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Processable English: 
The Theory Behind the PENG System 

Executive Summary 

This report describes the theoretical underpinnings of the PENG system. Designed by Rolf 
Schwitter, Marc Tilbrook, et al. at the Centre for Language Technology at Macquarie 
University, the system incorporates a text editor where authors write text in a controlled 
language called PENG. Authors of PENG text do not need to remember the restrictions 
placed on the language, since the PENG text editor guides the writing process. It does this 
by indicating the possible sentence constructs allowable from the current input. A 
controlled language processor translates PENG text to a logical theory which can then be 
checked for consistency and informativity, and may also be used for question-answering 
by third-party reasoning services. Although PENG is still a prototype, and has a number 
of issues, the system shows potential as a useful tool. 
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1. Introduction 

Today's intelligence analysts are finding themselves overloaded with information. Valuable 
information - sometimes implicit - is often buried amongst masses of irrelevant data. 
Heralding from unstructured sources such as natural language documents, email, audio, 
images and video, this information must be extracted, cross-checked for accuracy, analysed 
for significance, and disseminated appropriately. As part of the DSTO's C3ID Intelligence 
Analysis Discipline, we believe that automating aspects of this process offers a practical 
solution to the problem of information overload. We propose an intelligence information 
processing architecture which includes speech processing, language translation, information 
extraction, data-mining and estimative intelligence components, as well as a sixth 'information 
fusion' component. It is our intention that this component automatically fuses - albeit in an 
intelligent way - information derived from the extraction process with data from a structured 
knowledge base. This process will involve resolving, aggregating, integrating and abstracting 
information - using the methodologies of Knowledge Representation and Reasoning - into a 
single comprehensive description of an individual or event. From such fused information we 
hope to obtain improved estimation and prediction, data-mining, social network analysis, and 
semantic search and visualisation. 

This report describes the theoretical underpinnings of an alternative approach to text 
processing. Of particular interest to the information fusion team, this approach completely 
bypasses the need for information extraction and heavily lends itself to the fusion process. The 
PENG system - designed by Rolf Schwitter with Marc Tilbrook, et al. at the Centre for 
Language Technology at Macquarie University - incorporates a text editor where authors 
write text in a controlled language called 'PENG'. PENG - the name derived from 'Processable 
ENGlish' - consists of a strict subset of English. Authors of PENG text do not need to 
remember the restrictions placed on the language, since the PENG text editor guides the 
writing process. It does this by indicating the possible sentence constructs allowable from the 
current input. A controlled language processor translates PENG text to first-order logic via a 
discourse representation structure. The resultant logical theory can then be checked for 
consistency and informativity, and may also be used for question-answering by the third
party reasoning services: the theorem prover Otter and the model builders Mace4 and 
Satchmo. 

The PENG system is based on a client-server architecture and consists of four main 
components: the text editor, a controlled language processor, a server and the reasoning 
services (Schwitter 2004b). The text editor communicates with the controlled language 
processor via a socket interface. The processor is running as a client and is connected via the 
server with the reasoning services that are running separate client processes. The server 
implements a blackboard upon which the processor writes a specification text or 'theory'. The 
theorem prover searches for a proof for the theory and the model builder looks for a counter
model. 
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Theorem Prover 

Text Editor CL Processor Reasoning Services 

Model Builder 

t ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• : 

Figure 1: PENG architecture 

As part of the Intelligence Analysis Discipline, the approach we intend to take - as described 
by our information processing architecture - involves extracting information from natural 
language documents and then formally representing this information using a knowledge 
representation language. One disadvantage is the loss of (possibly valuable) information 
brought about by the extraction process. Another is that the formal languages used by the 
Knowledge Representation and Reasoning community are often difficult for non-specialists to 
learn and use. In (Schwitter 2004b) it is claimed that these disadvantages can be overcome by 
machine-processable controlled natural languages which combine the advantages of both 
formal and natural languages. We believe that this claim is worth investigating. Although 
PENG is very much a prototype, it still shows potential. If a number of issues can be 
overcome, we believe the system could make a useful tool. 

This report is structured as follows: in Section 2 we describe the controlled language and the 
PENG text editor, focussing on the editor's paraphrase and look-ahead features. In Section 3 
we look at the language processing aspects of PENG. We describe its grammar, its chart 
parsing technique, its method of discourse representation and the subsequent translation of 
this representation into first-order logic. In order to make the document self-contained, we 
have included a large amount of background material in Section 3. We examine a number of 
grammar formalisms, describe various chart parsing strategies and provide a brief 
introduction to discourse representation theory and first-order logic. In Section 4 we look at 
PENG's reasoning services and discuss the particular proof methods these services 
implement. In Section 5 we draw conclusions. 

We make two short remarks before we begin. Firstly, the PENG system is available for use 
online, requiring a login and password (Schwitter 2007c). Secondly, the author has taken some 
liberties regarding the 'Dreadsbury Mansion Mystery', a logic puzzle designed to test 
automated theorem provers (Pelletier 1986). PENG's approach to solving the original puzzle is 
described in (Schwitter and Ljungberg 2002; Schwitter, Ljungberg et al. 2003). 

2 
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An instance of one expression referring back to another. 

A function which maps variables to a given model domain. An assignment function 
can be thought to assign context. 

A generative grammar such that the left-hand side of each rule consists of a single 
non-terminal symbol. 

A parser which avoids any repetition of work by storing information about 
previously analysed substrings in the form of a chart. 

A mechanism for implementing context free and unification-based grammars in the 
logic programming language Prolog. 

A framework for representing contextual dependence within discourse. 

A set of attribute-value pairs where the values themselves may be feature 
structures. 

A type of description which is built in a well-defined way using: elements from a 
vocabulary; a (possibly infinite) set of variables; various connectives, punctuation 
marks and other symbols; and sometimes quantifiers. 

A technique used by context free and unification-based grammars which rules out 
grammatically incorrect relative clauses. 

A set of rules which describe how the strings of a particular language can be 
generated. 

A program which checks whether a given string is grammatically correct but -
unlike a parser - does not provide any information regarding the string's syntactic 
structure. 

An interpretation of a vocabulary element is the semantic value in the model 
domain assigned to it by the interpretation function. An interpretation of a variable 
is the value in the model domain assigned to it by the assignment function. 

A model's interpretation function maps each symbol in a given vocabulary to a 
semantic value in the model domain. 

A situation defined by a pair specifying a non-empty domain and interpretation 
function. There can be multiple models for a given vocabulary with differing 
domains and interpretation functions. 

Any set of real or imaginary things which are of interest, e.g. individuals, places, or 
objects. 

A program which accepts a formula as input and attempts to build a finite model 
that satisfies it. 

A program which analyses the syntactic structure of a given string in order to 
determine whether the string is grammatically correct. 
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Satisfiability 

Theorem Prover 

Unification 

Unification-Based 
Grammar 
Valid Formula 

Vocabulary 

Given a model of a particular vocabulary and an assignment function which maps 
variables to elements of the model domain, a formula (over the same vocabulary) is 
said to be satisfied in the model if a formula-specific configuration of the interpreted 
formula elements corresponds with the model itself. 

A program which determines whether a given formula is valid. 

An operation which takes two feature structures as input and returns - if the 
structures are compatible - a merged structure. 

A context-free grammar augmented with feature structures. 

Given the set of all possible models for a particular vocabulary, a formula (over that 
same vocabulary) is said to be valid if it is satisfied in every model of the set given 
any assignment function. 

A set of predicate, function and constant symbols. 

2. Text Editing 

Before we look at the features of the text editor, we take a brief look at the lexicon of PENG. 

2.1 The PENG Lexicon 

The language restrictions are defined by a unification-based grammar and lexicon. The 
unification-based grammar defines the structure of simple PENG sentences and states how 
more complex sentences can be formed using coordinating and subordinating conjunctions. 
Informally, the set of PENG sentences is restricted to a subset of first-order-logic-representable 
English natural language sentences. We make some comments about the impact this 
restriction has on sentence construction later in Section 3.7. We also provide example PENG 
sentences in Appendix A. 

The controlled 'base' lexicon consists of the following (Schwitter, Ljungberg et al. 2003; 
Schwitter and Tilbrook 2006). 

1. Predefined function words which are: determiners a, all, an, every, no and the; the negation 
function word not; the cardinals one, two, three,jour,five, six, seven, eight, nine, ten; the words 
each and together used for disambiguation; the auxiliary words do and does; the connectives 
and, if, or and then; the prepositions about, around, at, by, jar, in, like, of, on, over, than, to and 
with; the copulas are and is; the query words how, what, when, where and who; and the 
relative pronouns that, which and who. 

2. Approximately 3,000 of the most commonly used words in English. These predefined 
content words include nouns, proper nouns, verbs, adjectives and adverbs. 

Except for any illegal word, user-defined content words can be added to the base lexicon 
during the writing process. Illegal words - according to (Schwitter 2007b) - are the nouns 
beliejand wish; the verbs can, could, should, might, must, have to, ought to, believe, want and wish; 
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the adjective; former and the adverb possibly. All personal pronouns (e.g. he, she, you, I, we, they 
and them) are also illegal. Apart from the full-stop at the end of the sentence, and the question
mark at the end of a question, there is no punctuation. 

Synonyms may be defined for nouns. Both proper nouns and nouns are classified as either 
singular or plural and are assigned one of the following types: person, time or entity. For 
example Agatha, Americans and politicians are all of type person, whereas Newcastle, building 
and car are of type entity. Friday, day and time are all of type time. Proper nouns of type person 
are assigned a gender: neuter, masculine or feminine. Singular nouns of type entity are 
assigned either an atomic or mass structure. For example town, word, knife and argument are 
assigned an atomic structure, whereas blood, energy, knowledge and money are assigned a mass 
structure. 

Verbs in PENG are classified as intransitive verbs, transitive verbs, prepositional transitive 
verbs, ditransitive verbs, or prepositional ditransitive verbs. An intransitive verb is a verb 
which has no direct object (e.g. dances, falls, votes, dreams, thinks and stands). A transitive verb 
requires a direct object in the form of a noun phrase (e.g. drives, has, likes, arranges, questions 
and wants). A prepositional transitive verb is a transitive verb with an assigned preposition 
that requires a direct object (e.g. adapts, appears in, goes to, asks for, behaves like and cares for). A 
ditransitive verb requires both a direct object and an indirect object (e.g. tells, offers, regards, 
combines, sends and sticks). A prepositional ditransitive verb is a ditransitive verb with an 
assigned preposition that requires both a direct object and an indirect object (e.g. gives to, hands 
over, offers to, sends for, combines with and tells to). 

All verb forms in PENG are classified as either singular or plural and either finite or infinite. 
Moreover, all verb forms are classified as either having an event or state structure. Event verbs 
denote a change in time (e.g. achieves, begins, goes, walks, sings, travels and visits), whereas state 
verbs express static properties (e.g. has, differs, exists, lives, stands, consists and waits). 

Adjectives in PENG are single word adjectives (e.g. good, obvious, yellow, correct, temporary and 
difficult) or prepositional adjectives. Prepositional adjectives are adjectives which require a 
preposition (e.g. afraid of, aware of, happier than, healthier than and richer than). Prepositional 
adjectives are classified as either comparative or non-comparative. 

Adverbs in PENG are each assigned one of the following roles: location (e.g. anywhere, close, 
everywhere and here), direction (e.g. above, backwards, forwards and further), time (e.g. afterwards, 
before, eventually and forever), duration (e.g. longer), frequency (e.g. again, daily, enough and 
frequently), or manner (e.g. abruptly, angrily, bitterly and dramatically). 

2.2 ECOLE 

The text editor, called ECOLE - the name derived from 'a look-ahead Editor for a COntrolled 
LanguagE' - has been designed especially for the PENG language. As discussed in (Schwitter, 
Ljungberg et al. 2003; Schwitter and Tilbrook 2006), ECOLE's interface consists of three fields: 
the text, response and query fields. A screen-shot is shown in Figure 2. The text field is where 
the author writes text in controlled natural language, and is also where look-ahead categories 
are displayed after each sentence construct is entered. The look-ahead categories are 
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generated on-the-fly by the controlled language processor. For example, our text field might 
look like thisl 

The f og h a ngs over Dreadsbury 
[proper n oun, determiner, c ardinal, 

Mansi on. The f og 
connec tiv e: [If]] 

lS c reepy . 

Hence we may begin a third sentence using one of the following: a proper noun, a determiner, 
a cardinal number, or the connective If Each look-ahead category is implemented by a 
hyperlink; the author can click on the link to display more information about the category 
needed. The author also has the option of selecting an available sentence construct from a 
drop-down menu. Another feature within the text field is the tab-completion mechanism; the 
author types the start of a word and completes it by pressing the tab key. The first key stroke 
retrieves the first available word and successive strokes will iteratively display other available 
words. 

The response field is where system messages are displayed. A paraphrase is given for each 
sentence which clarifies the interpretation of the input and resolves any synonyms, acronyms, 
abbreviations and anaphoric references which have been used in the text. Suppose that within 
the lexicon the noun fog has been identified as a synonym of its main form mist, then the 
following is displayed in the response field. 

Paraphrase: 
The <s yn o nym> mist </syn onym> hangs over Dreadsbury Ma n s i on. 
<anapho ra> The <s yno n ym> mi s t </syn on ym> </ anapho ra> i s c reepy . 

The paraphrase indicates that the synonym fog has been replaced by its main form mist, and 
that the noun phrase The mist is an anaphoric expression which has been previously 
introduced in the text. 

The response field also displays: the structure of the last input sentence in the form of a parse 
tree; the discourse representation structure for the entire text including its representation in 
first-order logic; and the model generated by the reasoning services, which determines 
whether the text is satisfiable. 

The query field is where the author can pose questions - in controlled natural language -
about the text. Look-ahead categories are also generated within this field to guide the writing 
process. For example, 

I s the f og c reepy [adverb, connec tiv e: [and , o r], preposition: [in, on, 
with], questi o n_mark: [ ? ]] 

Once the question is completed, it is translated into first-order logic via a discourse 
representation structure and then answered over the generated model. The text editor features 
both a spellchecker and an integrated lexical editor which can be used to add new content 

1 Here we have user-defined the word mist as a singular noun of entity type and mass structure. We 
have defined the synonym fog for the noun mist. We have user-defined the verb hangs over as a finite, 
singular prepositional transitive verb of event structure. We have also user-defined the adjective creepy. 
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words. Only minimal linguistic knowledge is required by the author to add a new word to the 
lexicon. User-defined words can be deleted from the lexicon, but the user cannot delete words 
from PENG's base lexicon which consists of the predefined function and 3,OOO-odd content 
words. 

----------------------------------------------------

e PENG Demo ~[Q]~ 
Eile I;.dit Il.iew IDols [:1ode t:!elp 

Question: I 
he fog hangs over Dreadsbury Mansion. The fog is creepy. I [ proper_noun, determiner, cardinal , 
onnective : [IfJ J 

Paraphrase: ~ 
The <synonym> mist <!synonym> hangs over Dreadsbury Mansion . <anaphora> The 
<synonym> mist <!synonym> <!anaphora> is creepy. 

Tree: 
[s, [n3, [det, ['The'JJ, [n2, [n I, [nO, [foglll]], [v3, [vO, [cp, [is]]], [c2, [c I, [adi, [creepy llllll 

DRS: 
[drs([A, B, C, D J, [pred(A, [be J, D )#[0, 2J, evtl(A, state )#[0, 2J, propel creepy J, D )#[0, 2J, pred(B, [han 
gs, over J, D, C)#[O, I J, evtl(B, event)#[O, I J, named(['Dreadsbury', 'Mansion'J, C)#[O, I J, struc( C, ato 
mic)#[O, IJ,obj([mistJ,D)#[O, IJ,struc(D,mass)#[O, IlJ)J 

FOL: 
[exists(A,exists(B,exists(C,exists(D,pred(A,[beJ,D)#[O,2J&(evtl(A,state)#[0,2J&(prop([creepyJ 
,D )#[0, 2J&(pred(B, [hangs, over J, D, C)#[O, I J&( evtl(B, event)#[O, I J&(named(['Dreadsbury', 'Mans 
ion'J,C)#[O, IJ&(struc(C,atomic)#[O, IJ&(obj([mistJ,D)#[O, I J&struc(D,mass)#[O, I])))))))))))] 

Output Reasoning Engine: 
[[dl,d2, d3,d4J, 

[f(cl ,dl), 
f(c2,d2), 
f(c3,d3), 
f(c4,d4), 
f(named_Dreadsbury _Mansion,d3), 
f( evtl_event_l, [d2J), 
f( evtl_state _I , [d I J), 
f(obLmisU,[d4]), 
f(prop_creepy _I,[d4J), 
f(struc_atomic_l, [d3J), 
f(struc_mass_l, [d4]), 
f(pred_be_2,[(dl,d4)]), 
f(pred_hangs_over _3,[(d2,d4,d3)J), 
JJ 

Result Reasoning Engine: 
satisfiable 

Figure 2: Screen-shot 

II 
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3. Language Processing 

The controlled language processor of the PENG system implements a unification-based 
grammar and chart parser. Section 3.5 describes aspects of PENG's grammar and its 
incremental chart parsing techniques; it also discusses how the parser generates look-ahead 
categories on-the-fly. Sections 3.1-3.4 build the background needed for these sections. Section 
3.1 gives a brief introduction to grammar formalisms, focussing on context-free grammars. 
Section 3.2 introduces chart parsing. Section 3.3 describes unification-based grammars -
essentially constrained context-free grammars - and shows how chart parsing strategies for 
these grammars can be adapted. Section 3.4 discusses some basics of the logic programming 
language Prolog, and then looks at the definite clause grammar notation which allows us to 
implement unification-based grammars within Prolog. 

Apart from checking PENG text for grammatical correctness and generating look-ahead 
categories, the PENG chart parser also translates text into Discourse Representation Structures 
(DRSs). These structures capture the semantic content of the original text and are later 
translated into first-order logic. Formulae of this logic can then be checked for consistency and 
questioned-answered by the reasoning services. In Section 3.6 we give a brief introduction to 
discourse representation theory and describe Hans Kamp and Uwe Reyle' s original DRS 
construction algorithm. We show how a DRS can be translated into first-order logic and 
describe how PENG's chart parser constructs a flattened DRS using a variation of the original 
DRS construction algorithm. 

In Section 3.7 we examine 'nonfirstorderisable' English sentences. Such sentences cannot be 
represented in first-order logic, hence they cannot be formulated in the PENG language. We 
discuss the impact this has on text composition. 

3.1 Context-Free Grammars 

A grammar provides a precise description of a formal language represented by a set of strings. 
As discussed in (Gilbert 1966) there are two main types of grammars: generative and analytic. 
We'll describe analytic grammars shortly. 

Generative grammars - also known as phrase structure grammars - are sets of rules which tell 
us how strings of a particular language can be generated. In the classic formalisation first 
proposed in (Chomsky 1956), a generative grammar G is defined as a 4-tuple (N, L, P, 5) 
where N is a finite set of non-terminal symbols, L is a finite set of terminal symbols that is 
disjoint from N, P is a finite set of production rules where each rule is of the form 
(LuN)*N(LUN)* ~ (LUN)*, and 5 is a distinguished start symbol belonging to N. Here * is the 
Kleene star operator2 and u denotes set union. The language of G - written L(G) - is defined 
as the set of strings over L which are formed by starting with 5 and applying the production 
rules until no non-terminal symbols remain. An example is the grammar G with N == {5, B}, 
L == {a,b,c}, starting symbol 5 and the following production rules. 

