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Abstract

This paper motivates and describes a generic framework for dialogue-
enabling intelligent agents and devices for task-oriented dialogue. The
interface is designed to be a mechanism by which a dialogue front-end
can quickly and easily be adapted for use with a wide range of devices
or agents. The Conversational Intelligence requisite for participating
in a large range of important task-oriented dialogues is identified and
decomposed in a modular, device-independent fashion and a special-
ized recipe scripting language is implemented to encode device-specific
information. The recipes in the recipe library compiled from this
scripting language are instantiated at run time into Activities, which
may be executed by the device (and jointly, by the human operator).
In addition, a novel Constraint Management System is implemented in
order to exploit the features of natural language which allow humans
to naturally expand and restrict the permissible sets of parameters
that a particular activity may take on.
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1 Introduction

Natural language, whether spoken or typed, is an emerging means
of interacting fruitfully with computer systems. The ability to or-
der movie tickets or find out directions over the telephone using voice
recognition technology, to name two examples, is emerging as main-
stream technology. At the same time, more and more sophisticated
semi-autonomous computer controlled agents/devices are in develop-
ment or have been developed. For example, mobile robots have be-
come particularly robust with regard to low-level issues like localiza-
tion and obstacle avoidance [KBM98]; moreover, mobile robots have
started to become extremely cheap, costing just a few thousand dol-
lars, and are widely available [act]. One of the original such devices
was built by the FLAKEY project at SRI (see, eg [SKR95]), which pro-
duced a semi-autonomous office robot that could navigate through an
office to do tasks such as delivering items. Current work includes the
WITAS project [DGK™00] which endeavors to create an autonomous
helicopter — an unmanned aerial vehicle — capable of planning efficient
routes, identifying objects on the ground, and following moving ob-
jects. In addition, NASA is developing a Personal Satellite Assistant
(PSA) that moves autonomously about the shuttle or the space station
to assist the crew [RHJ00]. And the long-running Honda humanoid
robot project is developing a humanoid robot named ASIMO that can
navigate the home and perform simple chores [hon].

Related projects are those involved in dialogue-enabling existing
devices in the home, office, and automobile. The aim is to allow
humans to control devices like telephones, televisions, radios, cd play-
ers, and VCRs with spoken natural language. Such projects are be-
ing pursued, for example, at Telia [LRGB01], COLLAGEN [RSLO01],
Bosch and SmartKom [LBPAQ2]. These groups hope to build natural
language interfaces which can be integrated into existing technology,
rather than devices which are still under development. By doing so,
they hope to change the way that humans interact with electronic
devices by making it easier for humans to interact with them using
natural, spoken language.

Running the gamut from the more intelligent devices to the rel-
atively “dumb” devices is the idea that these devices are engaged in
activities in a dynamic environment. These devices, to one extent
or another, make plans for action and then execute them  whether



it be a plan to follow a car in the case of the WITAS project, or a
plan about how to set the time of the VCR in COLLAGEN. More-
over, for each activity there may be many parameters that need to
be specified by the human operator, inferred by the system, or even
randomly chosen. For instance: a helicopter needs to know where to
go, at which altitude and speed to fly, and possibly even myriad other
flight parameters like pitch, yaw, or roll; a VCR should know what
time to begin taping a show, when to end, what channel it’s on, and
at what quality to record; and a humanoid robot might need to un-
derstand how careful to be, the volume at which to speak, or at what
speed to move. The point of natural-language enabling these devices
should be to make them easier to control. By producing language,
they should be able to effectively communicate their current state to
the human operator in terms which will make sense to the human,
negotiate with the operator about the values of parameters, and an-
swer questions about their state in a natural manner. Similarly, by
understanding language, they should be able to give the operator the
means to easily modify their state or enquire further about its details
in a natural manner. Moreover, language should allow them to be
proactive in a natural way: they should initiate information-seeking
or clarification dialogues when necessary, without forcing the user to
navigate complex menu systems on a screen or understand how to
write programming code. Finally, they should be able to participate
naturally in joint activities (see [Cla96]) in which both the human op-
erator and the intelligent device collaborate in order to bring about a
desired outcome. These activities provide and importance context by
which utterances in a conversation should be understood.

Most or all of these advantages that arise from using natural lan-
guage are desirable across a wide range of devices. Moreover, many
of these advantages don’t arise from the underlying intelligence of the
device itself; rather, they come from a different sort of intelligence:
Conversational Intelligence (CI) [LGP02]. Conversational Intelligence
is knowledge about how and why conversations occur between agents,
and how to effectively participate in conversations. While it’s true
that without an underlying intelligence, it’s difficult to have an inter-
esting conversation about anything very interesting, it’s not the case
that with knowledge and intelligence come the ability to communicate
effectively. Some knowledge, including for example knowledge about
when it’s appropriate to speak, how and when to interrupt someone
who is speaking, how the context provided by past utterances should



be used to interpret new ones, and when it’s important to mention
particular changes in the state of the world are just a few examples of
Conversational Intelligence.

The project discussed in this paper revolves around the intertwined
goals of actually defining what’s involved in CI and implementing
such knowledge using a computational system in a device-independent,
modular manner. Specifically, introduced here is a device-independent
architecture for building an interface to the CSLI Dialogue Manager
[LGP02] such that its conversational front-end can be quickly and
easily interfaced to a wide-range of devices. Moreover, this interface
was designed to provide its own conversationally intelligent mecha-
nisms which may be harnessed by the dialogue manager in support
of more complex, yet natural dialogues with the devices. For exam-
ple. device-independent support is provided for constraint dialogues
in which natural language is used to restrict and expand the permis-
sible sets of values of the parameters on particular activities defined
by a device (see section 7). Such dialogues allow human operators
to change the overarching parameters which control a device in an
intuitive and smooth manner.

In section 2, will discuss previous and current work in dialogue
systems that is relevant to the project at hand, focusing mainly on
those that deal with either commanding devices or coordinating ac-
tions of human agents. I will also study some of the theories that have
emerged regarding how rational agents operate and communicate, as
these theories shed light on how, why, and when a rational agent
should communicate. Next, I will look at intelligent devices that have
actually been designed, and the sorts of constructs which have been
used to control them. I will then note the importance of accurately
communicating the state of these devices to the human operator, so
that mode confusion can be avoided.

In section 3, I will then show how my project is relevant to this
research, and how it naturally extends much of the work. Then, I'll
delve into the depths of the project. In section 4, I'll present the
formalism of the Activity Tree, developed to represent that current
state of the agent or device with which the operator is communicat-
ing. In sections 5 and 6, I'll discuss the special language I've created
to interface devices to dialogue systems. Then in section 7, I’ll discuss
the constraint management system developed as part of this project,
which ranges over the activity representation developed in the previ-
ous sections. Finally, in section 8, I'll discuss how the formalism is



implemented and the interface between the dialogue system and the
device is achieved. There, I'll give a brief description of the function-
ing of the CSLI Dialogue Manager; though it is important to note
that the architecture I've implemented here could be extended to fit
in with other dialogue managers, built on different theoretical under-
pinnings. The point of my project is not to manage the intricacies
of spoken-language dialogue, but to provide resources by which a dia-
logue manager can facilitate meaningful dialogue with a wide-range of
devices. I will develop algorithms by which a dialogue manager should
interact with the facilities discussed in this paper.

2 Previous and Current Work

In this section, I will delve into several areas of research in order to
highlight the myriad useful ideas that have emerged, as well as to
show where this research needs extension and implementation. This
background will show how the framework discussed in this paper fits
into large areas of research.

2.1 Dialogue Systems

There is a wide range of dialogue systems that have been commercially
deployed, have been developed for research purposes, are currently be-
ing developed, or are planned to be developed according to theoretical
work in progress. Such systems range in complexity depending on the
difficulty of the problem for which they are designed. I'll discuss here
a range of such systems and the tasks for which they have been de-
signed; a useful and often parallel discussion of the range of developed
dialogue systems appears in [ABD*01].

2.1.1 Slot/Form-Filling Dialogue Systems

There has been a large amount of work on so called slot-filling dialogue
systems. Such dialogue systems are useful in domains where certain
bits of information need to be elicited from the user, resulting in a
set of slots being filled, which are usually used to make a database
query or update. For instance, when designing an automated airline
reservation system, dialogue designers have often thought in terms of
the specific bits of information that the user must supply in order for
the system to do a database search for available flights that match



this set of criteria. Such a system might have the following slots that
need to be filled, where for each there is a domain of allowable values:

e The departure city

e The arrival city

e Date on which to travel
e Time at which to travel

In order to fill in these slots, dialogue systems generally use some
combination of user initiative and system initiative (a combination re-
ferred to as mized-initiative). This means that the user may provide
the values for some subset of the slots in a single utterance and then
the dialogue system can ask follow up question to elicit the rest of
the required information. This stands in opposition to earlier finite-
state dialogue systems, which required that a series of questions be
asked and answered in a specific order so that all of the slots might
be filled in. For example, slot-filling dialogue systems can often un-
derstand utterances like I'd like to fly from San Francisco to London
which provide some of the necessary information required to make
an airline reservation, but not all of it. The system will follow up
with information-seeking questions when the user fails to fill in all the
necessary slots. For example, in response to the above utterance, a
system might respond with Okay. When would you like to depart?.

In the most straightforward instantiations of such systems, the
human user must fill all of the slots before proceeding though the
slots may be filled in any order. Such an architecture has been used to
build, for example, airline reservation systems (e.g. [SP00]) and train
timetable systems (e.g. [SAOBY99]). It has also been commercialized by
companies like Nuance and Tellme who build customized applications
for clients like banks, telephone companies, and airlines.

Form-filling dialogue systems, then, conceptualize information-seeking
dialogue in terms of a mapping from user-utterances to values for slots.
Once the requisite slots are filled, the system can take some sort of
action for instance, making an airline reservation [SP00]. Conversa-
tional Intelligence is demonstrated to the extent that it has a strategy
for eliciting information that the back-end of the system needs from
the user in order to take some action. It is clear, however, that a sim-
ple form-filling model is not sufficient for controlling intelligent agents
in complex environments: there is no mechanism, for instance, to an-
swer questions about the state of the device, or why the device is doing



a particular action, since these things are not modeled. On the other
hand, form-filling provides a good model for a means of obtaining val-
ues for a set of parameters, which is highly relevant to some aspects
of controlling intelligent devices.

2.1.2 Practical Dialogue Systems

In [ABD"01] the authors identify a type of dialogue which they refer
to as practical dialogue. They define practical dialogue as dialogue
which “may involve executing and monitoring operations in a dynam-
ically changing world” ([ABD%01]:3). As opposed to the types of
dialogue systems discussed in the previous section, dialogue systems
which are designed to work at such a level generally facilitate inter-
action with devices in a real-world or simulated environment, with
the goal of accomplishing some specific task (in contrast to simply
doing a database lookup, for example). Allen, et al, claim that while
such dialogues are complex, they don’t require full-human competence
to understand and participate in. Indeed, it is apparent that a sys-
tem designed to handle such dialogues could probably function pretty
well without understanding how a metaphor, for example, functions
in language.

There are many current research projects which are involved in
trying to build dialogue systems which function at this “practical”
level. Many of them are trying to dialogue-enable existing devices
in the home, office, and/or automobile (e.g. [LRGBO01], [LBPA02],
[RSLO1]). Such projects often are pursuing fruitful ways to endow
capabilities like clarification sub-dialogues and anaphora resolution
across a diverse set of devices. For example, such systems try to
generically enable dialogues like the following:

(1) a. O: Turn on the light.
S: Which light should I turn on?
O: The one in the kitchen.
S: The light in the kitchen is now on.

b. O: Is the light in the kitchen on?
S: Yes.
O: Turn it off.
S: The light in the kitchen is now off.

In the above dialogue, the lights are referred to with anaphoric ex-
pressions such as the one in the kitchen and Turn it off — an ability

10



above and beyond that supplied by the simpler form-filling dialogues.
Moreover, rather than simply doing static-database queries and re-
porting the results, the dialogue system must be able to monitor a
world in which the dialogue may cause changes (here, the lights turn
off and on). Such dialogue systems must carry with them some no-
tion of how the devices they control operate they must understand
that electronic devices can be turned on and off, radios can be turned
to a particular station and only dimmable lights can be dimmed to
particular intensities. In order to address these issues, in [LRGBO1]
for example, a plug-and-play system is designed in which new devices
with new capabilities can be added to the system easily by loading
in the linguistic resources for controlling and querying a device, the
abilities of the device, and the code used to interface to the device on
the fly.

In this domain, it is evident that the Conversational Intelligence
of the device can begin to be separated from its function. By separat-
ing linguistic and ontological knowledge so that both can be applied
across many similar devices in order to enable dialogue phenomena
like anaphora resolution and clarification sub-dialogues, and in order
to capture commonalities like the fact that electronic devices may be
turned on and off, researchers create generic dialogue systems which
can be used to control diverse sets of devices.

Perhaps a step up in complexity from such “dumb” devices are
projects that are concerned specifically with dialogue-enabling the
more intelligent devices that are under development for the future.
At NASA, for example, a dialogue system has been created for the
Personal Satellite Assistant (PSA) under development there [RHJO00],
a small mobile robot for use in the space station. The dialogue man-
ager gives astronauts a means of giving orders to the PSA such as
Measure the temperature at the captain’s seat and allows the PSA to
disambiguate orders such as Open the hatch when there are multiple
hatches. While the project has produced a workable dialogue man-
ager, no general results have been reported about the sorts of devices
that the dialogue manager would be able to control, or even if it would
be able to control devices besides the PSA.

At CSLI, I am involved as part of the Computational Seman-
tics Lab in the WITAS project [LGP02], which has as its goal to
dialogue-enable an autonomous helicopter currently under develop-
ment [DGKT00]. In order to dialogue enable this device, we have
sought to define what knowledge constitutes the conversational intel-
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ligence that is needed by a wide-range of task-oriented autonomous
devices in order to effectively communicate. This paper will describe
the interface to the robot helicopter that the dialogue manager being
developed at CSLI uses in order to behave with conversational intel-
ligence in such areas as: when to make an utterance, when to ask a
question, how to set devices’ parameters, and so on. It is our aim
to make a generic dialogue system that can be straightforwardly spe-
cialized to dialogue-enable the large range of autonomous devices that
may be developed in the future which might be quite different from
the helicopter with which we are currently working.

As was touched on briefly in section 2.1.1, dialogue systems for
controlling such devices are inherently more complex than form-filling
dialogue systems because they must model, to some extent or another,
the state of the world. Specifically, they must be able to model the
current joint activities in which the intelligent agent and the human
are involved.

2.2 Rational Agents and Plan Recognition

In order for a dialogue system to work with intelligent devices, it must
be capable of understanding the sorts of plans that a user wishes to
carry out with the device. There has been a large amount of research
into understanding how rational agents (such as humans) conceptu-
alize plans and communicate about them. This has bearing on the
project at hand, both because the dialogue system ought to be able to
facilitate the understanding of the intentions of the human operator
and because it should be able to communicate the plans formed by
the device to the human; if the actions of the intelligent device are to
be understood as rational by the human operator, then the dialogue
manager must be able to coherently communicate them to the human
in terms that will make sense to him or her. Inferring the plans of
rational agents based on what and how they communicate is called
plan recognition.

Critical to understanding what it means to have a plan is a dis-
tinction drawn in [Pol90]. Here, Pollack makes a crucial distinction
between plans and recipes: a recipe-for-action is a recipe by which
rational agents formulate plans, and a plan is an instantiation of a
particular recipe-for-action. A plan is part of complexz mental state
of a conversational agent, whereas a recipe is a more abstract notion

it composes part of the recipe library from which an agent might
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choose a recipe to instantiate into an actual plan in a particular situ-
ation. When an agent wishes to achieve a goal, he/she/it instantiates
a recipe into a plan by which the goal may be achieved.

A plan describes a means of accomplishing a goal or completing
an action. It does this by defining a set of steps steps may appear
in sequence to one another, and sets of steps may recursively be sub-
steps of a different step. In [Bra90], Bratman points out that the
ability to break up a plan into sub-plans, and still further into smaller
steps, is a pragmatic one because such subdivisions allow the agent
to defer planning the details of a sub-plan until later, when the state
of the world may have changed in unexpected ways forcing the agent
to discard or replace the sub-plan. In [Pol90] and further fleshed
out in [ASFT95] is a particular notion of the different ways in which
steps in a plan can stand in relation to one another. In particular,
the relationships given below are defined. I've added question-answer
pairs to each relation which are meant to illustrate the relations:

1. Affect: action to state
Q: Why are you flying to the tower?
A: In order to be at the tower.

2. Enablement: state to action
Q: Why do you want to be at the tower?
A: So I can drop medical supplies there.

3. Generation: event to event (illustrated with the by locution)
Q: How will you put out the fire at the school?
A: T will put out the fire at the school by flying to the lake,
picking up water there, flying to the school, and dropping the
water on the fire there.

4. Justification: state to state
Q: Why do you have to be at the tower?
A: Because you want medical supplies there.

While this defines the relationship between particular segments of
a plan it does not define precisely the notion of what it means for
a conversational agent to have a plan. Pollack (in [Pol90]) gives the
following definition: An agent A has a plan to do § that consists in
doing some set of acts II, providing that:

1. A believes that he can execute each act in II.

2. A believes that executing the acts in II will entail the perfor-
mance of (.

13



A believes that each act in II plays a role in his plan.
A intends to execute each act in II.

A intends to execute II as a way of doing £.

SIS A

A intends each act in II to play a role in his plan.

The fact that agents have plans which they talk about, even though
these plans are not actually plans to communicate, is an important
distinction made by researchers who have sought to describe ways to
do plan recognition. For instance, in [LA90], the authors define do-
main plans as plans which might be performed in a particular domain,
and describe those plans in a STRIPS-style formalism. The notion of
agents “having plans” and collaborating with one another about them
is also developed by Groz, Sidner, and others in a number of papers
(for example: [GS90], [GK96], [GK98]). The result of their research is
the definition of a SharedPlan. SharedPlans can be used to define the
plans that rational agents make with one another; indeed, they can
be used to determine when agents have successfully communicated to
one another that they intend a particular plan.

Attempts have been made to apply the SharedPlan Model to dia-
logue systems (e.g. [Loc94]). Most recently, this has been done by the
Sidner’s COLLAGEN project (overview in [RSLO1]). In particular, it
is applied mainly to tutorial dialogues in which the computer helps
the human user to get through a series of steps involved in operat-
ing a device ([RLR*02]) for example, programming a VCR. While
COLLAGEN purports to use a SharedPlan model COLLAGEN is
really only a partial implementation of the SharedPlan architecture at
the moment. Indeed, while SharedPlan affords a relatively complex
means of defining the relationships among the parts of an instanti-
ated plan, the recipe-trees in COLLAGEN are not nearly so rich; they
consist mainly of actions which have been hierarchically decomposed.
Moreover, this application is focused not on controlling autonomous
devices in dynamic environments, but on helping human users con-
trol relatively simple electronic devices. As such, while COLLAGEN
is helpful to our purposes in that it helps us to understand one way
in which plans for action have been modeled, the types of plans it is
capable of modeling are not as complex as those that more complex
devices actually form, as will be discussed below.

Plan recognition has also been used by dialogue systems espe-
cially in the TRAINS (and subsequently TRIPS) system at the Uni-
versity of Rochester. The most recent work on plan recognition from
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that project is described in [Bla01]. The plan recognition system is
focused mainly on inferring user plans either bottom up (actions first)
or top down (goals first), and it has been recently enhanced to model
synergies that can arise from plans being interleqved. Interleaved plans
are those in which one action is part of several plans.

As a final note, I'd like to draw attention to the fact that in
[TA94], the authors discuss an important distinction that can be
drawn among the ways that a plan (or sub-plan) can culminate “suc-
cessfully.” Specifically, three results may be obtained:

e Successful Completion (all actions performed and goal met)
e Action Completion (all actions performed)
e Goal Satisfaction (goals achieved)

We can consider the three cases by looking at an example: consider
that I have the goal to have a clean kitchen floor and my plan to
achieve this goal is to first sweep the floor and then mop it. In the
first case, I go ahead and sweep the floor and then mop it and the floor
becomes clean — I've done all the actions in my plan and achieved my
goal. In the second case, suppose that I sweep the floor and then mop
it, but there’s a tough stain that just won’t come out; in this case,
I’'ve performed all of the actions in my plan, but my goal of having a
clean kitchen floor doesn’t obtain. Finally, suppose that I first sweep
the floor, and then I go to the other room to look for the mop where
I'm delayed by an important phone call. In the meantime, Joe notices
that the kitchen floor needs a bit of cleaning, and so he takes a rag
and cleans it by hand. When I return with the mop, I discover that
the floor is clean even though I didn’t have to mop it (and, indeed,
nobody actually mopped it) in this case, my goal has been achieved
even though I didn’t complete all of the actions in my plan.

