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Introduction 
 
Fibroblast activation protein-α (FAP), a prolyl-specific serine proteinase, is a constituent 
membrane protein of activated fibroblasts that synthesize some of the major components of the 
ECM.  FAP is recognized on embryonic mesenchymal tissue and on fibroblasts during wound 
healing, but it is not expressed by normal, quiescent fibroblasts or benign tumor fibroblasts.  
FAP, however, is clearly over expressed by stroma within epithelial-derived cancers such as 
breast (1-3); however, its precise role is unknown.  Although best known on activated 
fibroblasts, FAP is also expressed on epithelial cancer cells (2,4-6) and has been linked to 
invasive, matrix-degrading behavior of malignant melanoma and breast cancer cells (7,8).  In 
animal models, over expression of FAP by the malignant cells also stimulates rapid growth of 
cancer (9,10).   
 
FAP is a member of the dipeptidyl peptidase clan and/or structural homologs (DASH) family of 
prolyl-specific peptidases (11-13).  The FAP protease is a dual function serine protease having 
both N-terminal prolyl-specific dipeptidase and endopeptidase activities (14-16).  The 
dipeptidase activity is presumably important for modifying chemokines (11,13), but the role of 
FAP’s endopeptidase activity (gelatinase) that degrades denatured collagen remains unclear; 
the latter activity is not possessed by dipeptidyl peptidase IV (17).  Recently our collaborator, Dr. 
Patrick McKee’s laboratory identified low molecular weight proteolytic fragments of type I 
collagen that are produced by FAP cleavage (18).  His group also purified an enzyme in trace 
amounts in human plasma, which turned out to be a soluble form (sFAP) of membrane-bound 
FAP (mFAP) (19).  Except for lacking the first 26 residues of its N-terminus that comprise the 
intramembrane and cytosolic segments, the soluble FAP’s primary structure and proteolytic 
properties appear identical to naturally-occurring FAP.  McKee’s group made the unique 
discovery that sFAP cleaves precursive Met-alpha2-antiplasmin (methionine as the N-terminus: 
Met-A2AP) to yield a 12-residue N-terminally shortened derivative, Asn-alpha2-antiplasmin (19); 
both A2AP forms circulate in plasma and are responsible for >95% of the inhibition of plasmin 
activity towards fibrin, the latter also a recognized component of ECM as well as 
platelet/malignant cell/fibrin microemboli.  Importantly, the FAP-cleaved A2AP maintains 
antiplasim activity and incorporates more readily into fibrin than its uncleaved counterpart.  We 
reasoned that FAP on breast cancer cells might promote metastasis by increasing the formation 
of microemboli. 
 
This synergy award is designed to determine if FAP proteolytic activity promotes formation of 
microemboli, tumor growth, and degradation of the extracellular matrix.  This first period has 
been productive in terms of preparing the cells needed to pursue these questions and for 
working out the conditions for applying inhibitors while evaluating FAP-mediated matrix 
degradation.  Kelly’s part of the project involves determining microembolus formation in vivo and 
in vitro as well as aggressive matrix behavior in vitro. 
 
Body 
For in vivo experiments investigating blood borne tumor cells, it is imperative that fluorescently 
labeled tumor cells are made.  We engineered FAP-GFP constructs and FAP-pluc plasmid 
constructs and obtained a luciferase expressing vector (see figure 1 for vector maps).  The 
purpose of the GFP is two-fold.  First it eases sorting of the the transfected cells by FACS 
because it eliminates the need for antibody incubations.  Secondly, it enables us to easily 
distinguish the tumor cells from the host cells.  Moreover, luciferase allows detection of tumor 
metastases in living animals using the IVIS camera. 
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Two vector types were prepared.  Ideally we will use the “pluc” vector which is based on the 
pIRES vector and simultaneously expresses FAP, GFP and luciferase (Fig. 1C).  However, we 
have found that there are sometimes problems with the pluc vector.  For one, it is difficult to 
efficiently transfect cells because of its size.  Occasionally, it will alter the invasive phenotype of 
the cell regardless of FAP expression.  Therefore, we also produced FAP-GFP constructs (Fig. 
1A) to co-transfect with the luciferase expressing vector pGL4.51 (Fig. 1B). Figure 2 shows gels 
indicating successful isolation of bacteria colonies expressing FAP-GFP, FAP-pluc and pluc 
encoding a catalytically inactive mutant FAP where the catalytic serine has been changed to an 
alanine (S624A).  (Needed for Specific aims (1 & 2). 
 
Restriction and/or sequence analysis indicates that we were successful in introducing the FAP 
cDNA into the pluc vector.  Similarly, FAP cDNA has also been inserted into the EGFP plasmid 
(Figure 2).  These cells will be used for experiments to determine emboli formation (Specific aim 
2). 
 
We transfected FAP-expressing breast cancer cells with either: FAP-pluc or pluc only.  We 
selected the cells shortly after transfection based on GFP expression and are performing 

Figure 1.  Plasmid vectors prepared to aid in identifying FAP tumor cells in microemboli.  A) 
pEGFP has been produced with FAP cDNA in the multiple cloning site (MCS).  B) pGL$.51 vector 
expresses luciferase and has been co-transfected with pEGFP into MDA MB-231 cells.  C) The 
“pluc” vector is derived from pIRES and has been made to simultaneously express FAP, And a GFP-
luciferase fusion protein. 
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multiple sorts to achieve populations where a high percentage of cells express FAP or mutant 
FAP, GFP, and lucifierase. We also transfected GFP into MDA MB-435 breast cancer cells that 
express FAP endogenously and are working towards cloning populations of these cells. 
 
