
Conversational Interfa
es: ADomain-Independent Ar
hite
ture forTask-Oriented DialoguesAlexander Gruensteinalexgru�stanfordalumni.orgM.S. Proje
tSymboli
 Systems ProgramStanford UniversityDe
ember 12, 2002

 Copyright 2002 by Alexander Gruenstein, All Rights Reserved.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2002

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Conversational Interfaces: A Domain-Independent Architecture for
Task-Oriented Dialogues

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stanford University

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

122

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstra
tThis paper motivates and des
ribes a generi
 framework for dialogue-enabling intelligent agents and devi
es for task-oriented dialogue. Theinterfa
e is designed to be a me
hanism by whi
h a dialogue front-end
an qui
kly and easily be adapted for use with a wide range of devi
esor agents. The Conversational Intelligen
e requisite for parti
ipatingin a large range of important task-oriented dialogues is identi�ed andde
omposed in a modular, devi
e-independent fashion and a spe
ial-ized re
ipe s
ripting language is implemented to en
ode devi
e-spe
i�
information. The re
ipes in the re
ipe library
ompiled from thiss
ripting language are instantiated at run time into A
tivities, whi
hmay be exe
uted by the devi
e (and jointly, by the human operator).In addition, a novel Constraint Management System is implemented inorder to exploit the features of natural language whi
h allow humansto naturally expand and restri
t the permissible sets of parametersthat a parti
ular a
tivity may take on.

2

Contents1 Introdu
tion 52 Previous and Current Work 82.1 Dialogue Systems . 82.1.1 Slot/Form-Filling Dialogue Systems 82.1.2 Pra
ti
al Dialogue Systems 102.2 Rational Agents and Plan Re
ognition 122.3 Mobile Robot Control Systems 152.4 Mode Confusion in Complex Systems 172.5 Plug-and-Play Devi
es and Dialogue Systems 183 Proje
t Outline 193.1 Fitting in a Dialogue System Ar
hite
ture 214 The A
tivity Tree and A
tivities 235 The Re
ipe S
ripting Language 285.1 The Preamble . 305.1.1 The Re
ipe Library 305.1.2 Type De�nitions 305.1.3 De�nable/Monitor Slot De�nitions 315.1.4 Resour
es . 325.2 Components of a Re
ipe 325.2.1 A
tivity Type, NL Mapping, and Agent Tag . 335.2.2 De�nable Slots 345.2.3 Monitor Slots 365.2.4 Resour
es . 365.2.5 Pre
onditions 375.2.6 Goals . 385.2.7 Banned . 385.2.8 NLSlots . 385.2.9 Super Re
ipes: extends and abstra
t 405.2.10 Body . 406 The Re
ipe Body 406.1 intend and stop . 446.1.1 intend . 446.1.2 stop and noblo
k 456.2 Loops: repeat, do. . . while, and forea
h 463

7 Constraints and Defaults 477.1 Defaults . 507.2 Constraints . 507.3 Examples of
onstraints 537.4 Constraining A
tivities and Interfa
ing to ECLiPSe . . 557.4.1 Dealing with Defaults 617.4.2 Determining whi
h set of
onstraints has beenviolated . 637.5 Maintaining a Consistent Set of Constraints 648 Algorithms for the Dialogue Manager 688.1 Translating Commands from Natural Language into A
-tivity Representations 708.2 Translating Constraints from Natural Language intoLogi
 Expressions . 728.3 Translating a
tivities and
onstraints into natural lan-guage . 738.4 Avoiding Mode Confusion 738.4.1 Announ
ing State Changes 748.4.2 Filtering Against the State of the World 768.4.3 Answering Why? 808.4.4 Answering What are your
onstraints? 829 Limitations and Future Work 839.1 Grammar Development and Spee
h Re
ognition 839.2 More Complex Re
ipes 859.3 Natural Language Des
riptions of Re
ipes 8710 Con
lusions 90A Adapting the Dialogue Manager to a New Domain 91A.1 Creating and Compiling a Re
ipe S
ript 92A.2 Interfa
ing the Devi
e to the Re
ipe Exe
utor 93A.3 Callba
k Methods for E�e
tive Slot Lengths 95A.4 Resolution Pro
edures for A
tivities 97A.5 Modifying the Grammar and the Conversion Routines 98A.6 Creating New Databases 98B An Example Re
ipe S
ript 98
4

1 Introdu
tionNatural language, whether spoken or typed, is an emerging meansof intera
ting fruitfully with
omputer systems. The ability to or-der movie ti
kets or �nd out dire
tions over the telephone using voi
ere
ognition te
hnology, to name two examples, is emerging as main-stream te
hnology. At the same time, more and more sophisti
atedsemi-autonomous
omputer
ontrolled agents/devi
es are in develop-ment or have been developed. For example, mobile robots have be-
ome parti
ularly robust with regard to low-level issues like lo
aliza-tion and obsta
le avoidan
e [KBM98℄; moreover, mobile robots havestarted to be
ome extremely
heap,
osting just a few thousand dol-lars, and are widely available [a
t℄. One of the original su
h devi
eswas built by the FLAKEY proje
t at SRI (see, eg [SKR95℄), whi
h pro-du
ed a semi-autonomous oÆ
e robot that
ould navigate through anoÆ
e to do tasks su
h as delivering items. Current work in
ludes theWITAS proje
t [DGK+00℄ whi
h endeavors to
reate an autonomousheli
opter { an unmanned aerial vehi
le {
apable of planning eÆ
ientroutes, identifying obje
ts on the ground, and following moving ob-je
ts. In addition, NASA is developing a Personal Satellite Assistant(PSA) that moves autonomously about the shuttle or the spa
e stationto assist the
rew [RHJ00℄. And the long-running Honda humanoidrobot proje
t is developing a humanoid robot named ASIMO that
annavigate the home and perform simple
hores [hon℄.Related proje
ts are those involved in dialogue-enabling existingdevi
es in the home, oÆ
e, and automobile. The aim is to allowhumans to
ontrol devi
es like telephones, televisions, radios,
d play-ers, and VCRs with spoken natural language. Su
h proje
ts are be-ing pursued, for example, at Telia [LRGB01℄, COLLAGEN [RSL01℄,Bos
h and SmartKom [LBPA02℄. These groups hope to build naturallanguage interfa
es whi
h
an be integrated into existing te
hnology,rather than devi
es whi
h are still under development. By doing so,they hope to
hange the way that humans intera
t with ele
troni
devi
es by making it easier for humans to intera
t with them usingnatural, spoken language.Running the gamut from the more intelligent devi
es to the rel-atively \dumb" devi
es is the idea that these devi
es are engaged ina
tivities in a dynami
 environment. These devi
es, to one extentor another, make plans for a
tion and then exe
ute them { whether5

it be a plan to follow a
ar in the
ase of the WITAS proje
t, or aplan about how to set the time of the VCR in COLLAGEN. More-over, for ea
h a
tivity there may be many parameters that need tobe spe
i�ed by the human operator, inferred by the system, or evenrandomly
hosen. For instan
e: a heli
opter needs to know where togo, at whi
h altitude and speed to
y, and possibly even myriad other
ight parameters like pit
h, yaw, or roll; a VCR should know whattime to begin taping a show, when to end, what
hannel it's on, andat what quality to re
ord; and a humanoid robot might need to un-derstand how
areful to be, the volume at whi
h to speak, or at whatspeed to move. The point of natural-language enabling these devi
esshould be to make them easier to
ontrol. By produ
ing language,they should be able to e�e
tively
ommuni
ate their
urrent state tothe human operator in terms whi
h will make sense to the human,negotiate with the operator about the values of parameters, and an-swer questions about their state in a natural manner. Similarly, byunderstanding language, they should be able to give the operator themeans to easily modify their state or enquire further about its detailsin a natural manner. Moreover, language should allow them to beproa
tive in a natural way: they should initiate information-seekingor
lari�
ation dialogues when ne
essary, without for
ing the user tonavigate
omplex menu systems on a s
reen or understand how towrite programming
ode. Finally, they should be able to parti
ipatenaturally in joint a
tivities (see [Cla96℄) in whi
h both the human op-erator and the intelligent devi
e
ollaborate in order to bring about adesired out
ome. These a
tivities provide and importan
e
ontext bywhi
h utteran
es in a
onversation should be understood.Most or all of these advantages that arise from using natural lan-guage are desirable a
ross a wide range of devi
es. Moreover, manyof these advantages don't arise from the underlying intelligen
e of thedevi
e itself; rather, they
ome from a di�erent sort of intelligen
e:Conversational Intelligen
e (CI) [LGP02℄. Conversational Intelligen
eis knowledge about how and why
onversations o

ur between agents,and how to e�e
tively parti
ipate in
onversations. While it's truethat without an underlying intelligen
e, it's diÆ
ult to have an inter-esting
onversation about anything very interesting, it's not the
asethat with knowledge and intelligen
e
ome the ability to
ommuni
atee�e
tively. Some knowledge, in
luding for example knowledge aboutwhen it's appropriate to speak, how and when to interrupt someonewho is speaking, how the
ontext provided by past utteran
es should6

be used to interpret new ones, and when it's important to mentionparti
ular
hanges in the state of the world are just a few examples ofConversational Intelligen
e.The proje
t dis
ussed in this paper revolves around the intertwinedgoals of a
tually de�ning what's involved in CI and implementingsu
h knowledge using a
omputational system in a devi
e-independent,modular manner. Spe
i�
ally, introdu
ed here is a devi
e-independentar
hite
ture for building an interfa
e to the CSLI Dialogue Manager[LGP02℄ su
h that its
onversational front-end
an be qui
kly andeasily interfa
ed to a wide-range of devi
es. Moreover, this interfa
ewas designed to provide its own
onversationally intelligent me
ha-nisms whi
h may be harnessed by the dialogue manager in supportof more
omplex, yet natural dialogues with the devi
es. For exam-ple, devi
e-independent support is provided for
onstraint dialoguesin whi
h natural language is used to restri
t and expand the permis-sible sets of values of the parameters on parti
ular a
tivities de�nedby a devi
e (see se
tion 7). Su
h dialogues allow human operatorsto
hange the overar
hing parameters whi
h
ontrol a devi
e in anintuitive and smooth manner.In se
tion 2, will dis
uss previous and
urrent work in dialoguesystems that is relevant to the proje
t at hand, fo
using mainly onthose that deal with either
ommanding devi
es or
oordinating a
-tions of human agents. I will also study some of the theories that haveemerged regarding how rational agents operate and
ommuni
ate, asthese theories shed light on how, why, and when a rational agentshould
ommuni
ate. Next, I will look at intelligent devi
es that havea
tually been designed, and the sorts of
onstru
ts whi
h have beenused to
ontrol them. I will then note the importan
e of a

urately
ommuni
ating the state of these devi
es to the human operator, sothat mode
onfusion
an be avoided.In se
tion 3, I will then show how my proje
t is relevant to thisresear
h, and how it naturally extends mu
h of the work. Then, I'lldelve into the depths of the proje
t. In se
tion 4, I'll present theformalism of the A
tivity Tree, developed to represent that
urrentstate of the agent or devi
e with whi
h the operator is
ommuni
at-ing. In se
tions 5 and 6, I'll dis
uss the spe
ial language I've
reatedto interfa
e devi
es to dialogue systems. Then in se
tion 7, I'll dis
ussthe
onstraint management system developed as part of this proje
t,whi
h ranges over the a
tivity representation developed in the previ-ous se
tions. Finally, in se
tion 8, I'll dis
uss how the formalism is7

implemented and the interfa
e between the dialogue system and thedevi
e is a
hieved. There, I'll give a brief des
ription of the fun
tion-ing of the CSLI Dialogue Manager; though it is important to notethat the ar
hite
ture I've implemented here
ould be extended to �tin with other dialogue managers, built on di�erent theoreti
al under-pinnings. The point of my proje
t is not to manage the intri
a
iesof spoken-language dialogue, but to provide resour
es by whi
h a dia-logue manager
an fa
ilitate meaningful dialogue with a wide-range ofdevi
es. I will develop algorithms by whi
h a dialogue manager shouldintera
t with the fa
ilities dis
ussed in this paper.2 Previous and Current WorkIn this se
tion, I will delve into several areas of resear
h in order tohighlight the myriad useful ideas that have emerged, as well as toshow where this resear
h needs extension and implementation. Thisba
kground will show how the framework dis
ussed in this paper �tsinto large areas of resear
h.2.1 Dialogue SystemsThere is a wide range of dialogue systems that have been
ommer
iallydeployed, have been developed for resear
h purposes, are
urrently be-ing developed, or are planned to be developed a

ording to theoreti
alwork in progress. Su
h systems range in
omplexity depending on thediÆ
ulty of the problem for whi
h they are designed. I'll dis
uss herea range of su
h systems and the tasks for whi
h they have been de-signed; a useful and often parallel dis
ussion of the range of developeddialogue systems appears in [ABD+01℄.2.1.1 Slot/Form-Filling Dialogue SystemsThere has been a large amount of work on so
alled slot-�lling dialoguesystems. Su
h dialogue systems are useful in domains where
ertainbits of information need to be eli
ited from the user, resulting in aset of slots being �lled, whi
h are usually used to make a databasequery or update. For instan
e, when designing an automated airlinereservation system, dialogue designers have often thought in terms ofthe spe
i�
 bits of information that the user must supply in order forthe system to do a database sear
h for available
ights that mat
h8

this set of
riteria. Su
h a system might have the following slots thatneed to be �lled, where for ea
h there is a domain of allowable values:� The departure
ity� The arrival
ity� Date on whi
h to travel� Time at whi
h to travelIn order to �ll in these slots, dialogue systems generally use some
ombination of user initiative and system initiative (a
ombination re-ferred to as mixed-initiative). This means that the user may providethe values for some subset of the slots in a single utteran
e and thenthe dialogue system
an ask follow up question to eli
it the rest ofthe required information. This stands in opposition to earlier �nite-state dialogue systems, whi
h required that a series of questions beasked and answered in a spe
i�
 order so that all of the slots mightbe �lled in. For example, slot-�lling dialogue systems
an often un-derstand utteran
es like I'd like to
y from San Fran
is
o to Londonwhi
h provide some of the ne
essary information required to makean airline reservation, but not all of it. The system will follow upwith information-seeking questions when the user fails to �ll in all thene
essary slots. For example, in response to the above utteran
e, asystem might respond with Okay. When would you like to depart?.In the most straightforward instantiations of su
h systems, thehuman user must �ll all of the slots before pro
eeding { though theslots may be �lled in any order. Su
h an ar
hite
ture has been used tobuild, for example, airline reservation systems (e.g. [SP00℄) and traintimetable systems (e.g. [SdOB99℄). It has also been
ommer
ialized by
ompanies like Nuan
e and Tellme who build
ustomized appli
ationsfor
lients like banks, telephone
ompanies, and airlines.Form-�lling dialogue systems, then,
on
eptualize information-seekingdialogue in terms of a mapping from user-utteran
es to values for slots.On
e the requisite slots are �lled, the system
an take some sort ofa
tion { for instan
e, making an airline reservation [SP00℄. Conversa-tional Intelligen
e is demonstrated to the extent that it has a strategyfor eli
iting information that the ba
k-end of the system needs fromthe user in order to take some a
tion. It is
lear, however, that a sim-ple form-�lling model is not suÆ
ient for
ontrolling intelligent agentsin
omplex environments: there is no me
hanism, for instan
e, to an-swer questions about the state of the devi
e, or why the devi
e is doing9

a parti
ular a
tion, sin
e these things are not modeled. On the otherhand, form-�lling provides a good model for a means of obtaining val-ues for a set of parameters, whi
h is highly relevant to some aspe
tsof
ontrolling intelligent devi
es.2.1.2 Pra
ti
al Dialogue SystemsIn [ABD+01℄ the authors identify a type of dialogue whi
h they referto as pra
ti
al dialogue. They de�ne pra
ti
al dialogue as dialoguewhi
h \may involve exe
uting and monitoring operations in a dynam-i
ally
hanging world" ([ABD+01℄:3). As opposed to the types ofdialogue systems dis
ussed in the previous se
tion, dialogue systemswhi
h are designed to work at su
h a level generally fa
ilitate inter-a
tion with devi
es in a real-world or simulated environment, withthe goal of a

omplishing some spe
i�
 task (in
ontrast to simplydoing a database lookup, for example). Allen, et al,
laim that whilesu
h dialogues are
omplex, they don't require full-human
ompeten
eto understand and parti
ipate in. Indeed, it is apparent that a sys-tem designed to handle su
h dialogues
ould probably fun
tion prettywell without understanding how a metaphor, for example, fun
tionsin language.There are many
urrent resear
h proje
ts whi
h are involved intrying to build dialogue systems whi
h fun
tion at this \pra
ti
al"level. Many of them are trying to dialogue-enable existing devi
esin the home, oÆ
e, and/or automobile (e.g. [LRGB01℄, [LBPA02℄,[RSL01℄). Su
h proje
ts often are pursuing fruitful ways to endow
apabilities like
lari�
ation sub-dialogues and anaphora resolutiona
ross a diverse set of devi
es. For example, su
h systems try togeneri
ally enable dialogues like the following:(1) a. O: Turn on the light.S: Whi
h light should I turn on?O: The one in the kit
hen.S: The light in the kit
hen is now on.b. O: Is the light in the kit
hen on?S: Yes.O: Turn it o�.S: The light in the kit
hen is now o�.In the above dialogue, the lights are referred to with anaphori
 ex-pressions su
h as the one in the kit
hen and Turn it o� { an ability10

above and beyond that supplied by the simpler form-�lling dialogues.Moreover, rather than simply doing stati
-database queries and re-porting the results, the dialogue system must be able to monitor aworld in whi
h the dialogue may
ause
hanges (here, the lights turno� and on). Su
h dialogue systems must
arry with them some no-tion of how the devi
es they
ontrol operate { they must understandthat ele
troni
 devi
es
an be turned on and o�, radios
an be turnedto a parti
ular station and only dimmable lights
an be dimmed toparti
ular intensities. In order to address these issues, in [LRGB01℄for example, a plug-and-play system is designed in whi
h new devi
eswith new
apabilities
an be added to the system easily by loadingin the linguisti
 resour
es for
ontrolling and querying a devi
e, theabilities of the devi
e, and the
ode used to interfa
e to the devi
e onthe
y.In this domain, it is evident that the Conversational Intelligen
eof the devi
e
an begin to be separated from its fun
tion. By separat-ing linguisti
 and ontologi
al knowledge so that both
an be applieda
ross many similar devi
es in order to enable dialogue phenomenalike anaphora resolution and
lari�
ation sub-dialogues, and in orderto
apture
ommonalities like the fa
t that ele
troni
 devi
es may beturned on and o�, resear
hers
reate generi
 dialogue systems whi
h
an be used to
ontrol diverse sets of devi
es.Perhaps a step up in
omplexity from su
h \dumb" devi
es areproje
ts that are
on
erned spe
i�
ally with dialogue-enabling themore intelligent devi
es that are under development for the future.At NASA, for example, a dialogue system has been
reated for thePersonal Satellite Assistant (PSA) under development there [RHJ00℄,a small mobile robot for use in the spa
e station. The dialogue man-ager gives astronauts a means of giving orders to the PSA su
h asMeasure the temperature at the
aptain's seat and allows the PSA todisambiguate orders su
h as Open the hat
h when there are multiplehat
hes. While the proje
t has produ
ed a workable dialogue man-ager, no general results have been reported about the sorts of devi
esthat the dialogue manager would be able to
ontrol, or even if it wouldbe able to
ontrol devi
es besides the PSA.At CSLI, I am involved as part of the Computational Seman-ti
s Lab in the WITAS proje
t [LGP02℄, whi
h has as its goal todialogue-enable an autonomous heli
opter
urrently under develop-ment [DGK+00℄. In order to dialogue enable this devi
e, we havesought to de�ne what knowledge
onstitutes the
onversational intel-11

ligen
e that is needed by a wide-range of task-oriented autonomousdevi
es in order to e�e
tively
ommuni
ate. This paper will des
ribethe interfa
e to the robot heli
opter that the dialogue manager beingdeveloped at CSLI uses in order to behave with
onversational intel-ligen
e in su
h areas as: when to make an utteran
e, when to ask aquestion, how to set devi
es' parameters, and so on. It is our aimto make a generi
 dialogue system that
an be straightforwardly spe-
ialized to dialogue-enable the large range of autonomous devi
es thatmay be developed in the future whi
h might be quite di�erent fromthe heli
opter with whi
h we are
urrently working.As was tou
hed on brie
y in se
tion 2.1.1, dialogue systems for
ontrolling su
h devi
es are inherently more
omplex than form-�llingdialogue systems be
ause they must model, to some extent or another,the state of the world. Spe
i�
ally, they must be able to model the
urrent joint a
tivities in whi
h the intelligent agent and the humanare involved.2.2 Rational Agents and Plan Re
ognitionIn order for a dialogue system to work with intelligent devi
es, it mustbe
apable of understanding the sorts of plans that a user wishes to
arry out with the devi
e. There has been a large amount of resear
hinto understanding how rational agents (su
h as humans)
on
eptu-alize plans and
ommuni
ate about them. This has bearing on theproje
t at hand, both be
ause the dialogue system ought to be able tofa
ilitate the understanding of the intentions of the human operatorand be
ause it should be able to
ommuni
ate the plans formed bythe devi
e to the human; if the a
tions of the intelligent devi
e are tobe understood as rational by the human operator, then the dialoguemanager must be able to
oherently
ommuni
ate them to the humanin terms that will make sense to him or her. Inferring the plans ofrational agents based on what and how they
ommuni
ate is
alledplan re
ognition.Criti
al to understanding what it means to have a plan is a dis-tin
tion drawn in [Pol90℄. Here, Polla
k makes a
ru
ial distin
tionbetween plans and re
ipes: a re
ipe-for-a
tion is a re
ipe by whi
hrational agents formulate plans, and a plan is an instantiation of aparti
ular re
ipe-for-a
tion. A plan is part of
omplex mental stateof a
onversational agent, whereas a re
ipe is a more abstra
t notion{ it
omposes part of the re
ipe library from whi
h an agent might12

hoose a re
ipe to instantiate into an a
tual plan in a parti
ular situ-ation. When an agent wishes to a
hieve a goal, he/she/it instantiatesa re
ipe into a plan by whi
h the goal may be a
hieved.A plan des
ribes a means of a

omplishing a goal or
ompletingan a
tion. It does this by de�ning a set of steps { steps may appearin sequen
e to one another, and sets of steps may re
ursively be sub-steps of a di�erent step. In [Bra90℄, Bratman points out that theability to break up a plan into sub-plans, and still further into smallersteps, is a pragmati
 one be
ause su
h subdivisions allow the agentto defer planning the details of a sub-plan until later, when the stateof the world may have
hanged in unexpe
ted ways for
ing the agentto dis
ard or repla
e the sub-plan. In [Pol90℄ and further
eshedout in [ASF+95℄ is a parti
ular notion of the di�erent ways in whi
hsteps in a plan
an stand in relation to one another. In parti
ular,the relationships given below are de�ned. I've added question-answerpairs to ea
h relation whi
h are meant to illustrate the relations:1. A�e
t: a
tion to stateQ: Why are you
ying to the tower?A: In order to be at the tower.2. Enablement: state to a
tionQ: Why do you want to be at the tower?A: So I
an drop medi
al supplies there.3. Generation: event to event (illustrated with the by lo
ution)Q: How will you put out the �re at the s
hool?A: I will put out the �re at the s
hool by
ying to the lake,pi
king up water there,
ying to the s
hool, and dropping thewater on the �re there.4. Justi�
ation: state to stateQ: Why do you have to be at the tower?A: Be
ause you want medi
al supplies there.While this de�nes the relationship between parti
ular segments ofa plan it does not de�ne pre
isely the notion of what it means fora
onversational agent to have a plan. Polla
k (in [Pol90℄) gives thefollowing de�nition: An agent A has a plan to do � that
onsists indoing some set of a
ts �, providing that:1. A believes that he
an exe
ute ea
h a
t in �.2. A believes that exe
uting the a
ts in � will entail the perfor-man
e of �. 13