2 The star operator works as follows: if V is a set of symbols, then V· is the set of all strings over symbols 
in V, including the empty string. 
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1. 5 ~ aB5c 

2. 5 ~ abc 

3. Ba ~ aB 

4. Bb ~ bb 

Two possible strings generated by 5 are abc and aabbcc. The first string can be generated 
directly by application of rule 2. The second string can be generated via 
5 =>1 aB5c =>2 aBabcc =>3 aaBbcc =>4 aabbcc. Here X =>i Yhas the meaning that X generates Yby 
application of rule i. We can see that the grammar defines the language L(G) == {a"bllcll I n:2: I}. 

A generative grammar is said to be incomplete if we can derive a string from 5 containing one 
or more non-terminal symbols, but can find no production rule to apply to the string. 
Moreover, the grammar is said to be recursive if it contains a non-terminal symbol which can 
be recursively derived from a production rule. 

A context-free grammar is a generative grammar such that the left-hand side of the 
production rule consists of a single non-terminal symbol. As an example, consider the 
grammar with the set of non-terminal symbols N == {5, np, det, n, vp, iv, pp}, the set of terminal 
words and phrases L == {the, woman, lives, in Dreadsbury Mansion}, starting symbol 5 and the 
following production rules. 

1. 5 ~ np vp 

2. np ~ det n 

3. det ~ the 

4. n ~ woman 

5. vp ~ lV pp 

6. iv ~ lives 

7. pp ~ in Dreadsbury Mansion 

Here the symbols 5, np, vp, det, n, iv and pp abbreviate the grammatical categories 'sentence' , 
'noun phrase', 'verb phrase', 'determiner', 'noun', 'intransitive verb' and 'prepositional 
phrase' respectively. We can see from the production rules that 5 generates the string the 
woman lives in Dreadsbury Mansion. We can represent the syntactic structure of the string - as 
described by the grammar - in the form of a tree. Here 5 is the root node, the elements of N 
are the branch nodes and the elements of L are the leaf nodes. 

S 

/~ 
np vp 

/~ / 
det n iv pp 

I I I I 
the woman lives in Dreadsbury Mansion 

Figure 3: Parse tree 
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A context-free parser is used to construct such a tree. Given a context-free grammar and an 
input string belonging to the language of the grammar, a parsing algorithm builds a parse tree 
top-down such that 5 is the root node and every node of the tree is allowable by the grammar. 
If a tree can be constructed such that the string is listed in the correct order at the leaf nodes, 
then the parser deems the string to be well-formed or grammatically correct. In other words, a 
parser analyses the syntactic structure of a given string in order to determine whether the 
string is grammatically correct. 

Most parsing algorithms assume the language to be parsed is described by means of a 
generative grammar. There is usually no correspondence between the algorithm used to parse 
the language and the generative grammar itself. In contrast, analytic grammars are sets of 
rules which tell us how strings can be analysed in order to determine whether they are 
members of a particular language. Essentially, these grammars formally describe a parser for a 
language; they describe how a language is to be read, rather than how it is to be written. Since 
analytic grammars have no further bearing on this report, in the sequel any reference to 
'grammar' should be interpreted as 'generative grammar'. 

A major drawback of naive parsing algorithms is that they often build and discard the same 
sub-tree multiple times. For example, suppose we have a context-free grammar with 
N == {5, np, det, n, re, vp, iv, pp}, 2: == {the, woman, that, lives, in Dreadsbury Mansion}, starting 
symbol 5 and the following production rules. 

1. 5 ~ np vp 

2. np ~ det n re 

3. np ~ detn 

4. re ~ relpro vp 

5. vp~LVPp 

6. det ~ the 

7. n ~ woman 

8. relpro ~ that 

9. iv ~ lives 

10.pp ~ in Dreadsbury Mansion 

Note that re and relpro abbreviate the grammatical categories 'relative clause' and 'relative 
pronoun' respectively. Given the input string the woman lives in Dreadsbury Mansion, a naive 
parser will first attempt to apply the rule np ~ det n re (since it is the first applicable 
production rule in the list). Failing this, it will attempt to apply np ~ det n. This means the 
parser repeats the analysis of both determiner and noun at each rule application. A work
around this redundancy is chart parsing. Since PENG implements an incremental chart parser 
- incremental in that it allows modifications to be made to the input string on-the-fly - we 
now give a brief introduction to the chart parsing method. Much of the next section follows 
from (Gazdar and Mellish 1990; Blackburn and Striegnitz 2002). 

10 
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3.2 Chart Parsing Basics 

A chart parser is a parser which implements a chart. Essentially, a chart stores information 
about substrings the parser has already analysed. The chart parsing algorithm checks the chart 
to see whether it has already produced an analysis of any substring it is parsing; if it has, the 
algorithm uses this information and hence avoids any repetition of work. 

Suppose we read from left to right the string of terminal symbols - or in our case, words -
found at the leaf nodes of a context-free parse tree. This string can be represented by a Well
Formed Substring Table (WFST). If we assign the beginning and end of the string the indices 0 
and n, and assign the spaces between string constituents the indices numbered 1 to n - 1 
from left to right, then a WFST tells us for each pair of indices (i, j) - where 0 ~ I < j ~ n - what 
set of non-terminal symbols span the substring of words found between i and j. As an 
example, consider the context-free grammar with N == {S, np, det, n, vp, iv, adv}, 
L == {the, butler, acts, suspiciously}, starting symbolS and the following production rules. 

1. 5 ~ np vp 

2. np ~ det n 

3. det ~ the 

4. n ~ butler 

5. vp ~ iv adv 

6. iv ~ acts 

7. adv ~ suspiciously 

The string the butler acts suspiciously generated by 5 can be represented by the following WFST. 

i \ j 1 2 3 4 

0 det np 5 

1 n 

2 iv vp 

3 adv 

Figure 4: WFST 

We can think of a WFST as a graph whereby arcs between nodes i and j - where 0 ~ i < j ~ n -
are labelled with the non-terminal symbols that span the substring of words between nodes i 
and j. Below we give a graph representation for our current example. 

s 

_--__ np 

det n iv adv 

the butler acts 
o 1 2 3 

suspiciously 
4 

Figure 5: Graph representation 
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Given a context-free grammar and an input string, a chart parser parses the string by 
constructing a variation of a WFST called a chart. Note that for readability, we will describe a 
chart using a graph representation; ordinarily however, a chart is implemented as a look-up 
table. In a chart, arcs are usually referred to as edges. Edges are directed clockwise and are 
labelled with dotted rules (these are explained shortly). Edges may also be empty, i.e. they 
loop back on themselves. The chart parsing process begins with the parser constructing an 
initial chart. The initial chart varies according to the type of parser. The parser then employs a 
set of rules to heuristically decide when an edge should be added to the chart. This set of rules 
- along with the specification of when they should be applied - forms a strategy. When the 
parser finds an edge which spans the entire string, it has succeeded in parsing the string. 
There may be further parses to find, but the parser has found at least one. 

The dotted rule notation was introduced in (Earley 1970). Essentially an edge labelled by a 
dotted rule represents a hypothesised string constituent. The string constituent can be fully 
analysed, partially analysed, or completely analysed by the chart parser. Suppose 5 ~ np vp 
and det ~ the are production rules of the grammar, then the following dotted rules can be 
used as edge labels. 

5 ~. np vp 

5 ~ np· vp 

5 ~ np vp. 

det ~ the· 

The dot within these labels indicates the extent to which the hypothesis that the rule is 
applicable has been verified by the chart parser. Rules of the form 5 ~ • np vp are only used 
to label empty edges. This particular rule denotes the hypothesis that 5 can be found spanning 
a substring that represents a np vp sequence. The rule 5 ~ np • vp denotes a similar 
hypothesis, however in this case the hypothesis has been partially confirmed; the np sequence 
has already been analysed by the parser. The dotted rules 5 ~ np vp • and det ~ the • denote 
fully confirmed hypotheses, whereby both the np vp sequence and terminal word the have 
been analysed. Note that a rule such as det ~ • the semantically makes sense - it denotes the 
hypothesis that the determiner can be found spanning a substring that represents the terminal 
word the - however we ignore rules of this form here, since they are not necessary for chart 
parsing. 

Our WFST above can be represented as the following chart. 
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s ~ np vp. 

np ~ del. n 

det ~ the . n ~ butler . iv~ acts . 

° 1 2 3 4 
the butler acts suspiciously 

Figure 6: Completed chart 

Edges of a chart that represent unconfirmed hypotheses are called active, whereas those that 
represent confirmed hypotheses are inactive. For example in the chart above, the edges 
labelled np ~ det e nand 5 ~ e np vp are active, whereas the edges labelled vp ~ iv adv e and 
det ~ the e are inactive. 

Edges can be described using the notation (i, j, L) where i is the start position of the edge, j is 
the end position and L is the label of the edge. For example the edge labelled np ~ det e n in 
Figure 6 can be written (0, 1, np ~ det en), whereas the edge labelled vp ~ iv adv e can be 
written (2, 4, vp ~ iv adv e). 

3.2.1 The Fundamental Rule 

Every chart parsing strategy incorporates one rule in particular. This rule is called the 
fundamental rule of chart parsing. This rule combines: (1) an active edge whose label 
hypothesises a non-terminal symbol Y, with (2) an inactive edge whose label features Yon the 
left-hand side. The result is a new edge which spans both the original active and inactive 
edges. Formally, suppose the chart contains the following edges where 0$ i < j $ n, X and Y 
are non-terminal symbols, a is a (possibly empty) sequence of non-terminal symbols, fJis a 
sequence of non-terminal symbols, and ris either a terminal symbol or a sequence of non
terminal symbols. 

X--+a e Y/3 

j 

Then the parser adds the following edge. 

~. 
k 

• 
k 
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We can see from Figure 6 that edges (0,0, 5 ~ e np up) and (0,2, np ~ det n e) combine to 
form (0,2, 5 ~ np e up), edges (0,1, np ~ det e n) and (1,2, n ~ butler e) combine to form 
(0,2, np ~ det n e), and edges (0,2, 5 ~ np e up) and (2,4, vp ~ iv adv e) combine to form 
(0,4, 5 ~ np vp e). 

3.2.2 A General Algorithm 

Chart parsing is either conducted top-down or bottom-up. In top-down chart parsing the 
parser start with 5 and tries to transform it into the input string. The parser takes grammatical 
categories and breaks them into smaller constituents and eventual terminal symbols. In 
bottom-up chart parsing, the parser starts with the input string and tries to rewrite it to S. It 
takes each terminal symbol and attempts to locate the parent grammatical categories the 
symbol belongs to. Once found, the parser then attempts to locate those categories' parents, 
and so on. 

Chart parsing often relies on a data-structure called an agenda. The parser stores the 
remaining (not yet analysed) edges in the agenda. It then adds these edges one at a time to the 
chart, using them to build new edges via the fundamental rule. Here we will treat the agenda 
as a stack; we push edges on the agenda and pop edges from the agenda in a last-in, first-out 
manner. Alternatively, we could treat the agenda as a queue whereby edges are taken in a 
first-in, first-out manner. Treating the agenda as a stack results in a depth-first search strategy, 
whereas treating the agenda as a queue results in a breadth-first search strategy. Hence the 
order of the edges in the agenda is of vital importance. 

A general algorithm for both top-down and bottom-up chart parsing can be described as 
follows. 

1. Construct the initial agenda and chart. 

2. Repeat steps a, b and c until the agenda is empty. 

a. Pop the first edge from the agenda and - as long as it is not already there - add 
it to the chart. This edge becomes the current edge. 

b. If possible, apply the fundamental rule in order to combine the current edge 
with any other edges from the chart. New edges formed should be pushed on 
the agenda. 

c. Make hypotheses - in the form of active edges - about new sentence 
constituents based on the current edge and the rules of the grammar. Push 
these new edges on the agenda. 

3. If the chart contains an inactive edge from the first node to the last with label 5 ~ r e -

where ris either a terminal symbol or a (possible sequence of) non-terminal symbol(s) -
then we have successfully parsed the sentence, else we have failed. 

How Steps 1 and 2c are carried out distinguishes between top-down and bottom-up chart 
parsing strategies. We'll shortly look at an example to explain the difference between the two 
strategies. 

Neither the top-down nor bottom-up parsing strategy is considered better than the other. As 
mentioned in (Longley and Stark 2002), top-down parsers are a little less powerful but their 
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algorithms are easier to implement. Although PENG features a basic (top-down) parser which 
implements the general algorithm described previously, it is worth mentioning that more 
sophisticated chart parsing algorithms exist. Two popular algorithms are the Cocke-Younger
Kasami (CYK) algorithm and the Earley algorithm. CYK is a bottom-up algorithm and 
requires its context-free grammar to be written in Chomsky Normal Form (Kasami 1965; 
Younger 1967). A definition of Chomsky Normal Form can be found at (Aute bert, Berstel et al. 
1997) . The Earley algorithm is a top-down algorithm which is somewhat faster and more 
efficient than CYK (Earley 1970). 

3.2.3 The Top-Down Strategy 

Since PENG implements a top-down chart parser, we will build a chart in all its gory detail 
following the general algorithm using the top-down strategy. We avoid doing this for the 
bottom-up case, however we will comment briefly on how the general algorithm can be 
adapted for this strategy. Our example grammar will again be used in Section 3.5.2 where we 
describe how PENG handles modification (i.e. insertion, deletion and replacement) of the 
input string on-the-fly. Suppose we have the following context-free grammar with the set of 
non-terminal symbols N == {5, np, det, n, rc, relpro, vp, iv, adv}, the set of terminal words 
L == {the, butler, that, acts, suspiciously}, starting symbolS and the following production rules. 

1. 5 ~ np vp 

2. np ~ det nrc 

3. np ~ detn 

4. rc ~ relpro vp 

5. vp ~ iv adv 

6. det ~ the 

7. n ~ butler 

8. relpro ~ that 

9. iv ~ acts 

10.adv ~ suspiciously 

For now, suppose we have the input string the butler acts suspiciously. 

When constructing an initial agenda for top-down chart parsing, we select the grammar 
production rules that feature 5. We form an active empty edge for each rule - at node 0- and 
place each edge in the empty agenda/ stack. Following our example, we have the initial 
agenda 

(0,0, 5 ~ • np vp) 

Note that if we had a grammar production rule such as 5 ~ 5 coord 5 where coord is the word 
and or or, say, then we would also add a similar active empty edge (0,0, 5 ~ • 5 coord 5) to the 
agenda. 

The initial chart is comprised of the inactive edges featuring the terminal words of the input 
string. Essentially the top-down strategy involves breaking down grammatical categories into 
constituent categories by hypothesising new edges from active edges. Hence we work our 
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way down from active edges featuring grammatical categories to these smaller inactive edges 
featuring the terminal words. Following our example, we have the initial chart 

det ~ the . n ~ butler . iv ~ acts. adv ~ suspicious Iy • 

• 
° 1 2 3 4 

the butler acts suspicious ly 

Step 2c of the general chart parsing algorithm is adapted to the top-down strategy in the 
following way. If you are adding the current active edge (i, j, X ~ a • Y fJ) to the chart, then 
for every grammar rule Y ~ r, push the edge (i, j, Y ~ • n on the agenda. Here i and j are 
node labels, X and Y are non-terminal symbols, a is a (possibly empty) sequence of non
terminal symbols, and fJ and r are sequences of non-terminal symbols. 

Round 1 

2a) We pop edge (0, 0, 5 ~ • np vp) from our initial agenda and add it to the chart. 

2b) We are unable to apply the fundamental rule, hence we move to Step 2c. 

2c) Our current edge is (0,0, 5 ~ • np vp) and we have the two grammar rules np ~ det nrc 

and np ~ det n. Following Step 2c outlined above, we push the edges (0,0, np ~ • det nrc) 

and (0,0, np ~ • det n) on the agenda. 

After Round 1 we have the chart 

° 1 

the 

We have the following agenda. 

Round 2 

n ~ butler . iv ~ acts. adv ~ suspicious Iy • 

2 

butler acts 

(0,0, np ~ • det n) 
(0,0, np ~ • det nrc) 

3 4 

suspiciously 

2a) We pop the edge (0,0, np ~ • det n) from the agenda and add it to the chart. 

2b) We can apply the fundamental rule by combining (0, 0, np ~ • det n) and (0, 1, det ~ the .) 
to form the new edge (0, 1, np ~ det • n) which we push on the agenda. 

2c) Our current edge is (0, 0, np ~ • det n), but there are no grammar rules with det on the left
hand side and non-terminals on the right, so nothing is pushed on the agenda at this step. 
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After Round 2 we have the chart 

s 

° 1 

the 

We have the following agenda. 

Round 3 

2 

butler acts 

(0, 1, np ~ det e n) 

(0,0, np ~ e det nrc) 

3 
adv ~ suspiciously ' • 

4 

suspiciously 

2a) We pop (0,1, np ~ det e n) from the agenda and add it to the chart. 
2b) We can apply the fundamental rule by combining (0,1, np ~ det e n) and 
(1,2, n ~ butler e) to form the new edge (0,2, np ~ det n e) which we push on the agenda. 
2c) Our current edge is (0, 1, np ~ det en), but there are no grammar rules with n on the left
hand side and non-terminals on the right. Hence we move to Round 4. 

Round 4 
2a) We add (0,2, np ~ det n e)to the chart. 
2b) We combine (0,0, 5 ~ e np vp) and (0,2, np ~ det n e) to form the new edge 
(0,2, 5 ~ np e vp) which we push on the agenda. 
2c) No new hypothesis can be made from our current inactive edge (0,2, np ~ det n e). 

After Round 4 we have the chart 

s 
np ---+ det n' 

np ---+ det. n 

° the 

We have the following agenda. 

1 

butler acts 

(0, 2, 5 ~ np e vp) 

(0,0, np ~ e det nrc) 

suspiciously 
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RoundS 

2a) We add (0, 2, 5 ~ np -up) to the chart. 

2b) We are unable to apply the fundamental rule, hence we move to Step 2c. 

2c) Our current edge is (0,2, 5 ~ np - vp) and we have the grammar rule vp ~ iv adv. 
Following Step 2c, we push the edge (2, 2, vp ~ - iv adv) on the agenda. 

Round 6 

2a) We add (2,2, vp ~ - ivadv) to the chart. 

2b) We combine (2,2, vp ~ - ivadv) and (2,3, iv ~ acts -) to form the new edge 
(2,3, vp ~ iv - adv) which we push on the agenda. 

2c) There are no grammar rules with iv on the left-hand side and non-terminals on the right. 

After Round 6 we have the chart 

s 
s ~ np 0 vp vp ~ oiv adv 

np~ det on 

° the 

We have the following agenda. 

Round 7 

np~ det n 0 

1 2 

butler acts 

(2,3, vp ~ iv - adv) 
(0,0, np ~ - det nrc) 

2a) We add (2,3, vp ~ iv - adv) to the chart. 

