
University of Lugano at TREC 2009 Blog Track

Mostafa Keikha, Mark Carman, Robert Gwadera, Shima Gerani, Ilya Markov,
Giacomo Inches, Az Azrinudin Alidin and Fabio Crestani

University of Lugano
Department of Informatics

Lugano, Switzerland
{mostafa.keikha, mark.carman, robert.gwadera, shima.gerani, ilya.markov,

giacomo.inches, az.azrinudin.alidin, fabio.crestani}@usi.ch

ABSTRACT
We report on the University of Lugano’s participation in
the Blog track of TREC 2009. In particular we describe our
system for performing blog distillation, faceted search and
top stories identification.

1. INTRODUCTION
Recently, user generated data is growing rapidly and be-

coming one of the most important source of information in
the web. This data has a lot of information to be pro-
cessed like opinion, experience,etc which can be useful in
many applications. Forums, mailing lists, on-line discus-
sions, community question answering sites and social net-
works like facebook are some of these data resources that
have attracted researchers lately.

Blogosphere (the collection of blogs on the web) is one of
the main source of information in this category. Millions
of people write about their experience and opinion in their
blogs everyday, and this provides a huge amount of informa-
tion to be processed. Due to the importance of this informa-
tion, TREC (Text REtrieval Conference) has started a new
track for blog analysis including opinion detection, polarity
mining and blog distillation [7, 11].

In the remainder of this paper we will explain our ap-
proach in faceted blog distillation in section 2. Our ap-
proach to top stories identification is explained in section 3.
We provide conclusions in section 4.

2. BOG DISTILLATION
Blog distillation is the problem of retrieving relevant blogs

(as a collection of posts) to a given query. The blog distil-
lation task has been approached from many different points
of view. In [3], the authors view it as ad-hoc search and
consider each blog as a long document created by concate-
nating all postings together. Other researchers treat it as
the resource ranking problem in federated search [4]. They
view the blog search problem as the task of ranking collec-

.

tions of blog posts rather than single documents. A similar
approach has been used in [12], where they again consider
a blog as a collection of postings and use resource selection
approaches. Their intuition is that finding relevant blogs is
similar to finding relevant collections in a distributed search
environment. In [8], the authors modelled blog distillation
as an expert search problem and use a voting model for
tackling it.

2.1 Ordered Weighted Averaging Operators
in Combining Scores

The ordered weighted averaging operator, commonly
called OWA operator, was introduced by Yager [13]. OWA
provides a parametrized class of mean type aggregation
operators, that can generate OR operator(Max), AND
operator(Min) and any other aggregation operator between
them.

An OWA operator of dimension n is a mapping F : Rn →
R that has an associated weighting vector W ,

W = [w1, w2, ..., wn]T

such that
nX
i=1

wi = 1, 0 ≤ wi ≤ 1,

and where

F (a1, ..., an) =

nX
i=1

wibi (1)

where bi is the ith largest element in the collection a1, ..., an.
There are different methods for indicating weighting vector
W . We use a quantifier based method introduced by Yager
[13].

OWA operator has different behaviours based on the
weighting vector associated with it. Yager introduced two
measure for characterizing OWA operator[13]. The first one
is called orness and is defined as:

orness(W) =
1

n− 1

nX
i=1

(n− i)wi (2)

orness(W) ∈ [0, 1]

which characterizes the degree to which the operator behaves
like an or operator. The second measure is dispersion and
is defined as

dispersion(W) = −
nX
i=1

wi ln(wi) (3)

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
University of Lugano at TREC 2009 Blog Track

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Lugano,Department of Informatics,Lugano, Switzerland,

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the Eighteenth Text REtrieval Conference (TREC 2009) held in Gaithersburg, Maryland,
November 17-20, 2009. The conference was co-sponsored by the National Institute of Standards and
Technology (NIST) the Defense Advanced Research Projects Agency (DARPA) and the Advanced
Research and Development Activity (ARDA).

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

and measures the degree to which OWA operator takes into
account all information in the aggregation.