3. A believes that ea
h a
t in � plays a role in his plan.4. A intends to exe
ute ea
h a
t in �.5. A intends to exe
ute � as a way of doing �.6. A intends ea
h a
t in � to play a role in his plan.The fa
t that agents have plans whi
h they talk about, even thoughthese plans are not a
tually plans to
ommuni
ate, is an importantdistin
tion made by resear
hers who have sought to des
ribe ways todo plan re
ognition. For instan
e, in [LA90℄, the authors de�ne do-main plans as plans whi
h might be performed in a parti
ular domain,and des
ribe those plans in a STRIPS-style formalism. The notion ofagents \having plans" and
ollaborating with one another about themis also developed by Groz, Sidner, and others in a number of papers(for example: [GS90℄, [GK96℄, [GK98℄). The result of their resear
h isthe de�nition of a SharedPlan. SharedPlans
an be used to de�ne theplans that rational agents make with one another; indeed, they
anbe used to determine when agents have su

essfully
ommuni
ated toone another that they intend a parti
ular plan.Attempts have been made to apply the SharedPlan Model to dia-logue systems (e.g. [Lo
94℄). Most re
ently, this has been done by theSidner's COLLAGEN proje
t (overview in [RSL01℄). In parti
ular, itis applied mainly to tutorial dialogues in whi
h the
omputer helpsthe human user to get through a series of steps involved in operat-ing a devi
e ([RLR+02℄) { for example, programming a VCR. WhileCOLLAGEN purports to use a SharedPlan model { COLLAGEN isreally only a partial implementation of the SharedPlan ar
hite
ture atthe moment. Indeed, while SharedPlan a�ords a relatively
omplexmeans of de�ning the relationships among the parts of an instanti-ated plan, the re
ipe-trees in COLLAGEN are not nearly so ri
h; they
onsist mainly of a
tions whi
h have been hierar
hi
ally de
omposed.Moreover, this appli
ation is fo
used not on
ontrolling autonomousdevi
es in dynami
 environments, but on helping human users
on-trol relatively simple ele
troni
 devi
es. As su
h, while COLLAGENis helpful to our purposes in that it helps us to understand one wayin whi
h plans for a
tion have been modeled, the types of plans it is
apable of modeling are not as
omplex as those that more
omplexdevi
es a
tually form, as will be dis
ussed below.Plan re
ognition has also been used by dialogue systems { espe-
ially in the TRAINS (and subsequently TRIPS) system at the Uni-versity of Ro
hester. The most re
ent work on plan re
ognition from14

that proje
t is des
ribed in [Bla01℄. The plan re
ognition system isfo
used mainly on inferring user plans either bottom up (a
tions �rst)or top down (goals �rst), and it has been re
ently enhan
ed to modelsynergies that
an arise from plans being interleaved. Interleaved plansare those in whi
h one a
tion is part of several plans.As a �nal note, I'd like to draw attention to the fa
t that in[TA94℄, the authors dis
uss an important distin
tion that
an bedrawn among the ways that a plan (or sub-plan)
an
ulminate \su
-
essfully." Spe
i�
ally, three results may be obtained:� Su

essful Completion (all a
tions performed and goal met)� A
tion Completion (all a
tions performed)� Goal Satisfa
tion (goals a
hieved)We
an
onsider the three
ases by looking at an example:
onsiderthat I have the goal to have a
lean kit
hen
oor and my plan toa
hieve this goal is to �rst sweep the
oor and then mop it. In the�rst
ase, I go ahead and sweep the
oor and then mop it and the
oorbe
omes
lean { I've done all the a
tions in my plan and a
hieved mygoal. In the se
ond
ase, suppose that I sweep the
oor and then mopit, but there's a tough stain that just won't
ome out; in this
ase,I've performed all of the a
tions in my plan, but my goal of having a
lean kit
hen
oor doesn't obtain. Finally, suppose that I �rst sweepthe
oor, and then I go to the other room to look for the mop whereI'm delayed by an important phone
all. In the meantime, Joe noti
esthat the kit
hen
oor needs a bit of
leaning, and so he takes a ragand
leans it by hand. When I return with the mop, I dis
over thatthe
oor is
lean even though I didn't have to mop it (and, indeed,nobody a
tually mopped it) { in this
ase, my goal has been a
hievedeven though I didn't
omplete all of the a
tions in my plan.This distin
tion is an important one, be
ause it is often the
asewhen people give
ommands that they don't often
are about how agoal is a

omplished, but just that it is a

omplished in one way oranother. On the other hand, sometimes it matters a great deal theexa
t way in whi
h a goal is a

omplished.2.3 Mobile Robot Control SystemsHere, I'll
onsider one formalism for
ontrolling mobile robots whi
hhas a
tually been �elded in many systems, and is now embodiedin software whi
h is shipped with many mobile robots in order to15

ontrol them: PRS-LITE (see, e.g., [Mye96℄). PRS-LITE is a re-implementation of SRI's Pro
edural Reasoning System (PRS) formal-ism streamlined for
ontrolling mobile robots. It is now realized in theCOLBERT programming language, whi
h is part of the Saphira sys-tem, written at SRI and distributed now by A
tivMedia Roboti
s withthe robots it sells. If we see robots as representing rational agents, thenwe should be able to view PRS-LITE as a formalism used to a
tuallyrepresent the robot's plans for a
tion { as su
h, we
an
ome to under-stand the \mental representation" that many robots
urrently use inorder to \have a plan." This \mental representation" has been drivenby the need to e�e
tively and eÆ
iently
ontrol mobile robots, ratherthan any theoreti
al underpinnings of how a rational agent ought tobehave, as the above planning formalisms have attempted to do. Un-derstanding this is
riti
al to my proje
t, be
ause if humans are tointera
t with intelligent devi
es as though they are rational agents,then we must be able to �nd a way to mesh the types of represen-tations that humans use and the ones that are
ommon to robots, ifthe agents have any hope of e�e
tively
ommuni
ating. Indeed, myproje
t
an be seen in terms of
reating a layer by whi
h humans androbots
an interpret the intentions behind the a
tions and
ommu-ni
ative attempts of one another.PRS-LITE attempts to support the following
hara
teristi
s whi
hthe authors of [Mye96℄ assert are requisite for
ontrolling su
h mobilerobots:1. Both dis
rete and
ontinuous pro
esses2. Con
urrent a
tivities3. Both goal-driven and event-driven operation4. An external observer should be able to understand the intentunderlying the robot's a
tion.In addition, the authors de�ne goal semanti
s whi
h support atomi
and
ontinuous pro
esses { that is, ones whi
h
an be used as sequen-tial building blo
ks and ones whi
h run as ongoing pro
esses, withoutparti
ular goals.The representational basis that PRS-LITE uses is
alled an a
tivitys
hema. Where an a
tivity s
hema is de
omposed as follows:� It is an ordered list of goal-sets� where a goal set is one or more goal statements (\goals") in anordered sequen
e 16

� where a goal is a goal operator applied to a list of argumentsGoals
an be de
omposed hierar
hi
ally. Spe
i�
ally, Goals are ei-ther A
tion Goals (Test, Exe
ute, =, Wait-for, Intend, Unintend) orSequen
e Goals (If, And, Split, Goto).The end result is that goals are not simply hierar
hi
ally de
om-posed, rather, a hierar
hi
ally de
omposed goal
an also give rise (viasplit) to other trees { yielding a forest of a
tions whi
h are
urrentlybeing exe
uted by the robot. Also, the If and Goto allow for theability to skip over
ertain steps. This allows for a large amount of
exibility in the relationship between pro
esses; however it makes itdiÆ
ult for an external observer to understand the intent of the au-tonomous system. The instantiated \plan" that the system has at anyone moment is simply a set of a
tivities, some of whi
h stand in ana
tivity-sub-a
tivity relationship and some of whi
h are
on
urrent.There is little expli
it explanation of exa
tly how and why the set ofa
tivities the system is running at any one time are linked together.In typi
al PRS-LITE systems, there are many
on
urrent goalsbeing pursued at any one time. Indeed, not only are there many
on
urrent tasks, but the relationships between these tasks are oftenabstruse. Global variables
an be shared between tasks, and sometasks will wait for other tasks to set parti
ular variables before theypro
eed. Given su
h a
omplex network, it is often diÆ
ult for peoplewho monitor the system to understand exa
tly what the system isdoing, what it intends to do, and why.2.4 Mode Confusion in Complex SystemsResear
h into human understanding of
omplex software systems has
ontributed some useful insights to modeling a
tivities as well. In[Lev00℄, the point is made that when a
tivities are de
omposed intosmaller
hunks, at ea
h level of the hierar
hy there
an be observedemergent
hara
teristi
s. On page 6, emergen
e is de�ned as follows:\Emergen
e { at any given level of
omplexity, someproperties
hara
teristi
 of that level (emergent at thatlevel) are irredu
ible. Su
h properties do not exist at lowerlevels in the sense that they are meaningless in the lan-guage appropriate to those levels. For example, the shapeof an apple, although eventually explainable in terms ofthe
ells of the apple, has no meaning at that lower level of17

des
ription."A similar sort of example
an be found in the mobile robot domainif we
onsider the task of patrol { whi
h, in its simplist form,
onsistsof going ba
k and forth between two points. At the lower level of goto,there is no way to explain the
on
ept of patrol.In [BL01℄ the authors note how important for safety it is thathumans have a good understanding of how automated pro
esses work.They
reate a graphi
al language for
reating this representation. Toquote: \A
ontroller (automati
, human, or joint
ontrol) ofa
omplex system must have a model of the general be-havior of the
ontrolled pro
ess....If an operator's mentalmodel diverges from the a
tual state of the
ontrolled pro-
ess/automation suite, erroneous
ontrol
ommands basedon that in
orre
t model
an lead to an a

ident."The authors also assert that one of the major fa
tors that leads to anoperator/ma
hine mismat
h is la
k of appropriate feedba
k, espe
iallywhen this feedba
k is needed to
ommuni
ate unintended side e�e
ts.As su
h, they indi
ate when it is important for a semi-autonomous,
omplex devi
e to
ommuni
ate when its state has
hanged. It isimportant both that the human understand the
urrent state of thedevi
e in terms that make sense to the human, and that these termsare somehow translatable into language the devi
e understands.2.5 Plug-and-Play Devi
es and Dialogue Sys-temsIn [LRGB01℄ the authors dis
uss the development of a dialogue sys-tem for
ontrolling devi
es in the home. A
ompelling feature of thissystem is that devi
es
an be plugged in \on the
y" { their
apa-bilities and a grammar for dis
ussing these
apabilities
an be addeddynami
ally to the dialogue manager. For instan
e, when a dimmablelight swit
h is added to the system, an devi
e model des
ribing thedimmability of the swit
h is dynami
ally added to the system and agrammar that allows for utteran
es su
h as Dim the light to �fty per-
ent is added. Three hierar
hies exist in whi
h the devi
e must bepla
ed:1. The linguisti
 resour
es needed to query and
ontrol devi
es18

2. The fun
tionalities the devi
es implement3. The
ode needed to
ontrol the devi
esThe goals of the system are exa
tly the same sort of goals pursuedby the proje
t des
ribed in this paper: plugability of devi
es into a di-alogue system. However, while they have made a good start, they la
kdevi
e models and des
riptions for
omplex a
tions { while they
anturn lights on and o�, they wouldn't be able to
ontrol a mobile robotin a dynami
 environment very easily, for example. The system theyhave built mostly deals with single utteran
es like \Turn on the lightin the kit
hen" whi
h result in nearly instantaneous a
tions. In orderto have more
omplex dialogues with more
omplex devi
es, a
tionsthat have duration must be
onsidered, as well as a
tions whi
h o

ur
on
urrently. Spe
i�
ally, the relationship among these
on
urrentlyexe
uting a
tions will be relevant to the dialogue at hand.3 Proje
t OutlineI have dis
ussed above some of the resear
h in several �elds that isrelevant to my proje
t. There has been mu
h fruitful work done onenabling dialogue systems to understand how humans
ommuni
ateabout plans they have formed. This work should serve as a basis forenabling intelligent devi
es to understand what it is the human oper-ator wants it to do, and how it should be done. At the same time,while there has been mu
h work in developing powerful
ontrol sys-tems for autonomous devi
es, espe
ially mobile robots, there remainsmu
h work to be done regarding how best to
ommuni
ate about thea
tions of the devi
es whi
h are
arried out by devi
es so
ontrolled.Indeed, there is a body of resear
h that indi
ates that it is
riti
althat human operators be able to understand the
urrent \mode" of
omplex systems (here, the
omplex system in question is the intelli-gent devi
e). Moreover, there has not been work on how to e�e
tively
onvey a human user's beliefs about a plan to an intelligent devi
e,in terms that it
an understand; that is, there is a spe
i�
 problemof
onverting from one rational agent's mental state representation ofa plan to another's. Finally, there has been little investigation intohow natural language
an be used to make su
h
ommuni
ation moree�e
tive, su
h that mode
onfusion
an be avoided, and the possiblymany parameters involved in any one of a devi
e's a
tivities
an be
ontrolled simply and naturally. 19

This paper fo
uses on designing me
hanisms for designing a
lassof dialogue systems for task-oriented dialogues, a spe
i�
 subset of therange of \pra
ti
al" dialogues dis
ussed above. A task-oriented dia-logue is one whi
h is \fo
used on a

omplishing a
on
rete task" { thatis, it is a dialogue about a

omplishing some spe
i�
 task or tasks in areal or simulated environment. Allen, et al, hypothesize in [ABD+01℄that general-purpose tools
an be built for enabling dialogue manage-ment over the set of pra
ti
al dialogues. Spe
i�
ally, they formulatethe Domain-Independen
e Hypothesis:\Within the genre of pra
ti
al dialogue, the bulk ofthe
omplexity in the language interpretation and dialoguemanagement is independent of the task being performed."This
laim both motivates the work des
ribed in this paper, and it issupported by the end result.The two major goals of the proje
t des
ribed here were derivedfrom the exploitation of this hypothesis. Spe
i�
ally, they are:1. To
reate a s
ripting language similar in spirit to PRS-LITEwhi
h is powerful enough to
ontrol autonomous agents at a highlevel, but with spe
ial features making it parti
ularly suitablefor
ommuni
ating in natural language about a
tivities the de-vi
e is
urrently engaged in, has
ompleted, and should do in thefuture. Moreover, this language should support joint-a
tivitieswhi
h involve
ooperation between the human operator and theintelligent devi
e, an area often overlooked by robot program-mers. This language should lead to a perspi
uous run-time rep-resentation of the joint-a
tivities in whi
h the human and devi
eare involved, su
h that this representation may be used as
on-text to better understand and produ
e utteran
es related to thea
tivities being performed.2. To exploit features of natural language su
h that
ontrolling in-telligent devi
es is easier or more natural when they are dialogueenabled, as
ompared to
ontrolling them with a GUI or a
om-mand line interfa
e.In addressing the �rst issue, I will introdu
e the notion of the A
-tivity Tree as a means of tra
king and modifying the status of multiple
on
urrent a
tivities. In addition, I will dis
uss a parti
ular represen-tation of A
tivities I've developed. The representation allows the dia-logue system to both talk about a
tivities and understand utteran
es20

that pertain to a
tivities and their parameters. Moreover, it allowsthe dialogue manager to answer questions about why spe
i�
 a
tivitiesare
urrently being done or being planned. I will introdu
e a re
ipes
ripting language that shares many features with PRS-LITE, but isdesigned to make
ommuni
ating about a
tivities straightforward.In addressing the se
ond issue of exploiting natural language, I willdis
uss many issues. My fo
us, however, will be a me
hanism I've de-veloped for spe
ifying
onstraints over a
tivities (for instan
e, \always
y high"). I will des
ribe a system that allows the human operatorto naturally spe
ify and modify relatively
omplex
onstraints usingnatural language and then ensures that these
onstraints are adheredto. In addition, this system dete
ts a wide-range of impli
atures inorder to ensure that the
onstraint set remains
oherent, even whenthe user only impli
itly removes
onstraints from the set and repla
esthem with new ones. It is my belief that su
h
onstraints are expressedeasily in natural language, while they are diÆ
ult to
ommuni
ate viaa graphi
al user interfa
e, and espe
ially diÆ
ult for a naive user toexpress in a logi
 formalism. Moreover, I will show how the stru
-ture of the A
tivity Tree
an be exploited by a system for managing
onstraints in order to allow for more
exible, natural, and robustdialogues.Many of the examples
ited in this paper derive from a dialoguesystem meant for
ontrolling an autonomous heli
opter. This is be-
ause the CSLI dialogue manager and the a
tivity modeling/
onstraintmanagement system presented here were made to work �rst in thisdomain. A toy version of the
urrent system has been built for
on-trolling an imaginary \robot butler," and previous, less-advan
ed, in-
antations of the system have been adapted for various other dialoguesystems, in
luding an in-
ar stereo
ontroller and a voi
e interfa
e toa s
heduler, like the ones used on personal digital assistants (PDAs).The goal of the work presented here is to
reate a straightforwardmeans of porting the dialogue front-end to further appli
ations.3.1 Fitting in a Dialogue System Ar
hite
tureIn terms of existing ar
hite
tures for dialogue systems, this proje
tis meant to serve as a link between a dialogue manager and a de-vi
e/agent. Be
ause this framework represents information whi
h is
ommon a
ross all task-oriented devi
es in a single format, the dia-logue manager needs only to have algorithms whi
h operate over this21

more abstra
t stru
ture. This saves us from having to make ad-ho

hanges to the dialogue manager for ea
h new devi
e. Spe
i�
ally,rather than building into the dialogue manager knowledge about ea
hdevi
e for whi
h it must fa
iliate dialogue, the goal is to provide thedialogue manager with general knowledge about how task-oriented di-alogues work in general, and how joint a
tivities are stru
tured. Thegoal of this paper is to develop a framework by whi
h su
h knowl-edge
an be spe
i�ed de
laratively, so that general-purpose algorithmsin the dialogue manager
an operate over the de
laratively de�nedinformation in order to fa
ilitate
omplex task-oriented dialogues.Throughout this paper, I will assume that a dialogue manager witha basi
 set of
apabilities already exists. Spe
i�
ally, I will assume thatthe dialogue manager is
apable of doing the following:� Converting natural language to logi
al forms whi
h it uses inter-nally as a semanti
 representation of natural language;� Generating natural language from su
h logi
al forms;� Keeping tra
k of the
ontext provided by previous dis
ourse sothat dialogue games like question-answer pairs and
ommand-a
knowledgement pairs
an be produ
ed and understood;� Further using this
ontext to do su
h things as determine thereferent of anaphori
 expressions and aggregate sets of utteran
esto be said by the system so that they
ow
onversationally (seee.g. [Ste01℄ on aggregation).Moreover, I assume that this dialogue manager ar
hite
ture
anbe interfa
ed, if desired, to the following
omponents:� An automati
 spee
h re
ognizer,� A parser,� A graphi
al user interfa
e,� A text-to-spee
h synthesizer.I make these assumptions be
ause su
h a system exists in the formof the CSLI dialogue manager ([LGP02℄). Moreover, similar systemshave been built as was noted in se
tion 2.1.2. The framework des
ribedin this paper is meant to further enhan
e su
h a dialogue system,though it is ambivalent, for the most part, with regard to the way inwhi
h the dialogue system a
tually provides most of this fun
tionality.The dialogue-manager algorithms des
ribed in this paper have been22

implemented as part of the CSLI dialogue manager, but they
ouldalso be used to extend other similar dialogue managers.4 The A
tivity Tree and A
tivitiesIn order to dialogue enable task-oriented agents like mobile robots,it is
riti
al that the dialogue manager maintain a representation ofwhat the devi
e it is
ontrolling is a
tually doing, plans to do, andhas already done at any given point in time. It is important thatthis representation, or at least some aspe
ts of it, be
onvertible tonatural language. That is, the dialogue system should be able to re-spond to questions of the form What are you doing?. Being able toanswer questions like these is
riti
al for avoiding operator
onfusion.The dialogue system should be able to des
ribe the
urrent state ofthe robot in a manner that the operator
an understand. Moreover,a dialogue system should be able to answer, at at least some basi
level, the question of why the devi
e is behaving as it is at any givenmoment. In parti
ular, it should be able to answer questions likeWhy are you doing X?. As was dis
ussed above, the
urrent
ontrollanguages like PRS-LITE for
omplex devi
es often make the answer-ing of su
h questions diÆ
ult be
ause they don't produ
e an easily
omprehensible pi
ture of how the devi
e operates.In addition, sin
e the goal is to allow task-oriented agents to
ol-laborate with the human operator in joint a
tivities, the representationshould represent not just the tasks that the devi
e is engaged in, butthose that the human operator may be doing as well. The intera
-tions between the two agents' a
tivities should be understandable, sothat the way in whi
h parti
ular a
tions by ea
h agent give rise to
oordinated joint a
tions is
lear and des
ribable in natural language.Moreover the dialogue system also needs to be able to
ommuni
atethe desires and intentions of the human operator to the robot itself.As su
h, its representation of the state of the devi
e should be ri
henough so that the
ommands and
orre
tions made by the operator
an be a

urately
ommuni
ated to the system.Given the above
onsiderations, it is apparent that the representa-tion we need is not one whi
h in
ludes every system-level detail of howthe devi
e (or human) will a

omplish a given task. Rather, the levelof detail should be appropriate to the a
tions whi
h need to be dis-
ussed in order to a

omplish the goals of the task. For instan
e, even23

though we know generally that braking and a

elerating are involvedin the pro
ess of driving a
ar from one pla
e to another, we might
hoose not to model this level of detail in the dialogue system. Perhapsfor the dialogue system we are designing, we simply don't
are aboutdis
ussing the details of a

elerating and braking { instead, we wishto fo
us only on a higher level of granularity. A dialogue designer,then, should be able to model the a
tions of the devi
e and human ata level of granularity appropriate to the task at hand.Even if we did wish to dis
uss fairly low level details about how thedevi
e works, our representation should not be
ommitted to ne
essar-ily modeling how intelligent devi
es/agents a
tually perform a
tions.Rather, it should be geared toward the way in whi
h humans
on
eptu-alize the a
tions being performed. That is, the representation shouldre
e
t the state of the devi
e in su
h a way that a human operator
an make sense of it. The representation should provide a mappingbetween the human's
on
eptualization of how a parti
ular a
tion isperformed and the agent/devi
e's, rather than modeling the way inwhi
h the robot a
tually does the a
tions ne
essary to a
hieve thegoal. It should not be a model of the way in whi
h individual
ir
uitsand motors of a robot work together to pi
k up a blo
k, for example,but it should be de
omposed in terms that the human operator
an beexpe
ted to understand { perhaps, in this example, this would
onsistof bending the elbow, opening the �ngers,
losing them around the ob-je
t, and then raising the arm. Just as humans do not generally speakat the level of �ring neurons or stret
hing mus
le �bers when they aregiving instru
tions to one another, we should not seek to model thislevel of detail in a dialogue system. Indeed, it is exa
tly these sortsof details that we are attempting to get away from by using naturallanguage to intera
t with devi
es: we would like to be able to intera
twith them on the level at whi
h we
on
eptualize and understand theworld, not the way in whi
h they do. As su
h, it is
ru
ial not that therepresentation in the dialogue manager be true to the inner workingsof the devi
e, but that it is able to represent these inner workings ina way whi
h humans
an readily
on
eptualize. Only in this
ase
anthe human operator su

essfully parti
ipate in joint a
tivities with thedevi
e.At �rst blush, it appears that simple slot-�lling dialogues, likethose dis
ussed in se
tion 2.1.1 above, might suÆ
e for understand-ing the desires and intentions of the human operator { after all, a
ommand and
ontrol system mainly needs to understand
ommands24

from the human operator and then
ommuni
ate them to the devi
e.However, the dialogue snippets in (2) and (3) below demonstrate howmode
onfusion
an easily arise if a dialogue system does not a

u-rately model the sort of \
ommon-sense" knowledge that a humanoperator knows about tasks that a devi
e might perform. In otherwords, the dialogue system needs to understand not only what sortof a
tivities the devi
e and human operator are undertaking, but howthese a
tivities relate to larger goals and/or other a
tivities.(2) O: Patrol between the tower and the s
hoolS: Okay. Now patrolling between the tower and Spring�elds
hool....O: Fly to the tower at high speed.The desire of the operator in (2) seems relatively
lear. He or shedesires that the heli
opter patrol between the tower and the s
hool,and moreover that when the heli
opter is
ying to the tower as part ofthis mission, it should do so at high speed. Another interpretation ofthe above dialogue is, however, that the operator at �rst wanted theheli
opter to patrol, but then
hanged his mind and simply wanted itto
y to the tower at high speed. A dialogue that follows exa
tly thissort of pattern appears in (3):(3) O: Patrol between the tower and the s
hool.S: Okay. Now patrolling between the tower and Spring�elds
hool....O: Deliver the medi
al supplies to the tower at high speed.The above dialogue follows the exa
t same sort of pattern as theother one, but (assuming the medi
al supplies are not
urrently on-board the heli
opter, and they do indeed need to be pi
ked up) itsmost feli
itous interpretation is that the operator intends that theheli
opter
an
el (or at least suspend) its patrol operation and deliverthe medi
al supplies immediately.What's highlighted here is that the dialogue system needs to some-how be able to understand that the ways the operator's �rst and se
-ond utteran
es are related in (2) and (3) are di�erent. In (2) the se
-ond utteran
e elaborates the �rst, while in (3) the se
ond
ontradi
ts25