~ 
3 4 

suspiciously 

2b) We combine (2,3, vp ~ iv - adv) and (3,4, adv ~ suspiciously -) to form the new edge 
(2, 4, vp ~ iv adv -) which we push on the agenda. 

2c) There are no grammar rules with adv on the left-hand side and non-terminals on the right. 

Hence we move to Round 8. 

Round 8 

2a) We add (2, 4, up ~ iv adv -) to the chart. 

2b) We combine (0,2, 5 ~ np - vp) and (2,4, vp ~ iv adv -) to form the new edge 
(0,4, 5 ~ np vp -) which we push on the agenda. 

2c) No new hypothesis can be made from our current inactive edge (2,4, vp ~ iv adv e). 
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After Round 8 we have the chart 

s 
s ~ np. vp 

np~ det n. 

nlJ~det.n vp~iv.adv 

° 1 

l-·v-~-a-cts-.- ~. 
234 

the butler acts suspiciously 

We have the following agenda. 
(0,4, 5 ~ np vp .) 
(0,0, np ~ • det nrc) 

Round 9 

2a) We add (0, 4, 5 ~ np vp .) to the chart. 

2b) We are unable to apply the fundamental rule, hence we move to Step 2c. 

2c) No new hypothesis can be made from our current inactive edge (0,4, 5 ~ np vp .). 

Round 10 

2a) We add (0,0, np ~ • det nrc) to the chart. 

2b) We combine (0,0, np ~ • det nrc) and (0,1, det ~ the·) to form the new edge 
(0, 1, np ~ det • nrc) which we push on the agenda. 

2c) There are no grammar rules with det on the left-hand side and non-terminals on the right. 

Hence we move to Round 11. 

Round 11 

2a) We add (0,1, np ~ det • nrc) to the chart. 

2b) We combine (0,1, np ~ det • nrc) and (1,2, n ~ butler·) to form the new edge 
(0, 2, np ~ det n • rc) which we push on the agenda. 

2c) There are no grammar rules with n on the left-hand side and non-terminals on the right. 

Hence we move to Round 12. 

Round 12 

2a) We add (0,2, np ~ det n • rc) to the chart. 

2b) We are unable to apply the fundamental rule, hence we move to Step 2c. 

2c) Our current edge is (0, 2, np ~ det n • rc) and we have the grammar rule rc ~ relpro vp. 

Following Step 2c, we push the edge (2, 2, rc ~ • relpro vp) on the agenda. 

19 



DSTO-TR-2301 

Round 13 

2a) We add (2,2, rc ~ e relpro vp) to the chart. 

2b) We are unable to apply the fundamental rule, hence we move to Step 2c. 

2c) There are no grammar rules with relpro on the left-hand side and non-terminals on the 
right. Hence we move to Round 14. 

Round 14 
The agenda is empty so we move to Step 3. 

3) Since the chart contains an inactive edge from the first node to the last - namely 
(0,4, 5 ~ np vp e) we return 'success' and are done. 

As an aside, it is worth pointing out that if we had the production rules 5 ~ np vp and 
5 ~ 5 coord 5 in our grammar, then at some stage during the parsing process we would get 
the edge (i, j, 5 ~ 5 coord e 5) appearing in the chart for some nodes i and j where i < j. This 
means that via Step 2c, we'd eventually introduce the active empty edges (i, j, 5 ~ e np vp) 
and (i, j, 5 ~ e 5 coord 5) to the chart. Hence this means the parser looks for coordinated (or 
nested) sentences within the input string, but only according to the production rules of the 
grammar. 

3.2.4 The Bottom-Up Strategy 

When constructing an initial agenda for bottom-up chart parsing, we select the grammar 
production rules that feature the terminal symbols. We form an inactive edge for each rule -
which spans the nodes of the terminal symbol - and place each edge in an empty agenda. 
Following our example, we have the initial agenda 

(0,1, det ~ the e) 
(1, 2, n ~ butler e) 
(2,3, iv ~ acts e) 
(3,4, adv ~ suspiciously e) 

Essentially the bottom-up strategy involves building up the terminal symbols into 
grammatical categories - and eventually 5 - by hypothesising new edges from inactive edges. 
The initial chart for bottom-up chart parsing is empty. We can see that this is a reasonable 
starting point, since the algorithm specifies that edges from the agenda are added one at a 
time to the chart, and our initial agenda contains inactive edges that feature the terminal 
symbols. Following our example, we have the initial chart 

• o 
the 

• 1 

butler 

• 2 

acts 

• 3 

suspiciously 

• 4 

Step 2c of the general chart parsing algorithm is adapted to the bottom-up strategy in the 
following way. If you are adding the current inactive edge (i, j, X ~ a e) to the chart, then for 
every grammar rule Y ~ X fJ, push the edge (i, j, Y ~ e X fJJ on the agenda. Here i and j are 
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node labels, X and Yare non-terminal symbols, a is either a terminal symbol or a sequence of 
non-terminal symbols, and fJis a sequence of non-terminal symbols. 

In order to better describe how the algorithm implements the bottom-up strategy, we will 
apply the algorithm to our running example for a few rounds. 

Round 1 

2a) We pop edge (0, 1, det ~ the .) from our initial agenda and add it to the chart. 

2b) We are unable to apply the fundamental rule, hence we move to Step 2c. 

2c) Our current edge is (0, 1, det ~ the .) and we have the two grammar rules np ~ det n rc 
and np ~ det n. Following Step 2c outlined above, we push the edges (0,0, np ~ • det nrc) 
and (0,0, np ~ • det n) on the agenda. 

Round 2 

2a) We pop edge (0, 0, np ~ • det n) from our initial agenda and add it to the chart. 

2b) We can apply the fundamental rule by combining (0,0, np ~ • det n) and (0, 1, det ~ the .) 
to form the new edge (0, 1, np ~ det • n) which we push on the agenda. 

2c) No new hypothesis can be made from our current active edge (0, 0, np ~ • det n). 

Round 3 

2a) We add edge (0, 1, np ~ det • n) to the chart. 

2b) We are unable to apply the fundamental rule, hence we move to Step 2c. 

2c) No new hypothesis can be made from our current active edge (0, 1, np ~ det • n). 

3.3 Unification-Based Grammars 

Section 3.1 gave us a general overview of grammars and context-free grammars in particular. 
This section describes unification-based grammars, which are context-free grammars 
augmented with constraints called feature structures. After a brief introduction, we show how 
chart parsing strategies for these grammars can be adapted. In Section 3.4 we look at the 
definite clause grammar notation which allows us to implement unification-based grammars 
within the logic programming language Prolog. This section and Section 3.4 provide us with 
the background needed for an examination of PENG's grammar, its incremental chart parsing 
techniques and look-ahead category generation. Much of this section is adapted from 
(Jurafsky and Martin 2000). We begin with an example. 

Suppose we have the following context-free grammar with N == {5, np, det, n, vp, ivj, 
L == {a, brother, schemes}, starting symbol 5 and the following production rules. 

1. 5 ~ np vp 

2. np ~ detn 

3. vp ~LV 

4. det~a 

5. n ~ brother 

6. iv ~ schemes 
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Suppose we want to extend the grammar in order to generate the string all brothers scheme. We 
could just add all, brothers and scheme to L and add the production rules det ~ all, n ~ brothers 
and iv ~ scheme, however this new grammar would allow us to generate the unwanted 
strings, a brother scheme, all brother scheme, all brothers schemes and a brothers schemes. 
Alternatively, we could replace np, n, vp and iv with non-terminal symbols representing 
their plural and singular forms. We'd then have the set of 
non-terminals N == {S, npsg, nppl, det, nsg, npl, vpsg, vppl, ivsg, ivpl}, the set of terminals 
L == {a, all, brother, brothers, schemes, scheme}, starting symbol Sand the following production 
rules. 

1. 5 ~ npsg vpsg 

2. 5 ~ nppl vppl 

3. npsg ~ detsg nsg 

4. nppl ~ detpl npl 

5. vpsg ~ LVSg 

6. vppl ~ ivpl 

7. detsg ~ a 

8. detpl ~ all 

9. nsg ~ brother 

10.npl ~ brothers 

11.ivsg ~ scheme 

12. ivpl ~ schemes 

A drawback to this method is the drastic increase in the size of the grammar. 

A much better solution is to integrate feature structures within the grammar. Here the 
grammatical category symbols np, vp, det, n, etc. can be thought of as sets of attributes 
designating - for example - category type, grammatical number, grammatical person, gender 
and/ or tense. A feature structure is simply a set of attribute-value pairs. Often structures are 
denoted by an attribute-value matrix. For example, the following matrix captures a restricted 
subcategory of noun phrases whereby each phrase is singular and in third person. 

[

category nP j 
number sg 

person 3 

Values can be atomic - e.g. np, sg or 3 - or are feature structures themselves. Consider the 
matrix below. 

[

category np j 
[
number Sg] 

agree 
person 3 

Here the 'agreement' attribute agree takes a feature structure - consisting of number and person 
attribute-value pairs - as its value. Matrices of this form allow us to take two grammatical 
categories and test their value equality for both number and person attributes. Moreover in a 
variation of the above matrix, an agree structure may act as a value for a subject attribute. This 
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allows us to take a category and the grammatical subject of category and test their value 
equality for both number and person attributes. Note that in general, feature structures acting 
as values of agree can contain attributes other than number and person. These attributes are 
typically present because grammatical categories often need to agree (at least) on the values of 
these attributes. 

A feature path is a list of attributes through a feature structure leading to a particular value. 
Using the last feature structure as an example, the feature path < agree number> leads to the 
value sg, whereas < agree person> leads to 3. A logical step from the notion of feature paths is 
the representation of structures as Directed Acyclic Graphs (DAGs). Our feature structure 
above looks as follows. 

~-~ .. np 
category 

• sg 
number 

agree 

person 3 

Figure 7: Feature structure represented as directed acyclic graph 

Feature structures that share an identical substructure (or node in the DAG) can be 
represented by re-entrant structures. A symbol ® is used to indicate the shared structure. For 
example in the following matrix, the agree attribute and the < subject agree> feature path share 
the same value, namely the structure consisting of person and number attribute-value pairs. 

I agree ®[ :~:;;r s:]l 
l subject [ agree ®] J 

This is equivalent to the following matrix. 

['::::1 [agree ®[ ;erson 3 ]]l l number sg J 
The symbol ® can be thought of as acting as both label and placeholder. It labels the structure 
consisting of person and number attribute-value pairs, and as the value of agree, it acts as 
placeholder for that structure. 

Unification is a partial operation on feature structures. The binary operator U takes two 
feature structures as argument and returns - when successful - a merged structure. If the 
structures are incompatible, unification fails. We now look at a number of examples - taken 
from Ourafsky and Martin 2000) - to illustrate. Since the input structures are identical in the 
equation below, unification returns the same structure as output. 

[number sg] U [number sg]=[ number sg] 
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The next unification fails since the two attributes have incompatible values. 
[ number sg] U [ number pl] fails 

The [ ] value in the following structure indicates that it has been left unspecified. Such a 

value is compatible with any value of a corresponding attribute in another structure. 

[number sg] U [number []J=[ number sg] 

The next equation merges two structures; the unification is successful since the structures 
do not share attributes with incompatible values. 

[number sg]U[person 3]= [
number Sg ] 
person 3 

In the following equation, the agree attribute of the left-hand side structure receives a value as 
a result of unification. 

[
agree ® ] [ U subject 

subject [agree ®[ ]J [ [
person 3 ]]] 

agree number sg 

I agree 

= l subject [ agree [
person 

® 
number 

In the next example, unification fails since the values found via < subject agree number> are 
incompatible. 

I agree 

lSUbject 

®[number sg]j 
person 3 U 
[agree ®] 

agree [
number Sg ] 
person 3 

subject [
agree [number 3Pl ]] 

person 

We say that a feature structure Fl subsumes another structure F2 if all the attribute-value pairs 
in Fl are also contained in F2• For example, consider the following two structures. 

[ number sg] [ person 3 ] 
number sg 

The left feature structure subsumes the right, but not vice versa. Every attribute-value pair in 
the left structure is contained in the right, but the right structure contains an additional pair. 
The left structure can be thought of as being less specific than the right structure; this fits in 
with our intuitive notion of a less specific (more abstract) structure subsuming an equally or 
more specific one. 

A unification grammar is formed by augmenting the production rules of a regular context-free 
grammar with constraints of the form 
1. < X;feature path> = atomic value 
2. < X;feature path> = < Xifeature path> 
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Given a production rule with terminal symbol Xi, the notation < Xfeature path> denotes a 
feature path through the feature structure associated with X. The constraints specify (1) that 
the value found via the given path must unify with the given atomic value, and (2) that the 
values found via the two given paths must be unifiable. 

Consider our (extended) example context-free grammar with N == {5, np, det, n, vp, ivj, 
L == {a, all, brother, brothers, schemes, scheme}, starting symbol 5, and the following production 
rules. 
1. 5 ~ np vp 
2. np ~ det n 
3. vp ~ lV 

4. det ~ a 
5. det ~ all 
6. n ~ brother 
7. n ~ brothers 
8. iv ~ schemes 
9. iv ~ scheme 

Recall that we want to generate the strings a brother schemes and all brothers scheme, while 
disallowing a brother scheme, all brother scheme, a brothers schemes and all brothers schemes. We 
can do this by augmenting the production rule as follows. 
5 ~npvp 

< np number> = < vp number> 
This means that a sentence of the grammar may only be formed if the grammatical number of 
the noun phrase is equal to the grammatical number of the verb phrase. If we want to add a 
< np person> = < vp person> constraint to the rule - instead of listing the two constraints - we 
can make use of the agree attribute. We write 
5 ~np vp 

< np agree> = < vp agree> 

Using this new notation, our production rules are constrained as follows. 

1. 5 ~ np vp 

< np agree> = < vp agree> 

2. np ~ det n 

< det agree> = < n agree> 

< np agree> = < vp agree> 

3. vp ~ lV 

< vp agree> = < iv agree> 

4. det ~ a 

< det agree> = sg 

5. det ~ all 

< det agree number> = pl 
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6. n ~ brother 

< n agree number> = sg 

7. n ~ brothers 

< n agree number> = pl 

8. iv ~ schemes 

< iv agree number> = sg 

< iv agree person> = 3 

9. iv ~ scheme 

< iv agree number> = pl 

It's worth pointing out that in a number of rules, a structure of a grammatical subcategory is 
copied into a parent category. The subcategory that provides the structure is usually referred 
to as the head of the phrase, whereas the structure copied is usually referred to as the head 
feature. Following our example, n is the head of the noun phrase and iv is the head of the verb 
phrase. In both cases agree is the head feature. We can rewrite our production rules to reflect 
these notions by placing the agree feature structure under a head attribute and copying that 
feature structure upwards. 

1. 5 ~ np vp 

< n head agree> = < vp head agree> 

2. np ~ det n 

< det head agree> = < n head agree> 

< np head> = < n head> 

3. vp ~ lV 

< vp head> = < iv head> 

4. det ~ a 

< det head agree number> = sg 

5. det ~ all 

< det head agree number> = pl 

6. n ~ brother 

< n head agree number> = sg 

7. n ~ brothers 

< n head agree number> = pl 

8. iv ~ schemes 

< iv head agree number> = sg 

< iv head agree person> = 3 

9. iv ~ scheme 

< iv head agree person> = pl 

26 



DSTO-TR-2301 

3.3.1 Chart Parsing with Unification-Based Grammars 

Recall from Section 3.2, that the edges of a chart can be described using the notation (i, j, L) 
where i is the start position of the edge, j is the end position and L is the label of the edge. In 
order to chart parse unification-based grammars, we add an additional field Fcontaining the 
feature structure associated with the label L. 

The fundamental rule remains unchanged except for its handling of feature structures. The 
rule combines edges (i, j, X ~ a· Y fJ, FI ) and (j, k, Y ~ r·, F2) to form the new edge 
(i, k, X ~ a Y • fJ, F3). Here i, j and k are integers between Oand n; X and Yare non-terminal 
symbols; a is a (possibly empty) sequence of non-terminal symbols; fJis a sequence of non
terminal symbols; ris either a terminal symbol or a sequence of non-terminal symbols; and FI , 

F2, and F3 are feature structures. 

Essentially the structure F3 is a version of FI whereby Y's feature structure in FI has been 
unified with Y's feature structure in F2• It is important to note that a new edge is formed only 
if Y's feature structures in FI and F2are unifiable, otherwise the rule is not applicable. 

This new adaptation of the fundamental rule is best explained using an example. Consider the 
two constrained production rules from our grammar above. 

1. np ~ det n 

< det head agree> = < n head agree> 

< np head> = < n head> 

2. det ~ a 

< det head agree number> = sg 

The structure FI of the edge (0, 0, np ~ • det n, FI) is built from the constraints of np ~ det n. 
Top level attributes are created for each non-terminal symbol of the production rule. Hence 
we have 

r

np [head <8>] j 
FI == det [ head [ agree E8 [ ]J] 

n [head <8>[ agree E8]J 

(Here E8 is used to indicate a re-entrant structure different from <8>.) Similarly the structure F20f 
the edge (0,1, det ~ a • F2) is built from the constraints of det ~ a. Here 

F2 == [det [head [agree [number sg ]J]] 

We apply the fundamental rule, forming the new edge (0, 1, np ~ det • n, F3). The rule unifies 
the structures found under the det attribute in both FI and h The structure F3 is formed by 
taking FI and replacing the original structure under det by the newly unified structure. Hence 
we have 
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l [head <8>] j 
F3 == ::t [head [agree E8[ number sg]J] 

n [head <8>[ agree E8]J 

A unification algorithm is described in detail in (Jurafsky and Martin 2000). To give a cursory 
description, the algorithm takes two feature structures represented as DAGs as input. The 
algorithm moves through the attributes (arcs) of one DAG and attempts to find a 
corresponding attribute in the other. If the attribute of one DAG is found to have no 
corresponding attribute in the other, the algorithm adds a directed arc to the deficient DAG 
pointing to the missing attribute. To keep the computational costs down - rather than 
construct a new DAG from scratch - the algorithm destructively alters the input DAGs to 
form the unified structure. Unification fails if any feature structures are found to be 
incompatible. 

Recall - from Section 3.2.2 - that the general chart parsing algorithm for context-free 
grammars involves: (1) constructing an initial agenda and chart; (2) popping edges from the 
agenda and - as long as they are not already there - adding them to the chart; (3) applying the 
fundamental rule to edges of the chart, pushing any new edges on the agenda; and (4) 
hypothesising active edges - based on the current edge and the rules of the grammar - and 
pushing these new edges on the agenda. 

The general algorithm works in much the same way for unification-based grammars. Apart 
from the changes to the fundamental rule we have already mentioned, there is one other 
difference. When parsing context-free grammars, we only add edges to the agenda that are 
not already present in the chart. When it comes to unification grammars, we only add edges 
that cannot be subsumed by edges already present in the chart. To see the reasoning behind 
this we will again look at an example. 

Suppose we have a chart containing an edge (0, 0, np ~ • det n, F1) where Fl places no 
restriction on det, i.e. the path < det head agree number> has the value []. Consider an edge 

(0,0, np ~ • det n, F2) where F2 is the same as F1, except that it restricts 
< det head agree number> to sg. Hence the latter edge is subsumed by the former. Consider the 
situations where 
1. The parser adds (0,0, np ~ • det n, F2) to the chart and encounters an edge 

(0,1, det ~ a·, F3). 
2. The parser adds (0,0, np ~ • det n, F2) to the chart and encounters an edge 

(0,1, det ~ all ., F4). 