Another area of progress has been our preparations for the work with the FAP-specific inhibitors 

that will be sent to us by the Co-PI Dr. 
McKee (Specific Aim 1 & 3).  To prepare 
we have been testing the existing FAP 
inhibitor, PT-100 or talabostat for ability 
to inhibit matrix degradation.  Our initial 
studies indicate that FAP inhibitors 
modestly suppress matrix degradation 
(see attached manuscript).  We have 
begun investigating the effect of 
inhibiting both FAP (using PT-100 or 
PT-630) and MMPs (using BB-94) on 
matrix degradation by aggressive breast 
cancer cells.  We have completed initial 
experiments with FAP inhibitors and 
FAP-expressing cells growing on 
fluorescent extracellular matrices and 
are now analyzing these results. 
 
We have begun experiments with 
alpha2 AP and fibrinogen to learn how 
to set this up properly (Specific Aim 2 & 
3). 
 
We prepared a manuscript for 
publication on FAP inhibition and growth 
of tumors of breast cancer cells 
expressing mutant FAP (appendix). 

 
Key research accomplishments: 
 

• Produced pluc and EGFP plasmid vectors that express FAP and obtained a luciferase 
vector. 

• Transfected MDA MB-231 with EGFP and pluc vectors  
• FACS on MDA MB-435 and MDA MB-436 to grow FAP high and FAP low populations 
• Did sorts for WTY-1 and WTY-6 to produce clones of cells expressing high levels of FAP 
• Performed initial experiments to determine baseline matrix degradation with FAP-

expressing cells 
• Began trials with FAP inhibitors on the matrix degradation of FAP-expressing cells. 
• Set up a protocol that will allow us to observe fibrinolysis.  This will be used to determine 

if FAP cleavage of A2AP stabilizes fibrin and promotes fibrin accumulation.  

Figure 2.  Plasmid vectors prepared to aid in identifying FAP tumor cells in microemboli.  Top panels) Left 
panel shows pluc vector with the FAP insert (lane PF3, bold arrow).  Right panel shows identification of the clone 
with cDNA encoding the S624A mutant FAP in pluc vector (lane PS4, bold arrow).  Bottom panels) Left panel 
shows pEGFP vector.  Right panel shows a pEGFP vector with the mutant FAP insert (lane GF16, bold arrow).  
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Reportable outcomes 
 
Manuscript: 
“Fibroblast activation protein-α (FAP) promotes tumor growth and invasion through protease 
activities and non-enzymatic functions”  Yan Huang, Sophie Wang, Noel R. León, Barry Jones, 
Nazneen Aziz and Thomas Kelly Submitted 
 
Abstract/Presentation: 
“Tumor growth is slowed by an inhibitor of DASH proteases in a mouse model of human breast 
cancer”  Thomas Kelly, Noel R. León, Kevin Kelly, Barry Jones and Nazneen Aziz  3rd 
International Congress on Proteases and Dipeptidyl Peptidases, April 23-25, 2008, Antwerp, 
Belgium 
 
Funding applied for: 
Two predoctoral fellowships 
1) USAMRDC-BCRP Pre-doctoral fellowship BC093509 “Blood-borne tumor-host cell emboli in 
metastasis”, PI Avis Simms Decision September, 2009 
2)  Arkansas Breast Cancer research Fellowship  “Blood-borne tumor-host cell emboli in breast 
cancer metastasis” PI Avis Simms (Inaugural recipient), Funded 7/1/2009 
 
ARRA challenge grant NIH 1 RC1 CA145194-01 “Fibroblasts and platelets can cooperate with 
cancer stem cells to drive metastasis.” PIs Jerry Ware and Thomas Kelly (Not funded) 
 
Ongoing development of cell lines 
FAP-GFP-luc cells in production that is originally derived from MDA MB-231 human breast 
cancer cells.  FAP-pluc cells in production that is originally derived from MDA MB-231 human 
BrCa cells 
 
Research opportunities Avis Simms passed her qualifying and is now a candidate for a PhD in 
Interdisciplinary Biomedical Sciences. 
 
Conclusions 
In summary we have made significant and important progress on the SOW for aims 1-3 by 
positioning ourselves to complete the experiments that will directly test the possibility that FAP 
promotes formation of microemboli and that these facilitate metastasis of breast cancer.
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Abstract 
 
Fibroblast activation protein-α (FAP) is a cell surface, post-prolyl serine protease that is 

expressed in human breast cancer but not in normal adult tissues.  Previously we 

showed that FAP expression by tumor cells increased tumor growth rates in a mouse 

model of human breast cancer.  Here the role of the proteolytic activities of FAP in 

promoting tumor growth, matrix degradation and invasion was investigated.  Breast 

cancer cells expressing active FAP were injected into the mammary fat pads of female 

SCID mice.  The mice were treated with normal saline or inhibitors of prolyl peptidases 

Gly-boroPro (talabostat, PT-100); Glu-boroPro (PT-630); or 1-[[(3-hydroxy-1-adamantyl) 

amino] acetyl]-2-cyano-(S)-pyrrolidine (LAF-237, vildagliptin).  Both boroPro compounds 

are effective against FAP at nanomolar concentrations; however, micromolar LAF-237 

is required to inhibit FAP.  All three compounds inhibit the closely related dipeptidyl 

peptidase IV (DPPIV) at nanomolar concentrations.  PT-630 and LAF-237 did not slow 

growth of tumors produced by any of the three cell lines expressing active FAP.  