(or revises or stands in
ontrast to) the �rst. The dialogue managermust be empowered with some
ommon-sense knowledge in order todo this: spe
i�
ally, it needs to know that \
ying to the tower" is infa
t a sub-a
tivity of \patrolling between the tower and the s
hool."It is not simply enough for the dialogue system to know that the he-li
opter is \patrolling" { but it also must know that a
omponent ofthis \patrolling" a
tivity is
ying to a parti
ular lo
ation.In order to enable the dialogue manager to make inferen
es likethe one above, as well as further inferen
es whi
h I'll dis
uss later, Ideveloped for this proje
t the representation of an A
tivity Tree whi
h
an be embedded as part of the Information State of a dialogue man-ager. The A
tivity Tree is used as a medium of
ommuni
ation to andfrom the devi
e and the dialogue manager; it is meant to represent the
urrent state of the joint a
tivities being undertaken by the operatorand the devi
e, or at least the portion of this state that is relevant forenabling meaningful dis
ourse with the human operator. The A
tivityTree
onsists of a tree of a
tivities (see below), where the des
endantsof a parti
ular a
tivity are sub-a
tivities of that a
tivity. Ea
h a
tiv-ity, at any given moment, must be in a parti
ular state, where a validstate must be one of the following:not resolved : the a
tivity has only been partially des
ribed by theuser, not all of its parameters have yet been setresolved : the a
tivity has been fully des
ribedrequest send : the a
tivity should be sent to the devi
e to be planned,when it is appropriate to do soplanned : a
tivity has been planned by the devi
e plannersent : the a
tivity has been sent to the devi
e (or operator) to exe
ute
urrent : the devi
e (or operator) is
urrently exe
uting the a
tivitysuspended : the a
tivity has been inde�nitely suspended
an
elled : the a
tivity has been
an
elleddone : the a
tivity was su

essfully
ompletedskipped : the goals of the a
tivity were already true, so it wasskippedfailed pre
onditions : the pre
onditions required for the a
tivityto be exe
uted do not hold
onstraint violation : the a
tivity, as
urrently spe
i�ed, violatesone or more of the
urrent
onstraints (see se
tion 7)26

on
i
ts : the a
tivity has a resour
e
on
i
t with other a
tivitiesThe A
tivity Tree has a root, whi
h will hold important informa-tion for the
onstraint management system whi
h will be des
ribedlater. The root, however, does not a
tually represent any parti
ulara
tivity the devi
e (or operator) is, has been, or plans to be engagedin, and as su
h it has no state. Due to this la
k of a true root, theA
tivity Tree is a
tually better viewed as a forest whi
h
ontains treesof a
tivities, where ea
h tree may
onsist of
urrently exe
uting orplanned a
tivities. In this way, the representation of the
urrent stateof the system mirrors that used by robot
ontrol languages like PRS-LITE, dis
ussed in se
tion 2.3. Su
h a representation is the naturalresult of having hierar
hi
ally stru
turing a
tivities of whi
h multipleones may be exe
uting
on
urrently.The relatively simple A
tivity Tree for the patrolling example givenabove looks like this (at the moment in time when the heli
opter has
own to the tower, then to the s
hool, and is now
ying ba
k to thetower as part of its patrol operation):root..patrol_between (tower) (s
hool) [
urrent℄....go (tower) [done℄......take_off [done℄......fly_atom (tower) [done℄....go (s
hool) [done℄......take_off [skipped℄......fly_atom (s
hool) [done℄....go (tower) [
urrent℄......take_off [skipped℄......fly_atom (tower) [
urrent℄Note that nodes whi
h are indented below other nodes are their de-s
endants. For instan
e, go (s
hool) is a
hild node of patrol between(tower) in the above example. The state of ea
h node is given inbra
kets { for instan
e, [done℄. The
onventions used in the abovediagram will be used throughout this paper.The A
tivity Tree is meant to be similar
on
eptually to the typesof representations developed by Clark in [Cla96℄, and indeed it ismeant to serve a similar purpose. Clark makes a powerful
ase inhis book that an agent must be able to understand and model thejoint a
tivities in whi
h he/she/it is engaged. Indeed, he shows thatwithout su
h an understanding it would be impossible to
omprehend27

and produ
e utteran
es whi
h both make sense given the
urrent
on-text, and further the a

omplishment of mutual goals. The A
tivityTree is meant to provide just su
h a
ontext for the dialogue manager,so that it
an enable the devi
e to parti
ipate in meaningful and usefuldialogues about the joint a
tivities in whi
h it is a parti
ipant.5 The Re
ipe S
ripting LanguageWhile the A
tivity Tree represents the relationship among a
tivities,the meshing of natural-language te
hnology with agent-
ontrol te
h-nology be
omes apparent when we examine the representation devel-oped here to des
ribe the a
tivities themselves. Ea
h a
tivity on theA
tivity Tree is an instantiation of a re
ipe whi
h
omes from a re
ipelibrary for a parti
ular devi
e. Con
eptually, this mirrors the pro-posals in [Pol90℄; and it is similar in
on
ept to the plan libraries in[ASF+95℄. The re
ipes in the library, as well as parti
ular propertiesof the library itself, are
ompiled from a re
ipe s
ript, whi
h must bewritten for the devi
e that is being dialogue-enabled. The re
ipe s
riptde�nes re
ipes for undertaking parti
ular a
tivities (often in the pur-suit of parti
ular goals). Ea
h re
ipe models the domain-dependent
ommon-sense knowledge whi
h is needed to give rise to the stru
tureson the A
tivity Tree whi
h the dialogue manager uses for interpretingand produ
ing relevant utteran
es. Moreover, ea
h
ontains spe
ial
onstru
ts whi
h are used by the dialogue manager to more e�e
tively
ommuni
ate, but whi
h have nothing to do dire
tly with the modelof how a
ertain a
tion is a
hieved (for example, the Natural LanguageMapping and Natural Language Slots
onstru
ts whi
h are des
ribedbelow).The re
ipe s
ript is formatted a

ording to a spe
ial re
ipe s
ript-ing language designed as part of this proje
t. The re
ipe s
ript isdesigned so that re
ipes
an be des
ribed in a powerful enough for-malism to engage in joint a
tivities with relatively intelligent agents ordevi
es; at the same time, it requires
onstru
ts whi
h make des
ribingand querying about the a
tivities instantiated from the re
ipes withnatural language a straightforward task for the dialogue front-end tofa
ilitate. Moreover, it is designed so that
onstraints (dis
ussed inse
tion 7)
an be des
ribed that range over the
ontents of the instan-tiated a
tivities. A re
ipe s
ript
onsists of a preamble followed by aset of re
ipes, where ea
h re
ipe
an be instantiated as a parti
ular28

a
tivity on a parti
ular a
tivity tree for a parti
ular devi
e.Ea
h re
ipe de�ned in the re
ipe s
ript is added to the re
ipelibrary whi
h is used by the dialogue manager to understand the
a-pabilities of the devi
e. A re
ipe
an be
on
eptualized as
onsistingof the following
omponents:� A set of slots, similar in nature to the sets of slots used inform-�lling dialogues, whi
h represent the pie
es of informationneeded before a re
ipe
an be instantiated into an a
tual a
tivity(or plan)
apable of being exe
uted by the devi
e (or humanoperator).� An algorithm (the re
ipe body) whi
h operates over this setof slots that spe
i�es how the a
tivity should be de
omposedfurther to a

omplish its goals.� Devi
e information about the
onditions under whi
h there
ipe may be exe
uted (pre
onditions), the results of the a
-tions des
ribed by the re
ipe (goals), the resour
es needed toperform the a
tions des
ribed by the re
ipe (resour
e list), and
onstraints over the way in whi
h the a
tions will be performed.� Linguisti
 information about how to des
ribe under various
ir
umstan
es (or when to refrain from des
ribing) the instanti-ated a
tivity as it is being performed.In order to make the information in the re
ipe s
ript available tothe dialogue system, the s
ript is �rst `
ompiled' into a format that
an be used more readily. This is done using a
ustomized lexer-parser
reated in Java using ANTLR [Par00℄, a parser generator for Java.The following output �les are generated by the
ompilation pro
ess:1. CSLI A
tivityProperties.java: de�nes the a
tivity proper-ties2. myDevi
e.rep, where myDevi
e is provided as part of the s
ript:de�nes the body of ea
h a
tivity3. CSLI TaskMat
her.java: A simple
lass with a hash table to doNL mapping of
ommand names4. domains.e
l: De�nes the domain of ea
h slot5.
onstraints.e
l: Provides the ECLiPSe predi
ates the Dia-logue Manager will
all 29

In this se
tion and the next, I will dis
uss the
omponents of thepreamble and of the re
ipe body, why they are relevant to dialogue sys-tems, and how the information is `
ompiled into' the dialogue managerfor use at runtime. For
omplete examples of s
ripts written in theformalism that will be des
ribed, please see Appendix B.5.1 The PreambleThe preamble of the re
ipe s
ripting language has several se
tionswhi
h I will dis
uss here.5.1.1 The Re
ipe LibraryThe �rst line of the preamble must be of the form:repfile "myRepFile"where myRepFile is the name of the �le where the re
ipe library willbe stored.5.1.2 Type De�nitionsNext, there must appear a Types se
tion, in whi
h valid slot types arede�ned. De�ning a type, in this
ontext,
onsists simply of de�ningthe valid domain of values that slots of the given type may take on.These domains are used for reasoning about
onstraints (see se
tion 7){ if slots of a parti
ular type will never be involved in su
h reasoning,then their domains may be left unspe
i�ed.Types are de
lared using the following format:Typename :: [value 1, ..., value n ℄;where ea
h value i is an allowable value for this type. If there areno su
h values, then the type does not parti
ipate in any
onstraintreasoning and it
an take on any value.An example of a Types se
tion is the following:Types {Speed :: ["high", "medium", "low"℄;Altitude :: ["high", "medium", "low"℄;Lo
ation :: ["tower", "s
hool","base", "lake"℄;30

MoveableObje
t :: ["water", "medi
al_kit"℄;}The above de
lares four types
alled Speed, Altitude, Lo
ation, andMoveableObje
t and assigns their respe
tive domains.5.1.3 De�nable/Monitor Slot De�nitionsThe next two se
tions of the re
ipe s
ript de�ne all the valid De�nableSlots andMonitor Slots that a parti
ular re
ipe might have (please seethe next se
tion for a full de�nition of what exa
tly a de�nable slotis). These slots will represent the
hunks of information the devi
ewill need in order to instantiate and exe
ute the re
ipe. In parti
ular,the Type of ea
h slot must be spe
i�ed, as well as ea
h slot's minimumand maximum length. Additionally, the default value of the slot maybe spe
i�ed; for example, medium is spe
i�ed below as the default fortoAltitude and toSpeed Building upon the above type de�nitions,an example that
omes from the WITAS domain is the following:DefinableSlots {Lo
ation toLo
ation:1-3;Altitude toAltitude:1-3 = "medium";Speed toSpeed:1-3 = "medium";MoveableObje
t
arryObje
t:1;}MonitorSlots {Speed
urSpeed:1;Altitude
urAltitude:1;Speed toAltitude:1;MoveableObje
t grippedObje
t:1;} While in the above examples there is a
ertain parallelism betweenthe monitor slots and the de�nable slots, this is
ertainly not requiredby the formalism. The above de�nitions de�ne de�nable slots namedtoLo
ation, toAltitude, and toSpeed ea
h with a minimum length of 1and a maximum length of 3 indi
es. The
arryObje
t slot is de�ned ashaving only a single index (the heli
opter
an only
arry one obje
t ata time). The monitor slots are meant to be used to re
e
t the devi
e'sstate; in the above example, slots named
urSpeed,
urAltitude, toAlti-tude, and grippedObje
t are de�ned, ea
h with a single index. In the31

WITAS domain, these slots are used to keep tra
k of the heli
opter's
urrent state.5.1.4 Resour
esThe �nal se
tion of the preamble is the resour
es de
laration se
tion.Here, ea
h of the resour
es that may be used by the various a
tivitiesof the devi
e must be de
lared. Ea
h resour
e is simply a string. Hereis an example from the WITAS domain:Resour
es {uav;gripper;
amera;}5.2 Components of a Re
ipeAfter the preamble of the a
tivity s
ript appears a list of re
ipes, whereea
h re
ipe
an be instantiated into an a
tivity. Ea
h re
ipe
onsistsof the following
omponents:1. An a
tivity type. e.g.: take off, land at lo
ation, patrol among lo
ations2. A Natural Language Mapping of the a
tivity type3. An Agent Tag indi
ating whi
h agent should exe
ute the a
tivity4. A set of de�nable slots whi
h
ontain relevant parameters to thethis a
tivity, of whi
h some may be required and others may beoptional. e.g.: toLo
ation (the lo
ation to go to), or toSpeedthe speed at whi
h to
y there5. A set of monitor slots whi
h are meant to be �lled at runtimewith information about the state of the devi
e. e.g.:
urLo
ation(the
urrent lo
ation of the heli
opter),
urSpeed (the
urrentspeed of the heli
opter)6. Resour
es. The set of resour
es that this a
tivity needs. e.g.: A
amera7. Pre
onditions. A set of
onditions whi
h must be true in orderto do this a
tivity8. Goals. A representation of the desired out
ome of the a
tivity9. Banned. A set of \states of the devi
es" whi
h are banned32

10. Natural Language Slots. An asso
iation between an a
tivity'sstate, and the detail to whi
h it out to be des
ribed.11. A Super Re
ipe. Ea
h re
ipe may optionally inherit some ofits properties from a super (or parent) re
ipe, in a fashion simi-lar to other obje
t-oriented, single-inheritan
e programming lan-guages, like Java.12. Body. A s
ript whi
h de�nes what this re
ipe does, when itbe
omes instantiated into an A
tivity.Below, I will des
ribe ea
h
omponent of a re
ipe, the syntax forde�ning it, and the manner by whi
h the information it embodies is`
ompiled' into the dialogue manager by the \re
ipe
ompiler."5.2.1 A
tivity Type, NL Mapping, and Agent TagEa
h re
ipe is given a parti
ular A
tivity Type, whi
h is simply aunique name for the re
ipe. The NLMapping of a re
ipe des
ribesthe verb that should a
tually be output by the system. So, while adesigner might end up assigning a parti
ular re
ipe an A
tivity Typeof patrol between sear
h, this a
tivity
an have an NL Mapping of \pa-trol" { whi
h is the verb that will be used when the system a
tuallydis
usses this a
tivity. The NL mapping exists be
ause several dis-tin
t (though often related)
on
epts in a language may be mappedto a single verb { for example, while the
on
epts invoked by \patrolbetween the tower and the s
hool" and \patrol at the tower for a blue
ar" are distin
t (and in the formalism provided here, this distin
tionis
aptured by having two distin
t re
ipes), both
on
epts are
apturedin English by the single verb patrol.Ea
h re
ipe must also de
lare an agent tag whi
h identi�es theagent who should exe
ute a
tivities whi
h instantiate the parti
ularre
ipe. In the
urrent system, only the tags USER and SYSTEM aresupported: where USER refers to a
tions that the human operatorshould take, and SYSTEM refers to the devi
e being
ontrolled. Intheory, this set of tags
ould be expanded to in
lude more types ofagents and might be
hanged to allow for a list of agents, all of whi
h
ould potentially
omplete the a
tion.The a
tivity type, NL Mapping, and agent tag are de�ned at thebeginning of the de�nition of ea
h re
ipe. The syntax is as follows:taskdef<a
tivity type, "nl mapping"> agent tagf33

//rest of re
ipe definition goes hereg During the re
ipe
ompilation pro
ess, the mappings from a
tivitytype to natural language mapping are written to a hash table whi
h
an be a

essed by the dialogue manager through methods providedin CSLI TaskMat
her.java. The agent tag is stored as part of there
ipe in the re
ipe library.5.2.2 De�nable SlotsThe set of de�nable slots are those slots whose values must be spe
i�edbefore an a
tivity
an be exe
uted by the devi
e. For instan
e, in theWITAS proje
t, before the heli
opter
an
y somewhere, it must knowto where it should
y. Hen
e the a
tivity go
ontains a de�nable slotnamed toLo
ation, whi
h is meant to hold the lo
ation to whi
h theheli
opter should
y. Typi
ally, de�nable slots
orrespond roughly tothe arguments of a verb, (here,
y to the tower), or potentially toother modi�ers like adverbs (
y qui
kly) { though there is nothing inthe formalism whi
h a
tually requires this.The set of required de�nable slots are those slots whi
h must bespe
i�ed expli
itly by the operator, or inferred dire
tly from an opera-tor's (possibly multi-modal) utteran
e. On the other hand, the set ofoptional slots are those slots whose values
an be be �lled in by defaultvalues, or through
onstraints (to be dis
ussed later). The syntax forde
laring a required slot is the following:required Type SlotName;While an optional slot is de
lared like this:optional Type SlotName;Consider, as an example, the re
ipe for transporting an obje
t fromone lo
ation to another. In the WITAS system, this a
tivity
ontainsthe following set of de�nable slots (whi
h are requisite as indi
atedand are meant to
orrespond to the
on
epts noted):� fromLo
ation (required: the lo
ation from whi
h to pi
k up theobje
t)� toLo
ation (required: the lo
ation at whi
h to drop the obje
t)34

�
arryObje
t (required: the obje
t to
arry)� fromSpeed (optional: the speed at whi
h to
y to the �rst lo
a-tion)� fromAltitude (optional: the altitude at whi
h to
y to the �rstlo
ation)� toSpeed (optional: the speed at whi
h to
y to the se
ond lo
a-tion)� toAltitude (optional: the altitude at whi
h to
y to the se
ondlo
ation)Using the types de
lared in se
tion 5.1.2, the above slots
ould bede�ned as part of a re
ipe as follows:DefinableSlots {required fromLo
ation;required toLo
ation;required
arryObje
t;optional fromSpeed;optional fromAltitude;optional toSpeed;optional toAltitude;} Note too that the above assignments of required and optional makesense be
ause it is imperative that the system know what obje
t topi
k up, from where to pi
k it up, and where to drop it. The speed andaltitude it should
y at, while ne
essary parameters, are not
riti
al,in some sense, to the a
tivity. While the a
tivity
an be su

essfullya

omplished no matter what their values are, the a
tivity
annoteven, in some sense, be de�ned unless the required slots are �lled withvalues. The required de�nable slots, then, make up the
ore notion ofthe a
tivity.The required
ag, then, is a means by whi
h the dialogue managerknows when it should initiate a slot-�lling dialogue. If the operatorspe
i�es only some of the required slots in his or her initial
ommand,then the dialogue manager will ask information-seeking questions ofthe operator until all of the required slots are �lled. On the otherhand, optional slots
an be �lled in with default values if they arenot expli
itly mentioned or �lled in through
onstraints { they do not35

merit a slot-�lling sub-dialogue initiated by the dialogue manager.This will be further dis
ussed in mu
h greater detail in se
tion 7.Ea
h slot also has asso
iated with it a parti
ular type de�ned inthe preamble (see se
tion 5.1.2). In the WITAS system, for instan
e,fromLo
ation and toLo
ation are of type Lo
ation, while
arryObje
t isof type MoveableObje
t. The e�e
t of assigning a type to a parti
ularslot is that the domain of the slot be
omes limited:
arryObje
t, forexample,
an only be assigned to an obje
t that
an, indeed, be
arriedby the heli
opter (the domain asso
iated with a parti
ular type isde�ned in the types preamble of the re
ipe s
ript).The set of de�nable slots of a parti
ular instantiated re
ipe (akaa
tivity) is a

essible at runtime to the dialogue manager. In se
tion7, I will dis
uss how a slot's type (and hen
e, its domain) is relevantfor
onstraint reasoning.5.2.3 Monitor SlotsThe monitor slots are simply a way to re
e
t information about the
urrent state of the devi
e at any given time. De�ning whi
h slotsare important to a re
ipe simply makes it more eÆ
ient to
al
ulatethe
onstraints (to be dis
ussed later) over the re
ipe. Like de�nableslots, the monitor slots of a parti
ular a
tivity are a

essible to thedialogue manager at run time through the CSLI A
tivityProperties
lass. The syntax for de
laring monitor slots is identi
al to that forde�nable slots, ex
ept no optional or required pre�x is used, sin
ethis
on
ept does not apply to monitor slots.For example, the monitor slots for the go re
ipe in the WITASdomain are as follows:MonitorSlots {
urLo
ation;
urAltitude;
urSpeed;}5.2.4 Resour
esIt is often important to understand what resour
es are needed in or-der to
omplete a parti
ular a
tivity. For instan
e, in the WITASdomain, it is important to understand that
ying somewhere requiresusing the entire heli
opter, while taking a pi
ture of something merely36

requires use of an on-board
amera. This information
an be used bythe dialogue manager to dete
t resour
e
on
i
ts and initiate intelli-gent dialogues about them. For instan
e, the CSLI dialogue managergenerates the following dialogue in the WITAS domain:(4) O: Fly to the s
hool.S: Now
ying to the s
hool at medium speed and medium alti-tude....O: Deliver the medi
al supplies to base.S: Delivering the medi
al supplies to base
on
i
ts with
ying tothe s
hool.Should I deliver the medi
al supplies to the base now or later?O: Now please.S: Okay.I have suspended
ying to the s
hool.Now
ying to the hospital. [In order to pi
k up the medi
al sup-plies℄...The resour
e
on
i
t is dete
ted by the dialogue manager and a rele-vant sub-dialogue is initiated. In order to fa
ilitate su
h dialogue, ea
hre
ipe in
ludes a se
tion in whi
h the resour
es required by any a
tiv-ity whi
h instantiated this re
ipe are listed a

ording to the followingsyntax:Resour
es {resour
e_1;resour
e_2;...resour
e_n;}During the re
ipe
ompilation, this information is stored as part ofthe re
ipe in the re
ipe library.5.2.5 Pre
onditionsThe pre
onditions are the set of
onditions whi
h must be true beforean a
tivity that instantiates a parti
ular re
ipe
an be exe
uted. These
onditions are expressed in terms of predi
ates over the monitor andde�nable slots. These too are simply stored as a list whi
h is part ofthe re
ipe in the re
ipe library. The list is not simply a string, but37

a list of CSLI Expression obje
ts whi
h are designed for the eÆ
ientmanipulation of �rst order logi
 expressions.5.2.6 GoalsThese are the goals that an instantiation of a re
ipe is meant toa
hieve. These too are expressed in terms of predi
ates over the valuesof the monitor and de�nable slots. For instan
e, to express that thegoal of the \
y to" a
tivity in the WITAS system is to a
tually movethe heli
opter to a parti
ular lo
ation, we might write the followinggoal:
urLo
ation == toLo
ation meaning that the lo
ation we weremeant to
y to should be equal to the lo
ation where we a
tuallyare. The goals as well are simply stored as a list of CSLI Expressionobje
ts in the re
ipe library entry for a parti
ular re
ipe.5.2.7 BannedEa
h re
ipe may
ontain a list of logi
al relationships among the valuesof slots whi
h may be banned. For instan
e, to express the
onstraintthat the heli
opter shouldn't drop obje
ts while at high altitude, wewrite as part of the re
ipe for the a
tivity type \drop" the followingitem on the banned list:
urAltitude == \high". As I will dis
uss later,these
onstraints are defeasible. That is, rather than de�ning impos-sible states of the world, they de�ne states of the devi
e that undernormal
ir
umstan
es should be avoided. The banned list is
ompiledinto a similar format as the goals list during re
ipe
ompilation.5.2.8 NLSlotsWhen the state of an a
tivity
hanges, the dialogue manager oftenreports this state
hange. For instan
e, when an a
tivity be
omes
urrent, the dialogue manager will give a report like Now
ying lowto the tower at high speed. As a result, the dialogue manager must beable to map from an a
tivity to a natural language (or multi-modal)representation of that a
tivity. In this pro
ess, the �lled-in slots of thea
tivity are
onsidered, as well as the a
tivity type, in order to produ
ea meaningful utteran
e. As a
tivities be
ome more
ompli
ated, withmore and more slots, it be
omes unwieldy for the dialogue manager totalk about all the parameters of an a
tivity in ea
h utteran
e aboutthat a
tivity. For instan
e, when an a
tivity has
ompleted, it's notalways ne
essary or desirable to
onvey an entire des
ription to the38

user. When the heli
opter has
own to its destination in the WITASsystem for example, (5a) is preferred to (5b).(5) a. I have
own to Spring�eld s
hool.b. I have
own low to Spring�eld s
hool at high speed.Sin
e the goal of the a
tivity was to arrive at the lo
ation, this isthe information that is really relevant. How the heli
opter got thereis not so important, espe
ially
onsidering that this information hasalready been negotiated by the operator and the system has alreadyannoun
ed its intention to
y to the s
hool at low altitude and highspeed.In pursuit of these ideas, the re
ipe s
ripting language in
ludes theability to asso
iate the reporting of a
tivities in parti
ular states toparti
ular slots. For instan
e, to spe
ify that for the a
tivity of
yingwe'd like the heli
opter to report its destination, height, and speedwhen it's a
tually doing that a
tivity, but not when it's reporting the
ompletion of the a
tivity, we write the following lines of s
ript:NLSlots {
urrent: toLo
ation, toSpeed, toAltitude;done: toLo
ation;}This indi
ates to the dialogue manager that it should report the desti-nation (toLo
ation), target speed, and target altitude of the heli
opterwhen it announ
es that it is
urrently
ying somewhere, but only thedestination when it has rea
hed somewhere. The results are dialoguessimilar to the following:(6) O: Fly low to the s
hool at high speed.S: Now
ying low to the s
hool at high speed. [System reports:toAltitude, toLo
ation, toSpeed℄...S: I have
own there. [System reports: toLo
ation℄In addition, the s
ript also allows for the left hand side to be default {whi
h gives the default set of slots to report in all states not expli
itlymentioned.As a
tivities have more and more slots, and hen
e be
ome more
omplex and unwieldy to talk about (for instan
e, �ghting a �re, ortransporting obje
ts), the ability to have easy
ontrol over generationbe
omes extremely useful. Indeed, for some a
tivities, you might wish39

to have \hidden" slots that the system should never try to dis
uss {or only dis
uss in rare
ir
umstan
es.The set of NL slots for ea
h state, as well as the default set (ifsupplied), are stored as part of the parti
ular re
ipe in the re
ipelibrary.5.2.9 Super Re
ipes: extends and abstra
tEa
h re
ipe may optionally extend other re
ipes. In the
ontext ofthe re
ipe s
ripting language, this simply means that the re
ipe willinherit the values of all the se
tions listed above, with the ex
eption ofthe body, nlmapping, and a
tivity type. Moreover,
ertain re
ipes maybe de
lared as abstra
t, meaning that they are not meant to a
tuallyever be instantiated into a
tivities but only that they should serve assuper re
ipes to other re
ipes. For example, in the WITAS domain,there is de�ned an abstra
t re
ipe
alled move, whi
h embodies the
on
ept of moving, but
an't a
tually be instantiated. Instead, thereis another re
ipe
alled go, whi
h should a
tually be instantiated whenthe heli
opter is instru
ted to
y somewhere. The des
ription of thesetwo a
tivities is given in �gure 1.5.2.10 BodyEa
h re
ipe optionally
ontains a body, whi
h is a body of
ode writtenin a spe
ialized a
tivity s
ripting language whi
h I dis
uss in se
tion6. If a re
ipe doesn't
ontain a body, then it is assumed to be atomi
 {that is, if it be
omes instantiated then it should be sent to the devi
eto a
tually be exe
uted, rather than further de
omposed.6 The Re
ipe BodyThe body of a re
ipe
onsists of a s
ript whi
h de�nes a re
ipe for a
-tion { in the sense dis
ussed in se
tion 2.2 { that des
ribes the a
tionswhi
h ought to be performed in order to a

omplish the re
ipe's goals.In the formalism des
ribed here, we
an think of the re
ipe body as thealgorithm whi
h des
ribes what should be done in an abstra
t sense,and the slots as the data over whi
h the algorithm operates. Whilethe re
ipe body for the a
tivity of �ghting a �re des
ribes abstra
tlywhat's involved in �ghting a �re (
ontinually pi
king up water from aparti
ular lo
ation,
arrying that water to the lo
ation where the �re40

