
Australian Government
Department of Defence

Defence Science and
Technology Organisation

Processable English:
The Theory Behind the PENG System

Kerry Trentelman

Command, Control, Communications and Intelligence Division
Defence Science and Technology Organisation

DSTO-TR-2301

ABSTRACT

This report describes the theoretical underpinnings of the PENG system. Designed by Rolf
Schwitter, Marc Tilbrook, et al. at the Centre for Language Technology at Macquarie University,
the system incorporates a text editor where authors write text in a controlled language called
PENG. A controlled language processor translates PENG text to first-order logic via a discourse
representation structure. The resultant logical theory can then be checked for consistency and
informativity, and may also be used for question-answering by third-party reasoning services.

RELEASE LIMITATION

Approved for public release

Published by

Command, Control, Communications and Intelligence Division
DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh South Australia 5111 Australia

Telephone: (08) 82595555
Fax: (08) 8259 6567

© Commonwealth of Australia 2009
AR-014-554
June 2009

APPROVED FOR PUBLIC RELEASE

Processable English:
The Theory Behind the PENG System

Executive Summary

This report describes the theoretical underpinnings of the PENG system. Designed by Rolf
Schwitter, Marc Tilbrook, et al. at the Centre for Language Technology at Macquarie
University, the system incorporates a text editor where authors write text in a controlled
language called PENG. Authors of PENG text do not need to remember the restrictions
placed on the language, since the PENG text editor guides the writing process. It does this
by indicating the possible sentence constructs allowable from the current input. A
controlled language processor translates PENG text to a logical theory which can then be
checked for consistency and informativity, and may also be used for question-answering
by third-party reasoning services. Although PENG is still a prototype, and has a number
of issues, the system shows potential as a useful tool.

Authors

Kerry Trentelman
Command,Control,Communications Intelligence Div

Kerry received a PhD in computer science from the Australian
National University in 2006. Her thesis topic was the formal
verification of Java programs. She joined the Intelligence Analysis
Group at the DSTO in 2007 and now works in the area of
information fusion. Her research interests include natural language
processing, logics for knowledge representation and program
specification, and theorem proving and automated reasoning.

Contents

1. INTRODUCTION ... 1
1.1 Glossary .. 3

2. TEXT EDITING ... 4
2.1 The PENG Lexicon .. 4
2.2 ECOLE ... 5

3. LANGUAGE PROCESSING .. 8
3.1 Context-Free Grammars ... 8
3.2 Chart Parsing Basics ... 11

3.2.1 The Fundamental Rule ... 13
3.2.2 A General Algorithm .. 14
3.2.3 The Top-Down Strategy ... 15
3.2.4 The Bottom-Up Strategy ... 20

3.3 Unification-Based Grammars ... 21
3.3.1 Chart Parsing with Unification-Based Grammars 27

3.4 Logic Grammars .. 29
3.4.1 Prolog Basics .. 29
3.4.2 Definite Clause Grammars ... 32
3.4.3 Gap Threading in Definite Clause Grammars 34

3.5 The PENG Grammar .. 37
3.5.1 Grammar Rule Examples ... 37
3.5.2 Incremental Chart Parsing in PENG ... 39

3.6 Discourse Representation .. 42
3.6.1 Discourse Representation and First-Order Logic 46
3.6.2 DRS Construction in PENG ... 51

3.7 Nonfirstorderisable Sentences ... 55

4. REASONING ... 57
4.1 Inference Procedures for First-Order Logic ... 57

4.1.1 The Tableau Proof Method ... 58
4.1.2 The Resolution Proof Method .. 60
4.1.3 Model Building vs. Theorem Proving ... 63

4.2 Reasoning in PENG .. 65
4.2.1 Otter ... 65
4.2.2 Mace4 .. 66
4.2.3 Satchmo ... 67

5. CONCLUSION .. 70

6. REFERENCES .. 70

APPENDIX A: SENTENCE STRUCTURE .. 75

DSTO-TR-2301

1. Introduction

Today's intelligence analysts are finding themselves overloaded with information. Valuable
information - sometimes implicit - is often buried amongst masses of irrelevant data.
Heralding from unstructured sources such as natural language documents, email, audio,
images and video, this information must be extracted, cross-checked for accuracy, analysed
for significance, and disseminated appropriately. As part of the DSTO's C3ID Intelligence
Analysis Discipline, we believe that automating aspects of this process offers a practical
solution to the problem of information overload. We propose an intelligence information
processing architecture which includes speech processing, language translation, information
extraction, data-mining and estimative intelligence components, as well as a sixth 'information
fusion' component. It is our intention that this component automatically fuses - albeit in an
intelligent way - information derived from the extraction process with data from a structured
knowledge base. This process will involve resolving, aggregating, integrating and abstracting
information - using the methodologies of Knowledge Representation and Reasoning - into a
single comprehensive description of an individual or event. From such fused information we
hope to obtain improved estimation and prediction, data-mining, social network analysis, and
semantic search and visualisation.

This report describes the theoretical underpinnings of an alternative approach to text
processing. Of particular interest to the information fusion team, this approach completely
bypasses the need for information extraction and heavily lends itself to the fusion process. The
PENG system - designed by Rolf Schwitter with Marc Tilbrook, et al. at the Centre for
Language Technology at Macquarie University - incorporates a text editor where authors
write text in a controlled language called 'PENG'. PENG - the name derived from 'Processable
ENGlish' - consists of a strict subset of English. Authors of PENG text do not need to
remember the restrictions placed on the language, since the PENG text editor guides the
writing process. It does this by indicating the possible sentence constructs allowable from the
current input. A controlled language processor translates PENG text to first-order logic via a
discourse representation structure. The resultant logical theory can then be checked for
consistency and informativity, and may also be used for question-answering by the third
party reasoning services: the theorem prover Otter and the model builders Mace4 and
Satchmo.

The PENG system is based on a client-server architecture and consists of four main
components: the text editor, a controlled language processor, a server and the reasoning
services (Schwitter 2004b). The text editor communicates with the controlled language
processor via a socket interface. The processor is running as a client and is connected via the
server with the reasoning services that are running separate client processes. The server
implements a blackboard upon which the processor writes a specification text or 'theory'. The
theorem prover searches for a proof for the theory and the model builder looks for a counter
model.

1

DSTO-TR-2301

Theorem Prover

Text Editor CL Processor Reasoning Services

Model Builder

t ••• :

Figure 1: PENG architecture

As part of the Intelligence Analysis Discipline, the approach we intend to take - as described
by our information processing architecture - involves extracting information from natural
language documents and then formally representing this information using a knowledge
representation language. One disadvantage is the loss of (possibly valuable) information
brought about by the extraction process. Another is that the formal languages used by the
Knowledge Representation and Reasoning community are often difficult for non-specialists to
learn and use. In (Schwitter 2004b) it is claimed that these disadvantages can be overcome by
machine-processable controlled natural languages which combine the advantages of both
formal and natural languages. We believe that this claim is worth investigating. Although
PENG is very much a prototype, it still shows potential. If a number of issues can be
overcome, we believe the system could make a useful tool.

This report is structured as follows: in Section 2 we describe the controlled language and the
PENG text editor, focussing on the editor's paraphrase and look-ahead features. In Section 3
we look at the language processing aspects of PENG. We describe its grammar, its chart
parsing technique, its method of discourse representation and the subsequent translation of
this representation into first-order logic. In order to make the document self-contained, we
have included a large amount of background material in Section 3. We examine a number of
grammar formalisms, describe various chart parsing strategies and provide a brief
introduction to discourse representation theory and first-order logic. In Section 4 we look at
PENG's reasoning services and discuss the particular proof methods these services
implement. In Section 5 we draw conclusions.

We make two short remarks before we begin. Firstly, the PENG system is available for use
online, requiring a login and password (Schwitter 2007c). Secondly, the author has taken some
liberties regarding the 'Dreadsbury Mansion Mystery', a logic puzzle designed to test
automated theorem provers (Pelletier 1986). PENG's approach to solving the original puzzle is
described in (Schwitter and Ljungberg 2002; Schwitter, Ljungberg et al. 2003).

2

1.1 Glossary

Anaphora

Assignment Function

Context-Free Grammar

Chart Parser

Definite Clause Grammar
(DCG) Notation

Discourse Representation
Structure (DRS)

Feature Structure

Formula

Gap Threading

Generative Grammar

Grammar Recogniser

Interpretation

Interpretation Function

Model

Model Domain

Model Builder

Parser

DSTO-TR-2301

An instance of one expression referring back to another.

A function which maps variables to a given model domain. An assignment function
can be thought to assign context.

A generative grammar such that the left-hand side of each rule consists of a single
non-terminal symbol.

A parser which avoids any repetition of work by storing information about
previously analysed substrings in the form of a chart.

A mechanism for implementing context free and unification-based grammars in the
logic programming language Prolog.

A framework for representing contextual dependence within discourse.

A set of attribute-value pairs where the values themselves may be feature
structures.

A type of description which is built in a well-defined way using: elements from a
vocabulary; a (possibly infinite) set of variables; various connectives, punctuation
marks and other symbols; and sometimes quantifiers.

A technique used by context free and unification-based grammars which rules out
grammatically incorrect relative clauses.

A set of rules which describe how the strings of a particular language can be
generated.

A program which checks whether a given string is grammatically correct but -
unlike a parser - does not provide any information regarding the string's syntactic
structure.

An interpretation of a vocabulary element is the semantic value in the model
domain assigned to it by the interpretation function. An interpretation of a variable
is the value in the model domain assigned to it by the assignment function.

A model's interpretation function maps each symbol in a given vocabulary to a
semantic value in the model domain.

A situation defined by a pair specifying a non-empty domain and interpretation
function. There can be multiple models for a given vocabulary with differing
domains and interpretation functions.

Any set of real or imaginary things which are of interest, e.g. individuals, places, or
objects.

A program which accepts a formula as input and attempts to build a finite model
that satisfies it.

A program which analyses the syntactic structure of a given string in order to
determine whether the string is grammatically correct.

3

DSTO-TR-2301

Satisfiability

Theorem Prover

Unification

Unification-Based
Grammar
Valid Formula

Vocabulary

Given a model of a particular vocabulary and an assignment function which maps
variables to elements of the model domain, a formula (over the same vocabulary) is
said to be satisfied in the model if a formula-specific configuration of the interpreted
formula elements corresponds with the model itself.

A program which determines whether a given formula is valid.

An operation which takes two feature structures as input and returns - if the
structures are compatible - a merged structure.

A context-free grammar augmented with feature structures.

Given the set of all possible models for a particular vocabulary, a formula (over that
same vocabulary) is said to be valid if it is satisfied in every model of the set given
any assignment function.

A set of predicate, function and constant symbols.

2. Text Editing

Before we look at the features of the text editor, we take a brief look at the lexicon of PENG.

2.1 The PENG Lexicon

The language restrictions are defined by a unification-based grammar and lexicon. The
unification-based grammar defines the structure of simple PENG sentences and states how
more complex sentences can be formed using coordinating and subordinating conjunctions.
Informally, the set of PENG sentences is restricted to a subset of first-order-logic-representable
English natural language sentences. We make some comments about the impact this
restriction has on sentence construction later in Section 3.7. We also provide example PENG
sentences in Appendix A.

The controlled 'base' lexicon consists of the following (Schwitter, Ljungberg et al. 2003;
Schwitter and Tilbrook 2006).

1. Predefined function words which are: determiners a, all, an, every, no and the; the negation
function word not; the cardinals one, two, three,jour,five, six, seven, eight, nine, ten; the words
each and together used for disambiguation; the auxiliary words do and does; the connectives
and, if, or and then; the prepositions about, around, at, by, jar, in, like, of, on, over, than, to and
with; the copulas are and is; the query words how, what, when, where and who; and the
relative pronouns that, which and who.

2. Approximately 3,000 of the most commonly used words in English. These predefined
content words include nouns, proper nouns, verbs, adjectives and adverbs.

Except for any illegal word, user-defined content words can be added to the base lexicon
during the writing process. Illegal words - according to (Schwitter 2007b) - are the nouns
beliejand wish; the verbs can, could, should, might, must, have to, ought to, believe, want and wish;

4

DSTO-TR-2301

the adjective; former and the adverb possibly. All personal pronouns (e.g. he, she, you, I, we, they
and them) are also illegal. Apart from the full-stop at the end of the sentence, and the question
mark at the end of a question, there is no punctuation.

Synonyms may be defined for nouns. Both proper nouns and nouns are classified as either
singular or plural and are assigned one of the following types: person, time or entity. For
example Agatha, Americans and politicians are all of type person, whereas Newcastle, building
and car are of type entity. Friday, day and time are all of type time. Proper nouns of type person
are assigned a gender: neuter, masculine or feminine. Singular nouns of type entity are
assigned either an atomic or mass structure. For example town, word, knife and argument are
assigned an atomic structure, whereas blood, energy, knowledge and money are assigned a mass
structure.

Verbs in PENG are classified as intransitive verbs, transitive verbs, prepositional transitive
verbs, ditransitive verbs, or prepositional ditransitive verbs. An intransitive verb is a verb
which has no direct object (e.g. dances, falls, votes, dreams, thinks and stands). A transitive verb
requires a direct object in the form of a noun phrase (e.g. drives, has, likes, arranges, questions
and wants). A prepositional transitive verb is a transitive verb with an assigned preposition
that requires a direct object (e.g. adapts, appears in, goes to, asks for, behaves like and cares for). A
ditransitive verb requires both a direct object and an indirect object (e.g. tells, offers, regards,
combines, sends and sticks). A prepositional ditransitive verb is a ditransitive verb with an
assigned preposition that requires both a direct object and an indirect object (e.g. gives to, hands
over, offers to, sends for, combines with and tells to).

All verb forms in PENG are classified as either singular or plural and either finite or infinite.
Moreover, all verb forms are classified as either having an event or state structure. Event verbs
denote a change in time (e.g. achieves, begins, goes, walks, sings, travels and visits), whereas state
verbs express static properties (e.g. has, differs, exists, lives, stands, consists and waits).

Adjectives in PENG are single word adjectives (e.g. good, obvious, yellow, correct, temporary and
difficult) or prepositional adjectives. Prepositional adjectives are adjectives which require a
preposition (e.g. afraid of, aware of, happier than, healthier than and richer than). Prepositional
adjectives are classified as either comparative or non-comparative.

Adverbs in PENG are each assigned one of the following roles: location (e.g. anywhere, close,
everywhere and here), direction (e.g. above, backwards, forwards and further), time (e.g. afterwards,
before, eventually and forever), duration (e.g. longer), frequency (e.g. again, daily, enough and
frequently), or manner (e.g. abruptly, angrily, bitterly and dramatically).

2.2 ECOLE

The text editor, called ECOLE - the name derived from 'a look-ahead Editor for a COntrolled
LanguagE' - has been designed especially for the PENG language. As discussed in (Schwitter,
Ljungberg et al. 2003; Schwitter and Tilbrook 2006), ECOLE's interface consists of three fields:
the text, response and query fields. A screen-shot is shown in Figure 2. The text field is where
the author writes text in controlled natural language, and is also where look-ahead categories
are displayed after each sentence construct is entered. The look-ahead categories are

5

DSTO-TR-2301

generated on-the-fly by the controlled language processor. For example, our text field might
look like thisl

The f og h a ngs over Dreadsbury
[proper n oun, determiner, c ardinal,

Mansi on. The f og
connec tiv e: [If]]

lS c reepy .

Hence we may begin a third sentence using one of the following: a proper noun, a determiner,
a cardinal number, or the connective If Each look-ahead category is implemented by a
hyperlink; the author can click on the link to display more information about the category
needed. The author also has the option of selecting an available sentence construct from a
drop-down menu. Another feature within the text field is the tab-completion mechanism; the
author types the start of a word and completes it by pressing the tab key. The first key stroke
retrieves the first available word and successive strokes will iteratively display other available
words.

The response field is where system messages are displayed. A paraphrase is given for each
sentence which clarifies the interpretation of the input and resolves any synonyms, acronyms,
abbreviations and anaphoric references which have been used in the text. Suppose that within
the lexicon the noun fog has been identified as a synonym of its main form mist, then the
following is displayed in the response field.

Paraphrase:
The <s yn o nym> mist </syn onym> hangs over Dreadsbury Ma n s i on.
<anapho ra> The <s yno n ym> mi s t </syn on ym> </ anapho ra> i s c reepy .

The paraphrase indicates that the synonym fog has been replaced by its main form mist, and
that the noun phrase The mist is an anaphoric expression which has been previously
introduced in the text.

The response field also displays: the structure of the last input sentence in the form of a parse
tree; the discourse representation structure for the entire text including its representation in
first-order logic; and the model generated by the reasoning services, which determines
whether the text is satisfiable.

The query field is where the author can pose questions - in controlled natural language -
about the text. Look-ahead categories are also generated within this field to guide the writing
process. For example,

I s the f og c reepy [adverb, connec tiv e: [and , o r], preposition: [in, on,
with], questi o n_mark: [?]]

Once the question is completed, it is translated into first-order logic via a discourse
representation structure and then answered over the generated model. The text editor features
both a spellchecker and an integrated lexical editor which can be used to add new content

1 Here we have user-defined the word mist as a singular noun of entity type and mass structure. We
have defined the synonym fog for the noun mist. We have user-defined the verb hangs over as a finite,
singular prepositional transitive verb of event structure. We have also user-defined the adjective creepy.

6

DSTO-TR-2301

words. Only minimal linguistic knowledge is required by the author to add a new word to the
lexicon. User-defined words can be deleted from the lexicon, but the user cannot delete words
from PENG's base lexicon which consists of the predefined function and 3,OOO-odd content
words.

--

e PENG Demo ~[Q]~
Eile I;.dit Il.iew IDols [:1ode t:!elp

Question: I
he fog hangs over Dreadsbury Mansion. The fog is creepy. I [proper_noun, determiner, cardinal ,
onnective : [IfJ J

Paraphrase: ~
The <synonym> mist <!synonym> hangs over Dreadsbury Mansion . <anaphora> The
<synonym> mist <!synonym> <!anaphora> is creepy.

Tree:
[s, [n3, [det, ['The'JJ, [n2, [n I, [nO, [foglll]], [v3, [vO, [cp, [is]]], [c2, [c I, [adi, [creepy llllll

DRS:
[drs([A, B, C, D J, [pred(A, [be J, D)#[0, 2J, evtl(A, state)#[0, 2J, propel creepy J, D)#[0, 2J, pred(B, [han
gs, over J, D, C)#[O, I J, evtl(B, event)#[O, I J, named(['Dreadsbury', 'Mansion'J, C)#[O, I J, struc(C, ato
mic)#[O, IJ,obj([mistJ,D)#[O, IJ,struc(D,mass)#[O, IlJ)J

FOL:
[exists(A,exists(B,exists(C,exists(D,pred(A,[beJ,D)#[O,2J&(evtl(A,state)#[0,2J&(prop([creepyJ
,D)#[0, 2J&(pred(B, [hangs, over J, D, C)#[O, I J&(evtl(B, event)#[O, I J&(named(['Dreadsbury', 'Mans
ion'J,C)#[O, IJ&(struc(C,atomic)#[O, IJ&(obj([mistJ,D)#[O, I J&struc(D,mass)#[O, I])))))))))))]

Output Reasoning Engine:
[[dl,d2, d3,d4J,

[f(cl ,dl),
f(c2,d2),
f(c3,d3),
f(c4,d4),
f(named_Dreadsbury _Mansion,d3),
f(evtl_event_l, [d2J),
f(evtl_state _I , [d I J),
f(obLmisU,[d4]),
f(prop_creepy _I,[d4J),
f(struc_atomic_l, [d3J),
f(struc_mass_l, [d4]),
f(pred_be_2,[(dl,d4)]),
f(pred_hangs_over _3,[(d2,d4,d3)J),
JJ

Result Reasoning Engine:
satisfiable

Figure 2: Screen-shot

II

7

DSTO-TR-2301

3. Language Processing

The controlled language processor of the PENG system implements a unification-based
grammar and chart parser. Section 3.5 describes aspects of PENG's grammar and its
incremental chart parsing techniques; it also discusses how the parser generates look-ahead
categories on-the-fly. Sections 3.1-3.4 build the background needed for these sections. Section
3.1 gives a brief introduction to grammar formalisms, focussing on context-free grammars.
Section 3.2 introduces chart parsing. Section 3.3 describes unification-based grammars -
essentially constrained context-free grammars - and shows how chart parsing strategies for
these grammars can be adapted. Section 3.4 discusses some basics of the logic programming
language Prolog, and then looks at the definite clause grammar notation which allows us to
implement unification-based grammars within Prolog.

Apart from checking PENG text for grammatical correctness and generating look-ahead
categories, the PENG chart parser also translates text into Discourse Representation Structures
(DRSs). These structures capture the semantic content of the original text and are later
translated into first-order logic. Formulae of this logic can then be checked for consistency and
questioned-answered by the reasoning services. In Section 3.6 we give a brief introduction to
discourse representation theory and describe Hans Kamp and Uwe Reyle' s original DRS
construction algorithm. We show how a DRS can be translated into first-order logic and
describe how PENG's chart parser constructs a flattened DRS using a variation of the original
DRS construction algorithm.

In Section 3.7 we examine 'nonfirstorderisable' English sentences. Such sentences cannot be
represented in first-order logic, hence they cannot be formulated in the PENG language. We
discuss the impact this has on text composition.

3.1 Context-Free Grammars

A grammar provides a precise description of a formal language represented by a set of strings.
As discussed in (Gilbert 1966) there are two main types of grammars: generative and analytic.
We'll describe analytic grammars shortly.

Generative grammars - also known as phrase structure grammars - are sets of rules which tell
us how strings of a particular language can be generated. In the classic formalisation first
proposed in (Chomsky 1956), a generative grammar G is defined as a 4-tuple (N, L, P, 5)
where N is a finite set of non-terminal symbols, L is a finite set of terminal symbols that is
disjoint from N, P is a finite set of production rules where each rule is of the form
(LuN)*N(LUN)* ~ (LUN)*, and 5 is a distinguished start symbol belonging to N. Here * is the
Kleene star operator2 and u denotes set union. The language of G - written L(G) - is defined
as the set of strings over L which are formed by starting with 5 and applying the production
rules until no non-terminal symbols remain. An example is the grammar G with N == {5, B},
L == {a,b,c}, starting symbol 5 and the following production rules.

2 The star operator works as follows: if V is a set of symbols, then V· is the set of all strings over symbols
in V, including the empty string.

8

DSTO-TR-2301

1. 5 ~ aB5c

2. 5 ~ abc

3. Ba ~ aB

4. Bb ~ bb

Two possible strings generated by 5 are abc and aabbcc. The first string can be generated
directly by application of rule 2. The second string can be generated via
5 =>1 aB5c =>2 aBabcc =>3 aaBbcc =>4 aabbcc. Here X =>i Yhas the meaning that X generates Yby
application of rule i. We can see that the grammar defines the language L(G) == {a"bllcll I n:2: I}.

A generative grammar is said to be incomplete if we can derive a string from 5 containing one
or more non-terminal symbols, but can find no production rule to apply to the string.
Moreover, the grammar is said to be recursive if it contains a non-terminal symbol which can
be recursively derived from a production rule.

A context-free grammar is a generative grammar such that the left-hand side of the
production rule consists of a single non-terminal symbol. As an example, consider the
grammar with the set of non-terminal symbols N == {5, np, det, n, vp, iv, pp}, the set of terminal
words and phrases L == {the, woman, lives, in Dreadsbury Mansion}, starting symbol 5 and the
following production rules.

1. 5 ~ np vp

2. np ~ det n

3. det ~ the

4. n ~ woman

5. vp ~ lV pp

6. iv ~ lives

7. pp ~ in Dreadsbury Mansion

Here the symbols 5, np, vp, det, n, iv and pp abbreviate the grammatical categories 'sentence' ,
'noun phrase', 'verb phrase', 'determiner', 'noun', 'intransitive verb' and 'prepositional
phrase' respectively. We can see from the production rules that 5 generates the string the
woman lives in Dreadsbury Mansion. We can represent the syntactic structure of the string - as
described by the grammar - in the form of a tree. Here 5 is the root node, the elements of N
are the branch nodes and the elements of L are the leaf nodes.

S

/~
np vp

/~ /
det n iv pp

I I I I
the woman lives in Dreadsbury Mansion

Figure 3: Parse tree

9

DSTO-TR-2301

A context-free parser is used to construct such a tree. Given a context-free grammar and an
input string belonging to the language of the grammar, a parsing algorithm builds a parse tree
top-down such that 5 is the root node and every node of the tree is allowable by the grammar.
If a tree can be constructed such that the string is listed in the correct order at the leaf nodes,
then the parser deems the string to be well-formed or grammatically correct. In other words, a
parser analyses the syntactic structure of a given string in order to determine whether the
string is grammatically correct.

