have access to an IP
address at the ClientHello round, which cannot reliably resolve to a certificate.

The SNI extension has the following format:

29

TYPE (2 bytes) // server_name = 0x0000
LENGTH (2 bytes)
DATA
LENGTH (2 bytes) // TYPE + SERVER
TYPE (1 byte) // So far there is only one, 0x00 = host_name
LENGTH (2 bytes)
SERVER (n bytes)

The above is a practical summary of the original RFC definition, reprinted in Figure 2-4.

struct {
NameType name_type;
select (name_type) {
case host_name: HostName;
} name;
} ServerName;

enum {
host_name(0), (255)
} NameType;

opaque HostName<1..2716-1>;

struct {
ServerName server_name_list<1..2716-1>
} ServerNamelist;

Figure 2-4: Server Name Extension Specification.

With SNI in mind, let us take an inventory of the tools available to us. At the beginning of a
handshake, the client sends a ClientHello message to the server. This passes through both proxies,
so that the client-side proxy now knows which server the client is connecting to, and thus (with
reasonable confidence) which certificate the server is going to send. At this point, it can check its
cache to see whether or not it has the certificate. If it does, the client-side proxy can indicate to
the server-side proxy that it already has the certificate, and have the server-side proxy compress the

certificate in the next round. This leads to our first interproxy message.

2.3.2.2 Extension 2: Certificate Possession Indication

Building on the existing ClientHello extension framework, we add a Certificate Possession Indication
(CPI) extension to the ClientHello message. Put simply, the CPI extension contains a unique
identifier(s) for one (or more) certificate(s), and effectively means, “I have this (these) certificate(s)
in my cache.”

Let’s discuss the utility of the CPI extension. It appears to be just another ClientHello exten-

30

sion, so any TLS implementation that can read ClientHello extensions should be able to read this
extension. Additionally, this means that TLS code should also fail gracefully if it doesn’t know how
to handle this extension — just like it would for any other ClientHello extension.

Together, the compatibility feature and graceful failure of this extension give us a few implemen-
tation options. We can use the extension in a transparent way, such that the client-side proxy adds
the extension to a given ClientHello message, and then the server-side proxy strips the extension
back out before it reaches the server (but after updating its client-side state) such that neither client
nor server see the extension.

We could also implement this in the client TLS application itself (assuming the certificate cache
was accessible from the client) without altering the server application, since the server will simply
ignore the code. Along the way, the server-side proxy would read the extension and update its value
of the client-side state.

The extension layout can be seen in Figure 2-5

TYPE (2 bytes) // certificate_possession = 0x0099
LENGTH (2 bytes)

CERTIFICATE REFERENCE 1

CERTIFICATE REFERENCE 2

Figure 2-5: ClientHello Extension: CPI.

2.3.3 TLS Message: Compressed Certificate

We now reach the stage where we must decide how to transmit compressed certificates between
proxies. Again, we opt for a solution that is highly compatible with existing TLS code, by creating

a new TLS message type: CompressedCertificate.

2.3.3.1 Certificate Compression

To compress a certificate, we need to correlate a unique identifier with the certificate, such that
there is no ambiguity as to which certificate is compressed. Taking a cryptographic hash over the
certificate data is a natural choice, as the probability of a collision is acceptably negligible.

The CompressedCertificate message is simply an array of compressed certificates. The message
header indicates the size of the array, and no other metadata is given. Assuming certificates are
compressed to 16 bytes (say, the 16 bytes of a MD5 hash) the message structure is illustrated in
Table 2.1.

As in the case of the CPI extension, notice the flexibility of implementation that this design gives
us. It is a valid TLS message format; any proxy code that we write which is designed to iterate

through all TLS messages in a record can easily handle this, as it simply adds an additional message

31

Table 2.1: TLS Message: CompressedCertificate

| Bytes || 0 [1]2] 3 |
0-3 Message Type (0x99) | Data Length
4-7 Compressed Certificate 1
20-23 Compressed Certificate 2

type to the mix. As an aside, we also note that building certificate compression into a new TLS
implementation would be much easier than if we had created a new format on our own.

In our implementation, we again opt for transparency, such that the server-side proxy will re-
place a Certificate message with a CompressedCertificate message, which the client-side proxy then
replaces with a Certificate message. From the point of view of the client and server, the transaction
proceeds normally. From the point of view of the proxies, the full certificate does not traverse the

disadvantaged link.

2.3.4 Reliability Analysis

As far as the proxies are concerned, their sole purpose in a server-only authentication handshake is
to ensure that the client has the desired server certificate, ideally without having to transmit the
certificate over the disadvantaged link in its entirety. This comprises at most two rounds of the
handshake, so there can be at most four proxies involved, though there will usually only be two.
This can be seen in Figure 2-6, which shows the ClientHello and Certificate rounds of the handshake.

The rounds pass through the proxies at points A, B, B’, and A’.

) Client-side Server-side
Client Proxy Proxy Server
A
Cﬁe””‘/ello B

B >
! ificate
A " . Carif

Figure 2-6: Server-Only Handshake: First Two Rounds.

For the purposes of our analysis, we assume that B and B’ represent the same proxy, since we

32

are assuming a fast local connection between the server-side proxy and the server. We will, however,
consider the case when the proxies at A and A’ are not the same, since the location of the client could
have changed significantly if the disadvantaged link has high latency, or there could be multiple links
between client and server.

We will now analyze the different cases that can arise. We begin with the expected case, and
then add possible extenuating circumstances, showing how the system handles these contingencies.
The interesting cases are summarized in Table 2.2. Remember the failsafe mechanism of our system
which disallows repeated attempts to send an altered packet: on the second try or later, the packet

is forwarded without changes. Thus, the rest of the cases fall back to the original TLS handshake.

Table 2.2: Server-only Authentication Use Cases
’ Case H B=B | A=A \ A#£AN \ B resets \ A resets \ A has 7 \ A’ has Z ‘

0 X X X X
1 X X X X
2 X X

3 X X X

4 X X X

5 X X X

2.3.4.1 Case 0: Two Proxies, Proxy A has Certificate Z

e By matching the SNI field in ClientHello with a certificate that it has in its cache, A indicates

that it has Z in a modified ClientHello message;

e B notes that A has Z in its database, and forwards a compressed certificate, when it receives

the certificate from the server;

e A receives the compressed certificate and expands it for the client.

This is by far the most likely case, where things go according to plan and the certificate is

properly compressed and expanded.

2.3.4.2 Case 1: Three Proxies, Proxies A and A’ have Certificate Z

e By matching the SNI field in ClientHello with a certificate, A indicates that it has Z in a

modified ClientHello message;

e B notes that A has Z in its database, and forwards a compressed certificate, when it receives

the certificate from the server;

e A’ receives the compressed certificate and expands it for the client.

33

Notice that the compressed certificate is not client-side-proxy specific — any client-side proxy
with the certificate in its cache can decompress the certificate. Practically, this means that even if
a moving client (or the routing setup) causes A # A’ often, the overall system will quickly become
saturated with common certificates, and function independently of whether A and A’ are the same.
2.3.4.3 Case 2: Two Proxies, A doesn’t have Z

e A fails to match the SNI field to a certificate, and sends a normal ClientHello;

e B forwards the full certificate message when it receives it from the server.

We must encounter this case at least once for the first-ever connection from a client-side proxy
to a given server, unless we pre-populate our certificate database. Fortunately, it is no more costly
than a normal handshake.