For applying OWA operator to the problem, one impor-
tant issue is determining weighting vector. Yager introduced
a method based on linguistic quantifiers for obtaining this
weights:

wi = Q(
i

n
)−Q(

i− 1

n
), i = 1, 2, ..., n (4)

where n is the number of operands to be combined, and
Q is the fuzzy linguistic quantifier. We use the following
definition for the Q function as suggested by Zadeh[15]:

Q(r) =

8><>:
0, if r < a
r − a
b− a , if a ≤ r ≤ b
1, if r > b

(5)

with a, b, r ∈ [0, 1]. We used parameter (a, b) with three dif-
ferent values, (0, 0.5), (0.3, 0.8) and (0.5, 1), as three quanti-
fiers with different levels of orness. Table 1 shows orness and
dispersion for each quantifier with values of 5, 10, 20 for n.
In this model, n is the number of top relevant posts in each
blog that we want to aggregate their relevance score. These
relevance scores are calculated by BM25 model in terrier for
posts in each blog. Figure 1 and Figure 2 show Mean Av-
erage Precision(MAP) and Precision at 10 for experiments
over TREC07 datasets. These results reveal that a fixed
number of highly relevant posts in each blog is a reliable ev-
idence, using which can result in an effective blog retrieval
system.

2.2 Regularizing Relevance Scores
Score regularization is a way of re-calibrating relevance

scores for documents based on the relationship between
them. The idea behind score regularization is that in ac-
cordance with the Clustering Hypothesis, related documents
should have similar scores for the same query. The authors
of [2, 10] propose general models for smoothing document
scores based on this hypothesis. In [2], Diaz models the
problem in terms of optimization. The goal is to calcu-
late for each document a new (smoothed) score with two
contending objectives: score consistency with related docu-
ments and score consistency with the initial retrieval score.
Diaz defines a cost function ζ(f) as follows:

ζ(f) = σ(f) + µε(f)

=
X
i6=j

(wijfi − wjifj)2 + µ
X
i

(fi − yi)2 (6)

Here f is a vector of regularized scores over n documents,
σ(f) is a cost function associated with the inter-document
consistency of the scores; if related documents have incon-
sistent scores, the value of this function will be high. A
second cost function ε(f) measures the consistency with the
original scores; if document scores are inconsistent with the
original scores, the value of this function will be high. A
regularization parameter µ controls the trade off between
inter-document smoothing and consistency with the origi-
nal score vector y. The coefficient wij in the expansion of
σ(f) weights the score of the ith document by its similarity
to the jth document and is calculated by normalizing (and
taking the square root of) values from a symmetric affinity

Table 2: Regularization Results for TREC07 and
TREC08 query sets.

Model MAP P@10 nDCG Bpref
TREC07 query sets 0.3126 0.4956 0.5483 0.3118
TREC08 query sets 0.2375 0.3480 0.6990 0.2196

matrix W as follows:

wij =

s
WijP
jWij

. (7)

Here Wij denotes the similarity between documents i and
j. In order to keep the affinity matrix sparse, only the k
most similar documents j for each document i have non-
zero Wij values1. The diagonal values in the matrix Wii

are defined to be zero. An iterative solution for the above
defined optimization problem is the following:

f t+1 = (1− α)y + αW̄f t (8)

Where α = 1/(1 + µ) is a parameter, y = f0 is the initial
score vector, f t is the score vector after t iterations and W̄
is a normalized affinity matrix such that W̄ij = wijwji. The
closed form solution of this problem is given by:

f∗ = (I − αW̄)−1y (9)

We used this equation in our experiments. We note that
we did not introduce a new model here, but simply inves-
tigated the application of graph-based regularization frame-
works [2, 10] to the problem of blog distillation, where the
aim is not just to rank documents, but to rank blogs which
are themselves composed of many documents (posts).

Based on this method we regularize relevance score, which
could be the score of the posts or the score of the blog as a
whole. In case of posts relevance score we have to aggregate
regularized scores again, where we use simple averaging as
the aggregation. And in case of regularizing blog score as a
whole, we generate one document per blog which is concate-
nation of its most relevant posts. We use the similarity score
of this large document as the blog relevance score and use
it on regularization. Table 2 shows the results of posts rele-
vance score regularization over Blog06 dataset with TREC07
and TREC08 query sets.

2.3 Faceted Search
For the faceted rankings, we first generated positive and

negative facet scores for each retrieved document, denoted
pos(d) and neg(d) respectively. These facet scores induce a
ranking, denoted rpos(d, q) and rneg(d, q), which we combined
with the original relevance ranking rrel(d, q) using the Borda
Fuse aggregation method as follows:2

scoreBF(d, q) = α rrel(d, q) + (1− α) rfacet(d, q) (10)

Without any training data (i.e. relevance judgments) we
were unable to choose an appropriate value for the weighting
coefficient α and thus set its value to 0.5.