Most parsing algorithms assume the language to be parsed is described by means of a
generative grammar. There is usually no correspondence between the algorithm used to parse
the language and the generative grammar itself. In contrast, analytic grammars are sets of
rules which tell us how strings can be analysed in order to determine whether they are
members of a particular language. Essentially, these grammars formally describe a parser for a
language; they describe how a language is to be read, rather than how it is to be written. Since
analytic grammars have no further bearing on this report, in the sequel any reference to
'grammar' should be interpreted as 'generative grammar'.

A major drawback of naive parsing algorithms is that they often build and discard the same
sub-tree multiple times. For example, suppose we have a context-free grammar with
N == {5, np, det, n, re, vp, iv, pp}, 2: == {the, woman, that, lives, in Dreadsbury Mansion}, starting
symbol 5 and the following production rules.

1. 5 ~ np vp

2. np ~ det n re

3. np ~ detn

4. re ~ relpro vp

5. vp~LVPp

6. det ~ the

7. n ~ woman

8. relpro ~ that

9. iv ~ lives

10.pp ~ in Dreadsbury Mansion

Note that re and relpro abbreviate the grammatical categories 'relative clause' and 'relative
pronoun' respectively. Given the input string the woman lives in Dreadsbury Mansion, a naive
parser will first attempt to apply the rule np ~ det n re (since it is the first applicable
production rule in the list). Failing this, it will attempt to apply np ~ det n. This means the
parser repeats the analysis of both determiner and noun at each rule application. A work
around this redundancy is chart parsing. Since PENG implements an incremental chart parser
- incremental in that it allows modifications to be made to the input string on-the-fly - we
now give a brief introduction to the chart parsing method. Much of the next section follows
from (Gazdar and Mellish 1990; Blackburn and Striegnitz 2002).

10

DSTO-TR-2301

3.2 Chart Parsing Basics

A chart parser is a parser which implements a chart. Essentially, a chart stores information
about substrings the parser has already analysed. The chart parsing algorithm checks the chart
to see whether it has already produced an analysis of any substring it is parsing; if it has, the
algorithm uses this information and hence avoids any repetition of work.

Suppose we read from left to right the string of terminal symbols - or in our case, words -
found at the leaf nodes of a context-free parse tree. This string can be represented by a Well
Formed Substring Table (WFST). If we assign the beginning and end of the string the indices 0
and n, and assign the spaces between string constituents the indices numbered 1 to n - 1
from left to right, then a WFST tells us for each pair of indices (i, j) - where 0 ~ I < j ~ n - what
set of non-terminal symbols span the substring of words found between i and j. As an
example, consider the context-free grammar with N == {S, np, det, n, vp, iv, adv},
L == {the, butler, acts, suspiciously}, starting symbolS and the following production rules.

1. 5 ~ np vp

2. np ~ det n

3. det ~ the

4. n ~ butler

5. vp ~ iv adv

6. iv ~ acts

7. adv ~ suspiciously

The string the butler acts suspiciously generated by 5 can be represented by the following WFST.

i \ j 1 2 3 4

0 det np 5

1 n

2 iv vp

3 adv

Figure 4: WFST

We can think of a WFST as a graph whereby arcs between nodes i and j - where 0 ~ i < j ~ n -
are labelled with the non-terminal symbols that span the substring of words between nodes i
and j. Below we give a graph representation for our current example.

s

_--__ np

det n iv adv

the butler acts
o 1 2 3

suspiciously
4

Figure 5: Graph representation

11

DSTO-TR-2301

Given a context-free grammar and an input string, a chart parser parses the string by
constructing a variation of a WFST called a chart. Note that for readability, we will describe a
chart using a graph representation; ordinarily however, a chart is implemented as a look-up
table. In a chart, arcs are usually referred to as edges. Edges are directed clockwise and are
labelled with dotted rules (these are explained shortly). Edges may also be empty, i.e. they
loop back on themselves. The chart parsing process begins with the parser constructing an
initial chart. The initial chart varies according to the type of parser. The parser then employs a
set of rules to heuristically decide when an edge should be added to the chart. This set of rules
- along with the specification of when they should be applied - forms a strategy. When the
parser finds an edge which spans the entire string, it has succeeded in parsing the string.
There may be further parses to find, but the parser has found at least one.

The dotted rule notation was introduced in (Earley 1970). Essentially an edge labelled by a
dotted rule represents a hypothesised string constituent. The string constituent can be fully
analysed, partially analysed, or completely analysed by the chart parser. Suppose 5 ~ np vp
and det ~ the are production rules of the grammar, then the following dotted rules can be
used as edge labels.

5 ~. np vp

5 ~ np· vp

5 ~ np vp.

det ~ the·

The dot within these labels indicates the extent to which the hypothesis that the rule is
applicable has been verified by the chart parser. Rules of the form 5 ~ • np vp are only used
to label empty edges. This particular rule denotes the hypothesis that 5 can be found spanning
a substring that represents a np vp sequence. The rule 5 ~ np • vp denotes a similar
hypothesis, however in this case the hypothesis has been partially confirmed; the np sequence
has already been analysed by the parser. The dotted rules 5 ~ np vp • and det ~ the • denote
fully confirmed hypotheses, whereby both the np vp sequence and terminal word the have
been analysed. Note that a rule such as det ~ • the semantically makes sense - it denotes the
hypothesis that the determiner can be found spanning a substring that represents the terminal
word the - however we ignore rules of this form here, since they are not necessary for chart
parsing.

Our WFST above can be represented as the following chart.

12

DSTO-TR-2301

s ~ np vp.

np ~ del. n

det ~ the . n ~ butler . iv~ acts .

° 1 2 3 4
the butler acts suspiciously

Figure 6: Completed chart

Edges of a chart that represent unconfirmed hypotheses are called active, whereas those that
represent confirmed hypotheses are inactive. For example in the chart above, the edges
labelled np ~ det e nand 5 ~ e np vp are active, whereas the edges labelled vp ~ iv adv e and
det ~ the e are inactive.

Edges can be described using the notation (i, j, L) where i is the start position of the edge, j is
the end position and L is the label of the edge. For example the edge labelled np ~ det e n in
Figure 6 can be written (0, 1, np ~ det en), whereas the edge labelled vp ~ iv adv e can be
written (2, 4, vp ~ iv adv e).

3.2.1 The Fundamental Rule

Every chart parsing strategy incorporates one rule in particular. This rule is called the
fundamental rule of chart parsing. This rule combines: (1) an active edge whose label
hypothesises a non-terminal symbol Y, with (2) an inactive edge whose label features Yon the
left-hand side. The result is a new edge which spans both the original active and inactive
edges. Formally, suppose the chart contains the following edges where 0$ i < j $ n, X and Y
are non-terminal symbols, a is a (possibly empty) sequence of non-terminal symbols, fJis a
sequence of non-terminal symbols, and ris either a terminal symbol or a sequence of non
terminal symbols.

X--+a e Y/3

j

Then the parser adds the following edge.

~.
k

•
k

13

DSTO-TR-2301

We can see from Figure 6 that edges (0,0, 5 ~ e np up) and (0,2, np ~ det n e) combine to
form (0,2, 5 ~ np e up), edges (0,1, np ~ det e n) and (1,2, n ~ butler e) combine to form
(0,2, np ~ det n e), and edges (0,2, 5 ~ np e up) and (2,4, vp ~ iv adv e) combine to form
(0,4, 5 ~ np vp e).

3.2.2 A General Algorithm

Chart parsing is either conducted top-down or bottom-up. In top-down chart parsing the
parser start with 5 and tries to transform it into the input string. The parser takes grammatical
categories and breaks them into smaller constituents and eventual terminal symbols. In
bottom-up chart parsing, the parser starts with the input string and tries to rewrite it to S. It
takes each terminal symbol and attempts to locate the parent grammatical categories the
symbol belongs to. Once found, the parser then attempts to locate those categories' parents,
and so on.

Chart parsing often relies on a data-structure called an agenda. The parser stores the
remaining (not yet analysed) edges in the agenda. It then adds these edges one at a time to the
chart, using them to build new edges via the fundamental rule. Here we will treat the agenda
as a stack; we push edges on the agenda and pop edges from the agenda in a last-in, first-out
manner. Alternatively, we could treat the agenda as a queue whereby edges are taken in a
first-in, first-out manner. Treating the agenda as a stack results in a depth-first search strategy,
whereas treating the agenda as a queue results in a breadth-first search strategy. Hence the
order of the edges in the agenda is of vital importance.

A general algorithm for both top-down and bottom-up chart parsing can be described as
follows.

1. Construct the initial agenda and chart.

2. Repeat steps a, b and c until the agenda is empty.

a. Pop the first edge from the agenda and - as long as it is not already there - add
it to the chart. This edge becomes the current edge.

b. If possible, apply the fundamental rule in order to combine the current edge
with any other edges from the chart. New edges formed should be pushed on
the agenda.

c. Make hypotheses - in the form of active edges - about new sentence
constituents based on the current edge and the rules of the grammar. Push
these new edges on the agenda.

3. If the chart contains an inactive edge from the first node to the last with label 5 ~ r e -

where ris either a terminal symbol or a (possible sequence of) non-terminal symbol(s) -
then we have successfully parsed the sentence, else we have failed.

How Steps 1 and 2c are carried out distinguishes between top-down and bottom-up chart
parsing strategies. We'll shortly look at an example to explain the difference between the two
strategies.

Neither the top-down nor bottom-up parsing strategy is considered better than the other. As
mentioned in (Longley and Stark 2002), top-down parsers are a little less powerful but their

14

DSTO-TR-2301

algorithms are easier to implement. Although PENG features a basic (top-down) parser which
implements the general algorithm described previously, it is worth mentioning that more
sophisticated chart parsing algorithms exist. Two popular algorithms are the Cocke-Younger
Kasami (CYK) algorithm and the Earley algorithm. CYK is a bottom-up algorithm and
requires its context-free grammar to be written in Chomsky Normal Form (Kasami 1965;
Younger 1967). A definition of Chomsky Normal Form can be found at (Aute bert, Berstel et al.
1997) . The Earley algorithm is a top-down algorithm which is somewhat faster and more
efficient than CYK (Earley 1970).

3.2.3 The Top-Down Strategy

Since PENG implements a top-down chart parser, we will build a chart in all its gory detail
following the general algorithm using the top-down strategy. We avoid doing this for the
bottom-up case, however we will comment briefly on how the general algorithm can be
adapted for this strategy. Our example grammar will again be used in Section 3.5.2 where we
describe how PENG handles modification (i.e. insertion, deletion and replacement) of the
input string on-the-fly. Suppose we have the following context-free grammar with the set of
non-terminal symbols N == {5, np, det, n, rc, relpro, vp, iv, adv}, the set of terminal words
L == {the, butler, that, acts, suspiciously}, starting symbolS and the following production rules.

1. 5 ~ np vp

2. np ~ det nrc

3. np ~ detn

4. rc ~ relpro vp

5. vp ~ iv adv

6. det ~ the

7. n ~ butler

8. relpro ~ that

9. iv ~ acts

10.adv ~ suspiciously

For now, suppose we have the input string the butler acts suspiciously.

When constructing an initial agenda for top-down chart parsing, we select the grammar
production rules that feature 5. We form an active empty edge for each rule - at node 0- and
place each edge in the empty agenda/ stack. Following our example, we have the initial
agenda

(0,0, 5 ~ • np vp)

Note that if we had a grammar production rule such as 5 ~ 5 coord 5 where coord is the word
and or or, say, then we would also add a similar active empty edge (0,0, 5 ~ • 5 coord 5) to the
agenda.

The initial chart is comprised of the inactive edges featuring the terminal words of the input
string. Essentially the top-down strategy involves breaking down grammatical categories into
constituent categories by hypothesising new edges from active edges. Hence we work our

15

DSTO-TR-2301

way down from active edges featuring grammatical categories to these smaller inactive edges
featuring the terminal words. Following our example, we have the initial chart

det ~ the . n ~ butler . iv ~ acts. adv ~ suspicious Iy •

•
° 1 2 3 4

the butler acts suspicious ly

Step 2c of the general chart parsing algorithm is adapted to the top-down strategy in the
following way. If you are adding the current active edge (i, j, X ~ a • Y fJ) to the chart, then
for every grammar rule Y ~ r, push the edge (i, j, Y ~ • n on the agenda. Here i and j are
node labels, X and Y are non-terminal symbols, a is a (possibly empty) sequence of non
terminal symbols, and fJ and r are sequences of non-terminal symbols.

Round 1

2a) We pop edge (0, 0, 5 ~ • np vp) from our initial agenda and add it to the chart.

2b) We are unable to apply the fundamental rule, hence we move to Step 2c.

2c) Our current edge is (0,0, 5 ~ • np vp) and we have the two grammar rules np ~ det nrc

and np ~ det n. Following Step 2c outlined above, we push the edges (0,0, np ~ • det nrc)

and (0,0, np ~ • det n) on the agenda.

After Round 1 we have the chart

° 1

the

We have the following agenda.

Round 2

n ~ butler . iv ~ acts. adv ~ suspicious Iy •

2

butler acts

(0,0, np ~ • det n)
(0,0, np ~ • det nrc)

3 4

suspiciously

2a) We pop the edge (0,0, np ~ • det n) from the agenda and add it to the chart.

2b) We can apply the fundamental rule by combining (0, 0, np ~ • det n) and (0, 1, det ~ the .)
to form the new edge (0, 1, np ~ det • n) which we push on the agenda.

2c) Our current edge is (0, 0, np ~ • det n), but there are no grammar rules with det on the left
hand side and non-terminals on the right, so nothing is pushed on the agenda at this step.

16

DSTO-TR-2301

After Round 2 we have the chart

s

° 1

the

We have the following agenda.

Round 3

2

butler acts

(0, 1, np ~ det e n)

(0,0, np ~ e det nrc)

3
adv ~ suspiciously ' •

4

suspiciously

2a) We pop (0,1, np ~ det e n) from the agenda and add it to the chart.
2b) We can apply the fundamental rule by combining (0,1, np ~ det e n) and
(1,2, n ~ butler e) to form the new edge (0,2, np ~ det n e) which we push on the agenda.
2c) Our current edge is (0, 1, np ~ det en), but there are no grammar rules with n on the left
hand side and non-terminals on the right. Hence we move to Round 4.

Round 4
2a) We add (0,2, np ~ det n e)to the chart.
2b) We combine (0,0, 5 ~ e np vp) and (0,2, np ~ det n e) to form the new edge
(0,2, 5 ~ np e vp) which we push on the agenda.
2c) No new hypothesis can be made from our current inactive edge (0,2, np ~ det n e).

After Round 4 we have the chart

s
np ---+ det n'

np ---+ det. n

° the

We have the following agenda.

1

butler acts

(0, 2, 5 ~ np e vp)

(0,0, np ~ e det nrc)

suspiciously

17

DSTO-TR-2301

RoundS

2a) We add (0, 2, 5 ~ np -up) to the chart.

2b) We are unable to apply the fundamental rule, hence we move to Step 2c.

2c) Our current edge is (0,2, 5 ~ np - vp) and we have the grammar rule vp ~ iv adv.
Following Step 2c, we push the edge (2, 2, vp ~ - iv adv) on the agenda.

Round 6

2a) We add (2,2, vp ~ - ivadv) to the chart.

2b) We combine (2,2, vp ~ - ivadv) and (2,3, iv ~ acts -) to form the new edge
(2,3, vp ~ iv - adv) which we push on the agenda.

2c) There are no grammar rules with iv on the left-hand side and non-terminals on the right.

After Round 6 we have the chart

s
s ~ np 0 vp vp ~ oiv adv

np~ det on

° the

We have the following agenda.

Round 7

np~ det n 0

1 2

butler acts

(2,3, vp ~ iv - adv)
(0,0, np ~ - det nrc)

2a) We add (2,3, vp ~ iv - adv) to the chart.

~
3 4

suspiciously

2b) We combine (2,3, vp ~ iv - adv) and (3,4, adv ~ suspiciously -) to form the new edge
(2, 4, vp ~ iv adv -) which we push on the agenda.

2c) There are no grammar rules with adv on the left-hand side and non-terminals on the right.

Hence we move to Round 8.

Round 8

2a) We add (2, 4, up ~ iv adv -) to the chart.

2b) We combine (0,2, 5 ~ np - vp) and (2,4, vp ~ iv adv -) to form the new edge
(0,4, 5 ~ np vp -) which we push on the agenda.

2c) No new hypothesis can be made from our current inactive edge (2,4, vp ~ iv adv e).

18

DSTO-TR-2301

After Round 8 we have the chart

s
s ~ np. vp

np~ det n.

nlJ~det.n vp~iv.adv

° 1

l-·v-~-a-cts-.- ~.
234

the butler acts suspiciously

We have the following agenda.
(0,4, 5 ~ np vp .)
(0,0, np ~ • det nrc)

Round 9

2a) We add (0, 4, 5 ~ np vp .) to the chart.

2b) We are unable to apply the fundamental rule, hence we move to Step 2c.

2c) No new hypothesis can be made from our current inactive edge (0,4, 5 ~ np vp .).

Round 10

2a) We add (0,0, np ~ • det nrc) to the chart.

2b) We combine (0,0, np ~ • det nrc) and (0,1, det ~ the·) to form the new edge
(0, 1, np ~ det • nrc) which we push on the agenda.

2c) There are no grammar rules with det on the left-hand side and non-terminals on the right.

Hence we move to Round 11.

Round 11

2a) We add (0,1, np ~ det • nrc) to the chart.

2b) We combine (0,1, np ~ det • nrc) and (1,2, n ~ butler·) to form the new edge
(0, 2, np ~ det n • rc) which we push on the agenda.

2c) There are no grammar rules with n on the left-hand side and non-terminals on the right.

Hence we move to Round 12.

Round 12

2a) We add (0,2, np ~ det n • rc) to the chart.

2b) We are unable to apply the fundamental rule, hence we move to Step 2c.

2c) Our current edge is (0, 2, np ~ det n • rc) and we have the grammar rule rc ~ relpro vp.

Following Step 2c, we push the edge (2, 2, rc ~ • relpro vp) on the agenda.

19

DSTO-TR-2301

Round 13

2a) We add (2,2, rc ~ e relpro vp) to the chart.

2b) We are unable to apply the fundamental rule, hence we move to Step 2c.

2c) There are no grammar rules with relpro on the left-hand side and non-terminals on the
right. Hence we move to Round 14.

Round 14
The agenda is empty so we move to Step 3.

3) Since the chart contains an inactive edge from the first node to the last - namely
(0,4, 5 ~ np vp e) we return 'success' and are done.

As an aside, it is worth pointing out that if we had the production rules 5 ~ np vp and
5 ~ 5 coord 5 in our grammar, then at some stage during the parsing process we would get
the edge (i, j, 5 ~ 5 coord e 5) appearing in the chart for some nodes i and j where i < j. This
means that via Step 2c, we'd eventually introduce the active empty edges (i, j, 5 ~ e np vp)
and (i, j, 5 ~ e 5 coord 5) to the chart. Hence this means the parser looks for coordinated (or
nested) sentences within the input string, but only according to the production rules of the
grammar.

3.2.4 The Bottom-Up Strategy

When constructing an initial agenda for bottom-up chart parsing, we select the grammar
production rules that feature the terminal symbols. We form an inactive edge for each rule -
which spans the nodes of the terminal symbol - and place each edge in an empty agenda.
Following our example, we have the initial agenda

(0,1, det ~ the e)
(1, 2, n ~ butler e)
(2,3, iv ~ acts e)
(3,4, adv ~ suspiciously e)

Essentially the bottom-up strategy involves building up the terminal symbols into
grammatical categories - and eventually 5 - by hypothesising new edges from inactive edges.
The initial chart for bottom-up chart parsing is empty. We can see that this is a reasonable
starting point, since the algorithm specifies that edges from the agenda are added one at a
time to the chart, and our initial agenda contains inactive edges that feature the terminal
symbols. Following our example, we have the initial chart

• o
the

• 1

butler

• 2

acts

• 3

suspiciously

• 4

Step 2c of the general chart parsing algorithm is adapted to the bottom-up strategy in the
following way. If you are adding the current inactive edge (i, j, X ~ a e) to the chart, then for
every grammar rule Y ~ X fJ, push the edge (i, j, Y ~ e X fJJ on the agenda. Here i and j are

20

DSTO-TR-2301

node labels, X and Yare non-terminal symbols, a is either a terminal symbol or a sequence of
non-terminal symbols, and fJis a sequence of non-terminal symbols.

In order to better describe how the algorithm implements the bottom-up strategy, we will
apply the algorithm to our running example for a few rounds.

Round 1

2a) We pop edge (0, 1, det ~ the .) from our initial agenda and add it to the chart.

2b) We are unable to apply the fundamental rule, hence we move to Step 2c.

2c) Our current edge is (0, 1, det ~ the .) and we have the two grammar rules np ~ det n rc
and np ~ det n. Following Step 2c outlined above, we push the edges (0,0, np ~ • det nrc)
and (0,0, np ~ • det n) on the agenda.

Round 2

2a) We pop edge (0, 0, np ~ • det n) from our initial agenda and add it to the chart.

2b) We can apply the fundamental rule by combining (0,0, np ~ • det n) and (0, 1, det ~ the .)
to form the new edge (0, 1, np ~ det • n) which we push on the agenda.

2c) No new hypothesis can be made from our current active edge (0, 0, np ~ • det n).

Round 3

2a) We add edge (0, 1, np ~ det • n) to the chart.

2b) We are unable to apply the fundamental rule, hence we move to Step 2c.

2c) No new hypothesis can be made from our current active edge (0, 1, np ~ det • n).

3.3 Unification-Based Grammars

Section 3.1 gave us a general overview of grammars and context-free grammars in particular.
This section describes unification-based grammars, which are context-free grammars
augmented with constraints called feature structures. After a brief introduction, we show how
chart parsing strategies for these grammars can be adapted. In Section 3.4 we look at the
definite clause grammar notation which allows us to implement unification-based grammars
within the logic programming language Prolog. This section and Section 3.4 provide us with
the background needed for an examination of PENG's grammar, its incremental chart parsing
techniques and look-ahead category generation. Much of this section is adapted from
(Jurafsky and Martin 2000). We begin with an example.

Suppose we have the following context-free grammar with N == {5, np, det, n, vp, ivj,
L == {a, brother, schemes}, starting symbol 5 and the following production rules.

1. 5 ~ np vp

2. np ~ detn

3. vp ~LV

4. det~a

5. n ~ brother

6. iv ~ schemes

21

DSTO-TR-2301

Suppose we want to extend the grammar in order to generate the string all brothers scheme. We
could just add all, brothers and scheme to L and add the production rules det ~ all, n ~ brothers
and iv ~ scheme, however this new grammar would allow us to generate the unwanted
strings, a brother scheme, all brother scheme, all brothers schemes and a brothers schemes.
Alternatively, we could replace np, n, vp and iv with non-terminal symbols representing
their plural and singular forms. We'd then have the set of
non-terminals N == {S, npsg, nppl, det, nsg, npl, vpsg, vppl, ivsg, ivpl}, the set of terminals
L == {a, all, brother, brothers, schemes, scheme}, starting symbol Sand the following production
rules.

1. 5 ~ npsg vpsg

2. 5 ~ nppl vppl

3. npsg ~ detsg nsg

4. nppl ~ detpl npl

5. vpsg ~ LVSg

6. vppl ~ ivpl

7. detsg ~ a

8. detpl ~ all

9. nsg ~ brother

10.npl ~ brothers

11.ivsg ~ scheme

12. ivpl ~ schemes

A drawback to this method is the drastic increase in the size of the grammar.

A much better solution is to integrate feature structures within the grammar. Here the
grammatical category symbols np, vp, det, n, etc. can be thought of as sets of attributes
designating - for example - category type, grammatical number, grammatical person, gender
and/ or tense. A feature structure is simply a set of attribute-value pairs. Often structures are
denoted by an attribute-value matrix. For example, the following matrix captures a restricted
subcategory of noun phrases whereby each phrase is singular and in third person.

[

category nP j
number sg

person 3

Values can be atomic - e.g. np, sg or 3 - or are feature structures themselves. Consider the
matrix below.

