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Imagine a warfighter analyzing the battlespace. He implements a system that classifies
remotely sensed objects according to a set of 200 different possible labels. Unknown to
the warfighter or the command element, numerous enemy forces have infiltrated the bat-
tlespace, and so the classification system reports a large group of enemy tanks in exactly
the same spot where friendly forces were previously stationed–i.e., targets that must be
destroyed immediately. The warfighter has never seen such a large concentration of enemy
forces in this particular battlespace and begins to question the results, failing to immedi-
ately order the destruction of those objects. Time ticks by, and it becomes apparent to the
command element and the warfighter that the objects are dangerous enemies after they re-
treat beyond weapons range, and the window of opportunity to act decisively shrinks away.

If briefed beforehand that the classification system could minimize risk based on the classi-
fication cost and battlespace information provided by the command element, the warfighter
would have had more confidence in the classification system, and might have quickly taken
decisive action.

When comparing classification systems to one another via Receiver Operating Characteris-
tic (ROC) analysis, some comparison methods do not consider the whole picture–i.e., costs
and class prevalences along with the class-conditional probabilities. Because the volume
under a ROC surface in a 200-class case would be a 39,800-dimensional object, concepts
such as Volume Under the Surface (VUS) become rather cumbersome. Most attempts to
generalize geometric concepts to the general n-class case choose to ignore either the class
prevalences or the costs. The concept of risk allows a much more robust form of ROC anal-
ysis to take place, one which considers many more of the characteristics of the operating
environment in which the receiver of information resides.

Recent research into comparison methods for classification systems explores continuous
fixed-support joint distributions of class prevalences as weighting functions to deal with
classification domains about whose class prevalences one has limited or no knowledge. Us-
ing empirical statistical methods, a warfighter can calculate the probability and expected
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cost or loss appropriate to each type of classification decision, assuming costs to be sub-
jectively fixed, and that acceptable estimates for class-conditional probabilities exist. As
the sum of the products of cost and probability for all types of classification decisions,
total classification risk for a classification system is easily calculated. Empirical risk data
produced by statistical simulation of the battlespace lends itself to statistical description
of total classification risk for comparison with other classification systems.

An example of a joint distribution for class prevalences over a standard simplex is pro-
vided by way of a multivariate triangular distribution. Families of classification systems
are created using Probabilistic Neural Nets (PNN) acting on the Moving and Stationary
Target Acquisition and Recognition (MSTAR) mixed targets data set. The spread parame-
ter of the PNNs serves as one threshold distinguishing the PNN classification systems from
one another, and a second parameter is a cropping proportion used in processing the image
data. Using computer simulation, a warfighter can choose a threshold that minimizes risk
under the assumption of temporarily fixed costs.

Nomenclature

AER Actual Error Rate
AUC Area Under the ROC Curve
pj Class Prevalence
cij Classification Cost
C Classification Cost Matrix [C]ij = cij

πij(A) Classification Probability
Π(A) Classification Probability Matrix [Π]ij = πij

RCCC(A) Classification Risk
A : E→ L Classification System
qi|j(A) Class-conditional Probability
Q(A) Conditional Probability Matrix [Q(A)]ij = qi|j(A)
ERRT Empirical ROC Risk Threshold
〈, 〉F Frobenius Inner Product
� Hadamard Product Operator
P Prevalence Matrix: each row identical to transposed vector pT of Class Prevalences

{
pj

}n

j = 1

PNN Probabilistic Neural Net
ROC Receiver Operating Characteristic
RRF ROC Risk Functional
θ Threshold Parameter
Θ Threshold Set
VUS Volume Under the ROC Surface
Subscripts
i Refers to label `i ∈ L
j Refers to class Ej ⊂ E
i|j Label `i ∈ L given class Ej

Note: Familiarity with mathematical symbols such as ∈, ∪, ∩, ⊂,
∑

, ≡, T , | , and ∀, is recommended.

I. Introduction

The process of classification requires an algorithm known as a classification system. Given a sample
space E of possible outcomes or events, along with a finite set L =

{
`1, `2, `3, . . . , `n

}
of distinct labels, a

function A : E→ L is a classification system. An “n-class system” has exactly n labels (n = 1, 2, 3 . . .); for
example: an Identification, Friend or Foe (IFF) 3-class system that labels objects as “friendly,” “unfriendly,”
or “unrecognized.”