This distinction is an important one, because it is often the case
when people give commands that they don’t often care about how a
goal is accomplished, but just that it is accomplished in one way or
another. On the other hand, sometimes it matters a great deal the
exact way in which a goal is accomplished.

2.3 Mobile Robot Control Systems

Here, I'll consider one formalism for controlling mobile robots which
has actually been fielded in many systems, and is now embodied
in software which is shipped with many mobile robots in order to
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control them: PRS-LITE (see, e.g., [Mye96]). PRS-LITE is a re-
implementation of SRI’s Procedural Reasoning System (PRS) formal-
ism streamlined for controlling mobile robots. It is now realized in the
COLBERT programming language, which is part of the Saphira sys-
tem, written at SRI and distributed now by ActivMedia Robotics with
the robots it sells. If we see robots as representing rational agents, then
we should be able to view PRS-LITE as a formalism used to actually
represent the robot’s plans for action as such, we can come to under-
stand the “mental representation” that many robots currently use in
order to “have a plan.” This “mental representation” has been driven
by the need to effectively and efficiently control mobile robots, rather
than any theoretical underpinnings of how a rational agent ought to
behave, as the above planning formalisms have attempted to do. Un-
derstanding this is critical to my project, because if humans are to
interact with intelligent devices as though they are rational agents,
then we must be able to find a way to mesh the types of represen-
tations that humans use and the ones that are common to robots, if
the agents have any hope of effectively communicating. Indeed, my
project can be seen in terms of creating a layer by which humans and
robots can interpret the intentions behind the actions and commu-
nicative attempts of one another.

PRS-LITE attempts to support the following characteristics which
the authors of [Mye96] assert are requisite for controlling such mobile
robots:

1. Both discrete and continuous processes

2. Concurrent activities

3. Both goal-driven and event-driven operation
4

. An external observer should be able to understand the intent
underlying the robot’s action.

In addition, the authors define goal semantics which support atomic
and continuous processes — that is, ones which can be used as sequen-
tial building blocks and ones which run as ongoing processes, without
particular goals.

The representational basis that PRS-LITE uses is called an activity
schema. Where an activity schema is decomposed as follows:

e It is an ordered list of goal-sets

e where a goal set is one or more goal statements (“goals”) in an
ordered sequence
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e where a goal is a goal operator applied to a list of arguments

Goals can be decomposed hierarchically. Specifically, Goals are ei-
ther Action Goals (Test, Execute, =, Wait-for, Intend, Unintend) or
Sequence Goals (If, And, Split, Goto).

The end result is that goals are not simply hierarchically decom-
posed, rather, a hierarchically decomposed goal can also give rise (via
split) to other trees — yielding a forest of actions which are currently
being executed by the robot. Also, the If and Goto allow for the
ability to skip over certain steps. This allows for a large amount of
flexibility in the relationship between processes; however it makes it
difficult for an external observer to understand the intent of the au-
tonomous system. The instantiated “plan” that the system has at any
one moment is simply a set of activities, some of which stand in an
activity-sub-activity relationship and some of which are concurrent.
There is little explicit explanation of exactly how and why the set of
activities the system is running at any one time are linked together.

In typical PRS-LITE systems, there are many concurrent goals
being pursued at any one time. Indeed, not only are there many
concurrent tasks, but the relationships between these tasks are often
abstruse. Global variables can be shared between tasks, and some
tasks will wait for other tasks to set particular variables before they
proceed. Given such a complex network, it is often difficult for people
who monitor the system to understand exactly what the system is
doing, what it intends to do, and why.

2.4 Mode Confusion in Complex Systems

Research into human understanding of complex software systems has
contributed some useful insights to modeling activities as well. In
[Lev00], the point is made that when activities are decomposed into
smaller chunks, at each level of the hierarchy there can be observed
emergent characteristics. On page 6, emergence is defined as follows:

“Emergence — at any given level of complexity, some
properties characteristic of that level (emergent at that
level) are irreducible. Such properties do not exist at lower
levels in the sense that they are meaningless in the lan-
guage appropriate to those levels. For example, the shape
of an apple, although eventually explainable in terms of
the cells of the apple, has no meaning at that lower level of
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description.”

A similar sort of example can be found in the mobile robot domain
if we consider the task of patrol — which, in its simplist form, consists
of going back and forth between two points. At the lower level of goto,
there is no way to explain the concept of patrol.

In [BLO1] the authors note how important for safety it is that
humans have a good understanding of how automated processes work.
They create a graphical language for creating this representation. To
quote:

“A controller (automatic, human, or joint control) of
a complex system must have a model of the general be-
havior of the controlled process....If an operator’s mental
model diverges from the actual state of the controlled pro-
cess/automation suite, erroneous control commands based
on that incorrect model can lead to an accident.”

The authors also assert that one of the major factors that leads to an
operator/machine mismatch is lack of appropriate feedback, especially
when this feedback is needed to communicate unintended side effects.
As such, they indicate when it is important for a semi-autonomous,
complex device to communicate when its state has changed. It is
important both that the human understand the current state of the
device in terms that make sense to the human, and that these terms
are somehow translatable into language the device understands.

2.5 Plug-and-Play Devices and Dialogue Sys-
tems

In [LRGBO1] the authors discuss the development of a dialogue sys-
tem for controlling devices in the home. A compelling feature of this
system is that devices can be plugged in “on the fly”  their capa-
bilities and a grammar for discussing these capabilities can be added
dynamically to the dialogue manager. For instance, when a dimmable
light switch is added to the system, an device model describing the
dimmability of the switch is dynamically added to the system and a
grammar that allows for utterances such as Dim the light to fifty per-
cent is added. Three hierarchies exist in which the device must be
placed:

1. The linguistic resources needed to query and control devices
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2. The functionalities the devices implement
3. The code needed to control the devices

The goals of the system are exactly the same sort of goals pursued
by the project described in this paper: plugability of devices into a di-
alogue system. However, while they have made a good start, they lack
device models and descriptions for complex actions while they can
turn lights on and off, they wouldn’t be able to control a mobile robot
in a dynamic environment very easily, for example. The system they
have built mostly deals with single utterances like “Turn on the light
in the kitchen” which result in nearly instantaneous actions. In order
to have more complex dialogues with more complex devices, actions
that have duration must be considered, as well as actions which occur
concurrently. Specifically, the relationship among these concurrently
executing actions will be relevant to the dialogue at hand.

3 Project Outline

I have discussed above some of the research in several fields that is
relevant to my project. There has been much fruitful work done on
enabling dialogue systems to understand how humans communicate
about plans they have formed. This work should serve as a basis for
enabling intelligent devices to understand what it is the human oper-
ator wants it to do, and how it should be done. At the same time,
while there has been much work in developing powerful control sys-
tems for autonomous devices, especially mobile robots, there remains
much work to be done regarding how best to communicate about the
actions of the devices which are carried out by devices so controlled.
Indeed, there is a body of research that indicates that it is critical
that human operators be able to understand the current “mode” of
complex systems (here, the complex system in question is the intelli-
gent device). Moreover, there has not been work on how to effectively
convey a human user’s beliefs about a plan to an intelligent device,
in terms that it can understand; that is, there is a specific problem
of converting from one rational agent’s mental state representation of
a plan to another’s. Finally, there has been little investigation into
how natural language can be used to make such communication more
effective, such that mode confusion can be avoided, and the possibly
many parameters involved in any one of a device’s activities can be
controlled simply and naturally.
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This paper focuses on designing mechanisms for designing a class
of dialogue systems for task-oriented dialogues, a specific subset of the
range of “practical” dialogues discussed above. A task-oriented dia-
logue is one which is “focused on accomplishing a concrete task” — that
is, it is a dialogue about accomplishing some specific task or tasks in a
real or simulated environment. Allen, et al, hypothesize in [ABD'01]
that general-purpose tools can be built for enabling dialogue manage-
ment over the set of practical dialogues. Specifically, they formulate
the Domain-Independence Hypothesis:

“Within the genre of practical dialogue, the bulk of
the complexity in the language interpretation and dialogue
management is independent of the task being performed.”

This claim both motivates the work described in this paper, and it is
supported by the end result.

The two major goals of the project described here were derived
from the exploitation of this hypothesis. Specifically, they are:

1. To create a scripting language similar in spirit to PRS-LITE
which is powerful enough to control autonomous agents at a high
level, but with special features making it particularly suitable
for communicating in natural language about activities the de-
vice is currently engaged in, has completed, and should do in the
future. Moreover, this language should support joint-activities
which involve cooperation between the human operator and the
intelligent device, an area often overlooked by robot program-
mers. This language should lead to a perspicuous run-time rep-
resentation of the joint-activities in which the human and device
are involved, such that this representation may be used as con-
text to better understand and produce utterances related to the
activities being performed.

2. To exploit features of natural language such that controlling in-
telligent devices is easier or more natural when they are dialogue
enabled, as compared to controlling them with a GUI or a com-
mand line interface.

In addressing the first issue, I will introduce the notion of the Ac-
tivity Tree as a means of tracking and modifying the status of multiple
concurrent activities. In addition, I will discuss a particular represen-
tation of Activities I've developed. The representation allows the dia-
logue system to both talk about activities and understand utterances
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that pertain to activities and their parameters. Moreover, it allows
the dialogue manager to answer questions about why specific activities
are currently being done or being planned. I will introduce a recipe
scripting language that shares many features with PRS-LITE, but is
designed to make communicating about activities straightforward.

In addressing the second issue of exploiting natural language, I will
discuss many issues. My focus, however, will be a mechanism I've de-
veloped for specifying constraints over activities (for instance, “always
fly high”). T will describe a system that allows the human operator
to naturally specify and modify relatively complex constraints using
natural language and then ensures that these constraints are adhered
to. In addition, this system detects a wide-range of implicatures in
order to ensure that the constraint set remains coherent, even when
the user only implicitly removes constraints from the set and replaces
them with new ones. It is my belief that such constraints are expressed
easily in natural language, while they are difficult to communicate via
a graphical user interface, and especially difficult for a naive user to
express in a logic formalism. Moreover, I will show how the struc-
ture of the Activity Tree can be exploited by a system for managing
constraints in order to allow for more flexible, natural, and robust
dialogues.

Many of the examples cited in this paper derive from a dialogue
system meant for controlling an autonomous helicopter. This is be-
cause the CSLI dialogue manager and the activity modeling/constraint
management system presented here were made to work first in this
domain. A toy version of the current system has been built for con-
trolling an imaginary “robot butler,” and previous, less-advanced, in-
cantations of the system have been adapted for various other dialogue
systems, including an in-car stereo controller and a voice interface to
a scheduler, like the ones used on personal digital assistants (PDAs).
The goal of the work presented here is to create a straightforward
means of porting the dialogue front-end to further applications.

3.1 Fitting in a Dialogue System Architecture

In terms of existing architectures for dialogue systems, this project
is meant to serve as a link between a dialogue manager and a de-
vice/agent. Because this framework represents information which is
common across all task-oriented devices in a single format, the dia-
logue manager needs only to have algorithms which operate over this
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more abstract structure. This saves us from having to make ad-hoc
changes to the dialogue manager for each new device. Specifically,
rather than building into the dialogue manager knowledge about each
device for which it must faciliate dialogue, the goal is to provide the
dialogue manager with general knowledge about how task-oriented di-
alogues work in general, and how joint activities are structured. The
goal of this paper is to develop a framework by which such knowl-
edge can be specified declaratively, so that general-purpose algorithms
in the dialogue manager can operate over the declaratively defined
information in order to facilitate complex task-oriented dialogues.

Throughout this paper, I will assume that a dialogue manager with
a basic set of capabilities already exists. Specifically, I will assume that
the dialogue manager is capable of doing the following:

e Converting natural language to logical forms which it uses inter-
nally as a semantic representation of natural language;

e Generating natural language from such logical forms;

e Keeping track of the context provided by previous discourse so
that dialogue games like question-answer pairs and command-
acknowledgement pairs can be produced and understood;

e Further using this context to do such things as determine the
referent of anaphoric expressions and aggregate sets of utterances
to be said by the system so that they flow conversationally (see
e.g. [Ste01] on aggregation).

Moreover, I assume that this dialogue manager architecture can
be interfaced, if desired, to the following components:

e An automatic speech recognizer,

e A parser,

e A graphical user interface,

e A text-to-speech synthesizer.

I make these assumptions because such a system exists in the form
of the CSLI dialogue manager ([LGP02]). Moreover, similar systems
have been built as was noted in section 2.1.2. The framework described
in this paper is meant to further enhance such a dialogue system,
though it is ambivalent, for the most part, with regard to the way in
which the dialogue system actually provides most of this functionality.
The dialogue-manager algorithms described in this paper have been
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implemented as part of the CSLI dialogue manager, but they could
also be used to extend other similar dialogue managers.

4 The Activity Tree and Activities

In order to dialogue enable task-oriented agents like mobile robots,
it is critical that the dialogue manager maintain a representation of
what the device it is controlling is actually doing, plans to do, and
has already done at any given point in time. It is important that
this representation, or at least some aspects of it, be convertible to
natural language. That is, the dialogue system should be able to re-
spond to questions of the form What are you doing?. Being able to
answer questions like these is critical for avoiding operator confusion.
The dialogue system should be able to describe the current state of
the robot in a manner that the operator can understand. Moreover,
a dialogue system should be able to answer, at at least some basic
level, the question of why the device is behaving as it is at any given
moment. In particular, it should be able to answer questions like
Why are you doing X?. As was discussed above, the current control
languages like PRS-LITE for complex devices often make the answer-
ing of such questions difficult because they don’t produce an easily
comprehensible picture of how the device operates.

In addition, since the goal is to allow task-oriented agents to col-
laborate with the human operator in joint activities, the representation
should represent not just the tasks that the device is engaged in, but
those that the human operator may be doing as well. The interac-
tions between the two agents’ activities should be understandable, so
that the way in which particular actions by each agent give rise to
coordinated joint actions is clear and describable in natural language.
Moreover the dialogue system also needs to be able to communicate
the desires and intentions of the human operator to the robot itself.
As such, its representation of the state of the device should be rich
enough so that the commands and corrections made by the operator
can be accurately communicated to the system.

Given the above considerations, it is apparent that the representa-
tion we need is not one which includes every system-level detail of how
the device (or human) will accomplish a given task. Rather, the level
of detail should be appropriate to the actions which need to be dis-
cussed in order to accomplish the goals of the task. For instance, even
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though we know generally that braking and accelerating are involved
in the process of driving a car from one place to another, we might
choose not to model this level of detail in the dialogue system. Perhaps
for the dialogue system we are designing, we simply don’t care about
discussing the details of accelerating and braking instead, we wish
to focus only on a higher level of granularity. A dialogue designer,
then, should be able to model the actions of the device and human at
a level of granularity appropriate to the task at hand.

Even if we did wish to discuss fairly low level details about how the
device works, our representation should not be committed to necessar-
ily modeling how intelligent devices/agents actually perform actions.
Rather, it should be geared toward the way in which humans conceptu-
alize the actions being performed. That is, the representation should
reflect the state of the device in such a way that a human operator
can make sense of it. The representation should provide a mapping
between the human’s conceptualization of how a particular action is
performed and the agent/device’s, rather than modeling the way in
which the robot actually does the actions necessary to achieve the
goal. It should not be a model of the way in which individual circuits
and motors of a robot work together to pick up a block, for example,
but it should be decomposed in terms that the human operator can be
expected to understand — perhaps, in this example, this would consist
of bending the elbow, opening the fingers, closing them around the ob-
ject, and then raising the arm. Just as humans do not generally speak
at the level of firing neurons or stretching muscle fibers when they are
giving instructions to one another, we should not seek to model this
level of detail in a dialogue system. Indeed, it is exactly these sorts
of details that we are attempting to get away from by using natural
language to interact with devices: we would like to be able to interact
with them on the level at which we conceptualize and understand the
world, not the way in which they do. As such, it is crucial not that the
representation in the dialogue manager be true to the inner workings
of the device, but that it is able to represent these inner workings in
a way which humans can readily conceptualize. Only in this case can
the human operator successfully participate in joint activities with the
device.

At first blush, it appears that simple slot-filling dialogues, like
those discussed in section 2.1.1 above, might suffice for understand-
ing the desires and intentions of the human operator — after all, a
command and control system mainly needs to understand commands
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from the human operator and then communicate them to the device.
However, the dialogue snippets in (2) and (3) below demonstrate how
mode confusion can easily arise if a dialogue system does not accu-
rately model the sort of “common-sense” knowledge that a human
operator knows about tasks that a device might perform. In other
words, the dialogue system needs to understand not only what sort
of activities the device and human operator are undertaking, but how
these activities relate to larger goals and/or other activities.

(2) O: Patrol between the tower and the school
S: Okay. Now patrolling between the tower and Springfield
school.

O: Fly to the tower at high speed.

The desire of the operator in (2) seems relatively clear. He or she
desires that the helicopter patrol between the tower and the school,
and moreover that when the helicopter is flying to the tower as part of
this mission, it should do so at high speed. Another interpretation of
the above dialogue is, however, that the operator at first wanted the
helicopter to patrol, but then changed his mind and simply wanted it
to fly to the tower at high speed. A dialogue that follows exactly this
sort of pattern appears in (3):

(3) O: Patrol between the tower and the school.
S: Okay. Now patrolling between the tower and Springfield
school.

O: Deliver the medical supplies to the tower at high speed.

The above dialogue follows the exact same sort of pattern as the
other one, but (assuming the medical supplies are not currently on-
board the helicopter, and they do indeed need to be picked up) its
most felicitous interpretation is that the operator intends that the
helicopter cancel (or at least suspend) its patrol operation and deliver
the medical supplies immediately.

What’s highlighted here is that the dialogue system needs to some-
how be able to understand that the ways the operator’s first and sec-
ond utterances are related in (2) and (3) are different. In (2) the sec-
ond utterance elaborates the first, while in (3) the second contradicts
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(or revises or stands in contrast to) the first. The dialogue manager
must be empowered with some common-sense knowledge in order to
do this: specifically, it needs to know that “flying to the tower” is in
fact a sub-activity of “patrolling between the tower and the school.”
It is not simply enough for the dialogue system to know that the he-
licopter is “patrolling”  but it also must know that a component of
this “patrolling” activity is flying to a particular location.

In order to enable the dialogue manager to make inferences like
the one above, as well as further inferences which I'll discuss later, I
developed for this project the representation of an Activity Tree which
can be embedded as part of the Information State of a dialogue man-
ager. The Activity Tree is used as a medium of communication to and
from the device and the dialogue manager; it is meant to represent the
current state of the joint activities being undertaken by the operator
and the device, or at least the portion of this state that is relevant for
enabling meaningful discourse with the human operator. The Activity
Tree consists of a tree of activities (see below), where the descendants
of a particular activity are sub-activities of that activity. Each activ-
ity, at any given moment, must be in a particular state, where a valid
state must be one of the following:

not_resolved : the activity has only been partially described by the
user, not all of its parameters have yet been set

resolved : the activity has been fully described

request_send : the activity should be sent to the device to be planned,
when it is appropriate to do so

planned : activity has been planned by the device planner

sent : the activity has been sent to the device (or operator) to execute
current : the device (or operator) is currently executing the activity
suspended : the activity has been indefinitely suspended
cancelled : the activity has been cancelled

done : the activity was successfully completed

skipped : the goals of the activity were already true, so it was
skipped

failed_preconditions : the preconditions required for the activity
to be executed do not hold

constraint_violation : the activity, as currently specified, violates
one or more of the current constraints (see section 7)
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conflicts : the activity has a resource conflict with other activities

The Activity Tree has a root, which will hold important informa-
tion for the constraint management system which will be described
later. The root, however, does not actually represent any particular
activity the device (or operator) is, has been, or plans to be engaged
in, and as such it has no state. Due to this lack of a true root, the
Activity Tree is actually better viewed as a forest which contains trees
of activities, where each tree may consist of currently executing or
planned activities. In this way, the representation of the current state
of the system mirrors that used by robot control languages like PRS-
LITE, discussed in section 2.3. Such a representation is the natural
result of having hierarchically structuring activities of which multiple
ones may be executing concurrently.