Figure 1: move and go { Inheritan
e and Abstra
t Re
ipesabstra
t taskdef<move,"move"> {DefinableSlots {required toLo
ation;optional fromLo
ation;optional toSpeed;}MonitorSlots {
urLo
ation;
urSpeed;}Resour
es {uav;}Banned {toSpeed == "zero";}}taskdef<go,"go"> extends move {//inherits lo
ations,speed from moveDefinableSlots {optional toAltitude;}MonitorSlots {
urAltitude;}Banned {toAltitude == "zero";}NLSlots {default: toLo
ation;
urrent: toLo
ation, toAltitude, toSpeed;}//definition of Body -- removed for this example} 41

is, and then dropping it until the �re is out), it is not until the de�n-able slots for this re
ipe are �lled in that it
an be instantiated intoan a
tivity whi
h
an be performed, sin
e these provide the requisiteinformation su
h as where to pi
k up the water and where the waterought to be dropped. By requiring the algorithm des
ribed by there
ipe body to operate over the values of the slots, a dire
t
onne
tionis made between the linguisti
 aspe
ts involved in the task-orienteddialogue and the tasks at hand whi
h are being performed.The s
ript whi
h
omposes the re
ipe body was
on
eived in orderto balan
e two obje
tives. First, it is meant to
hara
terize joint-a
tivities (to be done by the human and the devi
e together), as wellas a
tivities
arried out only by the devi
e, in a way that mat
hes theway humans
on
eptualize doing a
tivities. That is, it should mat
hthe way that humans a
tually think about and understand re
ipes forjoint a
tivities rather than simply represent the way in whi
h the de-vi
e a
tually
arries out a spe
i�
 a
tion (as was dis
ussed in se
tion4). On the other hand, it must be
ompatible with the representationutilized by the intelligent agent or devi
e to the degree that the devi
e
an a
tually exe
ute atomi
 a
tions spe
i�ed in the s
ript for it to do.If it meets both of these obje
tives { that is, if it is both
ompat-ible with the way that humans
on
eptualize a
tivities and
apableof de
omposing into terms that the devi
e
an work with { then it
an su

essfully a
t as an intermediary between the human and thedevi
e. When the devi
e performs the a
tions des
ribed by the s
ript,then the human will be able to understand why these a
tions are beingdone. On the other hand, when the human operator seeks to modifythe way in whi
h a parti
ular a
tion should be done, the devi
e willbe able to understand these desires in terms of the data/parameters(i.e. the slots) over whi
h a re
ipe operates. Moreover, be
ause slotsare also linguisti
ally motivated, the re
ipes should be easy both todes
ribe and to understand des
riptions of using natural language.Toward the end of mat
hing up with the representations neededby an intelligent devi
e or agent, the s
ript whi
h makes up the re
ipebody is designed to be extremely similar to the s
ripts that are a
-tually used to
ontrol mobile robots. It is based loosely on the ACTformalism, whi
h is now in
luded as part of the COLBERT [Kon97℄s
ripting language in Saphira, a software pa
kage distributed by A
-tivMedia Roboti
s with its mobile robots. While, at �rst, a
tuallyusing one of these languages seemed tempting, I
hose instead to writemy own s
ript interpreter and language to better pursue the goal of42

making the s
ript mat
h up with the way that humans
on
eptualizea
tivities. First, I wanted to naturally and expli
itly be able to makereferen
es to the slots de�ned for the a
tivity. Se
ond, I wanted totry to balan
e the language so that it would be simple enough, andstraightforward enough, that natural language
ould be generated todes
ribe it. COLBERT
an be interfa
ed dire
tly to C, and I worriedthat the expressiveness of a full
edged programming language likeC would be diÆ
ult to talk about using natural language and, moreimportantly, I wanted the language to provide a framework whi
hwould be
ondu
ive to designing re
ipes in a way whi
h would makethem mat
h up with the way humans
on
eptualize a
tivities { asthe relationship among
on
urrent a
tivities generated by COLBERT
an often be diÆ
ut for a human to understand. Moreover, I workedunder the premise that the sorts of plans that users would want totalk about (in terms of how they were further de
omposed) wouldnot be arbitrarily
omplex. That is, they would be the sorts of plansthat a person
ould des
ribe in a few senten
es. In parti
ular, I wor-ried about the
omplex intera
tion between global variables that
ansometimes be found in mobile robots a
tually using COLBERT andSaphira. Mu
h
ommuni
ation among a
tivities whi
h are runningsimultaneously is often done through the setting of global variables {su
h behavior makes the relationship between di�erent a
tivities ex-tremely diÆ
ult to des
ribe and their intera
tion abstruse. Ratherthan write a s
ripting language appropriate for writing all a
tivitiesthat a mobile robot
ould ever do, my goal was to write a s
riptinglanguage that des
ribed the sorts of a
tivities that a person mightreasonably be expe
ted to des
ribe and want to talk about. In par-ti
ular, I assumed that the operator wouldn't want to be
on
ernedwith the �ne details involved in
omplex robot a
tions { for example,keeping the robot lo
alized as it moves to a lo
ation, or ensuring thatits pit
h and yaw are
orre
t if it is a
ying robot. Rather, I assumedthat the user would want to dis
uss a
tivities at the level at whi
h heor she might dis
uss the a
tivities of the robot if he or she were plan-ning joint a
tion with another person { a level at whi
h su
h detailsas how movement is a

omplished and headings are maintained arenot dis
ussed.The s
ripting language, then,
onsists of the following
ommandsinspired in large part by the ACT formalism (bra
kets indi
ate op-tional parameters):� intend a
tivity(slot assignments) [blo
king℄ [a
t name℄43

� stop a
t nameAnd the following loop
onstru
ts:� repeat f...g� do f...g while(
onditions)� forea
h(assignments) f...g6.1 intend and stopIntend and Stop are
ommands to
reate new a
tivities and stopones whi
h are running. A
tivities whi
h are intended are sent tobe planned and exe
uted.6.1.1 intendThe pro
ess of intending an a
tivity is one of attempting to load there
ipe with the name a
tivity and instantiating its slots with the valuesgiven in slot assignments. The slot assignments link a parti
ularslot in the spawning a
tivity with the parti
ular slot in the
hild a
-tivity. For instan
e,
onsider the simple body of the a
tivity for \go"in the WITAS system. It is as follows:Body {intend take_off(toAltitude=THIS.toAltitude);forea
h toLo
ation t, toAltitude a, toSpeed s {intend fly_atom(toLo
ation=t,toAltitude=a, toSpeed=s);}}This de
omposes go into a take off and a series of fly atom a
tivi-ties. For the take off a
tivities, the toAltitude slot of the take offa
tivity is linked to the take off slot of the go a
tivity. Similarly,the toLo
ation, toAltitude, and toSpeed slots of the fly atom a
-tivities whi
h will be spawned, are linked to parti
ular indi
es of their
orresponding slots in the parent a
tivity of \go." This is done usingthe forea
h() loop
onstru
tion, whi
h I'll dis
uss later.It is important to note that the slot assignments between parentsand
hildren are not like those made in many traditional program-ming languages. The value of the parent a
tivity's slot is not simply
opied over into the
hild's slot upon
reation of the task. Rather, thetwo a
tually (for all intents and purposes) share the slot. It is as if44

the value of the slot were passed in by referen
e. Hen
e, if the valueof toLo
ation[0℄
hanges in the go a
tivity, then the
orrespond-ing toLo
ation[0℄ will be updated in the fly atom. The slots arestru
ture shared.To understand why su
h stru
ture sharing is important,
onsiderthe following example dialogue:(7) A: Patrol between the tower and the s
hool.B: Okay, now
ying to the tower at medium altitude and mediumspeed.A: Fly there at high altitude.B: Okay.B: Now
ying to the tower at high altitude and medium speed....B: I have
own there.B: Now
ying to the s
hool at medium speed and medium alti-tude....B: I have
own there.B: Now
ying to the tower at high altitude and medium speed.Note that ea
h su

essive a
t of
ying to the tower is done at highaltitude, not just the parti
ular instan
e of it whi
h was modi�ed bythe user. This o

urs be
ause the �rst index of the toAltitude slotof patrol is shared with its
hild go. When its
hild's slot+index ismodi�ed by the operator, then, so too is its slot+index. Hen
e, whenit spawns the se
ond instan
e of
ying to the tower, the operator'sinstru
tion is retained appropriately.6.1.2 stop and noblo
kIn the above example, all of the spawned a
tivities were (by default)blo
king. That is, until the take off a
tivity was
ompleted by thesystem, it did not try to
y anywhere. Mobile robots, however, oftenhave several a
tivities running simultaneously. In order to supportthis, I followed the
onventions of the COLBERT programming lan-guage, and allowed for the ability to spawn
hild a
tivities in a non-blo
king fashion, as in the following snippet from the find a
tivity inWITAS:Body { 45

intend lo
ate(sear
hItem = THIS.sear
hItem);intend tra
k(followItem = THIS.noti
edItem) myTra
k noblo
k;intend identify(sear
hItem = THIS.sear
hItem);stop myTra
k;} In this example, the system �rst tries to lo
ate an obje
t in theworld (for example, a red
ar) via the lo
ate method. When thisa
tivity is done (and hen
e, an obje
t mat
hing the desired des
riptionhas been lo
ated), the re
ipe exe
utor then spawns a new
hild taskof tra
k { whi
h essentially follows the
ar and keeps it in sight. Thenoblo
k keyword is used to indi
ate that the exe
utor should go aheadand
ontinue exe
uting the
ode that follows, even before the tra
kinga
tivity is
ompleted. In addition, this parti
ular instan
e of tra
k isassigned a name { myTra
k { so that it
an be referen
ed later. Inparti
ular, it is passed to the stop
ommand, whi
h halts the a
tivityafter the obje
t has been identi�ed.6.2 Loops: repeat, do. . . while, and forea
hThe looping
onstru
ts behave as in most pro
edural languages. Arepeat loop simply repeats the
ontents inside of its bra
es endlessly,until the a
tivity is expli
itly stopped by the stop
ommand, or
an-
elled by the user. The do...while loop exe
utes its
ontents forever,or until the
ondition of the while(
ondition) be
omes true. This
on-dition
an be dire
t equality and inequality statements over the valuesof parti
ular slots, or
alls to predi
ates over these values. In order totest the more
omplex predi
ates (for example, in the WITAS system,there is a predi
ate for fire out whi
h tests if a parti
ular �re is outin the world) at runtime, the exe
ution system de�nes an interfa
ethat the domain-spe
i�
 predi
ates must implement in order to havetheir values tested, as will be dis
ussed later.The forea
h
onstru
t is a spe
ialized version of the more stan-dard \forea
h"
onstru
ts in programming languages that allow forthe iteration of a list. In this
ontext, a forea
h loop iterates over allthe �lled-in indi
es of a slot, or a set of slots. By allowing for thesimultaneous iteration over more than one slot simultaneously, I allowfor more subtle relationships between slots. For instan
e, in the
odefrom go above, ea
h fly atom a
tivity is instantiated with a parallel46

set of toLo
ation, toAltitude, and toSpeed parameters. This al-lows for go to de
ompose
ying to several sequential destinations atseveral di�erent altitudes and speeds in a
onvenient manner { thatis, the slots
an be used as parallel arrays. This ability has been usedextensively in re
ipes
reated for the CSLI dialogue system.7 Constraints and DefaultsAs devi
es be
ome
apable of more
omplex behavior and the numberof parameters that
an be set for ea
h a
tivity grows, it be
omesdesirable to express
onstraints over the values of those parameters.For instan
e, in the WITAS system, the operator should be able to
ontrol many parameters that di
tate how the heli
opter should
y,su
h as speed and altitude. At the same time, it would be unwieldy ifthe operator were required to spe
ify these parameters ea
h time heor she gave the heli
opter a new
ommand { for instan
e, to
y to aspe
i�
 lo
ation. In pursuit of this, my a
tivity model supports threerelevant notions: optional de�nable slots, defaults, and
onstraints.As was dis
ussed above, optional de�nable slots are those slots whosevalues need not ne
essarily be assigned expli
itly (or inferred dire
tly)from the operator's
ommands or answers to questions posed by thesystem. Instead, su
h slots may take on their values through the useof defaults and
onstraints.The motivation for defaults and
onstraints emerges out of everyday observations about the way that people use language to des
ribea
tivities. Most
ommon a
tivities involve some set of parameterswhi
h don't ne
essarily need to be spe
i�ed { for instan
e a person
an walk or drive qui
kly or he
an talk or sing loudly, but he
an alsosimply walk or drive, talk or sing. When I ask a person to walk frompoint A to point B, it doesn't matter so mu
h how fast he walks, butjust that he a
tually su

eeds in walking between point A and point B;nonetheless, he will still have to perform the a
tion at some parti
ularspeed. On the other hand, I
an spe
i�
ally assert that while walkingbetween point A and point B, he should walk at a speed of 2 milesper hour. Then, if he were to walk at 5 miles per hour between A andB, we would say that he had not done the a
tion whi
h I
ommandedhim to do. Here, then, we see that speed for the a
tivity of walking isoptional, and were we to
reate a re
ipe s
ript for walking, speed wouldbe an optional slot. Moreover, it
ould be assigned some default value,47

say 3 miles per hour, whi
h would be used when speed wasn't expli
itlyspe
i�ed { sin
e walking must be done at some spe
i�
 speed.From a more pra
ti
al point of view, defaults be
ome useful indialogues with possibly
omplex devi
es simply be
ause if they don'texist, dialogues
an be
ome tedious. Consider, for example, the
on-trast between the dialogues where no defaults exist in (8a) and (8b)and one in whi
h defaults are used in (8
).(8) a. O: Fly to the s
hool.S: Okay. At what speed should I
y?O: Medium speed.S: Okay. At what altitude should I
y?O: Medium altitude.S: Okay. Now
ying to the s
hool and medium altitude andmedium speed.b. O: Fly to the s
hool at medium altitude and medium speed.S: Okay. Now
ying to the s
hool at medium altitude andmedium speed.
. O: Fly to the s
hool.S: Okay. Now
ying to the s
hool at medium altitude andmedium speed.On
e a
tivities exist whi
h have default values that are �lled inautomati
ally, as in (8
), it be
omes immediately desirable that thereshould be a straightforward means to rede�ne these defaults on the
y. Perhaps a deadline is approa
hing, and I need you to help mewith several tasks { making
opies of a presentation, delivering the
opies, and sending o� several letters. Rather than telling you in turnto do ea
h task qui
kly, I might simply say something like \Please doeverything I ask you to do today qui
kly." In essen
e, I have, at leasttemporarily, rede�ned the default speed at whi
h I'd like you to doall the a
tions I ask you to do. Moreover, I've de�ned a
onstraintwhi
h identi�es how you should do all a
tions I've asked you to do,and all future a
tivities whi
h haven't even yet been spe
i�ed. That is,rather than just
hanging the parameters of spe
i�
 a
tions I've askedyou to do, I've issued more general guidelines whi
h also apply tofuture a
tivities as well. For example,
onsider the
ontrast betweenthe dialogue in (9a) in whi
h defaults
an't be rede�ned and the onein (9b) where they
an. 48

(9) a. O: Fly to the s
hool at high speed and high altitude.S: Now
ying to the s
hool at high speed and high altitude....O: Fly to the tower at high speed and high altitude.S: Now
ying to the tower at high speed and high altitude.b. O: Always
y high and fast.S: Okay....O: Fly to the s
hool.S: Now
ying to the s
hool at high speed and high altitude....O: Fly to the tower.S: Now
ying to the tower at high speed and high altitude.On
e we have the power to rede�ne defaults in a natural way, itbe
omes immediately
lear that su
h utteran
es seem to belong to alarger
lass of dialogue moves, whi
h I'll
all
onstraint spe
i�
ations.For instan
e, it seems just as natural to negate the values that
ertainslots
an take on, or perhaps even to spe
ify more
omplex
onstraintssu
h as disjun
tions. Consider the sample utteran
es in (10) whi
h I
laim also belong to this natural
lass of dialogue moves.(10) a. O: Never
y high.b. O: Always/Never
y low or fast.The dialogue moves in (8
), (9b), and (10) then seem to makeup a natural
lass that
ould be fruitfully used a
ross a wide-rangeof devi
es and agents. Moreover, the
lass appears to be natural inthe sense that humans often take these sorts of dialogues for grantedbe
ause they have underlying assumptions about the importan
e ofvarious \parameters," their default values, and the way that the val-ues that
an �ll in these parameters
an be
onstrained. While robotdesigners or programmers may be used to thinking about the variousparameters that a robot program or fun
tion might take, people gener-ally make impli
it assumptions about the default values of parametersof a
tivities, assumptions whi
h only be
ome salient when other pres-sures arise (like an up
oming deadline). Moreover, people alreadyhave natural ways of expressing
onstraints in natural language, whileit is more diÆ
ult and
omplex (as will be dis
ussed below) to expressthe intera
tion between these
onstraints in a formalism whi
h an in-telligent devi
e
an handle. The
onversational intelligen
e impli
it in49

understanding the intera
tion between
onstraints and defaults, how-ever,
an be applied a
ross a wide-range of task-oriented dialogues;as su
h it is an ideal
andidate for modularization. In this se
tion,I will dis
uss how the framework presented here models defaults and
onstraints by building on the re
ipe/a
tivity representations alreadydis
ussed; moreover, I will show how the model
an be used to fa-
ilitate dialogues like those in (8
), (9b), and (10), as well as otherswhi
h will be motivated later.7.1 DefaultsThis se
tion very brie
y introdu
es a basi
 algorithm for pro
essingdefaults; this algorithm will be revised to take into a

ount the inter-a
tion between
onstraints and defaults in se
tion 7.4.1. In the re
ipes
ript, ea
h de�nable slot
an be assigned a default value in the slotde
laration se
tion (see se
tion 5.1.3). For slots related to speed, forinstan
e, the WITAS system assigns a default value of "medium". Ifall of the required de�nable slots have been set, then any optional slotswhi
h have not been expli
itly assigned a value will be assigned theirappropriate default values before the a
tivity is sent to the devi
e tobe exe
uted.7.2 ConstraintsWhile the ability to have default values is useful, it is not suÆ
ientto totally free the operator from dialogues su
h as that in (9a). Putin terms of the representation of a
tivities/re
ipes developed so far inthis paper, this dialogue was frustrating be
ause in it, the operatorwas for
ed to be
onstantly spe
ifying lists of values to be assigned tooptional slots for whi
h the default value was not the desired value.Su
h diÆ
ulties, as well as the bene�ts that arise from understandingutteran
es su
h as those in (10), motivate a generi
 interfa
e for spe
-ifying and managing
onstraints over slot values { an interfa
e whi
his presented here.At the simplest level, these
onstraints allow a means for the op-erator to rede�ne defaults, with utteran
es su
h as Always
y high.Constraints
an be mu
h more powerful than this, however. They
an also in
lude negations, as in Never
y high,
onditionals su
h asWhen
ying to the s
hool,
y low, or disjun
tions su
h as Always
y50

at low altitude or at high speed.1 In prin
iple, the system is
apableof handling arbitrary �rst-order-logi
 formulas involving the values ofthe slots of a
tivities { however, what subset is a
tually within therange of human
ompeten
e is an open question whi
h the followingdis
ussion will hopefully shed some light on (though I don't proposeto a
tually supply a pre
ise answer to the question). In future work,this would
ertainly be an interesting question to ta
kle.Constraints are implemented here as formulas in �rst order logi
over the values of slots (potentially over both monitor slots and de�n-able slots { though I've fo
used mainly in de�nable slots in my devel-opment). The a
tual translation from an utteran
e of a
onstraint toits �rst order logi
 representation (and the reverse: the generation ofan utteran
e des
ribing a
onstraint based on its formula) is the re-sponsibility of the dialogue manager. However, as I will dis
uss laterin the se
tion on dialogue management, I have provided tools to makea large subset of these translations relatively straightforward { and asdomain-independent as possible. In this se
tion, I will simply assumethat �rst-order-logi

onstraints
ome in from the user via a \bla
kbox" and that utteran
es pertaining to them
an be mapped dire
tlyfrom them.2Constraints are asso
iated with parti
ular a
tivities on the a
tiv-ity tree. In parti
ular, ea
h a
tivity holds two lists of
onstraints: abanned list and a ne
essary list. Formulas that appear on the bannedlist are those whi
h should evaluate to false when the a
tivity is exe-
uted. For instan
e, if the operator were to instru
t the system Don't
y high, then the formula
orresponding to
y high would be added tothe banned list of a parti
ular a
tivity. Conversely, the ne
essary list
ontains those formulas whi
h must evaluate to true when the a
tiv-ity is instantiated. While these lists
ould logi
ally be
ombined intoa single list, in order to better manage the dialogue and more easilyexpress the
onstraints in terms understandable to the operator, theyare separated into the two lists depending on how they were spe
i�edby the operator.There are two types of
onstraints: global
onstraints and lo
al
on-straints. Global
onstraints apply to all
urrent and future a
tivities1Disjun
tive utteran
es are not
urrently supported by the
urrent Dialogue manager,though the
onstraint management system des
ribed here would have no problem handlingthem.2In the CSLI dialogue system, this \bla
k box" is the Gemini parser/generator[DGA+93℄ whi
h makes use of a grammar developed at CSLI51

{ for example, the
onstraint Always patrol at high altitude is globalin the sense that it should be \applied" to all
urrent and future in-stan
es of patrol tasks. On the other hand, lo
al
onstraints are thosewhi
h apply only to a parti
ular a
tivity. For example, if the user wereto �rst
ommand the heli
opter to patrol at the s
hool, and then tellit to Don't do it at low altitude or Do it at low altitude or low speed {then this
onstraint should be applied only to the parti
ular instan
eof the patrol a
tivity in question.In order to support this distin
tion between global and lo
al
on-straints, the A
tivity Tree implements a system by whi
h it \tri
klesdown" the banned and ne
essary
onstraint lists. This tri
kling downsimply has the e�e
t that ea
h a
tivity, in addition to being subje
t tothe
onstraints on its own banned and ne
essary lists, is also subje
tto all of the
onstraints of its an
estors. Moreover, the root of the treeis a spe
ial a
tivity whi
h has no slots, but does
ontain banned andne
essary
onstraint lists. The dialogue manager, then, assigns global
onstraints by adding them to the
onstraint lists on this root node.When new a
tivities are instantiated, they then inherit all of the rootnode's
onstraints via the tri
kling down me
hanism, and hen
e aresubje
t to global
onstraints.For example,
onsider the A
tivity Tree below. Here, N is the set ofne
essary
onstraints at a given node, CN is the
omplete set of ne
es-sary
onstraints at a given node, in
luding those
onstraints \tri
kleddown" from above. Similarly, B is the set of banned
onstraints at agiven node, while CB is the
omplete set of banned
onstraints at agiven node, in
luding \tri
kled down"
onstraints from above.root N={n1,n2}, CN={n1,n2}, B={b1}, CB={b1}..a
t1 N={n3}, CN={n1,n2,n3}, B={}, CB={b1}....a
t2 N={}, CN={n1,n2,n3},B={b2},CB={b1,b2}..a
t3 N={n4}, CN={n1,n2,n4}, B={b3}, CB={b1,b3}In addition to the banned and ne
essary lists, ea
h a
tivity also hastwo
orresponding lists: the ignoreBanned and ignoreNe
essary lists.These lists
ontain
onstraints that should NOT be inherited froman
estor nodes in the tree. These lists allow for spe
i�
 a
tivities toignore global
onstraints (or
onstraints expressed over other an
estora
tivities), if the operator instru
ts that this should be the
ase (as inthe dialogue in (11)).Adding these lists (notated IN and IB for ignoreBanned and ig-noreNe
essary respe
tively) to the example above, yields:52

root N={n1,n2}, IN={}, CN={n1,n2}, B={b1}, IB={}, CB={b1}..a
t1 N={n3},IN={n1},CN={n2,n3},IB={},B={}, CB={b1}....a
t2 N={},IN={},CN={n2,n3},IB={b1}, B={b2},CB={b2}..a
t3 N={n4},IN={n2}, CN={n1,n4}, B={b3}, IB={b1}, CB={b3}An example in whi
h a
onstraint would be added to the ignoreNe
-essary list is the following:(11) O: Always
y high....O: Fly low to the s
hool please.S: Just a minute...I am supposed to always
y high, should I
ylow to the s
hool anyway?O: Yes.S: Okay. [Add \
y high" to ignoreNe
essary list℄In this
ase, the
onstraint that the heli
opter should always
y athigh altitude is relaxed, but only in the
ontext of a spe
i�
 a
tivity.If the operator were to later
ommand the heli
opter to
y somewhereelse, the global
onstraint of always
ying high would still be in e�e
t.This is be
ause the a
tivity tree looks something like this:root N={"fly high"}, IN={}, CN={"fly high"},go (s
hool) N={}, IN={"fly high"}, CN={}, ...Hen
e, future des
endents of the root will still be subje
t to the"fly high"
onstraint, however
hildren of the go a
tivity will notlonger have this
onstraint \tri
kled down" to them. This is a
riti
aldistin
tion, be
ause if the
onstraint were simply removed from the
onstraints list at the root, then it would no longer apply to futurea
tivities.7.3 Examples of
onstraintsConstraints are implemented as �rst order logi
 statements over thevalues of parti
ular slots { or more spe
i�
ally, over the values of thespe
i�
 indi
es of spe
i�
 slots. Consider the formulas in �gure 2 andtheir appearan
e on either the banned or ne
essary lists of the root ofthe a
tivity tree (all are a
tually supported by the
urrent dialoguefront end, ex
ept where noted): 53

Figure 2: Constraints translated to formulas on the banned and ne
essarylistsne
essary:� always
y high: [
ommand="go" ! toAltitude="high"℄� always
y at low speed: [
ommand="go" ! toSpeed="low"℄� when patrolling at spring�eld s
hool, patrol at low altitude:[(
ommand="patrol" ^ toLo
ation="s1") ! toAltitude="low"℄� always
y low or fast: [
ommand="go" ! (toAltitude="low" _toSpeed="fast")℄ abanned:� never
y high: [
ommand="go" ^ toAltitude="high"℄� never
y at low speed: [
ommand="go" ^ toSpeed="low"℄� never patrol at spring�eld s
hool at low altitude: [
ommand="patrol"^ toLo
ation="s1" ^ toSpeed="low"℄� never
y low and fast: [
ommand="go" ^ toAltitude="low" ^toSpeed="fast"℄aNot supported by the
urrent dialogue manager
54