2.3.4.4 Case 3: Two Proxies, A claims to have Z, A loses cache

e By matching the SNI field in ClientHello with a certificate, A indicates that it has Z in a

modified ClientHello message;

e B notes that A has Z in its database, and forwards a compressed certificate when it receives

it from the server;
e A, having lost its cache, cannot decompress the packet, and drops it;

e The server retransmits the Certificate packet (via TCP guarantees) and B forwards the packet

(unchanged) when it receives it from the server.

This case is also unlikely, but is an important consideration. Even if there is a mismatch between
the recorded states of A and B, the handshake succeeds in at most one additional round, after the

TCP retransmission timeout.

2.3.4.5 Case 4: Three Proxies, A has Z, A’ does not; B forwards through A’

In this case, the client has moved behind a new proxy during the time that B is communicating with

the Server. The result is similar to the previous case.

e By matching the SNI field in ClientHello with a certificate, A indicates that it has Z in a

modified ClientHello message;

e B notes that A has Z in its database, and forwards a compressed certificate when it receives

it from the server;

e A’ cannot expand the certificate and drops the packet;

34

e The server retransmits the Certificate packet (via TCP guarantees) and B forwards the packet

(unchanged) when it receives it from the server.

Again, this case is unlikely, and the handshake succeeds in at most one additional round, after

the TCP retransmission timeout.

2.3.4.6 Case 5: Two Proxies, A has Z, B loses state

e By matching the SNI field in ClientHello with a certificate, A indicates that it has Z in a

modified ClientHello message;
e B resets and loses all record of client-side proxy state;

e Without knowing A’s state, B forwards the full certificate message when it receives it from the

server.

This case is rather unlikely, as our proxy software will be robust against losing state. Also, the
interval in question is very small, so it is very unlikely that B will reset in the roundtrip time from
the server-side proxy to the server. Nevertheless, we would still fall back to the original handshake

in this case.

2.4 Server-Client Authentication

The addition of client authentication makes the task of compressing certificates in an efficient way
considerably more difficult. It is much more difficult to correlate the initial steps of a TLS handshake
with a specific client certificate, because multiple clients can correspond to the same IP address, and
the client certificate is not sent until the third round of the handshake. Thus, the server has no
way of knowing a priori what certificate the client might try and send, so the server-side proxy does
not know what part of its state to communicate to the client-side proxy. This setup can be seen in

Figure 2-7, where several clients share a single proxy.

2.4.1 Overview

If the client-side proxy does not know the state of the server-side proxy, it cannot know whether or
not to compress a given certificate. Compressing all certificates would likely lead to a high failure
rate, so we need to think of a solution that takes other factors into account.

A naive approach would attempt to identify some aspect of the ClientHello message in a one-
to-one correspondence with a certificate; this approach quickly shows itself to prove fruitless. As
seen in Figure 2-8, which shows the different rounds of a server-client authenticating handshake, the

ClientCertificate does not appear until the third round of the handshake. This fact is built in to the

35

Figure 2-7: Proxies Deployed Across a Satellite Link.

TLS state machine itself, which does not request a certificate until it receives a CertificateRequest
message.

Accordingly, the ClientHello message contains at most identifying information about the client’s
computer, and does not initiate any certificate selection on the part of the user until the third round.
Thus, in the most basic case, several people sharing the same computer would break any possibility
of establishing such a correspondence. Even if we could be assured of an injective correspondence
between computers and users, the existence of NATs and dynamic address spaces indicate that it
is not possible for the server to determine which certificate is about to be sent from the ClientHello
message, or any transparent modification thereof.

This leaves us three possibilities for attempting to extend certificate compression to the server-

client-authenticating version of the handshake.

2.4.1.1 Proxy Broadcast

It is possible for the server-side proxy to advertise its state by broadcasting some format of messages
containing state information to the client-side proxy. However, this requires additional bandwidth,
and could be very wasteful, depending on the number of certificates associated with a given address.
Again, a priori, there is no way to know which state information will be useful, and if there are
1000 users behind a NAT with a single address, any bandwidth savings from certificate compression
would quickly disappear. Granted, there are more clever ways to go about compressing such a list

of certificates, perhaps by using a bloom filter [8] or other such construct. This approach will not

36

Client Server

ClientHello —=—=————- >
ServerHello
Certificate
ServerKeyExchange
ClientCertificateRequest
<———————- ServerHelloDone
ClientCertificate
ClientKeyExchange
CertificateVerify
[ChangeCipherSpec]
Finishea = —-—==——— >
[ChangeCipherSpec]
Lmmmmm - Finished
Application Data <—==———= > Application Data

Figure 2-8: A Server-Client-Authenticating TLS Handshake.

be explored further in this project.

2.4.1.2 Persistent Client-side Proxy Statefulness

Given a reasonable guarantee of persistence for the client-side and server-side proxies, it is possible for
the client-side proxy to keep track of the state of the server-side proxy by itself, without broadcasts
from said proxy. In this scenario, whenever the client-side proxy forwards a certificate in full to the
server-side proxy, it updates its internal record of the state of the server proxy. If it sees the same
certificate again, it assumes that the server-side proxy has it cached, and forwards a unique identifier
in place of the actual certificate in the second round.

If this assumption proves incorrect, we add an extra round to the transaction where the client-side
proxy explicitly sends the full certificate. This functions similarly to the cases in Section 2.3.4 where
the server-side proxy sends a compressed certificate to a client-side proxy that lacks the certificate.
The packet is simply dropped, and the proxy transmits it in full when TCP forces a retransmission.

The chief drawback of this strategy is its dependence on consistency between the client-side and
server-side proxies. Whenever there is an inconsistency, an extra round is necessary to remedy the
state mismatch, effectively corresponding to a cache miss. If the expected number of cache misses is
low (whenever the client-side proxy incorrectly assumes that the server-side proxy has a certificate)

then the extra round adds a negligible expected cost to the overall exchange.

2.4.1.3 Protocol Modification

Finally, we can modify the problem of transmitting the client certificate to the server-side proxy in an

essential way by removing the chief difficulty, namely, that the client does not select their certificate

37

until the third round of the handshake. Building upon the Fast Cert system !, we can modify the
TLS protocol itself to require certificate selection in the first round, such that the client-side proxy
can explicitly state (also in the first round) which certificate it will attempt to send during the
handshake.

This effectively combines the ideal cases of the previous sections. The client-side proxy would
have perfect knowledge of the (relevant) state of the server-side proxy, as far as the certificates that it
is going to transmit. Also, since the certificate is explicitly indicated by the user, there is no guessing,
and no redundant state is transmitted. Since not all servers require server-client authentication, the
client system would need to remember which servers did, and only request a client certificate for
those sites.

This is the option which we chose to explore in our implementation.

2.4.2 Client Hello Extensions, Take 2

Our previous extension to the ClientHello message finds use here in our desire to have the client
communicate to the server-side proxy which certificate it is about to send. For clarity, we will
differentiate this from the previous extension, calling it Certificate Intention Indication (CII). The

fact that this is a valid message extension is useful for several reasons:

e Both client and server can see the extension, and include it in their MAC calculations, even
though the server will ignore the extension. This obviates the need to alter the MAC code in

any way;

e Both proxies can now treat the extension as read-only, and thus have to perform very little

processing on the packet.