A classification system may have a threshold parameter θ, selected from a finite-dimensional threshold set
Θ of parameters that may influence classification. For example, when classifying adults into men and women
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based on height alone, a single-dimensional threshold parameter θ might be a point between the median
men’s and women’s heights, where if Height(adult) > θ, we label the adult as “man”; otherwise, “woman”.
If classification entails using a measuring tape, then a two-dimensional threshold set Θ = Θ1 × Θ2, might
contain ordered pairs θ =

(
θ1, θ2

)
, where θ1 is the height chosen above and θ2 the tension on the tape.

When facing a decision of where to set threshold parameters, Bayesian decision theory suggests applying
the concept of risk.2,5 To calculate the risk RCCC(Aθ) of a classification system Aθ (that is, a general
classification system A, specified by a particular choice of θ from the theshold set), we must know each
possible outcome and its associated cost and probability. We rely on the formula for classification risk R
(suppressing notational dependence on θ), given by3

RCCC(A) ≡
〈
Π(A) ,C

〉
F

(1)

where Π(A) is a matrix of classification probabilities, C is a matrix of classification costs (assumed tem-
porarily fixed), and 〈, 〉F represents the action of the Frobenius inner product, given by5

〈
U,V

〉
F
≡

s∑
i = 1

(
r∑

j = 1

uij vij

)
(2)

where [U]ij = uij and [V]ij = vij are any two matrices of the same size s× r. For an n-class system, with
exactly n2 types of possible classification decisions, Π(A) and C are both n× n.

We now define Π(A) and C in precise mathematical terms, beginning with necessary preliminaries.

A. Conditional Probability Matrix

The elements [Q(A)]ij = qi|j(A) of a conditional probability matrix are class-conditional probabilities. Point
estimates of class-conditional probabilities for a classification system are calculated by means of a confusion
matrix (the most accurate and reliable being one produced using Lachenbruch’s holdout procedure1,4). To
illustrate, consider a 2 × 2 contingency matrix of results from a classification experiment where we have
explicit knowledge of the number of items in each population. A matrix such as that shown in Table 1 is a
simple tally of the numbers of each type of classification decision, both correct and incorrect, with correct
decisions on the diagonal and columns corresponding to truth. Here, class 1 is positive, and class 2 negative;
hence, the true positive count TP is how many items of class 1 were correctly labeled, and the false negative
count FN is how many were not, and so forth.3,6

Table 1. Two-Class Contingency Matrix.

[Contingency Matrix Actual Class: 1 Actual Class: 2

Labeled Class: 1 TP FP
Labeled Class: 2 FN TN

]

From this matrix, form estimates of the class-conditional probabilities by dividing each element in a
column by the number of items in the class corresponding to truth for that column; with M1 and M2 items
from Classes 1 and 2, respectively, estimates of class-conditional probabilities appear in Table 2.

Table 2. Two-Class Confusion Matrix.

[Confusion Matrix Actual Class: 1 Actual Class: 2

Labeled Class: 1
TP
M1

FP
M2

Labeled Class: 2
FN
M1

TN
M2

]

The result is a transpose stochastic confusion matrix, such that the sum of each column is one; therefore,
the information contained in a 2 × 2 confusion matrix may be represented by an ordered pair comprised
of one entry from each column, which may then be plotted on a unit square. As the convex hull of plotted
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points from many such classification systems, a curve known as a Receiver Operating Characteristic (ROC)
curve is formed and may be analyzed through measures such as the Area Under the ROC Curve (AUC), or
Volume Under the ROC Surface (VUS) for classification systems with more than two classes; however, such
traditional methods of ROC analysis do not inherently facilitate the calculation of classification risk.6

Given a classification system A : E → L, along with a probability measure P : E → [0, 1] defined on a
σ-field E over E containing all pre-images A \

[
{`i}

]
⊂ E of singleton label subsets {`i} ⊂ L (where the

Becuadro, \, denotes the set function A \ : L→ E with pre-images of A in the codomain) and all classes in

the partition
n⋃

j=1

(Ej) = E induced by L on E, the class-conditional probability qi|j(A) is the conditional

probability that A(e) = `i, given that e ∈ Ej, and is given by5

qi|j(A) ≡ P
(
A(e) = `i

∣∣∣ e ∈ Ej

)
= P

(
e ∈ A \

[
{`i}

] ∣∣∣ e ∈ Ej

)
=

P
(
A \
[
{`i}

] ⋂
Ej

)
P
(
Ej

) , i, j = 1, 2, 3, . . . ,n

(3)

when class Ej has P
(
Ej

)
6= 0. For a class Ej with prior probability P

(
Ej

)
= 0, all class-conditional prob-

abilities conditioned on Ej are given by q i|j(A) = 0, ∀ i = 1, 2, 3, . . . , n. A class-conditional probability
may take on any value in [0, 1]; thus, for each i and j, q i|j(A) is a well-defined probability measure with

n∑
i = 1

qi|j(A) = 1, ∀ j = 1, . . . , n (i.e., each column of Q sums to one).