Talabostat slightly decreased the growth rates of the FAP-overexpressing tumors but 

because PT-630 and LAF-237 did not, the growth retardation was likely not related to 

the inhibition of FAP or DPPIV.  Moreover, mice inoculated with breast cancer cells 

expressing a catalytically inactive mutant of FAP (FAPS624A) also produced rapidly 

growing tumors.  In vitro experiments revealed that all three inhibitors reduced matrix 

degradation by cells expressing active FAP relative to solvent control indicating a role 

for the FAP proteolytic activity in matrix degradation.  However, even with prolyl 

peptidase inhibition, matrix degradation by FAP-expressing cells remained relatively 

high.  Moreover, matrix degradation by FAPS624A cells was higher than that of cells that 



 Tumor growth is promoted by catalytically-inactive FAP 

3 

did not express FAP and comparable to those that expressed active FAP.  Matrix 

metalloproteinase-9 (MMP-9) accumulated to higher levels in medium conditioned by 

MDA MB-231 cells expressing inactive FAPS624A or active FAP than it did in medium 

conditioned by control transfectants that did not express FAP.  The MMP-9 is 

biologically active because cells expressing FAPS624A or FAP invade into type I collagen 

gels more efficiently than control transfectants that lack FAP and accumulate low levels 

of MMP-9.  Interestingly, FAPS624A or FAP expression alters cell signaling because 

extracts of these cells contain a 77 kDa tyrosine-phosphorylated protein (YPP) that is 

not detected in the extracts of control transfectants.  We conclude that the proteolytic 

activity of FAP increases matrix degradation, but FAP primarily drives rapid tumor 

growth independent of its protease activity by stimulating tumor cells to increase 

production of biologically active factors such as MMP-9.   
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Introduction 

Fibroblast activation protein-α (FAP), also called seprase, is an integral membrane 

serine protease (1-4) that is a member of the SC clan of post-prolyl peptidases and is 

closely related to dipeptidyl peptidase IV (DPPIV) (5-7).  FAP exhibits a DPPIV-like fold, 

featuring an alpha/beta-hydrolase domain and an eight-bladed beta-propeller domain 

(8).  FAP has both exopeptidase and endopeptidase activities.  Like the closely related 

DPPIV, it cleaves NH3-X-Pro peptides (6) but FAP is uniquely able to degrade gelatin 

(6,7).  α2-antiplasmin has been identified as a natural substrate of FAP and cleavage of 

α2-antiplasmin by FAP results in more efficient cross linking of α2-antiplasmin to fibrin 

while retaining the inhibitory action of α2-antiplasmin to plasmin (9).  Thus FAP may 

have a role in regulating the dissolution of fibrin by plasmin. 

 

Recent work has suggested many biological functions for FAP (10).  FAP may have 

roles in osteoarthritis (11,12), pulmonary fibrosis (13), fibrosis in liver diseases such as 

hepatitis (14,15) and cirrhosis (16), as well as a role in numerous cancers including 

multiple myeloma (17,18), pancreatic cancer (19), colon cancer (20), melanoma 

(2,21,22), ovarian carcinoma (23,24), squamous cell carcinoma of the esophagus (25), 

and breast cancer (26,27) to name a few.  Because of the conspicuous absence of FAP 

in normal adult tissues and its marked up-regulation in these pathologic states, there 

has been interest in the potential of small molecule inhibitors of the FAP protease.  

Moreover, the closely related DPPIV has already been the target of therapeutic agents.  

Indeed, several DPPIV inhibitors have been approved for type 2 diabetes because they 

increase the levels of insulin by prolonging the half life of glucagon like peptide-1 (GLP-
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1) and glucose dependent insulinotropic polypeptide (GIP) that are substrates for 

DPPIV.  NVP LAF-237 or vildagliptin is one of the DPPIV inhibitors approved for type 2 

diabetes (28).  In this study we inhibited FAP using Val- boroPro (also called PT-100 or 

talabostat) which inhibits FAP with a Ki of 6.2 nM and DPPIV with a Ki of 0.18 nM (29) 

and Glu boroPro (also called PT-630) which inhibits DPPIV with a Ki of 1.8 nM and FAP 

in the nM range (29).  To distinguish between the biological consequences of inhibition 

of FAP and DPPIV, we also used LAF-237 which inhibits DPPIV with a Ki of 17 nM (28) 

or 51 nM (30) but is a much less potent inhibitor of FAP with Ki of over 20 μM (31,32).   

 

FAP is expressed to high levels in tumors of human breast cancer but is not expressed 

in normal breast tissue (4,26).  FAP is a serine protease that is anchored to the plasma 

membrane by an N-terminal signal sequence that is not cleaved (5,33-35).  FAP is 

synthesized as a 97 kDa protein that is proteolytically inactive and requires assembly 

into a dimer of 170 kDa to become an active protease (35-37).  FAP protease activity is 

abnormally high in extracts of patient tumors indicating that increased expression leads 

to increased FAP protease activity in breast cancer (36).   