1Some documents may need to have more than k non-zero
affinity values in order to keep the matrix symmetric.
2Note that whenever there are ties in the ranking, (i.e. doc-
uments d1 and d2 have the same score), then the rank for
those documents is the average of the (total order) ranking.

Table 1: Orness and dispersion for experimented quantifiers in OWA operator
orness dispersion

linguistic quantifier
n=10 n=10

a=0.0 , b=0.5 0.77 1.609 At least half
a=0.3 , b=0.8 0.44 1.609 Most
a=0.5 , b=1.0 0.22 1.609 As many as possible

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

M
ea

n
Av

g.
 P

re
cis

io
n 0
.
2
8
8
9

0
.
3
0
5
0

0
.
3
0
9
0

0
.
3
1
2
1

0
.
2
9
6
9

0
.
2
8
0
0

0
.
2
9
7
9

0
.
2
4
4
1

0
.
2
2
2
0

OWA,n=5
OWA,n=10
OWA,n=20

a
=
0
.
0

,

b
=
0
.
5

a
=
0
.
3

,

b
=
0
.
8

a
=
0
.
5

,

b
=
1
.
0

a
=
0
.
0

,

b
=
0
.
5

a
=
0
.
3

,

b
=
0
.
8

a
=
0
.
5

,

b
=
1
.
0

a
=
0
.
0

,

b
=
0
.
5

a
=
0
.
3

,

b
=
0
.
8

a
=
0
.
5

,

b
=
1

Figure 1: Mean Average Precision

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

Pr
ec

isi
on

@
10

0
.
4
3
3
3

0
.
4
5
5
6

0
.
4
5
7
8

0
.
4
6
4
4

0
.
4
6
0
0

0
.
4
6
0
0

0
.
4
7
1
1

0
.
4
3
7
8

0
.
4
2
4
4

OWA,n=5
OWA,n=10
OWA,n=20

a
=
0
.
0

,

b
=
0
.
5

a
=
0
.
3

,

b
=
0
.
8

a
=
0
.
5

,

b
=
1
.
0

a
=
0
.
0

,

b
=
0
.
5

a
=
0
.
3

,

b
=
0
.
8

a
=
0
.
5

,

b
=
1
.
0

a
=
0
.
0

,

b
=
0
.
5

a
=
0
.
3

,

b
=
0
.
8

a
=
0
.
5

,

b
=
1

Figure 2: Precision at 10

2.3.1 In-depth versus Shallow
For the in-depth versus shallow facet, we calculated the

Cross Entropy (CE) between each retrieved document and
the collection as a whole. We used CE as the positive score
for the positive (in-depth) facet value since high CE indi-
cates that the document contains many rare and informative
words:

pos(d) = CE(p(.|d), p(.|c)) =
X
t∈d

p(t|d) log
1

p(t|c) (11)

Here p(t|d) is the probability of a term t appearing within
the document d, which we calculate using the relative term
frequency as follows: p(t|d) = tf(t, d)/

P
t′ tf(t′, d), where

tf(t, d) is the absolute term frequency. Meanwhile p(t|c) de-
notes is the probability of a term across the whole collection
c, for which we use a document frequency based estimate
p(t|c) = df(t)/|c| where |c| is the number of documents in
the collection. Our rational for using a df rather than tf

based estimate is that the former appears less susceptible to
noise from spam documents, which oftentimes include terms
with very high frequency (high tf values).

For the negative (shallow) facet score we simply use the
negation of the CE, i.e. neg(d) = −pos(d).

2.3.2 Opinion versus Factual
For the opinion versus factual facet, we built lexi-

cons of opinionated and objective words using the TREC
Blog06 collection and corresponding relevance/opionion
judgments. In the lexicon, terms were weighted according
to a document-frequency based version of the Mutual Infor-
mation (MI) metric [9]. We then calculated (positive and
negative) facet scores for each retrieved document by aver-

aging over the lexicon weights for each word in the document
(see equation 14 below.)