Accordingly, we will alter our client TLS implementation (in this case, openssl) such that it
supports an option that automatically includes a CII extension when given a client certificate. Given
such a message, the implementation and case analysis of the server-client authentication handshake

is no different than that of the server-only handshake.

IMatthew Low (with Joseph Cooley and Roger Khazan), A Communication Efficient TLS Extension, MIT Lincoln
Laboratory Summer Project, 2008

38

Chapter 3

Software Implementation

Having outlined the system design, we will now delve into the lower level implementation, discussing
specific algorithms and code snippets. Though our code is untested outside of the reference envi-

ronment, it does not make use of any environment-specific features, and thus should be portable.

3.1 Architecture

3.1.1 Class Design

We model several different entities in our system as C++ classes.

3.1.1.1 Packet

Whenever our system receives or creates a packet, a Packet class is instantiated. The Packet class
contains methods for reading and writing all relevant fields in the packet, including checksums
and header values. Additionally, the Packet class contains specialized methods for processing TLS

packets in order to compress or decompress certificates.

3.1.1.2 TcpStream

As we have mentioned before, we may have to combine several TCP packets in order to reconstruct
a full TLS record. The TcpStream class is designed to let us do that, such that every Packet belongs

to a TcpStream, and we can search for subsequent packets by querying the TcpStream object.

3.1.1.3 Certificate

The Certificate class contains all certificate-specific methods for data reading and compression.

39

3.1.1.4 Proxy

The Proxy class is a static class that provides access to the persistent data store for a given proxy.

Proxy contains methods for looking up cached certificates, as well as storing new certificates.

3.1.2 Netfilter Modules

In order to use netfilter to alter packets, we need to set up a kernel module that sends the packets to
userspace for alteration. This is done using the queuing mechanism [3] which then triggers a callback

in userspace whenever a packet is queued. This process is explained in more detail in Section 3.2.2.

Proxy
Userspace
callback()
prd
]
=
g
Kernelspace
%’-’Q
Network Traffic @00 ’ Network Traffic
F
&

Figure 3-1: Data Flow in a Netfilter System.

3.2 Code Implementation

3.2.1 Environment Setup

Our development environment of choice is the Ubuntu Linux distribution, running as a virtual
machine via VMWare’s virtualization software [5]. This allows for rapid recovery when missteps in

the kernel module cause a kernel panic or other such nuisance.

3.2.2 Control Flow

When using netfilter, all actions are triggered by the interception of a packet. At this point, we

can choose how to handle the packet: whether to drop it, alter it, or simply to forward it. Such an

40

entry point in packet control is termed a hook. To implement a hook, we first instantiate it, and
then specify where it should intercept packets, and how to handle them. This can be seen in the

following code snippet:

static struct nf_hook_ops netfilter_ops_in;

netfilter_ops_in.hook = queue_tls; // Specify a handler

netfilter_ops_in.pf = AFINET;

netfilter_ops_in.hooknum = NFINET'PREROUTING; // Intercept incoming packets
nf_register_hook(&netfilter_ops_in);

In this case, the specified handler is queue_t1s, which is called whenever a packet is intercepted.
We check the port number (4433 for openssl testing) of the packet, to determine if it is likely to be
of interest to us. If so, we forward it to a queue in userspace, as shown in Figure 3-1 and the code

below.

unsigned int queue_tls(unsigned int hooknum,
struct sk_buff xskb,
const struct net_device xin,
const struct net_device *out,

int (xokfn) (struct sk_buffx))

struct sk_buff xsock_buff = skb;

struct iphdr *ip;

struct tcphdr xtcp;

ip = (struct iphdrx*) sock_buff—data;

tcp = (struct tephdrx) (sock_buff—data + ip—>ihl * 4);

if (ntohs(tcp—>source) = 4433 || ntohs(tcp—>dest) = 4433) {
return NFQUEUE; // Queue to userspace

} else {
return NFACCEPT;

If t1s_queue returns NF_QUEUE, we pick up processing the packet in a separate application,
which lives in userspace. Userspace processes are allowed to subscribe to a netfilter queue, using the

following code:

h = nfq-open(); // Open handle
if (nfq_bind_pf(h, AFINET) < 0) { // bind to AF.INET

41

fprintf(stderr, ”error_during.nfq_bind_pf()\n”);
exit(1);

}
gh = nfq_create_queue(h, 0, &callback, NULL); // link callback to queue

Again, we have a callback (in this case, named “callback”) whenever a new packet enters the
queue. This function is free to alter the packet as it sees fit, before returning a final verdict as to
whether the packet should be forwarded, dropped, or re-queued. The processing that takes place
while the packet is in userspace is the focus of our implementation. After this processing finishes,

the packet is passed back to the kernel module, and onto the network (or not).

3.2.3 Key Processing Concepts
3.2.3.1 Stream Reading

One initial handicap in this project is our desire to read TCP packets as random-access data struc-
tures, when in fact they are meant to be used as streams. Accordingly, there is very little overall
information about the structure of a TCP payload contained in the header; one is expected to dis-
cern it as the packet is read. For example, there is no indicator as to whether a given handshake
record contains multiple messages or not. One simply reads the overall record length, and then reads
messages from the record until one reaches the end. This is an extension of the problem shown in
Figure 2-1.

With this problem in mind, much of our data processing is done with a scanning model, which
inspects the data from a given read point and informs future decisions based on what it finds.
Useful methods here include reading 2- and 3-byte length fields, while advancing the pointer. While
this precludes jumping directly to the data we want, we are able to store information in auxiliary
variables to prevent repeated readings of the data stream.

To visualize this process, we present the following code sample from the ClientHello processing

code.

void Packet::handleClientHello(u8 data, u32x scan_offset) {
u32 offset = 0;
offset 4= 1;
u32 message_length = parse3BLength(data, &offset);
offset 4= 34;
u32 sid_length = parselBLength(data, &offset);
offset 4= sid_length;
u32 cipher_length = parse2BLength(data, &offset);
offset 4= cipher_length;

42

u32 comp_length = parselBLength(data, &offset);
offset 4= comp_length;

As you can see, we start at the beginning of the data buffer, and step through the data, bypassing
fields based on their reported length.

3.2.3.2 Scatter-Gather

In order to manipulate the data in streams, we need a robust way of dealing with bits and pieces
of a packet, while retaining the ability to stitch everything back together in the end. While we
could maintain a continuous buffer corresponding to the “current” state of the packet that is being
processed, this would end up incurring a significant cost through repeated memory allocations and
block copying. For example, whenever we attempt to compress data that is in the middle of a
given payload, we would have to retain pointers to the endpoints of the data and shift the buffer
backward. To expand, we would have to copy the data to a larger buffer. Particularly in concert
with the streaming nature of the data, this quickly becomes a nuisance.

To alleviate these problems, we use a technique called scatter-gather, which is used extensively
in the Linux kernel to handle non-continuous blocks of data. The underlying idea is simple: for each
data section, store a pointer and a length value; perform a final consolidation at the end. This is
also a useful solution because it gives us a natural place to store the length of different parts of the
data, which can only be learned by reading the stream itself.

The scatter-gather technique is also a useful way to keep track of relevant pointers into the stream
structure, such as key length values.

In C++, we can implement scatter-gather using the iovec structure, which contains fields for
the length and starting point of a given fragment. An illustration of how scatter-gather can be used
to alter a buffer is shown in Figure 3-2.