From �gure 2, it is apparent that the sorts of
onstraints whi
h
anbe represented are far more powerful than the simple rede�nition of\defaults" dis
ussed in se
tion 7.2. Indeed, in prin
iple a
onstraint
an be an arbitrary �rst-order-logi
 formula over slots, or slots andparti
ular indi
es. This allows for a relatively wide range of
on-straints. The main diÆ
ulty is in
onverting from natural language to
oherent formulas and ba
k, but below it will be shown that this
anbe done in a relatively domain-independent form for a large numberof interesting
ases.It is interesting to note that the
onstraints on the ne
essary listappear in the form of
onditionals in whi
h the
ommand (or a
-tivity type) is always part of the ante
edent. It is
riti
al to notethat it would be in
orre
t to simply have a
onjun
tion of slot as-signments appear on the ne
essary list. For instan
e, pla
ing the for-mula [
ommand="patrol" ^ toAltitude="high"℄ on the ne
essarylist would require that all a
tivities be of type patrol, whi
h is
learlyin
orre
t. Indeed, an important part of translating
onstraints fromnatural language to FOL is determining whi
h slots should appear inthe ante
edent and the
onsequent respe
tively. It is here that thedistin
tion between required and optional slots plays another impor-tant role: when translating
onstraints of the form \always
ommand"(where
ommand is a type
ommand that might be given to the sys-tem), the slots whi
h are required should appear in the ante
edentwhile those whi
h are optional should appear in the
onsequen
e. In-deed, this de�nition is merely the formalization of the more vague dis-tin
tion I initially presented { that required slots are those whi
h formthe
ore
on
ept of an a
tivity, while optional slots are those whi
hde�ne possible parameters of an a
tivity, but whi
h do not
omposepart of its
ore
on
ept.7.4 Constraining A
tivities and Interfa
ing toECLiPSeThere are several problems that need to be solved in the
ourse of im-plementing a system of
onstraints that
an be utilized by the dialoguemanager to engage in relevant dialogue. This proje
t solves some ofthese problems, but some remain to be dealt with in future work. Firstand foremost is the problem of taking a (possibly) partially spe
i�edset of slots for an a
tivity and then applying some appropriate
om-bination of defaults and
onstraints to �ll in the remaining slots. It55

is when this operation fails that the two other major problems arise.The �rst of these arises when the partial spe
i�
ation itself is in
on-sistent with the
urrent
onstraint set. In this
ase, the system needsto determine whi
h set of
onstraints has been violated and reportthis to the operator. The se
ond of these o

urs when a default value
an't be assigned to a slot be
ause it would violate a
onstraint, butthe
onstraints are not spe
i�
 enough to require a single parti
ularvalue for the slot. Essentially, the
ombination of the
onstraints andthe partial spe
i�
ation of an a
tivity do not uniquely de�ne a singlea
tivity.For example,
onsider the following three sample dialogues below(with dialogue moves noted in bra
kets):(12) O: Always
y high. [spe
ify global
onstraint℄...O: Fly to the s
hool please. [
ommand℄S: Now
ying high to the s
hool at medium speed. [report℄(13) O: Always
y high. [spe
ify global
onstraint℄...O: Fly low to the s
hool please. [
ommand℄S: Just a minute...I am supposed to always
y high, [report
onstraint violation℄should I
y low to the s
hool anyway? [relax
onstraint y/nquestion℄O: Yes. [y/n answer℄S: Okay. [
on�rmation℄(14) O: Never
y at medium altitude. [spe
ify global
onstraint℄...O: Fly to the s
hool please. [
ommand℄S: What altitude should I
y at? [slot value query℄O: Low altitude. [slot value answer℄S: Okay....S: Now
ying low to the s
hool at medium speed.In order to fa
ilitate these dialogues, the dialogue system must be
apable of
arrying out the following algorithm:
56

Algorithm: CONSTRAINT DIALOGUE GAMES1. Cal
ulate the number of possible a
tivities that are definedby the
ombination of the partially spe
ified a
tivity, the
onstraints over that a
tivity, and the default slot valueswhi
h
an be assigned without violating
onstraints. Let thisnumber be w.2. IF w = 1 THEN su

ess has been a
hieved and an a
tivity hasbeen uniquely identified (as in (12))3. IF w = 0 THEN determine the most informative set of
onstraints has been violated and report it to the operator(as in (13))4. IF w > 1 THEN determine whi
h slot(s) are underspe
ified andspawn a relevant information-seeking dialogue (as in (14))In order to supply the dialogue manager with the ne
essary infor-mation, I made use of ECLiPSe ([WNS97℄, [ACD+02℄), a
onstraint-based solver that extends Prolog. In order to interfa
e ECLiPSe tothe existing CSLI Java-based infrastru
ture, ECLiPSe was run as anembedded pro
ess within the CSLI Dialogue Manager (see [NSSS02℄for te
hni
al details of how this is a

omplished).ECLiPSe solves
onstraint satisfa
tion problems by taking the fol-lowing steps:First, ea
h variable must be assigned a parti
ular domain. Thedomain of a variable
an be an integer or real number range, or aparti
ular set of atomi
 values.. For example, to set the domain of thevariable X to be fhigh;medium; lowg the following
onstru
t is used:X :: [high;medium; low℄Next,
onstraints are de
laratively de�ned in terms of the values ofthe variables. For example, to
onstrain X su
h that it
an only takeon the set of values fhigh; lowg, we de
lare the following
onstraint:(X #= high) #_ (X #= low)where #=, for example, indi
ates the assignment predi
ate. Finally,we ask ECLiPSe to produ
e all sets of labellings of variables assignedto values, su
h that the
onstraints are satis�ed.The
onstraint management system, then, makes use of ECLiPSe57

by assigning ea
h index of ea
h slot a parti
ular variable, issuing
on-straints over these variables, and then asking ECLiPSe to return theset of all possible labellings su
h that the
onstraints are satisi�ed.As mentioned above, ea
h index of ea
h slot is assigned a uniqueString whi
h identi�es the name of the variable whi
h will be usedin ECLiPSe to
onstrain that parti
ular slot+index. The �rst step,then, is to set the domain of ea
h of these variables. The domainof ea
h variable is originally set by the system designer as part ofthe re
ipe s
ript: re
all that ea
h slot is asso
iated with a parti
ulartype, and that ea
h type is assigned a parti
ular domain when it is de-
lared. During the re
ipe \
ompilation" pro
ess, ea
h slot's domain isdetermined and a bit of ECLiPSe
ode that de�nes a predi
ate
alledset domain is generated in a �le
alled domains.e
l whi
h assigns ea
h\e
lipse variable" that
orresponds to a slot+index to the domain ofthe type asso
iated with the slot. This predi
ate is loaded at runtime,and
alled as the �rst step in the
onstraint-satisfa
tion pro
ess.Next, ea
h
onstraint from the relevant a
tivity's banned and ne
es-sary lists (as well as those
onstraints inherited from an
estors, but noton the ignored list) must be translated into the appropriate ECLiPSe
onstraints. Re
all that ea
h
onstraint is expressed as a FOL expres-sion over the values of slots { either over the value of all indi
es of aparti
ular slot, or over the value of a parti
ular index of a parti
ularslot. In the
ase where a
onstraint is over a parti
ular slot+index,the translation into ECLiPSe is straightforward. The appropriatevariable name that
orresponds to that slot+index is identi�ed, andthe
onstraint is output in terms of that variable. However, when a
onstraint is meant to apply a
ross all indi
es in a parti
ular slot, thepro
ess is not as simple.In this
ase, the most straightforward approa
h would be to simplyapply the
onstraint a
ross all indi
es of the slot. This proves prob-lemati
, however. Consider, for example, the basi

y a
tivity in theWITAS system {
alled go. This a
tivity
ontains the slot toLo
ation,whi
h a
tually has three indi
es (whi
h means that the a
tivity
anbe used to
y to three lo
ations in sequen
e). It is a
ommon o
-
uren
e, however, for only the �rst of these indi
es to be spe
i�ed; forinstan
e, if the operator gives the
ommand \
y to the hospital" thenonly the �rst index of toLo
ation will be assigned a value. In this
ase,we don't want to for
e the uninstantiated se
ond and third indi
esto be assigned values, sin
e the minimum length in the re
ipe s
riptrequired of toLo
ation is set to be 1. In pursuit of this, we assign the58

spe
ial value `null' to the variables that
orrespond to the se
ond andthird indi
es of toLo
ation. In order to allow this assignment, `null'is in
luded as a possible value in the domain of every variable { forvariables that we a
tually want to have assigned a value, we stipulatethe additional
onstraint that that variable's value
annot be equalto `null' when
alling ECLiPSe. The basi
 assumption, then, is thata
onstraint applies over all the indi
es of a slot up to its minimumlength, and those beyond its minimum length whi
h are a
tually �lledin. This basi
 assumption, however, must be modi�ed when we exam-ine a s
enario in whi
h the operator has
ommanded the system to\
y to the tower then the s
hool." In this
ase, the above algorithmworks �ne for assigning
onstraints to the slot toLo
ation, however itruns into problems when we attempt to assign
onstraints to the val-ues of indi
es of toSpeed and toAltitude. Both of these slots are meantto be \parallel" to toLo
ation in the sense that the values at
orre-sponding indi
es in the three slots are passed together to the atomi
a
tivity fly atom. In this example, the se
ond value of toLo
ation is"s
hool", and whatever values are assigned to the se
ond index oftoSpeed and toAltitude respe
tively will
ontrol the way in whi
h theheli
opter
ies to the s
hool, but not the tower.3 As su
h, we needto indi
ate both the �rst and se
ond indi
es of toSpeed and toAltitudeshould be subje
t to
onstraints and assigned values, even though byour basi
 assumption above we would only end up requiring that the�rst index of both toSpeed and toAltitude be assigned values, sin
ethe minimum length of ea
h slot is 1 and all indi
es of ea
h slot areunassigned.Sin
e this sort of parallelism is domain dependent, the
onstraintmanagement system de�nes a
allba
k method getSlotMaxLengthFor-Constraint() whi
h takes as parameters the name of the slot and theinstan
e of CSLI A
tivityProperties whi
h that slot
omes from. This
allba
k method is a part of CSLI A
tivityBase and its default im-plementation is to follow the basi
 assumption given above. Super
lasses of CSLI A
tivityBase should de�ne this method if the defaultimplementation is insuÆ
ient. In the
ase of the WITAS system, thismethod is overridden su
h that when the slot in question is toSpeedor toAltitude, the maximum number of indi
es to be
onstrained is3While this system of parallel slots may seem overly
omplex at �rst, it arises fromthe need to be able to interpret
ommands like \
y to the tower at low speed and to thes
hool at high speed" 59

al
ulated based on the
ontent of toLo
ation. This
allba
k methodallows arbitrarily
omplex relationships to hold between di�erent slotswhile at the same time it frees the
onstraint management system fromhaving to understand these
onstraints.4With this
allba
k method in hand, the sytem now has a means oftranslating from
onstraints over slots and their values to a meaning-ful representation in ECLiPSe. Constraints are assigned to the �rst nindi
es of the slot, where n is determined by
alling getSlotMaxLength-ForConstraint(). For
onstraints whi
h are over multiple slots, this ex-pansion must o

ur re
ursively. Finally, if the
onstraint
omes fromthe banned list, then it must be negated { sin
e ECLiPSe supportsonly
onstraints whi
h ne
essarily must be adhered to. In the follow-ing example, I will show the results of this pro
ess on a few
onstraints,given the spe
i�ed partially instantiated CSLI A
tivityProperties andassuming that the relevant ECLiPSe variables assigned to the zeroethindex of toLo
ation is ToLo
ation0, and similarly for other slot+indexpairs:Given A
tivity Properties with the following slots spe
i�ed (\
y tothe tower then the s
hool"):
ommand = gotoLo
ation[0℄ = towertoLo
ation[1℄ = s
hoolThe ne
essary
onstraint \always
y high"
ommand = go! toAltitude =high yields the set of
onstraints:Command#=go #--> ToAltitude0#=highCommand#=go #--> ToAltitude1#=highThe banned
onstraint \never
y high"
ommand = go^ toAltitude =high yields the set of
onstraints:4An interesting bit of future work would be to make some of this knowledge de
larativeand in
lude it in the re
ipe s
ript. For instan
e, parallel slots in the sense de�ned in thispaper
ould be de
lared as su
h and this knowledge
ould then be automati
ally integratedinto the dialogue manager. As we will see later, this knowledge also plays a key role inthe Noun Phrase resolution pro
edures whi
h need some domain knowledge about therelationships between slots in order to work properly60

:(Command#=go #^ ToAltitude0#=high):(Command#=go #^ ToAltitude1#=high)Finally, the partially spe
i�ed a
tivity is
onvered into
onstraintsas well. This is a straightforward pro
ess: all values that are as-signed in the a
tivity are
onverted to simple equality
onstraints ofthe form: SlotIndexVar #= value, where SlotIndexV ar is the ap-propriate variable that
orresponds to the slot+index in question, andvalue is that value that has been assigned to that slot+index. At thispoint, we
an simply query ECLiPSe for the set of all suitable sets ofvariable assignments that satisfy the
onstraints.7.4.1 Dealing with DefaultsIn order to a
tually determine how a partially spe
i�ed a
tivity shouldbe properly instantiated, there is another aspe
t of the problem to
onsider: defaults. Ea
h slot whi
h is not linguisti
ally spe
i�ed bythe operator (or inferred dire
tly from the operator's
ommands), mayhave a suitable default value. As dis
ussed above, default values forslots are de
lared as part of the re
ipe s
ript. The simplest way ofdealing with defaults would be to simply assign them appropriatelyto all slots that have not been already assigned a value, and then runthe resulting a
tivity spe
i�
ation through ECLiPSe to determine if itmeets the
onstraints set out by the operator. This approa
h, however,is
learly unsatisfa
tory. Consider the following dialogue that mightemerge from su
h an algorithm, assuming that the default speed atwhi
h to
y is set to medium:(15) O: Always
y at high speedS: Okay...O: Fly to the towerS: Just a minute ...I am supposed to always
y at high speedShould I
y to the tower at medium altitude and medium speedanyway?As the above dialogue illustrates, if we were to assign defaults toall unspe
i�ed slots BEFORE
alling ECLiPSe, then the
onstraintsset out by the user
an't be used to �ll in unspe
i�ed slot values towhi
h they pertain { in this
ase, the toSpeed slot.61

To solve this problem, the following algorithm is used:Algorithm: CONSTRAIN INSTANTIATIONSGiven: a partially spe
ified a
tivity, P.1. Consider the finite set of slots+indi
es whi
h
an potentiallybe assigned a default value given a parti
ular partiala
tivity spe
ifi
ation;
all this set of slot+index to valueassignments S.2. Consider ea
h subset s � S in order from largest to smallest,assign the slot+index to value assignments in s to P, yieldingP 0.(a) Send P 0 along with the ne
essary and banned
onstraints toECLiPSe to yield W: the set of all legal assignments ofvalues to variables in P 0.(b) If jW j = 1, su

eed and return W.(
) If jW j > 1, retain W and
ontinue iterating. If futureiterations do not su

eed, return W.(d) If jW j = 0,
ontinue iterating. If this is the lastiteration, and there are no previously retained Ws, thenfail.This algorithm tries to �nd the largest number of defaults that
anbe assigned to yield a single legal (subje
t to the
onstraint set) fully-instantiated a
tivity (all de�nable slots �lled with a value). It prefers,however, to �nd exa
tly one fully spe
i�ed a
tivity in a set to assigningas many defaults as possible. If, after not assigning any of the defaults,it still
an't �nd any possible instantiations, then it fails be
ause thepartially spe
i�ed a
tivity itself must violate the
onstraint set. If ex-a
tly one legal instantiation is found at any point, then the algorithmsu

eeds immediatly and returns this result. If there are always morethan one possible instantiations, then the algorithm prefers the setthat arises from instantiating as many default values as possible.If the algorithm su

eeds in �nding a single possible instantiaton,then the dialogue manager a

epts this instantiation and goes aheadand requests that the a
tivity be exe
uted. If there are zero possibleinstantiations, then the dialogue manager reports that the partiallyspe
i�ed a
tivity violates the
onstraint set. Moreover, the
onstraint62

management system allows the dialogue manager to request whi
h setof
onstraints were violated, so that it
an inform the operator (moreabout this in the next se
tion). If there are multiple possible instanti-ations, then the dialogue manager engages the user in an informationseeking dialogue { spe
i�
ally, it determines whi
h slot+indi
es
an-not be assigned a unique value based on the
onstraints, and asksthe operator to supply values for these slots. An example of su
h adialogue appears in (14).Note, that just as we used the method getSlotMaxLengthForCon-straint() above to deal with the
ase of so-
alled parallel slots, a similarme
hanism must be used for defaults as well. Consider that if two lo-
ations are spe
i�ed to whi
h the heli
opter should
y (in the WITASsystem), then we should
onsider the �rst two indi
es of the slots oftoLo
ation and toSpeed when assigning defaults. In pursuit of this, a
allba
k method
alled getSlotMinLengthForDefault() is de�ned whi
hreturns the minimum number of indi
es in a given slot whi
h ought tobe assigned default values (if possible).7.4.2 Determining whi
h set of
onstraints has been vi-olatedIn the
ase where the partial a
tivity spe
i�
ation supplied by theoperator is determined to violate the
urrent
onstraint set, the
on-straint management system provides a means for the dialogue man-ager to determine spe
i�
ally whi
h subset of the
onstraint set wasviolated. This allows for dialogues like the one in (13).Of
ourse, it is simple to �nd one easy solution to the question ofwhi
h set of
onstraints was violated: all of them. If we were to removeall
onstraints, then the partially spe
i�ed a
tivity would not violateany
onstraints at all! The
onstraint management system aims to�nd the most informative subset of
onstraints that were violated; inthis
ontext, this means the smallest subset of
onstraints. While it iste
hni
ally true to say that if we removed both the
onstraints \always
y high" and \always
y at high speed" then the
ommand \
y tothe tower at high speed and low altitude" would be
ome legal { butthis is not nearly as useful as determining that only the
onstraint\always
y high" is the one that is a
tually
ausing the problem. Assu
h, the system tries to �nd the smallest subset of
onstraints whi
hneed to be removed in order for the partial a
tivity spe
i�
ation to beallowable (it does not, however, prefer one subset of
onstraints over63

another if both sets are the same size { in this
ase, it merely reportsthe subset that it �nds �rst).In order to determine whi
h set of
onstraints was violated, wesimply iterate over all possible subsets of the
onstraint set and �ndthe largest one whi
h doesn't prohibit the partially spe
i�ed a
tivity.The algorithm is as follows:Algorithm: FIND VIOLATED CONSTRAINTSGiven: a partially spe
ified a
tivity, PGiven: the set of all banned and ne
essary
onstraints, CFor i = 1 to jCj fFor ea
h subset
 � C su
h that j
j = i f1. Let Q = C �
2. Send P along with the
onstraint set Q to ECLiPSe toyield W: the set of all legal assignments of valuesto variables in P.3. If jP j = 0 return
ggWith the set of violated
onstraints in hand, the dialogue manager
an produ
e dialogues like the one in (13).7.5 Maintaining a Consistent Set of ConstraintsWhen humans use natural language to spe
ify and understand
on-straints, they are not always expli
it about
ertain underlying assump-tions that they make. For instan
e,
onsider the following two se
tionsof two di�erent dialogues:(16) a. O: Always
y high.S: Okay....O: Always
y at low speed.S: Okay.b. O: Always
y high.S: Okay. 64

...O: Always
y low.S: Okay.At the synta
ti
 and semanti
 levels, there is nothing to distinguish(16a) from (16b); however, they are a
tually quite di�erent. In (16a)there is an impli
it \and" between ea
h
onstraint spe
i�
ation { thatis, the sequen
e of utteran
es is meant to spe
ify a
onjun
tion of
on-straints. By spe
ifying the se
ond
onstraint, the operator meant toadd an additional
onstraint. In
onstrast, in (16b), the operator �rstspe
i�ed one
onstraint and then impli
itly
hanged this
onstraintlater. Hen
e, in this
ase, at the end of the dialogue there should onlybe a single
onstraint in e�e
t, namely: \always
y low." We mightsay that there is an impli
ature whi
h must be
al
ulated by the utter-an
e of the se
ond
onstraint spe
i�
ation in (16b) whi
h doesn't existin (16a), namely that the previous
onstraint spe
i�
ation should be
an
elled.If su
h impli
atures are not understood by the dialogue system,then the set of
onstraints it maintains is in danger of be
oming in-
onsistent in a sense that will be explored here. Continuing the ex-ample in (16b), if the dialogue manager were to fail to simply addboth
onstraints spe
i�ed by the user to the ne
essary list, then thelist would
ontain both of the following
onstraints:(17) 1.
ommand="go" ! toAltitude="low"2.
ommand="go" ! toAltitude="high"If this set of
onstraints were passed to an ECLiPSe in order to in-stantiate a partially instantiated a
tivity like \
y to the s
hool," thenECLiPSe would be unable to fully instantiate the a
tivity due to thein
onsistan
y in the
onstraint set.Despite this diÆ
ulty, these two
onstraints are not logi
ally in
on-sistent in the sense that a formula su
h as A ^ :A is. While A ^ :Ades
ribes a situation whi
h
annot be satisi�ed in any possible world,the
onstraints in (17) are not so prohibitive; for example, we
ouldalways simply
hoose an a
tivity besides go { we might take a pi
tureof a
ar, for example. As su
h, the property of
onsisten
y we areafter for the
onstraint set is not that of logi
al
onsisten
y, but some-thing I'll
all
ommonsense task
onsisten
y in this dis
ussion. The
hallenge for the
onstraint management system, then, is to identifywhen the se
ond utteran
e in
onstraint
ommand pairs like the ones65

in (16) gives rise to an impli
ature, so that
ommonsense task
onsis-ten
y in the set of
onstraints
an be maintained. In the
ontext ofthe
onstraint management system developed here, this means thatwhen new
onstraints are spe
i�ed, the existing
onstraint set mustbe sear
hed for
onstraints whi
h should be removed.5 For the
ase inwhi
h
onstraints are truly arbitrary �rst-order-logi
 expressions, thisis an in
redibly diÆ
ult problem however. However, as we have seen,the range of
onstraints people are a
tually likely to give (whi
h
ana
tually be translated to FOL) is
onstrained su
h that only
ertainpatterns are likely to emerge. Given this more limited problem,
ertainpatterns whi
h give rise to impli
atures
an be identi�ed and then the
onstraint management system
an look for these patterns to maintaina
onsistant
onstraint set. For the CSLI dialogue manager, the set ofimpli
ature patterns whi
h needed to be re
ognized by the dialoguemanager in order to keep the
onstraint set
onsistent (su
h that itonly
ontained
onstraints whi
h
ould a
tually be dealt with by thesystem) was identi�ed { they are given in �gure 3. In these patterns,the �rst formula
orresponds to the �rst
onstraint-spe
i�
ation ut-teran
e in a dialogue and the se
ond
orresponds to the se
ond. Notethat we take advantage of the fa
t that items on the banned list inthe form A ^B
an be rewritten as ne
essary
onstraints of the formA! :B. When this rewrite is done, the assumption is made that thede�nable slots should appear on the left, and the optional slots shouldappear on the right hand side.The example patterns in �gure 3 illustrates
ases where the
on-straint in the �rst line is repla
ed by the
onstraint in the se
ond line.These patterns are limited to
ases in whi
h only 1 or 2
onjun
ts aregiven. Of
ourse, in a real system, these formulas should be general-ized to instan
es in whi
h 3 or more
onjun
ts appear { and, indeed,in the CSLI system su
h a generalization has been made. Where asingle
onju
t o

urs in
ontrast to two earlier
onjun
ts (as in, forexample, the pair: [A = a ^B = b℄ ! C =
1 and A = a ! C =
2),the more general
ase is one in whi
h the se
ond set of
onjun
ts area subset of the �rst (here, fAg � fA;Bg).In the
urrent
onstraint management system, all ne
essary
on-straints are broken down into their simplest form before being addedto the ne
essary list. That is, a potentially
omplex
onstraint like
yto the tower at high speed and at high altitude is
onverted into two5Or at the very least, whi
h the dialogue system ought to bring up in some
lari�
ationsubdialogue aimed at determining what the operator really meant66

Figure 3: Impli
ature Patterns1. (A = a ^ B = b)! C =
1e.g. Always
y to the tower at high altitude.(A = a ^ B = b)! C 6=
1e.g. Never
y to the tower at high altitude.2. (A = a ^ B = b)! C =
1e.g. Always
y to the tower at high altitude.(A = a ^ B = b)! C =
2e.g. Always
y to the tower at low altitude.3. (A = a ^ B = b)! C =
1e.g. Always
y to the tower at high altitude.A = a! C 6=
1e.g. Never
y at high altitude.4. (A = a ^ B = b)! C =
1e.g. Always
y to the tower at high altitude.A = a! C =
2e.g. Always
y at low altitude.5. (A = a ^ B = b)! C 6=
1e.g. Never
y to the tower at high altitude.(A = a ^ B = b)! C =
1e.g. Always
y to the tower at high altitude.6. (A = a ^ B = b)! (C =
1 ^D = d1)e.g. Always
y to the tower at high altitude and high speed.(A = a ^ B = b)! C 6=
1e.g. Never
y to the tower at high altitude. 67. (A = a ^ B = b)! (C =
1 ^D = d1)e.g. Always
y to the tower at high altitude and high speed.(A = a ^ B = b)! (C 6=
1 ^D 6= d1)e.g. Never
y to the tower at high altitude and high speed.8. (A = a ^ B = b)! (C 6=
1 ^D 6= d1)e.g. Never
y to the tower at high altitude and high speed.(A = a ^ B = b)! (C =
1 ^D = d1)e.g. Always
y to the tower at high altitude and high speed.67

onstraints representing
y to the tower at high speed and
y to thetower at high altitude respe
tively. More formally, given the
onstraintgiven in (18), the two
onstraints in (19a) and (19b) are a
tually addedto the ne
essary list.(18)
ommand= "go" ! (toSpeed = "high" ^ toAltitude = "high")(19) a.
ommand = "go" ! toSpeed = "high"b.
ommand = "go" ! toAltitude = "high"As su
h, the algorithm in �gure 4 has been implemented to identify
onstraints in the
urrent set whi
h should be removed given a new
onstraint spe
i�ed by the operator. This algorithm makes use of thefollowing simple helper fun
tions:� isNe
(
) whi
h simply returns true i�
 is on the ne
essary list(or is supposed to be added to the ne
essary list)� diff assign(r1; r2) returns true i� r2
ontains an assignment toa slot given in r1, but the value assigned to that slot is di�erent.For example, if r1 was fA = a1g and r2 was fA = a2; :::g thenthe fun
tion would return true.� same assign(r1; r2) returns true i� r2
ontains an assignment toa slot given in r1, and the value assigned to that slot is the same.For example, if r1 was fA = a1g and r2 was fA = a1; :::g thenthe fun
tion would return true.8 Algorithms for the Dialogue Man-agerI will not dis
uss here the full details of the CSLI dialogue manager;I refer the interested reader to [LGP02℄. Instead, I will dis
uss theinterfa
e provided by the a
tivity modeling and
onstraints/defaultssystem and the servi
es that any dialogue manager wishing to be en-abled with it must provide. Fuerthmore, I will dis
uss algorithmswhi
h have been implemented in the CSLI dialogue manager whi
htake advantage of the framework dis
ussed in this paper in order tofa
iliate more natural dialogues between the human operator and thedevi
e. The system is built in su
h a way that there is nothing thatties it by ne
essity to the details of the CSLI dialogue manager; itdoes not rely on any one parti
ular theory of dis
ourse representation,68