In the first situation, the fundamental rule is applicable to the pair of edges 
(0,0, np ~ • det n, F1) and (0,1, det ~ a·, F3) as well as being applicable to the pair 
(0,0, np ~ • det n, F2) and (0,1, det ~ a·, F3). Both applications will form identical edges 
(0,1, np ~ det • n, Fs) where Fs specifies that < det head agree number> is singular. In the second 
situation, the fundamental rule is only applicable to the pair of edges (0,0, np ~ • det n, Fl) 
and (0,1, det ~ all ., F4). 
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Both situations suggest nothing worthwhile is achieved by adding the edge 
(0,0, np ~ • det n, F2) to the chart in the first place; this is because there is a grammatically 
similar, but less constrained edge already in the chart. Adding an edge that is subsumed by 
another already in the chart just creates unnecessary work for the parser. 

The definite clause grammar notation is used to implement PENG's unification-based 
grammar and chart parser in Prolog. Before discussing aspects of PENG's grammar and chart 
parsing techniques in Section 3.5, we'll provide some Prolog background material and look 
briefly at this grammar notation. 

3.4 Logic Grammars 

Logic grammars refer to grammars written in logic programming languages. Easily the most 
common logic grammar formalism is the Definite Clause Grammar (Sterling and Shapiro 
1994). This grammar arises from adding features of the programming language Prolog3 to 
context-free grammars. In order to describe the Definite Clause Grammar notation in more 
detail, we start with some Prolog fundamentals. 

3.4.1 Prolog Basics 

We should first point out that there are numerous implementations of Prolog: SWI Prolog, 
Strawberry Prolog, GNU Prolog, BProlog, etc. Our discussion here is based on the ISO 
standard Prolog language. See the reference manual (Deransart, Ed-Dbali et al. 1996) for 
details. 

As discussed in (Gal, Lapalme et al. 1991; Blackburn, Bos et al. 2003) there are only three 
constructs in Prolog: facts, rules and queries. These constructs are built using terms. Terms are 
one of the following: an atom, a number, a variable, a complex term, or a list. Atoms are 
written in uncapitalised mixed case, whereas variables are written in capitalised mixed case. A 
complex term is an atom bracketing a sequence of one or more terms separated by commas. 
Some examples include woman (_), height (X), age (42) and 
vp (i v (lives) , pp (inDreadsburyMansion) ). Here woman, height, age, vp,iv, lives, 
pp and inDreadsburyMansi on are all atoms; the atoms woman, height, age, vp, i v and 
pp acting as predicates; the lone underscore _ of woman (_) is an anonymous variable which 
is left unspecified; X is a variable; and 42 is, well, a number. We will delay describing lists for 
a short while. 

A Prolog program consists of a set of rules and facts. Rules are of the following form, where p, 
ql, q2 and q3 are all complex terms, nested or otherwise. (Note that p may be a nested 
complex term. 

p :- ql,q2,q3. 
This can be read as 'p is true if ql and q2 and q3 are true'. The complex terms ql, q2 and q3 
can be thought of as the conditions under which the complex term p is true. A fact is simply a 
rule with no conditions, i.e. brother (char les) . It's worth pointing out that any variables 

3 Computational linguistics is a classic application for Prolog; the language's inventor, Alain 
Colmerauer, was a computational linguist. 
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featuring in the right-hand side of a rule do not necessarily have to appear in the left-hand 
side, e.g. 

grandfather (X, Y) : - father (X, Z) , father (Z, Y) . 
Moreover, variables in the left-hand side do not have to appear in the right, e.g. 

append([AIXJ,Y, [AIZ]) append(X,Y,Z). 
We will explain this last rule shortly. 

A program is executed by initiating a query after the prompt? -. Prolog attempts to verify the 
query - using the existing rules and facts - and responds with an answer. For example 
suppose we have the following Prolog program. 

woman (agatha) . 
dreary (dreadsburyMansion) . 
disinherited (charles) . 
gloomy (agatha) :- dreary (dreadsburyMansion) . 
schemes (charles) unhappy (charles) . 
unhappy (charles) :- disinherited (charles) . 

Prolog will respond to the various queries as follows. 
?- woman (agatha) . 
yes 

?- dreary(agatha) . 
no 

?- woman (X) . 
X = agatha 
yes 

?- gloomy (agatha) . 
yes 

?- schemes (charles) . 
yes 

Lists in Prolog come in three varieties: empty, enumerated or head-tail lists. An empty list is 
represented by []. In an enumerated list the elements are listed explicitly, e.g. ['n, ... , ti,], 

where t; for 1 :0; i :0; n is a term. In a head-tail list ['n I '(2] the element '(I is referred to as the 
head of the list, i.e. the first element; and '(2 is the tail, i.e. the rest of the list. Here both '(I and '(2 

are terms. We give some example queries featuring head-tail lists below. Note that the empty 
list cannot be 'pulled apart' since it has no head. 

?- [XIY] = [a,b,c,d]. 
X a 
Y = [b,c,d] 

?- [XIY] = []. 
no 

The rule which we mentioned previously, 
append([AIXJ,Y, [AIZ]) :- append(X,Y,Z). 

stipulates that ahead-tail list [A I X] appended to Y forms [A I Z] if X appended to Y forms Z. 
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A difference list in Prolog represents the difference between two lists and should not be 
confused with an actual list. Difference lists are of the form [1'1 X] -x or )1 - 'Y2, where Tis a 
term, and )1 and 'Y2 are either variables or the empty list. For example the difference list 
[ 1'1 , 1'2 1 X] - X represents [1'1 , 1'2] and X - [] represents X. The difference lists x-x and [] - [ ] 
both represent [ ] . The first list of a difference list is commonly referred to as the input list, the 
second is referred to as the output list. The use of difference lists leads to more concise and 
efficient programs, since appending difference lists is much simpler than appending standard 
lists. Difference lists can be appended in one step, whereas the number of steps needed to 
append two standard lists is equal to the length of the first list. 

We can use difference lists when implementing a grammar recogniser; such a program allows 
us to check whether strings are grammatically correct with respect to a given grammar. (Note 
that a parser shares this feature, but - unlike a recogniser - it also provides us with 
information about the syntactic structure of the string.) For example, consider the following 
Prolog program. 

s(X-Z) :- np(X-Y),vp(Y-Z). 1 
np (X-Z) : - det (X-Y) , n (Y-Z) . 2 
vp (X-Z) : - cop (X-Y) , adj (Y-Z) . 3 
det([theIW]-W). 4 
n([groundskeeperIW]-W). 5 
cop ( [is 1 W] - W) . 6 
adj ( [drunk 1 W] - W) . 7 

The rule at line 1 essentially says that a difference list x - Z is a sentence if (1) the difference 
between x and Y is a noun phrase; and (2) the difference between Y and Z is a verb phrase. 
The fact at line 4 says that the difference between [the 1 W] and W is the determiner the. We 
can query whether a difference list is either a sentence or a noun phrase as follows. 

? - s ([the, groundskeeper, is, drunk] - []) . 
yes 

? - np([the,groundskeeper]-[]). 
yes 

Feature structures in Prolog are represented as lists of attribute-value pairs. These pairs can be 
implemented following the method shown in (Blackburn and Striegnitz 2002). A colon is used 
to form the pairs; the attribute is to the left of the colon and the value is to the right. Attributes 
are represented by Prolog atoms. Values are atoms, variables, lists, difference lists, or are 
themselves attribute-value pairs. For example, the feature structure 

[

category nP j 
number sg 

person 3 

is represented in Prolog as [cat: np, num: sg, pers: third] . We write cat, numandpers 
instead of category, number and person since the notation is used by PENG. The nested 
structure 

[

category np j 
[
number Sg ] 

agree 
person 3 
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is represented as [cat:np ,agr: [num:sg,pers:third]]. There-entrantstructure 

r ,::::1 [agree <8>[ ;erson 3 ]]l l number sg J 
has the following representation 

[ag r: [pers:third,num:sg],subj: [agr: [pers:third,num:sg]]] 

We won't go into too much detail regarding Prolog unification here; instead we refer the 
reader to (Brett 2000). We will mention however that list unification is recursive. The first 
elements of both lists are compared, and if they unify, then the second elements are compared, 
and so on. As discussed in (Blackburn and Striegnitz 2002) variations to the standard 
unification algorithm can be easily implemented. For example, an algorithm can be 
implemented such that structures [cat: np, num: sg] and [cat: np] are unified to 
[c a t: np, num: sg] , and structures [cat: np] and [num: sg] are unified to 
[c a t: np, num: sg]. Moreover, we can implement the algorithm such that it unifies 
structures of different attribute orderings. For example we can unify [cat: np, num: sg] and 
[num: sg, cat: np] to [cat: np, num: sg]. We pointthis out since PENC implements such a 
variation to the standard algorithm. 

3.4.2 Definite Clause Grammars 

The Definite Clause Crammar (DeC) notation is implemented in most versions of Prolog -
including the ISO standard language - and acts as syntactic sugar for rules and facts featuring 
difference lists. Using this notation we can avoid having to keep track of all the difference list 
variables. We can rewrite the above Prolog program in DeC notation as follows. 

s --> np, vp. 
np --> det,n. 
vp --> cop,adj. 
det --> [the]. 
n --> [groundskeeper]. 
cop --> [is]. 
adj --> [drun k ]. 

Prolog simply translates these DeC rules into the rules and facts of our original program. The 
program is queried in the same manner as before. 

Since unification can be implemented in Prolog, it is possible to add feature structures to the 
DeC rules. For example, consider the following constrained production rule written in the 
notation of Section 3.3. 

5 ~npvp 
< np number> = < vp number> 
< np person> = < vp person> 

This states that a sentence of the grammar may only be formed if the grammatical number of 
the noun phrase agrees with the number of the verb phrase, and the grammatical person of 
the noun phrase agrees with the person of the verb phrase. Such a rule can be represented in 
DeC notation as 

S --> np(num:N,per s :P), vp(num:N,pers:P). 
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We can desugar the DCC rule into an ordinary Prolog rule. Namely 
s(X-Z) :- np(num:N,pers:P,X-Y),vp(num:N,pers:P,Y-Z). 

Similarly, the production rule 
det ~ the 

< det agree number> = [ 1 
can be represented in DCC notation as 

det(agr:num:_) --> [the]. 
This DCC rule can be de sugared into the fact 

det([agr :num: ,theI W] - W) . 
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We saw previously how to implement a grammar recogniser in Prolog; we'll now look at 
implementing a parser. First of all consider a nested complex term such as 
s (np (det (the) , n (groundskeeper) ) , vp (cop (is) , adj (drunk) ) ). This term captures 
the structure of the following tree. 

s 
/ ~,p np 

/~ / ~ 
det n cop ad} 

I I I I 
the grounds keeper is drunk 

Figure 8: Structure of a complex term 

In order to build such complex terms, we simply add extra arguments to the rules. Consider, 
for example 

sentence(s(NP,VP)) --> nounPhrase(NP),verbPhrase(VP). 
nounPhrase(np(DET,N)) --> determiner(DET),noun(N). 
verbPhrase(vp(COP ,ADJ)) --> copula(COP),adject i ve(ADJ) . 
determiner(det(the)) --> [the]. 
noun(n(groundskeeper)) --> [groundskeeper]. 
copu la( cop(is)) --> [is]. 
adjective (adj (drunk)) --> [drunk]. 

The grammar builds the parse tree for the grammatical categories on the left-hand side of the 
rules out of the grammatical categories on the right. The extra argument s (NP, VP) in the rule 
sentence (s (NP, VP)) --> nounPhrase (NP) , verbPhrase (VP) forms a term whose 
predicate is sentence and whose first and second arguments are the values of NP and VP 
respectivel y. 
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The following query asks Prolog to instantiate T with the parse tree for the sentence. 
? - sentence(T, [the, g r ounds keeper,is,drunk]-[]). 

Prolog replies 
T = s(np( det(the),n(groundskeeper)), vp( cop(is),adj (drunk))) 
yes 

A query such as s entence (T, s - [] ) returns all parse trees. 

A further benefit of the DeC notation is that it allows the user to embed Prolog code and 
hence separate out the DeC rules and lexicon. Following our example, we have the lexicon 

lex (the, det) . 
lex (ground s keeper,n) . 
lex (is, cop) . 
lex(drunk,adj) . 

along with the DeC rules 
s --> np, vp. 
np --> det,n. 
vp --> cop,adj. 
det --> [W], {lex(W,det)}. 
n --> [W], {lex (W,n) } . 
cop --> [W], {lex(W, cop)}. 
ad j --> [W], {lex (W, adj) } . 

The det rule - with its embedded code in curly brackets - tells us that a determiner can 
consist of a list containing a single element W as long as W is a determiner within the lexicon. 
The n, cop and adj rules function similarly. 

PENC not only implements a separate lexicon and set of DeC rules, it also employs gap 
threading. Before looking at aspects of the PENC grammar, we discuss this technique in the 
next section. 

3.4.3 Gap Threading in Definite Clause Grammars 

Cap threading is a technique that - when applied to a context-free grammar - rules out 
grammatically incorrect relative clauses. The following description follows from (Blackburn 
and Striegnitz 2002). See also (Nugues 2006) and (Meurers 2003) for more discussion. Recall 
that a relative clause is a clause that modifies a noun. For example rc labels the relative clauses 
in the following strings. 

1. the groundskeeper (who Agatha likes)rc 
2. Agatha, (who likes the groundskeeper)rc 

It is worth noting that we can form these noun phrases from the string 
Agatha likes the groundskeeper. Here Agatha is the subject of the sentence and the groundskeeper is 
the object. To form String 1 we perform object relativisation: we (1) extract the groundskeeper 
from its original position and move it to the front of the string leaving a 'noun-phrase gap' , 
and (2) insert the relative pronoun who between the groundskeeper and the remainder of the 
string. Hence we end up with the string the groundskeeper who Agatha likes [gap]. To form the 
String 2 we perform subject relativisation: we (1) force a gap between Agatha and the rest of 
the string, and (2) insert who between the gap and the remainder of the string. Hence we end 
up with Agatha, [gap] who likes the groundskeeper. 
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Assuming our context-free grammar contains production rules that account for complete 
sentences, we can use the notion of gaps to capture the almost-sentence characteristics of 
relative clauses. We'll show how this is done via an example. Suppose we have the following 
DCC rules. 

s --> np, vp. 
np --> pn. 
np --> det,n. 
vp --> tv,np. 
pn --> [agatha]. 
det --> [the]. 
n --> [groundskeeper]. 
t v --> [likes]. 

Using this grammar we can generate lists of the form [np, likes, np], where np is either the 
proper noun agatha or the noun phrase [the, groundskeeper] . Adding the following 
four rules allows us to relativise the subject. 

np --> det,n,rc. 
np --> pn,rc. 
r c --> relpro ,vp. 
relpro --> [who ]. 

We can generate lists of the form [np, likes, np] and [np, who , likes, np], where np is 
agatha, [the, grounds keeper ] or [np, who , likes, np]. These generated lists represent 
grammatically correct sentences - albeit a little on the repetitive side - but we still can't build 
sentences of the form [np, who , np, likes]. If we add the rule 

r c --> relpro ,s. 
we can generate a list of the form [np, who , np, likes, np], where np is agatha, 
[the, groundskeeper] or [np, who , likes, np]. However the sentences these lists 
represent don' t make much sense, e.g. [agatha, who , the, grounds keeper , likes, 
the, grounds keeper] . In order to relativise the object, we need a way of deleting the last 
noun phrase of the list; we do this by introducing gap feature structures. 

We add the following rule to our DCC. 
np(gap) --> []. 

This rule means that an I empty' n p can be used, as long as the noun phrase is constrained by a 
gap atom. We rewrite the grammar as follows. 

s(G) --> np(nogap), vp(G). 
np(nogap) --> pn. 
np(nogap) --> det,n. 
np(nogap) --> det,n,rc . 
np(nogap) --> pn,rc . 
np(gap) --> []. 
r c --> relpro ,vp(nogap). 
r c --> relpro ,s(gap). 
vp(G) --> t v ,np(G). 
pn --> [agatha]. 
det --> [the]. 
n --> [groundskeeper]. 
relpro --> [who ]. 
t v --> [likes]. 
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The grammar is constructed such that the value of the G variable constraining the s rule is 
either gap or n ogap depending on whether the verb phrase contains an empty noun phrase. 
Note also that a sentence cannot consist of an empty noun phrase followed by a verb phrase; 
this is not allowed in English. This DCC allows us to generate the desired strings, but it's still 
rather limited. 

Consider a string such as Charles tells the police about the groundskeeper. We can perform object 
relativisation in three different ways: (1) we can form the string the groundskeeper who Charles 
tells the police about [gap]; (2) we can form the string the police who Charles tells [gap] about the 
groundskeeper; and (3) we can re-relativise string 2, forming the groundskeeper who the police who 
Charles tells [gap] about [gap]. Obviously, string 3 doesn't make much sense. In some languages 
you can perform multiple extractions/ relativisations, but in English you can't. Hence we need 
to factor this new constraint into our grammar; we do this by 'threading' gaps through 
difference lists. Consider the following DCC. 

s(F-G) --> np(F-F),vp(F-G). 
np(F-F) --> pn. 
np(F-F) --> det,n. 
np(F-F) --> det,n,rc. 
np([gapIF]-F) --> []. 
rc --> relpro ,s([gapIF]-F). 
vp(F-G) --> dv,np(F-H),pp(H-G). 
pp(F-G) --> p,np(F-G). 
pn --> [charles]. 
det --> [the]. 
n --> [groundskeeper]. 
n --> [poli c e]. 
dv --> [tells]. 
relpro --> [who ]. 
P --> [about]. 

Recall that a difference list represents the difference between the contents of the input and 
output lists. A rule such as 

np(F-F) --> pn. 
tells us that a noun phrase can consist of a proper noun containing no gaps: the input list is the 
same as the output list. In the DCC, the difference list F-F is essentially playing the role of 
nogap. The rule 

np([gapIF]-F) --> []. 
tells us that a noun phrase can be empty, and if it is, we need to add the atom gap to the 
beginning of the input list. In this case, the difference between the input and output lists is 
precisely gap. The rule 

rc --> relpro,s([gapIF]-F). 
tells us that a relative clause contains a single gap, whereas 

pp(F-G) --> p,np(F-G). 
tells us that a prepositional phrase may be empty depending on whether the noun phrase is 
empty. Hence a gap can be passed 'up' from the noun phrase to the prepositional phrase. 
Finally, the rule 

vp(F-G) --> dv,np(F-H),pp(H-G). 
tells us that it is possible for a verb phrase to contain multiple gaps if both the noun and 
prepositional phrases contain gaps. Note however that within a relative clause, a verb phrase 
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contains a single gap. In this case, there must be either a gap in the noun phrase or a gap in the 
prepositional phrase, but no gap in both. If the difference between F and G is gap then either 
(1) the difference between F and H is gap and thus the difference between Hand G is []; or (2) 
the difference between F and H is [] and thus the difference between Hand G is gap. 