B. Prevalence Matrix

The elements [P]ij = pj of a prevalence matrix are class prevalences. If we multiply (3) above by the
probability pj ≡ P

(
Ej

)
of being in class Ej, or the class prevalence of Ej, the probability of the classification

system labeling an outcome e ∈ Ej with `i immediately results; therefore, to make the calculation of such
probabilities as simple as possible, the prevalence matrix P for an n-class system is given by6

P ≡


pT
...

pT


n×n

=


p1 . . . p n

...
p1 . . . p n


n×n

(4)

where pT is the transposed vector of class prevalences
{

pj

}n

j = 1
to which each row of P is identical. Note

that since
n⋃

j=1

(Ej) is a partition of E,
n∑

j = 1

pj = 1. In other words, each row of the stochastic matrix P

sums to one and is identical to all other rows. It is therefore not necessary to label an element of P with
two subscripts as usual, so we subscript elements of P according to the column in which they reside.

C. Classification Probability Matrix

The elements [ Π(A) ]ij = πij(A) of a classification probability matrix are classification probabilities given

by πij(A) ≡ qi|j(A) pj = P
(
A \
[
{`i}

] ⋂
Ej

)
; in other words, the probability that A(e ∈ Ej) = `i. Since all

possible outcomes are accounted for, the elements of Π(A) sum to one.
The Hadamard product operator is given by[

U�V
]
ij
≡ uij vij (5)

where [U]ij = uij and [V]ij = vij are any two matrices of the same size. A classification probability matrix is

therefore given by Π(A) ≡ Q(A)�P, and so (1) becomes RCCC(A) ≡
〈
Π(A) ,C

〉
F

=
〈[

Q(A)�P
]
,C
〉
F

.
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D. Classification Cost Matrix

The elements [C]ij = cij of a classification cost matrix are numerical classification costs associated with
the classification decisions whose probabilities appear in the corresponding positions of Π(A). A general
rule of thumb is that correct decisions have a cost of zero (i.e., the diagonal elements of C are all zero) and
incorrect decisions have a positive cost value; however, the framework presented above does not require any
such restrictions on the methodology used to apply the cost concept.

Costs are assumed to be authoritative and based on a subjective assessment of the inherent losses (ac-
cording to some relative numerical scale) associated with making each possible kind of classification decision.
For example, one may assume there is no cost associated with classifying a woman as a woman or a man as
a man, but the cost associated with classifying a woman as a man may not be exactly equal with that of
classifying a man as a woman. Costs may change, but as the framework we present allows for near-realtime
re-calculation of classification risk whenever cost structure changes, we assume them temporarily fixed.

To calculate classification risk, simply add all products of cost and probability together, as in (1) above.

II. Method

The calculation of classification risk is very simple if all quantities involved are constants; however,
depending on the environment in which classification occurs, there may be significant variability in the
classification probabilities. Note that elements of the matrices C, P, Q(A), and Π(A) are actually random
variables over the sample space E; however, for the purposes of this paper, we assume costs ci|j to be constant
random variables. The variables that may have the greatest effect on the classification process are the class
prevalences, since they are part of the definition of the class-conditional probabilities and there is statistical
dependence between pj and qi|j in many cases.6 In addition, the class prevalences are a function of the
environment in which classification occurs, and if this is the physical world, such variables may tend to be
extremely unpredictable. However, limited knowledge based on expert opinion is better than no knowledge
at all.

Recent work on the subject of calculating classification risk in an uncertain classification environment
illustrates the framework for constructing a joint distribution of class prevalences, with the restriction that
no class may have zero population density. The work employs classical statistical methods to select a
classification system based on a point estimate of classification risk via the ROC Risk Functional (RRF)5,6

arg min
Aθ∈AΘ

{
E
[
RCCC(Aθ)

]}
≡ arg min

Aθ∈AΘ

{
E

[〈[
Q(Aθ)�P

]
,C
〉
F

]}

≈ arg min
Aθ∈AΘ

{〈
Q̂(Aθ) , C�E [P]

〉
F

} (6)

where a family AΘ =
{
Aθ : θ ∈ Θ

}
of classification systems is defined over a threshold set Θ of parameters.