As an example, when we are compressing certificates, we store iovecs for

e The start of the packet (including header) through the start of the TLS record;
e The start of the record through the start of the certificate;

e The entirety of the certificate;

e The end of the certificate through the end of the packet.

Notice that, by storing a pointer to the beginning of the TLS record, we can quickly correct the
length field. Otherwise, we would have to re-scan most of the packet, which would now have some

invalid length values. As one might imagine, this would be a rather perilous task.

43

Figure 3-2: Scatter-Gather in Action.

44

ISCOMPLETE(A)

1 while HASNEXTPACKET(A)

2 if PACKETCONTAINSNEXTRECORD(A)

3 SCANTONEXTRECORD(current-pointer(A))
4 else return FALSE

5 if end-of-packet(A)

6 return TRUE

7 return FALSE

Figure 3-3: Packet Completeness Code.

3.2.3.3 Packet Completeness

As discussed in Section 2.2.3, we cannot determine whether a given TCP payload contains a complete
TLS record or not without reading most of the packet. To perform this necessary reading, we
employ a scanning pass which simply runs through the stream, counting down the number of bytes
left according to the IP header, and determines whether the payload has been split among multiple
packets. We separate this from the actual handling of the packet in order to clarify code and keep
operations modular.

If the successor to a given packet has already been seen, we append it to the data stream and
determine whether the combined payloads comprise an entire TLS record. If this is the case, the
multiple packets are consolidated into a single packet that is “correct” by the standards of TCP, but
too large to be sent on the wire. We then process it however we may like, with the guarantee that
it is a complete packet.

Conversely, if we have not seen the successor to a given packet, or if the necessary packets to
complete its payload have not been seen, we return the packet to the netfilter queue. This allows us
to process all other packets in the queue before returning to the packet in question, by which time
we should have seen a successor. If a packet has already been requeued once, we allow it to pass
through on all subsequent appearances.

Pseudocode for this process is shown in Figure 3-3.

3.2.3.4 Packet Storage and Packet Requeueing

One limitation of the netfilter queuing mechanism is that it can only examine a single packet at
a given time. Since a TLS packet may span several TCP packets, we need some way to work
around this, which we accomplish by storing potentially useful TCP packets in a packet store, and
requeuing incomplete packets. When we are able to aggregate a complete TLS packet, we alter the
accumulated TCP packets and forward them to the relevant destination. The basic structure for

the netfilter callback is shown in Figure 3-4.

45

CALLBACK(A)
if ISTLS(A)

1
2
3 .
4 if ISCOMPLETE(A)

5 B = MAKECOMPLETEPACKET(A)
6 PROCESS(B)

7 else REQUEUE(A)

8

9

else STORE(A)
10

Figure 3-4: Netfilter Callback.

3.2.3.5 Packet Fragmentation

Because network devices can only accommodate a finite packet size, we sometimes end up with a
complete packet after alteration that exceeds the maximum TCP payload size. We work around this
by expanding an oversized TLS packet into several properly sized TCP packets in a canonical way,
such that we can be reasonably sure that the packets are now indistinguishable from the packets
that were recently compressed. To do this transparently, we only need to get the SEQ, ACK, and

checksum values right; the rest can be copied from the parent header.

3.2.3.6 Packet Modification

Once we have a series of iovec pointers into the packet, we can perform operations on one of the
blocks without affecting the others. This corresponds to the scatter in scatter-gather. By the same
token, we finishing our processing by gathering these iovecs and creating a single continuous packet
from them.

For handling Certificate messages, we store 4 iovec pointers into a given packet. In a given
operation, we are able to alter the contents of the Certificate message without affecting our ability
to read into other sections of the packet. We can then quickly alter length fields and reconstitute a

proper and complete packet by sewing together the iovecs.

3.2.4 Server-Only Authentication Implementation

We use the SNI to uniquely pair a certificate with a transaction, and identify certificates according

to their serial numbers.
1. The client-side proxy A observes that a client C is initiating a TLS handshake with server S.

2. Given the ClientHello message from C, A parses the server_name field from the record, and

attempts to match it against the commonName of a certificate in its cache.

46

10.

11.

12.

13.

If A’s cache contains such a certificate X, it can be quite sure that this is the certificate that

S will provide, unless it has expired.

. Accordingly, A appends the hash of X to the ClientHello message and forwards it to the

server-side proxy B.

If certificate X is part of a certificate chain, A appends the hashes corresponding to the rest

of the chain, as well.
If A’s cache does not contain such a certificate, A forwards the message to B, unchanged.

When B receives the packet, it takes note of the hashes L (if any) that are appended to the

ClientHello message as a CPI extension.

Using these hashes, B updates its knowledge of the state of A, where A must have a copy of

any certificate with a hash in L.

B removes L from the packet and forwards the packet to S (note that the packet is again
identical to the one that C sent.)

Upon receiving a response from S, B alters the Certificate message accordingly.

For each certificate in the message, if L contained the hash of the certificate, then B replaces

the entire certificate with its hash, truncating the packet accordingly.

B forwards the packet to A, which then replaces any hashes with the full certificates (Again,

note that this packet is now identical to the one sent by S.)

A also adds any new certificates to its cache, and replaces any expired certificates with their

new versions.

There are a few assumptions here. One is that the client supports the server_name extension

to TLS. Empirically, this is true in the vast majority of cases, so this is a safe thing to bank on.

Additionally, we are assuming that there is a bijection between hashes and certificates. It is quite

likely that this will hold for the lifetime of the universe. Formally, we have assumed:

e There is an injective correspondence between hashes and certificates;

e There is a bijective correspondence between certificates and secure server names at any given

time interval;

e The server name extension is ubiquitous enough to be depended on.

47

The approach of piggybacking on the rest of the TLS protocol provides us with a variety of
advantages. For one, it makes for a very clean addition to the existing data, making the idea easy
to conceptualize and inspect. In the same vein, we are not altering the protocol significantly, such
that we get all of the other benefits of TLS for free, in particular, the ease of adapting TLS-centric

code.

3.2.5 Server-Client Authentication Implemenation

Implementing certificate compression for a server-client authenticated handshake is done in a similar
way to the server-only case. A subtle point here is that, because we have chosen to communicate be-
tween proxies within the confines of the TLS message structure, compression of the server certificate
is effectively transparent to code that is trying to compress client certificates, and vice versa. Basi-
cally, when the processing code is looking for a client certificate, it will only see a CPI extension as
just another ClientHello extension, and a CompressedCertificate message as just another handshake
message.

Here, we have to alter the openssl implementation of the TLS client to force certificate selection

and delivery in the first round, together with ClientHello.

3.2.5.1 Forced Certificate Send

Toward compressing client certificates, recall that we have discussed altering the client TLS imple-
mentation in order to indicate what certificate is going to be sent in the ClientCertificate message.
We will do exactly that in our implementation, using openssl as our TLS software of choice.

To preserve flexibility in the system, we add a -force_client_cert option to the s_client
utility. When this option is selected, the hash of the client certificate is sent as an extension of the
ClientHello message. This allows the server-side proxy to send a certificate-specific message to the
client-side proxy, indicating whether or not it has the certificate in question.

Note that the server TLS implementation does not need to be altered, because any unknown
ClientHello extensions will be discarded by the server.

This transparency between client and server certificate compression allows code that accomplishes
one operation to interoperate freely with code which accomplishes the other. Accordingly, the

following is an overview of how client certificates are compressed.