[

category np j
[
number Sg]

agree
person 3

Here the 'agreement' attribute agree takes a feature structure - consisting of number and person
attribute-value pairs - as its value. Matrices of this form allow us to take two grammatical
categories and test their value equality for both number and person attributes. Moreover in a
variation of the above matrix, an agree structure may act as a value for a subject attribute. This

22

DSTO-TR-2301

allows us to take a category and the grammatical subject of category and test their value
equality for both number and person attributes. Note that in general, feature structures acting
as values of agree can contain attributes other than number and person. These attributes are
typically present because grammatical categories often need to agree (at least) on the values of
these attributes.

A feature path is a list of attributes through a feature structure leading to a particular value.
Using the last feature structure as an example, the feature path < agree number> leads to the
value sg, whereas < agree person> leads to 3. A logical step from the notion of feature paths is
the representation of structures as Directed Acyclic Graphs (DAGs). Our feature structure
above looks as follows.

~-~ .. np
category

• sg
number

agree

person 3

Figure 7: Feature structure represented as directed acyclic graph

Feature structures that share an identical substructure (or node in the DAG) can be
represented by re-entrant structures. A symbol ® is used to indicate the shared structure. For
example in the following matrix, the agree attribute and the < subject agree> feature path share
the same value, namely the structure consisting of person and number attribute-value pairs.

I agree ®[:~:;;r s:]l
l subject [agree ®] J

This is equivalent to the following matrix.

['::::1 [agree ®[;erson 3]]l l number sg J
The symbol ® can be thought of as acting as both label and placeholder. It labels the structure
consisting of person and number attribute-value pairs, and as the value of agree, it acts as
placeholder for that structure.

Unification is a partial operation on feature structures. The binary operator U takes two
feature structures as argument and returns - when successful - a merged structure. If the
structures are incompatible, unification fails. We now look at a number of examples - taken
from Ourafsky and Martin 2000) - to illustrate. Since the input structures are identical in the
equation below, unification returns the same structure as output.

[number sg] U [number sg]=[number sg]

23

DSTO-TR-2301

The next unification fails since the two attributes have incompatible values.
[number sg] U [number pl] fails

The [] value in the following structure indicates that it has been left unspecified. Such a

value is compatible with any value of a corresponding attribute in another structure.

[number sg] U [number []J=[number sg]

The next equation merges two structures; the unification is successful since the structures
do not share attributes with incompatible values.

[number sg]U[person 3]= [
number Sg]
person 3

In the following equation, the agree attribute of the left-hand side structure receives a value as
a result of unification.

[
agree ®] [U subject

subject [agree ®[]J [[
person 3]]]

agree number sg

I agree

= l subject [agree [
person

®
number

In the next example, unification fails since the values found via < subject agree number> are
incompatible.

I agree

lSUbject

®[number sg]j
person 3 U
[agree ®]

agree [
number Sg]
person 3

subject [
agree [number 3Pl]]

person

We say that a feature structure Fl subsumes another structure F2 if all the attribute-value pairs
in Fl are also contained in F2• For example, consider the following two structures.

[number sg] [person 3]
number sg

The left feature structure subsumes the right, but not vice versa. Every attribute-value pair in
the left structure is contained in the right, but the right structure contains an additional pair.
The left structure can be thought of as being less specific than the right structure; this fits in
with our intuitive notion of a less specific (more abstract) structure subsuming an equally or
more specific one.

A unification grammar is formed by augmenting the production rules of a regular context-free
grammar with constraints of the form
1. < X;feature path> = atomic value
2. < X;feature path> = < Xifeature path>

24

DSTO-TR-2301

Given a production rule with terminal symbol Xi, the notation < Xfeature path> denotes a
feature path through the feature structure associated with X. The constraints specify (1) that
the value found via the given path must unify with the given atomic value, and (2) that the
values found via the two given paths must be unifiable.

Consider our (extended) example context-free grammar with N == {5, np, det, n, vp, ivj,
L == {a, all, brother, brothers, schemes, scheme}, starting symbol 5, and the following production
rules.
1. 5 ~ np vp
2. np ~ det n
3. vp ~ lV

4. det ~ a
5. det ~ all
6. n ~ brother
7. n ~ brothers
8. iv ~ schemes
9. iv ~ scheme

Recall that we want to generate the strings a brother schemes and all brothers scheme, while
disallowing a brother scheme, all brother scheme, a brothers schemes and all brothers schemes. We
can do this by augmenting the production rule as follows.
5 ~npvp

< np number> = < vp number>
This means that a sentence of the grammar may only be formed if the grammatical number of
the noun phrase is equal to the grammatical number of the verb phrase. If we want to add a
< np person> = < vp person> constraint to the rule - instead of listing the two constraints - we
can make use of the agree attribute. We write
5 ~np vp

< np agree> = < vp agree>

Using this new notation, our production rules are constrained as follows.

1. 5 ~ np vp

< np agree> = < vp agree>

2. np ~ det n

< det agree> = < n agree>

< np agree> = < vp agree>

3. vp ~ lV

< vp agree> = < iv agree>

4. det ~ a

< det agree> = sg

5. det ~ all

< det agree number> = pl

25

DSTO-TR-2301

6. n ~ brother

< n agree number> = sg

7. n ~ brothers

< n agree number> = pl

8. iv ~ schemes

< iv agree number> = sg

< iv agree person> = 3

9. iv ~ scheme

< iv agree number> = pl

It's worth pointing out that in a number of rules, a structure of a grammatical subcategory is
copied into a parent category. The subcategory that provides the structure is usually referred
to as the head of the phrase, whereas the structure copied is usually referred to as the head
feature. Following our example, n is the head of the noun phrase and iv is the head of the verb
phrase. In both cases agree is the head feature. We can rewrite our production rules to reflect
these notions by placing the agree feature structure under a head attribute and copying that
feature structure upwards.

1. 5 ~ np vp

< n head agree> = < vp head agree>

2. np ~ det n

< det head agree> = < n head agree>

< np head> = < n head>

3. vp ~ lV

< vp head> = < iv head>

4. det ~ a

< det head agree number> = sg

5. det ~ all

< det head agree number> = pl

6. n ~ brother

< n head agree number> = sg

7. n ~ brothers

< n head agree number> = pl

8. iv ~ schemes

< iv head agree number> = sg

< iv head agree person> = 3

9. iv ~ scheme

< iv head agree person> = pl

26

DSTO-TR-2301

3.3.1 Chart Parsing with Unification-Based Grammars

Recall from Section 3.2, that the edges of a chart can be described using the notation (i, j, L)
where i is the start position of the edge, j is the end position and L is the label of the edge. In
order to chart parse unification-based grammars, we add an additional field Fcontaining the
feature structure associated with the label L.

The fundamental rule remains unchanged except for its handling of feature structures. The
rule combines edges (i, j, X ~ a· Y fJ, FI) and (j, k, Y ~ r·, F2) to form the new edge
(i, k, X ~ a Y • fJ, F3). Here i, j and k are integers between Oand n; X and Yare non-terminal
symbols; a is a (possibly empty) sequence of non-terminal symbols; fJis a sequence of non
terminal symbols; ris either a terminal symbol or a sequence of non-terminal symbols; and FI ,

F2, and F3 are feature structures.

Essentially the structure F3 is a version of FI whereby Y's feature structure in FI has been
unified with Y's feature structure in F2• It is important to note that a new edge is formed only
if Y's feature structures in FI and F2are unifiable, otherwise the rule is not applicable.

This new adaptation of the fundamental rule is best explained using an example. Consider the
two constrained production rules from our grammar above.

1. np ~ det n

< det head agree> = < n head agree>

< np head> = < n head>

2. det ~ a

< det head agree number> = sg

The structure FI of the edge (0, 0, np ~ • det n, FI) is built from the constraints of np ~ det n.
Top level attributes are created for each non-terminal symbol of the production rule. Hence
we have

r

np [head <8>] j
FI == det [head [agree E8 []J]

n [head <8>[agree E8]J

(Here E8 is used to indicate a re-entrant structure different from <8>.) Similarly the structure F20f
the edge (0,1, det ~ a • F2) is built from the constraints of det ~ a. Here

F2 == [det [head [agree [number sg]J]]

We apply the fundamental rule, forming the new edge (0, 1, np ~ det • n, F3). The rule unifies
the structures found under the det attribute in both FI and h The structure F3 is formed by
taking FI and replacing the original structure under det by the newly unified structure. Hence
we have

27

DSTO-TR-2301

l [head <8>] j
F3 == ::t [head [agree E8[number sg]J]

n [head <8>[agree E8]J

A unification algorithm is described in detail in (Jurafsky and Martin 2000). To give a cursory
description, the algorithm takes two feature structures represented as DAGs as input. The
algorithm moves through the attributes (arcs) of one DAG and attempts to find a
corresponding attribute in the other. If the attribute of one DAG is found to have no
corresponding attribute in the other, the algorithm adds a directed arc to the deficient DAG
pointing to the missing attribute. To keep the computational costs down - rather than
construct a new DAG from scratch - the algorithm destructively alters the input DAGs to
form the unified structure. Unification fails if any feature structures are found to be
incompatible.

Recall - from Section 3.2.2 - that the general chart parsing algorithm for context-free
grammars involves: (1) constructing an initial agenda and chart; (2) popping edges from the
agenda and - as long as they are not already there - adding them to the chart; (3) applying the
fundamental rule to edges of the chart, pushing any new edges on the agenda; and (4)
hypothesising active edges - based on the current edge and the rules of the grammar - and
pushing these new edges on the agenda.

The general algorithm works in much the same way for unification-based grammars. Apart
from the changes to the fundamental rule we have already mentioned, there is one other
difference. When parsing context-free grammars, we only add edges to the agenda that are
not already present in the chart. When it comes to unification grammars, we only add edges
that cannot be subsumed by edges already present in the chart. To see the reasoning behind
this we will again look at an example.

Suppose we have a chart containing an edge (0, 0, np ~ • det n, F1) where Fl places no
restriction on det, i.e. the path < det head agree number> has the value []. Consider an edge

(0,0, np ~ • det n, F2) where F2 is the same as F1, except that it restricts
< det head agree number> to sg. Hence the latter edge is subsumed by the former. Consider the
situations where
1. The parser adds (0,0, np ~ • det n, F2) to the chart and encounters an edge

(0,1, det ~ a·, F3).
2. The parser adds (0,0, np ~ • det n, F2) to the chart and encounters an edge

(0,1, det ~ all ., F4).

In the first situation, the fundamental rule is applicable to the pair of edges
(0,0, np ~ • det n, F1) and (0,1, det ~ a·, F3) as well as being applicable to the pair
(0,0, np ~ • det n, F2) and (0,1, det ~ a·, F3). Both applications will form identical edges
(0,1, np ~ det • n, Fs) where Fs specifies that < det head agree number> is singular. In the second
situation, the fundamental rule is only applicable to the pair of edges (0,0, np ~ • det n, Fl)
and (0,1, det ~ all ., F4).

28

DSTO-TR-2301

Both situations suggest nothing worthwhile is achieved by adding the edge
(0,0, np ~ • det n, F2) to the chart in the first place; this is because there is a grammatically
similar, but less constrained edge already in the chart. Adding an edge that is subsumed by
another already in the chart just creates unnecessary work for the parser.

The definite clause grammar notation is used to implement PENG's unification-based
grammar and chart parser in Prolog. Before discussing aspects of PENG's grammar and chart
parsing techniques in Section 3.5, we'll provide some Prolog background material and look
briefly at this grammar notation.

3.4 Logic Grammars

Logic grammars refer to grammars written in logic programming languages. Easily the most
common logic grammar formalism is the Definite Clause Grammar (Sterling and Shapiro
1994). This grammar arises from adding features of the programming language Prolog3 to
context-free grammars. In order to describe the Definite Clause Grammar notation in more
detail, we start with some Prolog fundamentals.

3.4.1 Prolog Basics

We should first point out that there are numerous implementations of Prolog: SWI Prolog,
Strawberry Prolog, GNU Prolog, BProlog, etc. Our discussion here is based on the ISO
standard Prolog language. See the reference manual (Deransart, Ed-Dbali et al. 1996) for
details.

As discussed in (Gal, Lapalme et al. 1991; Blackburn, Bos et al. 2003) there are only three
constructs in Prolog: facts, rules and queries. These constructs are built using terms. Terms are
one of the following: an atom, a number, a variable, a complex term, or a list. Atoms are
written in uncapitalised mixed case, whereas variables are written in capitalised mixed case. A
complex term is an atom bracketing a sequence of one or more terms separated by commas.
Some examples include woman (_), height (X), age (42) and
vp (i v (lives) , pp (inDreadsburyMansion)). Here woman, height, age, vp,iv, lives,
pp and inDreadsburyMansi on are all atoms; the atoms woman, height, age, vp, i v and
pp acting as predicates; the lone underscore _ of woman (_) is an anonymous variable which
is left unspecified; X is a variable; and 42 is, well, a number. We will delay describing lists for
a short while.

A Prolog program consists of a set of rules and facts. Rules are of the following form, where p,
ql, q2 and q3 are all complex terms, nested or otherwise. (Note that p may be a nested
complex term.

p :- ql,q2,q3.
This can be read as 'p is true if ql and q2 and q3 are true'. The complex terms ql, q2 and q3
can be thought of as the conditions under which the complex term p is true. A fact is simply a
rule with no conditions, i.e. brother (char les) . It's worth pointing out that any variables

3 Computational linguistics is a classic application for Prolog; the language's inventor, Alain
Colmerauer, was a computational linguist.

29

DSTO-TR-2301

featuring in the right-hand side of a rule do not necessarily have to appear in the left-hand
side, e.g.

grandfather (X, Y) : - father (X, Z) , father (Z, Y) .
Moreover, variables in the left-hand side do not have to appear in the right, e.g.

append([AIXJ,Y, [AIZ]) append(X,Y,Z).
We will explain this last rule shortly.

A program is executed by initiating a query after the prompt? -. Prolog attempts to verify the
query - using the existing rules and facts - and responds with an answer. For example
suppose we have the following Prolog program.

woman (agatha) .
dreary (dreadsburyMansion) .
disinherited (charles) .
gloomy (agatha) :- dreary (dreadsburyMansion) .
schemes (charles) unhappy (charles) .
unhappy (charles) :- disinherited (charles) .

Prolog will respond to the various queries as follows.
?- woman (agatha) .
yes

?- dreary(agatha) .
no

?- woman (X) .
X = agatha
yes

?- gloomy (agatha) .
yes

?- schemes (charles) .
yes

Lists in Prolog come in three varieties: empty, enumerated or head-tail lists. An empty list is
represented by []. In an enumerated list the elements are listed explicitly, e.g. ['n, ... , ti,],

where t; for 1 :0; i :0; n is a term. In a head-tail list ['n I '(2] the element '(I is referred to as the
head of the list, i.e. the first element; and '(2 is the tail, i.e. the rest of the list. Here both '(I and '(2

are terms. We give some example queries featuring head-tail lists below. Note that the empty
list cannot be 'pulled apart' since it has no head.

?- [XIY] = [a,b,c,d].
X a
Y = [b,c,d]

?- [XIY] = [].
no

The rule which we mentioned previously,
append([AIXJ,Y, [AIZ]) :- append(X,Y,Z).

stipulates that ahead-tail list [A I X] appended to Y forms [A I Z] if X appended to Y forms Z.

30

DSTO-TR-2301

A difference list in Prolog represents the difference between two lists and should not be
confused with an actual list. Difference lists are of the form [1'1 X] -x or)1 - 'Y2, where Tis a
term, and)1 and 'Y2 are either variables or the empty list. For example the difference list
[1'1 , 1'2 1 X] - X represents [1'1 , 1'2] and X - [] represents X. The difference lists x-x and [] - []
both represent [] . The first list of a difference list is commonly referred to as the input list, the
second is referred to as the output list. The use of difference lists leads to more concise and
efficient programs, since appending difference lists is much simpler than appending standard
lists. Difference lists can be appended in one step, whereas the number of steps needed to
append two standard lists is equal to the length of the first list.

We can use difference lists when implementing a grammar recogniser; such a program allows
us to check whether strings are grammatically correct with respect to a given grammar. (Note
that a parser shares this feature, but - unlike a recogniser - it also provides us with
information about the syntactic structure of the string.) For example, consider the following
Prolog program.

s(X-Z) :- np(X-Y),vp(Y-Z). 1
np (X-Z) : - det (X-Y) , n (Y-Z) . 2
vp (X-Z) : - cop (X-Y) , adj (Y-Z) . 3
det([theIW]-W). 4
n([groundskeeperIW]-W). 5
cop ([is 1 W] - W) . 6
adj ([drunk 1 W] - W) . 7

The rule at line 1 essentially says that a difference list x - Z is a sentence if (1) the difference
between x and Y is a noun phrase; and (2) the difference between Y and Z is a verb phrase.
The fact at line 4 says that the difference between [the 1 W] and W is the determiner the. We
can query whether a difference list is either a sentence or a noun phrase as follows.

? - s ([the, groundskeeper, is, drunk] - []) .
yes

? - np([the,groundskeeper]-[]).
yes

Feature structures in Prolog are represented as lists of attribute-value pairs. These pairs can be
implemented following the method shown in (Blackburn and Striegnitz 2002). A colon is used
to form the pairs; the attribute is to the left of the colon and the value is to the right. Attributes
are represented by Prolog atoms. Values are atoms, variables, lists, difference lists, or are
themselves attribute-value pairs. For example, the feature structure

[

category nP j
number sg

person 3

is represented in Prolog as [cat: np, num: sg, pers: third] . We write cat, numandpers
instead of category, number and person since the notation is used by PENG. The nested
structure

[

category np j
[
number Sg]

agree
person 3

31

DSTO-TR-2301

is represented as [cat:np ,agr: [num:sg,pers:third]]. There-entrantstructure

r ,::::1 [agree <8>[;erson 3]]l l number sg J
has the following representation

[ag r: [pers:third,num:sg],subj: [agr: [pers:third,num:sg]]]

We won't go into too much detail regarding Prolog unification here; instead we refer the
reader to (Brett 2000). We will mention however that list unification is recursive. The first
elements of both lists are compared, and if they unify, then the second elements are compared,
and so on. As discussed in (Blackburn and Striegnitz 2002) variations to the standard
unification algorithm can be easily implemented. For example, an algorithm can be
implemented such that structures [cat: np, num: sg] and [cat: np] are unified to
[c a t: np, num: sg] , and structures [cat: np] and [num: sg] are unified to
[c a t: np, num: sg]. Moreover, we can implement the algorithm such that it unifies
structures of different attribute orderings. For example we can unify [cat: np, num: sg] and
[num: sg, cat: np] to [cat: np, num: sg]. We pointthis out since PENC implements such a
variation to the standard algorithm.

3.4.2 Definite Clause Grammars

The Definite Clause Crammar (DeC) notation is implemented in most versions of Prolog -
including the ISO standard language - and acts as syntactic sugar for rules and facts featuring
difference lists. Using this notation we can avoid having to keep track of all the difference list
variables. We can rewrite the above Prolog program in DeC notation as follows.

s --> np, vp.
np --> det,n.
vp --> cop,adj.
det --> [the].
n --> [groundskeeper].
cop --> [is].
adj --> [drun k].

Prolog simply translates these DeC rules into the rules and facts of our original program. The
program is queried in the same manner as before.

Since unification can be implemented in Prolog, it is possible to add feature structures to the
DeC rules. For example, consider the following constrained production rule written in the
notation of Section 3.3.

5 ~npvp
< np number> = < vp number>
< np person> = < vp person>

This states that a sentence of the grammar may only be formed if the grammatical number of
the noun phrase agrees with the number of the verb phrase, and the grammatical person of
the noun phrase agrees with the person of the verb phrase. Such a rule can be represented in
DeC notation as

S --> np(num:N,per s :P), vp(num:N,pers:P).

32

We can desugar the DCC rule into an ordinary Prolog rule. Namely
s(X-Z) :- np(num:N,pers:P,X-Y),vp(num:N,pers:P,Y-Z).

Similarly, the production rule
det ~ the

< det agree number> = [1
can be represented in DCC notation as

det(agr:num:_) --> [the].
This DCC rule can be de sugared into the fact

det([agr :num: ,theI W] - W) .

DSTO-TR-2301

We saw previously how to implement a grammar recogniser in Prolog; we'll now look at
implementing a parser. First of all consider a nested complex term such as
s (np (det (the) , n (groundskeeper)) , vp (cop (is) , adj (drunk))). This term captures
the structure of the following tree.

s
/ ~,p np

/~ / ~
det n cop ad}

I I I I
the grounds keeper is drunk

Figure 8: Structure of a complex term

In order to build such complex terms, we simply add extra arguments to the rules. Consider,
for example

sentence(s(NP,VP)) --> nounPhrase(NP),verbPhrase(VP).
nounPhrase(np(DET,N)) --> determiner(DET),noun(N).
verbPhrase(vp(COP ,ADJ)) --> copula(COP),adject i ve(ADJ) .
determiner(det(the)) --> [the].
noun(n(groundskeeper)) --> [groundskeeper].
copu la(cop(is)) --> [is].
adjective (adj (drunk)) --> [drunk].

The grammar builds the parse tree for the grammatical categories on the left-hand side of the
rules out of the grammatical categories on the right. The extra argument s (NP, VP) in the rule
sentence (s (NP, VP)) --> nounPhrase (NP) , verbPhrase (VP) forms a term whose
predicate is sentence and whose first and second arguments are the values of NP and VP
respectivel y.

33

DSTO-TR-2301

The following query asks Prolog to instantiate T with the parse tree for the sentence.
? - sentence(T, [the, g r ounds keeper,is,drunk]-[]).

Prolog replies
T = s(np(det(the),n(groundskeeper)), vp(cop(is),adj (drunk)))
yes

A query such as s entence (T, s - []) returns all parse trees.

A further benefit of the DeC notation is that it allows the user to embed Prolog code and
hence separate out the DeC rules and lexicon. Following our example, we have the lexicon

lex (the, det) .
lex (ground s keeper,n) .
lex (is, cop) .
lex(drunk,adj) .

along with the DeC rules
s --> np, vp.
np --> det,n.
vp --> cop,adj.
det --> [W], {lex(W,det)}.
n --> [W], {lex (W,n) } .
cop --> [W], {lex(W, cop)}.
ad j --> [W], {lex (W, adj) } .

The det rule - with its embedded code in curly brackets - tells us that a determiner can
consist of a list containing a single element W as long as W is a determiner within the lexicon.
The n, cop and adj rules function similarly.

PENC not only implements a separate lexicon and set of DeC rules, it also employs gap
threading. Before looking at aspects of the PENC grammar, we discuss this technique in the
next section.

3.4.3 Gap Threading in Definite Clause Grammars

Cap threading is a technique that - when applied to a context-free grammar - rules out
grammatically incorrect relative clauses. The following description follows from (Blackburn
and Striegnitz 2002). See also (Nugues 2006) and (Meurers 2003) for more discussion. Recall
that a relative clause is a clause that modifies a noun. For example rc labels the relative clauses
in the following strings.

1. the groundskeeper (who Agatha likes)rc
2. Agatha, (who likes the groundskeeper)rc

It is worth noting that we can form these noun phrases from the string
Agatha likes the groundskeeper. Here Agatha is the subject of the sentence and the groundskeeper is
the object. To form String 1 we perform object relativisation: we (1) extract the groundskeeper
from its original position and move it to the front of the string leaving a 'noun-phrase gap' ,
and (2) insert the relative pronoun who between the groundskeeper and the remainder of the
string. Hence we end up with the string the groundskeeper who Agatha likes [gap]. To form the
String 2 we perform subject relativisation: we (1) force a gap between Agatha and the rest of
the string, and (2) insert who between the gap and the remainder of the string. Hence we end
up with Agatha, [gap] who likes the groundskeeper.

34

DSTO-TR-2301

Assuming our context-free grammar contains production rules that account for complete
sentences, we can use the notion of gaps to capture the almost-sentence characteristics of
relative clauses. We'll show how this is done via an example. Suppose we have the following
DCC rules.

s --> np, vp.
np --> pn.
np --> det,n.
vp --> tv,np.
pn --> [agatha].
det --> [the].
n --> [groundskeeper].
t v --> [likes].

Using this grammar we can generate lists of the form [np, likes, np], where np is either the
proper noun agatha or the noun phrase [the, groundskeeper] . Adding the following
four rules allows us to relativise the subject.

np --> det,n,rc.
np --> pn,rc.
r c --> relpro ,vp.
relpro --> [who].