The relatively simple Activity Tree for the patrolling example given
above looks like this (at the moment in time when the helicopter has
flown to the tower, then to the school, and is now flying back to the
tower as part of its patrol operation):

root

..patrol_between (tower) (school) [current]
....go (tower) [done]

...... take_off [donel

...... fly_atom (tower) [done]
....go (school) [donel

...... take_off [skipped]

...... fly_atom (school) [done]
....go (tower) [current]

...... take_off [skipped]

...... fly_atom (tower) [current]

Note that nodes which are indented below other nodes are their de-
scendants. For instance, go (school) is a child node of patrol between
(tower) in the above example. The state of each node is given in
brackets — for instance, [done]. The conventions used in the above
diagram will be used throughout this paper.

The Activity Tree is meant to be similar conceptually to the types
of representations developed by Clark in [Cla96], and indeed it is
meant to serve a similar purpose. Clark makes a powerful case in
his book that an agent must be able to understand and model the
joint activities in which he/she/it is engaged. Indeed, he shows that
without such an understanding it would be impossible to comprehend
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and produce utterances which both make sense given the current con-
text, and further the accomplishment of mutual goals. The Activity
Tree is meant to provide just such a context for the dialogue manager,
so that it can enable the device to participate in meaningful and useful
dialogues about the joint activities in which it is a participant.

5 The Recipe Scripting Language

While the Activity Tree represents the relationship among activities,
the meshing of natural-language technology with agent-control tech-
nology becomes apparent when we examine the representation devel-
oped here to describe the activities themselves. Each activity on the
Activity Tree is an instantiation of a recipe which comes from a recipe
library for a particular device. Conceptually, this mirrors the pro-
posals in [Pol90]; and it is similar in concept to the plan libraries in
[ASFT95]. The recipes in the library, as well as particular properties
of the library itself, are compiled from a recipe script, which must be
written for the device that is being dialogue-enabled. The recipe script
defines recipes for undertaking particular activities (often in the pur-
suit of particular goals). Each recipe models the domain-dependent
common-sense knowledge which is needed to give rise to the structures
on the Activity Tree which the dialogue manager uses for interpreting
and producing relevant utterances. Moreover, each contains special
constructs which are used by the dialogue manager to more effectively
communicate, but which have nothing to do directly with the model
of how a certain action is achieved (for example, the Natural Language
Mapping and Natural Language Slots constructs which are described
below).

The recipe script is formatted according to a special recipe script-
ing language designed as part of this project. The recipe script is
designed so that recipes can be described in a powerful enough for-
malism to engage in joint activities with relatively intelligent agents or
devices; at the same time, it requires constructs which make describing
and querying about the activities instantiated from the recipes with
natural language a straightforward task for the dialogue front-end to
facilitate. Moreover, it is designed so that constraints (discussed in
section 7) can be described that range over the contents of the instan-
tiated activities. A recipe script consists of a preamble followed by a
set of recipes, where each recipe can be instantiated as a particular
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activity on a particular activity tree for a particular device.

Each recipe defined in the recipe script is added to the recipe
library which is used by the dialogue manager to understand the ca-
pabilities of the device. A recipe can be conceptualized as consisting
of the following components:

e A set of slots, similar in nature to the sets of slots used in

form-filling dialogues, which represent the pieces of information
needed before a recipe can be instantiated into an actual activity
(or plan) capable of being executed by the device (or human
operator).

An algorithm (the recipe body) which operates over this set
of slots that specifies how the activity should be decomposed
further to accomplish its goals.

Device information about the conditions under which the
recipe may be executed (preconditions), the results of the ac-
tions described by the recipe (goals), the resources needed to
perform the actions described by the recipe (resource list), and
constraints over the way in which the actions will be performed.

Linguistic information about how to describe under various
circumstances (or when to refrain from describing) the instanti-
ated activity as it is being performed.

In order to make the information in the recipe script available to
the dialogue system, the script is first ‘compiled’ into a format that
can be used more readily. This is done using a customized lexer-parser
created in Java using ANTLR [Par00], a parser generator for Java.
The following output files are generated by the compilation process:

1.

CSLI_ActivityProperties.java: defines the activity proper-
ties

. myDevice.rep, where myDevice is provided as part of the script:

defines the body of each activity

CSLI_TaskMatcher. java: A simple class with a hash table to do
NL mapping of command names

domains.ecl: Defines the domain of each slot

constraints.ecl: Provides the ECL'PS® predicates the Dia-
logue Manager will call
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In this section and the next, I will discuss the components of the
preamble and of the recipe body, why they are relevant to dialogue sys-
tems, and how the information is ‘compiled into’ the dialogue manager
for use at runtime. For complete examples of scripts written in the
formalism that will be described, please see Appendix B.

5.1 The Preamble

The preamble of the recipe scripting language has several sections
which I will discuss here.

5.1.1 The Recipe Library

The first line of the preamble must be of the form:
repfile "myRepFile"

where myRepFile is the name of the file where the recipe library will
be stored.

5.1.2 Type Definitions

Next, there must appear a Types section, in which valid slot types are
defined. Defining a type, in this context, consists simply of defining
the valid domain of values that slots of the given type may take on.
These domains are used for reasoning about constraints (see section 7)
— if slots of a particular type will never be involved in such reasoning,
then their domains may be left unspecified.

Types are declared using the following format:
Typename :: [ walue_1, ..., value_n J;
where each value_i is an allowable value for this type. If there are
no such values, then the type does not participate in any constraint
reasoning and it can take on any value.

An example of a Types section is the following:

Types {
Speed :: ["high", "medium", "low"];
Altitude :: ["high", "medium", "low"];
Location :: ["tower", "school",

"base", "lake"];
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MoveableObject :: ["water", "medical_kit"l];

}

The above declares four types called Speed, Altitude, Location, and
Moveable Object and assigns their respective domains.

5.1.3 Definable/Monitor Slot Definitions

The next two sections of the recipe script define all the valid Definable
Slots and Monitor Slots that a particular recipe might have (please see
the next section for a full definition of what exactly a definable slot
is). These slots will represent the chunks of information the device
will need in order to instantiate and execute the recipe. In particular,
the Type of each slot must be specified, as well as each slot’s minimum
and maximum length. Additionally, the default value of the slot may
be specified; for example, medium is specified below as the default for
toAltitude and toSpeed Building upon the above type definitions,
an example that comes from the WITAS domain is the following:

DefinableSlots {

Location toLocation:1-3;
Altitude toAltitude:1-3 = "medium";
Speed toSpeed:1-3 = "medium";
MoveableObject carryObject:1;

b

MonitorSlots {
Speed curSpeed:1;
Altitude curAltitude:1;
Speed toAltitude:1;
MoveableObject grippedObject:1;

While in the above examples there is a certain parallelism between
the monitor slots and the definable slots, this is certainly not required
by the formalism. The above definitions define definable slots named
toLocation, toAltitude, and toSpeed each with a minimum length of 1
and a maximum length of 3 indices. The carryObject slot is defined as
having only a single index (the helicopter can only carry one object at
a time). The monitor slots are meant to be used to reflect the device’s
state; in the above example, slots named curSpeed, curAltitude, toAlti-
tude, and grippedObject are defined, each with a single index. In the
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WITAS domain, these slots are used to keep track of the helicopter’s
current state.

5.1.4 Resources

The final section of the preamble is the resources declaration section.
Here, each of the resources that may be used by the various activities
of the device must be declared. Each resource is simply a string. Here
is an example from the WITAS domain:

Resources {
uav;

gripper;
camera;

}

5.2 Components of a Recipe

After the preamble of the activity script appears a list of recipes, where
each recipe can be instantiated into an activity. Each recipe consists
of the following components:

1. An activity type. e.g.: take off, land at location, patrol among locations
2. A Natural Language Mapping of the activity type

3. An Agent Tag indicating which agent should execute the activity

4

. A set of definable slots which contain relevant parameters to the
this activity, of which some may be required and others may be
optional. e.g.: toLocation (the location to go to), or toSpeed
the speed at which to fly there

5. A set of monitor slots which are meant to be filled at runtime
with information about the state of the device. e.g.: curLocation
(the current location of the helicopter), curSpeed (the current
speed of the helicopter)

6. Resources. The set of resources that this activity needs. e.g.: A
camera

7. Preconditions. A set of conditions which must be true in order
to do this activity

8. Goals. A representation of the desired outcome of the activity

9. Banned. A set of “states of the devices” which are banned
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10. Natural Language Slots. An association between an activity’s
state, and the detail to which it out to be described.

11. A Super Recipe. Each recipe may optionally inherit some of
its properties from a super (or parent) recipe, in a fashion simi-
lar to other object-oriented, single-inheritance programming lan-
guages, like Java.

12. Body. A script which defines what this recipe does, when it
becomes instantiated into an Activity.

Below, I will describe each component of a recipe, the syntax for
defining it, and the manner by which the information it embodies is
‘compiled’ into the dialogue manager by the “recipe compiler.”

5.2.1 Activity Type, NL Mapping, and Agent Tag

Each recipe is given a particular Activity Type, which is simply a
unique name for the recipe. The NLMapping of a recipe describes
the verb that should actually be output by the system. So, while a
designer might end up assigning a particular recipe an Activity Type
of patrol_between_search, this activity can have an NL Mapping of “pa-
trol” — which is the verb that will be used when the system actually
discusses this activity. The NL mapping exists because several dis-
tinct (though often related) concepts in a language may be mapped
to a single verb  for example, while the concepts invoked by “patrol
between the tower and the school” and “patrol at the tower for a blue
car” are distinct (and in the formalism provided here, this distinction
is captured by having two distinct recipes), both concepts are captured
in English by the single verb patrol.

Each recipe must also declare an agent tag which identifies the
agent who should execute activities which instantiate the particular
recipe. In the current system, only the tags USER and SYSTEM are
supported: where USER refers to actions that the human operator
should take, and SYSTEM refers to the device being controlled. In
theory, this set of tags could be expanded to include more types of
agents and might be changed to allow for a list of agents, all of which
could potentially complete the action.

The activity type, NL Mapping, and agent tag are defined at the
beginning of the definition of each recipe. The syntax is as follows:

taskdef<activity_type, "nl_mapping"> agent_tag{
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//rest of recipe definition goes here

}

During the recipe compilation process, the mappings from activity
type to natural language mapping are written to a hash table which
can be accessed by the dialogue manager through methods provided
in CSLI_TaskMatcher.java. The agent tag is stored as part of the
recipe in the recipe library.

5.2.2 Definable Slots

The set of definable slots are those slots whose values must be specified
before an activity can be executed by the device. For instance, in the
WITAS project, before the helicopter can fly somewhere, it must know
to where it should fly. Hence the activity go contains a definable slot
named toLocation, which is meant to hold the location to which the
helicopter should fly. Typically, definable slots correspond roughly to
the arguments of a verb, (here, fly to the tower), or potentially to
other modifiers like adverbs (fly quickly) though there is nothing in
the formalism which actually requires this.

The set of required definable slots are those slots which must be
specified explicitly by the operator, or inferred directly from an opera-
tor’s (possibly multi-modal) utterance. On the other hand, the set of
optional slots are those slots whose values can be be filled in by default
values, or through constraints (to be discussed later). The syntax for
declaring a required slot is the following:

required Type SlotName;
While an optional slot is declared like this:
optional Type SlotName;

Consider, as an example, the recipe for transporting an object from
one location to another. In the WITAS system, this activity contains
the following set of definable slots (which are requisite as indicated
and are meant to correspond to the concepts noted):

e fromLocation (required: the location from which to pick up the
object)

e toLocation (required: the location at which to drop the object)
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e carryObject (required: the object to carry)

e fromSpeed (optional: the speed at which to fly to the first loca-
tion)

e fromAltitude (optional: the altitude at which to fly to the first
location)

e toSpeed (optional: the speed at which to fly to the second loca-
tion)

e toAltitude (optional: the altitude at which to fly to the second
location)

Using the types declared in section 5.1.2, the above slots could be
defined as part of a recipe as follows:

DefinableSlots {
required fromlocation;
required toLocation;
required carryObject;
optional fromSpeed;
optional fromAltitude;
optional toSpeed;
optional toAltitude;

Note too that the above assignments of required and optional make
sense because it is imperative that the system know what object to
pick up, from where to pick it up, and where to drop it. The speed and
altitude it should fly at, while necessary parameters, are not critical,
in some sense, to the activity. While the activity can be successfully
accomplished no matter what their values are, the activity cannot
even, in some sense, be defined unless the required slots are filled with
values. The required definable slots, then, make up the core notion of
the activity.

The required flag, then, is a means by which the dialogue manager
knows when it should initiate a slot-filling dialogue. If the operator
specifies only some of the required slots in his or her initial command,
then the dialogue manager will ask information-seeking questions of
the operator until all of the required slots are filled. On the other
hand, optional slots can be filled in with default values if they are
not explicitly mentioned or filled in through constraints they do not
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merit a slot-filling sub-dialogue initiated by the dialogue manager.
This will be further discussed in much greater detail in section 7.

Each slot also has associated with it a particular type defined in
the preamble (see section 5.1.2). In the WITAS system, for instance,
fromLocation and toLocation are of type Location, while carryObject is
of type MoveableObject. The effect of assigning a type to a particular
slot is that the domain of the slot becomes limited: carryObject, for
example, can only be assigned to an object that can, indeed, be carried
by the helicopter (the domain associated with a particular type is
defined in the types preamble of the recipe script).

The set of definable slots of a particular instantiated recipe (aka
activity) is accessible at runtime to the dialogue manager. In section
7, T will discuss how a slot’s type (and hence, its domain) is relevant
for constraint reasoning.

5.2.3 Monitor Slots

The monitor slots are simply a way to reflect information about the
current state of the device at any given time. Defining which slots
are important to a recipe simply makes it more efficient to calculate
the constraints (to be discussed later) over the recipe. Like definable
slots, the monitor slots of a particular activity are accessible to the
dialogue manager at run time through the CSLI_ActivityProperties
clags. The syntax for declaring monitor slots is identical to that for
definable slots, except no optional or required prefix is used, since
this concept does not apply to monitor slots.

For example, the monitor slots for the go recipe in the WITAS
domain are as follows:

MonitorSlots {
curLocation;
curAltitude;
curSpeed;

}

5.2.4 Resources

It is often important to understand what resources are needed in or-
der to complete a particular activity. For instance, in the WITAS
domain, it is important to understand that flying somewhere requires
using the entire helicopter, while taking a picture of something merely
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requires use of an on-board camera. This information can be used by
the dialogue manager to detect resource conflicts and initiate intelli-
gent dialogues about them. For instance, the CSLI dialogue manager
generates the following dialogue in the WITAS domain:

(4) O: Fly to the school.
S: Now flying to the school at medium speed and medium alti-
tude.

O: Deliver the medical supplies to base.

S: Delivering the medical supplies to base conflicts with flying to
the school.

Should I deliver the medical supplies to the base now or later?
O: Now please.

S: Okay.

I have suspended flying to the school.

Now flying to the hospital. [In order to pick up the medical sup-
plies]

The resource conflict is detected by the dialogue manager and a rele-
vant sub-dialogue is initiated. In order to facilitate such dialogue, each
recipe includes a section in which the resources required by any activ-
ity which instantiated this recipe are listed according to the following
syntax:

Resources {
resource_1;
resource_2;

resource_n;

}

During the recipe compilation, this information is stored as part of
the recipe in the recipe library.

5.2.5 Preconditions

The preconditions are the set of conditions which must be true before
an activity that instantiates a particular recipe can be executed. These
conditions are expressed in terms of predicates over the monitor and
definable slots. These too are simply stored as a list which is part of
the recipe in the recipe library. The list is not simply a string, but
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a list of CSLI_Expression objects which are designed for the efficient
manipulation of first order logic expressions.

5.2.6 Goals

These are the goals that an instantiation of a recipe is meant to
achieve. These too are expressed in terms of predicates over the values
of the monitor and definable slots. For instance, to express that the
goal of the “fly_to” activity in the WITAS system is to actually move
the helicopter to a particular location, we might write the following
goal: curLocation == toLocation meaning that the location we were
meant to fly to should be equal to the location where we actually
are. The goals as well are simply stored as a list of CSLI_Expression
objects in the recipe library entry for a particular recipe.

5.2.7 Banned

Each recipe may contain a list of logical relationships among the values
of slots which may be banned. For instance, to express the constraint
that the helicopter shouldn’t drop objects while at high altitude, we
write as part of the recipe for the activity type “drop” the following
item on the banned list: curAltitude == “high”. As 1 will discuss later,
these constraints are defeasible. That is, rather than defining impos-
sible states of the world, they define states of the device that under
normal circumstances should be avoided. The banned list is compiled
into a similar format as the goals list during recipe compilation.

5.2.8 NLSlots

When the state of an activity changes, the dialogue manager often
reports this state change. For instance, when an activity becomes
current, the dialogue manager will give a report like Now flying low
to the tower at high speed. As a result, the dialogue manager must be
able to map from an activity to a natural language (or multi-modal)
representation of that activity. In this process, the filled-in slots of the
activity are considered, as well as the activity type, in order to produce
a meaningful utterance. As activities become more complicated, with
more and more slots, it becomes unwieldy for the dialogue manager to
talk about all the parameters of an activity in each utterance about
that activity. For instance, when an activity has completed, it’s not
always necessary or desirable to convey an entire description to the
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user. When the helicopter has flown to its destination in the WITAS
system for example, (5a) is preferred to (5b).

(5) a. I have flown to Springfield school.
b. I have flown low to Springfield school at high speed.

Since the goal of the activity was to arrive at the location, this is
the information that is really relevant. How the helicopter got there
is not so important, especially considering that this information has
already been negotiated by the operator and the system has already
announced its intention to fly to the school at low altitude and high
speed.

In pursuit of these ideas, the recipe scripting language includes the
ability to associate the reporting of activities in particular states to
particular slots. For instance, to specify that for the activity of flying
we’d like the helicopter to report its destination, height, and speed
when it’s actually doing that activity, but not when it’s reporting the
completion of the activity, we write the following lines of script:

NLSlots {
current: toLocation, toSpeed, toAltitude;
done: tolLocation;

}

This indicates to the dialogue manager that it should report the desti-
nation (toLocation), target speed, and target altitude of the helicopter
when it announces that it is currently flying somewhere, but only the
destination when it has reached somewhere. The results are dialogues
similar to the following:

(6) O: Fly low to the school at high speed.
S: Now flying low to the school at high speed. [System reports:
toAltitude, toLocation, toSpeed]

S: I have flown there. [System reports: toLocation]

In addition, the script also allows for the left hand side to be default
which gives the default set of slots to report in all states not explicitly
mentioned.

As activities have more and more slots, and hence become more
complex and unwieldy to talk about (for instance, fighting a fire, or
transporting objects), the ability to have easy control over generation
becomes extremely useful. Indeed, for some activities, you might wish
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to have “hidden” slots that the system should never try to discuss
or only discuss in rare circumstances.

The set of NL slots for each state, as well as the default set (if
supplied), are stored as part of the particular recipe in the recipe
library.

5.2.9 Super Recipes: eztends and abstract

Each recipe may optionally exztend other recipes. In the context of
the recipe scripting language, this simply means that the recipe will
inherit the values of all the sections listed above, with the exception of
the body, nlmapping, and activity type. Moreover, certain recipes may
be declared as abstract, meaning that they are not meant to actually
ever be instantiated into activities but only that they should serve as
super recipes to other recipes. For example, in the WITAS domain,
there is defined an abstract recipe called move, which embodies the
concept of moving, but can’t actually be instantiated. Instead, there
is another recipe called go, which should actually be instantiated when
the helicopter is instructed to fly somewhere. The description of these
two activities is given in figure 1.

5.2.10 Body

Each recipe optionally contains a body, which is a body of code written
in a specialized activity scripting language which I discuss in section
6. If a recipe doesn’t contain a body, then it is assumed to be atomic
that is, if it becomes instantiated then it should be sent to the device
to actually be executed, rather than further decomposed.

6 The Recipe Body

The body of a recipe consists of a script which defines a recipe for ac-
tion — in the sense discussed in section 2.2 — that describes the actions
which ought to be performed in order to accomplish the recipe’s goals.
In the formalism described here, we can think of the recipe body as the
algorithm which describes what should be done in an abstract sense,
and the slots as the data over which the algorithm operates. While
the recipe body for the activity of fighting a fire describes abstractly
what’s involved in fighting a fire (continually picking up water from a
particular location, carrying that water to the location where the fire
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Figure 1: move and go Inheritance and Abstract Recipes

abstract taskdef<move,'"move"> {
DefinableSlots {
required tolLocation;
optional fromLocation;
optional toSpeed;
}
MonitorSlots {
curLocation;
curSpeed;
}
Resources {
uav;
}
Banned {
toSpeed == '"zero";
}
}

taskdef<go,"go"> extends move {
//inherits locations,speed from move
DefinableSlots {
optional toAltitude;

}
MonitorSlots {
curAltitude;
}
Banned {
toAltitude == "zero";
}
NLSlots {
default: toLocation;
current: tolLocation, toAltitude, toSpeed;
}
//definition of Body -- removed for this example
}
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is, and then dropping it until the fire is out), it is not until the defin-
able slots for this recipe are filled in that it can be instantiated into
an activity which can be performed, since these provide the requisite
information such as where to pick up the water and where the water
ought to be dropped. By requiring the algorithm described by the
recipe body to operate over the values of the slots, a direct connection
is made between the linguistic aspects involved in the task-oriented
dialogue and the tasks at hand which are being performed.