1. Client C, with modified TLS software, attaches a hash for certificate X to ClientHello.

2. Given the ClientHello message from C, server-side proxy B attempts to match the hash against

a certificate in its cache.

3. B receives a ServerHello message from S.

48

10.

11.

12.

13.

If B’s cache contains X, it appends the hash to the ServerHello message and forwards it toward

the client.
If B’s cache does not contain such a certificate, it forwards the message to the client unchanged.

When client-side proxy A receives the packet, it takes note of the hashes L (if any) that are

appended to the ServerHello message.

Using these hashes, A updates its knowledge of the state of B, where B must have a copy of

any certificate with a hash in L.

A removes L from the packet and forwards the packet to C (Note that the packet is again
identical to the one that S sent.)

Upon receiving a client certificate X from C, A alters the Certificate message accordingly.

If B indicated that it had certificate X, A replaces the entire certificate with its hash, truncating

the packet accordingly, and forwarding it toward S.

B intercepts the packet, and then replaces any hashes with the full certificates (Again, note
that this packet is now identical to the one sent by C.)

If B did not indicate that it had the certificate, the full Certificate message is sent toward S,

and intercepted by B.

B also adds any new certificates to its cache, and replaces any expired certificates with their

new versions.

As you can see, the compression operations are very similar to the server-only authentication

operations, and we are able to reuse a large amount of code.

49

Chapter 4

Experimentation

Having first outlined and then built a working system of intercepting proxies, our proof-of-concept is
complete. We will now show its performance advantages through a series of experiments. In order to
test the different aspects of our system, we first establish a reliable testing environment. Within this
environment, we profile the code we have written, to suggest future directions for optimized proxies.
Next, we test the latency reduction of our system during TLS handshakes over disadvantaged links.

Finally, we test the robustness of the system.

4.1 Test-bed Setup

We can profile the performance of the system using benchmarking software developed at MIT Lincoln
Laboratory. In order to test our networking code in a controlled and repeatable way, we have reserved
two computers on the Laboratory’s networking test-bed. With one computer acting as the client
and the other computer acting as the server, we deploy the proxy software locally on each computer,

treating the link between them as the disadvantaged link.

4.1.1 Servers

In order to use this test-bed, we need to predicate certain sections of the netfilter code on the Linux
kernel version, as our development machine and the test machines are running different versions of
the kernel. An example of this can be seen in the code snippet in Figure 4-1, where the signature
of the queue_tls prototype is different between different kernel versions. For compatibility, we

predicate the signature on preprocessing directives.

50

unsigned int queue_tls(unsigned int hookmun,
#if LINUX VERSION.CODE >= KERNELVERSION(2,6 ,24)
struct sk_buff xskb,
#Hendif
#Af LINUX VERSION.CODE < KERNELVERSION(2,6,24)
struct sk_buff sxskb,
Hendif
const struct net_device x*in,
const struct net_device *out,
int (xokfn)(struct sk_buffx)) {
##f LINUX VERSION.CODE >= KFRNELVERSION(2,6,24)
struct sk_buff xsock_buff = skb;
Hendif
##f LINUX VERSION.CODE < KERNELVERSION(2,6,24)
struct sk_buff xsock_buff = xskb;
#endif

}

Figure 4-1: Preprocessing Predicated on Kernel Version.

4.1.2 Link Emulation

The test-bed includes a kernel module designed to simulate a network device of the specified capa-
bility. This emulation software allows us to set specific parameters of a network device dynamically,
by setting Command directives. We accomplish this via a shell script.

Once the emulation software has been configured, we can use the tls device as a valid network

device.

4.1.3 Openssl

We use the s_server and s_client utilities to reliably generate TLS handshakes in a controlled
environment.

For the server, we can test various certificate chain lengths. Note that we disable the session
ticket extension [7] for the purposes of testing. Normally, this extension would attempt to re-use
a session ID when reconnecting to a server. However, we have been designing for servers which do
not support this feature, and so we disable it. If present, this extension interferes with our ability
to test the proxies’ performance.

The specific commands can be found in Appendix A.1.

4.2 Code Profiling

In order to better understand the processing overhead incurred by the proxies, we profiled the proxy

code. From our testing, it is clear that we need to account for approximately 200 ms of processing

o1

time, between the two proxies, per handshake.

4.2.1 Userspace Processing

By timing our code execution, we determined that the majority of packet processing time comes
from userspace processing. This accounts for more than 90% of the total processing time. Over
the entirety of the handshake, these processing delays at both client and server combine to create a
delay of up to 0.20 seconds in the server-client authenticating handshake.

Having isolated userspace processing, we made our profiling more granular and examined the
different operations which occur in userspace. From this analysis, we determined that over 90% of
the userspace processing time is taken up with SQLite operations. This is a reasonable result, since
the proxy is performing a disk access whenever it uses the database, and since it does not store a

persistent database handle or attempt to store the database in memory.

4.2.2 Context Switching

We also profiled the context switching between the kernel and userspace. In order to do this, we
had to output the current state of the CPU TSC (time stamp counter) immediately before leaving
the kernel, and then output the clock value immediately upon entering userspace. We assumed that
threads were not migrating between CPUs. In each of 5 trials, the difference was approximately

500,000, which, on a 1.8 Ghz machine, is negligible.

4.3 Baseline Latency Comparison

We continue our experiments by establishing a baseline with which to compare previous results.
Having done this, we explore the rest of the parameter space, including fallback scenarios and
certificate size. Since his work was performed under similar conditions, we use Matthew Low’s
summer work at Lincoln Laboratory as a baseline for comparison. We use the link emulation

software to simulate five different real-world link types, listed in Table 4.1.

4.3.1 Userspace Processing

By timing our code execution, we determined that the majority of packet processing time comes
from userspace processing. This accounts for more than 90% of the total processing time. Over
the entirety of the handshake, these processing delays at both client and server combine to create a
delay of up to 0.20 seconds in the server-client authenticating handshake.

Having isolated userspace processing, we made our profiling more granular and examined the

different operations which occur in userspace. From this analysis, we determined that over 90%

52

of the userspace processing time is taken up with SQLite operations. This is a reasonable result,
since the proxy is performing a disk access whenever it uses the database, since it does not store a

persistent database handle or attempt to store the database in memory.

4.3.2 Context Switching

We also profiled the context switching between the kernel and userspace. In order to do this, we had
to output the current state of the CPU clock immediately before leaving the kernel, and then output
the clock value immediately upon entering userspace. The difference was approximately 500,000,

which, on a 1.8 Ghz, machine, is negligible.

4.4 Latency Comparison

Since his work was performed under similar conditions, we use Matthew Low’s summer work at
Lincoln Laboratory as a baseline for comparison. We use the EML software to simulate five different

real-world link types, listed in Table 4.1.

Table 4.1: Simulated Wireless Link Parameters
| Connection type || Client data rate (bps) | Server data rate (bps) [Latency (ms) |

iridium 2400 2400 400
inmarsat-64 64000 64000 442

milstar 2400 256000 500

tedl-10 10000000 10000000 0
cell modem 97877 981525 90

Using these different links, we ran the server-only handshake over a normal and proxied connec-
tion. The data for these trials is shown in Figures 4-2 and 4-3. Each bar represents the average of
20 trials. For each set of trials, the standard deviation was negligible.