The RRF relies heavily on assumptions of statistical independence to allow a quick calculation, but these
assumptions do not hold up to scrutiny.6 Therefore, we propose the Empirical ROC Risk Threshold (ERRT)

θ? ≡ arg min
θ∈Θ

{
E
[
RCCC(Aθ)

]
+ D

[
RCCC(Aθ)

]}
≈ arg min

θ∈Θ

{
E

[〈
Π̂(Aθ) ,C

〉
F

]
+ D

[〈
Π̂(Aθ) ,C

〉
F

]}
(7)

where Π̂(Aθ) is an acceptable estimate of Π(Aθ), and where E
[
RCCC(Aθ)

]
and D

[
RCCC(Aθ)

]
are robust

measures of central tendency and dispersion for risk, respectively. Stated simply, we choose any threshold
parameter θ? such that the quantity E

[
RCCC(Aθ?)

]
+ D

[
RCCC(Aθ?)

]
is a minimum over all θ ∈ Θ.

With no assumptions regarding the nature of statistical distributions for the variables involved (except for
costs, as mentioned above), we use statistical simulation to produce and compare values of the comparative
risk quantity E

[
RCCC(Aθ)

]
+ D

[
RCCC(Aθ)

]
for as many choices of the parameter θ as suit our needs (i.e., we

define the threshold set Θ to be of convenient size). The ERRT has the advantage of considering dispersion,
or variability, in addition to a measure of central tendency for the classification risk, unlike the RRF. This
allows a given threshold parameter with a slightly higher measure of central tendency for risk to still compete
against other threshold parameters if its statistical dispersion of risk is smaller. Threshold parameters with
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extremely high statistical dispersion of risk are essentially eliminated from the competition, which tends to
result in the selection of a system with smaller statistical dispersion.

To illustrate, we classify the 8-class MSTAR Mixed Targets data set, using between six and seven
thousand total data points, varying by image cropping factor. We use a Probabilistic Neural Net (PNN)
classifier trained on standardized data containing the first two principal components from a set of processed
data.5 Processed data for an MSTAR image include the eccentricity of an ellipse fit to the convex hull
of edges detected using Matlab R© in a mathematically transformed, cropped, noise-reduced version of the
image (images with no suitable edges are excluded). Each data point also contains numerical values from
the binary file header characterizing the target image, and which were gathered simultaneously with the
synthetic aperture radar image pixels, such as bandwidth and dynamic range. The first principal component
of the processed data set, heavily loaded against the “X Velocity” data from the file header, accounts for
99.98% of overall variability, and the second is loaded against eccentricity as described above. The data are
standardized for use with the PNN classifier, which employs a common “spread” parameter as the standard
deviation of a multivariate normal marginal distribution about each training data point, as illustrated in
Figure 1 for a two-dimensional data set. Standardization ensures experimentation with spreads greater than
one will not produce different results than a spread of one when implementing the PNN classifier.
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Figure 1. Effects of Differing Spread Parameters for a PNN classifier.

For the purpose of this illusration, we use a two-dimensional threshold set. The chosen PNN spread is
along the first parameter axis, and the second parameter axis is a proportion, namely, the ratio of the small
side of the remaining image to the original square image side length after cropping appropriately rotated
images with a golden section rectangle during the first step in data processing. Proportions of the golden
section are used for cropping rectangles due to the rectangular nature of the image targets (mostly tanks or
other such vehicles), with the rectangles placed as close as possible to the exact center of the images.
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Given target image types BTR-60, 2S1, BRDM-2, D7, T62, ZIL-131, ZSU-23/4, and SLICY, we label
these classes one through eight, respectively, and simulate class prevalences for the first seven by means
of a jointly triangular distribution over a standard 7-simplex.6 The triangular marginal distributions for
classes 1 through 7 each have support on [0, 1], with modes evenly spaced every tenth from 2

10 to 8
10 ,

respectively. The prevalence of the eight class (SLICY, a fabricated control target) is then given by the
difference between one and the sum of the first seven class prevalences previously drawn randomly from their
joint distribution.6 We simulate four random draws of all eight theoretical class prevalences in this way to
account for variability of the class prevalences, and for each of these four random draws we further simulate
another four random selections of individual data points from the standardized principal component data
according to the theoretical prevalences drawn, to account for variations within the MSTAR data. Although
all classes must have non-zero population density for a classification label to have meaning, a classification
system operating in the “real world” may not encounter any items of a certain class over a finite time period.
We disallow random theoretical class prevalence draws that round to an actual draw of zero population for
any class, to more aptly illustrate application of the risk-based comparison theory.