The script which composes the recipe body was conceived in order
to balance two objectives. First, it is meant to characterize joint-
activities (to be done by the human and the device together), as well
as activities carried out only by the device, in a way that matches the
way humans conceptualize doing activities. That is, it should match
the way that humans actually think about and understand recipes for
joint activities rather than simply represent the way in which the de-
vice actually carries out a specific action (as was discussed in section
4). On the other hand, it must be compatible with the representation
utilized by the intelligent agent or device to the degree that the device
can actually execute atomic actions specified in the script for it to do.
If it meets both of these objectives — that is, if it is both compat-
ible with the way that humans conceptualize activities and capable
of decomposing into terms that the device can work with — then it
can successfully act as an intermediary between the human and the
device. When the device performs the actions described by the script,
then the human will be able to understand why these actions are being
done. On the other hand, when the human operator seeks to modify
the way in which a particular action should be done, the device will
be able to understand these desires in terms of the data/parameters
(i.e. the slots) over which a recipe operates. Moreover, because slots
are also linguistically motivated, the recipes should be easy both to
describe and to understand descriptions of using natural language.

Toward the end of matching up with the representations needed
by an intelligent device or agent, the script which makes up the recipe
body is designed to be extremely similar to the scripts that are ac-
tually used to control mobile robots. It is based loosely on the ACT
formalism, which is now included as part of the COLBERT [Kon97]
scripting language in Saphira, a software package distributed by Ac-
tivMedia Robotics with its mobile robots. While, at first, actually
using one of these languages seemed tempting, I chose instead to write
my own script interpreter and language to better pursue the goal of
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making the script match up with the way that humans conceptualize
activities. First, I wanted to naturally and explicitly be able to make
references to the slots defined for the activity. Second, I wanted to
try to balance the language so that it would be simple enough, and
straightforward enough, that natural language could be generated to
describe it. COLBERT can be interfaced directly to C, and I worried
that the expressiveness of a full fledged programming language like
C would be difficult to talk about using natural language and, more
importantly, I wanted the language to provide a framework which
would be conducive to designing recipes in a way which would make
them match up with the way humans conceptualize activities — as
the relationship among concurrent activities generated by COLBERT
can often be difficut for a human to understand. Moreover, I worked
under the premise that the sorts of plans that users would want to
talk about (in terms of how they were further decomposed) would
not be arbitrarily complex. That is, they would be the sorts of plans
that a person could describe in a few sentences. In particular, I wor-
ried about the complex interaction between global variables that can
sometimes be found in mobile robots actually using COLBERT and
Saphira. Much communication among activities which are running
simultaneously is often done through the setting of global variables
such behavior makes the relationship between different activities ex-
tremely difficult to describe and their interaction abstruse. Rather
than write a scripting language appropriate for writing all activities
that a mobile robot could ever do, my goal was to write a scripting
language that described the sorts of activities that a person might
reasonably be expected to describe and want to talk about. In par-
ticular, I assumed that the operator wouldn’t want to be concerned
with the fine details involved in complex robot actions — for example,
keeping the robot localized as it moves to a location, or ensuring that
its pitch and yaw are correct if it is a flying robot. Rather, I assumed
that the user would want to discuss activities at the level at which he
or she might discuss the activities of the robot if he or she were plan-
ning joint action with another person  a level at which such details
as how movement is accomplished and headings are maintained are
not discussed.

The scripting language, then, consists of the following commands
inspired in large part by the ACT formalism (brackets indicate op-
tional parameters):

e intend activity(slot_assignments) [blocking] [act_name]
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e stop act_name
And the following loop constructs:
e repeat {...}
e do {...} while(conditions)

e foreach(assignments) {...}

6.1 intend and stop

Intend and Stop are commands to create new activities and stop
ones which are running. Activities which are intended are sent to
be planned and executed.

6.1.1 intend

The process of intending an activity is one of attempting to load the
recipe with the name activity and instantiating its slots with the values
given in slot_assignments. The slot_assignments link a particular
slot in the spawning activity with the particular slot in the child ac-
tivity. For instance, consider the simple body of the activity for “go”
in the WITAS system. It is as follows:

Body {
intend take_off(toAltitude=THIS.toAltitude);
foreach tolLocation t, toAltitude a, toSpeed s {
intend fly_atom(toLocation=t,toAltitude=a, toSpeed=s);
}
}

This decomposes go into a take_off and a series of £1ly_atom activi-
ties. For the take_off activities, the toAltitude slot of the take_off
activity is linked to the take_off slot of the go activity. Similarly,
the toLocation, toAltitude, and toSpeed slots of the f1y_atom ac-
tivities which will be spawned, are linked to particular indices of their
corresponding slots in the parent activity of “go.” This is done using
the foreach() loop construction, which I'll discuss later.

It is important to note that the slot assignments between parents
and children are not like those made in many traditional program-
ming languages. The value of the parent activity’s slot is not simply
copied over into the child’s slot upon creation of the task. Rather, the
two actually (for all intents and purposes) share the slot. It is as if
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the value of the slot were passed in by reference. Hence, if the value
of toLocation[0] changes in the go activity, then the correspond-
ing toLocation[0] will be updated in the fly_atom. The slots are
structure shared.

To understand why such structure sharing is important, consider
the following example dialogue:

(7) A: Patrol between the tower and the school.
B: Okay, now flying to the tower at medium altitude and medium
speed.
A: Fly there at high altitude.
B: Okay.
B: Now flying to the tower at high altitude and medium speed.

B: I have flown there.
B: Now flying to the school at medium speed and medium alti-
tude.

B: I have flown there.
B: Now flying to the tower at high altitude and medium speed.

Note that each successive act of flying to the tower is done at high
altitude, not just the particular instance of it which was modified by
the user. This occurs because the first index of the toAltitude slot
of patrol is shared with its child go. When its child’s slot+index is
modified by the operator, then, so too is its slot+index. Hence, when
it spawns the second instance of flying to the tower, the operator’s
instruction is retained appropriately.

6.1.2 stop and noblock

In the above example, all of the spawned activities were (by default)
blocking. That is, until the take_off activity was completed by the
system, it did not try to fly anywhere. Mobile robots, however, often
have several activities running simultaneously. In order to support
this, I followed the conventions of the COLBERT programming lan-
guage, and allowed for the ability to spawn child activities in a non-
blocking fashion, as in the following snippet from the find activity in
WITAS:

Body {
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intend locate(searchItem = THIS.searchItem);
intend track(followItem = THIS.noticedItem) myTrack noblock;
intend identify(searchItem = THIS.searchItem);

stop myTrack;

In this example, the system first tries to locate an object in the
world (for example, a red car) via the locate method. When this
activity is done (and hence, an object matching the desired description
has been located), the recipe executor then spawns a new child task
of track which essentially follows the car and keeps it in sight. The
noblock keyword is used to indicate that the executor should go ahead
and continue executing the code that follows, even before the tracking
activity is completed. In addition, this particular instance of track is
assigned a name — myTrack — so that it can be referenced later. In
particular, it is passed to the stop command, which halts the activity
after the object has been identified.

6.2 Loops: repeat, do. .. while, and foreach

The looping constructs behave as in most procedural languages. A
repeat loop simply repeats the contents inside of its braces endlessly,
until the activity is explicitly stopped by the stop command, or can-
celled by the user. The do. . .while loop executes its contents forever,
or until the condition of the while(condition) becomes true. This con-
dition can be direct equality and inequality statements over the values
of particular slots, or calls to predicates over these values. In order to
test the more complex predicates (for example, in the WITAS system,
there is a predicate for fire_out which tests if a particular fire is out
in the world) at runtime, the execution system defines an interface
that the domain-specific predicates must implement in order to have
their values tested, as will be discussed later.

The foreach construct is a specialized version of the more stan-
dard “foreach” constructs in programming languages that allow for
the iteration of a list. In this context, a foreach loop iterates over all
the filled-in indices of a slot, or a set of slots. By allowing for the
simultaneous iteration over more than one slot simultaneously, I allow
for more subtle relationships between slots. For instance, in the code
from go above, each fly_atom activity is instantiated with a parallel
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set of toLocation, toAltitude, and toSpeed parameters. This al-
lows for go to decompose flying to several sequential destinations at
several different altitudes and speeds in a convenient manner that
is, the slots can be used as parallel arrays. This ability has been used
extensively in recipes created for the CSLI dialogue system.

7 Constraints and Defaults

As devices become capable of more complex behavior and the number
of parameters that can be set for each activity grows, it becomes
desirable to express constraints over the values of those parameters.
For instance, in the WITAS system, the operator should be able to
control many parameters that dictate how the helicopter should fly,
such as speed and altitude. At the same time, it would be unwieldy if
the operator were required to specify these parameters each time he
or she gave the helicopter a new command — for instance, to fly to a
specific location. In pursuit of this, my activity model supports three
relevant notions: optional definable slots, defaults, and constraints.
As was discussed above, optional definable slots are those slots whose
values need not necessarily be assigned explicitly (or inferred directly)
from the operator’s commands or answers to questions posed by the
system. Instead, such slots may take on their values through the use
of defaults and constraints.

The motivation for defaults and constraints emerges out of every
day observations about the way that people use language to describe
activities. Most common activities involve some set of parameters
which don’t necessarily need to be specified — for instance a person
can walk or drive quickly or he can talk or sing loudly, but he can also
simply walk or drive, talk or sing. When I ask a person to walk from
point A to point B, it doesn’t matter so much how fast he walks, but
just that he actually succeeds in walking between point A and point B;
nonetheless, he will still have to perform the action at some particular
speed. On the other hand, I can specifically assert that while walking
between point A and point B, he should walk at a speed of 2 miles
per hour. Then, if he were to walk at 5 miles per hour between A and
B, we would say that he had not done the action which I commanded
him to do. Here, then, we see that speed for the activity of walking is
optional, and were we to create a recipe script for walking, speed would
be an optional slot. Moreover, it could be assigned some default value,

47



say 3 miles per hour, which would be used when speed wasn’t explicitly
specified — since walking must be done at some specific speed.

From a more practical point of view, defaults become useful in
dialogues with possibly complex devices simply because if they don’t
exist, dialogues can become tedious. Consider, for example, the con-
trast between the dialogues where no defaults exist in (8a) and (8b)
and one in which defaults are used in (8c).

(8) a. O: Fly to the school.
S: Okay. At what speed should I fly?
O: Medium speed.
S: Okay. At what altitude should I fly?
O: Medium altitude.
S: Okay. Now flying to the school and medium altitude and
medium speed.

b. O: Fly to the school at medium altitude and medium speed.
S: Okay. Now flying to the school at medium altitude and
medium speed.

c. O: Fly to the school.
S: Okay. Now flying to the school at medium altitude and
medium speed.

Once activities exist which have default values that are filled in
automatically, as in (8c), it becomes immediately desirable that there
should be a straightforward means to redefine these defaults on the
fly. Perhaps a deadline is approaching, and I need you to help me
with several tasks making copies of a presentation, delivering the
copies, and sending off several letters. Rather than telling you in turn
to do each task quickly, I might simply say something like “Please do
everything I ask you to do today quickly.” In essence, I have, at least
temporarily, redefined the default speed at which I'd like you to do
all the actions I ask you to do. Moreover, I've defined a constraint
which identifies how you should do all actions I've asked you to do,
and all future activities which haven’t even yet been specified. That is,
rather than just changing the parameters of specific actions I've asked
you to do, I've issued more general guidelines which also apply to
future activities as well. For example, consider the contrast between
the dialogue in (9a) in which defaults can’t be redefined and the one
in (9b) where they can.
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(9) a. O: Fly to the school at high speed and high altitude.
S: Now flying to the school at high speed and high altitude.

O: Fly to the tower at high speed and high altitude.
S: Now flying to the tower at high speed and high altitude.

b. O: Always fly high and fast.
S: Okay.

O: Fly to the school.
S: Now flying to the school at high speed and high altitude.

O: Fly to the tower.
S: Now flying to the tower at high speed and high altitude.

Once we have the power to redefine defaults in a natural way, it
becomes immediately clear that such utterances seem to belong to a
larger class of dialogue moves, which I'll call constraint specifications.
For instance, it seems just as natural to negate the values that certain
slots can take on, or perhaps even to specify more complex constraints
such as disjunctions. Consider the sample utterances in (10) which I
claim also belong to this natural class of dialogue moves.

(10) a. O: Never fly high.
b. O: Always/Never fly low or fast.

The dialogue moves in (8c), (9b), and (10) then seem to make
up a natural class that could be fruitfully used across a wide-range
of devices and agents. Moreover, the class appears to be natural in
the sense that humans often take these sorts of dialogues for granted
because they have underlying assumptions about the importance of
various “parameters,” their default values, and the way that the val-
ues that can fill in these parameters can be constrained. While robot
designers or programmers may be used to thinking about the various
parameters that a robot program or function might take, people gener-
ally make implicit assumptions about the default values of parameters
of activities, assumptions which only become salient when other pres-
sures arise (like an upcoming deadline). Moreover, people already
have natural ways of expressing constraints in natural language, while
it is more difficult and complex (as will be discussed below) to express
the interaction between these constraints in a formalism which an in-
telligent device can handle. The conversational intelligence implicit in
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understanding the interaction between constraints and defaults, how-
ever, can be applied across a wide-range of task-oriented dialogues;
as such it is an ideal candidate for modularization. In this section,
I will discuss how the framework presented here models defaults and
constraints by building on the recipe/activity representations already
discussed; moreover, I will show how the model can be used to fa-
cilitate dialogues like those in (8c), (9b), and (10), as well as others
which will be motivated later.

7.1 Defaults

This section very briefly introduces a basic algorithm for processing
defaults; this algorithm will be revised to take into account the inter-
action between constraints and defaults in section 7.4.1. In the recipe
script, each definable slot can be assigned a default value in the slot
declaration section (see section 5.1.3). For slots related to speed, for
instance, the WITAS system assigns a default value of "medium". If
all of the required definable slots have been set, then any optional slots
which have not been explicitly assigned a value will be assigned their
appropriate default values before the activity is sent to the device to
be executed.

7.2 Constraints

While the ability to have default values is useful, it is not sufficient
to totally free the operator from dialogues such as that in (9a). Put
in terms of the representation of activities/recipes developed so far in
this paper, this dialogue was frustrating because in it, the operator
was forced to be constantly specifying lists of values to be assigned to
optional slots for which the default value was not the desired value.
Such difficulties, as well as the benefits that arise from understanding
utterances such as those in (10), motivate a generic interface for spec-
ifying and managing constraints over slot values an interface which
is presented here.

At the simplest level, these constraints allow a means for the op-
erator to redefine defaults, with utterances such as Always fly high.
Constraints can be much more powerful than this, however. They
can also include negations, as in Newver fly high, conditionals such as
When flying to the school, fly low, or disjunctions such as Always fly
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at low altitude or at high speed.' In principle, the system is capable
of handling arbitrary first-order-logic formulas involving the values of
the slots of activities however, what subset is actually within the
range of human competence is an open question which the following
discussion will hopefully shed some light on (though I don’t propose
to actually supply a precise answer to the question). In future work,
this would certainly be an interesting question to tackle.

Constraints are implemented here as formulas in first order logic
over the values of slots (potentially over both monitor slots and defin-
able slots  though I’ve focused mainly in definable slots in my devel-
opment). The actual translation from an utterance of a constraint to
its first order logic representation (and the reverse: the generation of
an utterance describing a constraint based on its formula) is the re-
sponsibility of the dialogue manager. However, as I will discuss later
in the section on dialogue management, I have provided tools to make
a large subset of these translations relatively straightforward and as
domain-independent as possible. In this section, I will simply assume
that first-order-logic constraints come in from the user via a “black
box” and that utterances pertaining to them can be mapped directly
from them.?

Constraints are associated with particular activities on the activ-
ity tree. In particular, each activity holds two lists of constraints: a
banned list and a necessary list. Formulas that appear on the banned
list are those which should evaluate to false when the activity is exe-
cuted. For instance, if the operator were to instruct the system Don’t
fly high, then the formula corresponding to fly high would be added to
the banned list of a particular activity. Conversely, the necessary list
contains those formulas which must evaluate to true when the activ-
ity is instantiated. While these lists could logically be combined into
a single list, in order to better manage the dialogue and more easily
express the constraints in terms understandable to the operator, they
are separated into the two lists depending on how they were specified
by the operator.

There are two types of constraints: global constraints and local con-
straints. Global constraints apply to all current and future activities

! Disjunctive utterances are not currently supported by the current Dialogue manager,
though the constraint management system described here would have no problem handling
them.

?In the CSLI dialogue system, this “black box” is the Gemini parser/generator
[DGAT93] which makes use of a grammar developed at CSLI

ol



for example, the constraint Always patrol at high altitude is global
in the sense that it should be “applied” to all current and future in-
stances of patrol tasks. On the other hand, local constraints are those
which apply only to a particular activity. For example, if the user were
to first command the helicopter to patrol at the school, and then tell
it to Don’t do 4t at low altitude or Do it at low altitude or low speed
then this constraint should be applied only to the particular instance
of the patrol activity in question.

In order to support this distinction between global and local con-
straints, the Activity Tree implements a system by which it “trickles
down” the banned and necessary constraint lists. This trickling down
simply has the effect that each activity, in addition to being subject to
the constraints on its own banned and necessary lists, is also subject
to all of the constraints of its ancestors. Moreover, the root of the tree
is a special activity which has no slots, but does contain banned and
necessary constraint lists. The dialogue manager, then, assigns global
constraints by adding them to the constraint lists on this root node.
When new activities are instantiated, they then inherit all of the root
node’s constraints via the trickling down mechanism, and hence are
subject to global constraints.

For example, consider the Activity Tree below. Here, N is the set of
necessary constraints at a given node, CN is the complete set of neces-
sary constraints at a given node, including those constraints “trickled
down” from above. Similarly, B is the set of banned constraints at a
given node, while CB is the complete set of banned constraints at a
given node, including “trickled down” constraints from above.

root N={n1,n2}, CN={n1,n2}, B={b1}, CB={bl}
..actl N={n3}, CN={n1,n2,n3}, B={}, CB={bi1}
....act2 N={}, CN={n1,n2,n3},B={b2},CB={bl,b2}
..act3 N={n4}, CN={n1,n2,n4}, B={b3}, CB={bil,b3}

In addition to the banned and necessary lists, each activity also has
two corresponding lists: the ignoreBanned and ignoreNecessary lists.
These lists contain constraints that should NOT be inherited from
ancestor nodes in the tree. These lists allow for specific activities to
ignore global constraints (or constraints expressed over other ancestor
activities), if the operator instructs that this should be the case (as in
the dialogue in (11)).

Adding these lists (notated IN and IB for ignoreBanned and ig-
noreNecessary respectively) to the example above, yields:
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root N={n1,n2}, IN={}, CN={nl1,n2}, B={b1}, IB={}, CB={bil}
..actl N={n3},IN={n1},CN={n2,n3},IB={},B={}, CB={bi1}
....act2 N={},IN={},CN={n2,n3},IB={b1}, B={b2},CB={b2}
..act3 N={n4},IN={n2}, CN={n1,nd4}, B={b3}, IB={b1}, CB={b3}

An example in which a constraint would be added to the ignoreNec-
essary list is the following:

(11) O: Always fly high.

O: Fly low to the school please.

S: Just a minute...I am supposed to always fly high, should I fly
low to the school anyway?

O: Yes.

S: Okay. [Add “fly high” to ignoreNecessary list]

In this case, the constraint that the helicopter should always fly at
high altitude is relaxed, but only in the context of a specific activity.
If the operator were to later command the helicopter to fly somewhere
else, the global constraint of always flying high would still be in effect.
This is because the activity tree looks something like this:

root N={"fly high"}, IN={}, CN={"fly high"},
..go (school) N={}, IN={"fly high"}, CN={},

Hence, future descendents of the root will still be subject to the
"fly high" constraint, however children of the go activity will not
longer have this constraint “trickled down” to them. This is a critical
distinction, because if the constraint were simply removed from the
constraints list at the root, then it would no longer apply to future
activities.