From the graphs, we can see that for high-latency links, our proxies acheive a considerable
speedup if the link is also low-bandwidth. For example, over an Iridium link, the average handshake
delay is reduced from 9.5 seconds to 6.7 seconds by the presence of the proxies. If the link has high
bandwidth, the proxies have little effect on latency. On low-latency links, the proxies also have little
effect on the latency of the TLS handshake.

This data illustrates several key aspects of the proxies’ performance:

4.4.1 Processing (Needn’t Be) Expensive

When comparing the proxied handshakes to their non-proxied counterparts, it is clear that there is
a constant size overhead that is added to the handshake delay in the proxied case. We have explored

the exact cause of this in Section 4.2, and it is clear that this overhead is incurred by the data

53

SSL/TLS Handshake Delays
926 Byte Server Certificate

T T
Iridium

Milstar s

Delay (ms)

ST PR

ST = Standard
PR = Proxied

ST PR
Test Configuration

Figure 4-2: Server-Only Handshake Performance, High Latency.

SSL/TLS Handshake Delays
926 Byte Server Certificate

I Tcdl-10 —

2000
Cell Modem oo
_. 1500
[%)]
£
z 1000
1 S R e
500 " i . 1:
0 I | B
ST PR ST PR

ST = Standard
PR = Proxied

Test Configuration

Figure 4-3: Server-Only Handshake Performance, Low Latency.

54

processing that the proxies perform. Since our setup was a proof-of-concept, lacking anything in
the way of optimizations, this overhead can effectively be ignored in considering the suitability of
a proxied solution for a real-world deployment. Such a deployment would feature optimized code,

negating any overhead.

4.4.2 Bandwidth Savings Beget Latency Savings

As we anticipated, the ability to reduce packet size through certificate compression can actually allow
us to reduce the total number of packets involved in the handshake. On high-latency, low-bandwidth
connections, this effect is readily apparent.

Looking at the Iridium data, we take note of the bandwidth cap of 2400 bits. Notice that the
server certificate, weighing in at 926 bytes, exceeds this cap, and thus cannot be transmitted over
the Iridium link in a single trip. However, a compressed certificate packet can slip in under this
cap, and make the trip in a single packet. Since Iridium features relatively high latency, the proxies

effect a considerable reduction in the overall handshake delay, on the order of 3 seconds.

4.4.3 Better Performance for Server-Client Authentication

Since the server-client-authenticating handshake involves both client and server certificates, the
amount of data that we can compress increases along with the potential savings that our proxies can
effect. In our experiments, this hypothesis is confirmed, as the proxies are able to reduce the latency
of a server-client-authenticating handshake on the Iridium link by almost 50%, or by more than 6
seconds. Again, this is due to the high-latency, low-bandwidth characteristic of the link, where the
proxies reduce the total number of packets that need to traverse the link, and thus the total latency.

Our data is illustrated in Figures 4-4 and 4-5. These graphs show the performance of proxied

handshakes over high-latency and low-latency links, respectively.

4.5 Bandwidth Comparison

The proxies have a large effect on the bandwidth cost of a handshake, reducing the aggregate
bandwidth usage of a given handshake by up to 50%. In Figure 4-6, we compare the bandwidth usage
of a standard server-only handshake with a proxied handshake. Since the certificate is compressed
to a constant size, the unproxied handshake’s cost scales with certificate size, while the proxied

handshake’s size does not.

55

SSL/TLS Handshake Delays
926 Byte Server Certificate
675 Byte Client Certificate

T T
Iridium o

Milstar wosmsess _|

Delay (s)

)]
-
n
)

ST PR ST PR ST PR
Test Configuration

ST = Standard
PR = Proxied

Figure 4-4: Server-Client-Authenticating Handshake Performance, High Latency.

SSL/TLS Handshake Delays
926 Byte Server Certificate
675 Byte Client Certificate

2000 , :
Tcdl-10 mmmmm
1500 Cell Modem 0
Z
T 1000
[}
D y
500 -
0 [1

ST PR ST PR
Test Configuration

ST = Standard
PR = Proxied

Figure 4-5: Server-Client-Authenticating Handshake Performance, Low Latency.

SSL/TLS Bandwidth Usage, by
Server Certificate Size

2000 T T T T T
; | 675 Bytes mmmmm
- 823 Bytes
1500 | 926 Bytes mmmam
2 i
€ 1000 |
) |
500
0 |

ST PR ST PR ST PR
Test Configuration

ST = Standard
PR = Proxied

Figure 4-6: Server-Only Bandwidth Performance.

56

4.5.1 Certificate Chains

The proxies are able to compress each certificate in a chain individually, as shown in Figure 4-7.
Wireshark interprets the unknown message type (0x99) as Encrypted Handshake message. Recall
that we defined this format in Section 2.3.3. In the capture, one can see the length field (0x30) and

the three 16-byte certificate references that follow.

P Handshake Protocol: Server Hello
~ TLSvl Record Layer: Handshake Protocol: Encrypted Handshake Message
Content Type: Handshake (22)
Version: TLS 1.0 (@x8301)
Length: 52
Handshake Protocol: Encrypted Handshake Message

08050 20 be 9d 6a 9e 6d al T6 43 5T 82 84 61 ed c3 26
0060 B8e 60 27 Bc eb 21 75 b5 95 Be 01 80 Bb 88 00 39

pe7e 00 23 00

0080

0890

00a0

66b8 03 Bc 16

60ce 85 22 89 do e4 af 75 6f 4c ca 92 dd 4b e5 33 b8
00de 84 fb of ed 94 ef 9c 8a 44 03 ed 57 46 58 d3 69
kb

Afen __nn A0 AT e AT £h ot dn da an £4_dd 1 A 1l

Handshake protocol message (ssl.... - Packet

17 Displayed: 17 Marked: 0

Figure 4-7: A Compressed Certificate Chain.

The unproxied handshake would be parsed as in Figure 4-8.

+ Certificates (20801 bytes)
Certificate Length: 561

P Certificate (id-at-commonName=www.blag.com,id-at-organizationN:
Certificate Length: 696

P Certificate (id-at-commonName=www.google.com,id-at-organizatiol
Certificate Length: 735

Figure 4-8: A Normal Certificate Chain.

4.6 Robustness

As we discussed in Section 2.3.4, it is possible for there to be a cache miss between the two proxies,
caused by some error in their mutual state records. When a cache miss occurs, a proxy is given a
certificate reference that it cannot expand. We handle this case by dropping the packet, which causes

the underlying TCP connection to attempt to re-transmit the packet. The second time around, the

57

proxies recognize that they have already seen this packet, and do not attempt to alter it. The packet
then reaches its destination, and the handshake continues correctly.

In Figure 4-9, we show the packet flow of such a cache miss, where the server-side proxy sent
the client-side proxy a compressed certificate that the latter did not have in its database. Shortly
thereafter, the server retransmitted the packet, causing the server-side proxy to forward the entire
certificate to the client-side proxy, and from there to the client. Notice the retransmission delay

between packets 6 and 7, which is approximately 750 ms.