 

In this study, the role of the proteolytic activity of FAP in promoting tumor growth and 

angiogenesis was investigated using small molecule inhibitors of FAP and breast 

cancer cells engineered to express a catalytic mutant of FAP.  Our findings indicate that 

the protease activity of FAP is not critical for its growth promoting and invasive functions 

in tumors of human breast cancer cells.  The results suggest that cell surface 

expression of FAP stimulates elevated production of factors such as MMP-9.
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Materials and Methods 

MDA MB-231 human breast adenocarcinoma cells transfected with empty pcDNA 3.1 

(Neo) or this vector containing the insert for wild type FAP (WTY-1 and WTY-6) were 

produced and maintained as described earlier (38).   

 

Production of cDNA encoding S624A mutant  A cDNA for human FAP (38) in the 

pcDNA3.1 vector was subjected to oligonucleotide-directed mutagenesis 

(TransformerTM site-directed mutagenesis kit; Clontech, Palo Alto, CA) to yield 

constructs having a single point mutation (T → G) that changed the codon for serine 

624 (TCC) to a codon for alanine (GCC).  The mutagenic primer was 5’-

CATATGGGGCTGGGCCTATGGAGGATAC-3’ (mutant base in bold) and the selection 

primer eliminated a BSTZ174 site and was 5’-

TATCTTATCATGTCTGTATACCGTCGACCTCTAGCT-3’.  Sequence analysis of the 

entire insert was performed to confirm that the cDNA was identical to wild-type FAP, 

except for the point mutation.  The analysis was done by Alan Gies in the DNA 

sequencing core facility in the Department of Microbiology & Immunology at the 

University of Arkansas for Medical Sciences (UAMS).   

 

Transfection of cells The cDNA encoding S624A mutant was transfected into the 

human breast cancer cell line MDA MB-231 using lipofectamine 2000 (Invitrogen, 

Carlsbad, CA) as recommended by the supplier.  The transfectants were selected with 

G418 (800 µg/ml) and sorted by Fluorescence activated cell sorting based on 

immunofluorescence staining with F19 antibody to FAP by Ashley Whitlow using a 
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FACSCaliber instrument (Becton Dickinson) using FACScan, FACStar with turbo sort in 

the flow cytometry core in the Department of Microbiology, UAMS.  The flow cytometry 

procedures and cytospin procedures were described previously (38,39).  Once, sorted 

the cells were maintained in growth medium with G418 (400 µg/ml).  The transfectants 

were used to form tumors in animals when the population of FAP-positive cells 

comprised at least 40% of the cells.  To analyze FAP expression, extracts were 

prepared and subjected to gelatin zymography and western blotting as described 

previously (38).   

 

Tumor Biology  Implantation of (2 x 106) tumor cells into each of 4 mammary fat pads 

per female SCID mouse, monitoring tumor growth with calipers was performed as 

previously described (38).  In the first animal experiment there were 7 animals per 

group.  In the second experiment there were 5 animals per group. 

 

Preparation of talabostat, PT-630 and LAF-237. A 0.1-M stock solution prepared by 

dissolving talabostat at a concentration of 30.6 mg/ml in 0.1N HCl and PT-630 at a 

concentration of 28.1 mg/ml was supplied by Point Therapeutics. Stock solutions were 

stored at -20oC in small aliquots (50-200 µl).  Working solutions are prepared by diluting 

the 0.1M acidified stock solution into sterile normal saline. Working solutions were made 

at concentrations that will deliver 10 μg/mouse talabostat; 200 μg/mouse PT-630, and 

100 μg/mouse LAF-237 in 0.2 ml.  To avoid excessive production of the cyclic form of 

the compounds, it is essential that talabostat was not held at neutral pH for longer than 

10 minutes before administration. Consequently, the working saline solutions were 
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prepared with ice cold reagents in the animal facility, immediately prior to administration 

to mice.  

 

Talabostat and PT-630 administration. 0.2 ml of talabostat or PT-630 solution was 

administered orally via a blunt gavage needle fitted to a 1-ml syringe once daily.  

 

Matrix degradation assay  Glutaraldehyde-crosslinked gelatin films with immobilized 

FITC-fibronectin were prepared on cover slips (18 mm circular glass) as described 

previously (40).  Cells were seeded onto the FITC-fibronectin matrices and grown in 

growth medium for 48 hours at 37o C, 5% CO2.  Adherent cells were washed three 

times with sterile PBS and then fixed and prepared for fluorescence microscopy as 

described previously (40,41).  Coverslips were mounted in 80 % glycerol, 10 mM Tris-

HCl, pH 7.6, 150 mM NaCl, and a trace amount of p-phenylenediamine (Sigma, St. 

Louis, MO).  Cells were observed and images captured using a Zeiss Axioskop 2 mot 

plus microscope and the Zeiss AxioCam MRc digital camera in the digital microscopy 

core laboratory at University of Arkansas for Medical Sciences.  The digital images were 

analyzed using the NIH Image J program. 

 

MMP-9  To investigate MMP-9 accumulation in conditioned medium from the cells, 

gelatin zymography and western blots using the 6-6B monoclonal antibody to MMP-9 

(Oncogene Sciences; (42)) were performed as described (43,44)).   

YPPs To investigate proteins phosphorylated on tyrosines, western blots of cell extracts 

were probed with monoclonal antibody 4G10 to phosphotyrosine (Upstate Cell 
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Signaling, Lake Placid, NY).  Protein was determined by the bicinchoninic acid assay 

(Pierce). 