7.3 Examples of constraints

Constraints are implemented as first order logic statements over the
values of particular slots or more specifically, over the values of the
specific indices of specific slots. Consider the formulas in figure 2 and
their appearance on either the banned or necessary lists of the root of
the activity tree (all are actually supported by the current dialogue
front end, except where noted):
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Figure 2: Constraints translated to formulas on the banned and necessary

lists
necessariy:

e always fly high: [command="go" — toAltitude="high"|
e always fly at low speed: [command="go" — toSpeed="low"|

e when patrolling at springfield school, patrol at low altitude:
[(command="patrol" A toLocation="s1") — toAltitude="low"]

e always fly low or fast: [command="go" — (toAltitude="low" V
toSpeed="fast")]| *

banned:
e never fly high: [command="go" A toAltitude="high"]
e never fly at low speed: [command="go" A toSpeed="1low"]

e never patrol at springfield school at low altitude: [command="patrol"
A toLocation="s1" A toSpeed="low"|

e never fly low and fast: [command="go" A toAltitude="low" A
toSpeed="fast"]

“Not supported by the current dialogue manager
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From figure 2, it is apparent that the sorts of constraints which can
be represented are far more powerful than the simple redefinition of
“defaults” discussed in section 7.2. Indeed, in principle a constraint
can be an arbitrary first-order-logic formula over slots, or slots and
particular indices. This allows for a relatively wide range of con-
straints. The main difficulty is in converting from natural language to
coherent formulas and back, but below it will be shown that this can
be done in a relatively domain-independent form for a large number
of interesting cases.

It is interesting to note that the constraints on the necessary list
appear in the form of conditionals in which the command (or ac-
tivity type) is always part of the antecedent. It is critical to note
that it would be incorrect to simply have a conjunction of slot as-
signments appear on the necessary list. For instance, placing the for-
mula [command="patrol" A toAltitude="high"] on the necessary
list would require that all activities be of type patrol, which is clearly
incorrect. Indeed, an important part of translating constraints from
natural language to FOL is determining which slots should appear in
the antecedent and the consequent respectively. It is here that the
distinction between required and optional slots plays another impor-
tant role: when translating constraints of the form “always command”
(where command is a type command that might be given to the sys-
tem), the slots which are required should appear in the antecedent
while those which are optional should appear in the consequence. In-
deed, this definition is merely the formalization of the more vague dis-
tinction I initially presented — that required slots are those which form
the core concept of an activity, while optional slots are those which
define possible parameters of an activity, but which do not compose
part of its core concept.

7.4 Constraining Activities and Interfacing to
ECL'PS®

There are several problems that need to be solved in the course of im-
plementing a system of constraints that can be utilized by the dialogue
manager to engage in relevant dialogue. This project solves some of
these problems, but some remain to be dealt with in future work. First
and foremost is the problem of taking a (possibly) partially specified
set of slots for an activity and then applying some appropriate com-
bination of defaults and constraints to fill in the remaining slots. It
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is when this operation fails that the two other major problems arise.
The first of these arises when the partial specification itself is incon-
sistent with the current constraint set. In this case, the system needs
to determine which set of constraints has been violated and report
this to the operator. The second of these occurs when a default value
can’t be assigned to a slot because it would violate a constraint, but
the constraints are not specific enough to require a single particular
value for the slot. Essentially, the combination of the constraints and
the partial specification of an activity do not uniquely define a single
activity.

For example, consider the following three sample dialogues below
(with dialogue moves noted in brackets):

(12) O: Always fly high. [specify global constraint]

O: Fly to the school please. [command]
S: Now flying high to the school at medium speed. [report]

(13) O: Always fly high. [specify global constraint]

O: Fly low to the school please. [command]

S: Just a minute...

I am supposed to always fly high, [report constraint violation]
should I fly low to the school anyway? [relax constraint y/n
question]

O: Yes. [y/n answer]

S: Okay. [confirmation]

(14) O: Never fly at medium altitude. [specify global constraint]

O: Fly to the school please. [command]

S: What altitude should I fly at? [slot value query]
O: Low altitude. [slot value answer]

S: Okay.

S: Now flying low to the school at medium speed.

In order to facilitate these dialogues, the dialogue system must be
capable of carrying out the following algorithm:
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Algorithm: CONSTRAINT DIALOGUE GAMES

1. Calculate the number of possible activities that are defined
by the combination of the partially specified activity, the
constraints over that activity, and the default slot values
which can be assigned without violating constraints. Let this
number be w.

2. IF w = 1 THEN success has been achieved and an activity has
been uniquely identified (as in (12))

3. IF w = (0 THEN determine the most informative set of
constraints has been violated and report it to the operator
(as in (13))

4. IF w > 1 THEN determine which slot(s) are underspecified and
spawn a relevant information-seeking dialogue (as in (14))

In order to supply the dialogue manager with the necessary infor-
mation, I made use of ECL'PS® ([WNS97], [ACD*02]), a constraint-
based solver that extends Prolog. In order to interface ECLPS® to
the existing CSLI Java-based infrastructure, ECL/PS® was run as an
embedded process within the CSLI Dialogue Manager (see [NSSS02]
for technical details of how this is accomplished).

ECL/PS® solves constraint satisfaction problems by taking the fol-
lowing steps:

First, each variable must be assigned a particular domain. The
domain of a variable can be an integer or real number range, or a
particular set of atomic values.. For example, to set the domain of the
variable X to be {high, medium,low} the following construct is used:
X :: [high, medium, low]

Next, constraints are declaratively defined in terms of the values of
the variables. For example, to constrain X such that it can only take
on the set of values {high,low}, we declare the following constraint:

(X #= high) #V (X #= low)
where #=, for example, indicates the assignment predicate. Finally,
we ask ECL'PS¢ to produce all sets of labellings of variables assigned

to values, such that the constraints are satisfied.
The constraint management system, then, makes use of ECL'PS®
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by assigning each index of each slot a particular variable, issuing con-
straints over these variables, and then asking ECL'PS® to return the
set of all possible labellings such that the constraints are satisified.
As mentioned above, each index of each slot is assigned a unique
String which identifies the name of the variable which will be used
in ECL’PS® to constrain that particular slot+index. The first step,
then, is to set the domain of each of these variables. The domain
of each variable is originally set by the system designer as part of
the recipe script: recall that each slot is associated with a particular
type, and that each type is assigned a particular domain when it is de-
clared. During the recipe “compilation” process, each slot’s domain is
determined and a bit of ECL’PS® code that defines a predicate called
set_domain is generated in a file called domains.ecl which assigns each
“eclipse variable” that corresponds to a slot+index to the domain of
the type associated with the slot. This predicate is loaded at runtime,
and called as the first step in the constraint-satisfaction process.

Next, each constraint from the relevant activity’s banned and neces-
sary lists (as well as those constraints inherited from ancestors, but not
on the ignored list) must be translated into the appropriate ECLPS®
constraints. Recall that each constraint is expressed as a FOL expres-
sion over the values of slots either over the value of all indices of a
particular slot, or over the value of a particular index of a particular
slot. In the case where a constraint is over a particular slot+index,
the translation into ECL/PS® is straightforward. The appropriate
variable name that corresponds to that slot+index is identified, and
the constraint is output in terms of that variable. However, when a
constraint is meant to apply across all indices in a particular slot, the
process is not as simple.

In this case, the most straightforward approach would be to simply
apply the constraint across all indices of the slot. This proves prob-
lematic, however. Consider, for example, the basic fly activity in the
WITAS system called go. This activity contains the slot toLocation,
which actually has three indices (which means that the activity can
be used to fly to three locations in sequence). It is a common oc-
curence, however, for only the first of these indices to be specified; for
instance, if the operator gives the command “fly to the hospital” then
only the first index of toLocation will be assigned a value. In this case,
we don’t want to force the uninstantiated second and third indices
to be assigned values, since the minimum length in the recipe script
required of toLocation is set to be 1. In pursuit of this, we assign the
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special value ‘null’ to the variables that correspond to the second and
third indices of toLocation. In order to allow this assignment, ‘null’
is included as a possible value in the domain of every variable for
variables that we actually want to have assigned a value, we stipulate
the additional constraint that that variable’s value cannot be equal
to ‘null’ when calling ECL’PS®. The basic assumption, then, is that
a constraint applies over all the indices of a slot up to its minimum
length, and those beyond its minimum length which are actually filled
in.

This basic assumption, however, must be modified when we exam-
ine a scenario in which the operator has commanded the system to
“fly to the tower then the school.” In this case, the above algorithm
works fine for assigning constraints to the slot toLocation, however it
runs into problems when we attempt to assign constraints to the val-
ues of indices of toSpeed and toAltitude. Both of these slots are meant
to be “parallel” to toLocation in the sense that the values at corre-
sponding indices in the three slots are passed together to the atomic
activity fly_atom. In this example, the second value of toLocation is
"school", and whatever values are assigned to the second index of
toSpeed and toAltitude respectively will control the way in which the
helicopter flies to the school, but not the tower.> As such, we need
to indicate both the first and second indices of toSpeed and toAltitude
should be subject to constraints and assigned values, even though by
our basic assumption above we would only end up requiring that the
first index of both toSpeed and toAltitude be assigned values, since
the minimum length of each slot is 1 and all indices of each slot are
unassigned.

Since this sort of parallelism is domain dependent, the constraint
management system defines a callback method getSlotMaxzLengthFor-
Constraint() which takes as parameters the name of the slot and the
instance of CSLI_ActivityProperties which that slot comes from. This
callback method is a part of CSLI ActivityBase and its default im-
plementation is to follow the basic assumption given above. Super
classes of CSLI_ActivityBase should define this method if the default
implementation is insufficient. In the case of the WITAS system, this
method is overridden such that when the slot in question is toSpeed
or toAltitude, the maximum number of indices to be constrained is

3While this system of parallel slots may seem overly complex at first, it arises from
the need to be able to interpret commands like “fly to the tower at low speed and to the
school at high speed”
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calculated based on the content of toLocation. This callback method
allows arbitrarily complex relationships to hold between different slots
while at the same time it frees the constraint management system from
having to understand these constraints.*

With this callback method in hand, the sytem now has a means of
translating from constraints over slots and their values to a meaning-
ful representation in ECL’PS®. Constraints are assigned to the first n
indices of the slot, where n is determined by calling getSlotMaxLength-
ForConstraint(). For constraints which are over multiple slots, this ex-
pansion must occur recursively. Finally, if the constraint comes from
the banned list, then it must be negated — since ECL’PS® supports
only constraints which necessarily must be adhered to. In the follow-
ing example, I will show the results of this process on a few constraints,
given the specified partially instantiated CSLI_ActivityProperties and
assuming that the relevant ECL’PS® variables assigned to the zeroeth
index of toLocation is ToLocationO, and similarly for other slot+index
pairs:

Given Activity Properties with the following slots specified (“fly to
the tower then the school”):

command = go
toLocation[0]
toLocation[1]

tower
school

The necessary constraint “always fly high” command = go — toAltitude =
high yields the set of constraints:

Command#=go #--> ToAltitudeO#=high
Command#=go #--> ToAltitudel#=high

The banned constraint “never fly high” command = go AtoAltitude =
high yields the set of constraints:

4 An interesting bit of future work would be to make some of this knowledge declarative
and include it in the recipe script. For instance, parallel slots in the sense defined in this
paper could be declared as such and this knowledge could then be automatically integrated
into the dialogue manager. As we will see later, this knowledge also plays a key role in
the Noun Phrase resolution procedures which need some domain knowledge about the
relationships between slots in order to work properly
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— (Command#=go #A\ ToAltitudeO#=high)
— (Command#=go #A\ ToAltitudel#=high)

Finally, the partially specified activity is convered into constraints
as well. This is a straightforward process: all values that are as-
signed in the activity are converted to simple equality constraints of
the form: SlotIndexVar #= value, where SlotIndexVar is the ap-
propriate variable that corresponds to the slot+index in question, and
value is that value that has been assigned to that slot+index. At this
point, we can simply query ECL'PS® for the set of all suitable sets of
variable assignments that satisfy the constraints.

7.4.1 Dealing with Defaults

In order to actually determine how a partially specified activity should
be properly instantiated, there is another aspect of the problem to
consider: defaults. Each slot which is not linguistically specified by
the operator (or inferred directly from the operator’s commands), may
have a suitable default value. As discussed above, default values for
slots are declared as part of the recipe script. The simplest way of
dealing with defaults would be to simply assign them appropriately
to all slots that have not been already assigned a value, and then run
the resulting activity specification through ECL’PS to determine if it
meets the constraints set out by the operator. This approach, however,
is clearly unsatisfactory. Consider the following dialogue that might
emerge from such an algorithm, assuming that the default speed at
which to fly is set to medium:

(15) O: Always fly at high speed
S: Okay

O: Fly to the tower

S: Just a minute ...

I am supposed to always fly at high speed

Should I fly to the tower at medium altitude and medium speed
anyway?

As the above dialogue illustrates, if we were to assign defaults to
all unspecified slots BEFORE calling ECL’PS®, then the constraints
set out by the user can’t be used to fill in unspecified slot values to
which they pertain — in this case, the toSpeed slot.
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To solve this problem, the following algorithm is used:

Algorithm: CONSTRAIN INSTANTIATIONS
en: a partially specified activity, P.

Giv

1.

Consider the finite set of slots+indices which can potentially

be assigned a default value given a particular partial
activity specification; call this set of slot+index to value
assignments S.

. Consider each subset s C S in order from largest to smallest,
assign the slot+index to value assignments in s to P, yielding

P

(a)

(b)
(c)

(d)

Send P’ along with the necessary and banned constraints to
ECL'PS® to yield W: the set of all legal assignments of
values to variables in P’.

If |W| =1, succeed and return W.

If |W| > 1, retain W and continue iterating. If future
iterations do not succeed, return W.

If |W| = 0, continue iterating. If this is the last
iteration, and there are no previously retained W's, then
fail.

This algorithm tries to find the largest number of defaults that can
be assigned to yield a single legal (subject to the constraint set) fully-
instantiated activity (all definable slots filled with a value). It prefers,
however, to find exactly one fully specified activity in a set to assigning
as many defaults as possible. If, after not assigning any of the defaults,
it still can’t find any possible instantiations, then it fails because the
partially specified activity itself must violate the constraint set. If ex-
actly one legal instantiation is found at any point, then the algorithm
succeeds immediatly and returns this result. If there are always more
than one possible instantiations, then the algorithm prefers the set
that arises from instantiating as many default values as possible.

If the algorithm succeeds in finding a single possible instantiaton,
then the dialogue manager accepts this instantiation and goes ahead
and requests that the activity be executed. If there are zero possible
instantiations, then the dialogue manager reports that the partially
specified activity violates the constraint set. Moreover, the constraint
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management system allows the dialogue manager to request which set
of constraints were violated, so that it can inform the operator (more
about this in the next section). If there are multiple possible instanti-
ations, then the dialogue manager engages the user in an information
seeking dialogue specifically, it determines which slot+indices can-
not be assigned a unique value based on the constraints, and asks
the operator to supply values for these slots. An example of such a
dialogue appears in (14).

Note, that just as we used the method getSlotMaxzLengthForCon-
straint() above to deal with the case of so-called parallel slots, a similar
mechanism must be used for defaults as well. Consider that if two lo-
cations are specified to which the helicopter should fly (in the WITAS
system), then we should consider the first two indices of the slots of
toLocation and toSpeed when assigning defaults. In pursuit of this, a
callback method called getSlotMinLengthForDefault() is defined which
returns the minimum number of indices in a given slot which ought to
be assigned default values (if possible).

7.4.2 Determining which set of constraints has been vi-
olated

In the case where the partial activity specification supplied by the
operator is determined to violate the current constraint set, the con-
straint management system provides a means for the dialogue man-
ager to determine specifically which subset of the constraint set was
violated. This allows for dialogues like the one in (13).

Of course, it is simple to find one easy solution to the question of
which set of constraints was violated: all of them. If we were to remove
all constraints, then the partially specified activity would not violate
any constraints at alll The constraint management system aims to
find the most informative subset of constraints that were violated; in
this context, this means the smallest subset of constraints. While it is
technically true to say that if we removed both the constraints “always
fly high” and “always fly at high speed” then the command “fly to
the tower at high speed and low altitude” would become legal but
this is not nearly as useful as determining that only the constraint
“always fly high” is the one that is actually causing the problem. As
such, the system tries to find the smallest subset of constraints which
need to be removed in order for the partial activity specification to be
allowable (it does not, however, prefer one subset of constraints over
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another if both sets are the same size in this case, it merely reports
the subset that it finds first).

In order to determine which set of constraints was violated, we
simply iterate over all possible subsets of the constraint set and find
the largest one which doesn’t prohibit the partially specified activity.
The algorithm is as follows:

Algorithm: FIND VIOLATED CONSTRAINTS
Given: a partially specified activity, P
Given: the set of all banned and necessary constraints, C

For i =1 to |C] {

For each subset ¢ C C such that |c

1. Let Q=C—c¢
2. Send P along with the constraint set () to ECL'PS® to

yield W: the set of all legal assignments of values
to variables in P.

3. If |P| =0 return c

:i{

With the set of violated constraints in hand, the dialogue manager
can produce dialogues like the one in (13).

7.5 Maintaining a Consistent Set of Constraints

When humans use natural language to specify and understand con-
straints, they are not always explicit about certain underlying assump-
tions that they make. For instance, consider the following two sections
of two different dialogues:
(16) a. O: Always fly high.

S: Okay.

O: Always fly at low speed.
S: Okay.

b. O: Always fly high.
S: Okay.
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O: Always fly low.
S: Okay.

At the syntactic and semantic levels, there is nothing to distinguish
(16a) from (16b); however, they are actually quite different. In (16a)
there is an implicit “and” between each constraint specification — that
is, the sequence of utterances is meant to specify a conjunction of con-
straints. By specifying the second constraint, the operator meant to
add an additional constraint. In constrast, in (16b), the operator first
specified one constraint and then implicitly changed this constraint
later. Hence, in this case, at the end of the dialogue there should only
be a single constraint in effect, namely: “always fly low.” We might
say that there is an implicature which must be calculated by the utter-
ance of the second constraint specification in (16b) which doesn’t exist
in (16a), namely that the previous constraint specification should be
cancelled.

If such implicatures are not understood by the dialogue system,
then the set of constraints it maintains is in danger of becoming in-
consistent in a sense that will be explored here. Continuing the ex-
ample in (16b), if the dialogue manager were to fail to simply add
both constraints specified by the user to the necessary list, then the
list would contain both of the following constraints:

(17) 1. command="go" — toAltitude="low"
2. command="go" — toAltitude="high"

If this set of constraints were passed to an ECL‘PS® in order to in-
stantiate a partially instantiated activity like “fly to the school,” then
ECL!PS® would be unable to fully instantiate the activity due to the
inconsistancy in the constraint set.

Despite this difficulty, these two constraints are not logically incon-
sistent in the sense that a formula such as A A —=A is. While A A -A
describes a situation which cannot be satisified in any possible world,
the constraints in (17) are not so prohibitive; for example, we could
always simply choose an activity besides go — we might take a picture
of a car, for example. As such, the property of consistency we are
after for the constraint set is not that of logical consistency, but some-
thing I'll call commonsense task consistency in this discussion. The
challenge for the constraint management system, then, is to identify
when the second utterance in constraint command pairs like the ones
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in (16) gives rise to an implicature, so that commonsense task consis-
tency in the set of constraints can be maintained. In the context of
the constraint management system developed here, this means that
when new constraints are specified, the existing constraint set must
be searched for constraints which should be removed.® For the case in
which constraints are truly arbitrary first-order-logic expressions, this
is an incredibly difficult problem however. However, as we have seen,
the range of constraints people are actually likely to give (which can
actually be translated to FOL) is constrained such that only certain
patterns are likely to emerge. Given this more limited problem, certain
patterns which give rise to implicatures can be identified and then the
constraint management system can look for these patterns to maintain
a consistant constraint set. For the CSLI dialogue manager, the set of
implicature patterns which needed to be recognized by the dialogue
manager in order to keep the constraint set consistent (such that it
only contained constraints which could actually be dealt with by the
system) was identified — they are given in figure 3. In these patterns,
the first formula corresponds to the first constraint-specification ut-
terance in a dialogue and the second corresponds to the second. Note
that we take advantage of the fact that items on the banned list in
the form A A B can be rewritten as necessary constraints of the form
A — —B. When this rewrite is done, the assumption is made that the
definable slots should appear on the left, and the optional slots should
appear on the right hand side.