Figure 4: Algorithm for dete
ting impli
aturesAlgorithm: FIND CONFLICTING CONSTRAINTS DUE TO IMPLICATUREGiven: a new
onstraint,
n to be added to the
onstraint setGiven: the set of all banned and ne
essary
onstraints, C,
onverted to
anoni
al formaLet I be an initially empty set to hold the
onstraints Cwhi
h are found to be in
onsistent with
n.For ea
h
 2 C fLet r
 be the set of equality statements on the right sideof
Let l
 be the set of equality statements on the left side of
 Let r
n be the set of equality statements on the right sideof
nLet l
n be the set of equality statements on the left sideof
nIf l
n � l
 fIf((isNe
(
) ^ isNe
(
n) ^ l
n � l
 ^ diff assign(r
n; r
))_(isNe
(
) ^ :isNe
(
n) ^ jr
nj = 1 ^ same assign(r
n; r
))_(:isNe
(
) ^ isNe
(
n) ^ r
n � r
)) f Add
 to I, if
 =2 IggIf(isNe
(
) ^ :isNe
(
n) fLet Ca be the set of
o 2 C su
h that l
 = l
oLet rCa be S r
oIf(r
n � rCa) fAdd
 to I, if
 =2 Iggg aWhere
anoni
al form
orresponds to the form of
onstraints given in �gure 3. Thatis, all ne
essary
onstraints are of the form (A = a^ : : :^B = b)! (C =
^ : : :^D = d)and all banned
onstraints are in the form (A = a^ : : :^B = b)! :(C =
^ : : :^D = d)69

any spe
i�
 set of algorithms for pro
essing or produ
ing dis
ourse, orany parti
ular parser or grammar. That said, it is up to the dialoguemanager to provide these servi
es.The system provides several
apabilities that a dialogue systemshould interfa
e to, in
luding: a means of representing the relationshipbetween di�erent a
tivities that are
urrently being exe
uted, havebeen exe
uted, or whi
h are planned; the appli
ation of
onstraintsand the ability to determine whi
h
onstraints are problemati
; anda representation of whi
h slots are pertinent to an a
tivity in variousstates. It also depends on the dialogue manager for several abilities,in
luding: interpreting
ommands and
onstraints in natural language;the generation of reports about an a
tivity based on its slots and theirvalues as well as the generation of
onstraints in natural language; andknowledge about whi
h slots may be \parallel." In this se
tion, I willdis
uss ea
h of these items and how they have been handled by theCSLI dialogue system.78.1 Translating Commands from Natural Lan-guage into A
tivity RepresentationsI've de�ned a
tivities in this paper in terms of an a
tivity type anda set of slots some of whi
h are �lled in with parti
ular values. I'vesaid nothing about how to translate
ommands like Fight the �re atthe tower into these representations, or how to generate from themreports like Now
ying low to the tower at high speed. In the CSLIdialogue manager, user utteran
es are parsed and system utteran
esare generated using a bi-dire
tional uni�
ation grammar written usingSRI's Gemini system [DGA+93℄. The grammar for the CSLI dialoguemanager has been hand-designed to be used for the
ommand and
ontrol of mobile robots. I will not dis
uss the grammar here in detail,but suÆ
e it to say that the dialogue manager deals only in the logi
alforms that are produ
ed by the grammar and never with the a
tualsurfa
e string.The logi
al forms for
ommands and reports generally break themdown into their verb and the verb's argument PPs and NPs, as would7I am indebted to Oliver Lemon, Laura Hiatt, Randolph Gullett, and Elizabeth Brattfor the hard work they have put into many areas of the dialogue system, in
luding many ofthose elements that were ne
essary for interfa
ing to the a
tivity modeling and
onstraintservi
es I've dis
ussed in this paper. Mu
h of the work dis
ussed in this se
tion on thedialogue manager side of things was a
tually implemented by them.70

be expe
ted. For example, the logi
al form for deliver the medi
alsupplies to the s
hool is:[
ommand([deliver℄,[param_list([arg([np([det([def℄,the),[n(medi
al_supplies,pl)℄℄)℄),[pp_lo
(to,arg([np([det([def℄,the),[n(s
hool,sg)℄℄)℄))℄℄)℄)℄Similarly, the logi
al form for Fly to the tower and the s
hool at highspeed is:[
ommand([go℄,[param_list([[pp_lo
(to,arg(
onj,[np([det([def℄,the),[n(tower,sg)℄℄)℄,[np([det([def℄,the),[n(s
hool,sg)℄℄)℄))℄,(speed),value(high)℄)℄)℄)℄Given logi
al forms like these, the Dialogue Manager must gothrough two steps to translate it into a a
tivity des
ription. First,it must pull apart the arguments into the appropriate slots for thea
tivity type. Se
ond, it must \resolve" the NPs to determine whata
tual obje
ts in the world they refer to.In the CSLI dialogue manager, the CSLI A
tivity
lass suppliedby the devi
e interfa
e is sub
lassed by CSLI Task so that extra in-formation
an be added on to ea
h a
tivity. Of interest here is that
orresponding to any de�nable slot whi
h
an be des
ribed in terms ofan NP (for instan
e, toLo
ation might
orrespond to the NP \spring-�eld s
hool"), CSLI Task de�nes a slot to hold the NP asso
iatedwith that slot { for instan
e, toLo
ationNP. The dialogue manager�rst pulls out the NPs for ea
h
ommand that belong in a slot andputs them in the
orresponding NP slot. It also pulls slot values whi
haren't parsed as NPs, but rather as \mods" { modi�ers su
h as \athigh speed" { and puts them dire
tly in their
orresponding slots, forinstan
e toSpeed.Next, ea
h NP is \resolved" through either dialogue
ontext ofdatabase lookups to an a
tual entity in the world. If no su
h entity71

an be found or multiple possible mat
hes are found, then the dialoguemanager initiates information seeking dialogues with questions likeWhi
h tower do you mean? and Where is the pond?. On
e the NPsare resolved, the IDs of their referents are pla
ed in the
orre
t slots{ for example, the id of the referent of
arryObje
tNP is pla
ed in
arryObje
t. Re
all that the fa
t that it is the identi�er of the referentthat must be stored in a parti
ular slot when determined in the re
ipes
ript when that slot was determined a type, whi
h had a parti
ulardomain. Hen
e, what sort of value is a
tually stored in ea
h slot
anbe determined on a domain-spe
i�
 basis.If some of the required slots still need values at this point, then thedialogue manager presents information-seeking questions, like Whereshould I
y to? to the operator. On
e all of the required slots havebeen �lled in, the a
tivity's state is set to resolved, at whi
h pointthe
onstraint and defaults management system ki
ks in and tries tofully instantiate the a
tivity a

ording to the
urrent
onstraint set.8.2 Translating Constraints from Natural Lan-guage into Logi
 ExpressionsCurrently, the CSLI dialogue system
an understand
onstraints su
has: � Always/Never
y at high speed.� Always/Never patrol at the tower at low altitude.� Always/Never
y high and fast.Essentially, the system
an understand any normal
ommand inputpre�xed by either always or never. This is be
ause the algorithm ituses to translate these
onstraints into logi
 expressions is based onthe algorithm above for translating
ommands in natural language toa
tivity/slot representations. For example, always patrol at the towerat high altitude is simply interpreted by passing the patrol at the towerat high altitude through the
ommand parser and making note with a
ag that it was a global
onstraint. Then, the slots whi
h are �lled inare turned into a
onstraint where all of the required slots appear onthe left hand side of the impli
ation and the optional slots on the righthand side, as dis
ussed above. I note again, here, the importan
e ofthe distin
tion between required and optional slots.72

8.3 Translating a
tivities and
onstraints intonatural languageThe pro
ess of going from an a
tivity to natural language basi
allyinvolves going through ea
h slot and
hoosing an appropriate nounphrase, prepositional phrase, or other modi�er to represent that slot.Ea
h slot is marked in the dialogue manager either as being one of a PPslot, an NP slot, or a modi�er slot in the
ontext of parti
ular a
tivitytypes. An appropriate phrase is
hosen by the dialogue system basedon the
ontents of the slot, and then all of the phrases are assembledto
reate an appropriate logi
al form. As I mentioned above, in there
ipe s
ript di�erent slots
an be asso
iated with ea
h a
tivity state.Hen
e, depending on the state of the a
tivity, or the intent of theutteran
e (is it to be used for a question or a report, for instan
e),di�erent set of slots may be used to generate the natural language todes
ribe the a
tivity.To translate a
onstraint into natural language, it is �rst
on-verted into an a
tivity representation with the appropriate slots �lledin whi
h are
overed by the
onstraint. Then, this is
onverted toa logi
al form and embedded inside the appropriate logi
al form forthe various sorts of
onstraints { for instan
e, it is embedded insidea di�erent form depending on whether it
ame from the banned orne
essary list and whether it is a global or lo
al
onstraint.8.4 Avoiding Mode ConfusionA major problem fa
ing a dialogue system for
ontrolling devi
es is theproblem of de
iding when
hanges in the state of the world should bedes
ribed to the user. In order to avoid mode
onfusion, it is impera-tive that the operator's beliefs about the state of the world suÆ
ientlymat
h the a
tual state of the devi
e. For instan
e, if the devi
e hassu

essfully
ompleted an a
tivity that it was pursuing, then the op-erator needs to be informed of this so that he or she maintains ana

urate mental model of what the devi
e is doing. If the devi
e doesnot keep the operator abreast of its state, then in
omprehensible dia-logues like the following might ensue:(20) O: Fly to the s
hool and look for a red
ar.S: Now
ying to the s
hool...and looking for a red
arHeli
opter �nishes
ying to the s
hool but says nothing73

O: Can
el
ying to the s
hoolThe above is just a small example of the sorts of problems that mayo

ur if the operator does not maintain a
onsistent pi
ture of the stateof the world that mat
hes reality and the mental state of the devi
e.In this se
tion, I dis
uss the te
hniques developed as part of the CSLIdialogue manager for avoiding mode
onfusion; in parti
ular, I fo
uson how these methods are fa
ilitated by the representation a�ordedby A
tivities, the A
tivity Tree, and Constraint Management System.8.4.1 Announ
ing State ChangesThe Dialogue System must somehow de
ide when to make announ
e-ments about when the state of the world has
hanged. The A
tivityTree provides one me
hanism by whi
h the dialogue system
an makeintelligent de
isions about what
hanges in the world are
onversa-tionally appropriate, and whi
h need not be mentioned. Wheneverthe state of an a
tivity on the tree
hanges (for instan
e from plannedto
urrent), the dialogue manager is noti�ed of this update and
an
hoose whether or not to announ
e this
hange in state. The simpleststrategy is to announ
e every state
hange of every a
tivity; however,this leads to some odd dialogue sequen
es. Consider, for instan
e, thea simple
ase from the WITAS system in whi
h the heli
opter
iesfrom base to the s
hool. Just before rea
hing the s
hool, the a
tivitytree looks like this:root..go (to s
hool) [
urrent℄....take_off [done℄....fly_atom (to s
hool) [
urrent℄Upon rea
hing the s
hool, �rst the fly atom a
tivity be
omes doneand then, in turn, the go a
tivity be
omes done as well. Yielding �rstthis a
tivity tree:root..go (to s
hool) [
urrent℄....take_off [done℄....fly_atom (to s
hool) [done℄And then this one:root 74

..go (to s
hool) [done℄....take_off [done℄....fly_atom (to s
hool) [done℄If the poli
y were to announ
e the state
hange of ea
h node, thesystem would make the following announ
ement:(21) S: I have
own to the s
hool. [
orresponds to
y atom node℄S: I have
own to the s
hool. [
orresponds to go node℄Indeed, it would end up making the same announ
ement twi
e ina row! In order to avoid this, we might de
ide to only make an an-noun
ement when a leaf of the tree
hanges in state, as leaves arethe a
tivities whi
h are a
tually exe
uted. However, this may lead tosystem announ
ements whi
h do not
ontain as mu
h information asthey ought to. Consider the situation in whi
h the system is trans-porting the medi
al supplies from the hospital to the s
hool. Justbefore
ompleting this a
tivity, the a
tivity tree looks like this:root..transport (medi
al supplies) (from hospital) (to s
hool) [
urrent℄....pi
k_up (medi
al supplies) (from hospital) [done℄......go (hospital) [done℄........take_off [done℄........fly_atom [done℄......pi
k_up_obje
t (medi
al supplies) [done℄....deliver (medi
al supplies) (to s
hool) [
urrent℄......go (s
hool) [done℄........take_off [skipped℄........fly_atom (s
hool) [done℄......drop_obje
t (medi
al supplies) [
urrent℄When drop obje
t is
ompleted, it will be
ome done and thendeliver will be
ome done, and �nally transport in turn will be
omedone. Here, however, it is desirable to announ
e not only that themedi
al supplies have been dropped, but that this indeed
on
ludesthe deliver and transport a
tivities { without this information, theoperator may be
ome
onfused as to the state of the robot. Thedesired dialogue, then, is something like the following:(22) S: I have dropped the medi
al kit.S: I have delivered it to the s
hool.S: I have transported it from the hospital to the s
hool.75

In order to allow for this type of dialogue, the poli
y whi
h hasbeen implemented is that the
ompletion of an a
tivity is announ
edunder the following
onditions:1. The a
tivity is a leaf node2. The a
tivity is not a leaf, but it has a di�erent Natural LanguageMapping from its last
hild.8.4.2 Filtering Against the State of the WorldThe CSLI Dialogue Manager makes use of a relatively
ommon te
h-nique in dialogue managers that deal with
omplex systems in thatit employs a generation manager whi
h stores potential system utter-an
es in a queue and then, when an appropriate point in the
onversa-tion arises for the system to make an utteran
e (or an utteran
e is ofa
riti
al enough nature that the system should barge in and utter it,no matter what), the generation manager
hooses an appropriate ut-teran
e from the queue and utters it.8 In the CSLI Dialogue Manager,this queue is referred to as the System Agenda.Whenever the dialogue manager makes the de
ision that it is ap-propriate to announ
e the state of an a
tivity, using the algorithm dis-
ussed in (8.4.1) above, the utteran
e des
ribing the parti
ular a
tivityand its state is added to the System Agenda. Eventually, the gener-ation
omponent will have a
han
e to examine the System Agendaand de
ide how to realize ea
h utteran
e linguisti
ally, and whetheror not the utteran
e should be a
tually be uttered by the system atall. In the situations that the A
tivity Modeling System des
ribed inthis paper has been designed for, it's possible that by the time it'sappropriate for the generation
omponent to realize an utteran
e onthe System Agenda, this utteran
e may no longer be relevant { orworse, it may a
tually represent a
laim that is no longer true. Su
htime delays have tended to o

ur on a regular basis with the dialoguesystems we have developed, mainly be
ause in the se
onds it takes foreither the operator or the system to make one or a few utteran
es, thea
tivities being monitored may have
hanged signi�
antly in nature.8This is a very brief overview of how the generation
omponent in the CSLI DialogueManager works; geneeration is, in fa
t, relatively
omplex. For example, it will introdu
eanaphora and ellipsis into the utteran
es in its queue, in order to �t them better into the
urrent
onversation. Su
h fun
tionality has no bearing on the dis
ussion here, as thealgorithm dis
ussed here will bene�t any dialogue management system whi
h makes useof a queue to store potential utteran
es. 76

A quite
ommon example is that while sometimes it may take adevi
e a few se
onds (or even minutes) in order to plan an a
tivity,sometimes this pro
ess is nearly instantaneous. However, during theinstant when the a
tivity swit
hes to a state of sent (and is sent tothe planner), the dialogue system doesn't automati
ally know if thisstate will take a few minutes, se
onds, or millise
onds. As su
h, itimmediately pla
es a logi
al form for an utteran
e of the form Nowplanning to X on the System Agenda, where X is a des
ription of thea
tivity in question. It may be, however, that just a few millise
ondslater, before the generation
omponent has even started to pro
ess theSystem Agenda,9 that the state of the a
tivity in question is
hangedto
urrent by the planner, whi
h has made its plan and begun ex-e
uting the a
tivity. In this
ase, when the generation
omponentpro
esses the system agenda, it will be ina

urate for it to announ
eNow planning to X, be
ause it's a
tually the
ase that the system is
urrently doing X.The top utteran
e on the System Agenda, then, is not really re-
e
tive of the state of the devi
e. Indeed, if the system were to utterit, mode
onfusion would surely arise. As su
h, the generation
ompo-nent of the CSLI Dialogue Manager employs a �ltering me
hanism, inwhi
h all utteran
es regarding a parti
ular a
tivity are
he
ked againstthe
urrent state of that a
tivity on the A
tivity Tree before they areuttered. If the utteran
e des
ribes the a
tivity as being in a statewhi
h is no longer
orre
t, then the utteran
e is �ltered out { it isdis
arded, never a
tually uttered by the system. A

ording to thisalgorithm, the above problem is solved by dis
arding the logi
al form
orresponding to Now planning to X and then later a
tually realizingan utteran
e like Now Xing.The real power of this approa
h
an be seen by examining a more
omplex example from the WITAS domain, in whi
h the devi
e (theheli
opter)
hanges its state quite qui
kly and rather signi�
antly.Consider the
ase in whi
h the operator gives the
ommand:
y tothe s
hool and look for a red
ar. Now imagine that right after theheli
opter takes o� and just as it begins
ying to the s
hool, it sees ared
ar. In the WITAS domain, the a
tivity of �nd whi
h
orrespondsto the operator's
ommand of look for, spe
i�es that on
e an obje
t9In the CSLI Dialogue Manager, the generation
omponent tends to wait for the systemto \settle down" before it pro
esses the System Agenda { that is, it tends to wait for aseries of swift updates about the state of the devi
e to
omplete before it pro
esses theSystem Agenda 77

mat
hing the des
ription given by the operator is spotted, it shouldbe tra
ked (kept in view). However, in order to do this, the heli
optermust suspend
ying to the s
hool, sin
e it
an't both tra
k the
arand
y to the s
hool at the same time. To sum up, the A
tivity Tree(abbreviated below), goes through the following
on�gurations:(23) Taking o� and looking for a red
arA
tivity Tree:root..go (to tower) [
urrent℄....take_off [
urrent℄..lo
ate (red
ar) [
urrent℄System Agenda: empty(24) Finished taking o�, started to
y to towerA
tivity Tree:root..go (to tower) [
urrent℄....take_off [done℄....fly_atom (to tower) [
urrent℄..find (red
ar) [
urrent℄....lo
ate (red
ar) [
urrent℄System Agenda:1. I have taken o�2. Now
ying to the tower

78

(25) Spotted a red
ar, started tra
king it and suspended
ying (o

urs beforeutteran
es on System Agenda in (24) are pro
essed)A
tivity Tree:root..go (to tower) [suspended℄....take_off [done℄....fly_atom (to tower) [suspended℄..find (red
ar) [
urrent℄....lo
ate (red
ar) [done℄....tra
k (red
ar) [
urrent℄System Agenda:1. I have taken o�2. Now
ying to the tower [FALSE!℄3. I have found a red
ar4. I have suspended
ying to the tower5. Now tra
king the red
arWithout a representation of the
urrent state of the devi
e, thegeneration
omponent would simply \read o�" the system agenda,making announ
ements about the state of the world whi
h are nolonger true (in this
ase, that the heli
opter is
urrently
ying to thetower). The �ltering algorithm given above, however, requires thatthe system skip the announ
ement that it is
urrently
ying to thetower { sin
e this statement no longer a

urately represents the stateof the a
tivity. After hearing this utteran
e, the operator might bequite
onfused sin
e on the GUI he or she
ould observe a red
ar andheli
opter motion that appears to indi
ate that the heli
opter is fol-lowing the
ar, rather than
ying to the s
hool.10 As su
h, it be
omesapparent that the A
tivity Tree provides a means for the generationmanager to dis
ard or modify reports that have been produ
ed by thesystem. The dialogue manager
an retain the modularity providedby the fa
t that the generation module is separate from the report-10Perhaps, rather that simply throwing away the utteran
e Now
ying to the tower, aneven
leverer generation algorithm might
hange it to something like I was
ying to thetower, but I've now suspended
ying there. No
hanges would be need to the A
tivity Treeor the Report Generation Me
hanism to fa
ilitate this, only to the Generation Component79

generating module, while at the same time having the ability to makesure that the reports the system utters are a
tually true.8.4.3 Answering Why?Due to the
omplexity of some a
tivities (in their many sub-a
tivities,sub-sub-a
tivities, and so on) and the length of time it takes to do aparti
ular a
tivity, it may not always be immediately apparent to theoperator why the system is doing a parti
ular a
tion. The operatormay simply have forgotten that he or she gave a parti
ular
ommand,or perhaps may not realize that the system is doing a parti
ular a
tiv-ity be
ause the a
tivity is a
tually a suba
tivity of another a
tivity.In the WITAS system, for example, there is de�ned a relatively
om-plex a
tivity
alled �ght �re in whi
h the heli
opter repeatedly pi
ksup water at one lo
ation, transports the water to a se
ond lo
ationwhere a building is on �re, and drops loads of water there until the�re has been extinguished. Be
ause this a
tivity is relatively
omplexand has a long duration, it's possible that the operator might want toquestion the heli
opter as to why it is, say, pi
king up the water fromthe lake.At at least a simple level, the A
tivity Tree o�ers a straightfor-ward means of answering su
h why questions. In order to answer whythe devi
e is doing a parti
ular a
tivity, the dialogue manager
anlook at the a
tivity's an
estor nodes on the A
tivity Tree and simplyreport an appropriate an
estor. For example, in (26) there appearsa snapshot of the A
tivity Tree as it might appear during one stageof �ghting the �re at the s
hool { spe
i�
ally, the point at whi
h theheli
opter has pi
ked up the water and is
arrying it to the s
hool.(26) root..fight_fire (at s
hool) [
urrent℄....transport (water from lake to s
hool) [
urrent℄......pi
kup_at_lo
ation (water from lake) [done℄........go (to lake) [done℄..........take_off [done℄..........fly_atom (to lake) [done℄........pi
kup_obje
t (water) [done℄......deliver (water to s
hool) [
urrent℄........go (to s
hool) [
urrent℄..........take_off [skipped℄..........fly_atom (to s
hool) [
urrent℄80

Given this A
tivity Tree, the CSLI Dialogue Manager supportssu
h queries as the following:(27) a. Why?b. Why did you pi
k up the water at the lake / go to the lake /take o� / pi
k up the water?
. Why are you delivering the water to the s
hool / going to thes
hool?In order to answer ea
h of these questions, the dialogue managermust �rst determine whi
h a
tivity spe
i�
ally the user is asking awhy question about. On
e this has been determined, it must
hoosethe appropriate an
estor of this a
tivity to report as an answer to thequestion. Most of the time, this is simply the parent of the a
tivityin question. There is one
ase, however, in whi
h the parent is not anappropriate response { namely, the
ase in whi
h a report in naturallanguage des
ribing the parent a
tivity is identi
al to one des
ribingthe
hild. For instan
e, if the a
tivity being asked about is
y atom,then it is inappropriate to report the
y atom's parent a
tivity, go,be
ause both
y atom and go are realized linguisti
ally in the sameway (in the above A
tivity Tree, both are realized as something su
has I have
own to the lake). As su
h, if the system were to de
ide that
y atom were the relevant a
tivity and then simply report its parent,infeli
itous dialogues like the following
ould o

ur:(28) O: Why did you
y to the lake?S: #Be
ause I was
ying to the lake.whereas the `appropriate' ex
hange should be the following:(29) O: Why did you
y to the lake?S: Be
ause I was pi
king up the water at the lake.In order to answer why questions like the ones in (27) the dialoguemanager uses the algorithm given below. Note that the input to thealgorithm is a logi
al form representing a why query. It is assumedthat the format of the logi
al form is the following:why query(A
tivityMarker, A
tivityDes
ription)where A
tivityMarker is
an have one of the following values:� anap: for the purely anaphori
 utteran
e of why?�
urrA
tivity: for utteran
es referring to the
urrent a
tivity,either Why are you Xing? or Why are you doing that?81