In order to calculate both positive (opinionated) and neg-
ative (factual) facet weights for terms we split the Mutual
Information metric into two values as follows. Let T denote
the event that a document contains the particular term t,
and T̄ the event that the document doesn’t contain the term.
Then let O denote the event that a document is classed as
being (relevant and) opinionated about the query and Ō that
it is (relevant but) not opinionated about the query. We cal-
culate the positive facet score for a term by calculating the
MI summation only over the two positively correlated quad-
rants (i.e. T ∩ O and T̄ ∩ Ō) as follows:

pos(t) = p(T ,O) log
p(T ,O)

p(T), p(O)
+ p(T̄ , Ō) log

p(T̄ , Ō)

p(T̄), p(Ō)
(12)

The negative facet score is calculated analogously as follows:

neg(t) = p(T , Ō) log
p(T , Ō)

p(T), p(Ō)
+ p(T̄ ,O) log

p(T̄ ,O)

p(T̄), p(O)
(13)

We calculate the required joint and marginal probabilities
using document frequency estimates using the sets of opin-
ionated O and relevant R documents in the TREC Blog06
collection as:

p(T ,O) = df(t, O)/|R|
p(T) = df(t, R)/|R|
p(O) = |O|/|R|

Where df(t, O) is the number of opinionated documents con-
taining the term t. The other joint and marginal probabil-
ities required for equations 12 and 13 are estimated analo-

gously.
Having calculated positive and negative weights for each

term, we then averaged these lexicon weights over each doc-
ument to calculate positive and negative facet scores for the
document as follows:

pos(d) = Ed[pos(t)] =
X
t∈d

p(t|d)pos(t) (14)

2.3.3 Personal versus Official
Finally for the personal versus official facet, the same

scores were used as in the opinion case, since we believe
that more “personal content” is on the whole more likely to
contain opinions than more “official content”.

3. TOP STORIES IDENTIFICATION
Our method for the top stories task proceeded as follows.

We first extracted time-stamped news stories for each query
date while filtering out non-news related items. For each
query date we also extracted the set of blog posts that were
posted on the same or following days and where the post had
some vocabulary overlap with corresponding set of news sto-
ries. Each set of blog posts was then clustered using an incre-
mental clustering algorithm. Next we ranked clusters with
respect to size and time-span in order to identify the most
important clusters pertaining to the corresponding news sto-
ries. Finally we identified the most authoritative document
for the 10 most important clusters on each query date.

In the following sections we outline our approach in more
detail.

3.1 The algorithm
In this section we present details of our algorithm. Our

method for top stories task proceeds as follows.

1. for every query date we extract a set of time-stamped
news stories by using the date part of the permanent
links of the urls and we filter out non-news related
documents

2. for every query date we extract a set of time-stamped
blog posts that satisfy the following condtions: (I) they
were posted on the same day and a following three
days and (II) they have a vocabulary overlap with the
corresponding time-stamped sets of news stories.

3. we cluster every time-stamped blog-post set using an
incremental clustering algorithm whose details are pre-
sented in Section 3.2.

4. we identify the most important clusters pertaining to
the corresponding time-stamped news stories by rank-
ing clusters with respect to size and time-span.

5. we filter out clusters that correspond to the news-
stories by using the centroid score.

6. we identify the most authoritative document for the
top-10 most important clusters for every query date
using the ranking algorithm presented in Section 3.3.

Table 3: Example documents for which the triangle
inequality does not hold

doc w1 w2 w3 w4 w5 w6
d1 1 1 0 0 0 0
d2 0 1 1 1 1 0
d3 0 0 0 0 1 1

3.2 Incremental document clustering in slid-
ing time-window

In this section we present our implementation of an in-
cremental variant of a non-hierarchical document clustering
algorithm using a similarity measure based on nearest neigh-
bors (NN-based) [5, 6, 1].

We preprocess every document using the following steps:
(I) HTML parsing; (II) tokenization; (III) stemming; and
(IV) stopwords removal. We represent a document d using
the term vector model where d = [w1, w2, . . . , wd] and wi is
the weight of the the i-th term (word) that was extracted
from the document after the preprocessing of the original
document. The reason we use a NN-based similarity mea-
sure between news stories is because direct similarity mea-
sures between two vectors like Euclidean distance and the
dot product have the following problems in a high dimen-
sional space: there is an experimental evidence that they
are not reliable [5] and the triangle inequality does not hold.
For an example where the triangle inequality does not hold
consider the following three vectors representing hypothet-
ical documents: d1, d2 and d3 over six terms in Table 3.
Thus, although d1 is close to d2 by sharing one term and
d2 is close to d3 by also sharing one term d1 and d3 do not
share any terms. There are the following reasons why the
triangle inequality does not hold for documents: (I) diver-
sity of term usage to express the same meaning with respect
to the same event, which is aggravated by the fact that we
consider similarity between documents across different news
sources; and (II) content of stories reporting the same event
may change throughout time and may use a different vocab-
ulary. Therefore the clusters containing the documents are
inherently non globular justifying the use of the NN-based
versus a centroid-based similarity measure.