We can generate lists of the form [np, likes, np] and [np, who , likes, np], where np is
agatha, [the, grounds keeper] or [np, who , likes, np]. These generated lists represent
grammatically correct sentences - albeit a little on the repetitive side - but we still can't build
sentences of the form [np, who , np, likes]. If we add the rule

r c --> relpro ,s.
we can generate a list of the form [np, who , np, likes, np], where np is agatha,
[the, groundskeeper] or [np, who , likes, np]. However the sentences these lists
represent don' t make much sense, e.g. [agatha, who , the, grounds keeper , likes,
the, grounds keeper] . In order to relativise the object, we need a way of deleting the last
noun phrase of the list; we do this by introducing gap feature structures.

We add the following rule to our DCC.
np(gap) --> [].

This rule means that an I empty' n p can be used, as long as the noun phrase is constrained by a
gap atom. We rewrite the grammar as follows.

s(G) --> np(nogap), vp(G).
np(nogap) --> pn.
np(nogap) --> det,n.
np(nogap) --> det,n,rc .
np(nogap) --> pn,rc .
np(gap) --> [].
r c --> relpro ,vp(nogap).
r c --> relpro ,s(gap).
vp(G) --> t v ,np(G).
pn --> [agatha].
det --> [the].
n --> [groundskeeper].
relpro --> [who].
t v --> [likes].

35

DSTO-TR-2301

The grammar is constructed such that the value of the G variable constraining the s rule is
either gap or n ogap depending on whether the verb phrase contains an empty noun phrase.
Note also that a sentence cannot consist of an empty noun phrase followed by a verb phrase;
this is not allowed in English. This DCC allows us to generate the desired strings, but it's still
rather limited.

Consider a string such as Charles tells the police about the groundskeeper. We can perform object
relativisation in three different ways: (1) we can form the string the groundskeeper who Charles
tells the police about [gap]; (2) we can form the string the police who Charles tells [gap] about the
groundskeeper; and (3) we can re-relativise string 2, forming the groundskeeper who the police who
Charles tells [gap] about [gap]. Obviously, string 3 doesn't make much sense. In some languages
you can perform multiple extractions/ relativisations, but in English you can't. Hence we need
to factor this new constraint into our grammar; we do this by 'threading' gaps through
difference lists. Consider the following DCC.

s(F-G) --> np(F-F),vp(F-G).
np(F-F) --> pn.
np(F-F) --> det,n.
np(F-F) --> det,n,rc.
np([gapIF]-F) --> [].
rc --> relpro ,s([gapIF]-F).
vp(F-G) --> dv,np(F-H),pp(H-G).
pp(F-G) --> p,np(F-G).
pn --> [charles].
det --> [the].
n --> [groundskeeper].
n --> [poli c e].
dv --> [tells].
relpro --> [who].
P --> [about].

Recall that a difference list represents the difference between the contents of the input and
output lists. A rule such as

np(F-F) --> pn.
tells us that a noun phrase can consist of a proper noun containing no gaps: the input list is the
same as the output list. In the DCC, the difference list F-F is essentially playing the role of
nogap. The rule

np([gapIF]-F) --> [].
tells us that a noun phrase can be empty, and if it is, we need to add the atom gap to the
beginning of the input list. In this case, the difference between the input and output lists is
precisely gap. The rule

rc --> relpro,s([gapIF]-F).
tells us that a relative clause contains a single gap, whereas

pp(F-G) --> p,np(F-G).
tells us that a prepositional phrase may be empty depending on whether the noun phrase is
empty. Hence a gap can be passed 'up' from the noun phrase to the prepositional phrase.
Finally, the rule

vp(F-G) --> dv,np(F-H),pp(H-G).
tells us that it is possible for a verb phrase to contain multiple gaps if both the noun and
prepositional phrases contain gaps. Note however that within a relative clause, a verb phrase

36

DSTO-TR-2301

contains a single gap. In this case, there must be either a gap in the noun phrase or a gap in the
prepositional phrase, but no gap in both. If the difference between F and G is gap then either
(1) the difference between F and H is gap and thus the difference between Hand G is []; or (2)
the difference between F and H is [] and thus the difference between Hand G is gap.

It's worth mentioning that this example grammar is not particularly good since it allows us to
construct full, ungrammatical sentences such as Charles tells about, Charles the the groundskeeper
about and Charles tells about the groundskeeper. It is possible to exclude such sentences by
constraining the grammar such that verb phrases may only contain gaps when in relative
clauses. However to avoid complicating matters, we will not go into further detail here.

3.5 The PENG Grammar

In this section we provide a description of a number of grammar rules in all their feature
laden glory, before concluding the section with a discussion of PENG's incremental chart
parsing techniques.
3.5.1 Grammar Rule Examples

As discussed in Section 2.1, PENG's base lexicon consists of: predefined function words
including determiners, connectives, prepositions and relative pronouns; and approximately
3,000 predefined content words, including nouns, proper nouns, verbs, adjectives and
adverbs.

Below is a typical PENG lexical entry; the entry for the word butler.
lexicon([lex: [butler],syno n: [pantryman]],

[cat: c n,
arg: [ind:I,type:person,agr: [per:third,num:sg,gend:],

c ase :_] ,
con: [obj ([butler] ,I) ,struc(I,atomic)]] ,base).

We'll work through the constraint list backwards. The atom ba s e is used to distinguish lexical
entries that belong to the base lexicon from those that are user-defined.

Thevalue [obj ([butler], I), struc (I, atomi c)] of attribute c o n is a list of conditions
used for the construction of a discourse representation structure. This process is discussed in
detail in Section 3.6.2. For now, the word butler can be thought of as a concept and variable I
can be thought of as an object that falls under this concept. The structure of the object I is
specified as being atomic, i.e. it is an individual object, rather than, say, a member of a group.

The argument attribute arg takes as its value a list of feature structures. The attribute-value
pair c ase: _ specifies that butler has either nominative or accusative case. The attribute-value
pair agr: [per: third, num: sg, gend:_] specifies agreement properties; third person,
singular grammatical number and non-specific gender. The attribute type is used to
distinguish between, say, the sentences Agatha digs a grave and Agatha digs the butler. In the
former sentence, the word grave has type enti ty; whereas in the latter, the word butler has
type pers o n. The attribute-value pair ind: I specifies that the value for the 'index' attribute
ind is the variable I; this specification should not be confused with sequential indexing.

37

DSTO-TR-2301

The attribute-value pair cat: cn categorises butler as a common noun, whereas the pair
synon: [pantryman] indicates the word pantryman can be used as a synonym.

PENG's unification-based grammar currently has about 150 production rules. Below is the
simplified DeC rule for the common noun nO (Schwitter 2004a).

nO ([cat:cn,
arg: [ind:I,type:T,agr:AIRest],
...])
-->

{lexicon([lex:Noun],
[cat:cn,

Noun.

arg: [ind:I,type:T,agr:AIRest],
con: [C3, C2]] } ,

Hence when PENG's chart parser parses a word such as butler, the value of the 1 ex attribute
of the lexical entry (the list [butler]) unifies with the lex attribute of the nO rule (the
variable Noun). Moreover, the conditions obj ([butler], I) and struc (I,atomic)]

unify with the variables C3 and C2. These conditions feature as values of a drs attribute
usually found on the left-hand side of the rule. We have not included this attribute here since
it is somewhat complicated; we discuss it later in Section 3.6.2. The arg feature structure of
the lexical entry unifies with the arg feature structure on the left-hand side of the DeC rule.
The resultant feature structure
arg: [ind:I,type:person,agr: [per:third,num:sg,gend:] ,case: IRest] is
then copied to the right-hand side of the rule.

Below is another simplified example DeC rule which shows that the noun phrase n3 is
composed of a determiner dO and noun n2 (Schwitter 2007a).

38

n3 ([coord: no,
arg: [ind:I,type:T,agr:AIRest],
spec: def,
ana:yes,
para:PI-P4,
tree: [n3,Tl,T2],
gap:n3:G-G,
styp:Y,
snum:N,
...])
-->
dO ([cat:det,

agr:A,
spec: def,
ana:yes,
para:PI-P2,
tree:Tl,
snum:N,
...]) ,

n2 ([cat: cn,
arg: [ind:I,type:T,agr:AIRest],
spec:def,

para:P2-P3,
tree:T2,
gap:n3:G-G,
styp:Y,
snum:N,
... 1) ,

{anaphora_resolution(n3,cn,I, ...) }.

DSTO-TR-2301

Note that we are about to describe a number of attributes - coord, spec, ana, para, tree,
styp, snum - which will not feature in the sequel; we only include them here to give a sample
of the grammar rules.

The coord : no attribute-value pair indicates that a coordinating conjunction at the n3 noun
phrase level is not allowed. The a rg feature structures of the rule indicate that the arguments
of noun n2 are copied upwards to the noun phrase n3. Note the dO and n2 agreement over
variable A. The attribute-value pair spec: def specifies n2, dO and n3 as definite articles, cf
indefinite articles (e.g. a, some and sombody) or quantifiers. The attribute-value pair ana: yes
indicates that the noun phrase may be used anaphorically. Since a definite noun phrase can be
used anaphorically in PENG - along with proper nouns and variables - the lexical entries for
definite determiners are unifiable with ana: yes attribute-value pairs.

The attribute para constructs a paraphrase for the input string, whereas the attribute tree
builds a parse tree during processing time. The attribute gap takes care of gap threading. The
attribute s t yp refers to sentence type, i.e. whether a sentence is a declarative statement or an
interrogative question. The grammar is constructed such that the variable Y will unify with
either decl or into The attribute snum refers to the sentence number, an integer that
identifies the sentence.

The Prolog code in curly brackets tests whether n3 is used anaphorically. The predicate
anaphora _ resolution is triggered when the entire noun phrase has been processed. We
discuss anaphora resolution in more detail in Section 3.6.2. In this later section we also discuss
a number of attributes absent from the above rule; these attributes are used to build the
related discourse representation structure.

In the following section we take a look at PENG's chart parsing approach and also see how the
parser generates look-ahead categories on-the-fly.

3.5.2 Incremental Chart Parsing in PENG

PENG represents an edge of a chart using the notation edge(ID, Vi, Vt, LHS, RHSL)
(Schwitter 2003). Here ID is an integer which acts as a sentence identifier, Vi and Vt are integers
between 0 and n, where n is the number of constituents of the input string; LHS is the non
terminal symbol (i.e. grammatical category) on the left-hand side of the dotted rule labelling
the edge; and RHSL represents the right-hand side of the rule in list form. If RHSL is empty,
then the edge is inactive, otherwise the edge is active. For example an edge (0, 0, 5 ~ • np vp)
written in our usual format can be represented in PENG notation as
edge (0, 0 , s, [np, vp 1) . (Note that we are neglecting the sentence identifier, as well as the
feature structures constraining the grammatical categories of the relevant PENG DeG rule.)

39

DSTO-TR-2301

Edges (0, 2, np ---+ det n .) and (0, 2, 5 ---+ • np • vp) can be represented as edge (0, 2, np, [])
and edge (0, 2, s, [vp]) respectively.

In Section 3.2.2 we showed how a top-down chart parser constructed a chart for the input
string the butler acts suspiciously. Using the new PENG notation, the final chart contained the
following edges:

edge (0, 0, s, [np, vp])
edge (0, O,np, [det,n])
edge (0, l,np, [n])
edge (0,2, np, [])
edge (0 , 2, s, [vp])
edge (2, 2,vp, [iv, adv])
edge (2, 3,vp, [adv])
edge (2, 4 , vp, [])
edge (0 , 4 , s, [])
edge(O,O,np, [det,n,rc])
edge (0, l,np, [n, rc])
edge (0,2, np, [rc])
edge(2,2,rc, [relpro,vp])

Without having to re-process the entire sentence, the parser - as we have described it - is
unable to handle modifications to the input string. In contrast, an incremental chart parser can
handle modifications such as insertion, deletion and replacement, without having to re
process the entire string from scratch. Such a parser uses information about edge
dependencies for keeping track of edges that have to be updated (Wiren 1989; Wiren 1994).

In the sequel we follow the description outlined in (Schwitter 2003) and show how PENG's
incremental top-down chart parser handles the modification of the input string the butler acts
suspiciously. The final chart for the string is presented below. For readability we ignore the
inactive edges edge(O,l,det, []), edge(1,2,n, []), edge(2,3,v, []), and
edge (3,4, adj, []) .

np ~ • det n rc

vp ~iv.adv

o 1 2 3
the butler acts suspiciously

Figure 9: Parse Chart

40

4

DSTO-TR-2301

Suppose we insert the relative pronoun that between the noun and verb phrase. The PENG
incremental parser informally performs the following steps.
1. Find all edges on the right-hand side of the insertion point 2, i.e. all those edges with start

point greater than or equal to the insertion point, and create a new subchart CR for them.
Do not include the empty edge at the insertion point featuring the grammatical category of
the word to be inserted, i.e. edge (2,2, re, [relpro, vp]) .

2. For all edges in CR, renumber their start and end points Vs+l and Vt+l.

3. Find all non-empty edges on the left-hand side of the insertion point, i.e. all those edges
with start point less than the insertion point and end point less than or equal to the
insertion point, and create a new subchart CL for them. Include in CL
edge(2,2,re, [relpro,vp]).

4. Create a new chart C by appending CR to the end of CL
5. Create new hypotheses - in the form of active edges - beginning at the insertion point for

the word that.
6. Reparse the string using only the new edges in the agenda and the new chart C.
Note that this algorithm removes edge (0, 5, s, []) from the chart. This is the only edge
that spans the node where the word that would be inserted. Having followed the algorithm,
the parser generates four new edges.

edge (2, 3, re, [vp])
edge (2, 5, re, [])
edge (0,5, np, [])
edge (5,5, vp, [iv, adv])

The parser also modifies the following four edges (modifications are in bold face).
edge(3,3,vp, [iv,adv])
edge(3,4,vp, lady])
edge (3, 5, vp, [])
edge (0 , 5, s, [vp])

PENG's chart parser implements similar algorithms for deletion and replacement operations.
Another function of the parser is that it dynamically generates look-ahead categories for each
word form. This guides the author and guarantees compliance to the rules of the controlled
language. As defined in (Schwitter 2003), a set of look-ahead categories LC for a word w
ending at node V i can be found by following the procedure below.
1. Find all active edges ending at V i.

2. For each active edge select the RHSL.
3. For the first category in RHSL check if it is a lexical category or non-terminal symbol.

a. If yes, store the category in LC.
b. If no, find a rule which rewrites the category into further subcategories, then

select the first category and return to 3.
(Note that grammatical categories can be further subdivided into lexical categories, i.e. det, n
and iv, and phrasal categories, i.e. np, vp and pp.) As each word form is entered into the text
field of PENG's text editor ECOLE, the parser generates the set of look-ahead categories and
sends them to the ECOLE editor.

41

DSTO-TR-2301

3.6 Discourse Representation

As mentioned previously, PENG's chart parser translates input text into a Discourse
Representation Structure (DRS). A DRS is then translated into formulae of first-order logic
which can be checked for consistency, informativity and/ or used for question-answering by
third-party reasoning services. In this section, we give a brief introduction to discourse
representation theory and informally describe the standard DRS construction algorithm. In
Section 3.6.1 we show how a DRS can be translated into first-order logic. Section 3.6.2
describes how PENG's chart parser constructs DRSs on-the-fly. The following descriptions of
discourse representation is derived from (Blackburn and Bos 1999).

Consider the discourse A gun discharges. The gun falls (by discourse we mean a sequence of
natural language sentences). In order to capture the meaning of this discourse, we could try a
first-order representation such as ::Jx. Gun(x) /\ Discharges (x) /\ Falls(x). (Note that in
first-order representations we are not permitted to quantify over predicates; such
quantifications are allowable in higher-order representations.) We can see that
::Jx. Gun(x) /\ Discharges (x) /\ Falls(x) captures the fact that The gun refers back to A gun. In
linguistic terms, the anaphor is said to have been resolved. Anaphora is an instance of one
expression referring back to another (Mitkov 2003; Burchardt, Walter et al. 2005). In our
example, the pronoun The gun is an anaphor, A gun is the antecedent, and A gun and The gun
are said to be co-referential. (Note that often anaphors are personal pronouns such as He, She,
They and It; since these are illegal in PENC, we will not feature them in our discussion here.)
Importantly, our first-order representation does not capture how the discourse works. We are
first told that a gun discharges; the subsequent discourse tells us a fact about the gun, namely
that it falls. Essentially, the sentence A gun discharges changes the context in which subsequent
discourse is interpreted. The first-order representation fails to capture this change of context.
It puts the two facts - the gun discharging and falling - on equal footing, which does not
entirely accord with our understanding of the text.

In Discourse Representation Theory (DRT), the meaning of a sentence is defined by how it can
change contextually. Structures are built on-the-fly, providing a more accurate reflection of
contextual change within discourse. Hans Kamp and Uwe Reyle's standard DRS construction
algorithm is outlined in (Kamp and Reyle 1993; Blackburn and Bos 1999). We will only
provide an informal description here. The algorithm begins by receiving the first sentence and
works around the parse tree of that sentence in a top-down, left-to-right approach. As an
example, consider the construction of the DRS for the discourse A gun discharges. The gun falls.
For the first sentence A gun discharges we have the following parse tree.

S

------ --------np vp
/ ~ I

det n iv
I I I

A gun discharges

42

DSTO-TR-2301

At the top of the parse tree the construction algorithm creates an empty DRS.

The algorithm then works down from 5 to the np node. Upon identifying the existentially
quantified noun phrase a variable x is added to the top section of the DRS. Such a variable is
called a discourse referent. The top section of the DRS is called the universe. Moving around
the tree to the n node, the word gun is found. The algorithm places the expression Gun(x) in
the bottom section of the DRS. The expression is termed a condition and has the meaning that
referent x is constrained by the concept Gun. The algorithm then moves back up to 5 and then
down to the vp sub-tree. Here the verb phrase consists of the intransitive verb discharges. A
further constraint is made on x and the condition Discharges(x) is added to the bottom section
of the DRS. Thus far the algorithm has constructed the following DRS.

x
Gun(x)
Discharges(x)

The second sentence The gun falls generates the following parse tree.

S ----- np vp
/ ~ I

~t n ~
I I I

The gun falls

The algorithm adds the information obtained from the second sentence to the DRS already
constructed. It moves from node 5 to node np. Upon identifying the noun phrase, the
algorithm adds a new discourse referent y to the universe of the DRS. Moreover, since the
noun of the noun phrase has been encountered before, the algorithm treats the word as
anaphoric and adds the condition y = ? to the bottom section of the DRS. The question mark
must be identifiable with an accessible referent. We will discuss the accessibility of referents
shortly. Since there is only one accessible discourse referent available, namely x, the algorithm
substitutes? with x. Essentially, the condition y = x resolves the pronoun The gun with its
antecedent A gun. The algorithm then works around to the vp sub-tree. Upon identifying the
intransitive verb falls, it adds the condition Falls(y) to the bottom section of the DRS. We then
have the final structure.

x If
Gun(x)
Discharges(x)
y=x
Falls(lf)

43

DSTO-TR-2301

The algorithm handles proper nouns in much the same way as it handles existentially
quantified noun phrases. Consider the following parse tree.

S

/ ~
np vp
I I
pn iv
I

Agatha screams

The algorithm builds the DRS

x
x = agatha
Screams(x)

The noun phrase introduces the discourse referent x and identifies it with the constant agatha.

A vocabulary of a DRS language is comprised of
A unique set of predicate symbols of arity n such that n ~ 1. These symbols are
denoted using capitalised mixed case, or more generally using P, Q and R.
A unique set of constant symbols. These symbols are denoted using uncapitalised
mixed case, or more generally using a, b and c.
A unique set of function symbols of arity m such that m ~ 1. These are denoted using
uncapitalised mixed case, or more generally usingj, g and h.

Given a particular vocabulary, we build a DRS language over that vocabulary together with
the following elements.

A finite set of discourse referents, denoted using x, y and z with subscripts.
The connectives -, (not), v (or) and => (implication).
Left and right parenthesis and the comma.
The equality symbol =.

A term is a constant, a discourse referent, or a function of m terms where m ~ 1. A primitive
condition is a predicate of n terms where n ~ 1. If 1"1 and 1"2 are terms, then 1"1 = 1"2 is also a
primitive condition. Formally, a DRS condition is defined as follows.

A primitive condition is a DRS condition.

If Bl and B2 are DRSs, then Bl => B2 and Bl v B2 are DRS conditions.

If B is a DRS, then -,B is a DRS condition.

Nothing else is a DRS condition.

We now can formally define a DRS. If Xl, ... , Xn are discourse referents and Cl, . . . ,ell are DRS
conditions where both n ~ 1 and m ~ 0, then the following is a DRS.

44

DSTO-TR-2301

We will delay discussing the semantics of the DRSs B, Bl => B2, Bl V B2 and -,B until the next
section. For now, consider the parse tree below.

s

-----
np vp

/ ~ I
det n iv

I I I
Every gun discharges

In order to build the DRS for this sentence, the algorithm creates an empty DRS at 5 and
works down to the np node. Upon identifying the universally quantified noun phrase, the
algorithm embeds a condition Bl => B2 in the bottom section of the empty DRS. Here Bl is a
DRS with no conditions and the sole discourse referent x and B2 is an empty DRS. After
encountering the word gun at node n, the algorithm adds the condition Gun(x) to DRS Bl . The
algorithm then moves back up to 5 and down to the vp sub-tree where it encounters the
intransitive verb discharges. Here it adds the condition Discharges(x) to DRS B2• We have the
following DRS.

I ~un(x) => I Discharges(x)

In a previous example, the standard construction algorithm added a new discourse referent y
and the condition y = ? to a DRS when it came across a pronoun. According to the rules of
DRS construction, the question mark must be identifiable with an accessible discourse
referent. We say that a DRS Bl is accessible from DRS B2 when either Bl is identical to B2, or Bl
subordinates B2• A DRS Bl subordinates a DRS B2 if and only if one of the following items
holds.

1. Bl contains a DRS condition of the form -,B.

2. Bl contains a DRS condition of the form B2 => B for some DRS B.

3. Bl => B2 is a DRS condition of some DRS B.

4. Bl contains a DRS condition of the form B2 v B or B v B2 for some DRS B.

5. There is some DRS B such that Bl subordinates Band B subordinates B2•

Intuitively, Bl is accessible from B2 if either Bland B2 are the same DRS, or if B2 is nested within
Bl .

45

DSTO-TR-2301

We say that a discourse referent x belonging to a DRS B1 is accessible from a discourse referent
y belonging to a DRS B2 if and only if B1 is accessible from B2 • For example, suppose we
construct a DRS for the discourse Every gun discharges. The gun falls. We have already seen the
DRS built for the first sentence Every gun discharges. As the algorithm works it way through
the parse tree of the second sentence, it identifies the noun phrase The gun and adds a new
discourse referent y to the universe of the DRS. Since the noun of the noun phrase has been
encountered before, the algorithm adds the condition y = ? to the DRS. Since there is no
accessible discourse referent from y - the only possible candidate is x and it is not accessible
from y - then there is no correct anaphoric interpretation for The gun. Lastly, the algorithm
identifies the verb falls and adds the condition Falls(y) to the DRS. We have the final structure.

y

I ~un(x)
y=?
Falls(lJ)

=> I Discharges(x)

3.6.1 Discourse Representation and First-Order Logic

In this section we present a DRS translation to First-Order Logic (FOL). Before describing the
translation, we give a quick recap of FOL from a model-theoretic standpoint. We also discuss
a dynamic semantics for DRSs. Much of the section follows from (Blackburn and Bos 1999;
Blackburn and Bos 2005).

A vocabulary of a first-order language is comprised of

A unique set of predicate symbols of arity n such that n ~ 1. These symbols are
denoted using capitalised mixed case, or more generally using P, Q and R.

A unique set of constant symbols. These symbols are denoted using uncapitalised
mixed case, or more generally using a, b and c.

A unique set of function symbols of arity m such that m ~ 1. These are denoted using
uncapitalised mixed case, or more generally usingj, g and h.

Informally, a vocabulary tells us two things: what we're going to talk about and how we're
going to talk about it. For example suppose we have the constant symbol charles and the unary
predicate symbol Corpse in our vocabulary. Then we are able to talk about the individual
Charles and/ or the property of being a corpse. Furthermore, we use the symbol charles to refer
to Charles and Corpse to refer to any corpses.

Given a particular vocabulary, we build a first-order language over that vocabulary together
with the following elements.

46

An infinite set of variable symbols, denoted using x, y and z with subscripts.

The connectives -, (not), /\ (and), v (or) and => (implication).

The quantifiers \j (universal) and ::J (existential).

Left and right parenthesis and the comma.

Usually an equality symbol =.