�
omplA
tivity: for utteran
es referring to a
ompleted a
tivity,either Why did you Xing or Why did you do that?and A
tivityDes
ription has either the value of anap for utteran
esthat don't refer to a spe
i�
 a
tivity (e.g. Why? and Why are youdoing that?), or the logi
al form for
ommanding an a
tivity that
anbe de
omposed by the ma
hinery developed in se
tion 8.1.Algorithm: ANSWER WHY QUERYGiven: The logi
al form w of a why querya = find relevant a
tivity(w)ra = generate logi
al form(a)p = parent(a)while(p != null) frp = generate logi
al form(p)if(rp != ra) return why answer(rp)p = parent(p)g And the algorithm for find relevant a
tivity is as follows:Algorithm: FIND RELEVANT ACTIVITYGiven: The logi
al form w of a why query with A
tivityMarker m andA
tivityDes
ription dGiven: The list of salient a
tivities, Sif m = anap AND d = anap return first(S)forea
h s in S fa = parse
ommand to a
tivity(d)if mat
hes(s, (a, m)) return sgwhere the mat
hes predi
ate takes an a
tivity as one parameter anda des
ription of an a
tivity with its state as the se
ond parameterand returns true if and only if the des
ription and state of the se
onda
tivity are the same as the �rst.8.4.4 Answering What are your
onstraints?Sin
e the system allows the operator to spe
ify rather
omplex setsof
onstraints on the devi
e, it be
omes immediately important forthe the operator to be able to �nd out from the system what exa
tlyit believes its
urrent set of
onstraints is. Given that the dialogueinterfa
e already must be
apable of
onverting
onstraints into nat-82

ural language, answering the question What are your
onstraints? isfairly simple. Currently, the dialogue manager simply reads o� all ofthe ne
essary and banned
onstraints on the root node of the A
tivityTree to produ
e dialogues like the following:(30) O: Always
y high.S: Okay....O: Never
y at low speed.S. Okay....O: What are your
onstraints?S: I am supposed to always
y high.S: I am never supposed to
y at low speed.Granted the output is fairly simplisti
. For more natural output,the Generation Component should probably aggregate these utter-an
es into a single utteran
e. This is relatively straightforward andplanned as future work.9 Limitations and Future WorkWhile this paper identi�es major steps whi
h
an be taken towarddesigning generi
 dialogue systems whi
h are
apable of fa
ilitatingtask-oriented dialogues, it
ertainly doesn't o�er a
omplete,
awlesssolution to the problem. There are a number of problems whi
h sim-ply haven't been addressed and some whi
h haven't been addressed
ompletely. In this se
tion, I'll dis
uss some of these issues and try tomention ways in whi
h the framework presented here might provideuseful insights or a �rst step toward solving them.9.1 Grammar Development and Spee
h Re
og-nitionThroughout most of this paper, the pro
ess of �rst
onverting ana
ousti
 signal representing spoken language input into text and thenparsing this text into some sort of logi
al form the dialogue manager
an use has been largely taken for granted. Many dialogue systems,in
luding the ones developed at CSLI [LGP02℄ and NASA [RHJ00℄,83

use a domain-spe
i�
 grammar to parse text input (and often bi-dire
tionally to produ
e text output). Often this grammar is
ompiledinto a language model whi
h an automati
 spee
h re
ognizer (ASR)uses as a
onstraint on the utteran
es it expe
ts to hear. Other sys-tems might use
orpus data or other statisti
al te
hniques to
onstraintor train their spee
h re
ognizer. At the moment, the grammars andlanguage models used by most dialogue systems are highly domain-spe
i�
. For example, the one used by the CSLI dialogue managerfor the WITAS system is spe
i�
 to the types of utteran
es that areinvolved in
ontrolling an autonomous heli
opter. As su
h, it wouldbe totally in
apable of parsing utteran
es related to tasks like drivinga
ar or
ontrolling a radio.The question, then, is whether or not a domain-independent gram-mar
an be written whi
h is suitable a
ross a large number of
onver-sational domains. It might be possible to dire
tly plug su
h a gram-mar into many di�erent dialogue systems, or it might be ne
essaryto spe
ialize it in some, relatively straightforward way, a
ross manyappli
ations. While the work presented in this paper
learly doesn'tanswer the question of how su
h a grammar
ould be implemented, Ibelieve that it sheds some light on the pro
ess.The framework provided here identi�es many of the
ommon typesof
onversations whi
h are likely to o

ur as part of task-oriented dia-logues. As su
h, it provides some guidan
e in the range of utteran
esthat a general-purpose grammar would have to provide, assuming thegrammar was to be geared only toward task-oriented, pra
ti
al dia-logue systems. By identifying
ommon
lasses of dialogues, we providea metri
 by whi
h a general-purpose, domain-independent grammar
ould be measured; we
ould, for instan
e,
ount the number of do-mains in whi
h a spe
i�
 grammar supports the range of dialoguefa
ilitated by the framework presented here.Moreover, the framework given here provides an expli
it, domain-independent (a
ross task-oriented domains) semanti
 me
hanism forrepresenting many sorts of utteran
es. For instan
e, it provides ageneri
 way to semanti
ally spe
ify a
tivities { as sets of required andoptional de�nable slots { as well as
onstraints over these a
tivities{ as logi
al expressions over the values of these
onstraints. If wewere to design a domain-independent grammar whi
h also used rep-resentations
ompatible with those given here, then we would havean extremely straightforward means of spe
ializing this grammar tospe
i�
 domains: we
ould, for example, de�ne mappings between84

omponents of an utteran
e and various slots relevant to the domainin question. Indeed, it seems relatively straightforward to imagineadding extra �elds to the re
ipe s
ript for ea
h a
tivity whi
h a
t es-sentially as sub-
ategorization mappings between arguments to a verband relevant slots.9.2 More Complex Re
ipesThroughout this paper it has often been assumed that any re
ipewhi
h we would want to des
ribe
ould be e�e
tively and easily de-s
ribed through the re
ipe s
ript.11 This, of
ourse, is not the
ase asa re
ipe
ould, in theory, be an arbitrarily
omplex set of instru
tions.It does seem, however, that there are several
on
epts not in
ludedin the
apabilities of the re
ipe s
ripting language whi
h are usefula
ross a large range of task-oriented dialogues.One major issue is handling goal-oriented de
omposition. In thissimplest
ase, this manifests itself as a
hoi
e between two di�erentways of a

omplishing the same goal. Imagine, for instan
e, that youwant me to be at your house for a party at 11:00 and that I have severaldi�erent possible ways that I
ould get there; for instan
e, I
ould
y,drive, walk, bi
y
le, or skateboard there. Now imagine, further, thatyou don't
are how I get there, just that I am indeed at your houseat some point around 11:00. In this
ase, I might
hoose any of theabove options in order to get to your house. Of
ourse the situation
an rapidly get more
ompli
ated. It might be that you live too faraway for me to skateboard or walk, and that I don't have a

ess to asmall plane or a heli
opter, so I'll have to drive or bi
y
le to the party.Or perhaps I get on my bi
y
le, but just as I'm leaving my house, thepeddle breaks o� and suddenly I have to drive to your house instead.What I've identi�ed here essentially is goal-oriented, rather thantask-oriented, de
omposition. While the re
ipe s
ripting language out-lined in this paper allows for a
tivities to be de
omposed into spe-
i�
 sequen
es (or simultaneous sets) of other a
tivities, this perhapsdoesn't quite mirror the way in whi
h humans a
tually de
omposea
tivities. Humans are often quite
exible in that if one way of a
-
omplishing a goal fails, they'll try a di�erent way (the broken bi
y
le).Or if for parti
ular reasons they
an't even try one means of a
hieving11Spe
ial thanks to the members of the Stanford Natural Language Pro
essing readinggroup for an interesting dis
ussion on the issues mentioned in this se
tion. Any errors are,of
ourse, mine. 85

a goal, they try another means instead of giving up (your house is toofar away, and I don't have my own heli
opter). Moreover, they mightdefer making de
isions about how to a

omplish
ertain goals until alater date when they have more information.It is perhaps more appropriate to say, then, that humans natu-rally de
ompose re
ipes in terms of goals for whi
h they already know(or
an learn about, dis
over, or invent) re
ipes for means of a
hiev-ing these goals. Su
h de
omposition is not supported by the re
ipes
ripting language at the moment, not be
ause it is more diÆ
ult towrite s
ripts in this way, but mainly be
ause the ma
hinery involved inexe
uting s
ripts so de
omposed is more demanding. Indeed, the A
-tivity Tree and the Constraint Management System are agnosti
 as towhether re
ipes are de
omposed in terms of goals or other re
ipes { thetree simply represents planned,
urrent, and past a
tions no matterby what me
hanism they were generated, and the
onstraint systemapplies re
ipes being instantiated for any reason. Moreover, synta
-ti
ly it would be relatively straightforward to spe
ify goals instead ofspe
i�
 re
ipes whi
h should be intended within a re
ipe body. How-ever, it is exa
tly the pro
ess of making the de
isions regarding whi
hre
ipe to use to a
hieve a spe
i�
 goal and why, that I sought to avoidin the framework provided here. Su
h de
isions may require rather
omplex planning and real-time exe
ution systems on the part of thedevi
e being
ontrolled { a requirement I didn't wish to impose on thesystems whi
h are being dialogue-enabled for the moment. Instead, I
hose to fo
us on a wider-range of systems whi
h might or might nothave su
h a
omponent. This is not to say that su
h systems shouldbe forever ignored; indeed, I believe that mu
h interesting useful work
an be put into means of generi
ally dialogue-enabling the features ofsu
h systems. For example, dialogues about whi
h re
ipe to use andwhy may surely share
ommonalities a
ross many devi
es that
ouldbe
aptured and added to the framework des
ribed here.Indeed, I believe that the framework presented in this paper
ouldbe expanded in a straightforward manner to deal with goal-de
ompositionas opposed to a
tivity-level de
omposition. Certainly, the A
tivityTree and
onstraint management systems as they exist would work�ne with su
h a system. What would remain would be to imple-ment algorithms for fa
ilitating dialogues regarding whi
h solutionsare under
onsideration and why and for a
tually pi
king a solutionto exe
ute. Moreover, the
onstraint system would have to be ex-panded to deal with
onstraints whi
h des
ribe whi
h re
ipe to
hoose86

to ful�ll a parti
ular goal. The work presented in this paper servesas a good basis for su
h expansion, and it provides a framework forfuture expansion be
ause many useful notions are already representedand realized
omputationally. Already in pla
e is a semanti
s for goalsin whi
h they are expressed in terms of slots, whi
h are used to
on-
eptualize a
tivities; su
h a semanti
s
ould
ertainly be utilized ina goal-de
omposition system. In addition, the A
tivity Tree
ouldbe \multiplied" { that is, rather than having a single A
tivity Treewhi
h represents that a
tual state of the devi
e, A
tivity Trees whi
hrepresent \possible worlds"
ould be
reated in order to fa
ilitate dis-
ussions about di�erent possibilities for how to pursue a parti
ulargoal. On
e a \possible world" is de
ided upon, the a
tivity tree rep-resenting that world
ould be atta
hed as a subtree of the one whi
hrepresents the \a
tual" world.In the meantime, devi
es with su
h
apabilities
an still be inter-fa
ed to the existing system. At the level where su
h de
isions shouldbe made, re
ipes should simply be de
lared as atomi
 and be sentdire
tly to the devi
e for planning. At this point, the devi
e has thefreedom to
hoose whatever set of a
tions it wishes to take. If su
ha
tions will be relevant to the dialogue, then the devi
e is free to rep-resent these a
tions as a
tivities on the A
tivity Tree, whi
h appearbelow what would otherwise be an atomi
 leaf node.9.3 Natural Language Des
riptions of Re
ipesGiven that the system has re
ipes whi
h des
ribe how to a

omplish
ertain goals, it would be natural to allow it to dis
uss (and evenpossibly modify) these re
ipes using natural language with the humanoperator. Indeed, this goal was one motivation for keeping the re
ipesrelatively simple in nature. There are potentially two di�erent levelsat whi
h a re
ipe might be dis
ussed. In the �rst
ase, the re
ipewould be dis
ussed in purely abstra
t terms, while in the se
ond, itwould be at least partially instantiated.The di�eren
e is most evident in that it would manifest itself inthe answers to the following two di�erent questions we might like toask the system:1. How do/would you patrol? / How does one patrol? / What'sinvolved in patrolling?2. How do/would you patrol between the tower and the s
hool?87

In the �rst
ase, the response should really involve the elements of there
ipe for patrolling. A suitable response might be something
loseto In order to patrol, one must
ontinually
y to one lo
ation, thena se
ond lo
ation. In the se
ond
ase, the situation is mu
h more
on
rete and the answer
ould be suitably more
on
rete. It mighttake the form of In order to patrol between the tower and the s
hool,I would
ontinually
y to the tower then to the s
hool.In the �rst
ase, several
omplexities emerge whi
h must be dealtwith. The �rst is a
tually determining pre
isely whi
h re
ipe the hu-man operator wants to talk about. As a �rst go, we might assumethat we would simply do a reverse lookup a

ording to the NL map-ping of re
ipes in the library; that is, we would simply sear
h for there
ipe whose NL mapping mat
hes the verb being asked about. Su
ha reverse lookup runs into the immediate problem that there maya
tually be several re
ipes whi
h map to the same verb (sin
e thisphenomenon is, in fa
t, the very reason that the NL mapping systemwas
reated { please see se
tion 5.2.1). In this
ase, a question likeHow would you patrol? may involve several possible answers (in theWITAS system), sin
e the verb of patrol a
tually maps on to multi-ple
on
epts.12 If su
h multiple mat
hes were found, then the systemwould have to either de
ide all of them, use some sort of probabilisti
means or weighting s
hema to de
ide whi
h one to say, or initiate a
lari�
ation subdialogue to try to determine whi
h one, spe
i�
ally,the human operator is interested in.On
e the relevant re
ipe has been isolated, its re
ipe body mustthen be des
ribed (and perhaps, its goals, pre
onditions,
onstraints,and so on if so desired). In order to do this, an algorithm would have tobe designed whi
h
ould examine the re
ipe body s
ript and produ
ereasonable natural language to des
ribe it. Some of this would involvenatural language
onstru
ts to des
ribe loops { as the use of \
ontin-uously" above illustrates. The main diÆ
ulty whi
h would emerge,I believe, is when dealing with the question of how to best des
ribethe uninstantiated re
ipes using natural language. Perhaps the most12These
on
epts are the following:� patrolling among multiple lo
ations� patrolling at a parti
ular lo
ation� patrolling among various lo
ations while looking for a spe
i�
 obje
t� patrolling at a parti
ular lo
ation while looking for a spe
i�
 obje
t88

straightforward solution would be to asso
iate some sort of phrase withea
h slot type (or perhaps at a �ner grain, with ea
h slot de�nitionor even ea
h slot de
laration within ea
h re
ipe) whi
h
ould be usedto des
ribe it abstra
tly. For instan
e, imagine that asso
iated withthe type Lo
ation in the WITAS system was some noun phrase like alo
ation. Then, in order to generate the des
ription of an invo
ation ofa re
ipe like
y, we
ould simply �ll in a lo
ation where we would usu-ally �ll in the NP
orresponding to the obje
t in the toLo
ation slot,yielding something like Fly to a lo
ation. Of
ourse, su
h a systemimmediately shows its limitations when
onfronted with the questionabout patrolling above; su
h simple repla
ement rules would yield ananswer similar to I would
ontinually
y to a lo
ation then
y to alo
ation. Clearly, at some point, a relatively sophisti
ated generationalgorithm would have to be used to avoid su
h obviously bad genera-tion.We see then, that by limiting the
onstru
ts in the re
ipe s
riptinglanguage, we
ould envision a system that
ould des
ribe these re
ipesin abstra
t terms using natural language. While building su
h a gen-eration algorithm would
learly be non-trivial, I have sket
hed herethe major
onsiderations that would have to go into it. The next issue,then, is how to answer questions like the se
ond one: How do/wouldyou patrol between the tower and the s
hool?. In some sense, this isa mu
h more diÆ
ult problem sin
e it involves analyzing the
urrent
ontext. For instan
e, if the heli
opter were
urrently at the tower,then the answer given above wouldn't seem quite
orre
t { indeed, wewould want to say that the heli
opter would �rst
y to the s
hool andthen to the tower, sin
e this is the order in whi
h it would a
tuallydo things, given the
urrent state of the world. In this sense, thisis a mu
h more diÆ
ult problem than then dis
ussing re
ipes in anabstra
t sense. Indeed, in order to give a reasonable answer, we arelikely to a
tually want to try to simulate the devi
e a
tually exe
utingthe a
tivity, given the
urrent state of the world as the start state ofthe simulator. This is the
ase not only be
ause
ertain a
tions might\obviously" be skipped, but also be
ause we want to simulate the ef-fe
ts of the
urrent
onstraint set on how
ertain a
tivities would beperformed.
89

10 Con
lusionsThe work presented in this paper provides eviden
e for the domain-independen
e hypothesis des
ribed in [ABD+01℄, repeated here:\Within the genre of pra
ti
al dialogue, the bulk ofthe
omplexity in the language interpretation and dialoguemanagement is independent of the task being performed."Spe
i�
ally, it des
ribes the implementation of relatively generi
 dialogue-management algorithms whi
h operate over de
laratively spe
i�ed in-formation about a parti
ular intelligent agent/devi
e to yield a
onver-sational system whi
h
an be used by a human operator to
ommandand
ontrol the agent/devi
e, as well as parti
ipate in joint-a
tivitieswith it. Spe
i�
ally, this is done by de�ning an interfa
e whi
h liesbetween the dialogue manager and the agent/devi
e whi
h providesa domain-independent entity for the dialogue manager to work withwhi
h is
apable of modeling how joint-a
tivities work in general. Thisinterfa
e is then spe
ialized to ea
h agent/devi
e by spe
ifying a re
ipelibrary, whi
h de�nes the spe
i�

apabilities of the agent/devi
e.By writing dialogue-management algorithms whi
h operate in termsof stru
tures on the A
tivity Tree and
onstraints in the ConstraintManagement System, the dialogue manager
an be imbued with dia-logue strategies whi
h work in general a
ross a wide range of agents/devi
es.That is, by isolating general aspe
ts of task-oriented dialogue, it is pos-sible to
reate a dialogue system that supports many of the
lasses oftask-oriented dialogues. Many issues that arise in task-oriented dia-logues were dis
ussed in this paper, and algorithms for solving theseissues in the general
ase were presented. Spe
i�
ally, the appropriateway to model the following two issues was dis
ussed:� How to stru
ture, de
ompose, and
on
eptualize joint a
tivities(solution: A
tivity Tree, Re
ipe S
ripts)� How to model
onstraints whi
h people are apt to impose usingnatural language (solution: Constraint Management System)I was the able to show that with these models in hand, relativelygeneri
 algorithms
ould be introdu
ed to fa
ilitate
ommon task-oriented dialogues. In spe
i�
, I
onsidered and proposed solutionsfor the following issues:� Using the
ommonsense knowledge of how a
tivities are de
om-posed to interpret utteran
es in
ontext and produ
e meaningful90

(or de
ide to �lter out no-longer-relevant) utteran
es.� Dialogues for dealing with
on
i
ts over resour
e usage� Algorithms for engaging in the dialogue games whi
h arise when
onstraints
ome into
on
i
t with one another, or with defaults.� Strategies for
onverting
onstraints ba
k and forth between nat-ural language and �rst-order-logi
� Using the stru
ture of the A
tivity Tree to answer questions likeWhy? andWhat are you doing? in order to avoid mode
onfusionby
learly
ommuni
ating the state of the devi
eThe work presented here identi�es many of the
ommon genresof
onversations whi
h are likely to o

ur in the pursuit of
on
retetasks. It proposes strategies for dealing with su
h dialogues a
rossa wide range of tasks and task parti
ipants. I also identify the
ur-rent limitations of the system and determine possible ways by whi
hthese limitations be addressed in the future by building on the
urrentframework.A Adapting the Dialogue Manager toa New DomainIn this se
tion, I will brie
y des
ribe the te
hni
al details involved insupporting a new task-oriented domain for dialogue. In parti
ular, Iwill assume that the goal is to modify the CSLI dialogue mananger towork with a new devi
e or agent. Ideally, all of the work would needonly to be de
larative, in the sense that the dialogue manager's Javaprogram
ode shouldn't have to be modi�ed. As I'll des
ribe here,in pra
ti
e some of the
ode must indeed be modi�ed. The
hangesmade are fairly routine and straightforward, however, and it is mybelief that future work
ould render them de
larative in nature.The steps involved are as follows:� A new re
ipe s
ript for the devi
e needs to be
reated and
om-piled.� The devi
e will need to be interfa
ed to the re
ipe exe
utor mod-ule.� Callba
k methods des
ribing parallel relationships among slotswill need to be de�ned in the dialogue manager.91

� The resolution pro
edures for a
tivities in the dialogue managermay need to be modi�ed slightly to perform domain-spe
i�
 in-feren
es.� The
urrent grammar will need to be adapted or rewritten todeal with the devi
e.� The pro
edures for
onverting between the logi
al forms pro-du
ed by the grammar and the slots de�ned in the re
ipes mayneed to be modi�ed.� Databases whi
h supply knowledge about obje
ts in the worldwill need to be
reated.Of immediate note is that none of these steps involve modifyingthe Constraint Management System or the way in whi
h the A
tivityTree fun
tions. Many of the above steps are fairly trivial, while wewill see that a few require a signi�
ant amount of work.A.1 Creating and Compiling a Re
ipe S
riptThe syntax and layout for the re
ipe s
ripting language has alreadybeen dis
ussed in great detail in se
tions 5 and 6. In this se
tion, I willdes
ribe the te
hni
al details of how to a
tually `
ompile' the s
riptand in
orporate it into the dialogue manager as a whole.Assuming we have an re
ipe s
ript named myDevi
e.ts, the �rststep is to `
ompile' it into the �les needed by the system at runtime.This is done using the CSLI Re
ipeCompiler, using the following
om-mand:: java
sli.re
ipe.CSLI_Re
ipeCompiler myDevi
e.tsNote that Java version 1.3 or above should be used. This willgenerate the following �les and pla
e them in a subdire
tory of the
urrent dire
tory named output:1. CSLI A
tivityProperties.java: de�nes the a
tivity proper-ties2. myDevi
e.rep (this �le name will a
tually depend on what it isspe
i�ed to be
alled in the re
ipe s
ript, see se
tion 5.1.1).3. CSLI TaskMat
her.java: A simple
lass with a hash table to doNL mapping of
ommand names4. domains.e
l: De�nes the domain of ea
h slot92

All of these �les should then be
opied into the following dire
toryof the dialogue manager
ode:CSLI HOME/
sli/agents/dialogueManager/a
tivityModel/This dire
tory should be re
ompiled with the following
ommand:
d CSLI_HOME/
sli/agents/v2/dialogueManager/a
tivityModeljava
 *.javaIn addition, myDevi
e.rep should be
opied to
sli/agents/v2.At this point, the dialogue manager has been \adapted" to dealwith the re
ipes spe
i�
 to this devi
e.A.2 Interfa
ing the Devi
e to the Re
ipe Ex-e
utorThe re
ipe exe
utor reads in the re
ipes, instantiates them into a
-tivities, and exe
utes them as needed. When it en
ounters an atomi
a
tivity, however, it needs to be able to send this a
tivity to the de-vi
e to a
tually be exe
uted. Moreover, as the devi
e exe
utes thea
tivity, it needs to be noti�ed of the
hanges in the state of thea
tivity (for example, is it
urrent, planned, suspended, and soon). This is done through the devi
eInterfa
e module, lo
ated in
sli/agents/v2/devi
eInterfa
e. Here two relevant Java interfa
espe
i�
ations are de�ned: CSLI Devi
e and CSLI Devi
eListener.The �rst, CSLI Devi
e de�nes a set of methods that the devi
emust be able to respond to. In order to interfa
e a devi
e to thedialogue manager, a Java
lass whi
h is
apable of responding to
allsto these methods by sending information to the a
tual devi
e must bede�ned. This may simply be a stub, whi
h relays the
alls to the \real"interfa
e to the devi
e through CORBA, OAA, RMI, or some otherar
hite
ture (this is how the CSLI system interfa
es to the roboti
heli
opter). Alternatively, if the
ontrol regime for the devi
e is builtin Java, then the
ode
ontrolling the devi
e may simply be modi�edto implement this interfa
e (this is how the CSLI system interfa
esto the simulator of the roboti
 heli
opter). The major part of theinterfa
e appears in �gure 5The
omments in the
ode des
ribe ea
h method. The methodsare in support of the following
apabilities:93

Figure 5: The bulk of the CSLI Devi
e Interfa
e/*** defines the interfa
e that the devi
e must adhere to* for the SimTaskTree to interfa
e with it*/publi
 interfa
e CSLI_Devi
e {/*** add a listener to be notified of devi
e events*/publi
 void addListener(CSLI_Devi
eListener listener);/*** exe
ute an atomi
 a
tivity* �param id the id of the a
tivity* �param properties the properties of the a
tivity*/publi
 void exe
uteAtomi
(String id,CSLI_A
tivityProperties properties);/*** test the value of a predi
ate*/publi
 boolean testPredi
ate(String predi
ate,ArrayList arguments);/*** should be equivalent to
an
el(id, true)*/publi
 void
an
el(String id);/***
an
el the a
tivity with the given id* �param id the id of the a
tivity to
an
el* �boolean shouldSetCan
elled should be true* iff the devi
e should now notify the* listeners that the a
tivity has been
an
elled*/publi
 void
an
el(String id, boolean shouldSetCan
elled);publi
 void fillMonitorSlots(CSLI_A
tivityProperties ap);} 94

exe
uteAtomi
 Takes in the name and parameters of an atomi
a
tivity and exe
utes it. A unique identi�er is also passed in sothat the dialogue manager has a means of
ommuni
ating withthe devi
e about this spe
i�
 a
tivity.testPredi
ate In the re
ipe s
ript, it is legal to spe
ify predi
ates asgoals, pre
onditions, and as the
onditions of loops in the re
ipebody; this method is used by the dialogue manager to determineat runtime if these predi
ates should evaluate to true or false.The devi
e must be able to determine if a given predi
ate, witha given set of arguments (represented as String obje
ts), is trueor false when this method is
alled.
an
el Can
el a spe
i�
 a
tivity (and optionally notify the listeners).�llMonitorSlots The monitor slots (see se
tion 5.2.3) must be �lledin at runtime when this method is
alled. In this way, the di-alogue manager
an ask the devi
e to re
e
t about its
urrentstate, on demand.addListener The devi
e needs to be able to support the typi
al Javanotion of having a Listener. Here, ea
h CSLI Devi
eListenerobje
t whi
h it is passed (via the addListener method), mustbe noti�ed whenever the state of the devi
e
hange. This will bedis
ussed immediately below.While the devi
e must be able to respond to the above methods,it must also have a means of notifying the dialogue manager when thestate of an atomi
 a
tivity has
hanged (for example, from plannedto
urrent). In order to do this, whenever the state of an a
tivity
hanges, the devi
e must notify the CSLI Devi
eListener obje
tswhi
h have registered with it via the addListener method. Figure 6shows the bulk of the CSLI Devi
eListener interfa
e. As would beexpe
ted, the interfa
e is
on
erned mainly with
ommuni
ating thestate of a
tivities to the dialogue manager.A.3 Callba
k Methods for E�e
tive Slot LengthsAs was mentioned se
tions 7.4 and 7.4.1, so-
alled parallel slots some-times may be useful. For example toLo
ation, toSpeed, toAltitude inthe WITAS system are de�ned to be parallel slots, sin
e the lo
ationthat the heli
opter
ies to must also always be a

ompanied with aspeed and and altitude at whi
h to
y. In pursuit of supporting these95