It's worth mentioning that this example grammar is not particularly good since it allows us to 
construct full, ungrammatical sentences such as Charles tells about, Charles the the groundskeeper 
about and Charles tells about the groundskeeper. It is possible to exclude such sentences by 
constraining the grammar such that verb phrases may only contain gaps when in relative 
clauses. However to avoid complicating matters, we will not go into further detail here. 

3.5 The PENG Grammar 

In this section we provide a description of a number of grammar rules in all their feature
laden glory, before concluding the section with a discussion of PENG's incremental chart 
parsing techniques. 
3.5.1 Grammar Rule Examples 

As discussed in Section 2.1, PENG's base lexicon consists of: predefined function words 
including determiners, connectives, prepositions and relative pronouns; and approximately 
3,000 predefined content words, including nouns, proper nouns, verbs, adjectives and 
adverbs. 

Below is a typical PENG lexical entry; the entry for the word butler. 
lexicon([lex: [butler],syno n: [pantryman]], 

[cat: c n, 
arg: [ind:I,type:person,agr: [per:third,num:sg,gend: ], 

c ase :_] , 
con: [obj ([butler] ,I) ,struc(I,atomic)]] ,base). 

We'll work through the constraint list backwards. The atom ba s e is used to distinguish lexical 
entries that belong to the base lexicon from those that are user-defined. 

Thevalue [obj ([butler], I), struc (I, atomi c )] of attribute c o n is a list of conditions 
used for the construction of a discourse representation structure. This process is discussed in 
detail in Section 3.6.2. For now, the word butler can be thought of as a concept and variable I 
can be thought of as an object that falls under this concept. The structure of the object I is 
specified as being atomic, i.e. it is an individual object, rather than, say, a member of a group. 

The argument attribute arg takes as its value a list of feature structures. The attribute-value 
pair c ase: _ specifies that butler has either nominative or accusative case. The attribute-value 
pair agr: [per: third, num: sg, gend:_] specifies agreement properties; third person, 
singular grammatical number and non-specific gender. The attribute type is used to 
distinguish between, say, the sentences Agatha digs a grave and Agatha digs the butler. In the 
former sentence, the word grave has type enti ty; whereas in the latter, the word butler has 
type pers o n. The attribute-value pair ind: I specifies that the value for the 'index' attribute 
ind is the variable I; this specification should not be confused with sequential indexing. 
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The attribute-value pair cat: cn categorises butler as a common noun, whereas the pair 
synon: [pantryman] indicates the word pantryman can be used as a synonym. 

PENG's unification-based grammar currently has about 150 production rules. Below is the 
simplified DeC rule for the common noun nO (Schwitter 2004a). 

nO ([cat:cn, 
arg: [ind:I,type:T,agr:AIRest], 
... ]) 
--> 

{lexicon([lex:Noun], 
[cat:cn, 

Noun. 

arg: [ind:I,type:T,agr:AIRest], 
con: [C3, C2] ] } , 

Hence when PENG's chart parser parses a word such as butler, the value of the 1 ex attribute 
of the lexical entry (the list [butler]) unifies with the lex attribute of the nO rule (the 
variable Noun). Moreover, the conditions obj ([butler], I) and struc (I,atomic)] 

unify with the variables C3 and C2. These conditions feature as values of a drs attribute 
usually found on the left-hand side of the rule. We have not included this attribute here since 
it is somewhat complicated; we discuss it later in Section 3.6.2. The arg feature structure of 
the lexical entry unifies with the arg feature structure on the left-hand side of the DeC rule. 
The resultant feature structure 
arg: [ind:I,type:person,agr: [per:third,num:sg,gend: ] ,case: IRest] is 
then copied to the right-hand side of the rule. 

Below is another simplified example DeC rule which shows that the noun phrase n3 is 
composed of a determiner dO and noun n2 (Schwitter 2007a). 
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n3 ( [coord: no, 
arg: [ind:I,type:T,agr:AIRest], 
spec: def, 
ana:yes, 
para:PI-P4, 
tree: [n3,Tl,T2], 
gap:n3:G-G, 
styp:Y, 
snum:N, 
... ]) 
--> 
dO ([cat:det, 

agr:A, 
spec: def, 
ana:yes, 
para:PI-P2, 
tree:Tl, 
snum:N, 
... ] ) , 

n2 ( [cat: cn, 
arg: [ind:I,type:T,agr:AIRest], 
spec:def, 



para:P2-P3, 
tree:T2, 
gap:n3:G-G, 
styp:Y, 
snum:N, 
... 1 ) , 

{anaphora_resolution(n3,cn,I, ... ) }. 
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Note that we are about to describe a number of attributes - coord, spec, ana, para, tree, 
styp, snum - which will not feature in the sequel; we only include them here to give a sample 
of the grammar rules. 

The coord : no attribute-value pair indicates that a coordinating conjunction at the n3 noun 
phrase level is not allowed. The a rg feature structures of the rule indicate that the arguments 
of noun n2 are copied upwards to the noun phrase n3. Note the dO and n2 agreement over 
variable A. The attribute-value pair spec: def specifies n2, dO and n3 as definite articles, cf 
indefinite articles (e.g. a, some and sombody) or quantifiers. The attribute-value pair ana: yes 
indicates that the noun phrase may be used anaphorically. Since a definite noun phrase can be 
used anaphorically in PENG - along with proper nouns and variables - the lexical entries for 
definite determiners are unifiable with ana: yes attribute-value pairs. 

The attribute para constructs a paraphrase for the input string, whereas the attribute tree 
builds a parse tree during processing time. The attribute gap takes care of gap threading. The 
attribute s t yp refers to sentence type, i.e. whether a sentence is a declarative statement or an 
interrogative question. The grammar is constructed such that the variable Y will unify with 
either decl or into The attribute snum refers to the sentence number, an integer that 
identifies the sentence. 

The Prolog code in curly brackets tests whether n3 is used anaphorically. The predicate 
anaphora _ resolution is triggered when the entire noun phrase has been processed. We 
discuss anaphora resolution in more detail in Section 3.6.2. In this later section we also discuss 
a number of attributes absent from the above rule; these attributes are used to build the 
related discourse representation structure. 

In the following section we take a look at PENG's chart parsing approach and also see how the 
parser generates look-ahead categories on-the-fly. 

3.5.2 Incremental Chart Parsing in PENG 

PENG represents an edge of a chart using the notation edge(ID, Vi, Vt, LHS, RHSL) 
(Schwitter 2003). Here ID is an integer which acts as a sentence identifier, Vi and Vt are integers 
between 0 and n, where n is the number of constituents of the input string; LHS is the non
terminal symbol (i.e. grammatical category) on the left-hand side of the dotted rule labelling 
the edge; and RHSL represents the right-hand side of the rule in list form. If RHSL is empty, 
then the edge is inactive, otherwise the edge is active. For example an edge (0, 0, 5 ~ • np vp) 
written in our usual format can be represented in PENG notation as 
edge (0, 0 , s, [np, vp 1 ) . (Note that we are neglecting the sentence identifier, as well as the 
feature structures constraining the grammatical categories of the relevant PENG DeG rule.) 
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Edges (0, 2, np ---+ det n .) and (0, 2, 5 ---+ • np • vp) can be represented as edge (0, 2, np, [] ) 
and edge (0, 2, s, [vp] ) respectively. 

In Section 3.2.2 we showed how a top-down chart parser constructed a chart for the input 
string the butler acts suspiciously. Using the new PENG notation, the final chart contained the 
following edges: 

edge (0, 0, s, [np, vp] ) 
edge (0, O,np, [det,n]) 
edge (0, l,np, [n]) 
edge (0,2, np, [] ) 
edge ( 0 , 2, s, [vp] ) 
edge (2, 2,vp, [iv, adv]) 
edge (2, 3,vp, [adv]) 
edge (2, 4 , vp, [] ) 
edge ( 0 , 4 , s, [] ) 
edge(O,O,np, [det,n,rc]) 
edge (0, l,np, [n, rc]) 
edge (0,2, np, [rc] ) 
edge(2,2,rc, [relpro,vp]) 

Without having to re-process the entire sentence, the parser - as we have described it - is 
unable to handle modifications to the input string. In contrast, an incremental chart parser can 
handle modifications such as insertion, deletion and replacement, without having to re
process the entire string from scratch. Such a parser uses information about edge 
dependencies for keeping track of edges that have to be updated (Wiren 1989; Wiren 1994). 

In the sequel we follow the description outlined in (Schwitter 2003) and show how PENG's 
incremental top-down chart parser handles the modification of the input string the butler acts 
suspiciously. The final chart for the string is presented below. For readability we ignore the 
inactive edges edge(O,l,det, []), edge(1,2,n, []), edge(2,3,v, []), and 
edge (3,4, adj, [] ) . 

np ~ • det n rc 

vp ~iv.adv 

o 1 2 3 
the butler acts suspiciously 

Figure 9: Parse Chart 
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Suppose we insert the relative pronoun that between the noun and verb phrase. The PENG 
incremental parser informally performs the following steps. 
1. Find all edges on the right-hand side of the insertion point 2, i.e. all those edges with start 

point greater than or equal to the insertion point, and create a new subchart CR for them. 
Do not include the empty edge at the insertion point featuring the grammatical category of 
the word to be inserted, i.e. edge (2,2, re, [relpro, vp] ) . 

2. For all edges in CR, renumber their start and end points Vs+l and Vt+l. 

3. Find all non-empty edges on the left-hand side of the insertion point, i.e. all those edges 
with start point less than the insertion point and end point less than or equal to the 
insertion point, and create a new subchart CL for them. Include in CL 
edge(2,2,re, [relpro,vp]). 

4. Create a new chart C by appending CR to the end of CL 
5. Create new hypotheses - in the form of active edges - beginning at the insertion point for 

the word that. 
6. Reparse the string using only the new edges in the agenda and the new chart C. 
Note that this algorithm removes edge (0, 5, s, []) from the chart. This is the only edge 
that spans the node where the word that would be inserted. Having followed the algorithm, 
the parser generates four new edges. 

edge (2, 3, re, [vp]) 
edge (2, 5, re, []) 
edge (0,5, np, [] ) 
edge (5,5, vp, [iv, adv] ) 

The parser also modifies the following four edges (modifications are in bold face). 
edge(3,3,vp, [iv,adv]) 
edge(3,4,vp, lady]) 
edge (3, 5, vp, [] ) 
edge ( 0 , 5, s, [vp] ) 

PENG's chart parser implements similar algorithms for deletion and replacement operations. 
Another function of the parser is that it dynamically generates look-ahead categories for each 
word form. This guides the author and guarantees compliance to the rules of the controlled 
language. As defined in (Schwitter 2003), a set of look-ahead categories LC for a word w 
ending at node V i can be found by following the procedure below. 
1. Find all active edges ending at V i. 

2. For each active edge select the RHSL. 
3. For the first category in RHSL check if it is a lexical category or non-terminal symbol. 

a. If yes, store the category in LC. 
b. If no, find a rule which rewrites the category into further subcategories, then 

select the first category and return to 3. 
(Note that grammatical categories can be further subdivided into lexical categories, i.e. det, n 
and iv, and phrasal categories, i.e. np, vp and pp.) As each word form is entered into the text 
field of PENG's text editor ECOLE, the parser generates the set of look-ahead categories and 
sends them to the ECOLE editor. 
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3.6 Discourse Representation 

As mentioned previously, PENG's chart parser translates input text into a Discourse 
Representation Structure (DRS). A DRS is then translated into formulae of first-order logic 
which can be checked for consistency, informativity and/ or used for question-answering by 
third-party reasoning services. In this section, we give a brief introduction to discourse 
representation theory and informally describe the standard DRS construction algorithm. In 
Section 3.6.1 we show how a DRS can be translated into first-order logic. Section 3.6.2 
describes how PENG's chart parser constructs DRSs on-the-fly. The following descriptions of 
discourse representation is derived from (Blackburn and Bos 1999). 

Consider the discourse A gun discharges. The gun falls (by discourse we mean a sequence of 
natural language sentences). In order to capture the meaning of this discourse, we could try a 
first-order representation such as ::Jx. Gun(x) /\ Discharges (x) /\ Falls(x). (Note that in 
first-order representations we are not permitted to quantify over predicates; such 
quantifications are allowable in higher-order representations.) We can see that 
::Jx. Gun(x) /\ Discharges (x) /\ Falls(x) captures the fact that The gun refers back to A gun. In 
linguistic terms, the anaphor is said to have been resolved. Anaphora is an instance of one 
expression referring back to another (Mitkov 2003; Burchardt, Walter et al. 2005). In our 
example, the pronoun The gun is an anaphor, A gun is the antecedent, and A gun and The gun 
are said to be co-referential. (Note that often anaphors are personal pronouns such as He, She, 
They and It; since these are illegal in PENC, we will not feature them in our discussion here.) 
Importantly, our first-order representation does not capture how the discourse works. We are 
first told that a gun discharges; the subsequent discourse tells us a fact about the gun, namely 
that it falls. Essentially, the sentence A gun discharges changes the context in which subsequent 
discourse is interpreted. The first-order representation fails to capture this change of context. 
It puts the two facts - the gun discharging and falling - on equal footing, which does not 
entirely accord with our understanding of the text. 

In Discourse Representation Theory (DRT), the meaning of a sentence is defined by how it can 
change contextually. Structures are built on-the-fly, providing a more accurate reflection of 
contextual change within discourse. Hans Kamp and Uwe Reyle's standard DRS construction 
algorithm is outlined in (Kamp and Reyle 1993; Blackburn and Bos 1999). We will only 
provide an informal description here. The algorithm begins by receiving the first sentence and 
works around the parse tree of that sentence in a top-down, left-to-right approach. As an 
example, consider the construction of the DRS for the discourse A gun discharges. The gun falls. 
For the first sentence A gun discharges we have the following parse tree. 

S 

------ --------np vp 
/ ~ I 

det n iv 
I I I 

A gun discharges 
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At the top of the parse tree the construction algorithm creates an empty DRS. 

The algorithm then works down from 5 to the np node. Upon identifying the existentially 
quantified noun phrase a variable x is added to the top section of the DRS. Such a variable is 
called a discourse referent. The top section of the DRS is called the universe. Moving around 
the tree to the n node, the word gun is found. The algorithm places the expression Gun(x) in 
the bottom section of the DRS. The expression is termed a condition and has the meaning that 
referent x is constrained by the concept Gun. The algorithm then moves back up to 5 and then 
down to the vp sub-tree. Here the verb phrase consists of the intransitive verb discharges. A 
further constraint is made on x and the condition Discharges(x) is added to the bottom section 
of the DRS. Thus far the algorithm has constructed the following DRS. 

x 
Gun(x) 
Discharges(x) 

The second sentence The gun falls generates the following parse tree. 

S ----- ............... np vp 
/ ~ I 

~t n ~ 
I I I 

The gun falls 

The algorithm adds the information obtained from the second sentence to the DRS already 
constructed. It moves from node 5 to node np. Upon identifying the noun phrase, the 
algorithm adds a new discourse referent y to the universe of the DRS. Moreover, since the 
noun of the noun phrase has been encountered before, the algorithm treats the word as 
anaphoric and adds the condition y = ? to the bottom section of the DRS. The question mark 
must be identifiable with an accessible referent. We will discuss the accessibility of referents 
shortly. Since there is only one accessible discourse referent available, namely x, the algorithm 
substitutes? with x. Essentially, the condition y = x resolves the pronoun The gun with its 
antecedent A gun. The algorithm then works around to the vp sub-tree. Upon identifying the 
intransitive verb falls, it adds the condition Falls(y) to the bottom section of the DRS. We then 
have the final structure. 

x If 
Gun(x) 
Discharges(x) 
y=x 
Falls(lf) 
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The algorithm handles proper nouns in much the same way as it handles existentially 
quantified noun phrases. Consider the following parse tree. 

S 

/ ~ 
np vp 
I I 
pn iv 
I 

Agatha screams 

The algorithm builds the DRS 

x 
x = agatha 
Screams(x) 

The noun phrase introduces the discourse referent x and identifies it with the constant agatha. 

A vocabulary of a DRS language is comprised of 
A unique set of predicate symbols of arity n such that n ~ 1. These symbols are 
denoted using capitalised mixed case, or more generally using P, Q and R. 
A unique set of constant symbols. These symbols are denoted using uncapitalised 
mixed case, or more generally using a, b and c. 
A unique set of function symbols of arity m such that m ~ 1. These are denoted using 
uncapitalised mixed case, or more generally usingj, g and h. 

Given a particular vocabulary, we build a DRS language over that vocabulary together with 
the following elements. 

A finite set of discourse referents, denoted using x, y and z with subscripts. 
The connectives -, (not), v (or) and => (implication). 
Left and right parenthesis and the comma. 
The equality symbol =. 

A term is a constant, a discourse referent, or a function of m terms where m ~ 1. A primitive 
condition is a predicate of n terms where n ~ 1. If 1"1 and 1"2 are terms, then 1"1 = 1"2 is also a 
primitive condition. Formally, a DRS condition is defined as follows. 

A primitive condition is a DRS condition. 

If Bl and B2 are DRSs, then Bl => B2 and Bl v B2 are DRS conditions. 

If B is a DRS, then -,B is a DRS condition. 

Nothing else is a DRS condition. 

We now can formally define a DRS. If Xl, ... , Xn are discourse referents and Cl, . . . ,ell are DRS 
conditions where both n ~ 1 and m ~ 0, then the following is a DRS. 
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We will delay discussing the semantics of the DRSs B, Bl => B2, Bl V B2 and -,B until the next 
section. For now, consider the parse tree below. 

s 

----- ............... 
np vp 

/ ~ I 
det n iv 

I I I 
Every gun discharges 

In order to build the DRS for this sentence, the algorithm creates an empty DRS at 5 and 
works down to the np node. Upon identifying the universally quantified noun phrase, the 
algorithm embeds a condition Bl => B2 in the bottom section of the empty DRS. Here Bl is a 
DRS with no conditions and the sole discourse referent x and B2 is an empty DRS. After 
encountering the word gun at node n, the algorithm adds the condition Gun(x) to DRS Bl . The 
algorithm then moves back up to 5 and down to the vp sub-tree where it encounters the 
intransitive verb discharges. Here it adds the condition Discharges(x) to DRS B2• We have the 
following DRS. 

I ~un(x) => I Discharges(x) 

In a previous example, the standard construction algorithm added a new discourse referent y 
and the condition y = ? to a DRS when it came across a pronoun. According to the rules of 
DRS construction, the question mark must be identifiable with an accessible discourse 
referent. We say that a DRS Bl is accessible from DRS B2 when either Bl is identical to B2, or Bl 
subordinates B2• A DRS Bl subordinates a DRS B2 if and only if one of the following items 
holds. 