III. Results

We employ three different classification cost matrices to illustrate the effect of cost on risk, with the
median and the median absolute deviation from the median as measures of central tendency and dispersion
for risk, respectively. A standard cost matrix, such as the one appearing in Table 3, has zeroes on the diagonal
and ones everywhere else, and risk calculations with this matrix yield the Actual Error Rate (AER) of the
classification system when the Lachenbruch holdout procedure is used for classifier training and validation.1,4

Table 3. Standard Cost Matrix.



Standard Cost Matrix Actual: 1 Actual: 2 Actual: 3 Actual: 4 Actual: 5 Actual: 6 Actual: 7 Actual: 8

Labeled: 1 0 1 1 1 1 1 1 1
Labeled: 2 1 0 1 1 1 1 1 1
Labeled: 3 1 1 0 1 1 1 1 1
Labeled: 4 1 1 1 0 1 1 1 1
Labeled: 5 1 1 1 1 0 1 1 1
Labeled: 6 1 1 1 1 1 0 1 1
Labeled: 7 1 1 1 1 1 1 0 1
Labeled: 8 1 1 1 1 1 1 1 0



A “low” cost matrix chosen to illustrate the effect of cost on risk appears in Table 4. Figures 2 and 3
show that the same ordered threshold parameter pair (1

3 ,
1001
1000 ) yields minimal comparative risk for both the

standard and “low” cost matrices.

Table 4. Low Cost Matrix.



Low Cost Matrix Actual: 1 Actual: 2 Actual: 3 Actual: 4 Actual: 5 Actual: 6 Actual: 7 Actual: 8

Labeled: 1 0 1 1 1 1 1 1 3
Labeled: 2 1 0 1 1 1 1 1 3
Labeled: 3 1 1 0 1 1 1 1 3
Labeled: 4 1 1 1 0 1 2 1 3
Labeled: 5 1 1 1 1 0 1 1 3
Labeled: 6 1 1 1 3 1 0 1 3
Labeled: 7 1 1 1 1 1 1 0 3
Labeled: 8 5 5 5 5 5 5 5 0



A “high” cost matrix chosen to illustrate the inherent flexibility of the definition of cost appears in Table
5. Decision-makers who provide guidance on cost are free to choose numbers in any way that suits them. For
instance, ones along the diagonal (for correct classification decisions) could indicate that there is a financial
cost incurred due to the act of classification, regardless of the outcome, and so costs for incorrect decisions
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Figure 2. Comparative Risk Surface Over a Two-Dimensional Threshold Set, Standard Costs.
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Figure 3. Comparative Risk Surface Over a Two-Dimensional Threshold Set, Low Costs.

might be scaled according to “cost” of a correct decision. Figure 4 illustrates how the entire surface is
generally elevated above those of Figures 2 and 3 as a result.

Note that for the “high” cost matrix, an ordered threshold parameter pair (1
3 ,

751
1000 ), distinct from the

pair (1
3 ,

1001
1000 ) selected when using either the standard and “low” cost matrices, yields minimal comparative

risk. Although the example may be extreme, it does serve to illustrate that cost can be an important factor
in risk-based comparison of classification systems. However, even if standard cost matrices are always used,
thereby producing only the AER of a classification system, the empirical statistical method presented still
presents a sound basis for decision-making.
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Table 5. High Cost Matrix.



High Cost Matrix Actual: 1 Actual: 2 Actual: 3 Actual: 4 Actual: 5 Actual: 6 Actual: 7 Actual: 8

Labeled: 1 1 10 10 10 10 10 10 10
Labeled: 2 2 1 2 2 2 2 10 2
Labeled: 3 2 2 1 2 2 2 10 2
Labeled: 4 2 2 2 1 2 2 10 2
Labeled: 5 2 2 2 2 1 2 10 2
Labeled: 6 2 2 2 2 2 1 10 2
Labeled: 7 2 2 2 2 2 2 1 2
Labeled: 8 2 2 2 2 2 2 10 1
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Figure 4. Comparative Risk Surface Over a Two-Dimensional Threshold Set, High Costs.

IV. Conclusion

The result of the theory presented is that risk can be calculated very quickly once the computationally
intensive statistical simulation of the classification environment (i.e., the “battlespace”) is completed. The
assumption that costs are fixed is acceptable because calculation of the Frobenius inner product of any two
matrices (even one whose dimension is 200 × 200, for example) can be performed in near-real time by any
computer or capable pocket calculator. This allows end users of a classification algorithm to have confidence
in decisions made by the system, even (and perhaps especially) when those decisions are surprising, because
all possible outcomes, and their associated costs and probabilities, are inherently considered and accounted
for by a risk-based approach.
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