DSTO-TR-2301

A term of a first-order language is a constant symbol or a variable. Moreover, if fis a function
symbol of arity m and 'il , . . . , 'r, 1l are terms, then f('il, . . . , 'r, 1l) is also a term. If P is a predicate
symbol of arity nand 'il, . . . , 'r" are terms then P('il, . . . , 'r, ,) is said to be an atomic formula. If the
equality symbol = is considered part of the language and if 'il and 'i2 are terms, then 'il = 'i2 is
also an atomic formula. A well-formed formula (or WFF, or simply 'a formula') is defined as
follows.

An atomic formula is a WFF.

If cp and fII are WFFs, then --, cp, cp /\ fII, cp v fII, cp -:::':.> fII are WFFs.

If cpis a WFF and x is a variable, then \fx. cp and ::Jx.cpare WFFs.

Nothing else is a WFF.

A formula can be thought of as a description. There are two more points worth noting about
first-order formulae. First, quantification is permitted only over variables; this is what
distinguishes FOL from higher-order logic. Second, a variable occurrence is said to be bound
in a formula if it lies within the scope of a quantifier, otherwise is it said to be free.

Essentially, terms can be thought of as first-order versions of noun phrases: constants can be
thought of as first-order versions of proper names, whereas variables can be thought of as
pronouns. In natural language terms, an atomic formula corresponds to a sentence without
the conjunctions and or or. A formula built using --, corresponds to an expression It is not the
case that .. . A formula built using /\ corresponds to an expression .. . and .. . , whereas a formula
built using v corresponds to .. . or .. . A formula using -:::':.> corresponds to the expression
If. . . then .. . Formulae of the form \fx.cpcorrespond toAll .. . or Every .. . , whereas formulae of the
form ::Jx.cpcorrespond to There is a .. .

A model for a given vocabulary can be thought of as a situation. Formally, a model M for a
given vocabulary is a pair (O,F) specifying a non-empty domain 0 and an interpretation
function F. The domain contains the kinds of things we want to talk about, e.g. individuals,
places or objects. The interpretation function specifies for each symbol in the vocabulary a
semantic value in the domain. Essentially, it provides an 'interpretation' for each symbol in the
vocabulary. Each constant symbol a is interpreted as an element of the domain, i.e. F(a) E O.
For example F(agatha) is some element of 0, which we can specify as somebody called Agatha.
Each predicate symbol P of arity n is interpreted as an n-ary relation over the domain, i.e.

F(P)cOx .. . xO
- '--------v-----

II ti llles

For example F(Corpse) is some subset of 0, which we can specify as the set of corpses within
the domain. Another example is F(HasMotiveToMurder) which is some subset of 0 x 0 , which
we can specify as being the set of pairs of people in the domain where the first person in the
pair has a motive to murder the second. Each function symbol f of arity m is interpreted as an
m-ary function over the domain, i.e.

F(j)c Ox .. . xO ~O
- '--------v-----

/I. tillles

For example F(KillerOj) is some function 0 ~ 0, which we can specify as being the function
which maps a person to his or her killer.

47

DSTO-TR-2301

Note that there can be multiple models for a given vocabulary with differing domains and
interpretation functions.

Given a particular vocabulary, a model for that vocabulary and a formula over that
vocabulary, we are interested in making some kind of evaluation of the formula (description)
with respect to the model (situation). So far we have only seen how vocabulary elements are
to be interpreted. In order to interpret the variables of our first-order formulae, we introduce
an assignment function a which maps from the set of variables to the model domain, i.e.
a(x) E 0 for variable x and domain O. This function, by mapping variables to elements in the
domain, can be thought to assign contextual information. We then are able to talk about the
'satisfaction' of a formula in the model with respect to a particular assignment function. Before
we can formally define the notion of satisfaction, we give two further definitions.

Let M == (O,F) be a model and let a be an assignment function which maps variables to
elements in O. Let t"be a term. We denote the 'interpretation of t"with respect to F and d as

I ; (t") and define it as follows.

I ; (t") == F(t") if t"is a constant or function

aCt") if t"is a variable

Now suppose fJis another assignment function which maps variables to elements in O. Let
x, y, Z, . .. be the infinite set of variables of our first-order language. Suppose fJ(x) *- a(x).
Suppose however that for each and every variable distinct from x, fJ(Y) = a(y) and J5..z) = a(z),
etc. Then we say fJis an x-variant of a. Variant assignments allow us to tryout new values for
a given variable (say, x) while keeping the values assigned to all other variables the same. We

now define the relation M, a 1= rp (which can be read 'formula rpis satisfied in M with respect to
assignment d) as follows.

M,a 1= P(t"\, ... , t"n) iff U; (t"\), .. . ,1; (t"J) E F(P)

M,a I=-,rp iff not M,a 1= rp

M,a 1= rp /\ lj/ iff M, a 1= rp and M, a 1= lj/

M,al=rpvlj/ iff M,al=rp or M,al=lj/

M,a 1= rp ~ lj/ iff not M,a 1= rp or M,a 1= lj/

M,a 1= Vx. rp iff M, fJ 1= rp for all x -variants fJ of a

M,a 1= 3x. rp iff M, fJ 1= rp for some x-variant fJ of a

M,al=t"\=t"2 iff I ; (t"\) = I ; (t"2)

The symbol 1= is usually referred to as the satisfaction relation. Note that if term t"is of the

form f(t"l, ... ,t"III) for a function f of m terms, then I;(t") is defined to be

F(f)U; (t"\), ... , I ; (t"m)).

Since a vocabulary may have many possible models, a formula over that vocabulary may be
satisfied in one model and not in another. We write the set of all possible models over a given
vocabulary as :J.1. We say a formula is satisfiable if it is satisfied in at least one model of :J.1
(with respect to a given assignment function) and unsatisfiable otherwise. This notion can be
extended to finite sets of formulae. A finite set of formulae {1jJl, .. . ,rpll} is satisfiable if IjJl /\ ... /\ rpll

48

DSTO-TR-2301

is satisfiable. Similarly {CjJ1, . • . , 911I} is unsatisfiable if CjJ1 /\ ••. /\ 9111 is unsatisfiable. Essentially,
satisfiable formulae can be thought of as describing conceivable, possible, or realisable
situations. Unsatisfiable formulae describe inconceivable, impossible situations. A simple
example of an unsatisfable formula is 91 /\ --, 91.

We say a formula is valid if it is satisfied in all models of :M given any variable assignment,

and invalid otherwise. The notation 1= 91 is used to indicate that a formula 91 is valid. A simple
example of a valid formula is 91 v --, 91. In logic, validity is often considered in terms of logical
arguments or inferences. We say that an argument with premises CjJ1, . • . , 9111 and conclusion fj/is
valid if and only if whenever all the premises are satisfied in some model, using some variable
assignment, then the conclusion is satisfied in that same model using the same variable

assignment. We use the notation CjJ1, .•. ,9111 1= fj/ to indicate that the argument with premises
CjJ1, .•. ,91" and conclusion fj/is valid. We also say that fj/is a logical consequence of CjJ1, .•. , 9111, or

that CjJ1, .•. , 9111 logically entails fj/. (Here the 1= symbol refers to a semantic entailment relation

rather than a satisfaction relation; the overloading of the symbol 1= is traditional.) Importantly,

every valid argument CjJ1, .•. , 911I 1= fj/ corresponds to the valid formula 1=CjJ1 /\ ••. /\ 9111 => fj/.

Moreover, two formulae 91 and fj/ are said to be logically equivalent if and only if both 91 1= fj/

and fj/ 1= 91.

We want to describe a DRS language translation to a first-order language built over the same
vocabulary. In order for such a translation to make sense, we need to interpret both languages
in the same way over the same model. Hence we need to define an interpretation for DRSs
that (ideally) makes use of the same semantic machinery as first-order languages.

Suppose we have a model M == (O,F) for a given DRS vocabulary, then we define an
embedding in M as a function which maps from the set of discourse referents to O. Intuitively,
the embedding assigns context. (The function is called an embedding since it can be thought
of as embedding the DRS within M. Since discourse referents are DRT terminology for
variables, an embedding is simply an assignment function.) We distinguish between the
semantics of conditions and the semantics of DRSs. The semantics of DRS conditions is treated

statically. The relation M, a 1= C has the meaning that condition C is satisfied in a model M
with respect to embedding a. The semantics of DRSs is treated dynamically. Since DRSs are
designed to capture contextual change, we reflect this in the semantics by introducing two
embed dings: the input and output embedding. We use the notation a[xl, ... ,xlI],8to indicate
that ,8 differs from a only in the values it assigns to the discourse referents Xl , . . . ,xlI ; this is just

a n-places version of a variant assignment described earlier. We define I; (,) - the

interpretation of term ,with respect to F and a - as F(,)if ,is a constant or function, and a(,)

if ,is a discourse referent. The relation M, a,,81= B has the meaning that DRS B is satisfied in M
with respect to the embed dings a and ,8. The satisfaction relation is defined as follows.

49

DSTO-TR-2301

M ,al='j ='2
M , al=---,B

M , al=Bj V B2

M , al=Bj ~B2

Finally,

M , a , /l 1=

iff

iff

iff

iff

iff

U; ('j), ... ,1; ('n)) E F(P)

1; ('j)=1;('2)

for all f3, not M ,a , /l 1= B

there is a,8suchthat M,a , /lI=Bj or M,a,/lI=B2
for all ,8 such that M , a , /l 1= Bj there is a 6

such that M , /l,61= B2

The first two relations are self-explanatory. The third relation says that condition -,B is
satisfied inM with respect to context a when it is not possible to update DRS B in context ato
a new context ,8 such that B is satisfied in,8. The relation for disjunctive conditions says that
BI v B2 is satisfied in M with respect to context a if we can update either DRS BI or DRS B2 in
context a to a new context ,8 such that respectively, BI or B2is satisfied in,8. The relation for
implicational conditions says that BI => B2 is satisfied in M with respect to context a if for any

context,8(where ,8is such that DRS BI in context a can be updated to ,8and M, a,,81= BI) there

is a context Ssuch that DRS B2 in,8can be updated to Sand M, a, S 1= B2 • The final relation says
that an updated DRS (with discourse referents Xl, . . . ,X" and conditions CI , . . . , c",) is satisfied in
M with respect to input context a and output context ,8if ,8 differs from a only in the values it
assigns to Xl, . . . ,x" and if each condition CI , . . . ,Cll , is satisfied in M with respect to ,8.

We say a DRS B is dynamically satisfied in a model M with respect to an embedding a if and

only if there is an embedding ,8 such that M, a,,81= B. If B is dynamically satisfied inM with

respect to a, we write M,a, 1= B.

We now follow (Blackburn and Bos 1999) and show how to translate DRSs into formulae of
(full) FOL with equality. We define a translation functionfo which maps a DRS built over
some vocabulary into formulae of the first-order language built over that same vocabulary.

The translation functionfo is satisfaction preserving, namely, M, a, 1= B iff M,a, 1= fo(B). We
won't prove this here; instead we refer the interested reader to (Blackburn and Bos 1999).

A general DRS is mapped to the following FOL formula.

foe

50

DSTO-TR-2301

If there are no conditions in the condition set, then the translation is ::lX1, . . "XlIT where T can

be thought of as an atomic formula which is always true in any given model with respect to
any given assignment. If the DRS has an empty universe, i.e. it has no discourse referents, then

the translation is fo(C1) /\ ... /\ fo(c",). Hence the translation of an empty DRS is T .

Primitive conditions are simply mapped to themselves.
jo(P(,], .. ·,Tn)) == P(,], ... ,'rn)

jo(,] ='2) == '] ='2
Complex conditions involving the connectives --, and v are mapped such that the translation
function is pushed in over the connective.

jo(-,B) == -fa (B)

jo(B] v B2) == jo(B]) v jo(B2)

Complex conditions involving => are translated as follows.

jo(

If there are no conditions in the condition set of the antecedent, then the translation is

'\IX1, .. "XII (T => fo(B)) which is logicallyequivalentto '\IX1, .. " XII . T => fo(B)). If the DRS has an

empty universe, then the translation is fo(C1) /\ ... /\ fo(Cm) => fo(B). Hence if the antecedent DRS

is empty then we obtain the translation T => fo(B)) which is logically equivalent to fo(B).

3.6.2 DRS Construction in PENG

As outlined in (Schwitter 2004a; Schwitter and Tilbrook 2004b), a DRS is represented in PENG
as the Prolog term dr s (U, Con) consisting of a list u of discourse referents [I1, 12, ... , In]
and a list Con of conditions [C 1, C2 , ... , Cn] . The primitive conditions of a PENG DRS can
only be formed using the predicate symbols obj, struc, named, pred, evtl, prop and
role. For example, a DRS condition such as Gun(I) is represented in PENG as a Prolog list of
two conditions [obj ([gun], I), struc (I, atomic)]. (Note this list is the value for the
con attribute in the lexical entry for the noun gun.) Here the discourse referent I denotes an
object with an atomic structure which falls under the concept gun. By describing concepts
using a limited set of metadata predicates, PENG avoids having to introduce a predicate for
every concept. It thus avoids having to perform higher-order quantification by quantifying
over predicates. Ultimately, simpler DRSs are constructed, which in tum creates less work for
the inference tools.

DRS conditions derived from nouns describe objects. Further PENG examples include:
[obj ([police],I),struc(I,group)] and [obj ([blood],I),struc(I,mass)].
Lexical entries for proper nouns contain conditions describing a name, for example
[named ([aga tha] , I) , struc (I, atomic)]. A name is assigned a structure.

51

DSTO-TR-2301

DRS conditions derived from verbs describe eventualities. An eventuality can be classified as
either an event or state. Each verb introduces an additional discourse referent representing
that event or state. Event verbs denote a change in time whereas state verbs express static
properties. The transitive verb suspects is represented [pred(E,[suspects],
11, 12) , evt 1 (E, even t)] . Here suspects is in the context of the detective suspects Agatha. A
transitive verb has is represented inPENG as [pred (5, [has] ,I1, 12) ,evtl (5, state)].
Here has is in the context of the detective has a trenchcoat.

Lexical entries for adjectives contain a single DRS condition, e.g. [prop ([dange rous] , I)] .
DRS conditions for adverbs have an additional condition which specifies their role, e.g.
[prop (M, [allegedly] , I) , role (M, manner)]. For further discussion on the flattened
notation for primitive DRS conditions see (Schwertel 2005).

We saw in Section 3.6 how the standard DRS construction algorithm builds a DRS from a
sentence and its corresponding parse tree. The algorithm moves around the tree top-down,
left-to-right, gathering the semantic information of the various sentence constituents at each
node and placing this information into a DRS. The DRS is then used as the context for
processing the second sentence, and so on. The construction algorithm employed by PENG
takes a slightly different approach: it uses the concept of DRS threading (Blackburn and Bos
1999). Here imagine an algorithm which slides a DRS from node to node top-down, left-to
right. When the DRS slides over a node - or in other words, when the node threads through
the DRS - the node places the semantic information held at that location within the DRS. We
can think of an incoming and outgoing DRS existing at every node. The difference between
the two DRSs is exactly the information that is contributed at each node.

The relationship between an incoming and outgoing DRS is modelled by a Prolog difference
list Dr sIn - Dr sOu t. (Recall from Section 3.4.1 that a difference list is a pair of lists - the first
the input list, the second the output list - whereby the information of interest is the difference
between the two lists.) Hence the incoming DRS is represented by the input list OrsIn, and
the outgoing DRS is represented by the output list OrsOut. Consider, for example, the
parser's processing of the noun butler. Recall from Section 3.5.1 that we have the following
simplified lexical entry.

lexicon([lex: [butler],synon: [pantryman]],
[cat:cn,
arg: [ind:I,type:person,agr: [per:third,num:sg,gend:],

case :_] ,
con: [obj ([butler], I) ,struc (I,atomic)]] ,base).

From the same section we have the following simplified production rule. Note that here we
have included the dr s attribute for the first time.

52

nO ([cat:cn,
arg: [ind:IIRest],
drs: [drs(Ul,Cl) IO]-[drs([IIU1], [C3,C2ICl]) 10]])

-->
{lexicon([lex:Noun],

[cat:cn,

Noun.

arg: [ind:IIRest],
con: [C3, C2]] } ,

DSTO-TR-2301

During processing, the chart parser unifies the can attribute-value pair of the lexical entry and
the production rule. Hence ob j ([butler] , I) and struc (I, atomic) are unified with the
variables C 3 and C2 . These variables are then added in the outgoing DRS list to the conditions
C1 of the incoming DRS. The discourse referent I is added in the outgoing DRS to the
universe U1 of the incoming DRS. Hence we have an ingoing DRS with a list of discourse
referents U1 and a list of conditions C1; and an outgoing DRS such that the referent I heads
the list (with tail U1), and conditions C3 and C2 head the list (with tail C1) .

Consider a similar example: the processing of the verb argue. We have the following
simplified lexical entry.

lexicon ([lex: [argue] , synan : []] ,
[cat:tv,
arg: [ind:I1IRest],arg: [ind:I2IRest],
can : [pred (E, [argue], 11, 12), evtl (E, event)]] ,base) .

We have the following simplified production rule (Schwitter 2004a).
vO ([ca t : tv,

arg: [ind:I1IRest],arg: [ind:I2IRest],
drs : [drs(U1,C1) ID]-[drs([EIU1], [C3,C2IC1]) ID]])
-->

{lexicon([lex :Verb],

Verb .

[cat:tv,
arg: [ind:I1IR],arg: [ind:I2IRest],
evtl:E,
can : [C3, C2]] } ,

During processing, the chart parser unifies the can attribute-value pair of the lexical entry and
the production rule. Hence pred (E, [argue], I1, 12) and evtl (E, event) are unified
with the variables C3 and C2 . The variables are then added in the outgoing DRS list to the
conditions C1 of the incoming DRS. The variable E representing the eventuality is added to
the list of discourse referents U1 of the outgoing DRS.

The chart parser's processing of determiners is of particular interest. Here's the simplified
production rule for the determiner the (Schwitter and Tilbrook 2004b). (The determiner the is a
definite article; its definiteness is specified by the spec : def attribute-value pair.)

dO ([cat:det,
arg: [agr:GIRest],
spec : def,
drs :D1-D3,
res: [drs([], []) ID1]-D2,
sco : D2 -D3])
-->

{lexicon([lex :Determiner] ,
[cat:det,

arg: [agr:GIRest],
spec:def])},

Determiner.
Within a sentence, each determiner includes two arguments: a restrictor and a scope,
represented by the attribute res and sea respectively. The restrictor consists of the remaining
noun phrase. The scope consists of the rest of the sentence outside the noun phrase. Since a

53

DSTO-TR-2301

definite noun phrase may be used anaphorically, the chart parser builds a store DRS while
processing the phrase. This initially empty DRS drs ([] , []) is placed in front of the
restrictor's incoming DRS 01. As the noun phrase is processed, the store collects all the
discourse referents and conditions for the noun phrase. Once the entire noun phrase has been
processed, the store can be accessed by the anaphora resolution algorithm. After anaphora
resolution, the restrict or' s outgoing DRS 02 will contain the resolved DRS conditions that are
then passed to the scope's incoming DRS. After processing the verb phrase, the scope's
outgoing DRS 03 will contain the semantic information for the entire sentence. We can see this
process taking place if we unify the above rule with the simplified version of the n3 rule
presented earlier in Section 3.5.1.

n3 ([000'
arg: [ind:IIRest],
drs :O,
seo:S,
000])

-->
dO ([0 0 0'

drs : 0,
res:R1-R3,
seo : S,
o 0 0]) ,

n2 ([cat: en ,
arg: [ind:IIRest],
drs :R1-R2 ,

o 0 0]) ,

{anaphora_reso1ution(n3,en,I,R2,R3, 0 0 o) } o

We see tha t the ingoing restrictor R 1 (having been unified with [dr s ([] , []) 1 01]) is passed
to n2 where the remaining semantic information of the noun phrase is accumulated. Once the
entire n3 noun phrase has been processed, the outgoing DRS R2 of n2 will have the form
[B 1 01] where B is the DRS representing the noun phrase, and D1 is the ingoing DRS of the
determiner. The anaphora resolution algorithm of n3 checks whether B is accessible from 01.
After anaphora resolution, the restrict or' s outgoing DRS R3 (having been unified with 02) will
contain the resolved DRS conditions which are then passed to the scope's incoming DRS.
(Note that the seo : S attribute-value pair of the n3 rule unifies with the seo: 02 - 03 pair of
the determiner's lexical entry.)

We next consider the processing of the indefinite determiner no. It is used in the context no
detective smokes a pipe. Here's a production rule for such a determiner (Schwitter and Tilbrook
2004b).

54

dO ([eat:det,
arg: [agr:GIRest],
spee:no,
drs:01-[drs(U1, [drs(U2,C2)->drs([], [-drs(U3,C3)]) IC1]) 103],
res: [drs([], []) 101]-02,
seo: [drs([], []) 102]-[drs(U3,C3),drs(U2,C2),drs(U1,C1) 103])
-->

{lexieon([lex:Oeterminer],
[eat:det,

arg: [agr:GIRest],

DSTO-TR-2301

spec : no 1) } ,
Determiner.

During processing, the chart parser places a store DRS dr s ([1 , [l) in front of the restrictor's
incoming DRS D 1. This initially empty DRS collects all the discourse referents and conditions
for the noun phrase. The scope then takes the restrictor's outgoing DRS D2 and again places
an empty DRS before it. This store DRS collects all the discourse referents and conditions
outside the noun phrase. The DRS for the restrictor and the scope are then embedded into a
complex condition - consisting of an implication and a negation - representing the meaning of
the negative determiner. The complex condition dr s (U1, [dr s (U2 , e2) -

>drs ([l , [-drs (U3, e3) l) I ell) can be represented in our graphical notation as follows.

3.7 Nonfirstorderisable Sentences

Before we discuss the reasoning services of the PENG system, it's worth making some brief
comments on the restriction first-order logic places on the PENG grammar. We should state
right away that the word 'nonfirstorderisable' is used in the Philosophical Logic literature; it's
usually credited to George Boolos (Boolos 1984). Nonfirstorderisable sentences refer to
English sentences which cannot be represented in FOL. Examples - taken from (McKay 2006)
- include the following.

They are classmates

They are meeting together

They are surrounding a building

They lifted a piano

They admire only one another

The rocks rained down

The seashells are scattered

The mechanics repaired the car

The musicians will perform the symphony

The chairs form a circle

These sentences are nonfirstorderisable because any predicate symbols introduced to
represent the notions are classmates, are meeting together, are surrounding a building etc. are not
'distributive'. A predicate symbol P is said to be distributive if, whenever some things have
the property described by P, then each thing has that same property. In FOL every predicate
symbol is distributive. For example, whenever some people are groundskeepers, each one of
them is a groundskeeper. However, our nonfirstorderisable sentences can be true of some

55

DSTO-TR-2301

classmates, some people who are meeting together and some people who are surrounding a
building etc., without being true of anyone of the individuals described. For example two
students might be classmates, but one student by herself cannot be a classmate. She must be a
classmate of someone.

Further examples of nonfirstorderisable sentences include the following.

There are fewer than four in number

They are a minority

They are of just one gender

They are odd in number

These sentences are nonfirstorderisable because any predicate symbols introduced to
represent the notions are fewer than four, are a minority, are of just one gender etc. are not
'cumulative' . A predicate symbol P is said to be cumulative if, whenever some set of things X
have the property described by P, and some set of things Yhave the property described by P,
then X and Y together have that same property. For example, if Frank and Bob are
groundskeepers, and Maureen is a groundskeeper, then Bob, Frank and Maureen are
(cumulatively) groundskeepers. In contrast, if X and Yare both sets of less than four objects,
then X and Y together might (non-cumulatively) have four or more objects. In FOL, every
predicate is cumulative. Many predicates which are not distributive are also not cumulative.
However, there are a number of predicates that are distributive but are not cumulative.

As can be seen in the previous examples, the majority of nonfirstorderisable sentences feature
plural quantification. Contrast the sentence there is an apple on the table, which features singular
quantification with the quantification in there are some apples on the table, which is plural.
Normally we paraphrase such a sentence in FOL, i.e.