1. Bl contains a DRS condition of the form -,B. 

2. Bl contains a DRS condition of the form B2 => B for some DRS B. 

3. Bl => B2 is a DRS condition of some DRS B. 

4. Bl contains a DRS condition of the form B2 v B or B v B2 for some DRS B. 

5. There is some DRS B such that Bl subordinates Band B subordinates B2• 

Intuitively, Bl is accessible from B2 if either Bland B2 are the same DRS, or if B2 is nested within 
Bl . 
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We say that a discourse referent x belonging to a DRS B1 is accessible from a discourse referent 
y belonging to a DRS B2 if and only if B1 is accessible from B2 • For example, suppose we 
construct a DRS for the discourse Every gun discharges. The gun falls. We have already seen the 
DRS built for the first sentence Every gun discharges. As the algorithm works it way through 
the parse tree of the second sentence, it identifies the noun phrase The gun and adds a new 
discourse referent y to the universe of the DRS. Since the noun of the noun phrase has been 
encountered before, the algorithm adds the condition y = ? to the DRS. Since there is no 
accessible discourse referent from y - the only possible candidate is x and it is not accessible 
from y - then there is no correct anaphoric interpretation for The gun. Lastly, the algorithm 
identifies the verb falls and adds the condition Falls(y) to the DRS. We have the final structure. 

y 

I ~un(x) 
y=? 
Falls(lJ) 

=> I Discharges(x) 

3.6.1 Discourse Representation and First-Order Logic 

In this section we present a DRS translation to First-Order Logic (FOL). Before describing the 
translation, we give a quick recap of FOL from a model-theoretic standpoint. We also discuss 
a dynamic semantics for DRSs. Much of the section follows from (Blackburn and Bos 1999; 
Blackburn and Bos 2005). 

A vocabulary of a first-order language is comprised of 

A unique set of predicate symbols of arity n such that n ~ 1. These symbols are 
denoted using capitalised mixed case, or more generally using P, Q and R. 

A unique set of constant symbols. These symbols are denoted using uncapitalised 
mixed case, or more generally using a, b and c. 

A unique set of function symbols of arity m such that m ~ 1. These are denoted using 
uncapitalised mixed case, or more generally usingj, g and h. 

Informally, a vocabulary tells us two things: what we're going to talk about and how we're 
going to talk about it. For example suppose we have the constant symbol charles and the unary 
predicate symbol Corpse in our vocabulary. Then we are able to talk about the individual 
Charles and/ or the property of being a corpse. Furthermore, we use the symbol charles to refer 
to Charles and Corpse to refer to any corpses. 

Given a particular vocabulary, we build a first-order language over that vocabulary together 
with the following elements. 
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An infinite set of variable symbols, denoted using x, y and z with subscripts. 

The connectives -, (not), /\ (and), v (or) and => (implication). 

The quantifiers \j (universal) and ::J (existential). 

Left and right parenthesis and the comma. 

Usually an equality symbol =. 
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A term of a first-order language is a constant symbol or a variable. Moreover, if fis a function 
symbol of arity m and 'il , . . . , 'r, 1l are terms, then f( 'il, . . . , 'r, 1l) is also a term. If P is a predicate 
symbol of arity nand 'il, . . . , 'r" are terms then P( 'il, . . . , 'r, ,) is said to be an atomic formula. If the 
equality symbol = is considered part of the language and if 'il and 'i2 are terms, then 'il = 'i2 is 
also an atomic formula. A well-formed formula (or WFF, or simply 'a formula') is defined as 
follows. 

An atomic formula is a WFF. 

If cp and fII are WFFs, then --, cp, cp /\ fII, cp v fII, cp -:::':.> fII are WFFs. 

If cpis a WFF and x is a variable, then \fx. cp and ::Jx.cpare WFFs. 

Nothing else is a WFF. 

A formula can be thought of as a description. There are two more points worth noting about 
first-order formulae. First, quantification is permitted only over variables; this is what 
distinguishes FOL from higher-order logic. Second, a variable occurrence is said to be bound 
in a formula if it lies within the scope of a quantifier, otherwise is it said to be free. 

Essentially, terms can be thought of as first-order versions of noun phrases: constants can be 
thought of as first-order versions of proper names, whereas variables can be thought of as 
pronouns. In natural language terms, an atomic formula corresponds to a sentence without 
the conjunctions and or or. A formula built using --, corresponds to an expression It is not the 
case that .. . A formula built using /\ corresponds to an expression .. . and .. . , whereas a formula 
built using v corresponds to .. . or .. . A formula using -:::':.> corresponds to the expression 
If. . . then .. . Formulae of the form \fx.cpcorrespond toAll .. . or Every .. . , whereas formulae of the 
form ::Jx.cpcorrespond to There is a .. . 

A model for a given vocabulary can be thought of as a situation. Formally, a model M for a 
given vocabulary is a pair (O,F) specifying a non-empty domain 0 and an interpretation 
function F. The domain contains the kinds of things we want to talk about, e.g. individuals, 
places or objects. The interpretation function specifies for each symbol in the vocabulary a 
semantic value in the domain. Essentially, it provides an 'interpretation' for each symbol in the 
vocabulary. Each constant symbol a is interpreted as an element of the domain, i.e. F(a) E O. 
For example F(agatha) is some element of 0, which we can specify as somebody called Agatha. 
Each predicate symbol P of arity n is interpreted as an n-ary relation over the domain, i.e. 

F(P)cOx .. . xO 
- '--------v-----

II ti llles 

For example F(Corpse) is some subset of 0, which we can specify as the set of corpses within 
the domain. Another example is F(HasMotiveToMurder) which is some subset of 0 x 0 , which 
we can specify as being the set of pairs of people in the domain where the first person in the 
pair has a motive to murder the second. Each function symbol f of arity m is interpreted as an 
m-ary function over the domain, i.e. 

F(j)c Ox .. . xO ~O 
- '--------v-----

/I. tillles 

For example F(KillerOj) is some function 0 ~ 0, which we can specify as being the function 
which maps a person to his or her killer. 
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Note that there can be multiple models for a given vocabulary with differing domains and 
interpretation functions. 

Given a particular vocabulary, a model for that vocabulary and a formula over that 
vocabulary, we are interested in making some kind of evaluation of the formula (description) 
with respect to the model (situation). So far we have only seen how vocabulary elements are 
to be interpreted. In order to interpret the variables of our first-order formulae, we introduce 
an assignment function a which maps from the set of variables to the model domain, i.e. 
a(x) E 0 for variable x and domain O. This function, by mapping variables to elements in the 
domain, can be thought to assign contextual information. We then are able to talk about the 
'satisfaction' of a formula in the model with respect to a particular assignment function. Before 
we can formally define the notion of satisfaction, we give two further definitions. 

Let M == (O,F) be a model and let a be an assignment function which maps variables to 
elements in O. Let t"be a term. We denote the 'interpretation of t"with respect to F and d as 

I ; (t") and define it as follows. 

I ; (t") == F(t") if t"is a constant or function 

aCt") if t"is a variable 

Now suppose fJis another assignment function which maps variables to elements in O. Let 
x, y, Z, . .. be the infinite set of variables of our first-order language. Suppose fJ(x) *- a(x). 
Suppose however that for each and every variable distinct from x, fJ(Y) = a(y) and J5..z) = a(z), 
etc. Then we say fJis an x-variant of a. Variant assignments allow us to tryout new values for 
a given variable (say, x) while keeping the values assigned to all other variables the same. We 

now define the relation M, a 1= rp (which can be read 'formula rpis satisfied in M with respect to 
assignment d) as follows. 

M,a 1= P(t"\, ... , t"n) iff U; (t"\), .. . ,1; (t"J) E F(P) 

M,a I=-,rp iff not M,a 1= rp 

M,a 1= rp /\ lj/ iff M, a 1= rp and M, a 1= lj/ 

M,al=rpvlj/ iff M,al=rp or M,al=lj/ 

M,a 1= rp ~ lj/ iff not M,a 1= rp or M,a 1= lj/ 

M,a 1= Vx. rp iff M, fJ 1= rp for all x -variants fJ of a 

M,a 1= 3x. rp iff M, fJ 1= rp for some x-variant fJ of a 

M,al=t"\=t"2 iff I ; (t"\) = I ; (t"2) 

The symbol 1= is usually referred to as the satisfaction relation. Note that if term t"is of the 

form f(t"l, ... ,t"III) for a function f of m terms, then I;(t") is defined to be 

F(f)U; (t"\), ... , I ; (t"m)). 

Since a vocabulary may have many possible models, a formula over that vocabulary may be 
satisfied in one model and not in another. We write the set of all possible models over a given 
vocabulary as :J.1. We say a formula is satisfiable if it is satisfied in at least one model of :J.1 
(with respect to a given assignment function) and unsatisfiable otherwise. This notion can be 
extended to finite sets of formulae. A finite set of formulae {1jJl, .. . ,rpll} is satisfiable if IjJl /\ ... /\ rpll 
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is satisfiable. Similarly {CjJ1, . • . , 911I} is unsatisfiable if CjJ1 /\ ••. /\ 9111 is unsatisfiable. Essentially, 
satisfiable formulae can be thought of as describing conceivable, possible, or realisable 
situations. Unsatisfiable formulae describe inconceivable, impossible situations. A simple 
example of an unsatisfable formula is 91 /\ --, 91. 

We say a formula is valid if it is satisfied in all models of :M given any variable assignment, 

and invalid otherwise. The notation 1= 91 is used to indicate that a formula 91 is valid. A simple 
example of a valid formula is 91 v --, 91. In logic, validity is often considered in terms of logical 
arguments or inferences. We say that an argument with premises CjJ1, . • . , 9111 and conclusion fj/is 
valid if and only if whenever all the premises are satisfied in some model, using some variable 
assignment, then the conclusion is satisfied in that same model using the same variable 

assignment. We use the notation CjJ1, .•. ,9111 1= fj/ to indicate that the argument with premises 
CjJ1, .•. ,91" and conclusion fj/is valid. We also say that fj/is a logical consequence of CjJ1, .•. , 9111, or 

that CjJ1, .•. , 9111 logically entails fj/. (Here the 1= symbol refers to a semantic entailment relation 

rather than a satisfaction relation; the overloading of the symbol 1= is traditional.) Importantly, 

every valid argument CjJ1, .•. , 911I 1= fj/ corresponds to the valid formula 1=CjJ1 /\ ••. /\ 9111 => fj/. 

Moreover, two formulae 91 and fj/ are said to be logically equivalent if and only if both 91 1= fj/ 

and fj/ 1= 91. 

We want to describe a DRS language translation to a first-order language built over the same 
vocabulary. In order for such a translation to make sense, we need to interpret both languages 
in the same way over the same model. Hence we need to define an interpretation for DRSs 
that (ideally) makes use of the same semantic machinery as first-order languages. 

Suppose we have a model M == (O,F) for a given DRS vocabulary, then we define an 
embedding in M as a function which maps from the set of discourse referents to O. Intuitively, 
the embedding assigns context. (The function is called an embedding since it can be thought 
of as embedding the DRS within M. Since discourse referents are DRT terminology for 
variables, an embedding is simply an assignment function.) We distinguish between the 
semantics of conditions and the semantics of DRSs. The semantics of DRS conditions is treated 

statically. The relation M, a 1= C has the meaning that condition C is satisfied in a model M 
with respect to embedding a. The semantics of DRSs is treated dynamically. Since DRSs are 
designed to capture contextual change, we reflect this in the semantics by introducing two 
embed dings: the input and output embedding. We use the notation a[xl, ... ,xlI ],8to indicate 
that ,8 differs from a only in the values it assigns to the discourse referents Xl , . . . ,xlI ; this is just 

a n-places version of a variant assignment described earlier. We define I; (,) - the 

interpretation of term ,with respect to F and a - as F( ,)if ,is a constant or function, and a(,) 

if ,is a discourse referent. The relation M, a,,81= B has the meaning that DRS B is satisfied in M 
with respect to the embed dings a and ,8. The satisfaction relation is defined as follows. 
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M ,al='j ='2 
M , al=---,B 

M , al=Bj V B2 

M , al=Bj ~B2 

Finally, 

M , a , /l 1= 

iff 

iff 

iff 

iff 

iff 

U; ('j), ... ,1; ('n)) E F(P) 

1; ('j)=1;('2) 

for all f3, not M ,a , /l 1= B 

there is a,8suchthat M,a , /lI=Bj or M,a,/lI=B2 
for all ,8 such that M , a , /l 1= Bj there is a 6 

such that M , /l,61= B2 

The first two relations are self-explanatory. The third relation says that condition -,B is 
satisfied inM with respect to context a when it is not possible to update DRS B in context ato 
a new context ,8 such that B is satisfied in,8. The relation for disjunctive conditions says that 
BI v B2 is satisfied in M with respect to context a if we can update either DRS BI or DRS B2 in 
context a to a new context ,8 such that respectively, BI or B2is satisfied in,8. The relation for 
implicational conditions says that BI => B2 is satisfied in M with respect to context a if for any 

context,8(where ,8is such that DRS BI in context a can be updated to ,8and M, a,,81= BI) there 

is a context Ssuch that DRS B2 in,8can be updated to Sand M, a, S 1= B2 • The final relation says 
that an updated DRS (with discourse referents Xl, . . . ,X" and conditions CI , . . . , c",) is satisfied in 
M with respect to input context a and output context ,8if ,8 differs from a only in the values it 
assigns to Xl, . . . ,x" and if each condition CI , . . . ,Cll , is satisfied in M with respect to ,8. 

We say a DRS B is dynamically satisfied in a model M with respect to an embedding a if and 

only if there is an embedding ,8 such that M, a,,81= B. If B is dynamically satisfied inM with 

respect to a, we write M,a, 1= B. 

We now follow (Blackburn and Bos 1999) and show how to translate DRSs into formulae of 
(full) FOL with equality. We define a translation functionfo which maps a DRS built over 
some vocabulary into formulae of the first-order language built over that same vocabulary. 

The translation functionfo is satisfaction preserving, namely, M, a, 1= B iff M,a, 1= fo(B). We 
won't prove this here; instead we refer the interested reader to (Blackburn and Bos 1999). 

A general DRS is mapped to the following FOL formula. 

foe 
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If there are no conditions in the condition set, then the translation is ::lX1, . . "XlIT where T can 

be thought of as an atomic formula which is always true in any given model with respect to 
any given assignment. If the DRS has an empty universe, i.e. it has no discourse referents, then 

the translation is fo(C1) /\ ... /\ fo(c",). Hence the translation of an empty DRS is T . 

Primitive conditions are simply mapped to themselves. 
jo(P(,], .. ·,Tn)) == P(,], ... ,'rn) 

jo(,] ='2) == '] ='2 
Complex conditions involving the connectives --, and v are mapped such that the translation 
function is pushed in over the connective. 

jo( -,B) == -fa (B) 

jo(B] v B2) == jo(B]) v jo(B2) 

Complex conditions involving => are translated as follows. 

jo( 

If there are no conditions in the condition set of the antecedent, then the translation is 

'\IX1, .. "XII (T => fo(B)) which is logicallyequivalentto '\IX1, .. " XII . T => fo(B)). If the DRS has an 

empty universe, then the translation is fo(C1) /\ ... /\ fo(Cm ) => fo(B). Hence if the antecedent DRS 

is empty then we obtain the translation T => fo(B)) which is logically equivalent to fo(B). 

3.6.2 DRS Construction in PENG 

As outlined in (Schwitter 2004a; Schwitter and Tilbrook 2004b), a DRS is represented in PENG 
as the Prolog term dr s (U, Con) consisting of a list u of discourse referents [I1, 12, ... , In] 
and a list Con of conditions [C 1, C2 , ... , Cn] . The primitive conditions of a PENG DRS can 
only be formed using the predicate symbols obj, struc, named, pred, evtl, prop and 
role. For example, a DRS condition such as Gun(I) is represented in PENG as a Prolog list of 
two conditions [obj ([gun], I), struc (I, atomic) ]. (Note this list is the value for the 
con attribute in the lexical entry for the noun gun.) Here the discourse referent I denotes an 
object with an atomic structure which falls under the concept gun. By describing concepts 
using a limited set of metadata predicates, PENG avoids having to introduce a predicate for 
every concept. It thus avoids having to perform higher-order quantification by quantifying 
over predicates. Ultimately, simpler DRSs are constructed, which in tum creates less work for 
the inference tools. 

DRS conditions derived from nouns describe objects. Further PENG examples include: 
[obj ([police],I),struc(I,group)] and [obj ([blood],I),struc(I,mass)]. 
Lexical entries for proper nouns contain conditions describing a name, for example 
[named ( [aga tha] , I) , struc (I, atomic) ]. A name is assigned a structure. 
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DRS conditions derived from verbs describe eventualities. An eventuality can be classified as 
either an event or state. Each verb introduces an additional discourse referent representing 
that event or state. Event verbs denote a change in time whereas state verbs express static 
properties. The transitive verb suspects is represented [pred(E,[suspects], 
11, 12) , evt 1 (E, even t) ] . Here suspects is in the context of the detective suspects Agatha. A 
transitive verb has is represented inPENG as [pred (5, [has] ,I1, 12) ,evtl (5, state) ]. 
Here has is in the context of the detective has a trenchcoat. 

Lexical entries for adjectives contain a single DRS condition, e.g. [prop ( [dange rous] , I) ] . 
DRS conditions for adverbs have an additional condition which specifies their role, e.g. 
[prop (M, [allegedly] , I) , role (M, manner) ]. For further discussion on the flattened 
notation for primitive DRS conditions see (Schwertel 2005). 

We saw in Section 3.6 how the standard DRS construction algorithm builds a DRS from a 
sentence and its corresponding parse tree. The algorithm moves around the tree top-down, 
left-to-right, gathering the semantic information of the various sentence constituents at each 
node and placing this information into a DRS. The DRS is then used as the context for 
processing the second sentence, and so on. The construction algorithm employed by PENG 
takes a slightly different approach: it uses the concept of DRS threading (Blackburn and Bos 
1999). Here imagine an algorithm which slides a DRS from node to node top-down, left-to
right. When the DRS slides over a node - or in other words, when the node threads through 
the DRS - the node places the semantic information held at that location within the DRS. We 
can think of an incoming and outgoing DRS existing at every node. The difference between 
the two DRSs is exactly the information that is contributed at each node. 

The relationship between an incoming and outgoing DRS is modelled by a Prolog difference 
list Dr sIn - Dr sOu t. (Recall from Section 3.4.1 that a difference list is a pair of lists - the first 
the input list, the second the output list - whereby the information of interest is the difference 
between the two lists.) Hence the incoming DRS is represented by the input list OrsIn, and 
the outgoing DRS is represented by the output list OrsOut. Consider, for example, the 
parser's processing of the noun butler. Recall from Section 3.5.1 that we have the following 
simplified lexical entry. 

lexicon([lex: [butler],synon: [pantryman]], 
[cat:cn, 
arg: [ind:I,type:person,agr: [per:third,num:sg,gend: ], 

case :_] , 
con: [obj ([butler], I) ,struc (I,atomic)]] ,base). 

From the same section we have the following simplified production rule. Note that here we 
have included the dr s attribute for the first time. 
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nO ([cat:cn, 
arg: [ind:IIRest], 
drs: [drs(Ul,Cl) IO]-[drs([IIU1], [C3,C2ICl]) 10]]) 

--> 
{lexicon([lex:Noun], 

[cat:cn, 

Noun. 

arg: [ind:IIRest], 
con: [C3, C2] ] } , 
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During processing, the chart parser unifies the can attribute-value pair of the lexical entry and 
the production rule. Hence ob j ( [butler] , I) and struc (I, atomic) are unified with the 
variables C 3 and C2 . These variables are then added in the outgoing DRS list to the conditions 
C1 of the incoming DRS. The discourse referent I is added in the outgoing DRS to the 
universe U1 of the incoming DRS. Hence we have an ingoing DRS with a list of discourse 
referents U1 and a list of conditions C1; and an outgoing DRS such that the referent I heads 
the list (with tail U1), and conditions C3 and C2 head the list (with tail C1) . 