We perform the standard TF-IDF weighting of the doc-
ument term vector d: wi = tfi · idfi, where: tfi is within
document term frequency of term ti and idfi = log(N/dfi) is
the inverse document frequency, where N is the total num-
ber of documents in the collection and dfi is the document
frequency of term ti defined as the number of documents
containing the term in the collection.

In order to present the clustering algorithm we introduce

the following notation. Let sim(di, dj) =
Pn

k=1 dik
·djk

‖di‖·‖dj‖ be

the cosine similarity or content similarity between docu-
ments di and dj , where sim(di, dj) ∈ [0, 1]. Let Nτd(di)
be the neighborhood of di defined as a set of documents
for which sim(di, d) ≥ τd, where d ∈ Nτd(di). Let C =
{C1, C2, . . . , Cn} be the set of active clusters in the window.
Let C(Nτd(di)) ⊆ C be the set of clusters that contain any
documents in Nτd(di). Let Nτd(Cj , di) be the subsets of
documents in Nτd(di) belonging to cluster Cj ∈ C such that
Nτd(Cj , di) = ∅ if cluster Cj has no members in Nτd(di).
Let ∆(di, C) =

P
d∈C sim(di, d) be the similarity between

di and the set of documents d ∈ C. Let df (i) be the doc-
ument frequency vector for stream i. Let currentT ime be
the timestamp of the most recent document in the window,
i.e, the current timestamp of the window.

The clustering algorithm proceeds as follows:

1. Neighborhood search: given a new document di
identify its neighborhood Nτd(di)

2. Identification of a cluster that can accept a new
document: For every cluster C ∈ C(Nτd(di)) com-
pute ∆(di,Nτd(C, di)). Select a cluster

Cmax = max
C∈C(NT (C,di))

∆(di,NT (C, di)).

If Nτd(di) is empty then create a new cluster Cnew for
di.

3. Merging: merge every set C ∈ C(Nτd(di)) \ Cmax
with Cmax.

For achieving an efficient neighborhood search in the win-
dow we dynamically maintain an inverted index data struc-
ture in the time-window. Also we maintain an independent
document frequency vector df (i) for each stream i in order
to suppress terms whose popularity is specific to a particular
news source.

The sliding window process proceeds as follows. When

a new document d
(i)
t arrives the following actions are ex-

ecuted: (I) the document is added to the window, which
involves adding the corresponding terms to: the inverted in-

dex and df (i) vector; (II) d
(i)
t is clustered using the presented

algorithm and if the result is a singleton cluster then it is
added to the set of active clusters C; (III) currentT ime is

set to d
(i)
t .timestamp; (IV) documents which are older than

currentT ime − w are removed from the window, which in-
volves removing corresponding entries in: the set of active
clusters C and the inverted index

Thus the presented clustering algorithm has the following
parameters: (I) the time-window size w = 24 hours; (II) the
document similarity threshold τd = 0.5. Our evaluation of
the clustering results suggest that Precision = 95%. We
selected τd = 0.5 based on an experimental evaluation that
showed τd = 0.5 to be a good compromise with respect to
precision and recall.

3.3 Content-aware ranking function
In this section we present a content-aware ranking func-

tion that ranks with respect to the following factors:

1. the importance of a cluster increases with its size and
decreases with its time-span (the time distance be-
tween the first and the last document)

2. the importance of a document in a given position (its
authority) in a time-ordered cluster is proportional to
the difference between the average combined similarity
(content similarity and temporal distance) for the fol-
lowing documents and the previous documents in the
cluster.

The first factor is an extension of the first factor for the
probabilistic ranking function by prioritizing clusters that
are proximate in time. This corresponds to the fact that
a large cluster on a given event that is proximate in time

means that the event is very important since every source
reports it in a very short time window.