::lx,y. (AppleOnTable(x) /\ AppleOnTable(y) /\ -,(x = y))

However such a representation is inaccurate since we don't know how many apples are on the
table; we only know that there are 'some' . Moreover, the predicate symbol AppleOnTable is
cumbersome. As discussed in (Rayo 2002), the plural counterparts to Vx and::ly are Vxx and
::lyy, which can be read 'for any objects xx' and 'there are some objects yy'. (Here xx and yy can
be thought of as a plural variable.) In order to logically represent nonfirstorderisable
sentences, we can extend a first-order language with plural quantifiers, along with formulae

of the form u -< xx. Such formulae are given the semantics 'u is one of the objects xx'. The
language extension is usually referred to as a Plural First-Order (PFO) language. As given in
(Linnebo 2005) the PFO representation of the nonfirstorderisable sentence there are some apples
on the table is

::lxxVy.(y -< xx => Apple(y) /\ OnTable(y))

Another example is the Geach-Kaplan sentence some critics admire only one another which
resists a FOL paraphrase. This sentence can be given the following PFO representation.

::lxxVy,z.(y -< xx => Critic(y) /\ (Admires(y,z) => z -< xx /\ -,(y = z)))

Because an English sentence can be formulated in PENG only as long as the sentence can be
represented in FOL, the set of possible PENG sentences is a subset of the set of firstorderisable
sentences. There are restrictions on the grammar that shrink this subset further; we refer the
reader to Appendix A.

56

DSTO-TR-2301

4. Reasoning

In this section we examine the reasoning services of the PENG system. Having translated its
DRSs to FOL using the translation described in Section 3.6.1, PENG relies on third-party
reasoning services - the theorem prover Otter and the model builders Mace4 and Satchmo -
for consistency and informativity checking, and for question/ answering. Before we describe
these tools in Sections 4.2.1-4.2.3 respectively, we look at the tableau and resolution proof
methods for FOL and briefly discuss the advantages of model building vs. theorem proving.
Much of Section 4.1 is derived from (Blackburn and Bos 2005).

4.1 Inference Procedures for First-Order Logic

There are three inference tasks fundamental to the field of computational semantics: query;
consistency checking; and informativity checking. Given a particular vocabulary, a model M
for that vocabulary and a first-order formulae rp over that vocabulary, a query task asks
whether rp is satisfied in M. As long as the models are finite, the querying task can be
straightforwardly handled by a first-order model checker. The building of such a checker -
implemented in Prolog - is described in (Blackburn and Bos 2005).

Given a particular vocabulary, the set of all possible models.Jvl for that vocabulary and a first
order formulae rp over that vocabulary, a consistency check asks whether rp is consistent
(meaning that it is satisfied in at least one model of .Jvl) or inconsistent (meaning that rp is
satisfied in no model of .Jvl). We mentioned previously that a formula is said to be satisfiable if
it is satisfied in at least one model, hence consistency is usually identified with satisfiability,
and inconsistency with unsatisfiability. Consistency checking for first-order formulae is
computationally undecidable, meaning that there is no algorithm capable of solving this
problem for all input formulae rp. Not only must a satisfying model be found amongst the vast
number of possible models, but that satisfying model must be finite. However, some formulae
only have satisfying models which are infinite in size.

Given a particular vocabulary, the set of all possible models.Jvl for that vocabulary and a first
order formulae rpover that vocabulary, an informativity check asks whether rpis informative
(meaning that it is not satisfied in at least one model of .Jvl) or uninformative (meaning that rp

is satisfied in all models of .Jvl). Since a formula is invalid if there is at least one model in
which it is not satisfied, and is valid if it is satisfied in all models, we usually identify
informativity with invalidity and uninformativity with validity. Valid formulae can be seen to
be uninformative since they don't tell us anything new about a particular model. For example
HasSibling(agatha) is uninformative with respect to HasBrother(agatha). Such formulae should
not be entirely disregarded; often it is appropriate to rephrase the same information.
Informativity checking for first-order formula is also undecidable.

57

DSTO-TR-2301

Derived from their definitions, consistency and informativity are related as follows.

1. lj? is consistent if and only if -,lj? is informative.

2. lj? is inconsistent if and only if -,lj? is uninformative.

3. lj? is informative if and only if -,lj? is consistent.

4. lj? is uninformative if and only if -,lj? is inconsistent.

For example suppose lj?is consistent. This means it is satisfied in at least one model, which is
the same as saying that there is at least one model in which -,lj? is not satisfied. Hence -,lj? is
informative. Because of these inter-relations, both consistency and informativity checks can
therefore be reformulated in terms of validity. We say lj/ is uninformative with respect to
premises ipl, . . . , lj?/l if and only if the formula ipl /\ ... /\ lj?/l => lj/is valid, and lj/is inconsistent with
respect to ipl, . . . , lj?/l if and only if the formula ipl /\ ... /\ lj?/l => -,lj/is valid.

An (undecidable) theorem prover can be used to determine whether a first-order formula is
valid. These programs usually implement tableau or resolution-based proof methods.

4.1.1 The Tableau Proof Method

The following description of the tableau proof method follows (Blackburn and Bos 2005).
Given a formula lj?, the tableau proof method checks its validity by proving that -,lj? is
unsatisfiable. Moreover, the method checks the validity of an inference with premises ipl, ... , lj?/l

and conclusion lj/ by proving the set {ipl, . . . , lj?/l, -,!j!} unsatisfiable. A tree is constructed - called
a tableau - such that formulae in leaf nodes of the same branch are conjuncted, whereas
different branches are disjuncted. Applicable rules of a tableau calculus are applied (in any
order) top-down to each node. These rules specify how each logical connective is to be broken
down. Complex formulae are eventually broken into atomic formulae (or their negation) until
the tree becomes rule-saturated. At this point the tree can no longer be expanded. A branch
containing an opposite pair of literals is called closed. A literal is simply an atomic formula
(which may contain free variables) or the negation of an atomic formula. If all branches of the
tableau are closed, then we can be said to have found a tableau proof for the set of formulae,
meaning that the set of formulae is unsatisfiable.

We first consider the tableau proof method for a formula of propositional logic. Propositional
logic is a particular quantifier-free fragment of FOL. Although the atomic formulae of
propositional logic may contain free variables, nothing is lost by replacing them with simpler,
variable-free symbols such as p, q and r. This is because no free variables can be bound - there
are no quantifiers - and hence the internal structure of an atomic formula is unimportant. The
symbols p, q and r are usually called propositions; they may also be referred to as literals.

Consider the validity check for the propositional logic formula (p v -,q) /\ q => p. We construct
a tableau/tree for the set {(p v -,q) /\ q -, pl. Initially we have

(p v -,q) /\ q

58

DSTO-TR-2301

The conjunctive tableau rule says that if a branch of the tableau contains a formula p /\ qthen
add to its leaf the chain of two nodes containing the literals p and q. We formalise this rule as

P/\ q
p

q
The rule is read from top to bottom; the top being the input to the rule, the bottom being the
output. Hence after application of this rule we have the following tableau.

pv----,q

q

The disjunctive tableau rule says that if a branch of the tableau contains a formula p v q then
create two sibling children to the leaf of the branch containing p and q respectively. We write
this formally as

Applying this rule gives us

p

pvq

p lq

pv----,q

----,q

Since both left and right branches of the tableau are closed, we can deduce that the set
{(p v -,q) /\ q -, p} is unsatisfiable. Hence our original formula (p v -,q) /\ q => P is valid.

We can extend the tableau method for formulae of FOL by incorporating two rules for
universal and existential quantifiers. The universal rule is given below.

\Ix. y(x)

y(x')

59

DSTO-TR-2301

Suppose we chose x' to be an arbitrary term. Then x' can be selected such that the tableau
never closes. A solution is to delay the choice of the term until the consequent of a rule
application allows us to close at least one branch of the tableau. An application of the
universal rule generates Xx') where x' is chosen such that it does not occur anywhere else in
the tableau. Later x' is substituted - throughout the entire tableau - with the most general
unifier such that at least one branch is closed. Multiple applications of the universal rule may
be applied to the same node of the tableau. As an example, the set {-,P(a) v -,P(b), \Ix. P(x)} can
only be proved unsatisfiable if both P(x') and P(x") are generated from \Ix. P(x) and then x ' is
substituted with a and x" with b.

The existential rule is given below.

x(f(xl, ·· ·xl/))

This rule performs skolemisation, meaning that every existentially quantified variable x is
replaced with f (Xl , ... ,xn) where f is a new function symbol and Xl, ... ,Xn denotes the free
variables of X that are universally quantified with 3x in their scope. For example the formula
\lx3y\lz. P(x,y,z) is skolemised to \lx\lz. P(x, f (x),z). The skolem termf (x) contains x but not z,
since the quantifier 3y is in the scope of \Ix but not \lz.

The tableau proof method for first-order formulae constructs a tableau in a similar fashion to
the propositional case, with the additional assumption that all free-variables are universally
quantified. For example if rp is the consequent formula of a rule application, and Xl, .. . ,Xl/ are
the free variables of rp, then \lXI, .. . ,Xl/. rpis the formula represented by the tableau at that node.

As discussed in (Fitting and Mendelsohn 1998), a proof procedure describes how tableau rules
should be applied in order to close the branches of a tableau. A tableau calculus is said to be
complete if we can construct a tableau proof for every given unsatisfiable set of formulae.
However, even if a calculus is complete, not every possible choice of a rule application will
lead to a proof for an unsatisfiable set. A general solution is to search the tableau space for a
given set of formulae until a closed tableau is found. The tableau space consists of all tableau
generated by the different combinations of rule applications. There are various ways of
searching the tree structure of the tableau space. Some techniques search breadth-first rather
than depth-first. Some search methods use iterative deepening, whereby each branch of the
tableau space is visited up to a certain depth, the depth is then increased and further search is
undertaken. Some other techniques disallow the generation of particular tableau (based on
their structure) within the tableau space.

An overview of tableau proof methods can be found in (D'Agostino, Gabbay et al. 1999).
Theorem provers that implement tableau-based proof methods for FOL formulae include
LeanTAP (Beckert and Posegga 1997) and 3TAP (Beckert, Hahnle et al. 1996).

4.1.2 The Resolution Proof Method

The following description of the resolution proof method follows from (Blackburn and Bos
2005). We begin by looking at resolution from a propositional perspective.

60

DSTO-TR-2301

Before performing resolution we first need to convert a formula of propositional logic into
Conjunctive Normal Form (CNF). A formula is in CNF if and only if it is a conjunction of
clauses. (By clause we mean a disjunction of literals.) For example the formula
(p v q) /\ (r v -,p v s) /\ (q V -,s) is in CNF. Usually a clause is given a list representation, e.g.
p v q is written as [p,q] . Furthermore, the connective /\ is given a list-of-lists representation.

Hence our previous example can be written as [[p,q] ,[r,-,p,s],[q,-,sJ]. A list-of-lists

representation may also contain the empty clause [] which is always false. (Essentially, [] is

logically equivalent to ~ , which can be thought of as an atomic formula which is always false
in any given model with respect to any given assignment.) An important point is that if a
formula in CNF is true, then all of its clauses must be true. Hence if a formula contains an
empty clause it cannot be true.

In order to transform a formula of propositional logic into CNF we first convert it to Negated
Normal Form (NNF). A formula is in NNF if and only if the formula is built from literals
using /\ and v as the only binary connectives. To convert a formula into NNF we perform the
following rewrites.
(Rewrite 1) -,(rp /\ I.f/) as -, rp /\ -, I.f/.
(Rewrite 2) -,(rp /\ I.f/) as -, rp /\ -, I.f/.
(Rewrite 3) -,(rp => -, I.f/) as rp /\ -, I.f/.
(Rewrite 4) rp => I.f/ as -,rp v I.f/.
(Rewrite 5) -,-,rp as rp.

Once a formula is in NNF we can then apply the following distributive and associative
rewrites. The associative rewrites allow brackets to be moved around so that the distributive
rewrites may be applied. The distributive rewrites drive v deeper into the formula and 'lift
out' /\, converting the formula into CNF.
(Rewrite 6) () v (rp /\ I.f/) as (() v rp) /\ (() v I.f/).
(Rewrite 7) (rp /\ I.f/) v ()as (rp v 8) /\ (I.f/ V 8).

(Rewrite 8) (rp /\ I.f/) /\ () as () /\ (rp /\ I.f/).
(Rewrite 9) (rp v I.f/) v () as () v (rp v I.f/).

For example the formula (-,p => q) => (-,r => s) can be converted to the following NNF
(-,p /\ -,q) V (r v s) using rewrites 4, 3 and 4, and then 5. Rewrite 7 can then be applied to
obtain theCNF (-,p v (r v s)) /\ (-,q V (r v s)). This can then be written in list-of-lists notation as

[[-,p, r,s], [-,q, r,s J] and is termed a clause set. It is worth noting that multiple applications of

the two distribution rewrites 6 and 7 can cause exponential blow-up relative to the size of the
input formula. There are workarounds which usually involve introducing new variables for
sub-formulas; see (Leitch 1997) for more details.

We need to make one further refinement before resolution can be performed; a CNF clause set
needs to be converted into set CNF. A clause set is in set CNF if: (1) none of its clauses are
repeated, and (2) none of its clauses contain repeated literals. By throwing out any repeated
clauses or literals we can convert a CNF clause set into set CNF. The formulae remain logically
equivalent; we are simply removing redundant disjuncts and/ or conjuncts.

61

DSTO-TR-2301

The resolution proof method is based upon the repeated use of what is called the binary
resolution rule.

[PI, ···,PII, r,PII+I' ···'PW] [ql, ... ,qj, "'r,qj+l, ... ,qk]

[PI' .. ·,PIIIPII+I' ·· ·,P'II ,ql' ·· .,qj ,qj+l '· · ·,qk]

Here, given two clauses without repeated literals, C' == [p I, ... ,plI,r,plL+I, .. . pII1] and
C' == [q l, ... ,qv ,r,qj+l, ... qk] say, if C contains a positive literal and C' contains its negation, then
we can apply the resolution rule by discarding the pair of literals and merging the remainders
to the clause [p I, ... ,p",r,pn+l, ... PIII' ql, ... ,qv ,r,qj+l, ... qk]. Note that the merged clause may contain
repeated literals; these need to be discarded before this new clause can be resolved against
another by further application of the resolution rule. The positive literal and its negation are
called a complementary pair, whereas C and C' are called complementary clauses.

We can see that the method is satisfaction preserving; if both C and C' are satisfied in some
model M, then at least one literal in each clause must be satisfied in M. Since only one of the
complementary pair rand -,r can be satisfied in M, at least one other literal from either C or C'
must be satisfied inM. This literal will feature in the merged clause, hence the merged clause
- being a disjunction of literals - will also be satisfied in M.

The general idea behind the resolution proof method is as follows. If we want to show that a
formula rp of propositional logic is valid then we use -,rp as input and try to generate an empty
clause. If a clause set contains an empty clause - which is always false, regardless of the
assignment - then the formula represented by the clause set cannot be satisfied in any model.
Therefore if we generate the empty clause from -,rp via the satisfaction-preserving resolution
method, then rp must be satisfied in all models, hence rp must be valid.

To carry out the method, we first convert -,rp to set CNF. If we can find an empty clause
within the clause set, then we are done. If not, we perform the following steps
1. Look for complementary clauses within the clause set. If there are none, we halt and

declare that we cannot prove rp valid. For any existing complementary clauses, we apply
the resolution rule.

2. If the resultant clause C is the empty clause, we halt and declare rp valid.
3. If C is not the empty clause, but it is a repetition of a clause in the clause set, then we throw

C out. If C itself is not repeated, but instead contains repeated literals, then we throw the
repeated literals out. We then add C to the clause set and repeat step 1-3 until we halt.

As an example, consider the formula (-,p => -,q) => (q => p). We convert its negation to set CNF

[[p,-,q] , [q] , [-,p]J using rewrites 3, 4 and 3 and then 5. There are no empty clauses, so we start

by resolving [p,-,q] against [-,p] . This yields [-,q] , which we add to our original clause set to

obtain [[p,-,q] ,[q] , [-,p] ,[-,q]J . From here, we resolve [q] against [-,q] , yielding the empty set

[]. We halt and declare (-,p => -,q) => (q => p) valid.

When it comes to performing the resolution method on a first-order formula rp involving
quantifiers, we need to adjust the conversion to set CNF. The following additional two
rewrites allow us to convert rp to NNF.

62

(Rewrite 10) as ::3x.-,qJ.
(Rewrite 11) -,::3x. qJ as Vx.-,qJ.

DSTO-TR-2301

To get to CNF, we skolemise any existential quantifiers and discard any universal quantifiers.
The resultant formula is converted to set CNF as usual. As an example, we convert
-,(Vx::3y.R(x,y) /\ VzVw.(R(z,w) => P(z)) => Vu.P(u)) to set CNF. We first convertthe formula to
the NNF Vx::3y.R(x,y) /\ VzVw. (-,R(z,w) v P(z)) /\ ::3u. -,P(u) using the rewrites 3, 4 and 10. From
here, we skolemise::3 and discard Vto obtainR(x,s(x)) /\ (-,R(z,w) v P(z)) /\ -,P(c), where s is a
new function symbol and c is a constant. We can write it as the set CNF

[[R(x,s(x))] , [-,R(z, w),P(z)], [-,P(c)]J .

We perform resolution on first-order formulae in set CNF following the same steps outlined
above, with the addition that variables can be unified. Since all variables can be universally
quantified, we can use unification to create complementary pairs which can then be resolved.
Note that variables may need to be relabelled before unification. For example, suppose we
have the two clauses [P(x),Q(x)] and [-,P(a),R(x)] where a is a constant and x is a variable.

We can unify a with x, however this would affect the x in R(a) which is independent of
variable xin the first clause. Hence we relabel the variable x in the second clause as y, unify a
with x and obtain the clauses [P(a),Q(a)] and [-,P(a) ,R(y)]. We then perform resolution,

yielding [Q(a),R(y)].

Theorem provers that implement resolution-based proof methods for FOL formulae include
Prover9 (McCune 2007) - the successor of Otter (McCune 2003) - and Vampire (Riazanovand
Voronkov 2002).

4.1.3 Model Building vs. Theorem Proving

Again, this section follows from (Blackburn and Bos 2005).

Theorem provers - either tableau or resolution-based - can be used to demonstrate validity,
however because of the undecidability of FOL, they are unable to show non-validity. This has
severe implications for both the consistency and informativity checking inference tasks.

For example suppose we are performing consistency checking. Consider the discourse No old
lady likes a mystery. Miss M is an old lady. Miss M likes a mystery4. It is obvious that the last
sentence is inconsistent with the preceding two sentences. To show this formally, we build a
first-order representation for the discourse and check whether the conjunction of the first two
sentences implies the negation of the last sentence. (Recall from Section 4.1 that a conclusion Ij/
is inconsistent with respect to premises q>I, ... , qJlI if and only if the formula q>I /\ ... /\ qJlI => -, Ij/is
valid.) Hence we need to check whether the following formula is valid.

4 To write this and the following discourses in PENC, we user-define mystenj as a singular noun of
entity type and atomic structure. We user-define Miss M as a singular proper noun with feminine
gender and person type, and irritates as a finite, singular transitive verb with event structure. Moreover,
we define detective as a singular noun of person type.

63

DSTO-TR-2301

\Ix. (OlLady(x) => -,LikesMys(x)) A OlLady(missM) => -,LikesMys(missM)

We can see that the formula is valid; any half-decent theorem prover should be able to prove
this. Now suppose our discourse is No old lady likes a mystery. Miss M is an old lady. Miss M
irritates the detective. Here the last sentence is consistent with the preceding two sentences. To
show this formally, again we build a first-order representation for the discourse and check
whether the conjunction of the first two sentences implies the negation of the last sentence.
Namely, we check the validity of the following formula.

\Ix. (OlLady(x) => -,LikesMys(x)) A OlLady(missM) => -,Irr(missM, detect)

We can see that the formula is not valid, however, no theorem prover can show this.

We are faced with a similar problem when it comes to informativity checking. For example,
consider the discourse Every old lady is clever. Miss M is an old lady. Miss M is clever. The last
sentence of this discourse is not informative compared to the two preceding sentences. In
order to show this formally, we build a first-order representation and check whether the
conjunction of the first two sentences implies the last sentence. (Recall from Section 4.1 that a
conclusion I.j/ is uninformative with respect to premises q>I, ... rpll if and only if the formula
q>I A ... A rpll => I.j/is valid.) Hence we need to check the validity of the following formula.

\Ix. (OlLady(x) => Clever(x)) A OlLady(missM) => Clever(missM)

This is obviously valid and any theorem prover should be able to prove this. Now consider
the discourse Every old lady is clever. Miss M is an old lady. Miss M solves the mystery. In this case,
the last sentence is informative. To show this formally, we need to check the validity of the
formula

\Ix. (OlLady(x) => Clever(x)) A OlLady(missM) => SolveMys(missM)

Again we can see that the formula is not valid. Again, no theorem prover can show this.

Full positive checks for consistency and informativity do not exist precisely because of the
undecidability of FOL. However, it is possible to conduct partial positive checks for
consistency and informativity using a model builder. A model builder takes a formula of FOL
and tries to build a finite model that satisfies it. The models that are built are usually small
and often a user needs to specify either the size of the domain (e.g. 3 elements) or the
maximum domain size (e.g. a model with at most 20 elements).

For example, suppose we want to run a positive consistency check on the discourse No old lady
likes a mystery. Miss M is an old lady. Miss M irritates the detective.
We know that if the following formula is not valid

\Ix. (OlLady(x) => -,LikesMys(x)) A OlLady(missM) => -,Irr(missM, detect)

then the negation of this formula should be satisfied in at least one model. Hence we know the
discourse is consistent if the model builder can find a model for the formula

\Ix. (OlLady(x) => -,LikesMys(x)) A OlLady(missM) A -,Irr(missM, detect)

If we specify the model builder to build a model of 2 elements, then it can show consistency
by building a model whereby one element is named detect, the other missM, and missM is
classified to be a little old lady that doesn't like mysteries and who also irritates the detective.
In such a model the latter formula is satisfied. The model builder may build another model

64

DSTO-TR-2301

whereby detect is classified as a little old lady who doesn't like mysteries, but as long as there
is at least one model in which the formula is satisfied, the consistency check returns positive.

As a final example, suppose we want to run a positive informativity check on Every old lady is
clever. Miss M is an old lady. Miss M solves the mystery. We know the discourse is informative if
the model builder can find a model for the negation of the following formula

\Ix. (OILady(x) => Clever(x)) /\ OILady(missM) => SolveMys(missM)

Namely,

\Ix. (OILady(x) => Clever(x)) /\ OILady(missM) /\ -,SolveMys(missM)

The model builder can show informativity by building a model whereby an element is named
missM, and missM is classified to be a little old lady who is clever but doesn't solve mysteries.
In such a model the latter formula is satisfied. The existence of a model for the negated
formula shows that the original formula is not valid and hence the discourse is informative.

4.2 Reasoning in PENG

PENG currently uses the theorem prover Otter and the model builders Mace4 and Satchmo as
reasoning tools. Either Otter and Mace4 or Satchmo can be selected during a PENG session.
The tools conduct consistency and informativity checks, and allow for questionj answering
over the input FOL formulae. Otter automatically translates the FOL formulae into set CNF
such that it is ready for processing. However Mace4 and Satchmo both rely on a small
program at the PENGjreasoner interface which massages the FOL formulae into an
acceptable format.

4.2.1 Otter

Otter - the name derived from 'Organised Techniques for Theorem providing and Effective
Research' - is a resolution-based theorem prover for FOL with equality developed at the
Argonne National Laboratory (McCune 2003). As a resolution-based theorem prover it proves
the validity of a FOL formula rp by generating the empty clause from -,rp using a number of
resolution rules. It not only applies the binary resolution rule seen in Section 4.1.2, it also
applies the following inference rules: hyper-resolution, UR-resolution and binary
paramodulation. According to (Wos 2007) a variety of inference rules - such as those featured
in Otter - are needed for attacking difficult and disparate problems. We describe the inference
rules below. Note that all rules resolve a particular clause of interest - termed a nucleus - with
one or more other clauses, termed satellites. The composition of a nucleus and its satellites
differs with each rule.

The hyper-resolution inference rule merges two or more clauses. The rule requires that one of
the clauses (the nucleus) contains at least one negated literal and the remaining clauses
(satellites) contain no negated literals. The rule operates as follows: delete the negated literals
of the nucleus along with the matching positive literals from the satellites and merge the
remainder. For example, applying hyper-resolution to the set of clauses [[p,q],[-,p,r],[r,s],p]
with nucleus [-,p,r] yields [q,r,[r,s]].

65

DSTO-TR-2301

The UR-resolution inference rule merges two or more clauses. The 'Unit Resulting' resolution
rule requires that the nucleus clause contains at least two literals and the remaining satellite
clauses contain exactly one literal each. The rule operates as follows: delete any pairs of literals
which simultaneously occur in the nucleus and in any satellite, and merge the remainder. For
example, applying UR-resolution to the set of clauses [[p,q,r],q,s,p] with nucleus [p,q,r] yields
[r,s].