Consider a similar example: the processing of the verb argue. We have the following 
simplified lexical entry. 

lexicon ( [lex: [argue] , synan : []] , 
[cat:tv, 
arg: [ind:I1IRest],arg: [ind:I2IRest], 
can : [pred (E, [argue], 11, 12), evtl (E, event) ]] ,base) . 

We have the following simplified production rule (Schwitter 2004a). 
vO ( [ca t : tv, 

arg: [ind:I1IRest],arg: [ind:I2IRest], 
drs : [drs(U1,C1) ID]-[drs([EIU1], [C3,C2IC1]) ID]]) 
--> 

{lexicon([lex :Verb], 

Verb . 

[cat:tv, 
arg: [ind:I1IR],arg: [ind:I2IRest], 
evtl:E, 
can : [C3, C2] ] } , 

During processing, the chart parser unifies the can attribute-value pair of the lexical entry and 
the production rule. Hence pred (E, [argue], I1, 12) and evtl (E, event) are unified 
with the variables C3 and C2 . The variables are then added in the outgoing DRS list to the 
conditions C1 of the incoming DRS. The variable E representing the eventuality is added to 
the list of discourse referents U1 of the outgoing DRS. 

The chart parser's processing of determiners is of particular interest. Here's the simplified 
production rule for the determiner the (Schwitter and Tilbrook 2004b). (The determiner the is a 
definite article; its definiteness is specified by the spec : def attribute-value pair.) 

dO ([cat:det, 
arg: [agr:GIRest], 
spec : def, 
drs :D1-D3, 
res: [drs([], []) ID1]-D2, 
sco : D2 -D3]) 
--> 

{lexicon([lex :Determiner] , 
[cat:det, 

arg: [agr:GIRest], 
spec:def])}, 

Determiner. 
Within a sentence, each determiner includes two arguments: a restrictor and a scope, 
represented by the attribute res and sea respectively. The restrictor consists of the remaining 
noun phrase. The scope consists of the rest of the sentence outside the noun phrase. Since a 
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definite noun phrase may be used anaphorically, the chart parser builds a store DRS while 
processing the phrase. This initially empty DRS drs ( [] , []) is placed in front of the 
restrictor's incoming DRS 01. As the noun phrase is processed, the store collects all the 
discourse referents and conditions for the noun phrase. Once the entire noun phrase has been 
processed, the store can be accessed by the anaphora resolution algorithm. After anaphora 
resolution, the restrict or' s outgoing DRS 02 will contain the resolved DRS conditions that are 
then passed to the scope's incoming DRS. After processing the verb phrase, the scope's 
outgoing DRS 03 will contain the semantic information for the entire sentence. We can see this 
process taking place if we unify the above rule with the simplified version of the n3 rule 
presented earlier in Section 3.5.1. 

n3 ([ 000' 
arg: [ind:IIRest], 
drs :O, 
seo:S, 
000] ) 

--> 
dO ( [ 0 0 0' 

drs : 0, 
res:R1-R3, 
seo : S, 
o 0 0 ] ) , 

n2 ( [cat: en , 
arg: [ind:IIRest], 
drs :R1-R2 , 

o 0 0 ] ) , 

{anaphora_reso1ution(n3,en,I,R2,R3, 0 0 o) } o 

We see tha t the ingoing restrictor R 1 (having been unified with [dr s ( [ ] , [] ) 1 01] ) is passed 
to n2 where the remaining semantic information of the noun phrase is accumulated. Once the 
entire n3 noun phrase has been processed, the outgoing DRS R2 of n2 will have the form 
[B 1 01] where B is the DRS representing the noun phrase, and D1 is the ingoing DRS of the 
determiner. The anaphora resolution algorithm of n3 checks whether B is accessible from 01. 
After anaphora resolution, the restrict or' s outgoing DRS R3 (having been unified with 02) will 
contain the resolved DRS conditions which are then passed to the scope's incoming DRS. 
(Note that the seo : S attribute-value pair of the n3 rule unifies with the seo: 02 - 03 pair of 
the determiner's lexical entry.) 

We next consider the processing of the indefinite determiner no. It is used in the context no 
detective smokes a pipe. Here's a production rule for such a determiner (Schwitter and Tilbrook 
2004b). 
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dO ([eat:det, 
arg: [agr:GIRest], 
spee:no, 
drs:01-[drs(U1, [drs(U2,C2)->drs([], [-drs(U3,C3)]) IC1]) 103], 
res: [drs([], []) 101]-02, 
seo: [drs([], []) 102]-[drs(U3,C3),drs(U2,C2),drs(U1,C1) 103]) 
--> 

{lexieon([lex:Oeterminer], 
[eat:det, 

arg: [agr:GIRest], 
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spec : no 1 ) } , 
Determiner. 

During processing, the chart parser places a store DRS dr s ( [ 1 , [l ) in front of the restrictor's 
incoming DRS D 1. This initially empty DRS collects all the discourse referents and conditions 
for the noun phrase. The scope then takes the restrictor's outgoing DRS D2 and again places 
an empty DRS before it. This store DRS collects all the discourse referents and conditions 
outside the noun phrase. The DRS for the restrictor and the scope are then embedded into a 
complex condition - consisting of an implication and a negation - representing the meaning of 
the negative determiner. The complex condition dr s (U1, [dr s (U2 , e2) -

>drs ( [l , [-drs (U3, e3) l) I ell) can be represented in our graphical notation as follows. 

3.7 Nonfirstorderisable Sentences 

Before we discuss the reasoning services of the PENG system, it's worth making some brief 
comments on the restriction first-order logic places on the PENG grammar. We should state 
right away that the word 'nonfirstorderisable' is used in the Philosophical Logic literature; it's 
usually credited to George Boolos (Boolos 1984). Nonfirstorderisable sentences refer to 
English sentences which cannot be represented in FOL. Examples - taken from (McKay 2006) 
- include the following. 

They are classmates 

They are meeting together 

They are surrounding a building 

They lifted a piano 

They admire only one another 

The rocks rained down 

The seashells are scattered 

The mechanics repaired the car 

The musicians will perform the symphony 

The chairs form a circle 

These sentences are nonfirstorderisable because any predicate symbols introduced to 
represent the notions are classmates, are meeting together, are surrounding a building etc. are not 
'distributive'. A predicate symbol P is said to be distributive if, whenever some things have 
the property described by P, then each thing has that same property. In FOL every predicate 
symbol is distributive. For example, whenever some people are groundskeepers, each one of 
them is a groundskeeper. However, our nonfirstorderisable sentences can be true of some 
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classmates, some people who are meeting together and some people who are surrounding a 
building etc., without being true of anyone of the individuals described. For example two 
students might be classmates, but one student by herself cannot be a classmate. She must be a 
classmate of someone. 

Further examples of nonfirstorderisable sentences include the following. 

There are fewer than four in number 

They are a minority 

They are of just one gender 

They are odd in number 

These sentences are nonfirstorderisable because any predicate symbols introduced to 
represent the notions are fewer than four, are a minority, are of just one gender etc. are not 
'cumulative' . A predicate symbol P is said to be cumulative if, whenever some set of things X 
have the property described by P, and some set of things Yhave the property described by P, 
then X and Y together have that same property. For example, if Frank and Bob are 
groundskeepers, and Maureen is a groundskeeper, then Bob, Frank and Maureen are 
(cumulatively) groundskeepers. In contrast, if X and Yare both sets of less than four objects, 
then X and Y together might (non-cumulatively) have four or more objects. In FOL, every 
predicate is cumulative. Many predicates which are not distributive are also not cumulative. 
However, there are a number of predicates that are distributive but are not cumulative. 

As can be seen in the previous examples, the majority of nonfirstorderisable sentences feature 
plural quantification. Contrast the sentence there is an apple on the table, which features singular 
quantification with the quantification in there are some apples on the table, which is plural. 
Normally we paraphrase such a sentence in FOL, i.e. 

::lx,y. (AppleOnTable(x) /\ AppleOnTable(y) /\ -,(x = y)) 

However such a representation is inaccurate since we don't know how many apples are on the 
table; we only know that there are 'some' . Moreover, the predicate symbol AppleOnTable is 
cumbersome. As discussed in (Rayo 2002), the plural counterparts to Vx and::ly are Vxx and 
::lyy, which can be read 'for any objects xx' and 'there are some objects yy'. (Here xx and yy can 
be thought of as a plural variable.) In order to logically represent nonfirstorderisable 
sentences, we can extend a first-order language with plural quantifiers, along with formulae 

of the form u -< xx. Such formulae are given the semantics 'u is one of the objects xx'. The 
language extension is usually referred to as a Plural First-Order (PFO) language. As given in 
(Linnebo 2005) the PFO representation of the nonfirstorderisable sentence there are some apples 
on the table is 

::lxxVy.(y -< xx => Apple(y) /\ OnTable(y)) 

Another example is the Geach-Kaplan sentence some critics admire only one another which 
resists a FOL paraphrase. This sentence can be given the following PFO representation. 

::lxxVy,z.(y -< xx => Critic(y) /\ (Admires(y,z) => z -< xx /\ -,(y = z))) 

Because an English sentence can be formulated in PENG only as long as the sentence can be 
represented in FOL, the set of possible PENG sentences is a subset of the set of firstorderisable 
sentences. There are restrictions on the grammar that shrink this subset further; we refer the 
reader to Appendix A. 
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4. Reasoning 

In this section we examine the reasoning services of the PENG system. Having translated its 
DRSs to FOL using the translation described in Section 3.6.1, PENG relies on third-party 
reasoning services - the theorem prover Otter and the model builders Mace4 and Satchmo -
for consistency and informativity checking, and for question/ answering. Before we describe 
these tools in Sections 4.2.1-4.2.3 respectively, we look at the tableau and resolution proof 
methods for FOL and briefly discuss the advantages of model building vs. theorem proving. 
Much of Section 4.1 is derived from (Blackburn and Bos 2005). 

4.1 Inference Procedures for First-Order Logic 

There are three inference tasks fundamental to the field of computational semantics: query; 
consistency checking; and informativity checking. Given a particular vocabulary, a model M 
for that vocabulary and a first-order formulae rp over that vocabulary, a query task asks 
whether rp is satisfied in M. As long as the models are finite, the querying task can be 
straightforwardly handled by a first-order model checker. The building of such a checker -
implemented in Prolog - is described in (Blackburn and Bos 2005). 

Given a particular vocabulary, the set of all possible models.Jvl for that vocabulary and a first
order formulae rp over that vocabulary, a consistency check asks whether rp is consistent 
(meaning that it is satisfied in at least one model of .Jvl) or inconsistent (meaning that rp is 
satisfied in no model of .Jvl). We mentioned previously that a formula is said to be satisfiable if 
it is satisfied in at least one model, hence consistency is usually identified with satisfiability, 
and inconsistency with unsatisfiability. Consistency checking for first-order formulae is 
computationally undecidable, meaning that there is no algorithm capable of solving this 
problem for all input formulae rp. Not only must a satisfying model be found amongst the vast 
number of possible models, but that satisfying model must be finite. However, some formulae 
only have satisfying models which are infinite in size. 

Given a particular vocabulary, the set of all possible models.Jvl for that vocabulary and a first
order formulae rpover that vocabulary, an informativity check asks whether rpis informative 
(meaning that it is not satisfied in at least one model of .Jvl) or uninformative (meaning that rp 

is satisfied in all models of .Jvl). Since a formula is invalid if there is at least one model in 
which it is not satisfied, and is valid if it is satisfied in all models, we usually identify 
informativity with invalidity and uninformativity with validity. Valid formulae can be seen to 
be uninformative since they don't tell us anything new about a particular model. For example 
HasSibling(agatha) is uninformative with respect to HasBrother(agatha). Such formulae should 
not be entirely disregarded; often it is appropriate to rephrase the same information. 
Informativity checking for first-order formula is also undecidable. 
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Derived from their definitions, consistency and informativity are related as follows. 

1. lj? is consistent if and only if -,lj? is informative. 

2. lj? is inconsistent if and only if -,lj? is uninformative. 

3. lj? is informative if and only if -,lj? is consistent. 

4. lj? is uninformative if and only if -,lj? is inconsistent. 

For example suppose lj?is consistent. This means it is satisfied in at least one model, which is 
the same as saying that there is at least one model in which -,lj? is not satisfied. Hence -,lj? is 
informative. Because of these inter-relations, both consistency and informativity checks can 
therefore be reformulated in terms of validity. We say lj/ is uninformative with respect to 
premises ipl, . . . , lj?/l if and only if the formula ipl /\ ... /\ lj?/l => lj/is valid, and lj/is inconsistent with 
respect to ipl, . . . , lj?/l if and only if the formula ipl /\ ... /\ lj?/l => -,lj/is valid. 

An (undecidable) theorem prover can be used to determine whether a first-order formula is 
valid. These programs usually implement tableau or resolution-based proof methods. 

4.1.1 The Tableau Proof Method 

The following description of the tableau proof method follows (Blackburn and Bos 2005). 
Given a formula lj?, the tableau proof method checks its validity by proving that -,lj? is 
unsatisfiable. Moreover, the method checks the validity of an inference with premises ipl, ... , lj?/l 

and conclusion lj/ by proving the set {ipl, . . . , lj?/l, -,!j!} unsatisfiable. A tree is constructed - called 
a tableau - such that formulae in leaf nodes of the same branch are conjuncted, whereas 
different branches are disjuncted. Applicable rules of a tableau calculus are applied (in any 
order) top-down to each node. These rules specify how each logical connective is to be broken 
down. Complex formulae are eventually broken into atomic formulae (or their negation) until 
the tree becomes rule-saturated. At this point the tree can no longer be expanded. A branch 
containing an opposite pair of literals is called closed. A literal is simply an atomic formula 
(which may contain free variables) or the negation of an atomic formula. If all branches of the 
tableau are closed, then we can be said to have found a tableau proof for the set of formulae, 
meaning that the set of formulae is unsatisfiable. 

We first consider the tableau proof method for a formula of propositional logic. Propositional 
logic is a particular quantifier-free fragment of FOL. Although the atomic formulae of 
propositional logic may contain free variables, nothing is lost by replacing them with simpler, 
variable-free symbols such as p, q and r. This is because no free variables can be bound - there 
are no quantifiers - and hence the internal structure of an atomic formula is unimportant. The 
symbols p, q and r are usually called propositions; they may also be referred to as literals. 

Consider the validity check for the propositional logic formula (p v -,q) /\ q => p. We construct 
a tableau/tree for the set {(p v -,q) /\ q -, pl. Initially we have 

(p v -,q) /\ q 
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The conjunctive tableau rule says that if a branch of the tableau contains a formula p /\ qthen 
add to its leaf the chain of two nodes containing the literals p and q. We formalise this rule as 

P/\ q 
p 

q 
The rule is read from top to bottom; the top being the input to the rule, the bottom being the 
output. Hence after application of this rule we have the following tableau. 

pv----,q 

q 

The disjunctive tableau rule says that if a branch of the tableau contains a formula p v q then 
create two sibling children to the leaf of the branch containing p and q respectively. We write 
this formally as 

Applying this rule gives us 

p 

pvq 

p lq 

pv----,q 

----,q 

Since both left and right branches of the tableau are closed, we can deduce that the set 
{(p v -,q) /\ q -, p} is unsatisfiable. Hence our original formula (p v -,q) /\ q => P is valid. 

We can extend the tableau method for formulae of FOL by incorporating two rules for 
universal and existential quantifiers. The universal rule is given below. 

\Ix. y(x) 

y(x') 
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Suppose we chose x' to be an arbitrary term. Then x' can be selected such that the tableau 
never closes. A solution is to delay the choice of the term until the consequent of a rule 
application allows us to close at least one branch of the tableau. An application of the 
universal rule generates Xx') where x' is chosen such that it does not occur anywhere else in 
the tableau. Later x' is substituted - throughout the entire tableau - with the most general 
unifier such that at least one branch is closed. Multiple applications of the universal rule may 
be applied to the same node of the tableau. As an example, the set {-,P(a) v -,P(b), \Ix. P(x)} can 
only be proved unsatisfiable if both P(x') and P(x") are generated from \Ix. P(x) and then x ' is 
substituted with a and x" with b. 

The existential rule is given below. 

x(f(xl, ·· ·xl/ )) 

This rule performs skolemisation, meaning that every existentially quantified variable x is 
replaced with f (Xl , ... ,xn) where f is a new function symbol and Xl, ... ,Xn denotes the free 
variables of X that are universally quantified with 3x in their scope. For example the formula 
\lx3y\lz. P(x,y,z) is skolemised to \lx\lz. P(x, f (x),z). The skolem termf (x) contains x but not z, 
since the quantifier 3y is in the scope of \Ix but not \lz. 

The tableau proof method for first-order formulae constructs a tableau in a similar fashion to 
the propositional case, with the additional assumption that all free-variables are universally 
quantified. For example if rp is the consequent formula of a rule application, and Xl, .. . ,Xl/ are 
the free variables of rp, then \lXI, .. . ,Xl/. rpis the formula represented by the tableau at that node. 

As discussed in (Fitting and Mendelsohn 1998), a proof procedure describes how tableau rules 
should be applied in order to close the branches of a tableau. A tableau calculus is said to be 
complete if we can construct a tableau proof for every given unsatisfiable set of formulae. 
However, even if a calculus is complete, not every possible choice of a rule application will 
lead to a proof for an unsatisfiable set. A general solution is to search the tableau space for a 
given set of formulae until a closed tableau is found. The tableau space consists of all tableau 
generated by the different combinations of rule applications. There are various ways of 
searching the tree structure of the tableau space. Some techniques search breadth-first rather 
than depth-first. Some search methods use iterative deepening, whereby each branch of the 
tableau space is visited up to a certain depth, the depth is then increased and further search is 
undertaken. Some other techniques disallow the generation of particular tableau (based on 
their structure) within the tableau space. 

An overview of tableau proof methods can be found in (D'Agostino, Gabbay et al. 1999). 
Theorem provers that implement tableau-based proof methods for FOL formulae include 
LeanTAP (Beckert and Posegga 1997) and 3TAP (Beckert, Hahnle et al. 1996). 

4.1.2 The Resolution Proof Method 

The following description of the resolution proof method follows from (Blackburn and Bos 
2005). We begin by looking at resolution from a propositional perspective. 
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Before performing resolution we first need to convert a formula of propositional logic into 
Conjunctive Normal Form (CNF). A formula is in CNF if and only if it is a conjunction of 
clauses. (By clause we mean a disjunction of literals.) For example the formula 
(p v q) /\ (r v -,p v s) /\ (q V -,s) is in CNF. Usually a clause is given a list representation, e.g. 
p v q is written as [p,q] . Furthermore, the connective /\ is given a list-of-lists representation. 