1 6.000000 TCP 53718 > 4433 [SYN] Seq=0 Win=5848 Len=8 M55=1460 TSV=598307 TSER=8 WS=7

2 0.140558 TCP 4433 > 53718 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=@ MSS5=1460 TSV=849918 TSEl
3 0.265518 TCP 53718 > 4433 [ACK] Seg=1 Ack=1 Win=5888 Len=0 TSV=598573 TSER=849918

4 0.281872 SSL Client Hello

5 0.428975 TCP 443 5

6 0 5 Server Hello Encrypted Handshake Hessage Server Hello Done

.458747

.379035

1 2 S
9 1.394339 TLSv1 Client Key Exchange, Change Clpher Spec Encrypted Handshake Message
10 1.553510 TLSV1 Change Cipher Spec, Encrypted Handshake Message
11 1.733411 TCP 53718 > 4433 [ACK] Seg=414 Ack=1079 Win=7936 Len=0 TSV=680041 TSER=851318

Figure 4-9: Fallback Packet Flow.

The performance of the system in this fallback scenario is almost entirely dependent on the
underlying TCP connection and its retransmission time. This retransmission time increases the
handshake delay by a constant amount, whenever there is a cache miss. Future work could reduce

this time by crafting a TCP packet at one of the proxies to explicitly request retransmission.

58

Chapter 5

Conclusions

We have designed and built a working proof-of-concept system of intercepting proxies. Our experi-
ments clearly show the advantages of such a system. Further, this work is contributing to a larger
effort at Lincoln Laboratory to establish viable approaches to secure communication in tactical

networks.

5.1 Benefits of Proxied Links

Our analysis has shown that a major benefit can be derived by deploying intercepting proxies across
a low-bandwidth, high-latency link. Additionally, our data shows that performance across other
links does not noticeably suffer from the presence of the proxies. Further, we note that the links
that our proxies do not benefit would not be considered disadvantaged in the first place, and would
not be candidates for proxy deployments. In all cases, there is a large bandwidth savings incurred

by deploying the proxies that is proportional to the size of the certificates involved.

5.2 Applications

Our solution considerably outperforms a standard TLS handshake over any link with low bandwidth
and moderate to high latency. The presence of the proxies incurs bandwidth savings of over 50%
and latency savings of nearly 30% for server-only handshakes, in the case of the Iridium link. This
speedup is gained without requiring any modification to the client or the server, operating in an
entirely transparent fashion. If we alter the client TLS implementation, we can reduce the total
handshake delay by over 40% in a server-client-authenticating handshake over an Iridium link.
Further, the bandwidth savings that could be effected by applying this solution to existing links is
considerable, such that any entity with a high cost-per-bit could benefit from our solution.

While it is clear that our proxy solution does not exceed the performance of certificate-removal

59

solutions which alter the client and server TLS implementations, it comes close to replicating their
performance over disadvantaged links. Further, our solution is significantly more viable for deploy-

ments where the owner of the link is not the owner of the client or server.

5.3 Acquired Skills

5.3.1 Openssl

This project afforded me an excellent opportunity to familiarize myself with many parts of the
openssl project. I became familiar with the command-line utilities, s_client and s_server, and
their usefulness as diagnostic tools. While I did not spend as much time delving into the TLS
implementation code as I would have liked, I gained a cursory knowledge of the way in which openssl
implements the TLS state machine, and the programming conventions that are used throughout the

codebase.

5.3.2 TCP/IP Details

Though I had studied the protocols in previous courses, this project gave me a very good opportunity
to become more comfortable with programming in the Linux network stack. This allowed me to
think more about how network traffic is handled by actual programs rather than abstract state

machines, and I think this will prove very valuable in the future.

5.3.3 Wireshark

Having never used wireshark (or ethereal) before this project, the discovery of this packet sniffing
tool was certainly a pleasant one. Wireshark was incredibly useful for testing network code that

alters packets, allowing for much more readability than a hex dump to stdout.

5.3.4 SQLite

This project allowed me to gain more hands-on experience with the SQLite library. This was
very useful for dealing with large chunks of binary data that might otherwise have caused memory

management headaches.

60

References

[1]

[10]

[11]

[12]

[13]

Getopt - The GNU C Library. http://www.gnu.org/s/libc/manual/html_node/Getopt.

html.

SQLite. http://www.sqlite.org/.

The netfilter.org Project. http://www.netfilter.org/.
The OpenSSL Project. http://www.openssl.org/.
VMWare. http://www.vmware.com/.

Wireshark. http://www.wireshark.org/.

S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright. Transport Layer
Security (TLS) Extensions. RFC 4366 (Proposed Standard), April 2006. Obsoleted by RFC
5246.

Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,

13(7):422-426, 1970.

T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed Standard), January
1999. Obsoleted by RFC 4346, updated by RFC 3546.

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against

adaptive chosen-message attacks. SIAM Journal on Computing, 17:281-308, 1988.

R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key Infrastructure Certificate
and CRL Profile. RFC 2459 (Proposed Standard), January 1999. Obsoleted by RFC 3280.

J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated by RFC 1349.

J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981. Updated by
RFCs 1122, 3168.

RL Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-
key cryptosystems. 1978.

61

[15] Hovav Shacham and Dan Boneh. Fast-track session establishment for TLS. In Mahesh Tripuni-
tara, editor, Proceedings of NDSS 2002, pages 195-202. Internet Society (ISOC), February 2002.
Extended abstract of SBR04 journal paper.

62

Appendix A

Auxiliary Architecture

This appendix details our architecture for testing and analysis.

A.1 Handshake Execution

In order to execute a series of handshakes, we use the following commands.

date;time for((i=0;i<1;i++));do echo === test $i ===;echo|openssl s_client -host
192.168.10.2 -tlsl -mtu 3000 -cert client700.pem -key client700np.pem ;done
|tee data-no-proxy.txt

openssl s_server -cipher AES256-SHA -cert server926.pem -key server-np.pem -tlsl
-mtu 3000 # For server-only auth

openssl s_server -cipher AES256-SHA -cert server926.pem -key server-np.pem -tlsl

-mtu 3000 -Verify 1 # For client auth

A.2 Packet Capture

In order to capture packets, we set up the s_client and s_server instances on separate NLET
machines. We can then run a packet capture tool on one of the computers (for consistency, the client
computer) in order to read data from the disadvantaged link.

We capture packets locally by using the dumpcap utility, which produces .pcap files. We can

then extract information from these using a variety of tools, including ssldump and wireshark.

/usr/sbin/dumpcap -i ethl.1015 -w ../analysis/client-wo-proxy-iridium.pcap &

63

A.3 Data Post-Processing

We then run these through various processing scripts to extract the bandwidth usage and handshake
delays. Given a series of captures in .pcap format, we use the following code to parse the handshake

delays and output them to a .dat file.

ROWS=5

FILE="avg-with.dat"

echo -n -e "" > $FILE
echo -n "#.," >> $FILE
for i in iridium inmarsat tcdl milstar cell; do echo -e -n "$i\t" >> $FILE; done
echo -n -e "\n" >> $FILE
echo "#_Matt’s baseline" >> $FILE
#echo -e "1 9.54398\t 6 2.94101\t 11 5.86757\t 16 0.0350083
\t 21 0.683184 " >> $FILE
echo -e "#_averages_ without proxy" >> $FILE
COL=2
for i in iridium inmarsat milstar tcdl cell; do
echo -e -n "$COL_\t," >> $FILE
tshark -r server-wo-proxy-$i.pcap -n -d ethertype==1546,ip -d
tcp.port==4433,ssl | awk -f sl.awk | awk -v ORS="\t" ’{sum += $1} END
{print sum/20}’ >> $FILE
echo -e -n "\t" >> $FILE
let COL+=ROWS;
done
COL=3
echo -n -e "\n" >> $FILE
echo -e "#,averages with proxy" >> $FILE
for i in iridium inmarsat milstar tcdl cell; do
echo -e -n "$COL_\t," >> $FILE
tshark -r server-with-proxy-${i}2.pcap -n -d ethertype==1546,ip -d
tcp.port==4433,ssl | awk -f sl.awk | awk -v ORS="\t" ’{sum += $1} END
{print sum/20}’ >> $FILE
echo -e -n "\t" >> $FILE
let COL+=ROWS;

done

64

(Note that the above listing is specific to the server-only handshakes, but all of the other cases
are trivially similar.)