The binary paramodulation inference rule merges two clauses. The rule requires: (1) that one
clause contains at least one literal asserting equality; and (2) that the other clause contains a
(possibly negated) literal which features the term on the left-had side of the equality as a sub
expression. The rule operates as follows: delete the equality and merge the remainder along
with the literal whose sub-expression has been replaced by the term on the right-hand side of
the equality. For example, applying binary paramodulation to the set of clauses
[[p,t = u],[q,r(t)],s] yields [p,q,r(u),s]. (Recall that we are dealing with FOL with equality here.)

In contrast to the PENG application, most theorem proving conducted by Otter involves
interaction by the user. The user chooses initial conditions, which inference rules to apply and
also sets options to control the processing of inferred clauses. PENG however relies on Otter's
autonomous mode. In this mode the user inputs a set of formulae and the prover does a
simple analysis and decides inference rules and strategies.

Otter has been very stable for a number of years and has been succeeded by Prover9. Prover9
has a number of advantages over Otter: memory consumption is lower, deduction speed is
faster, and more inference rules are available. Furthermore, Prover9's autonomous mode is
more effective. We refer the reader to (McCune 2007) for details.

4.2.2 Mace4

Mace4 - the name derived from 'Models And Counter Examples' - is a model builder which
comes bundled with Prover9 (McCune 2007). The model builder accepts as input a set of FOL
formulae which have been restricted and/ or formatted in a specific way. We will not list all
the (relatively minor) restrictions here, we instead refer the reader to (McCune 2007). Some
restrictions worth mentioning are: the builder does not accept function symbols with arity
greater than three, nor relation symbols with arity greater than four; neither does the builder
accept the natural numbers as constants, instead these are interpreted as elements of the
domain. Having accepted the set of formatted FOL formulae, Mace4 then transforms it into a
set of propositional formula in CNF. (We do not lose anything during this transformation,
since if we have a domain of size n, say, then a universal formula such as Vx.P(x) is simply the
propositional formula P(al) /\ ... /\ P(a ll) where al, .. . ,all name the elements of the domain.) Once
this set has been built, a SAT solver is used to search for a model. (A SAT solver - the name
derived from 'SATisfiability' - is designed specifically to solve the propositional satisfiability
problem, namely to find a model in which a given propositional formula is satisfiable.) The
SAT solver implements a version of the Davis, Putnam, Logemann and Loveland (DPLL)
algorithm called ANLDP, derived from 'Argonne National Laboratory - Davis-Putnam'
(McCune 1994). ANLDP features some optimisations and efficiency enhancing techniques not
present in DPLL, but otherwise the procedure is the same.

66

DSTO-TR-2301

Essentially, the DPLL algorithm chooses a literal r from some propositional formula in CNF,
assigns its value to be true and then - if possible - propagates this assumption throughout the
remaining formulae via unit resolution. Unit resolution involves the application of an
inference rule which merges two or more clauses. To be applied, the rule requires that the
nucleus clause - as discussed in the previous section - consists of a single literal r, say, and
that each satellite clause consists of one or more literals. The rule operates as follows: (1) the
nucleus is copied into the merged clause; (2) satellite clauses which contain neither r nor -,r
are copied into the merged clause; (3) if one of the satellite clauses contains r, then the entire
clause does not appear in the merged clause; and (4) if one of the satellite clauses contains -,r,
then this (negative) literal is deleted, and the remainder is copied into the merged clause. For
example, suppose we apply unit resolution to the set of clauses [[p,q],[-,p,r],[-,r,s],p] with
nucleus p. The rule stipulates that [p,q] does not feature in the merged clause. Moreover, we
should delete -,p from clause [-,p,r] before merging the remainder. Our resultant clause is
[r,[-,r,s],p]. After unit resolution has been applied, the DPLL algorithm selects a new literal,
assigns it as true and applies unit resolution again. (Following our example, we could perform
unit resolution on [r,[-,r,s],p] with unit clause r, resulting in the clause [r,s,p].) Either the
algorithm terminates when it finds an assignment to the literals which satisfies all formulae or
it will exhaust all possible decisions for that formula and find it unsatisfiable. Any found
models are translated back to first-order models.

Both Mace4 and Prover9 can be found online at (McCune 2005).

4.2.3 Satchmo

Satchmo - the name derived from 'SATisfiability CHecking by MOdel generation' is a model
builder developed at the Ludwig Maximilian University of Munich (Abdennadher, Bry et al.
1995; Brtiggemann, Bry et al. 1996). It only accepts a set of first-order formulae of the form

antecedent => consequent. Here antecedent is either empty and is thus interpreted as T , or

antecedent is of the form PI /\ ... /\ p", where each Pi is a literal for 1 ~ i ~ n. Furthermore,

consequent is either empty and is thus interpreted as ~ ,or consequent is of the form qI v ... V q,,,

where each qj is a literal for 1 ~ j ~ m. A set of formulae of this form is termed a specification.

Satchmo implements a tableau proof method called Positive Unit Hyper-Resolution (PUHR).
(Recall from Section 4.1.1 that a tableau is constructed by breaking complex formulae into
atomic formulae - or their negation - through an application of tableau rules. The tableau is
said to be saturated when no further rules can be applied.) Essentially, Satchmo constructs a
particular tableau - called a PUHR tableau - for a given specification. The saturated tableau is
such that the literals of its branches represent the models of the specification. If all branches of
the saturated tableau are closed, then the specification is unsatisfiable.

A PUHR tableau is constructed from an initial tableau consisting of a single empty branch
using repeated applications of the conjunctive rule - described in Section 4.1.1 - and the
PUHR rule outlined below.

67

DSTO-TR-2301

Pl

P"
ql q2 q'1I-1 qlll

-,q2 -,q3 -,qlll

M M

-,qll,-l -,q/IJ

-,qllf

Figure 10: PUHR rule

Recall that all specifications contain formulae of the form Pl /\ ... /\ pn => ql v ... V qll,. As
described in (Brtiggemann, Bry et al. 1996) the PUHR rule says that if a branch contains all the
literals of a formula's antecedent pi, ... , PII add m sibling children to the leaf of the branch
containing the literals qi, ... , qll, respectively. Then add to each leaf containing qi the chain of
m - i nodes containing the complements of the literal qjwhere j > i. Namely if we have a tree
with the following branch

then add chains of nodes to the branch as follows

PI

I

/In~
II 12 Im-I qm

---,q2 ---,q3 ---,q m

I
I

---,qm

The 'complement splitting' process prunes the tableau and guarantees that the generated
models are minimal. (Note that a model M of a specification 5 is said to be minimal if no
proper subset of M is a model for 5.) As an example, consider the PUHR tableau for the
specification {p /\ q => r v s v t, r => u, s => t, t => u}.

68

DSTO-TR-2301

T

P /\q

I
p

I
q

r/~~
I I I

:: ~~) u

I I u u

Figure 11: PUHR tableau

We start with an empty branch and attach the antecedent of the first formula as a leaf. We
then apply the conjunctive rule which extends the branch with two nodes containing p and q.
Following this, we apply the PUHR rule which adds three sibling children to the branch
containing the literals r, sand t. We then add to each leaf the chain of nodes containing the
relevant complements of the consequent. We next apply the PUHR rule to the second formula
of the specification. Since the branch on the left contains the antecedent of the second formula
- namely r - we can extend the branch with the (single) consequent u. We don't need to add
complements, since there are none. We now move on to apply the rule to the third formula.
The middle branch contains the antecedent s, hence we can extend the branch with the
consequent t. Again, there are no complements so we add no further branches. We twice
apply the PUHR rule to the fourth rule, extending both the middle branch and the branch on
the right with the consequent u. Since the middle branch contains a complementary pair,
namely t and -,t, we can close the branch. We finally end up with the saturated tableau seen in
Figure 10.

The two open branches represent the two possible minimal models for the specification. We
can see that the specification is true in a model where p, q, rand u are true. Moreover, we can
see that the specification is true in a model where p, q, t and u are true. The literals of the
middle branch (p, q, s, t and u) form a superset of the literals of the right branch (p, q, t and u).
Forming a non-minimal model, the complement splitting introduced by the PUHR rule has
closed this middle branch.

There exist a number of optimisations and efficiency enhancing techniques designed for
Satchmo. These techniques determine in which order formulae of the specification are
decomposed within the tableau. For more information, see (Abdennadher, Bry et al. 1995;
Brtiggemann, Bry et al. 1996).

69

DSTO-TR-2301

5. Conclusion

This report has described the theoretical underpinnings of the PENG system. We have seen
how the restrictions of the controlled natural language allow authors to write text which
captures the precision of a formal specification language. The writing process is guided by the
automatic generation of look-ahead categories which indicate the possible sentence constructs
allowable from the current input. The resulting PENG text looks seemingly informal, but has
the same formal properties as the underlying FOL representation. Thus PENG can serve as a
high-level interface language to standard FOL theorem provers and model builders. Although
PENG is still very much a prototype at this stage, and has a number of issues, the system
shows potential.

6. References

Abdennadher, S., F. Bry, et al. (1995). The Theorem Prover Satchmo: Strategies, Heuristics,
and Applications - System Description, Technical Report PMS-FB-1995-3, Institute for
Informatics, Ludwig Maximilian University of Munich.

Autebert, I.-M., J. Berstel, et al. (1997). Context-Free Languages and Pushdown Automata.
Handbook of Formal Languages. G. Rozenberg and A. Salomaa, Springer. 1: 111-172.

Beckert, B., R. Hahnle, et al. (1996). The Tableau-Based Theorem Prover 3T AP, Version 4.0. In
proceedings of the 13th International Conference on Automated Deduction, New
Jersey, USA, Springer.

Beckert, B. and J. Posegga. (1997). "LeanTAP Home Page." Retrieved February 2009 from
http://www.uni-koblenz.de/-beckert/leantap/ .

Blackburn, P. and I. Bos. (1999). "Working with Discourse Representation Theory: An
Advanced Course in Computational Semantics." Retrieved February 2009 from
http://www.iccs.inf.ed.ac.uk/ -jbos/ comsem/book2.html.

Blackburn, P. and I. Bos (2005). Representation and Inference for Natural Language: A First
Course in Computational Semantics, CSLI Publications.

Blackburn, P., I. Bos, et al. (2003). "Learn Prolog Now!" Retrieved February 2009 from
http://www.learnprolognow.org/ .

Blackburn, P. and K. Striegnitz. (2002). "Natural Language Processing Techniques in Prolog."
Retrieved February 2009 from http://cs.union.edu/-striegk/courses/nlp-with
prolog/html/ .

Boolos, G. (1984). "To be is to be the Value of a Variable (or to be Some Values of Some
Variables)." TournaI of Philosophy 81: 430-449.

Brett, A. C. (2000). "An Introduction to Prolog." Retrieved February 2009 from
http://web.uvic.ca/-Iing48x/ling482/prolog/ .

70

DSTO-TR-2301

Bruggemann, T., F. Bry, et al. (1996). Satchmo: Minimal Model Generation and Compilation,
Technical Report PMS-FB-1996-5, Institute for Informatics, Ludwig Maximilian
University of Munich.

Burchardt, A., S. Walter, et al. (2005). "Computational Semantics." Retrieved February 2009
from http://www.coli.uni-saarland.de/projects/milca/ courses/ comsem/html/.

Chomsky, N. (1956). "Three Models for the Description of Language." IEEE Transactions on
Information Theory 2(3): 113-124.

D'Agostino, M., D. M. Gabbay, et al., Eds. (1999). Handbook of Tableau Methods, Springer.

Deransart, P., A. Ed-Dbali, et al. (1996). Prolog: The Standard: Reference Manual, Springer.

Earley, J. (1970). "An Efficient Context-Free Parsing Algorithm." Communications of the ACM
13(2): 94-102.

Fitting, M. and R. L. Mendelsohn (1998). First-Order Modal Logic, Kluwer Academic
Publishers.

Fuchs, N. E., H. F. Hofmann, et al. (1994). Specifying Logic Programs in Controlled Natural
Language, Technical Report 94.17, Department of Information Technology, University
of Zurich.

Gal, A., G. Lapalme, et al. (1991). Prolog for Natural Language Processing, Wiley.

Gazdar, G. and C. Mellish (1990). Natural Language Processing in PROLOG: An Introduction
to Computational Linguistics, Addison-Wesley.

Gilbert, P. (1966). "On the Syntax of Algorithmic Languages." TournaI of the Association for
Computing Machinery 13(1): 90-107.

Jurafsky, D. and J. H. Martin (2000). Speech and Language Processing, Prentice Hall.

Kamp, H. and U. Reyle (1993). From Discourse to Logic, Kluwer.

Kasami, T. (1965). An Efficient Recognition and Syntax Analysis Algorithm for Context-Free
Languages, Technical Report AF CRL-65-758, Air Force Cambridge Research
Laboratory.

Leitch, A. (1997). The Resolution Calculus, Springer.

Linnebo, 0. (2005). Plural Quantification. The Stanford Encyclopedia of Philosophy. E. N.
Zalta, Stanford University.

Longley, J. and I. Stark. (2002). "Top-Down and Bottom-Up Parsing." Retrieved February 2009
from http://www.inf.ed.ac.uk/teaching/courses/cs2/LectureNotes/CS2Ah
/LangProc/lp9.pdf.

McCune, W. (1994). A Davis-Putnam Program and its Application to Finite First-Order Model
Search: Quasi-Group Existence Problems, Technical Report ANL/MCS-TM-194,
Argonne National Laboratory.

McCune, W. (2003). "Otter and Mace2." Retrieved February 2009 from http://www.cs.
unm.edu/ -mccune/ otter/.

71

DSTO-TR-2301

McCune, W. (2005). "Son of BirdBrain II." Retrieved February 2009 from http://www.cs.
unm.edu/ -mccune/ sobb2/ .

McCune, W. (2007). "Prover9 and Mace4." Retrieved February 2009 from http://www.cs.
unm.edu/ -mccune/ mace4/ .

McKay, T. (2006). A Formal Language with Non-Distributive Plurals: Preliminary
Considerations. Plural Predication, Oxford University Press: 5-17.

Meurers, D. (2003). Introduction to Computational Linguistics I, Lecture Notes 684.01,
Department of Linguistics, Ohio State University.

Mitkov, R (2003). Anaphora Resolution. The Oxford Handbook of Computational Linguistics.
R Mitkov, Oxford University Press: 266-284.

Nugues, P. (2006). An Introduction to Language Processing with Perl and Prolog, Springer.

Pelletier, F. J. (1986). "Seventy-Five Problems for Testing Automatic Theorem Provers."
TournaI of Automated Reasoning 2(2): 191-216.

Rayo, A. (2002). "Word and Objects." NOlls 36(3): 436-464.

Riazanov, A. and A. Voronkov (2002). "The Design and Implementation of VAMPIRE." AI
Communications 15(2): 91-110.

Schwertel, U. (2005). Plural Semantics for Natural Language Understanding: A
Computational Pro of-Theoretic Approach. Faculty of Arts, University of Zurich.

Schwitter, R (2003). Incremental Chart Parsing with Predictive Hints. In proceedings of the
Australasian Language Technology Workshop, University of Melbourne, Australia.

Schwitter, R (2004a). Dynamic Semantics for a Controlled Natural Language. In proceedings
of the 15th International Workshop on Database and Expert Systems Applications,
Zaragoza, Spain.

Schwitter, R (2004b). Representing Knowledge in Controlled Natural Language: A Case
Study. In proceedings of the 8th International Conference on Knowledge-Based
Intelligent Information and Engineering Systems, Wellington, New Zealand.

Schwitter, R (2007a). Grammar Rules in PENG: Email.

Schwitter, R (2007b). Illegal Words in PENG: Email.

Schwitter, R (2007c). "PENG Online." Retrieved February 2009 from http://www.ics.mq.
edu.au/ -peng/PengEditor.htmi.

Schwitter, R and A. Ljungberg (2002). How to Write a Document in Controlled Natural
Language. In proceedings of the 7th Australasian Document Computing Symposium,
Sydney, Australia.

Schwitter, R, A. Ljungberg, et al. (2003). ECOLE: A Look-Ahead Editor for a Controlled
Language. In proceedings of the joint conference combining the 8th International
Workshop of the European Association for Machine Translation and the 4th
Controlled Language Application Workshop, Dublin City University, Ireland.

72

DSTO-TR-2301

Schwitter, R. and M. Tilbrook (2004a). Controlled Natural Language meets the Semantic Web.
In proceedings of the Australasian Language Technology Workshop, Macquarie
University, Australia.

Schwitter, R. and M. Tilbrook (2004b). Dynamic Semantics at Work. In proceedings of the
International Workshop on Logic and Engineering of Natural Language Semantics,
Kanazawa, Japan.

Schwitter, R. and M. Tilbrook (2006). Controlled Language Processing, Deliverable 2006-CLP-
1, Centre for Language Technology.

Sterling, L. and E. Y. Shapiro (1994). The Art of Prolog: Advanced Programming Techniques,
MIT Press.

Stone, M. (2002). Knowledge Representation. A Handbook for Language Engineers. A.
Farghaly, CSLI.

Wiren, M. (1989). Interactive Incremental Chart Parsing. In proceedings of the Fourth
Conference of the European Chapter of the Association for Computational Linguistics
Manchester, England.

Wiren, M. (1994). Minimal Change and Bounded Incremental Parsing. In proceedings of the
15th International Conference on Computational Linguistics, Kyoto, Japan.

Wos, L. (2007). "A Summary of Inference Rules Used by Argonne's Automated Deduction
Software." Retrieved February 2009 from http://www-unix.mcs.anl.gov/ AR/inC
rules.html.

Younger, D. (1967). "Recognition of Context-Free Languages in Time n3." Information and
Control 10(2): 189-208.

73

DSTO-TR-2301

74

THIS PAGE HAS BEEN
INTENTION ALL Y

LEFT BLANK

DSTO-TR-2301

Appendix A: Sentence Structure

Sentences in PENG are of the following form. Note that this is in no wayan exhaustive list; we
simply want to give the reader a 'feel' for the language. We also show some of the restrictions
placed on the grammar, intentional or otherwise. Words in italics represent content words,
whereas words in normal font represent function words.

[pn,det,card,conn:[If]l

Agatha [aux:[doesl,cop: [isl,relpro:[that,whol,vl

Agatha dances [adv,conn:[and,orl ,prep:[around,at,by,in,on,withl,fs: [.]]

Here the word dances is a user-defined intransitive verb.

Agatha dances enthusiastically [conn:[and,orl,fs: [.]]

Agatha dances and [aux:[doesl,cop: [isl,vl

Agatha dances or [aux: [doesl,cop:[isl,vl

The grammar does not allow us to write Agatha dances then, however we can write If Agatha
dances then.

Agatha dances around [conn:[and,orl,fs: [.]]

Agatha dances at [det,pn,varl

Agatha dances at a [adj,nl

Agatha dances at a famous nightclub [conn:[and,orl,prep:[of],pn,relpro:[that,whichl ,var,fs:[.]]

Agatha dances at a famous nightclub and [aux: [doesl,cop:[isl,vl

Agatha dances at a famous nightclub or [aux: [doesl,cop:[isl,vl

Agatha dances at a famous nightclub of [det,pn,varl

Agatha dances at a famou s nightclub of a corrupt businessman [conn:[and,or],prep:[of],pn,relpro:[that,whol,var,fs:[.]]

Agatha dances at a famous nightclub of a dangerous city [conn:[and,or],prep:[of] ,pn,relpro:[that,whichl,var,fs: [.]]

Agatha dances at a famous nightclub of a tumultuous time [conn:[and,orl,prep:[of],pn,relpro:[that,which],var,fs: [.]]

Agatha dances at a famous nightclub Fifty-Four [conn:[and,or],prep:[of],relpro:[that,whichl,fs: [.]]

Agatha dances at a famous nightclub that [aux:[does],cop:[isl,det,pn,var,vl

Agatha dances at a famous nightclub which [aux: [does],cop:[isl,det,pn,var,vl

Agatha dances at a famous nightclub Xl [conn:[and,orl,prep:[ofl,relpro:[that,whichl,fs:[.]]

Agatha dances at a famous nightclub.
Agatha dances at a tumultuous time [conn:[and,orl ,prep:[of],pn,relpro:[that,whichl ,var,fs: [.]]

Agatha dances at all famous nightclubs [conn:[and,or],relpro:[that,whichl,fs: [.]]

Agatha dances at all famous nightclubs that [aux: [do],cop:[arel,det,pn,var,vl

Agatha dances at all famous nightclubs which [aux: [do],cop:[arel,det,pn,var,vl

Agatha dances at an famou s nightclub [conn:[and,orl,prep:[of],pn,relpro:[that,whichl ,var,fs: [.]]

It is not required that adjectives or nouns following the determiner an start with a vowel.

Agatha dances at every famous nightclub [conn:[and,or],prep:[of],pn,relpro:[that,whichl,var,fs:[.]]

Agatha dances at no famous nightclub [conn:[and,orl ,prep:[of],pn,relpro:[that,whichl,var,fs:[.ll

Agatha dances at no famous nightclubs [conn:[and,orl,relpro:[that,whichl,fs:[.]]

Agatha dances at the famous nightclub [conn:[and,orl,prep: [of],pn ,relpro:[that,whichl ,var,fs: [.]]

Agatha dances at the famous nightclubs [conn:[and,orl,relpro:[that,whichl,fs:[.]]

Agatha dances at Fifty-Four [conn:[and,orl ,relpro:[that,which],fs: [.]]

Agatha dances at Friday [conn:[and,orl ,relpro:[that,which],fs: [.ll

Agatha dances at Xl [conn:[and,orl,relpro:[that,whichl,fs: [.ll

75

DSTO-TR-2301

The nouns following the function word at - in our examples these are nightclub, businessman,
city and time - must be of type entity or time. For example, since smiles is base-defined as an
intransitive verb, we cannot write smiles at Charles, smiles at all bartenders, nor smiles at a B-list
celebrity, where Charles, bartenders and celebrity are of type person. Note that since the word
shouts has not been base-defined, we can write shouts at Charles, shouts at bartenders, etc. but
here shouts at must be user-defined as a prepositional transitive verb and we lose the ability to
user-define shouts as an intransitive verb.

Agatha dances by [det,pn,var]

Agatha dances by a famous nightclub [conn:[and,or] ,prep:[of],pn,relpro:[that,which] ,var,fs:[.]]

The nouns following the function word by must be of type entity. We cannot write dances by
Charles nor dances by a B-list celebrity. Furthermore we cannot write the ungrammatical strings
dances by Friday or dances by a tumultuous time.

Agatha dances in a famou s nightclub [conn:[and,or] ,prep:[of],pn,relpro:[that,which],var,fs: [.]]

Agatha dances in a tumultuous time [conn:[and,or] ,prep:[of] ,pn,relpro:[that,which] ,var,fs:[.]]

Agatha dances on a famous nightclub [conn:[and,or],prep:[of] ,pn,relpro:[tha t,which],var,fs:[.]]

Agatha dances on a tumultuous time [conn:[and,or] ,prep:[of],pn,relpro:[that,which] ,var,fs:[.]]

The nouns following the function words in or on must be of type entity or time. Note we
cannot write falls on a B-list celebrity or votes in Charles, where falls and votes are both base
defined intransitive verbs.

Agatha dances with [det,pn,var]

Agatha dances with a tattered feather boa [conn:[and,or],prep:[of] ,pn,relpro:[that,which],var,fs:[.]]

Agatha dances with a B-list celebrity [conn:[and,or],prep:[of] ,pn,relpro:[tha t,who],var,fs:[.]]

The nouns following the function word with must be of type entity or person. We cannot write
the ungrammatical string dances with a tumultuous time. Moreover, we cannot combine any
intransitive verb (either base or user-defined) with the prepositions about, for, like, of, over, than
and to. Thus no votes for, dreams about, thinks about, thinks of, stands over, sleeps like, approves of,
runs to, falls over, returns for, appears to, works for, runs like, exists to, acts like, waits for, lives like,
resigns over, sings like, sleeps over, stands about, differs over, returns to, continues to, cries like, etc.
We cannot tum any of these into prepositional transitives verbs since the intransitive verbs are
already defined. We can user-define prepositional transitive verbs such as talks for, walks about
and looks like, but we will then only be able to define talks, walks and looks as transitive, not
intransitive verbs.