The example patterns in figure 3 illustrates cases where the con-
straint in the first line is replaced by the constraint in the second line.
These patterns are limited to cases in which only 1 or 2 conjuncts are
given. Of course, in a real system, these formulas should be general-
ized to instances in which 3 or more conjuncts appear — and, indeed,
in the CSLI system such a generalization has been made. Where a
single conjuct occurs in contrast to two earlier conjuncts (as in, for
example, the pair: [A=aAB=5bl > C=c¢; and A =a — C = ¢3),
the more general case is one in which the second set of conjuncts are
a subset of the first (here, {A} C {A, B}).

In the current constraint management system, all necessary con-
straints are broken down into their simplest form before being added
to the necessary list. That is, a potentially complex constraint like fly
to the tower at high speed and at high altitude is converted into two

50r at the very least, which the dialogue system ought to bring up in some clarification
subdialogue aimed at determining what the operator really meant
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Figure 3: Implicature Patterns

. (A=anB=b) —-C=q¢

e.g. Always fly to the tower at high altitude.
(A=aANB=b) -C+#c

e.g. Never fly to the tower at high altitude.

. (A=anB=b)—->C=qc

e.g. Always fly to the tower at high altitude.
(A=aANB=b) »>C=c

e.g. Always fly to the tower at low altitude.

. (A=anB=b) —-C=q¢

e.g. Always fly to the tower at high altitude.
A=a—-C#¢

e.g. Never fly at high altitude.

. (A=anB=b) —->C=qc

e.g. Always fly to the tower at high altitude.
A=a—C=c¢

e.g. Always fly at low altitude.

. (A=anB=b) —=-C+#c

e.g. Never fly to the tower at high altitude.

(A=anNB=b) -C=q¢

e.g. Always fly to the tower at high altitude.

e.g. Always fly to the tower at high altitude and high speed.
(A=aANB=b) -C+#c

e.g. Never fly to the tower at high altitude. ¢

. (A:CL/\B:b)—)(Czcl/\D:dl)

e.g. Always fly to the tower at high altitude and high speed.
e.g. Never fly to the tower at high altitude and high speed.
e.g. Never fly to the tower at high altitude and high speed.
(A:CL/\B:b)—)(Czcl/\D:dl)

e.g. Always fly to the tower at high altitude and high speed.
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constraints representing fly to the tower at high speed and fly to the
tower at high altitude respectively. More formally, given the constraint
given in (18), the two constraints in (19a) and (19b) are actually added
to the necessary list.

(18) command= "go" — (toSpeed = "high" A toAltitude = "high")

(19) a. command = "go" — toSpeed = "high"

b. command = "go" — toAltitude = "high"

As such, the algorithm in figure 4 has been implemented to identify
constraints in the current set which should be removed given a new
constraint specified by the operator. This algorithm makes use of the
following simple helper functions:

e isNec(c) which simply returns true iff ¢ is on the necessary list
(or is supposed to be added to the necessary list)

e dif f_assign(ry,rs) returns true iff ro contains an assignment to
a slot given in 71, but the value assigned to that slot is different.
For example, if 11 was {A = a1} and ry was {A = ay,...} then
the function would return true.

° same_assz’gn(rl, 7"2) returns true iff ro contains an assignment to
a slot given in 71, and the value assigned to that slot is the same.
For example, if 1y was {A = a1} and ry was {A = aq,...} then
the function would return true.

8 Algorithms for the Dialogue Man-
ager

I will not discuss here the full details of the CSLI dialogue manager;
I refer the interested reader to [LGP02]. Instead, I will discuss the
interface provided by the activity modeling and constraints/defaults
system and the services that any dialogue manager wishing to be en-
abled with it must provide. Fuerthmore, I will discuss algorithms
which have been implemented in the CSLI dialogue manager which
take advantage of the framework discussed in this paper in order to
faciliate more natural dialogues between the human operator and the
device. The system is built in such a way that there is nothing that
ties it by necessity to the details of the CSLI dialogue manager; it
does not rely on any one particular theory of discourse representation,
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Figure 4: Algorithm for detecting implicatures
Algorithm: FIND CONFLICTING CONSTRAINTS DUE TO IMPLICATURE

Given: a new constraint, c, to be added to the constraint set
Given: the set of all banned and necessary constraints, C,
converted to canonical form?

Let I be an initially empty set to hold the constraints C
which are found to be inconsistent with ¢,.
For each ce C {

Let r. be the set of equality statements on the right side
of ¢

Let [. be the set of equality statements on the left side of

Let r.,, be the set of equality statements on the right side
of ¢,

Let [, be the set of equality statements on the left side
of ¢,

If I, Cle {
If(
(isNec(c) NisNec(cp) N, Cl. Ndif f_assign(re,,re))V
(isNec(c) N —isNec(c,) A |re,| = 1 A same_assign(r.,,r.))V

(misNec(c) NisNec(cn) Are, Cre)

) {

Add ¢ to I, if c¢ 1

}
}

If (isNec(c) N —isNec(c,) {
Let C, be the set of ¢, € C' such that /. = [,
Let r¢, be Ure,
If(r,, Cre,) |
Add ¢ to I, if cd
}

}

*Where canonical form corresponds to t gform of constraints given in figure 3. That
is, all necessary constraints are of the form (A =aA...AB=b) > (C=cA...AD =d)
and all banned constraints are in the form (A =aA...AB=5b) - =(C =cA...AD =d)



any specific set of algorithms for processing or producing discourse, or
any particular parser or grammar. That said, it is up to the dialogue
manager to provide these services.

The system provides several capabilities that a dialogue system
should interface to, including: a means of representing the relationship
between different activities that are currently being executed, have
been executed, or which are planned; the application of constraints
and the ability to determine which constraints are problematic; and
a representation of which slots are pertinent to an activity in various
states. It also depends on the dialogue manager for several abilities,
including: interpreting commands and constraints in natural language;
the generation of reports about an activity based on its slots and their
values as well as the generation of constraints in natural language; and
knowledge about which slots may be “parallel.” In this section, I will
discuss each of these items and how they have been handled by the
CSLI dialogue system.”

8.1 Translating Commands from Natural Lan-
guage into Activity Representations

I’'ve defined activities in this paper in terms of an activity type and
a set of slots some of which are filled in with particular values. I've
said nothing about how to translate commands like Fight the fire at
the tower into these representations, or how to generate from them
reports like Now flying low to the tower at high speed. In the CSLI
dialogue manager, user utterances are parsed and system utterances
are generated using a bi-directional unification grammar written using
SRI's Gemini system [DGAT93]. The grammar for the CSLI dialogue
manager has been hand-designed to be used for the command and
control of mobile robots. I will not discuss the grammar here in detail,
but suffice it to say that the dialogue manager deals only in the logical
forms that are produced by the grammar and never with the actual
surface string.

The logical forms for commands and reports generally break them
down into their verb and the verb’s argument PPs and NPs, as would

7T am indebted to Oliver Lemon, Laura Hiatt, Randolph Gullett, and Elizabeth Bratt
for the hard work they have put into many areas of the dialogue system, including many of
those elements that were necessary for interfacing to the activity modeling and constraint
services I've discussed in this paper. Much of the work discussed in this section on the

dialogue manager side of things was actually implemented by them.
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be expected. For example, the logical form for deliver the medical
supplies to the school is:

[command ([deliver],
[param_list([arg([np([det([def],the),
[n(medical_supplies,pl)]
DD,
[pp_loc(to,arg([np([det([def],the),
[n(school,sg)11)1))11)
D1

Similarly, the logical form for Fly to the tower and the school at high
speed. is:

[command ( [go] ,
[param_list ([[pp_loc(to,arg(conj,
[np([det([def],the),
[n(tower,sg)11)],
[np([det ([def],the),
[n(school,sg)11)1))]1,
(speed) ,value(high)]1)]1)1)]

Given logical forms like these, the Dialogue Manager must go
through two steps to translate it into a activity description. First,
it must pull apart the arguments into the appropriate slots for the
activity type. Second, it must “resolve” the NPs to determine what
actual objects in the world they refer to.

In the CSLI dialogue manager, the CSLI_Activity class supplied
by the device interface is subclassed by CSLI_Task so that extra in-
formation can be added on to each activity. Of interest here is that
corresponding to any definable slot which can be described in terms of
an NP (for instance, toLocation might correspond to the NP “spring-
field school”), CSLI_Task defines a slot to hold the NP associated
with that slot  for instance, toLocationNP. The dialogue manager
first pulls out the NPs for each command that belong in a slot and
puts them in the corresponding NP slot. It also pulls slot values which
aren’t parsed as NPs, but rather as “mods” modifiers such as “at
high speed” — and puts them directly in their corresponding slots, for
instance toSpeed.

Next, each NP is “resolved” through either dialogue context of
database lookups to an actual entity in the world. If no such entity
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can be found or multiple possible matches are found, then the dialogue
manager initiates information seeking dialogues with questions like
Which tower do you mean? and Where is the pond?. Once the NPs
are resolved, the IDs of their referents are placed in the correct slots

for example, the id of the referent of carryObjectNP is placed in
carryObject. Recall that the fact that it is the identifier of the referent
that must be stored in a particular slot when determined in the recipe
script when that slot was determined a type, which had a particular
domain. Hence, what sort of value is actually stored in each slot can
be determined on a domain-specific basis.

If some of the required slots still need values at this point, then the
dialogue manager presents information-seeking questions, like Where
should I fly to? to the operator. Once all of the required slots have
been filled in, the activity’s state is set to resolved, at which point
the constraint and defaults management system kicks in and tries to
fully instantiate the activity according to the current constraint set.

8.2 Translating Constraints from Natural Lan-
guage into Logic Expressions

Currently, the CSLI dialogue system can understand constraints such
as:

e Always/Never fly at high speed.
e Always/Never patrol at the tower at low altitude.
e Always/Never fly high and fast.

Essentially, the system can understand any normal command input
prefixed by either always or never. This is because the algorithm it
uses to translate these constraints into logic expressions is based on
the algorithm above for translating commands in natural language to
activity /slot representations. For example, always patrol at the tower
at high altitude is simply interpreted by passing the patrol at the tower
at high altitude through the command parser and making note with a
flag that it was a global constraint. Then, the slots which are filled in
are turned into a constraint where all of the required slots appear on
the left hand side of the implication and the optional slots on the right
hand side, as discussed above. I note again, here, the importance of
the distinction between required and optional slots.
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8.3 Translating activities and constraints into
natural language

The process of going from an activity to natural language basically
involves going through each slot and choosing an appropriate noun
phrase, prepositional phrase, or other modifier to represent that slot.
Each slot is marked in the dialogue manager either as being one of a PP
slot, an NP slot, or a modifier slot in the context of particular activity
types. An appropriate phrase is chosen by the dialogue system based
on the contents of the slot, and then all of the phrases are assembled
to create an appropriate logical form. As I mentioned above, in the
recipe script different slots can be associated with each activity state.
Hence, depending on the state of the activity, or the intent of the
utterance (is it to be used for a question or a report, for instance),
different set of slots may be used to generate the natural language to
describe the activity.

To translate a constraint into natural language, it is first con-
verted into an activity representation with the appropriate slots filled
in which are covered by the constraint. Then, this is converted to
a logical form and embedded inside the appropriate logical form for
the various sorts of constraints for instance, it is embedded inside
a different form depending on whether it came from the banned or
necessary list and whether it is a global or local constraint.

8.4 Avoiding Mode Confusion

A major problem facing a dialogue system for controlling devices is the
problem of deciding when changes in the state of the world should be
described to the user. In order to avoid mode confusion, it is impera-
tive that the operator’s beliefs about the state of the world sufficiently
match the actual state of the device. For instance, if the device has
successfully completed an activity that it was pursuing, then the op-
erator needs to be informed of this so that he or she maintains an
accurate mental model of what the device is doing. If the device does
not keep the operator abreast of its state, then incomprehensible dia-
logues like the following might ensue:

(20) O: Fly to the school and look for a red car.
S: Now flying to the school
...and looking for a red car
Helicopter finishes flying to the school but says nothing
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O: Cancel flying to the school

The above is just a small example of the sorts of problems that may
occur if the operator does not maintain a consistent picture of the state
of the world that matches reality and the mental state of the device.
In this section, I discuss the techniques developed as part of the CSLI
dialogue manager for avoiding mode confusion; in particular, I focus
on how these methods are facilitated by the representation afforded
by Activities, the Activity Tree, and Constraint Management System.

8.4.1 Announcing State Changes

The Dialogue System must somehow decide when to make announce-
ments about when the state of the world has changed. The Activity
Tree provides one mechanism by which the dialogue system can make
intelligent decisions about what changes in the world are conversa-
tionally appropriate, and which need not be mentioned. Whenever
the state of an activity on the tree changes (for instance from planned
to current), the dialogue manager is notified of this update and can
choose whether or not to announce this change in state. The simplest
strategy is to announce every state change of every activity; however,
this leads to some odd dialogue sequences. Consider, for instance, the
a simple case from the WITAS system in which the helicopter flies
from base to the school. Just before reaching the school, the activity
tree looks like this:

root

..go (to school) [current]
....take_off [donel

....fly_atom (to school) [current]

Upon reaching the school, first the fly atom activity becomes done
and then, in turn, the go activity becomes done as well. Yielding first
this activity tree:

root

..go (to school) [current]
....take_off [donel
....fly_atom (to school) [done]

And then this one:

root
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..go (to school) [done]
....take_off [donel
....fly_atom (to school) [done]

If the policy were to announce the state change of each node, the
system would make the following announcement:

(21) S: I have flown to the school. [corresponds to fly_atom node]
S: I have flown to the school. [corresponds to go node]

Indeed, it would end up making the same announcement twice in
a row! In order to avoid this, we might decide to only make an an-
nouncement when a leaf of the tree changes in state, as leaves are
the activities which are actually executed. However, this may lead to
system announcements which do not contain as much information as
they ought to. Consider the situation in which the system is trans-
porting the medical supplies from the hospital to the school. Just
before completing this activity, the activity tree looks like this:

root

. .transport (medical supplies) (from hospital) (to school) [current]
....pick_up (medical supplies) (from hospital) [done]
...... go (hospital) [donel

........ take_off [done]

........ fly_atom [done]

...... pick_up_object (medical supplies) [donel
....deliver (medical supplies) (to school) [current]
...... go (school) [done]

........ take_off [skipped]

........ fly_atom (school) [done]

...... drop_object (medical supplies) [current]

When drop_object is completed, it will become done and then
deliver will become done, and finally transport in turn will become
done. Here, however, it is desirable to announce not only that the
medical supplies have been dropped, but that this indeed concludes
the deliver and transport activities without this information, the
operator may become confused as to the state of the robot. The
desired dialogue, then, is something like the following:

(22) S: I have dropped the medical kit.
S: I have delivered it to the school.
S: I have transported it from the hospital to the school.
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In order to allow for this type of dialogue, the policy which has
been implemented is that the completion of an activity is announced
under the following conditions:

1. The activity is a leaf node

2. The activity is not a leaf, but it has a different Natural Language
Mapping from its last child.

8.4.2 Filtering Against the State of the World

The CSLI Dialogue Manager makes use of a relatively common tech-
nique in dialogue managers that deal with complex systems in that
it employs a generation manager which stores potential system utter-
ances in a queue and then, when an appropriate point in the conversa-
tion arises for the system to make an utterance (or an utterance is of
a critical enough nature that the system should barge in and utter it,
no matter what), the generation manager chooses an appropriate ut-
terance from the queue and utters it.® In the CSLI Dialogue Manager,
this queue is referred to as the System Agenda.

Whenever the dialogue manager makes the decision that it is ap-
propriate to announce the state of an activity, using the algorithm dis-
cussed in (8.4.1) above, the utterance describing the particular activity
and its state is added to the System Agenda. Eventually, the gener-
ation component will have a chance to examine the System Agenda
and decide how to realize each utterance linguistically, and whether
or not the utterance should be actually be uttered by the system at
all. In the situations that the Activity Modeling System described in
this paper has been designed for, it’s possible that by the time it’s
appropriate for the generation component to realize an utterance on
the System Agenda, this utterance may no longer be relevant or
worse, it may actually represent a claim that is no longer true. Such
time delays have tended to occur on a regular basis with the dialogue
systems we have developed, mainly because in the seconds it takes for
either the operator or the system to make one or a few utterances, the
activities being monitored may have changed significantly in nature.

8This is a very brief overview of how the generation component in the CSLI Dialogue
Manager works; geneeration is, in fact, relatively complex. For example, it will introduce
anaphora and ellipsis into the utterances in its queue, in order to fit them better into the
current conversation. Such functionality has no bearing on the discussion here, as the
algorithm discussed here will benefit any dialogue management system which makes use

of a queue to store potential utterances.
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A quite common example is that while sometimes it may take a
device a few seconds (or even minutes) in order to plan an activity,
sometimes this process is nearly instantaneous. However, during the
instant when the activity switches to a state of sent (and is sent to
the planner), the dialogue system doesn’t automatically know if this
state will take a few minutes, seconds, or milliseconds. As such, it
immediately places a logical form for an utterance of the form Now
planning to X on the System Agenda, where X is a description of the
activity in question. It may be, however, that just a few milliseconds
later, before the generation component has even started to process the
System Agenda,” that the state of the activity in question is changed
to current by the planner, which has made its plan and begun ex-
ecuting the activity. In this case, when the generation component
processes the system agenda, it will be inaccurate for it to announce
Now planning to X, because it’s actually the case that the system is
currently doing X.

The top utterance on the System Agenda, then, is not really re-
flective of the state of the device. Indeed, if the system were to utter
it, mode confusion would surely arise. As such, the generation compo-
nent of the CSLI Dialogue Manager employs a filtering mechanism, in
which all utterances regarding a particular activity are checked against
the current state of that activity on the Activity Tree before they are
uttered. If the utterance describes the activity as being in a state
which is no longer correct, then the utterance is filtered out — it is
discarded, never actually uttered by the system. According to this
algorithm, the above problem is solved by discarding the logical form
corresponding to Now planning to X and then later actually realizing
an utterance like Now Xing.

The real power of this approach can be seen by examining a more
complex example from the WITAS domain, in which the device (the
helicopter) changes its state quite quickly and rather significantly.
Consider the case in which the operator gives the command: fly to
the school and look for a red car. Now imagine that right after the
helicopter takes off and just as it begins flying to the school, it sees a
red car. In the WITAS domain, the activity of find which corresponds
to the operator’s command of look for, specifies that once an object

9In the CSLI Dialogue Manager, the generation component tends to wait for the system
to “settle down” before it processes the System Agenda — that is, it tends to wait for a
series of swift updates about the state of the device to complete before it processes the
System Agenda
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matching the description given by the operator is spotted, it should
be tracked (kept in view). However, in order to do this, the helicopter
must suspend flying to the school, since it can’t both track the car
and fly to the school at the same time. To sum up, the Activity Tree

(abbreviated below), goes through the following configurations:
(23) Taking off and looking for a red car
Activity Tree:

root

..go (to tower) [current]
....take_off [current]
..locate (red car) [current]

System Agenda: empty

(24) Finished taking off, started to fly to tower
Activity Tree:

root

..go (to tower) [current]
....take_off [done]

....fly_atom (to tower) [current]
..find (red car) [current]
....locate (red car) [current]

System Agenda:

1. I have taken off
2. Now flying to the tower
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(25) Spotted a red car, started tracking it and suspended flying (occurs before
utterances on System Agenda in (24) are processed)

Activity Tree:

root

..go (to tower) [suspended]
....take_off [done]

....fly_atom (to tower) [suspended]
..find (red car) [current]
....locate (red car) [done]
....track (red car) [current]

System Agenda:

I have taken off
Now flying to the tower [FALSE!]
I have found a red car

I have suspended flying to the tower

ok W

Now tracking the red car

Without a representation of the current state of the device, the
generation component would simply “read off” the system agenda,
making announcements about the state of the world which are no
longer true (in this case, that the helicopter is currently flying to the
tower). The filtering algorithm given above, however, requires that
the system skip the announcement that it is currently flying to the
tower since this statement no longer accurately represents the state
of the activity. After hearing this utterance, the operator might be
quite confused since on the GUI he or she could observe a red car and
helicopter motion that appears to indicate that the helicopter is fol-
lowing the car, rather than flying to the school.'® As such, it becomes
apparent that the Activity Tree provides a means for the generation
manager to discard or modify reports that have been produced by the
system. The dialogue manager can retain the modularity provided
by the fact that the generation module is separate from the report-

10Perhaps, rather that simply throwing away the utterance Now flying to the tower, an
even cleverer generation algorithm might change it to something like I was flying to the
tower, but I've now suspended flying there. No changes would be need to the Activity Tree
or the Report Generation Mechanism to facilitate this, only to the Generation Component
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generating module, while at the same time having the ability to make
sure that the reports the system utters are actually true.