The second factor has the following motivation. It is
known that news stories discussing the same event tend to be
temporally proximate across the news streams [14]. There-
fore we use a combine similarity measure that increases with
the content similarity and decreases with the temporal dis-
tance. Let ∆t(i, j) be the temporal distance between docu-

ments di and dj , where ∆t(i, j) = e−α(di.time−dj .time) and

α = − ln(dFactor)
w

, where dFactor is the decaying factor that
denotes the factor by which the value of the function de-
cays within the time interval w being the time window size.
Then the combined similarity w(di, dj), can be expressed as
follows

w(di, dj) = sim(i, j) ·∆t(i, j), (15)

where sim(i, j) is the content similarity. Figure 3 presents a
graphical representation of the dependencies between docu-
ments in a cluster with respect to the combined similarity,
where a directed edge from an earlier to a more recent doc-
ument has a weight equal to the combine similarity.

d0 d2 d3d1

w(d0, d3)

w(d0, d2)

w(d1, d3)

w(d0, d1) w(d1, d2)

Follow(s, d1.steam, 1) = {d2, d3}

authority(s, d1.stream, 1) =
w(1,2)+w(1,3)

2 − w(0, 1)

Out(s, d1.steam, 1) = w(1,2)+w(1,3)
2In(s, d1.steam, 1) = w(0, 1)

Prev(s, d1.steam, 1) = {d0}

w(di, dj) = sim(i, j)∆t(i, j)

w(d2, d3)

Figure 3: Combined similarity between docu-
ments in itemset-sequence (cluster) s = [d1, d2, d3, d4].
Prev(s, d1.stream, 1) and Follow(s, d1.stream, 1) are
sets of documents preceding and following doc-
ument d1 in position 1. In(s, d1.stream, 1) and
Out(s, d2.stream, 1) are the average combined similar-
ity for Prev(s, d1.stream, 1) and Follow(s, d1.stream, 1)
respectively. authority(s, d1.stream, 1) is the authority
of source d1.stream in position 1.

Now we define the average combined similarity with re-
spect to previous and following documents. Given an
itemset-sequence s ∈ S we define the following two sets.
Let Prev(s, i, j) =

S
l=1,l≤j dl be the set of documents that

precede document d(i).stream = i in position j in s. Let
Follow(s, i, j) =

S
l=j+1,l≤|s| dl be the set of documents that

follow document d(i).stream = i in position j in s. Then the
average combined similarity with respect to previous docu-
ments (in positions j′ < j), denoted In(s, i, j), can be ex-
pressed as follows

In(s, i, j) =
1

|Prev(s, i, j)|
X

d∈Prev(s,i,j)

w(d, dj). (16)

Also the average combined similarity with respect to the fol-
lowing documents (in positions j < j′), denoted Out(s, i, j),

can be expressed as follows

Out(s, i, j) =
1

|Follow(s, i, j)|
X

d∈Follow(s,i,j)

w(d, dj). (17)

Given the value of In(s, i, j) and Out(s, i, j) we define ”au-
thority” of source i corresponding to a document in position
j as follows

authority(s, i, j) = Out(s, i, j)− In(s, i, j). (18)

This measure of authoritativeness prioritizes sources that:
(I) “borrow” little content form previous documents
(In(s, i, j)) and whose content is widely “borrowed” by fol-
lowing documents in the cluster (Out(s, i, j)) and (II) pro-
duce a timely content (|Follow(s, i, j)| is the biggest equal
to |s| − 1 and |Prev(s, i, j)| is the smallest equal to 0 for
the first story in the cluster (j = 0)). This measure of au-
thoritativeness has many desired properties. For example
consider a case where there is source i2, which always fol-
lows an authoritative source i1 with very similar content.
Then authority(s, i2, j) will be very small (even negative)
for i2 since it only “repeats” the content of i1. Thus, this
case may correspond to a reuse of content by i2 from i1,
where i2 repeats content from i1 within a short time win-
dow. In other words (18) discriminates between “producers”
of the content (positive value of (18)) and “repeaters” (nega-
tive value of (18)). However, note that because of limitations
of the cosine similarity measure we are unable to decide with
hundred percent confidence that one story is reusing content
from another one.

We now define the rank of a cluster s as follows

rankCluster(s) = wcluster(k) ·∆t(0, |s| − 1) (19)

where wcluster(k) is the weight of the cluster of size k (size of
the cluster) and ∆t(0, |s|−1) is the time-span of the cluster.