The s1.awk script parses the actual delays from the modified tshark output.

interleaving will break this script -- must track flows...
/\ISYN\]/ {s=$2}
/TLS(v[0-9]+)7.*Encrypted Alert/ {print $2-s}

A.4 Graph Creation

gnuplot is our graphing software of choice. We simply create a bar graph from the various data
points in the .dat file, like the one below. The format is simply a column number followed by its

value, separated by whitespace.

iridium inmarsat tcdl milstar cell

Matt’s baseline

1 9.54398 6 2.94101 11 5.86757 16 0.0350083 21 0.683184
averages without proxy

2 9.50572 7 2.92503 12 5.82993 17 0.01062 22 0.623161

averages with proxy

3 6.68903 8 3.184 13 6.11165 18 0.455612 23 1.08356

A.5 File List

queue.c Source code for the netfilter kernel module.

queuetest.cc Source for the proxy executable. Must be run after the module has been added to

the kernel.

proxyssl.h Genereal purpose header file for the project.
packet.h,cc Source for the Packet, Proxy, and TcpStream classes.
x509cert.h,cc Source for the Certificate class.
analysis/*.gnuplot Graph generation scripts.

analysis/*.sh Data post-processing scripts.

65

certs/* Test certificates and keys.

A.6 Command-line Flags
The executable can be run with the following command-line flags:

e —-server Runs the program as the server-side proxy;

e —-client Runs the program as the client-side proxy.

A.7 Database Schema

Our tables track certificates and individual TCP packets. We store key indexing information about

these objects, as well as their insertion time, so that we can periodically purge dead TCP streams.

CREATE TABLE certs (
csum blob,
data blob,
issuer blob,
subject blob,
commonname string(32),

insert_time date);

CREATE TABLE tcp (
syn int(32),
ack int(32),
saddr int(32),
daddr int(32),
data blob,

insert_time date);

CREATE TABLE client_state_message (
syn int(32),
ack int(32),
source int(32),
dest int(32),
checksum blob,

66

insert_time date);

CREATE TRIGGER insert_cstate AFTER INSERT ON client_state_message

BEGIN

UPDATE client_state_message SET insert_time=strftime (’%s’,’now’,’utc’) WHERE
ROWID=new.ROWID;

END;

CREATE TRIGGER insert_cert AFTER INSERT ON certs
BEGIN
UPDATE certs SET insert_time=strftime (’%s’,’now’,’utc’) WHERE ROWID=new.ROWID;

END;

CREATE TRIGGER insert_tcp AFTER INSERT ON tcp

BEGIN

UPDATE tcp SET insert_time=strftime (’%s’,’now’,’utc’) WHERE ROWID=new.ROWID;
END;

CREATE TRIGGER clean_tcp AFTER INSERT ON tcp
BEGIN
DELETE FROM tcp WHERE strftime (’%s’,’now’,’utc’) - insert_time > 60;

END;

A.8 Test Certificates

Using openssl, we can generate test certificates and certificate chains in order to use our code in
the real world. First, we have to create a new certificate authority. Next, we sign certificate chains,
starting with this CA, in order to use test certificates in our TLS handshakes.

To create a new CA, use the following code. Note that the location of CA.pl may vary from

system to system.

/.../CA.pl -newca
/.../CA.pl -newreq
/.../CA.pl -sign

To remove the passcode from a key, use the following method:

67

openssl rsa -in keyfile.pem -out keyfile-no-password.pem

68

Appendix B

Aside: TLS Round Alteration

As a curiosity, we present the following exploration of our ability to alter TLS rounds when modifying
only the client. None of the following was implemented.

We observe that it is possible to modify the TLS protocol on the client to alter the structure
of rounds in the handshake, without modifying the implementation on the server, using the proxies
to make the process transparent to the server. This makes deployment significantly more feasible
than other fast certificate strategies [15], as it removes any burden of installation from the server
operators. The data flow of this modified handshake is shown in Figure B-1. This also shows that
round reduction is impossible without altering the TLS implementation on the server, as the server
must receive CertificateVerify before it can send ChangeCipherSpec.

The implementation of this server-transparent idea is highly non-trivial. We will now explore

the necessary steps toward implementing such a server-transparent patch.

B.0.0.1 Patch Specifics

In order to send the client certificate in advance, we will need to alter the TLS state machine inside
of openssl so that the certificate can be sent in the first round. Beyond that, much of the server
authentication code is reusable as far as compressing certificate messages. The TLS messages for
client and server certificates are identical, so the problem of compression itself is effectively solved.
What remains is to successfully modify packets in a manner that is transparent to the server, such
that a client with the server-transparent patch can communicate with an unpatched server. To do

this, we need to consider the following factors:

e MAC - The TLS handshake authenticates the entire exchange by performing a message check
over the entire handshake as it expects for it to take place. If we are going to transparently
modify the payload, we need to be sure that this authentication step is not affected. Ac-

cordingly, we need to alter the way the MAC is computed in the client application so that it

69

Client Server-side Proxy Server

ClientHello
ClientCertificate
ClientKeyExchange @ = ---——--- >
ClientHello -—--==-——-- >
ServerHello
*Certificate

*ServerKeyExchange
*ClientCertificateRequest
K== ServerHelloDone

ServerHello
*Certificate
*ServerKeyExchange
*ClientCertificateRequest

L=mmmmm - ServerHelloDone
ClientCertificate
ClientKeyExchange @ = --———-—- >
*CertificateVerify
[ChangeCipherSpec]
Finished @ == - >
[ChangeCipherSpec]
<-—-- - -—= Finished
Application Data D ittt > Application Data

Figure B-1: A Server-Transparent Round Alteration.

matches the order that the server sees.

e Server-side Storage - Once the Certificate (and other messages) has been received by the server-
side proxy, it must be held until an appropriate time in the handshake, when the server will
be expecting it. Accordingly, we need to track the state of the handshake and create a means

of persistent storage in the server-side proxy.

e TCP Transparency - Since the server-side proxy is re-ordering packets that are sent from the
client, this will alter the SEQ/ACK numbers involved in the transaction. Further, once a
single packet is offset, then the whole stream is then offset. Thus, the server-side proxy will
have to dynamically adjust all TCP packets so that they correspond to the “correct” numbers

that are expected by client and server.

Respecting these three concerns at the same time represent a significant undertaking that is

beyond the scope of this project.

70

Appendix C

Development Environment

C.1 Installation

In order to create a working copy of the code, one can reconstruct our setup of Ubuntu 9.04 with

the following packages installed:

sqlited
libsqlite3-dev
subversion
tshark
wireshark

g+t

emacs
libssl-dev

libnetfilter-queue-dev

This should allow the netfilter module, userspace code, and openssl code to be compiled.

71