 

Invasion assay  Type I collagen gels (0.3 mg/ml) were prepared and used for invasion 

assays as described previously (40) except that invading cells were directly counted 

using a Coulter Z1 counter (Coulter Corporation, Miami, FL). 
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Results 

Elevated expression of FAP is associated with human breast cancer (26,45) and FAP 

promotes tumor growth and increased microvessel densities in a mouse model of 

human breast cancer (38).  This study investigates the role of the proteolytic activity of 

FAP in promoting the rapid tumor growth and aggressive behavior of FAP-expressing 

tumor cells.  Expression of a catalytically inactive FAP and inhibitors of the SC clan of 

post-prolyl peptidases were used to investigate the role of the FAP protease on tumor 

biology.  To produce a proteolytically-inactive form of FAP, the catalytic serine at 

position 624 was mutated by site-directed mutagenesis to alanine.  MDA MB-231 cells 

were transfected with the mutant cDNA in the pcDNA3.1 expression vector, selected 

with G418, enriched by fluorescence activated cell sorting for cells positive for FAP, and 

termed S624A-5.  The S624A-5 cells are not a clonal population, but a mixed cell 

population that stably expresses FAPS624A.  There were 42% cells positive for surface 

expression of FAPS624A as judged by immunohistochemistry and FACS with F19 

monoclonal antibody to FAP on living cells (Fig. 1; FACS top right panel).  The 170 kDa 

FAP activity was not detected in zymograms of extracts of S624A-5 cells that were 

enriched using wheat germ agglutinin chromatography and loaded with equal protein 

relative to the other extracts (Fig. 1, bottom left, S624A-5).  However, the protease 

activity was detected in extracts of transfectants expressing wild type FAP (Fig. 1, 

bottom left, WTY-1 & WTY-6, see also (38)).  Note that MMPs were not detected by 

zymography in these cell extracts due to the enrichment of FAP by binding to wheat 

germ agglutinin, the presence of EDTA in the extraction buffer, and reducing agents in 

the gel sample buffer used for optimal identification of FAP activity.  MMPs are released 
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into the medium by these cells as shown below.  Importantly, western blot analysis with 

mAb F19 revealed that the 170 kDa dimer of FAP was formed by the mutant FAP (Fig. 

1, bottom right, S624A-5).  Thus, the failure to detect protease activity in the S624A-5 

extracts is due to the loss of the catalytic serine and not to a defect in folding of the 97 

kDa monomer and subsequent degradation.  Comparable levels of the 97 kDa 

monomer were also detected in extracts of cells expressing active and mutant FAP (Fig. 

1, bottom right).   

  

FAP expression promotes growth of tumors independent of its protease activity  

The growth of tumors of breast cancer cells expressing proteolytically active FAP was 

investigated to determine if small-molecule inhibition of the post prolyl peptidases 

including FAP could perturb tumor growth.  Mice were given 1.3 mg/kg L-valine-L-

boroproline called PT-100 or talabostat, 13.3 mg/kg L-glutamyl L-boroproline called PT-

630; or 6.7 mg/kg 1-[[(3-hydroxy-1-adamantyl) amino] acetyl]-2-cyano-(S)-pyrrolidine 

called LAF237 by oral gavage once daily.  Tumors formed of FAP-expressing human 

breast cancer cells, including WTY-1 (Fig. 2A) and WTY-6 (Fig. 2B) which are MDA MB-

231 cells that engineered to overexpress wild type FAP and MDA MB-435 cells that 

express FAP endogenously (Fig. 2C).  Of these molecules only PT-100 or talabostat 

appeared to slow tumor growth (Fig. 2A-C) and this appeared especially pronounced in 

the case of the MDA MB-435 cells where production of tumors large enough to measure 

was delayed by nearly twelve days relative to control (Fig. 2C).  But even this reduction 

in tumor growth by PT-100 did not achieve statistical significance as compared to the 

rapidly growing tumors in saline treated animals with active FAP.  Moreover, when 
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animals were sacrificed and tumors weighed, there was no statistically significant 

difference in size in tumors grown in the presence of normal saline versus those 

exposed to the inhibitors (P >0.05).  However, the lowest average weights were 

consistently obtained for tumors treated with PT-100.  So although PT-100 slowed 

tumor growth, the tumors still grew rapidly relative to tumors that did not express FAP. 

 

The inhibitor work suggested that FAP expression was sufficient to stimulate tumor 

growth independent of its protease activities.  To further investigate the growth 

stimulation of FAP in the absence of proteolytic activity, transfectants of MDA MB-231 

cells that do not express FAP (Neo) and those that express membrane-bound and 

inactive FAPS624A  (S624A-5, Fig. 1) were injected subcutaneously into the mammary fat 

pads of female SCID mice as previously described (38).  The S624A-5 cells formed 

rapidly-growing tumors that grew considerably faster than tumors of Neo transfectants 

that do not express FAP (Fig. 2D) and at rates similar to tumors of cells expressing 

proteolytically-active FAP (38).  The yield of tumors from cells expressing the inactive 

FAP (S624A-5, 26 tumors/28 injection sites; 93%) was greater than that observed for 

Neo control (19 tumors/28 sites; 68%) and comparable to that observed with WTY-1 

and WTY-6 cells expressing active FAP (23 tumors/28 sites; 82% and 28 tumors/28 

sites respectively; 100% (38)).  Tumors of cells expressing FAPS624A were considerably 

larger than those of cells lacking FAP (Neo) as judged by the average wet weight of the 

excised tumors (Neo, 0.066 g ± 0.038; S624A, 0.8 g ± 0.41) and similar to those of 

tumors of cells expressing wild type FAP (38).  A second animal experiment was 

performed using S624A-5 cells that were sorted to 41% positive cells.  Implantation of 
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these cells into the mammary fat pads of female SCID mice again resulted in rapidly 

growing tumors (Fig. 2D).  The second experiment also had a high tumor yield (17 

tumors/20 injection sites; 85%).  The fact that tumors grew rapidly with catalytically 

inactive FAP and small-molecule inhibition of FAP proteolytic activity did not appear to 

dramatically suppress tumor growth suggested that non-enzymatic functions of FAP 

may responsible for the increased tumor growth. 