8.4.3 Answering Why?

Due to the complexity of some activities (in their many sub-activities,
sub-sub-activities, and so on) and the length of time it takes to do a
particular activity, it may not always be immediately apparent to the
operator why the system is doing a particular action. The operator
may simply have forgotten that he or she gave a particular command,
or perhaps may not realize that the system is doing a particular activ-
ity because the activity is actually a subactivity of another activity.
In the WITAS system, for example, there is defined a relatively com-
plex activity called fight_fire in which the helicopter repeatedly picks
up water at one location, transports the water to a second location
where a building is on fire, and drops loads of water there until the
fire has been extinguished. Because this activity is relatively complex
and has a long duration, it’s possible that the operator might want to
question the helicopter as to why it is, say, picking up the water from
the lake.

At at least a simple level, the Activity Tree offers a straightfor-
ward means of answering such why questions. In order to answer why
the device is doing a particular activity, the dialogue manager can
look at the activity’s ancestor nodes on the Activity Tree and simply
report an appropriate ancestor. For example, in (26) there appears
a snapshot of the Activity Tree as it might appear during one stage
of fighting the fire at the school — specifically, the point at which the
helicopter has picked up the water and is carrying it to the school.

(26) root
..fight_fire (at school) [current]
....transport (water from lake to school) [current]
...... pickup_at_location (water from lake) [done]
........ go (to lake) [done]
.......... take_off [done]
.......... fly_atom (to lake) [donel
........ pickup_object (water) [done]
...... deliver (water to school) [current]
........ go (to school) [current]
.......... take_off [skipped]
.......... fly_atom (to school) [current]
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Given this Activity Tree, the CSLI Dialogue Manager supports
such queries as the following;:

(27) a. Why?

b. Why did you pick up the water at the lake / go to the lake /
take off / pick up the water?

¢. Why are you delivering the water to the school / going to the
school?

In order to answer each of these questions, the dialogue manager
must first determine which activity specifically the user is asking a
why question about. Once this has been determined, it must choose
the appropriate ancestor of this activity to report as an answer to the
question. Most of the time, this is simply the parent of the activity
in question. There is one case, however, in which the parent is not an
appropriate response — namely, the case in which a report in natural
language describing the parent activity is identical to one describing
the child. For instance, if the activity being asked about is fly_atom,
then it is inappropriate to report the fly_atom’s parent activity, go,
because both fly_atom and go are realized linguistically in the same
way (in the above Activity Tree, both are realized as something such
as I have flown to the lake). As such, if the system were to decide that
fly_atom were the relevant activity and then simply report its parent,
infelicitous dialogues like the following could occur:

(28) O: Why did you fly to the lake?
S: #Because 1 was flying to the lake.

whereas the ‘appropriate’ exchange should be the following:

(29) O: Why did you fly to the lake?
S: Because I was picking up the water at the lake.

In order to answer why questions like the ones in (27) the dialogue
manager uses the algorithm given below. Note that the input to the
algorithm is a logical form representing a why_query. It is assumed
that the format of the logical form is the following:
why_query(ActivityMarker, ActivityDescription)
where ActivityMarker is can have one of the following values:

e anap: for the purely anaphoric utterance of why?

e currActivity: for utterances referring to the current activity,
either Why are you Xing? or Why are you doing that?
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e complActivity: for utterances referring to a completed activity,
either Why did you Xing or Why did you do that?

and ActivityDescription has either the value of anap for utterances
that don’t refer to a specific activity (e.g. Why? and Why are you
doing that?), or the logical form for commanding an activity that can
be decomposed by the machinery developed in section 8.1.

Algorithm: ANSWER WHY QUERY

Given: The logical form w of a why_query
a = find relevant activity(w)

r, = generate_logical form(a)

p = parent(a)

while(p !'= null) {
rp = generate_logical_form(p)
if(r, !'= r,) return why_answer(r,)
p = parent(p)

And the algorithm for find relevant_activity is as follows:

Algorithm: FIND RELEVANT ACTIVITY
Given: The logical form w of a why_query with ActivityMarker m and
ActivityDescription d
Given: The list of salient activities, S
if m = anap AND d = anap return first(S)
foreach s in S {
a = parse_command_to_activity(d)
if matches(s, (a, m)) return s

where the matches predicate takes an activity as one parameter and
a description of an activity with its state as the second parameter
and returns true if and only if the description and state of the second
activity are the same as the first.

8.4.4 Answering What are your constraints?

Since the system allows the operator to specify rather complex sets
of constraints on the device, it becomes immediately important for
the the operator to be able to find out from the system what exactly
it believes its current set of constraints is. Given that the dialogue
interface already must be capable of converting constraints into nat-
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ural language, answering the question What are your constraints? is
fairly simple. Currently, the dialogue manager simply reads off all of
the necessary and banned constraints on the root node of the Activity
Tree to produce dialogues like the following:

(30) O: Always fly high.
S: Okay.

O: Never fly at low speed.
S. Okay.

O: What are your constraints?
S: I am supposed to always fly high.
S: I am never supposed to fly at low speed.

Granted the output is fairly simplistic. For more natural output,
the Generation Component should probably aggregate these utter-
ances into a single utterance. This is relatively straightforward and
planned as future work.

9 Limitations and Future Work

While this paper identifies major steps which can be taken toward
designing generic dialogue systems which are capable of facilitating
task-oriented dialogues, it certainly doesn’t offer a complete, flawless
solution to the problem. There are a number of problems which sim-
ply haven’t been addressed and some which haven’t been addressed
completely. In this section, I'll discuss some of these issues and try to
mention ways in which the framework presented here might provide
useful insights or a first step toward solving them.

9.1 Grammar Development and Speech Recog-
nition

Throughout most of this paper, the process of first converting an
acoustic signal representing spoken language input into text and then
parsing this text into some sort of logical form the dialogue manager

can use has been largely taken for granted. Many dialogue systems,
including the ones developed at CSLI [LGP02] and NASA [RHJ00],
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use a domain-specific grammar to parse text input (and often bi-
directionally to produce text output). Often this grammar is compiled
into a language model which an automatic speech recognizer (ASR)
uses as a constraint on the utterances it expects to hear. Other sys-
tems might use corpus data or other statistical techniques to constraint
or train their speech recognizer. At the moment, the grammars and
language models used by most dialogue systems are highly domain-
specific. For example, the one used by the CSLI dialogue manager
for the WITAS system is specific to the types of utterances that are
involved in controlling an autonomous helicopter. As such, it would
be totally incapable of parsing utterances related to tasks like driving
a car or controlling a radio.

The question, then, is whether or not a domain-independent gram-
mar can be written which is suitable across a large number of conver-
sational domains. It might be possible to directly plug such a gram-
mar into many different dialogue systems, or it might be necessary
to specialize it in some, relatively straightforward way, across many
applications. While the work presented in this paper clearly doesn’t
answer the question of how such a grammar could be implemented, I
believe that it sheds some light on the process.

The framework provided here identifies many of the common types
of conversations which are likely to occur as part of task-oriented dia-
logues. As such, it provides some guidance in the range of utterances
that a general-purpose grammar would have to provide, assuming the
grammar was to be geared only toward task-oriented, practical dia-
logue systems. By identifying common classes of dialogues, we provide
a metric by which a general-purpose, domain-independent grammar
could be measured; we could, for instance, count the number of do-
mains in which a specific grammar supports the range of dialogue
facilitated by the framework presented here.

Moreover, the framework given here provides an explicit, domain-
independent (across task-oriented domains) semantic mechanism for
representing many sorts of utterances. For instance, it provides a
generic way to semantically specify activities as sets of required and
optional definable slots — as well as constraints over these activities

as logical expressions over the values of these constraints. If we
were to design a domain-independent grammar which also used rep-
resentations compatible with those given here, then we would have
an extremely straightforward means of specializing this grammar to
specific domains: we could, for example, define mappings between
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components of an utterance and various slots relevant to the domain
in question. Indeed, it seems relatively straightforward to imagine
adding extra fields to the recipe script for each activity which act es-
sentially as sub-categorization mappings between arguments to a verb
and relevant slots.

9.2 More Complex Recipes

Throughout this paper it has often been assumed that any recipe
which we would want to describe could be effectively and easily de-
scribed through the recipe script.!! This, of course, is not the case as
a recipe could, in theory, be an arbitrarily complex set of instructions.
It does seem, however, that there are several concepts not included
in the capabilities of the recipe scripting language which are useful
across a large range of task-oriented dialogues.

One major issue is handling goal-oriented decomposition. In this
simplest case, this manifests itself as a choice between two different
ways of accomplishing the same goal. Imagine, for instance, that you
want me to be at your house for a party at 11:00 and that I have several
different possible ways that I could get there; for instance, I could fly,
drive, walk, bicycle, or skateboard there. Now imagine, further, that
you don’t care how I get there, just that I am indeed at your house
at some point around 11:00. In this case, I might choose any of the
above options in order to get to your house. Of course the situation
can rapidly get more complicated. It might be that you live too far
away for me to skateboard or walk, and that I don’t have access to a
small plane or a helicopter, so I’'ll have to drive or bicycle to the party.
Or perhaps I get on my bicycle, but just as I'm leaving my house, the
peddle breaks off and suddenly I have to drive to your house instead.

What I’ve identified here essentially is goal-oriented, rather than
task-oriented, decomposition. While the recipe scripting language out-
lined in this paper allows for activities to be decomposed into spe-
cific sequences (or simultaneous sets) of other activities, this perhaps
doesn’t quite mirror the way in which humans actually decompose
activities. Humans are often quite flexible in that if one way of ac-
complishing a goal fails, they’ll try a different way (the broken bicycle).
Or if for particular reasons they can’t even try one means of achieving

1Gpecial thanks to the members of the Stanford Natural Language Processing reading
group for an interesting discussion on the issues mentioned in this section. Any errors are,
of course, mine.
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a goal, they try another means instead of giving up (your house is too
far away, and I don’t have my own helicopter). Moreover, they might
defer making decisions about how to accomplish certain goals until a
later date when they have more information.

It is perhaps more appropriate to say, then, that humans natu-
rally decompose recipes in terms of goals for which they already know
(or can learn about, discover, or invent) recipes for means of achiev-
ing these goals. Such decomposition is not supported by the recipe
scripting language at the moment, not because it is more difficult to
write scripts in this way, but mainly because the machinery involved in
executing scripts so decomposed is more demanding. Indeed, the Ac-
tivity Tree and the Constraint Management System are agnostic as to
whether recipes are decomposed in terms of goals or other recipes — the
tree simply represents planned, current, and past actions no matter
by what mechanism they were generated, and the constraint system
applies recipes being instantiated for any reason. Moreover, syntac-
ticly it would be relatively straightforward to specify goals instead of
specific recipes which should be intended within a recipe body. How-
ever, it is exactly the process of making the decisions regarding which
recipe to use to achieve a specific goal and why, that I sought to avoid
in the framework provided here. Such decisions may require rather
complex planning and real-time execution systems on the part of the
device being controlled a requirement I didn’t wish to impose on the
systems which are being dialogue-enabled for the moment. Instead, I
chose to focus on a wider-range of systems which might or might not
have such a component. This is not to say that such systems should
be forever ignored; indeed, I believe that much interesting useful work
can be put into means of generically dialogue-enabling the features of
such systems. For example, dialogues about which recipe to use and
why may surely share commonalities across many devices that could
be captured and added to the framework described here.

Indeed, I believe that the framework presented in this paper could
be expanded in a straightforward manner to deal with goal-decomposition
as opposed to activity-level decomposition. Certainly, the Activity
Tree and constraint management systems as they exist would work
fine with such a system. What would remain would be to imple-
ment algorithms for facilitating dialogues regarding which solutions
are under consideration and why and for actually picking a solution
to execute. Moreover, the constraint system would have to be ex-
panded to deal with constraints which describe which recipe to choose
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to fulfill a particular goal. The work presented in this paper serves
as a good basis for such expansion, and it provides a framework for
future expansion because many useful notions are already represented
and realized computationally. Already in place is a semantics for goals
in which they are expressed in terms of slots, which are used to con-
ceptualize activities; such a semantics could certainly be utilized in
a goal-decomposition system. In addition, the Activity Tree could
be “multiplied” that is, rather than having a single Activity Tree
which represents that actual state of the device, Activity Trees which
represent “possible worlds” could be created in order to facilitate dis-
cussions about different possibilities for how to pursue a particular
goal. Once a “possible world” is decided upon, the activity tree rep-
resenting that world could be attached as a subtree of the one which
represents the “actual” world.

In the meantime, devices with such capabilities can still be inter-
faced to the existing system. At the level where such decisions should
be made, recipes should simply be declared as atomic and be sent
directly to the device for planning. At this point, the device has the
freedom to choose whatever set of actions it wishes to take. If such
actions will be relevant to the dialogue, then the device is free to rep-
resent these actions as activities on the Activity Tree, which appear
below what would otherwise be an atomic leaf node.

9.3 Natural Language Descriptions of Recipes

Given that the system has recipes which describe how to accomplish
certain goals, it would be natural to allow it to discuss (and even
possibly modify) these recipes using natural language with the human
operator. Indeed, this goal was one motivation for keeping the recipes
relatively simple in nature. There are potentially two different levels
at which a recipe might be discussed. In the first case, the recipe
would be discussed in purely abstract terms, while in the second, it
would be at least partially instantiated.

The difference is most evident in that it would manifest itself in
the answers to the following two different questions we might like to
ask the system:

1. How do/would you patrol? / How does one patrol? / What’s
involved in patrolling?

2. How do/would you patrol between the tower and the school?
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In the first case, the response should really involve the elements of the
recipe for patrolling. A suitable response might be something close
to In order to patrol, one must continually fly to one location, then
a second location. In the second case, the situation is much more
concrete and the answer could be suitably more concrete. It might
take the form of In order to patrol between the tower and the school,
I would continually fly to the tower then to the school.

In the first case, several complexities emerge which must be dealt
with. The first is actually determining precisely which recipe the hu-
man operator wants to talk about. As a first go, we might assume
that we would simply do a reverse lookup according to the NL. map-
ping of recipes in the library; that is, we would simply search for the
recipe whose NL mapping matches the verb being asked about. Such
a reverse lookup runs into the immediate problem that there may
actually be several recipes which map to the same verb (since this
phenomenon is, in fact, the very reason that the NL mapping system
was created — please see section 5.2.1). In this case, a question like
How would you patrol? may involve several possible answers (in the
WITAS system), since the verb of patrol actually maps on to multi-
ple concepts.'? If such multiple matches were found, then the system
would have to either decide all of them, use some sort of probabilistic
means or weighting schema to decide which one to say, or initiate a
clarification subdialogue to try to determine which one, specifically,
the human operator is interested in.

Once the relevant recipe has been isolated, its recipe body must
then be described (and perhaps, its goals, preconditions, constraints,
and so on if so desired). In order to do this, an algorithm would have to
be designed which could examine the recipe body script and produce
reasonable natural language to describe it. Some of this would involve
natural language constructs to describe loops as the use of “contin-
uously” above illustrates. The main difficulty which would emerge,
I believe, is when dealing with the question of how to best describe
the uninstantiated recipes using natural language. Perhaps the most

12These concepts are the following:
e patrolling among multiple locations
e patrolling at a particular location
e patrolling among various locations while looking for a specific object

e patrolling at a particular location while looking for a specific object
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straightforward solution would be to associate some sort of phrase with
each slot type (or perhaps at a finer grain, with each slot definition
or even each slot declaration within each recipe) which could be used
to describe it abstractly. For instance, imagine that associated with
the type Location in the WITAS system was some noun phrase like a
location. Then, in order to generate the description of an invocation of
a recipe like fly, we could simply fill in a location where we would usu-
ally fill in the NP corresponding to the object in the toLocation slot,
yielding something like Fly to a location. Of course, such a system
immediately shows its limitations when confronted with the question
about patrolling above; such simple replacement rules would yield an
answer similar to I would continually fly to a location then fly to a
location. Clearly, at some point, a relatively sophisticated generation
algorithm would have to be used to avoid such obviously bad genera-
tion.

We see then, that by limiting the constructs in the recipe scripting
language, we could envision a system that could describe these recipes
in abstract terms using natural language. While building such a gen-
eration algorithm would clearly be non-trivial, I have sketched here
the major considerations that would have to go into it. The next issue,
then, is how to answer questions like the second one: How do/would
you patrol between the tower and the school?. In some sense, this is
a much more difficult problem since it involves analyzing the current
context. For instance, if the helicopter were currently at the tower,
then the answer given above wouldn’t seem quite correct indeed, we
would want to say that the helicopter would first fly to the school and
then to the tower, since this is the order in which it would actually
do things, given the current state of the world. In this sense, this
is a much more difficult problem than then discussing recipes in an
abstract sense. Indeed, in order to give a reasonable answer, we are
likely to actually want to try to simulate the device actually executing
the activity, given the current state of the world as the start state of
the simulator. This is the case not only because certain actions might
“obviously” be skipped, but also because we want to simulate the ef-
fects of the current constraint set on how certain activities would be
performed.
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10 Conclusions

The work presented in this paper provides evidence for the domain-
independence hypothesis described in [ABD*01], repeated here:

“Within the genre of practical dialogue, the bulk of
the complexity in the language interpretation and dialogue
management is independent of the task being performed.”

Specifically, it describes the implementation of relatively generic dialogue-
management algorithms which operate over declaratively specified in-
formation about a particular intelligent agent /device to yield a conver-
sational system which can be used by a human operator to command
and control the agent/device, as well as participate in joint-activities
with it. Specifically, this is done by defining an interface which lies
between the dialogue manager and the agent/device which provides
a domain-independent entity for the dialogue manager to work with
which is capable of modeling how joint-activities work in general. This
interface is then specialized to each agent/device by specifying a recipe
library, which defines the specific capabilities of the agent/device.

By writing dialogue-management algorithms which operate in terms
of structures on the Activity Tree and constraints in the Constraing
Management System, the dialogue manager can be imbued with dia-
logue strategies which work in general across a wide range of agents/devices.
That is, by isolating general aspects of task-oriented dialogue, it is pos-
sible to create a dialogue system that supports many of the classes of
task-oriented dialogues. Many issues that arise in task-oriented dia-
logues were discussed in this paper, and algorithms for solving these
issues in the general case were presented. Specifically, the appropriate
way to model the following two issues was discussed:

e How to structure, decompose, and conceptualize joint activities
(solution: Activity Tree, Recipe Scripts)

e How to model constraints which people are apt to impose using
natural language (solution: Constraint Management System)

I was the able to show that with these models in hand, relatively
generic algorithms could be introduced to facilitate common task-
oriented dialogues. In specific, I considered and proposed solutions
for the following issues:

e Using the commonsense knowledge of how activities are decom-
posed to interpret utterances in context and produce meaningful

90



(or decide to filter out no-longer-relevant) utterances.
e Dialogues for dealing with conflicts over resource usage

e Algorithms for engaging in the dialogue games which arise when
constraints come into conflict with one another, or with defaults.

e Strategies for converting constraints back and forth between nat-
ural language and first-order-logic

e Using the structure of the Activity Tree to answer questions like
Why? and What are you doing? in order to avoid mode confusion
by clearly communicating the state of the device

The work presented here identifies many of the common genres
of conversations which are likely to occur in the pursuit of concrete
tasks. It proposes strategies for dealing with such dialogues across
a wide range of tasks and task participants. I also identify the cur-
rent limitations of the system and determine possible ways by which
these limitations be addressed in the future by building on the current
framework.

A Adapting the Dialogue Manager to
a New Domain

In this section, I will briefly describe the technical details involved in
supporting a new task-oriented domain for dialogue. In particular, I
will assume that the goal is to modify the CSLI dialogue mananger to
work with a new device or agent. Ideally, all of the work would need
only to be declarative, in the sense that the dialogue manager’s Java
program code shouldn’t have to be modified. As I’ll describe here,
in practice some of the code must indeed be modified. The changes
made are fairly routine and straightforward, however, and it is my
belief that future work could render them declarative in nature.
The steps involved are as follows:

e A new recipe script for the device needs to be created and com-
piled.

e The device will need to be interfaced to the recipe executor mod-
ule.

e Callback methods describing parallel relationships among slots
will need to be defined in the dialogue manager.
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e The resolution procedures for activities in the dialogue manager
may need to be modified slightly to perform domain-specific in-
ferences.

e The current grammar will need to be adapted or rewritten to
deal with the device.

e The procedures for converting between the logical forms pro-
duced by the grammar and the slots defined in the recipes may
need to be modified.

e Databases which supply knowledge about objects in the world
will need to be created.

Of immediate note is that none of these steps involve modifying
the Constraint Management System or the way in which the Activity
Tree functions. Many of the above steps are fairly trivial, while we
will see that a few require a significant amount of work.