Figure 6: The bulk of the CSLI Devi
eListener Interfa
e/*** the devi
e should
all these methods on its listeners*/publi
 interfa
e CSLI_Devi
eListener {/***
alled when a task is
ompleted*/publi
 void taskCompleted(String taskID);/***
alled when a task is planned*/publi
 void taskPlanned(String taskID);/***
alled when a task is
an
elled*/publi
 void taskCan
elled(String taskID);/***
alled when a task be
omes a
urrent task the uav is working* on*/publi
 void taskCurrent(String taskID);/***
alled when a task fails*/publi
 void taskFailed(String taskID);/***
alled when a request to stop tasks on the list* is made* �param taskIDs the ids of the tasks to stop*/publi
 void stopTasks(java.util.ArrayList taskIDs);/***
alled when a request to stop all tasks* has been made*/publi
 void stopAllTasks();/*** �param value if it is true, the the re
ipe exe
utor* should be planning and exe
uting re
ipes*/publi
 void setShouldPlan(boolean value);}
96

parallel notions, the following
allba
k methods must be de�ned bythe dialogue manager for a spe
i�
 devi
e:int getSlotMinLengthForDefault(String slotName,CSLI_A
tivityProperties ap)int getSlotMaxLengthForConstraint(String slotName,CSLI_A
tivityProperties ap)Note that ea
h method takes a slotName and a CSLI A
tivityPropertiesobje
t. The �rst parameter spe
i�es the name of the slot in question,and the se
ond is essentially a list of all the slots paired with theirvalue lists. So, for example, if slotName were the String toSpeed andin ap the slot toLo
ation had 2 values �lled in, then both methodswould return the value 2.The dialogue manager provides default behavior for ea
h of thesemethods in the CSLI A
tivityBase
lass in the following pa
kage:
sli.agents.v2.dialogueManager.a
tivityModel.But it should be overridden in the
ase of parallel slots in the sub-
lass, CSLI Task whi
h is used by the dialogue manager.A.4 Resolution Pro
edures for A
tivitiesThe dialogue manager needs to know when a parti
ular partially spe
-i�ed a
tivity should be set to the state resolved (and hen
e thensubje
ted to the algorithms whi
h attempt to use
onstraints and de-faults to fully instantiate it). In general, this means that all of therequired de�nable slots in the a
tivity must have a value (indeed, ea
hrequired de�nable slot must at least
ontain a list of values equal inlength to its de
lared minimum length). Usually these values
omedire
tly from user utteran
es, however sometimes they
an be �lled inthrough inferen
es. For example, in the WITAS system, if the heli-
opter is told to deliver medi
al supplies, it needs to know where themedi
al supplies are in order to pi
k them up. If there is only one setof medi
al supplies, and it is known to be at Spring�eld Hospital, thenthe system should infer that it should
y to the Spring�eld Hospitalto pi
k them up, without having to ask for this required de�nable slotto be �lled in by the user. This sort of inferen
e, in general, is do-main spe
i�
. As su
h, in the CSLI TaskHelper, a
allba
k method is97

de�ned
alled tryResolving whi
h takes a partially spe
i�ed a
tivityand tries to make inferen
es to �ll in its un�lled slot values. If thenew devi
e requires any su
h inferen
es, then this method should berede�ned in CSLI TaskHelper and the dialogue manager should bere
ompiled.A.5 Modifying the Grammar and the Conver-sion RoutinesThis topi
 has already been
overed in se
tion 9.1. SuÆ
e it to saythat the grammar must be adapted to a new domain. It would bedesirable if the there were a domain-independent grammar that
ouldbe spe
ialized for ea
h new devi
e, but this has yet to be developed.A.6 Creating New DatabasesCurrently, the CSLI Dialogue manager
urrently requires two databasesto represent real obje
ts in the world. They are written using Knowl-edge Inter
hange Format, and are sear
hed using Stanford's Java The-orem Prover [jtp℄. Logi
al axioms are used to de�ne hierar
hi
al \isa"relations (for example, the base is a building whi
h is a geographi
alobje
t). The �rst database de�nes the stati
 obje
ts in the world,while the se
ond is used to de�ne the dynami
 obje
ts. In the WITASsystem, this is a distin
tion between things that appear on maps { likeroads and buildings { and things that the heli
opter sees and reportsin real time { like
ars and tru
ks. Noun phrases are then resolvedand bound to spe
i�
 obje
ts that appear in these databases when thedialogue manager seeks to determine what a given noun phrase refersto. A new system may use the existing stru
ture of this database, butneeds to de�ne a new set of stati
 obje
ts whi
h are salient to thedevi
e. For instan
e, a robot for the home might need to know aboutthe various rooms in the house.B An Example Re
ipe S
riptThe following is the re
ipe s
ript used in the WITAS system for in-terfa
ing a roboti
 heli
opter to the dialogue system.devi
e pa
kage
sli.agents.v2.simulator;98

dialogue pa
kage
sli.agents.v2.dialogueManager.a
tivityModel;//dialogue pa
kage
sli.re
ipe; //temp for testingrepfile "witas.rep";//sets valid atoms for slot valuesTypes{ Lo
ation :: ["t1", "s1", "b4", "b6", "b7", "b8", "b9", "b10","ts1", "b2", "b3", "b5", "b11", "h3", "h4","h2", "h5", "h7", "r1", "r2", "r3", "r4","r5", "r6", "r7", "r8", "r9", "r10", "r11","r12", "r13", "r14", "r15", "r16", "r17","r18", "r19", "r20", "r21", "w1", "w2", "w3","f1", "m1", "h6", "p1", "rr1","waypoint1", "waypoint2", "waypoint3","waypoint4", "waypoint5", "waypoint6","waypoint7", "waypoint8", "waypoint9","waypoint10"℄;Speed :: ["high", "medium", "low", "zero"℄;Altitude :: ["high", "medium", "low", "zero"℄;Obje
t :: [℄; //[℄ means it's not involved in
onstraintsMoveableObje
t :: [℄;}DefinableSlots{ Lo
ation toLo
ation:1-3;Lo
ation fromLo
ation:1-3 = "null";MoveableObje
t
arryObje
t:1;Speed toSpeed:1-3 = "medium";Altitude toAltitude:1-3 = "medium";Speed fromSpeed:1-3 = "medium";Altitude fromAltitude:1-3 = "medium";Obje
t sear
hItem:1;Obje
t followItem:1;99

}MonitorSlots {Lo
ation
urLo
ation:1;Speed
urSpeed:1;Altitude
urAltitude:1;Obje
t grippedObje
t:1;//heli
opter
an only see a single item at a timeObje
t noti
edItem:1;}Resour
es {uav;gripper;
amera;}abstra
t taskdef<move,"move">{ DefinableSlots {required toLo
ation;optional fromLo
ation;optional toSpeed;}MonitorSlots {
urLo
ation;
urSpeed;}Resour
es {uav;}Banned {toSpeed == "zero";100

}}taskdef<go,"go"> extends move{ DefinableSlots {optional toAltitude;}MonitorSlots {
urAltitude;}Banned {toAltitude == "zero";}NLSlots {default: toLo
ation;
urrent: toLo
ation, toAltitude, toSpeed;}Body { intend take_off(toAltitude = THIS.toAltitude);forea
h toLo
ation t, toAltitude a, toSpeed s {intend fly_atom(toLo
ation = t,toAltitude=a, toSpeed=s);}}}taskdef<fly_atom,"go"> extends move{ DefinableSlots {optional toAltitude;}MonitorSlots {
urAltitude;} 101

PreConditions {
urAltitude[0℄ != "zero";}Goals {
urLo
ation[0℄ == toLo
ation[0℄;}NLSlots {default: toLo
ation;
urrent: toLo
ation, toSpeed, toAltitude;}}taskdef<take_off,"take_off">{ DefinableSlots {optional toAltitude;}MonitorSlots {
urAltitude;}Resour
es {uav;}Goals {
urAltitude[0℄ != "zero";}NLSlots {default: ;}}
102

taskdef<land,"land">{ DefinableSlots {required toLo
ation;}MonitorSlots {
urLo
ation;}Resour
es {uav;}Goals {
urLo
ation[0℄ == toLo
ation[0℄;
urAltitude[0℄ == "zero";}NLSlots {default: toLo
ation;}Body { intend go(toLo
ation = THIS.toLo
ation);intend land_atom();}}taskdef<land_atom,"land">{ DefinableSlots { }MonitorSlots {
urAltitude;}Resour
es {uav; 103

}PreConditions {
urAltitude[0℄ != "zero";}Goals {
urAltitude[0℄ == "zero";}NLSlots {default: ;}}taskdef<patrol_between_sear
h,"patrol">{ DefinableSlots {required toLo
ation;required sear
hItem;optional toAltitude;optional toSpeed;}MonitorSlots {
urLo
ation;
urAltitude;
urSpeed;}Resour
esuav;}PreConditions} 104

Goals refers_to(sear
hItem[0℄, noti
edItem[0℄);}NLSlots default: sear
hItem;
urrent: sear
hItem, toLo
ation, toAltitude, toSpeed;}Body intend patrol_between(toLo
ation = THIS.toLo
ation,toAltitude=THIS.toAltitude,toSpeed = THIS.toSpeed) noblo
k;intend find(sear
hItem = THIS.sear
hItem);}}taskdef<find,"find"> {DefinableSlotsrequired sear
hItem;}MonitorSlotsnoti
edItem;}PreConditions}Goals noti
edItem[0℄ == sear
hItem[0℄;105

}NLSlots default: sear
hItem;}Body{ do {intend lo
ate(sear
hItem = THIS.sear
hItem);intend tra
k(followItem = THIS.noti
edItem) t noblo
k;intend identify(sear
hItem = THIS.sear
hItem);stop t;} while(not_refers_to(sear
hItem, noti
edItem));intend follow(followItem = THIS.noti
edItem);}}taskdef<lo
ate,"find"> {DefinableSlots {required sear
hItem;}MonitorSlotsnoti
edItem;}NLSlots default: sear
hItem;}} 106

taskdef<tra
k,"tra
k"> {DefinableSlots {required followItem;}MonitorSlotsnoti
edItem;}Resour
esuav;}PreConditions}Goals}NLSlots default: followItem;}}taskdef<follow,"follow"> {DefinableSlots {required followItem;} 107

MonitorSlotsnoti
edItem;}Resour
esuav;}PreConditions}Goals}NLSlots default: followItem;}}//should spawn a dialogue a
t: "Is noti
edItem == item"taskdef<identify,"identify"> USER {DefinableSlots {required sear
hItem;}MonitorSlotsnoti
edItem;} 108

PreConditionsnoti
edItem[0℄ != null;}Goals{ }NLSlots default: sear
hItem;}}taskdef<patrol_between,"patrol"> {DefinableSlots {required toLo
ation;optional toAltitude;optional toSpeed;}MonitorSlots {
urLo
ation;
urAltitude;
urSpeed;}Resour
es {uav;}NLSlots default: toLo
ation;
urrent: toAltitude, toSpeed;}Body 109

{ repeat {forea
h toLo
ation p, toAltitude a, toSpeed s {intend go(toLo
ation = p,toAltitude=a, toSpeed=s);}}}}taskdef<patrol,"patrol"> {DefinableSlots {required toLo
ation;optional toAltitude;optional toSpeed;}MonitorSlots {
urLo
ation;
urAltitude;
urSpeed;}Resour
es {uav;}NLSlots {default: toLo
ation;
urrent: toLo
ation, toSpeed, toAltitude;}Body{ intend go(toLo
ation = THIS.toLo
ation,toAltitude=THIS.toAltitude,toSpeed=THIS.toSpeed);intend patrol_atom(toLo
ation = THIS.toLo
ation,toAltitude=THIS.toAltitude,toSpeed=THIS.toSpeed);110

}}taskdef<patrol_atom,"patrol"> {DefinableSlots {required toLo
ation;optional toAltitude;optional toSpeed;}MonitorSlots {
urLo
ation;
urAltitude;
urSpeed;}Resour
es {uav;}NLSlots {default: toLo
ation;
urrent: toLo
ation, toAltitude, toSpeed;}}taskdef<patrol_sear
h,"patrol"> {DefinableSlots {required toLo
ation;required sear
hItem;optional toAltitude;optional toSpeed;}MonitorSlots {
urLo
ation;111

urAltitude;
urSpeed;noti
edItem;}Resour
es {uav;}NLSlots {default: toLo
ation, sear
hItem;
urrent: toLo
ation, sear
hItem, toAltitude, toSpeed;
onfli
ts: sear
hItem;}Body{ intend patrol(toLo
ation = THIS.toLo
ation,toAltitude=THIS.toAltitude,toSpeed = THIS.toSpeed) noblo
k;intend find(sear
hItem = THIS.sear
hItem);}}taskdef<pi
k_up_obje
t,"pi
k_up"> {DefinableSlots {required
arryObje
t;}MonitorSlots {grippedObje
t;}Resour
es {gripper;} 112

PreConditions {grippedObje
t[0℄ == null;}Goals { sameid(grippedObje
t[0℄,
arryObje
t[0℄);}NLSlots {default:
arryObje
t;}}taskdef<pi
k_up,"pi
k_up"> extends go{ DefinableSlots {required
arryObje
t;}MonitorSlots {grippedObje
t;}Resour
es {gripper;}PreConditions {grippedObje
t[0℄ == null;}Goals { sameid(grippedObje
t[0℄,
arryObje
t[0℄);}NLSlots { 113

default:
arryObje
t, toLo
ation;
onfli
ts:
arryObje
t;}Body{ intend go(toLo
ation = THIS.toLo
ation);intend pi
k_up_obje
t(
arryObje
t = THIS.
arryObje
t);}}taskdef<drop_obje
t,"drop"> {DefinableSlots {required
arryObje
t;}MonitorSlots {grippedObje
t;}Resour
es {gripper;}PreConditions {sameid(grippedObje
t[0℄,
arryObje
t[0℄);}Goals { grippedObje
t[0℄ == null;}Banned {toAltitude == "medium";toAltitude == "high";} 114

NLSlots {default:
arryObje
t;}
}taskdef<deliver,"deliver"> extends go {DefinableSlots {required
arryObje
t;}MonitorSlots {grippedObje
t;}Resour
es {gripper;}PreConditions {sameid(grippedObje
t[0℄,
arryObje
t[0℄);}Goals { grippedObje
t[0℄ == null;at(
arryObje
t[0℄, toLo
ation[0℄);}Banned {toAltitude == "medium";toAltitude == "high";}NLSlots { 115

default:
arryObje
t, toLo
ation;
urrent:
arryObje
t, toLo
ation, toSpeed, toAltitude;}Body{ intend go(toLo
ation = THIS.toLo
ation,toAltitude = THIS.toAltitude,toSpeed=THIS.toSpeed);intend drop_obje
t(
arryObje
t = THIS.
arryObje
t);}}taskdef<transport,"transport"> extends pi
k_up{ //toSlots and
arrayObje
t are from pi
k_upDefinableSlots {required fromLo
ation;optional fromSpeed;optional fromAltitude;}MonitorSlots { }Resour
es {gripper;}Goals { at(
arryObje
t[0℄, toLo
ation[0℄);}Banned {toAltitude == "medium";toAltitude == "high";}NLSlots { 116

default:
arryObje
t, toLo
ation;
urrent: fromLo
ation, toLo
ation,
arryObje
t,toSpeed, toAltitude;}Body{ forea
h fromLo
ation f, fromSpeed s, fromAltitude a {intend pi
k_up(toLo
ation = f,fromSpeed = s,fromAltitude = a,
arryObje
t = THIS.
arryObje
t);}forea
h toLo
ation t, toSpeed s, toAltitude a {intend deliver(toLo
ation = t, toSpeed = s,toAltitude = a,
arryObje
t = THIS.
arryObje
t);}}}taskdef<fight_fire,"fight_fire"> extends transport{ //all from superDefinableSlots { }/all from superMonitorSlots { }Resour
es {uav;gripper;}Banned {toAltitude == "medium";toAltitude == "high";} 117

NLSlots {default: toLo
ation;}Body{ do {intend transport(fromLo
ation = THIS.fromLo
ation,toLo
ation = THIS.toLo
ation,
arryObje
t = THIS.
arryObje
t,toSpeed = THIS.toSpeed,toAltitude = THIS.toAltitude,fromSpeed = THIS.fromSpeed,fromAltitude = THIS.fromAltitude);} while(still_fire(toLo
ation));}}

118

Referen
es[ABD+01℄ James F. Allen, Donna K. Byron, Myroslava Dzikovska,George Ferguson, Lu
ian Gales
u, and Amanda Stent.Toward
onversational human-
omputer intera
tion. AIMagazine, 22(4):27{37, 2001.[ACD+02℄ Abderrahammane Aggoun, David Chan, Pierre Dufresene,Eamon Falvey, Hugh Grant, Warwi
k Harvey, AlexanderHerold, Geo�rey Ma
artney, Mi
ha Meier, David Miller,Shyam Mudambi, Stefano Novello, Bruno Perez, Em-manuel van Rossum, Joa
him S
himpf, Kish Shen, Perik-lis Andreas Tsahageas, and Dominique Henry de Vil-leneuve. ECLiPSe user manual release. Te
hni
al re-port, International Computer Limited and Imperial Col-lege London, May 2002.[a
t℄ History of mobile robots,http://www.a
tivrobots.
om/history/, 2002.[ASF+95℄ James F. Allen, Lenhart K. S
hubert, George Ferguson,Peter Heeman, Chung Hee Hwang, Tsuneaki Kato, Mar
Light, Nathaniel G. Martin, Bradford W. Miller, MassimoPoesio, and David R. Traum. The TRAINS proje
t: A
ase study in building a
onversational planning agent.Journal of Experimental and Theoreti
al AI, 7:7{48, 1995.[BL01℄ Edward Ba
helder and Nan
y Leveson. Des
ribing andprobing
omplex system behavior: A graphi
al approa
h.In Pro
eedings of the Aviation Safety Conferen
e, Sept2001.[Bla01℄ Nate Blaylo
k. Retroa
tive re
ognition of interleaved plansfor natural language dialogue. Te
hni
al report, Depart-ment of Computer S
ien
e, University of Ro
hester, De-
ember 2001.[Bra90℄ Mi
hael E. Bratman. What Is Intention,
hapter 2, pages15{31. In Cohen et al. [CMP90℄, 1990.[Cla96℄ Herbert H. Clark. Using Language. Cambridge UniversityPress, 1996.[CMP90℄ Philip R. Cohen, Jerry Morgan, and Martha E. Polla
k,editors. Intentions in Communi
ation. MIT Press, Cam-bridge, MA, 1990. 119

[DGA+93℄ John Dowding, Jean Mark Gawron, Doug Appelt, JohnBear, Lynn Cherny anR. obert Moore, and Douglas Moran.GEMINI: a natural language system for spoken-languageunderstanding. In Pro
eedings of the 31st Annual Meetingof the Asso
iation for Computational Linguisti
s, 1993.[DGK+00℄ Patri
k Doherty, G�osta Granlund, Krzystof Ku
h
inski,Erik Sandewall, Klas Nordberg, Erik Skarman, and JohanWiklund. The WITAS unmanned aerial vehi
le proje
t.In European Conferen
e on Arti�
ial Intelligen
e (ECAI2000), 2000.[GK96℄ Barbara J. Grosz and Sarit Kraus. Collaborative plans for
omplex group a
tion. Arti�
ial Intelligen
e, 86(2):269{357, 1996.[GK98℄ B. Grosz and S. Kraus. The evolution of SharedPlans,1998.[GS90℄ Barbara J. Grosz and Canda
e L. Sidner. Plans forDis
ourse,
hapter 20, pages 417{444. In Cohen et al.[CMP90℄, 1990.[hon℄ Honda robot, http://world.honda.
om/robot/, 2002.[jtp℄ Jtp: An obje
t-oriented modular reasoning systemhttp://ksl.stanford.edu/software/jtp/, 2002.[KBM98℄ David Kortenkamp, R Bonasso, and R Murphy, editors.AI-Based Mobile Robots: Case Studies of Su

essful RobotSystems. MIT Press, 1998.[Kon97℄ Kurt Konolige. COLBERT: A language for rea
tive
on-trol in sapphira. In KI - Kunstli
he Intelligenz, pages 31{52, 1997.[LA90℄ Diane J. Litman and James F. Allen. Dis
ourse Pro
essingand Commonsense Plans,
hapter 17, pages 365{388. InCohen et al. [CMP90℄, 1990.[LBPA02℄ Markus Lo
kelt, Tilman Be
ker, Norbert P
eger, and JanAlexandersson. Making sense of partial. In Pro
eedingsof the sixth workshop on the semanti
s and pragmati
s ofdialogue (EDILOG 2002), pages 101{107, september 2002.[Lev00℄ Nan
y Leveson. Intent spe
i�
ations: An approa
h tobuilding human-
entered spe
i�
ations. IEEE Trans. onSoftware Engineering, January 2000.120

[LGP02℄ Oliver Lemon, Alexander Gruenstein, and Stanley Peters.Collaborative a
tivities and multi-tasking in dialogue sys-tems. Traitment automatique des langues, 43(2):131{154,2002. Spe
ial issue on dialogue.[Lo
94℄ Karen E. Lo
hbaum. Using Collaborative Plans to Modelthe Intentional Stru
ture of Dis
ourse. PhD thesis, Har-vard University, Cambridge, MA, 1994.[LRGB01℄ Ian Lewin, Manny Rayner, Genevieve Gorrell, and JohanBoye. Plug and play spee
h understanding. In Pro
eeed-ings of se
ond SIGdial workshop on dis
ourse and dialogue,2001.[Mye96℄ Karen L. Myers. A pro
edural knowledge approa
h totask-level
ontrol. In B. Drabble, editor, Pro
eedings ofthe 3rd International Conferen
e on Arti�
ial Intelligen
ePlanning Systems (AIPS-96), pages 158{165. AAAI Press,1996.[NSSS02℄ Stefano Novello, Joa
him S
himpf, Kish Shen, and JoshSinger. ECLiPSe embedding and interfa
ing manual.Te
hni
al report, IC-Par
 and Par
 Te
hnologies Limited,May 2002.[Par00℄ Teren
e Parr. ANTLR Referen
e Manual. jGuru.
om,O
tober 2000.[Pol90℄ Martha E. Polla
k. Plans as Complex Mental Attitudes,
hapter 5, pages 77{103. In Cohen et al. [CMP90℄, 1990.[RHJ00℄ Manny Rayner, Beth Ann Ho
key, and Frankie James. A
ompa
t ar
hite
ture for dialogue management based ons
ripts and meta-outputs. In Pro
eedings of Applied Nat-ural Language Pro
essing (ANLP), 2000.[RLR+02℄ Je� Ri
kel, Neal Lesh, Charles Ri
h, Canda
e L. Sidner,and Abigail Gertner. Collaborative dis
ourse theory as afoundation for tutorial dialogue. In Springer-Verlag, edi-tor, Pro
eedings of Sixth International Conferen
e on In-telligent Tutorial Systems, pages 542 { 551, june 2002.[RSL01℄ Charles Ri
h, Canda
e L. Sidner, and Neal Lesh. COLLA-GEN: Applying
ollaborative dis
ourse theory to human-
omputer intera
tion. AI Magazine, Spe
ial Issue on In-telligent User Interfa
es, 2001.121

[SdOB99℄ Janienke Sturm, Els dens Os, and Lou Boves. Dialoguemanagement in the Dut
h ARISE train timetable infor-mation system. In Pro
eedings of the 5th international
onferen
e on spee
h
ommuni
ation and te
hnology (EU-ROSPEECH), 1999.[SKR95℄ Alessandro SaÆotti, Kurt Konolige, and Enrique H. Rus-pini. A multivalued-logi
 approa
h to integrating planningand
ontrol. Arti�
ial Intelligen
e, 76(1-2):481{526, 1995.[SP00℄ S. Sene� and J. Polifroni. Dialogue management inthe mer
ury
ight reservation system. In Pro
eedingsANLP/NAACL 2000 Workshop on Conversational Sys-tems, 2000.[Ste01℄ Amanda J. Stent. Dialogue Systems as ConversationalPartners: Applying
onversation a
ts theory to naturallanguage generation for task-oriented mixed-initiative spo-ken dialogue. PhD thesis, University of Ro
hester, August2001.[TA94℄ David Traum and James Allen. Towards a formal theory ofrepair in plan exe
ution and plan re
ognition. Pro
edingsof UK planning and s
heduling spe
ial interest group, 1994.[WNS97℄ Mark Walla
e, Stefano Novello, and Joa
him S
himpf.ECLiPSe: A platform for
onstraint logi
 programming.Te
hni
al report, IC-Par
, Imperial College, London, 1997.

122