Despite the sophisticated clustering machinery used in the
top stories identification, our results were poor due to the
fact that we were only able to run the clustering over a small
subset (around 10%) of the data. It was mainly because of
the time restriction and the computational load required by
the algorithm on the very large dataset.

4. CONCLUSIONS
We have described our participation in TREC 2009 Blog

track for faceted blog distillation and top stories. We im-
plemented two types of algorithms for blog distillation. In
one of our experiments, we used fuzzy aggregation methods
for combining post relevance scores in each blog to calcu-
late blog scores as a whole. In another part of the experi-
ments, we used regularization methods for smoothing rele-
vance scores based on the similarity between the retrieved
blogs. We carried out regularization on two types of scores:
posts relevance scores and large document relevance scores
(where each blog is represented by the concatenation of its
most relevant posts). Finally we combined the two methods
(regularization and OWA) to take into account the similarity
between retrieved posts while performing good aggregation
over them, to generate new scores for each blog.

For the faceted rankings, we first generated positive and
negative facet scores for each retrieved document and then
combined the facet rankings with the relevance ranking us-
ing Borda Fuse.

For top stories task we first extracted time-stamped news
stories for each query date while filtering out non-news re-
lated items. For each query date we also extracted the set
of blog posts that were posted on the same or following days
and where the post had some vocabulary overlap with corre-
sponding set of news stories. Each set of blog posts was then
clustered using an incremental clustering algorithm. Next
we ranked clusters with respect to size and time-span in or-
der to identify the most important clusters pertaining to the
corresponding news stories. Finally we identified the most
authoritative document for the 10 most important clusters
on each query date.

5. REFERENCES
[1] S. Chung and D. McLeod. Dynamic pattern mining:

An incremental data clustering approach. Journal on
Data Semantics, Lecture Notes in Computer Science,
2:85–112, 2005.

[2] F. Diaz. Regularizing ad hoc retrieval scores. In
Proceedings of the 14th ACM international conference
on Information and knowledge management, pages
672–679, 2005.

[3] M. Efron, D. Turnbull, and C. Ovalle. University of
Texas School of Information at TREC 2007. In Proc.
of the 2007 Text Retrieval Conf, 2007.

[4] J. L. Elsas, J. Arguello, J. Callan, and J. G.
Carbonell. Retrieval and feedback models for blog feed
search. In SIGIR, pages 347–354, 2008.

[5] L. Ertöz, M. Steinbach, and V. Kumar. Finding
clusters of different sizes, shapes, and densities in
noisy, high dimensional data. In in Proceedings of
Second SIAM International Conference on Data
Mining, 2003.

[6] R. A. Jarvis and E. A. Patrick. Clustering using a
similarity measure based on shared near neighbors.
IEEE Transactions on Computers, 22(11):1025–1034,
1973.

[7] C. Macdonald, I. Ounis, and I. Soboroff. Overview of
the trec-2007 blog track. In Proceedings of the
Sixteenth Text REtrieval Conference (TREC 2007),
2007.

[8] C. Macdonald, I. Ounis, and I. Soboroff. Overview of
the trec-2007 blog track. In Proceedings of the
Sixteenth Text REtrieval Conference (TREC 2007),
2007.

[9] C. D. Manning and H. Schtze. Foundations of
Statistical Natural Language Processing. The MIT
Press, June 1999.

[10] Q. Mei, D. Zhang, and C. Zhai. A general
optimization framework for smoothing language
models on graph structures. In SIGIR ’08:
Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 611–618. ACM, 2008.

[11] I. Ounis, M. De Rijke, C. Macdonald, G. Mishne, and
I. Soboroff. Overview of the TREC-2006 blog track. In
Proceedings of TREC, pages 15–27, 2006.

[12] J. Seo and W. Croft. UMass at TREC 2007 Blog
Distillation Task. In Proc. of the 2007 Text Retrieval
Conf, 2007.

[13] R. R. Yager. On ordered weighted averaging
aggregation operators in multicriteria decision making.

IEEE Trans. Syst. Man Cybern., 18(1):183–190, 1988.

[14] Y. Yang, J. G. Carbonell, R. D. Brown, T. Pierce,
B. T. Archibald, and X. Liu. Learning approaches for
detecting and tracking news events. IEEE Intelligent
Systems, 14(4):32–43, 1999.

[15] L. Zadeh. A computational approach to fuzzy
quantifiers in natural languages. International series
in modern applied mathematics and computer science,
5:149–184, 1983.