A.1 Creating and Compiling a Recipe Script

The syntax and layout for the recipe scripting language has already
been discussed in great detail in sections 5 and 6. In this section, I will
describe the technical details of how to actually ‘compile’ the script
and incorporate it into the dialogue manager as a whole.

Assuming we have an recipe script named myDevice.ts, the first
step is to ‘compile’ it into the files needed by the system at runtime.
This is done using the CSLI_RecipeCompiler, using the following com-
mand:

: java csli.recipe.CSLI_RecipeCompiler myDevice.ts

Note that Java version 1.3 or above should be used. This will
generate the following files and place them in a subdirectory of the
current directory named output:

1. CSLI_ActivityProperties.java: defines the activity proper-
ties

2. myDevice.rep (this file name will actually depend on what it is
specified to be called in the recipe script, see section 5.1.1).

3. CSLI_TaskMatcher.java: A simple class with a hash table to do
NL mapping of command names

4. domains.ecl: Defines the domain of each slot
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All of these files should then be copied into the following directory
of the dialogue manager code:

CSLI_HOME/csli/agents/dialogueManager/activityModel/

This directory should be recompiled with the following command:

cd CSLI_HOME/csli/agents/v2/dialogueManager/activityModel
javac *.java

In addition, myDevice.rep should be copied to csli/agents/v2.
At this point, the dialogue manager has been “adapted” to deal
with the recipes specific to this device.

A.2 Interfacing the Device to the Recipe Ex-
ecutor

The recipe executor reads in the recipes, instantiates them into ac-
tivities, and executes them as needed. When it encounters an atomic
activity, however, it needs to be able to send this activity to the de-
vice to actually be executed. Moreover, as the device executes the
activity, it needs to be notified of the changes in the state of the
activity (for example, is it current, planned, suspended, and so
on). This is done through the deviceInterface module, located in
csli/agents/v2/deviceInterface. Here two relevant Java interface
specifications are defined: CSLI Device and CSLI_DeviceListener.

The first, CSLI Device defines a set of methods that the device
must be able to respond to. In order to interface a device to the
dialogue manager, a Java class which is capable of responding to calls
to these methods by sending information to the actual device must be
defined. This may simply be a stub, which relays the calls to the “real”
interface to the device through CORBA, OAA, RMI, or some other
architecture (this is how the CSLI system interfaces to the robotic
helicopter). Alternatively, if the control regime for the device is built
in Java, then the code controlling the device may simply be modified
to implement this interface (this is how the CSLI system interfaces
to the simulator of the robotic helicopter). The major part of the
interface appears in figure 5

The comments in the code describe each method. The methods
are in support of the following capabilities:

93



Figure 5: The bulk of the CSLI_Device Interface

/*%
* defines the interface that the device must adhere to
* for the SimTaskTree to interface with it
*/
public interface CSLI_Device {
VELS
* add a listener to be notified of device events
*/

public void addListener (CSLI_DevicelListener listener);

/*x
* execute an atomic activity
* @param id the id of the activity
* @param properties the properties of the activity
*/
public void executeAtomic(String id,
CSLI_ActivityProperties properties);

/ *%
* test the value of a predicate
*/
public boolean testPredicate(String predicate,
ArraylList arguments);

/[ *
* should be equivalent to cancel(id, true)
*/

public void cancel(String id);

/*x

cancel the activity with the given id

Oparam id the id of the activity to cancel
@boolean shouldSetCancelled should be true

iff the device should now notify the

listeners that the activity has been cancelled

O S I

*/
public void cancel(String id, boolean shouldSetCancelled);
94
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executeAtomic Takes in the name and parameters of an atomic
activity and executes it. A unique identifier is also passed in so
that the dialogue manager has a means of communicating with
the device about this specific activity.

testPredicate In the recipe script, it is legal to specify predicates as
goals, preconditions, and as the conditions of loops in the recipe
body; this method is used by the dialogue manager to determine
at runtime if these predicates should evaluate to true or false.
The device must be able to determine if a given predicate, with
a given set of arguments (represented as String objects), is true
or false when this method is called.

cancel Cancel a specific activity (and optionally notify the listeners).

fillMonitorSlots The monitor slots (see section 5.2.3) must be filled
in at runtime when this method is called. In this way, the di-
alogue manager can ask the device to reflect about its current
state, on demand.

addListener The device needs to be able to support the typical Java
notion of having a Listener. Here, each CSLI DeviceListener
object which it is passed (via the addListener method), must
be notified whenever the state of the device change. This will be
discussed immediately below.

While the device must be able to respond to the above methods,
it must also have a means of notifying the dialogue manager when the
state of an atomic activity has changed (for example, from planned
to current). In order to do this, whenever the state of an activity
changes, the device must notify the CSLI DeviceListener objects
which have registered with it via the addListener method. Figure 6
shows the bulk of the CSLI DeviceListener interface. As would be
expected, the interface is concerned mainly with communicating the
state of activities to the dialogue manager.

A.3 Callback Methods for Effective Slot Lengths

As was mentioned sections 7.4 and 7.4.1, so-called parallel slots some-
times may be useful. For example toLocation, toSpeed, toAltitude in
the WITAS system are defined to be parallel slots, since the location
that the helicopter flies to must also always be accompanied with a
speed and and altitude at which to fly. In pursuit of supporting these
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Figure 6: The bulk of the CSLI_DeviceListener Interface

/*%
* the device should call these methods on its listeners
*/

public interface CSLI_DevicelListener {

/*x
* called when a task is completed
*/
public void taskCompleted(String taskID);
/*x
* called when a task is planned
*/
public void taskPlanned(String taskID);
/ *%
* called when a task is cancelled
*/
public void taskCancelled(String taskID);
/ *%
* called when a task becomes a current task the uav is working
* on
*/
public void taskCurrent(String taskID);
VLS
* called when a task fails
*/
public void taskFailed(String taskID);
/*x
* called when a request to stop tasks on the list
* ig made
* Q@param taskIDs the ids of the tasks to stop
*/
public void stopTasks(java.util.ArrayList taskIDs);
/*x

* called when a request to stop all tasks
* has been made
*/
public void stopAllTasks();
VET:
* @param value if it is ﬁ%ﬁe, the the recipe executor
* should be planning and executing recipes
*/
public void setShouldPlan(boolean value);



parallel notions, the following callback methods must be defined by
the dialogue manager for a specific device:

int getSlotMinLengthForDefault(String slotName,
CSLI_ActivityProperties ap)

int getSlotMaxLengthForConstraint (String slotName,
CSLI_ActivityProperties ap)

Note that each method takes a slotName and a CSLI_ActivityProperties
object. The first parameter specifies the name of the slot in question,
and the second is essentially a list of all the slots paired with their
value lists. So, for example, if slotName were the String toSpeed and
in ap the slot toLocation had 2 values filled in, then both methods
would return the value 2.

The dialogue manager provides default behavior for each of these
methods in the CSLI_ActivityBase class in the following package:

csli.agents.v2.dialogueManager.activityModel.

But it should be overridden in the case of parallel slots in the sub-
class, CSLI_Task which is used by the dialogue manager.

A.4 Resolution Procedures for Activities

The dialogue manager needs to know when a particular partially spec-
ified activity should be set to the state resolved (and hence then
subjected to the algorithms which attempt to use constraints and de-
faults to fully instantiate it). In general, this means that all of the
required definable slots in the activity must have a value (indeed, each
required definable slot must at least contain a list of values equal in
length to its declared minimum length). Usually these values come
directly from user utterances, however sometimes they can be filled in
through inferences. For example, in the WITAS system, if the heli-
copter is told to deliver medical supplies, it needs to know where the
medical supplies are in order to pick them up. If there is only one set
of medical supplies, and it is known to be at Springfield Hospital, then
the system should infer that it should fly to the Springfield Hospital
to pick them up, without having to ask for this required definable slot
to be filled in by the user. This sort of inference, in general, is do-
main specific. As such, in the CSLI_TaskHelper, a callback method is
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defined called tryResolving which takes a partially specified activity
and tries to make inferences to fill in its unfilled slot values. If the
new device requires any such inferences, then this method should be
redefined in CSLI_TaskHelper and the dialogue manager should be
recompiled.

A.5 Modifying the Grammar and the Conver-
sion Routines

This topic has already been covered in section 9.1. Suffice it to say
that the grammar must be adapted to a new domain. It would be
desirable if the there were a domain-independent grammar that could
be specialized for each new device, but this has yet to be developed.

A.6 Creating New Databases

Currently, the CSLI Dialogue manager currently requires two databases
to represent real objects in the world. They are written using Knowl-
edge Interchange Format, and are searched using Stanford’s Java The-
orem Prover [jtp]. Logical axioms are used to define hierarchical “isa”
relations (for example, the base is a building which is a geographical
object). The first database defines the static objects in the world,
while the second is used to define the dynamic objects. In the WITAS
system, this is a distinction between things that appear on maps like
roads and buildings — and things that the helicopter sees and reports
in real time like cars and trucks. Noun phrases are then resolved
and bound to specific objects that appear in these databases when the
dialogue manager seeks to determine what a given noun phrase refers
to.

A new system may use the existing structure of this database, but
needs to define a new set of static objects which are salient to the
device. For instance, a robot for the home might need to know about
the various rooms in the house.

B An Example Recipe Script

The following is the recipe script used in the WITAS system for in-
terfacing a robotic helicopter to the dialogue system.

device package csli.agents.v2.simulator;
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dialogue package csli.agents.v2.dialogueManager.activityModel;
//dialogue package csli.recipe; //temp for testing

repfile "witas.rep";

//sets valid atoms for slot values

Types
{
Location e [Iltill ”Si” llb4ll llb6ll llb?ll IIb8II Ilbgll Ilbioll
Iltslll’ ”b2”’ I|b3ll’ l|b5l|, l|b11l|, l|h3l|, I|h4ll’
Ilh2ll IIh5II llh?ll llrlll llr2ll Ilr3II Ilr4ll
I|r5II’ ”r6”’ l|r7l|, l|r8l|, l|r9l|, Ilrloll’ Ilrllll’
Ilr12ll Ilrisll Ilr14ll Ilr15II Ilr16ll Ilr17ll
”r18”, nrlgn’ nrzon’ ”r21”, ”Wl”, ”W2”, ”W3”,
"f1M ) "mi", “he", "pl", vrri",
"waypointl", "waypoint2", "waypoint3",
"waypoint4", "waypointb", '"waypoint6",
"waypoint7", "waypoint8", '"waypoint9",
"waypoint10"];
Speed :: ["high", "medium", "low", "zero"];
Altitude :: ["high", "medium", "low", "zero"];
Object :: [1; //[] means it’s not involved in constraints
MoveableObject :: [1;
}
DefinableSlots
{

Location tolLocation:1-3;
Location fromlLocation:1-3 = "null";
MoveableObject carryObject:1;

Speed toSpeed:1-3 = "medium";
Altitude toAltitude:1-3 = "medium";
Speed fromSpeed:1-3 = "medium";
Altitude fromAltitude:1-3 = "medium";

Object searchItem:1;
Object followItem:1;
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MonitorSlots {
Location curLocation:1;
Speed curSpeed:1;
Altitude curAltitude:1;
Object grippedObject:1;

//helicopter can only see a single item at a time
Object noticedItem:1;

Resources {
uav;
gripper;
camera;

abstract taskdef<move,'move">
{
DefinableSlots {
required toLocation;
optional fromlLocation;
optional toSpeed;

}

MonitorSlots {
curLocation;
curSpeed;

Resources {
uav;

Banned {
toSpeed == '"zero";
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}
taskdef<go,'"go"> extends move
{
DefinableSlots {
optional toAltitude;
}
MonitorSlots {
curAltitude;
}
Banned {
toAltitude == '"zero";
}
NLSlots {
default: tolLocation;
current: toLocation, toAltitude, toSpeed;
}
Body {
intend take_off(toAltitude = THIS.toAltitude);
foreach tolLocation t, toAltitude a, toSpeed s {
intend fly_atom(toLocation = t,toAltitude=a, toSpeed=s);
}
}
}

taskdef<fly_atom,"go"> extends move

{
DefinableSlots {
optional toAltitude;

MonitorSlots {
curAltitude;
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PreConditions {

curAltitude[0] != "zero";
}
Goals {
curLocation[0] == toLocation[0];
}
NLSlots {
default: tolLocation;
current: tolLocation, toSpeed, toAltitude;
}
}
taskdef<take_off,'"take_off">
{
DefinableSlots {
optional toAltitude;
}
MonitorSlots {
curAltitude;
}
Resources {
uav;
}
Goals {
curAltitude[0] !'= "zero";
}
NLSlots {
default: ;
}
}
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taskdef<land,"land">

{

DefinableSlots {
required toLocation;

}

MonitorSlots {
curLocation;

}

Resources {
uav;

}

Goals {
curLocation[0] == toLocation[0];
curAltitude[0] == "zero";

}

NLSlots {
default: toLocation;

}

Body {
intend go(toLocation = THIS.toLocation);
intend land_atom();

}

}

taskdef<land_atom,'"land">
{

DefinableSlots { }
MonitorSlots {

curAltitude;

Resources {
uav;
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PreConditions {

curAltitude[0] !'= "zero";
}
Goals {

curAltitude[0] == "zero";
}
NLSlots {

default: ;
}

taskdef<patrol_between_search,'"patrol">
{
DefinableSlots {
required toLocation;
required searchltem;
optional toAltitude;
optional toSpeed;

}

MonitorSlots {
curLocation;
curAltitude;
curSpeed;

}

Resources
uav;

}

PreConditions

}
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Goals

refers_to(searchItem[0], noticedItem[0]);

}
NLSlots
default: searchlItem;
current: searchItem, toLocation, toAltitude, toSpeed;
}
Body
intend patrol_between(toLocation = THIS.toLocation,
toAltitude=THIS.toAltitude,
toSpeed = THIS.toSpeed) noblock;
intend find(searchItem = THIS.searchItem) ;
}

taskdef<find,"find"> {
DefinableSlots

required searchltem;

}
MonitorSlots
noticedItem;
}
PreConditions
}
Goals
noticedItem[0] == searchItem[0];
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NLSlots

default: searchlItem;

}
Body
{
do {
intend locate(searchItem = THIS.searchltem);
intend track(followItem = THIS.noticedItem) t noblock;
intend identify(searchItem = THIS.searchItem);
stop t;
} while(not_refers_to(searchItem, noticedItem));
intend follow(followItem = THIS.noticedItem);
}

taskdef<locate,"find"> {
DefinableSlots {

required searchltem;

}
MonitorSlots
noticedItem;
}
NLSlots
default: searchlItem;
}
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taskdef<track,"track"> {

DefinableSlots {

required followItem;

}
MonitorSlots
noticedItem;
}
Resources
uav;
}
PreConditions
}
Goals
}
NLSlots
default: followItem;
}

taskdef<follow,"follow"> {

DefinableSlots {

required followlItem;
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MonitorSlots

noticedItem;
}
Resources
uav;
}
PreConditions
}
Goals
}
NLSlots
default: followItem;
}
}
//should spawn a dialogue act: "Is noticedItem == item"

taskdef<identify,"identify"> USER {
DefinableSlots {

required searchltem;

}

MonitorSlots
noticedItem;

}
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PreConditions

noticedItem[0] != null;
}
Goals
{1
NLSlots
default: searchltem;
}

taskdef<patrol_between,"patrol"> {
DefinableSlots {
required toLocation;
optional toAltitude;
optional toSpeed;

}

MonitorSlots {
curLocation;
curAltitude;
curSpeed;

Resources {

uav;
}
NLSlots

default: toLocation;

current: toAltitude, toSpeed;
}
Body
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repeat {
foreach tolLocation p, toAltitude a, toSpeed s {
intend go(toLocation = p,toAltitude=a, toSpeed=s);
b

taskdef<patrol,"patrol"> {
DefinableSlots {
required toLocation;
optional toAltitude;
optional toSpeed;

}

MonitorSlots {
curLocation;
curAltitude;
curSpeed;

Resources {

uav;
}
NLSlots {
default: toLocation;
current: toLocation, toSpeed, toAltitude;
}
Body
{

intend go(toLocation = THIS.toLocation,
toAltitude=THIS.toAltitude,
toSpeed=THIS.toSpeed) ;
intend patrol_atom(toLocation = THIS.toLocation,
toAltitude=THIS.toAltitude,
toSpeed=THIS.toSpeed) ;
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taskdef<patrol_atom, "patrol"> {
DefinableSlots {
required toLocation;
optional toAltitude;
optional toSpeed;

}

MonitorSlots {
curLocation;
curAltitude;
curSpeed;

Resources {

uav;
}
NLSlots {
default: toLocation;
current: tolLocation, toAltitude, toSpeed;
}

taskdef<patrol_search,"patrol"> {
DefinableSlots {
required toLocation;
required searchltem;
optional toAltitude;
optional toSpeed;

MonitorSlots {
curLocation;
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curAltitude;
curSpeed;
noticedItem;

Resources {

uav;
}
NLSlots {
default: toLocation, searchItem;
current: tolLocation, searchItem, toAltitude, toSpeed;
conflicts: searchlItem;
}
Body
{
intend patrol(toLocation = THIS.toLocation,
toAltitude=THIS.toAltitude,
toSpeed = THIS.toSpeed) noblock;
intend find(searchItem = THIS.searchItem);
}

taskdef<pick_up_object,"pick_up"> {
DefinableSlots {
required carryObject;

MonitorSlots {
grippedObject;

Resources {
gripper;
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PreConditions {
grippedObject[0] == null;

}
Goals {
sameid(grippedObject[0], carryObject[0]);
}
NLSlots {
default: carryObject;
}

taskdef<pick_up,"pick_up"> extends go

{
DefinableSlots {
required carryObject;

MonitorSlots {
grippedObject;

Resources {
gripper;

PreConditions {
grippedObject[0] == null;

Goals {
sameid(grippedObject[0], carryObject[0]);

NLSlots {
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default: carryObject, tolLocation;
conflicts: carryObject;

}
Body
{
intend go(toLocation = THIS.toLocation);
intend pick_up_object(carryObject = THIS.carryObject);
}

taskdef<drop_object,"drop"> {
DefinableSlots {
required carryObject;

MonitorSlots {
grippedObject;

Resources {
gripper;

PreConditions {
sameid(grippedObject [0], carryObject[0]);

}
Goals {
grippedObject[0] == null;
}
Banned {
toAltitude == "medium";
toAltitude == "high";
}
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NLSlots {
default: carryObject;

taskdef<deliver,"deliver"> extends go {
DefinableSlots {
required carryObject;

MonitorSlots {
grippedObject;

Resources {
gripper;

PreConditions {
sameid(grippedObject[0], carryObject[0]);

}
Goals {
grippedObject[0] == null;
at (carryObject[0], toLocation[0]);
}
Banned {
toAltitude == "medium";
toAltitude == "high";
}
NLSlots {
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default: carryObject, tolLocation;
current: carryObject, toLocation, toSpeed, toAltitude;

}
Body
{
intend go(toLocation = THIS.toLocation,
toAltitude = THIS.toAltitude,
toSpeed=THIS.toSpeed) ;
intend drop_object(carryObject = THIS.carryObject);
}

taskdef<transport,"transport"> extends pick_up
{
//toSlots and carrayObject are from pick_up
DefinableSlots {
required fromlocation;
optional fromSpeed;
optional fromAltitude;

MonitorSlots { }

Resources {

gripper;
}
Goals {
at (carry0bject[0], toLocation[0]);
}
Banned {
toAltitude == "medium";
toAltitude == "high";
}
NLSlots {
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default: carryObject, tolLocation;
current: fromLocation, toLocation, carryObject,
toSpeed, toAltitude;

}
Body
{
foreach fromLocation f, fromSpeed s, fromAltitude a {
intend pick_up(toLocation = f,
fromSpeed = s,
fromAltitude = a,
carryObject = THIS.carryObject);
}
foreach tolLocation t, toSpeed s, toAltitude a {
intend deliver(toLocation = t, toSpeed = s,
toAltitude = a,
carryObject = THIS.carryObject);
}
}

taskdef<fight_fire,"fight_fire"> extends transport
{
//all from super

DefinableSlots { }

/all from super
MonitorSlots { }

Resources {

uav;
gripper;
}
Banned {
toAltitude == "medium";
toAltitude == "high";
}
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NLSlots {
default: tolLocation;

}
Body
{
do {
intend transport(fromLocation = THIS.fromLocation,
toLocation = THIS.toLocation,
carryObject = THIS.carryObject,
toSpeed = THIS.toSpeed,
toAltitude = THIS.toAltitude,
fromSpeed = THIS.fromSpeed,
fromAltitude = THIS.fromAltitude);
} while(still_fire(toLocation));
}
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