 

FAP promotes matrix degradation and invasion by tumor cells independent of its 

protease activity The proteolytic degradation of fluorescent fibronectin matrices by 

cells expressing proteolytically active FAP was investigated in the presence or absence 

of FAP inhibitors.  In this assay, the cells adhere to the matrix surface and fluorescence-

negative black spots are observed where the matrix has been degraded (2,40).  These 

studies focused on the WTY-1 cells that over express proteolytically active FAP.  Cells 

were inhibited with 1 μM of the inhibitors and allowed to interact with the matrices for 48 

hours.  The inhibitors were replenished after 24 hours.  Inhibition of FAP/DPPIV 

reduced matrix degradation as compared to uninhibited cells.  However, matrix 

degradation remained high, even in the presence of FAP/DPPIV inhibitors (Fig 3A).  

Two different analyses were used to quantify the matrix degradation.  In the first, the 

fluorescent matrices were examined by randomly choosing five fields of the matrices 

and scoring these for presence or absence of proteolytic degradation.  The combined 

results of four trials revealed that all prolyl peptidase inhibitors decreased matrix 

degradation relative to solvent control but that the matrix degradation remained 

relatively high (Fig. 3B).  Next, the matrices with obvious degradation were identified 
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and analyzed for extent of matrix degradation.  Three separate fields were analyzed for 

each conditioned.  The percentage of matrix field area that was degraded was 

determined using the NIH ImageJ program.  This analysis revealed that in areas where 

matrix proteolysis was detected there was less matrix degradation where prolyl 

peptidases were inhibited relative to solvent control (Fig. 3C). 

 

The proteolytic degradation of fluorescent fibronectin films by cells that do not express 

FAP (Neo), cells that express FAPS624A, and cells expressing wild type and active FAP 

(WTY-1 & WTY-6) was also investigated.  Cells expressing either mutant FAPS624A or 

wild-type FAP degraded the matrix more extensively than control transfectants that did 

not express FAP (Fig. 4A, arrows).  The matrix degradation was quantified in three 

random fields for each cell type using the Image J program from NIH and between 249 

and 367 holes were detected (Fig. 4B).  The majority of the matrix degradation holes 

produced by the different cell types were too small to register a percent area degraded.  

This threshold proved useful for quantifying the relative levels of extensive matrix 

degradation.  Only 4% of the holes produced by the cells that did not express FAP were 

large enough to record a percent area degraded (Fig. 4B). Sixteen percent of the holes 

produced by cells expressing FAPS624A had measurable degradation area (Fig. 4B).  

This was four-fold greater than Neo cells that do not express FAP and similar to the 

percentage observed with cells expressing active FAP.  In the FAP-expressing cells, 

WTY-1 and WTY-6, 16-22% of the holes had measurable areas (Fig. 4B).  FAPS624A and 

FAP-expressing cells also had a higher percentage of the total matrix area degraded in 

three fields.  The differences in overall matrix degradation by the different cell types 
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were significant (ANOVA, with P = 0.0003), and each type of FAP-expressing cell 

showed greater matrix degradation than the Neo control as shown by T Tests (Fig. 4B).   

 

MMPs are major mediators of matrix degradation at invadopodia (2,40,46) and because 

prolyl peptidase inhibition produced a relatively modest decrease in matrix degradation 

we investigated the possible effects of FAP expression on matrix metalloproteinase 

(MMP) accumulation in conditioned medium.  MMPs in serum-free media were 

evaluated after equal numbers of each cell type grew in an equal volume of medium for 

24 h.  Thirty micrograms of protein were suspended in sample buffer devoid of reducing 

reagent and used for gelatin zymography or Western blotting with mAb 6-6B to MMP-9 

as described earlier (42,43).  The major MMP detected by zymography in conditioned 

medium of these cells was at 92 kDa corresponding to pro-MMP-9 (Fig. 5A, left panel).  

Moreover, the 92 kDa activity was elevated in conditioned medium from FAP and 

FAPS624A-expressing cells as compared to the control transfectants (Fig. 5A, left panel).  

Western blotting confirmed that MMP-9 release was increased 2-4 fold in conditioned 

medium from FAP expressing cells relative to the control transfectants (Fig. 5A, right 

panel).  Results shown are representative of three separate determinations.   

 

The invasion potential of the different cell types was investigated to determine if the 

positive correlation previously established between matrix degradation by functional 

invadopodia and invasiveness existed in this system (40).  For these experiments we 

used type I collagen gels as described previously (40).  Cells that didn’t invade into the 

gels remained on top and were removed by limited collagenase digestion and trypsin 
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treatment.  The collagen gels, with embedded invading cells, were digested by 

extensive collagenase digestion and the cells were counted (40).  FAPS624A and FAP-

expressing cells invaded to a significantly higher degree than Neo cells that did not 

express FAP (Fig. 5B).  The experiments were performed in triplicate.  A statistically 

significant increase in invasion was observed for all FAP-expressing cells as compared 

to Neo controls (T-test; S624A  P = 0.00004; WTY-1 P = 0.000001; and WTY-6 P = 

0.009).  The fact that cells expressing the catalytic mutant of FAP are active in 

degrading the matrix and invading is consistent with increased MMP-9 functioning to 

degrade matrix and promote invasion by the FAPS624A and FAP-expressing cells.   