Agatha dances.
Agatha drives [det,pn,var]

Here drives is a transitive verb, as are the words has, likes and hates (which are used later). Note
that we cannot write a transitive verb followed by the function word that, hence no admits that,
announces that, argues that, concludes that, confirms that, decides that, demands that, etc.

Agatha drives a [adj,n]

Agatha drives a yellow sportscar [adv,conn:[and,or] ,prep:[around,at,by,in,on,of,with] ,pn,relpro:[that,which] ,var,fs:[.]]

76

DSTO-TR-2301

Agatha drives a yellow sportscar fast [conn:[and,orj,fs:[.jj

Agatha drives a yellow sportscar Porsche [adv,conn:[and,orj,prep:[around,at,by,in,on,of,withj ,relpro:[that,which],fs:[.ll

We cannot insert a proper noun between an adjective and a noun, hence we cannot write
drives a yellow Porsche sportscar nor has a brown Cucci handbag.

Agatha drives a B-list celebrity [adv,conn:[and,orj ,prep:[around,at,by,in,on,of,w ithj ,pn,relpro:[that,who],var,fs:[.ll

Agatha has a pleasant day [adv,conn:[and,orj,prep:[around,at,by,in,on,of,withj,pn,relpro:[that,which],var,fs:[.ll

Agatha drives all B-list celebrities [adv,conn:[and,orj,prep:[around,at,by,in,on,withj,relpro:[that,whoj,fs:[.ll

A ga tha d rives all afternoon [adv ,conn: [and,or j, prep: [around,a t,by ,in,on, w ith j,relpro: [that, which j,fs: [.ll

Agatha likes New York [adv,conn: [and,or]'prep:[around,at,by,in,on,withj,relpro:[that,whichj ,fs: [.ll

Agatha hates Charles [adv,conn:[and,orj,prep:[around,at,by, in,on,withj,relpro:[that,whoj,fs:[.ll

Agatha drives Xl [adv,conn:[and,orj ,prep: [around,at,by,in,on,with],relpro:[that,which,whoj ,fs:[.jj

Note we cannot combine any transitive verb determiner noun sequence nor transitive verb
proper noun sequence (either base or user-defined) with the prepositions about, for, like, over,
than and to. Thus no approached X about, adds X to, allows X to, arranges X to, brings X to, blames
X for, buys X for, creates X to, converts X to, compensates X for, describes X to, drives X to, enables X
to, explains X to, finds X for, fixes X for, gets X for, has X for, makes X for, meets X to, needs X for,
orders X to, prefers X over, reads X to, receives X for, reports X to, searches X for, sells X to, sends X
to, takes X to and wants X to, etc. Here X represents either a noun phrase (i.e. a determiner
adjective noun sequence) or a proper noun. We cannot turn any of these into prepositional
ditransitive verbs since the transitive verbs are already defined.

We can convert any transitive verb into a prepositional transitive verb as long as we only use
the prepositions around, about, at, for, like, of, over, than, and to. For some unknown reason the
lexical editor will accept prepositional transitive verbs using the prepositions by, in, on and
with, but the PENG editor will not let us enter them.

Agatha adapts [prep: [toll

Agatha adapts to [det,pn,varj

Here adapts to is a prepositional transitive verb. For some unknown reason the base-defined
prepositional transitive verb participates in causes an error.

Agatha adapts to a [adj,nj

Agatha adapts to a B-list celebrity [adv,conn:[and,orj ,prep:[around,at,by,in,on,of,withj ,pn,reIpro:[that,who],var,fs:[.ll

Agatha adapts to a famous nightclub [adv,conn:[and,orj ,prep:[around,at,by,in,on,of,with]'pn,reIpro:[that,whichj ,var,fs:[.ll

Agatha adapts to a tumultuous time [adv,conn:[and,or]'prep:[around,at,by,in,on,of,withj ,pn,relpro:[that,whichj,var,fs:[.ll

Agatha adapts to Charles [adv,conn:[and,or]'prep:[around,at,by,in,on,with],relpro:[that,whoj ,fs:[.ll

Agatha adapts to New York [adv,conn:[and,orj ,prep:[around,at,by,in,on,withj ,relpro: [tha t,which],fs:[.ll

A ga tha adap ts to Friday [adv,conn: [and,or j, prep: [around,at,by ,in,on, w i th j,relpro: [that, w hich j,fs: [.ll

A ga tha adap ts to X I [adv ,conn: [and,or], prep: [around,at, by,in,on, w ith j,relpro: [tha t, w hich, w ho],fs: [.j j

There are a number of words such as appears, goes, stands, wakes, etc. which are base-defined as
intransitive verbs and are also used in base-defined prepositional transitive verbs, i.e. appears
in, goes to, stands in, wakes up, etc. Below lists the look-ahead categories generated by appears
and appears in.

77

DSTO-TR-2301

Agatha appears [adv,conn:[and,orl ,prep:[around,at,by,in,on,with],fs:[.]]

Agatha appears in [det,pn,varl

Agatha appears in a famous nightclub [conn:[and,orl,prep:[o£],pn,relpro:[that,which],var,fs:[.]]

Agatha appears in a tumultuous time [conn:[and,or],prep:[o£],pn,relpro:[that,which],var,fs:[.]]

The word appears is initially treated as an intransitive verb. Note however, that if the
preposition in follows, then the look-ahead categories for appears in do not unfold as for a
prepositional transitive verb; they unfold as for an intransitive verb. Note also that the
preposition determines the noun type. We can have adapts to followed by a noun phrase or
proper noun of type person, entity or time; but we cannot have appears in followed by a noun
phrase or proper noun of type person. Nor, for example, could we have agrees with followed
by a noun phrase or proper noun of type time. A different effect is produced by the word
turns which is base-defined as a transitive verb and also used in the base-defined
prepositional transitive verb turns around. Below lists the look-ahead categories generated by
turns and turns around.

Agatha turns [det,prep:[aroundl,pn,varl

Agatha turns around [det,pn,varl

Agatha turns around a famous nightclub [adv,conn:[and,orl,prep:[around,at,by,in,on,of,withl,pn,relpro:[that,whichl ,var,fs:[.]]

Agatha turns around a tumultuous time [adv,conn:[and,orl ,prep:[around,at,by,in,on,of,withl ,pn,relpro:[that,which],var,fs:[.ll

Agatha turns around a B-list celebrity [adv,conn:[and,orl ,prep:[around,at,by,in,on,of,with]'pn,relpro:[that,who],var,fs:[.ll

Note that turns is initially treated as a transitive verb with the preposition around added to the
look-ahead category. As before, the look-ahead categories for turns around do not unfold as for
a prepositional transitive verb; they unfold as for a transitive verb.

Agatha tells [det,pn,varl

Here tells is a ditransitive verb, as is the word regards (which is used later). Note we can
convert a ditransitive verb to a prepositional transitive verb, hence we can user-define tells to,
offers to, sends for, and sticks to.

Agatha tells a [adj,n l

Agatha tells a B-list celebrity [det,prep:[o£],pn,relpro:[that,whol,varl

Agatha tells a B-list celebritI) of [det,pn,varl

Agatha tells a B-list celebritI) Max [adv,conn:[and,orl ,det,prep:[around,at,by, in,on,of,withl,pn,relpro:[that,whol ,var,fs:[.]]

Agatha tells a B-list celebrity Friday [a dv,conn:[and,orl ,det,prep:[around,at,by,in,on,of,withl,pn,relpro:[that,which,whol,var, fs:[.ll

Agatha tells a scan) ston) [det,prep:[ofl,pn,relpro:[that,whichl ,varl

Agatha tells a scan) ston) The Ghost of Dreadsbun) [adv,conn:[and,orl ,det,prep:[around,at,by,in,on,of,with],pn,

relpro:[that,whichl ,var,fs:[.]]

Agatha tells a scan) ston) Max [adv,conn:[and,orl ,det,prep:[around,at,by,in,on,of,with]'pn,relpro:[that,which,who],var,fs:[.ll

Agatha regards a sunny day [det,prep:[o£],pn,relpro:[that,whichl,varl

Agatha tells Max [det,pn,relpro:[that,whol ,varl

Agatha regards Friday [det,pn,relpro:[that,which],varl

Agatha regards Xl [det,pn,relpro:[that,which,whol ,varl

The base-defined ditransitive verb sends is also base-defined as a transitive verb. Below lists
the look-ahead categories generated by sends.

78

Agatha sends [det,pn,varj

Agatha sends a [adj,nj

Agatha sends a B-list celebrihj [adv,conn:[and,or],det,prep:[around,at,by,in,on,of,withj ,pn,relpro:[that,whoj,var,fs:[.ll

Agatha sends a lascivious postcard [adv,conn:[and,orj,det,prep:[around,at,by, in,on,of,withj,pn,relpro:[that,which],var,fs:[.jj

A ga tha s ends Max [adv,conn: [and,or],det, prep: [around,at, by,in,on, w ith j, pn,relpro: [that, who j, vad s: [.jj

Agatha sends New York [adv,conn:[and,orj,det,prep:[around,at,by,in ,on,with]'pn,relpro:[that,whichj ,var,fs :[.jj

DSTO-TR-2301

It looks like the look-ahead categories generated for ditransitive and transitive verbs have
been combined to form the look-ahead categories for sends.

Agatha hands [det,pn,varj

Here hands over is a prepositional ditransitive verb.

Agatha hands a [adj ,nj

Agatha hands a troublesome child [prep:[of,over],pn,relpro: [that,whoj,varj

Agatha hands a troublesome child of [det,pn,varj

Agatha hands a troublesome child of an [adj,nj

Agatha hands a troublesome child of an unemployed actor [prep:[of,overj,pn,relpro:[that,whoj,varj

Agatha hands a troublesome child of an unemployed actor over [det,pn,varj

Agatha hands a troublesome child of an unemployed actor over a [adj,nj

Agatha hands a troublesome child of an unemployed actor over a fence [adv,conn:[and,orj,

prep: [around/at, by ,in/of,on , w ith], pn,relpro: [that, which], var ,fs: [.]]

Agatha hands a troublesome child of an unemployed actor Max [prep:[of,overj,relpro:[that,whojj

Agatha hands a troublesome child of an unemployed actor that [aux: [does],cop:[isj,det,pn,var,vj

Agatha hands a troublesome child of an unemployed actor that does [neg:[notll

Agatha hands a troublesome child of an unemployed actor that does not [v j

Agatha hands a troublesome child of an unemployed actor that does not dance [adv,conn:[and,or],

prep: [around,a t,by lin,on/over, with]]

Agatha hands a troublesome child over [det,pn,varj

Agatha hands a troublesome child Maxine [prep:[of,over],relpro:[that,wholl

Agatha hands a best-selling novel [prep:[of,over],pn,relpro:[that,whichj ,varj

Agatha hands Maxine [prep:[overj,relpro:[that,whojj

Agatha hands The Deathly Hallows [prep:[overj,relpro:[that,whichjj

Agatha hands Xl [prep:[overj,relpro:[that,which,whojj

The base-defined ditransitive verb gives is also used in the base-defined prepositional
ditransitive verb gives to. Below lists the look-ahead categories generated by gives to.

Agatha gives [det,pn,varj

Agatha gives a [adj,nj

Agatha gives a troublesome child [det,prep:[of,to],pn,relpro:[that,who],varj

Agatha gives a best-selling novel [det,prep:[of,to],pn,relpro:[that,whichj,varj

Agatha gives Maxine [det,prep:[toj,pn,relpro:[that,who],varj

Agatha gives Xl [det,prep:[toj,pn,relpro:[that,which,whoj ,varj

Again, it looks like the look-ahead categories generated for ditransitive and prepositional
ditransitive verbs have been combined to form the look-ahead categories for gives to.

79

DSTO-TR-2301

Agatha does [neg:[notJ]

Agatha does not [vl

Agatha is [adj ,det:[a,an,thel,neg:[notl ,prep:[a t,by,in,on,withl,pn,varl

Agatha is tall [ad v,conn: [and,or], prep: [around,at, by,in,on, with],fs: [.J]

Agatha is a [adj,nl

Agatha is a tall woman lady, conn:[and,orl,prep:[around,at,by, in,on,withl ,pn,relpro:[that,whol ,var,fs:[.J]

Agatha is a tall woman that [aux:[doesl,det,pn,var,vl

Agatha is a tall woman who [aux:[doesl,det,pn,var,vl

Agatha is not [adj,det:[a,an,the],neg:[notl ,prep:[at,by,in,on,withl ,pn,varl

Agatha is at [det,pn,varl

Agatha is by [det,pn,varl

Agatha is in [det,pn,varl

Agatha is on [det,pn,varl

Agatha is with [det,pn,varl

Agatha is Ms. Dreadsbunj [adv,conn:[and,or]'prep:[around,at,by,in,on,withl ,relpro:[that,who],fs:[.J]

Agatha is X I [ad v,conn: [and,or 1, prep: [around,at, by ,in,on, with l,relpro: [that, which, who l,fs: [.J]

Agatha that [aux:[does],cop:[isl,det,pn,var,vl

Agatha that is [adj,det:[a,an,the],neg:[not]'prep:[at,by,in,on,withl ,pn,varl

Agatha who [aux:[doesl,cop:[isl,det,pn,var,vl

New York [aux:[does],cop:[isl,relpro:[that,which],vl

Friday [aux:[doesl,cop:[isl,relpro:[that,which],vl

A [adj,nl

A famous nightclub [aux:[does],cop:[isl,prep:[of],pn,relpro:[that,whichl,var,vl

All [adj,nl

All famous nightclubs [aux:[do],cop:[are],relpro:[that,whichl ,vl

Eight [adj,nl

Eight B-list celebrities [dis:[each,togetherl ,relpro:[that,whoJ]

Eight B-list celebrities each [aux:[dol,cop:[arel ,prep:[of],relpro:[that,whol ,vl

Eight B-list celebrities together [aux:[do],cop:[arel,prep:[of],relpro:[tha t,whol ,vl

Eight B-list celebrities that [aux:[dol,cop:[arel,det,pn,var,vl

Eight B-list celebrities who [aux:[do],cop:[arel ,det,pn,var,vl

Eight best-selling novels [dis:[each,togetherl ,relpro:[that,whichJ]

Eight sunny days [dis:[each,together],relpro:[that,whichll

If [det,pn,varl

If a B-list celebrity [aux:[doesl,cop:[is],prep:[o£],pn,relpro:[that,whol,var,v1

If a B-list celebrity is [adj,det:[a,an,thel,neg:[notl,prep:[at,by,in,on,withl,pn,varl

If a B-list celebritIj is unemployed [adv,conn:[and,or,then]'prep:[around,at,by,in,on,withJ]

If a B-list celebrity is unemployed then [det,pn,varl

If a B-list celebrity of [det,pn,varl

If a B-list celebrity of a [adj,nl

If a B-list celebrity of a trashy sit-com [aux:[doesl,cop:[is],prep:[ofl,pn,relpro:[that,whichl,var,vl

If a B-list celebrity Max [aux:[does],cop:[isl,prep:[o£], relpro:[that,whol ,vl

If a B-list celebrity Xl [aux:[does],cop:[isl,prep:[ofl ,relpro:[that,whol,vl

If a B-list celebrity dances [adv,conn:[and,or,thenl ,prep:[around,at,by,in,on,withll

If a B-list celebrity drives [det,pn,varl

If a best-selling novel [aux:[doesl,cop:[is],prep:[o£],pn,relpro:[that,which],var,vl

If a sunny day [aux:[does],cop:[isl,prep:[ofl,pn,relpro:[that,whichl,var,vl

If all sunny days [aux:[dol,cop:[arel,relpro:[that,whichl ,vl

If Agatha [aux:[doesl,cop:[isl,relpro:[that,who],vl

If Ag at ha dances [adv,conn: [and,or, then 1, prep: [around,a t,by,in,on, with J]

If Xl [aux:[does],cop:[isl,relpro:[that,who,whichl,vl

80

Below we list the look-ahead categories for questions posed in PENG.

[wh_quest:[Who,What, Where, When,Howl,yn_quest:[Does,Is]]

Who [aux:[doesl,cop:[isl,vl

Who does [det:[a,an,every,no,thel,neg:[not]'pn, varl

Note that we cannot construct the ungrammatical string V\lho does all.

Who does a [adj,nl

Who does a B-list celebrity [prep:[ofj ,pn,relpro:[that,whol,var,vl

Who does a famous nightclub [prep:[ofl,pn,relpro:[that,whichl,var,vl

Who does a sunny day [prep:[of],pn,relpro:[that,whichl ,var,vl

Who does not [vl

Who does Agatha [relpro:[that,whol ,vl

Who does Agatha avoid [adv,conn:[and,orl,prep:[around,at,by,in,on,withl,qm:[?]]

Who does Xl [relpro:[tha t,which,whol ,vl

Who is [adj ,det:[a,an,thel,neg:[notl,prep:[at,by,in,on,withl,pn,varl

Who is ta II [adv,conn: [and,or l, prep: [around,at, by,in,on, w ith l,qm: [?]]

Who is a [adj,nl

Who is a B-list celebrity [adv,conn:[and,or]'prep:[around,at,by,in,on,withl,pn,relpro:[that,whol ,var,qm:[?]]

Who is a famous nightclub [adv,conn:[and,orl,prep:[around,at,by,in,on,withl,pn,relpro:[that,which],var,qm:[?]]

Who is a sunny day [adv,conn:[and,orl,prep:[around,at,by,in,on,withl ,pn,relpro:[that,which],var,qm:[?]]

Who is not [adj,det:[a,an,thel,prep:[at,by,in,on,withl,pn,varl

Who is not tall [adv,conn:[and,or]'prep:[around,at,by,in,on,with]'qm:[?]]

Who is not a [adj,nl

Who is not a B-list celebritlj [adv,conn:[and,orl,prep:[around,at,by,in,on,withl,pn,relpro:[that,who],var,qm:[?ll

Who is Agatha [adv,conn:[and,orl,prep:[around,at,by,in,on,with],relpro:[that,whol,qm:[?]]

Who is Xl [adv,conn:[and,orl,prep:[around,at,by,in,on,withl ,relpro:[that,which,whol ,qm:[?ll

Who dances [adv,conn: [and,or]'prep:[around,at,by,in,on,withl ,qm:[?ll

What [aux:[doesl,cop:[isl,vl

What does [det:[a,an,every,no,thel,neg:[not]'pn,varl

What is [adj,det:[a,an,thel,neg:[notl ,prep:[at,by,in,on,withl,pn,varl

What affects [det,pn,varl

Where [aux: [does],cop:[is]]

Where does [det:[a,an,every,no,thel ,pn,varl

Where does a [adj,nl

Where does a B-list celebrity [neg:[notl,prep:[ofl ,pn,relpro:[that,whol,var,vl

Where does a B-list celebritlj not [vl

Where does a famous nightclub [neg:[notl ,prep:[ofj ,pn,relpro:[that,which],var,vl

Where does a sunny day [neg:[not],prep:[ofj,pn,relpro:[that,which],var,vl

Where is [det,pn,varl

Where is a [adj,nl

Where is a B-list celebrity [adj,det,neg: [notl,prep:[at,by,in,of,on,withl,pn,relpro:[that,whol ,varl

Where is a famous nightclub [adj,det,neg:[not],prep:[at,by,in,of,on,with],pn,relpro:[that,whichl,varl

Where is a sunny day [adj,det,neg:[not]'prep:[at,by,in,of,on,with]'pn,relpro:[that,which],varl

Where is Agatha [adj,det,neg: [no tl,prep:[at,by,in,of,on,withl ,pn,relpro:[that,whol ,varl

Where is New York [adj,det,neg:[not]'prep:[at,by,in,of,on,withl,pn,relpro:[that,whichl ,varl

Where is Xl [adj ,det,neg:[notl ,prep:[at,by,in,of,on,with]'pn,relpro:[that,which,whol ,varl

When [aux:[doesl,cop:[is]]

When does [det:[a,an,every,no,thel ,pn,varl

When is [det,pn,varl

DSTO-TR-2301

81

DSTO-TR-2301

When is Aga tha [adj,det,neg:[not],prep:[at,by,in,of,on, w ithj,pn,relpro: [that, w ho j, varj

When is Agatha a [adj,nj

When is Agatha a B-list celebrity [conn:[and,orj,prep:[at,by, in,on,withj ,pn,relpro:[that,whoj,var,qm:[?Jj

When is Agatha not [adj,det,prep:[at,by,in,of,on,withj,pn,varj

When is Agatha not a [adj,nj

When is Agatha not a B-list celebrity [prep:[at,by,in,on,with]'pn,relpro:[that,whoj ,varj

How [aux:[doesj,cop: [is]]

How does [det:[a,an,every,no,thej ,pn,varj

How is [det,pn,varj

Note tha t the grammar does not allow us to ask questions such as Where is New York?, Where is
the famous nightclub?, How is Agatha?, How is the B-list celebrity? nor When is the wedding?
Furthermore we cannot ask questions beginning Who do all, What do all, Where do all, When do
all and How do all, nor Who are all, What are all, Where are all, When are all and How are all.

Does [det:[a,an,every,no,thej ,pn,varj

Does a [adj,nj

Does a B-list celebrity [neg:[not],prep: [ofj,pn,relpro:[that,whoj ,var,vj

Does a famous nightclub [neg: [notj,prep:[ofj ,pn,relpro:[that,whichj,var,vj

Does a sunny day [neg:[notj,prep:[ofj ,pn,relpro:[that,whichj,var,vj

Does Agatha [neg:[notj,relpro:[that,who],v j

Does Agatha not [vj

Does Agatha dance [adv,conn:[and,orj,prep:[around,at,by,in,on,with]'qm:[?]]

Does Xl [neg:[notj ,relpro:[tha t,which,whoj,vj

Is [det: [a,an,every,no, the], pn, var j

Is a [adj,nj

Is a B-list celebrity [adj,det,neg: [notj,prep:[at,by,in,of,on,withj,pn,relpro:[tha t,who],varj

Is a famous nightclub [adj,det,neg:[notj ,prep:[at,by,in,of,on,with],pn,relpro:[that,whichj ,varj

Is a sunny day [adj,det,neg:[not],prep:[at,by,in,of,on,with],pn,relpro:[that,which],varj

Is Agatha [adj,det,neg:[no tj,prep:[at,by,in,of,on,withj,pn,relpro: [tha t,wh oj,varj

Is Agatha tall [adv,conn:[and,or]'prep:[around,at,by,in,on,withj ,qm: [?]]

Is Agatha a [adj,nj

Is Agatha a ta II person [adv,conn: [and,or j, prep: [around,at, by,in,on, w ith j, pn,relpro: [tha t, w ho j, var,qm: [?]]

Is Agatha Max [adv,conn:[and,orj,prep:[around,at,by,in,on,with],relpro:[that,whoj ,qm:[?]]

Is Xl [adj,det,neg: [notj , prep: [at, by,in,of,on, with], pn,relpro: [tha t, w hich, w ho j, var j

82

P age c ass! lCatIon: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA 1. PRIVACY MARKING/ CAVEAT (OF DOCUMENT)

2. TITLE 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT

Processable English: CLASSIFICATION)

The Theory Behind the PENG System
Document (U)
Title (U)
Abstract (U)

4. AUTHOR(S) 5. CORPORATE AUTHOR

Kerry Trentelman DSTO Defence Science and Technology Organisation
POBox 1500
Edinburgh South Australia 5111 Australia

6a. DSTO NUMBER 6b. AR NUMBER 6c. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-TR-2301 AR-014-554 Technical Report June 2009

8. FILE NUMBER 9. TASK NUMBER 10. TASK SPONSOR 11. NO. OF PAGES 12. NO. OF REFERENCES
2009/1016220 NS 07/021 Executive Director 82 56

CTSTC
13. URL on the World Wide Web 14. RELEASE AUTHORITY

http:/ /www.dsto.defence.gov.au/corporate/reports/DSTO- Chief,
TR-2301.pdf Command, Control, Communication s and Intelligence Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Yes
18. DSTO RESEARCH LIBRARY THESAURUS htm:Uweb-vic.dsto.defence.gov.auLworkareasLlibran:LresourcesL dsto thesaurus.shtml

Natural language processing, Intelligence analysis, Reasoning, Logic

19. ABSTRACT
This report describes the theoretical underpinnings of the PENG system. Designed by Rolf Schwitter, Marc Tilbrook, et al. at the Centre for
Language Technology at Macquarie University, the system incorporates a text editor where authors write text in a controlled language called
PENG. A controlled language processor translates PENG text to first-order logic via a discourse representation structure. The resultant
logical theory can then be checked for consistency and informativity, and may also be used for question-answering by third-party reasoning
services.

Page classification: UNCLASSIFIED