 

The increased accumulation of MMP-9 and the more aggressive phenotype of cells 

expressing active or inactive FAP suggested that FAP might alter cell signaling.   

Tyrosine phosphorylated proteins (YPPs) were investigated in regard to molecular 

mechanisms of growth stimulation and invasion of FAP expressing cells.  A 77 kDa YPP 

was identified in extracts of FAPS624A and FAP-expressing cells that is not detected in 

the control transfectants (Fig. 7).  Conversely, the control transfectants express a 71 

kDa YPP that is not detected in any of the FAP-expressing cells.  These molecular 

weights correspond well to the invadopodial specific 77 kDa YPP and the 71 kDa YPP 

of normal focal contacts identified earlier by Mueller and co-workers (47).   
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Discussion 

This work demonstrates that surface expression of human FAP is sufficient for 

enhanced tumor growth and invasion and that the protease activity of FAP is not 

required for these functions.  These findings imply that surface expression of FAP 

stimulates cell signaling independent of its protease activity.  Our findings are consistent 

with those of others showing that both wild-type and catalytic mutants of FAP are 

biologically active (48).  However, in a murine melanoma system, FAP acts as a tumor 

suppressor and expression of either wild type or mutant FAP inhibits tumor growth (48).  

The apparently contradicting findings of FAP-stimulation of growth in our human breast 

cancer model versus FAP-suppression in the murine melanoma model is likely due to 

the cellular context in which the FAP is expressed.  Signaling molecules that are 

available for activation by FAP expression may determine the type of signal (stimulatory 

or inhibitory) that is transmitted (5).  Additionally, there may be contexts where the FAP 

protease activity is critical.  For example, human embryonal kidney cells expressing wild 

type murine FAP form rapidly growing tumors but these cells expressing murine 

FAPS624A form slow growing tumors in an animal model (49).  These findings suggest an 

important role for the protease activity in growth promotion in this model system.  One 

potential drawback of work with catalytic mutants of FAP in animal models is the 

presence of wild type and active mouse FAP.  Small molecule inhibitors of prolyl 

peptidases overcome this problem because they inhibit all exposed prolyl eptidases 

whether they are in the stroma or on the tumor cells themselves.   
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Several lines of evidence suggest that FAP activates cell signaling that changes cell 

behavior.  First, MMP-9 accumulation in conditioned medium is high for cells expressing 

FAPS624A or FAP.  The increase in MMP-9 levels of FAP-expressing cells is particularly 

important because it is a pro-angiogenic factor (50-53) and thus may be an important 

mediator of the increased angiogenesis observed in tumors of cells expressing FAP.  

For example, early studies revealed that MMP-9 null mice have a delay in angiogenesis 

in the growth plates of developing bone (50).  Subsequent work showed that MMP-9 

promotes angiogenesis during carcinogenesis of pancreatic islets by releasing and 

mobilizing vascular endothelial growth factor (VEGF) (52).  MMP-9 is also associated 

with the pro-angiogenic switch in a mouse model of cervical cancer (54).  Moreover, 

MMP-9 is a potent mediator of the matrix degradation that facilitates tumor invasion and 

metastasis.  Second, changes in YPPs are similar between cells that express FAPS624A 

or FAP and different from those in cells that lack FAP.  Interestingly, others have shown 

that extracts of membrane preparations enriched for invadopodia or podosomes--the 

membrane protrusions of invasive cells that contact and degrade extracellular matrix--

contain four major YPPs at 150 kDa, 130 kDa, 81 kDa, and 77 kDa (47).  These 

workers also identified YPPs at 150 kDa and 71 kDa as components of normal focal 

contacts (47).  Here, the 77 kDa YPP identified in extracts of cells expressing active or 

inactive FAP was identified without enriching for invadopodia and the 71 kDa YPP was 

identified in control transfectants without enriching for focal adhesions. 

 

The mechanisms of FAP activation of tumor cells are unknown but the findings are 

consistent with the idea that FAP mediates its effects by forming complexes with 
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signaling molecules at the cell surface (for a review see (5)).  FAP has only six amino 

acids in its cytoplasmic domain and these do not appear capable of transmitting signals. 

However, integrins are known to signal increases in expression of several MMPs.  For 

example, MMP-2 secretion can be up-regulated by signaling through αvβ3 integrin (55).  

In addition, MMP-9 expression and invasion can be increased by FAK and src activities, 

both of which can be activated by integrins (56).  Particularly relevant is the fact that 

FAP can associate with β1 integrins, including α3β1 (57,58).  Integrin α3β1 is expressed 

by MDA MB-231 cells (59) and has been linked to elevated MMP-9 release by these 

cells (60).  Thus, the results are consistent with a mechanism where FAP mediates its 

pro-growth and pro-angiogenic effects by associating with and activating integrins, 

thereby causing increased release of MMP-9.  The MMP-9 then acts within the tumor 

microenvironment.  Recent work has shown that FAP and MMP-9 can cooperate to 

degrade gelatin (61).  The integrin activation also coordinates with MMP-9 to promote 

tumor invasion and metastasis.   

 

FAP is recognized as an excellent target for therapies directed against epithelial 

cancers because its expression is induced in the tumor microenvironment but is very 

limited in normal adult tissues (62).  Current trials utilize antibodies to FAP in an effort to 

provide target specificity for toxic agents (62,63) and such studies continue to have 

promise.  However, the serine protease activity is another obvious target for anti-FAP 

therapeutics.  The results of this study suggest that targeting FAP with agents designed 

to inhibit the FAP protease activity will not be effective.   However, antibodies that inhibit 

the protease activity of FAP were effective in reducing the growth of HT-29 colorectal 
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carcinoma cells in an animal model (64).  Moreover, talabostat had anti-tumor effects by 

countering immune suppression apparently caused by FAP protease activity (65,66).  

Nevertheless consistent with the findings of this study, a phase II trial using Val boroPro 

failed to produce a clinical effect in colorectal cancer patients with metastatic disease 

(67).  More studies are required to clarify the roles of the protease activity and complex 

formation by FAP in its biological functions.  While, inhibition of FAP protease activity 

may prove clinically important in some settings another intriguing possibility is to attempt 

to use the proteolytic activity of FAP against tumor cells.  Progress is already being 

reported on this front by a couple of groups including a focus on photodynamic therapy 

based on FAP to target tumor cell killing (68,69) and prodrug toxin that is activated by 

FAP to kill stromal cells of tumors (70). 
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Figure Legends 
 
Figure 1.  Characterization of MDA MB 231 cells engineered to express FAPS624A. 

A.  Photomicrograph of a cytospin of cells transfected with FAPS624A catalytic mutant 

(called S624A-5).  Cells stained with F19 mAb to FAP appear brown due to the DAB 

reaction product while the blue hematoxylin detects all cells. B. FACS showing cell 

surface FAP when cells expressing FAPS624A were stained with F19 mAb to FAP (blue 

trace) but not when stained with non-specific IgG (black trace).  C. Gelatin zymogram 

showing a lack of gelatinolytic activity in catalytic mutant lane (S624A-5) but there is 

gelatinase activity in cells expressing wild type FAP (lanes WTY-1 & WTY-6).  D. The 

catalytic mutant can assemble into the 170 kDa dimer as detected by Western blot 

(S624A-5). 

 

Figure 2.  Breast tumors expressing FAP grow rapidly even when FAP catalytic 

activity is inhibited. 

A-C. Inhibition of DASH proteases by talabostat slows growth of breast tumors in the 

mammary fat pads of SCID mice.  Tumor volumes plotted over time of FAP-expressing 

human breast cancer cells in SCID mice treated with saline (♦), LAF237 (●), PT-630 

(▲), or talabostat (■).  The tumors are formed from the following cells: A) WTY-1; B) 

WTY-6; and C) MDA MB-435.  D. Growth of tumors from S624A-5 cells (♦) and Neo 

cells (▲).  In all cases tumor growth is recorded as volume (cm3). 

 

Figure 3.  Small-molecule inhibitors of FAP slightly reduce matrix degradation by 

cells expressing active FAP.   
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A.  WTY-1 cells were seeded onto glutaradehyde-crosslinked gelatin films that were 

fluorescent due to covalently-attached FITC-fibronectin.  Inhibitors were used at 1 µM 

and replenished after 24 h.  After 48 h, matrix degradation appears as black holes in the 

matrix.   

B & C.  Measuring the percentage of microscopic fields with matrix degradation (B) or 

percent of area degraded in fields with matrix-degradation as determined by the ImageJ 

program (C) reveals that all DASH inhibitors reduced matrix degradation. PT-630 and 

Talabostat showed the greatest inhibition. 

 

Figure 4.  Cells expressing a catalytic mutant of FAP maintain high levels of 

matrix degradation. 

A.  Matrix degradation (arrows) is barely detectable under the control transfectants after 

48 h (Neo) but is visualized as black areas under FAP transfectants (WTY-1, WTY-6, & 

S624A).  The FITC-fibronectin films were visualized with Zeiss Axioskop 2 mot plus 

microscope and 40 X objective. 

B.  Spots indicating matrix degradation were captured by the image J program in three 

random fields of matrices degraded by each cell type (examples for each cell type in the 

upper panels.  The spots were counted and assessed for percentage of the entire field 

that was degraded and the table in the lower panel reports these data. 

 

Figure 5.  Expression of either catalytically active or inactive FAP increases MMP-

9 accumulation in media and invasive behavior of cells. 
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A. Left Panel: Zymogram of conditioned medium from control transfectant (Neo) and 

FAP overexpressing cells (WTY-1 & S624A-5).  

Right Panel: MMP-9-specific western blot of conditioned medium from control 

transfectants (Neo) and FAP overexpressers (WTY-1, WTY-6, S624A-5).   

B.  FAP expression increases invasiveness of breast cancer cells.  The number of cells 

invading into type I collagen gels was determined as described previously.  S624A-5, 

WTY-1, and WTY-6 all invade significantly more than Neo with P values given in the 

text. 

 
Figure 6.  Altered pattern of tyrosine phosphorylated proteins Western blot of 

extracts of control transfectants (Neo) and FAP overexpressers (WTY-1; WTY-6; and 

S624A-5).  The blot was probed with mAb 4G10 to phosphotyrosine. 
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Figure 1.  
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Figure 6. 
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