Hence our previous example can be written as [[p,q] ,[r,-,p,s],[q,-,sJ]. A list-of-lists 

representation may also contain the empty clause [ ] which is always false. (Essentially, [ ] is 

logically equivalent to ~ , which can be thought of as an atomic formula which is always false 
in any given model with respect to any given assignment.) An important point is that if a 
formula in CNF is true, then all of its clauses must be true. Hence if a formula contains an 
empty clause it cannot be true. 

In order to transform a formula of propositional logic into CNF we first convert it to Negated 
Normal Form (NNF). A formula is in NNF if and only if the formula is built from literals 
using /\ and v as the only binary connectives. To convert a formula into NNF we perform the 
following rewrites. 
(Rewrite 1) -,( rp /\ I.f/) as -, rp /\ -, I.f/. 
(Rewrite 2) -,( rp /\ I.f/) as -, rp /\ -, I.f/. 
(Rewrite 3) -,( rp => -, I.f/) as rp /\ -, I.f/. 
(Rewrite 4) rp => I.f/ as -,rp v I.f/. 
(Rewrite 5) -,-,rp as rp. 

Once a formula is in NNF we can then apply the following distributive and associative 
rewrites. The associative rewrites allow brackets to be moved around so that the distributive 
rewrites may be applied. The distributive rewrites drive v deeper into the formula and 'lift 
out' /\, converting the formula into CNF. 
(Rewrite 6) () v (rp /\ I.f/) as (() v rp) /\ (() v I.f/). 
(Rewrite 7) (rp /\ I.f/) v ()as (rp v 8) /\ (I.f/ V 8). 

(Rewrite 8) (rp /\ I.f/) /\ () as () /\ (rp /\ I.f/). 
(Rewrite 9) (rp v I.f/) v () as () v (rp v I.f/). 

For example the formula (-,p => q) => (-,r => s) can be converted to the following NNF 
(-,p /\ -,q) V (r v s) using rewrites 4, 3 and 4, and then 5. Rewrite 7 can then be applied to 
obtain theCNF (-,p v (r v s)) /\ (-,q V (r v s)). This can then be written in list-of-lists notation as 

[[ -,p, r,s ], [ -,q, r,s J] and is termed a clause set. It is worth noting that multiple applications of 

the two distribution rewrites 6 and 7 can cause exponential blow-up relative to the size of the 
input formula. There are workarounds which usually involve introducing new variables for 
sub-formulas; see (Leitch 1997) for more details. 

We need to make one further refinement before resolution can be performed; a CNF clause set 
needs to be converted into set CNF. A clause set is in set CNF if: (1) none of its clauses are 
repeated, and (2) none of its clauses contain repeated literals. By throwing out any repeated 
clauses or literals we can convert a CNF clause set into set CNF. The formulae remain logically 
equivalent; we are simply removing redundant disjuncts and/ or conjuncts. 
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The resolution proof method is based upon the repeated use of what is called the binary 
resolution rule. 

[PI, ···,PII, r,PII+I' ···'PW] [ql, ... ,qj, "'r,qj+l, ... ,qk ] 

[PI' .. ·,PIIIPII+I' ·· ·,P'II ,ql' ·· .,qj ,qj+l '· · ·,qk ] 

Here, given two clauses without repeated literals, C' == [p I, ... ,plI,r,plL+I, .. . pII1 ] and 
C' == [q l, ... ,qv ,r,qj+l, ... qk] say, if C contains a positive literal and C' contains its negation, then 
we can apply the resolution rule by discarding the pair of literals and merging the remainders 
to the clause [p I, ... ,p",r,pn+l, ... PIII' ql, ... ,qv ,r,qj+l, ... qk]. Note that the merged clause may contain 
repeated literals; these need to be discarded before this new clause can be resolved against 
another by further application of the resolution rule. The positive literal and its negation are 
called a complementary pair, whereas C and C' are called complementary clauses. 

We can see that the method is satisfaction preserving; if both C and C' are satisfied in some 
model M, then at least one literal in each clause must be satisfied in M. Since only one of the 
complementary pair rand -,r can be satisfied in M, at least one other literal from either C or C' 
must be satisfied inM. This literal will feature in the merged clause, hence the merged clause 
- being a disjunction of literals - will also be satisfied in M. 

The general idea behind the resolution proof method is as follows. If we want to show that a 
formula rp of propositional logic is valid then we use -,rp as input and try to generate an empty 
clause. If a clause set contains an empty clause - which is always false, regardless of the 
assignment - then the formula represented by the clause set cannot be satisfied in any model. 
Therefore if we generate the empty clause from -,rp via the satisfaction-preserving resolution 
method, then rp must be satisfied in all models, hence rp must be valid. 

To carry out the method, we first convert -,rp to set CNF. If we can find an empty clause 
within the clause set, then we are done. If not, we perform the following steps 
1. Look for complementary clauses within the clause set. If there are none, we halt and 

declare that we cannot prove rp valid. For any existing complementary clauses, we apply 
the resolution rule. 

2. If the resultant clause C is the empty clause, we halt and declare rp valid. 
3. If C is not the empty clause, but it is a repetition of a clause in the clause set, then we throw 

C out. If C itself is not repeated, but instead contains repeated literals, then we throw the 
repeated literals out. We then add C to the clause set and repeat step 1-3 until we halt. 

As an example, consider the formula (-,p => -,q) => (q => p). We convert its negation to set CNF 

[[p,-,q] , [q] , [-,p]J using rewrites 3, 4 and 3 and then 5. There are no empty clauses, so we start 

by resolving [p,-,q] against [-,p] . This yields [-,q] , which we add to our original clause set to 

obtain [[p,-,q ] ,[ q ] , [ -,p] ,[ -,q]J . From here, we resolve [q] against [-,q] , yielding the empty set 

[ ]. We halt and declare (-,p => -,q) => (q => p) valid. 

When it comes to performing the resolution method on a first-order formula rp involving 
quantifiers, we need to adjust the conversion to set CNF. The following additional two 
rewrites allow us to convert rp to NNF. 
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To get to CNF, we skolemise any existential quantifiers and discard any universal quantifiers. 
The resultant formula is converted to set CNF as usual. As an example, we convert 
-,(Vx::3y.R(x,y) /\ VzVw.(R(z,w) => P(z)) => Vu.P(u)) to set CNF. We first convertthe formula to 
the NNF Vx::3y.R(x,y) /\ VzVw. (-,R(z,w) v P(z)) /\ ::3u. -,P(u) using the rewrites 3, 4 and 10. From 
here, we skolemise::3 and discard Vto obtainR(x,s(x)) /\ (-,R(z,w) v P(z)) /\ -,P(c), where s is a 
new function symbol and c is a constant. We can write it as the set CNF 

[[ R(x,s(x))] , [ -,R(z, w ),P(z)], [ -,P(c)]J . 

We perform resolution on first-order formulae in set CNF following the same steps outlined 
above, with the addition that variables can be unified. Since all variables can be universally 
quantified, we can use unification to create complementary pairs which can then be resolved. 
Note that variables may need to be relabelled before unification. For example, suppose we 
have the two clauses [P(x),Q(x)] and [-,P(a),R(x)] where a is a constant and x is a variable. 

We can unify a with x, however this would affect the x in R(a) which is independent of 
variable xin the first clause. Hence we relabel the variable x in the second clause as y, unify a 
with x and obtain the clauses [P(a),Q(a)] and [-,P(a) ,R(y)]. We then perform resolution, 

yielding [Q(a),R(y)]. 

Theorem provers that implement resolution-based proof methods for FOL formulae include 
Prover9 (McCune 2007) - the successor of Otter (McCune 2003) - and Vampire (Riazanovand 
Voronkov 2002). 

4.1.3 Model Building vs. Theorem Proving 

Again, this section follows from (Blackburn and Bos 2005). 

Theorem provers - either tableau or resolution-based - can be used to demonstrate validity, 
however because of the undecidability of FOL, they are unable to show non-validity. This has 
severe implications for both the consistency and informativity checking inference tasks. 

For example suppose we are performing consistency checking. Consider the discourse No old 
lady likes a mystery. Miss M is an old lady. Miss M likes a mystery4. It is obvious that the last 
sentence is inconsistent with the preceding two sentences. To show this formally, we build a 
first-order representation for the discourse and check whether the conjunction of the first two 
sentences implies the negation of the last sentence. (Recall from Section 4.1 that a conclusion Ij/ 
is inconsistent with respect to premises q>I, ... , qJlI if and only if the formula q>I /\ ... /\ qJlI => -, Ij/is 
valid.) Hence we need to check whether the following formula is valid. 

4 To write this and the following discourses in PENC, we user-define mystenj as a singular noun of 
entity type and atomic structure. We user-define Miss M as a singular proper noun with feminine 
gender and person type, and irritates as a finite, singular transitive verb with event structure. Moreover, 
we define detective as a singular noun of person type. 
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\Ix. (OlLady(x) => -,LikesMys(x)) A OlLady(missM) => -,LikesMys(missM) 

We can see that the formula is valid; any half-decent theorem prover should be able to prove 
this. Now suppose our discourse is No old lady likes a mystery. Miss M is an old lady. Miss M 
irritates the detective. Here the last sentence is consistent with the preceding two sentences. To 
show this formally, again we build a first-order representation for the discourse and check 
whether the conjunction of the first two sentences implies the negation of the last sentence. 
Namely, we check the validity of the following formula. 

\Ix. (OlLady(x) => -,LikesMys(x)) A OlLady(missM) => -,Irr(missM, detect) 

We can see that the formula is not valid, however, no theorem prover can show this. 

We are faced with a similar problem when it comes to informativity checking. For example, 
consider the discourse Every old lady is clever. Miss M is an old lady. Miss M is clever. The last 
sentence of this discourse is not informative compared to the two preceding sentences. In 
order to show this formally, we build a first-order representation and check whether the 
conjunction of the first two sentences implies the last sentence. (Recall from Section 4.1 that a 
conclusion I.j/ is uninformative with respect to premises q>I, ... rpll if and only if the formula 
q>I A ... A rpll => I.j/is valid.) Hence we need to check the validity of the following formula. 

\Ix. (OlLady(x) => Clever(x)) A OlLady(missM) => Clever(missM) 

This is obviously valid and any theorem prover should be able to prove this. Now consider 
the discourse Every old lady is clever. Miss M is an old lady. Miss M solves the mystery. In this case, 
the last sentence is informative. To show this formally, we need to check the validity of the 
formula 

\Ix. (OlLady(x) => Clever(x)) A OlLady(missM) => SolveMys(missM) 

Again we can see that the formula is not valid. Again, no theorem prover can show this. 

Full positive checks for consistency and informativity do not exist precisely because of the 
undecidability of FOL. However, it is possible to conduct partial positive checks for 
consistency and informativity using a model builder. A model builder takes a formula of FOL 
and tries to build a finite model that satisfies it. The models that are built are usually small 
and often a user needs to specify either the size of the domain (e.g. 3 elements) or the 
maximum domain size (e.g. a model with at most 20 elements). 

For example, suppose we want to run a positive consistency check on the discourse No old lady 
likes a mystery. Miss M is an old lady. Miss M irritates the detective. 
We know that if the following formula is not valid 

\Ix. (OlLady(x) => -,LikesMys(x)) A OlLady(missM) => -,Irr(missM, detect) 

then the negation of this formula should be satisfied in at least one model. Hence we know the 
discourse is consistent if the model builder can find a model for the formula 

\Ix. (OlLady(x) => -,LikesMys(x)) A OlLady(missM) A -,Irr(missM, detect) 

If we specify the model builder to build a model of 2 elements, then it can show consistency 
by building a model whereby one element is named detect, the other missM, and missM is 
classified to be a little old lady that doesn't like mysteries and who also irritates the detective. 
In such a model the latter formula is satisfied. The model builder may build another model 
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whereby detect is classified as a little old lady who doesn't like mysteries, but as long as there 
is at least one model in which the formula is satisfied, the consistency check returns positive. 

As a final example, suppose we want to run a positive informativity check on Every old lady is 
clever. Miss M is an old lady. Miss M solves the mystery. We know the discourse is informative if 
the model builder can find a model for the negation of the following formula 

\Ix. (OILady(x) => Clever(x)) /\ OILady(missM) => SolveMys(missM) 

Namely, 

\Ix. (OILady(x) => Clever(x)) /\ OILady(missM) /\ -,SolveMys(missM) 

The model builder can show informativity by building a model whereby an element is named 
missM, and missM is classified to be a little old lady who is clever but doesn't solve mysteries. 
In such a model the latter formula is satisfied. The existence of a model for the negated 
formula shows that the original formula is not valid and hence the discourse is informative. 

4.2 Reasoning in PENG 

PENG currently uses the theorem prover Otter and the model builders Mace4 and Satchmo as 
reasoning tools. Either Otter and Mace4 or Satchmo can be selected during a PENG session. 
The tools conduct consistency and informativity checks, and allow for questionj answering 
over the input FOL formulae. Otter automatically translates the FOL formulae into set CNF 
such that it is ready for processing. However Mace4 and Satchmo both rely on a small 
program at the PENGjreasoner interface which massages the FOL formulae into an 
acceptable format. 

4.2.1 Otter 

Otter - the name derived from 'Organised Techniques for Theorem providing and Effective 
Research' - is a resolution-based theorem prover for FOL with equality developed at the 
Argonne National Laboratory (McCune 2003). As a resolution-based theorem prover it proves 
the validity of a FOL formula rp by generating the empty clause from -,rp using a number of 
resolution rules. It not only applies the binary resolution rule seen in Section 4.1.2, it also 
applies the following inference rules: hyper-resolution, UR-resolution and binary 
paramodulation. According to (Wos 2007) a variety of inference rules - such as those featured 
in Otter - are needed for attacking difficult and disparate problems. We describe the inference 
rules below. Note that all rules resolve a particular clause of interest - termed a nucleus - with 
one or more other clauses, termed satellites. The composition of a nucleus and its satellites 
differs with each rule. 

The hyper-resolution inference rule merges two or more clauses. The rule requires that one of 
the clauses (the nucleus) contains at least one negated literal and the remaining clauses 
(satellites) contain no negated literals. The rule operates as follows: delete the negated literals 
of the nucleus along with the matching positive literals from the satellites and merge the 
remainder. For example, applying hyper-resolution to the set of clauses [[p,q],[-,p,r],[r,s],p] 
with nucleus [-,p,r] yields [q,r,[r,s]]. 
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The UR-resolution inference rule merges two or more clauses. The 'Unit Resulting' resolution 
rule requires that the nucleus clause contains at least two literals and the remaining satellite 
clauses contain exactly one literal each. The rule operates as follows: delete any pairs of literals 
which simultaneously occur in the nucleus and in any satellite, and merge the remainder. For 
example, applying UR-resolution to the set of clauses [[p,q,r],q,s,p] with nucleus [p,q,r] yields 
[r,s]. 

The binary paramodulation inference rule merges two clauses. The rule requires: (1) that one 
clause contains at least one literal asserting equality; and (2) that the other clause contains a 
(possibly negated) literal which features the term on the left-had side of the equality as a sub
expression. The rule operates as follows: delete the equality and merge the remainder along 
with the literal whose sub-expression has been replaced by the term on the right-hand side of 
the equality. For example, applying binary paramodulation to the set of clauses 
[[p,t = u],[q,r(t)],s] yields [p,q,r(u),s]. (Recall that we are dealing with FOL with equality here.) 

In contrast to the PENG application, most theorem proving conducted by Otter involves 
interaction by the user. The user chooses initial conditions, which inference rules to apply and 
also sets options to control the processing of inferred clauses. PENG however relies on Otter's 
autonomous mode. In this mode the user inputs a set of formulae and the prover does a 
simple analysis and decides inference rules and strategies. 

Otter has been very stable for a number of years and has been succeeded by Prover9. Prover9 
has a number of advantages over Otter: memory consumption is lower, deduction speed is 
faster, and more inference rules are available. Furthermore, Prover9's autonomous mode is 
more effective. We refer the reader to (McCune 2007) for details. 

4.2.2 Mace4 

Mace4 - the name derived from 'Models And Counter Examples' - is a model builder which 
comes bundled with Prover9 (McCune 2007). The model builder accepts as input a set of FOL 
formulae which have been restricted and/ or formatted in a specific way. We will not list all 
the (relatively minor) restrictions here, we instead refer the reader to (McCune 2007). Some 
restrictions worth mentioning are: the builder does not accept function symbols with arity 
greater than three, nor relation symbols with arity greater than four; neither does the builder 
accept the natural numbers as constants, instead these are interpreted as elements of the 
domain. Having accepted the set of formatted FOL formulae, Mace4 then transforms it into a 
set of propositional formula in CNF. (We do not lose anything during this transformation, 
since if we have a domain of size n, say, then a universal formula such as Vx.P(x) is simply the 
propositional formula P(al) /\ ... /\ P(a ll) where al, .. . ,all name the elements of the domain.) Once 
this set has been built, a SAT solver is used to search for a model. (A SAT solver - the name 
derived from 'SATisfiability' - is designed specifically to solve the propositional satisfiability 
problem, namely to find a model in which a given propositional formula is satisfiable.) The 
SAT solver implements a version of the Davis, Putnam, Logemann and Loveland (DPLL) 
algorithm called ANLDP, derived from 'Argonne National Laboratory - Davis-Putnam' 
(McCune 1994). ANLDP features some optimisations and efficiency enhancing techniques not 
present in DPLL, but otherwise the procedure is the same. 
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Essentially, the DPLL algorithm chooses a literal r from some propositional formula in CNF, 
assigns its value to be true and then - if possible - propagates this assumption throughout the 
remaining formulae via unit resolution. Unit resolution involves the application of an 
inference rule which merges two or more clauses. To be applied, the rule requires that the 
nucleus clause - as discussed in the previous section - consists of a single literal r, say, and 
that each satellite clause consists of one or more literals. The rule operates as follows: (1) the 
nucleus is copied into the merged clause; (2) satellite clauses which contain neither r nor -,r 
are copied into the merged clause; (3) if one of the satellite clauses contains r, then the entire 
clause does not appear in the merged clause; and (4) if one of the satellite clauses contains -,r, 
then this (negative) literal is deleted, and the remainder is copied into the merged clause. For 
example, suppose we apply unit resolution to the set of clauses [[p,q],[-,p,r],[-,r,s],p] with 
nucleus p. The rule stipulates that [p,q] does not feature in the merged clause. Moreover, we 
should delete -,p from clause [-,p,r] before merging the remainder. Our resultant clause is 
[r,[-,r,s],p]. After unit resolution has been applied, the DPLL algorithm selects a new literal, 
assigns it as true and applies unit resolution again. (Following our example, we could perform 
unit resolution on [r,[ -,r,s ],p] with unit clause r, resulting in the clause [r,s,p ].) Either the 
algorithm terminates when it finds an assignment to the literals which satisfies all formulae or 
it will exhaust all possible decisions for that formula and find it unsatisfiable. Any found 
models are translated back to first-order models. 

Both Mace4 and Prover9 can be found online at (McCune 2005). 

4.2.3 Satchmo 

Satchmo - the name derived from 'SATisfiability CHecking by MOdel generation' is a model 
builder developed at the Ludwig Maximilian University of Munich (Abdennadher, Bry et al. 
1995; Brtiggemann, Bry et al. 1996). It only accepts a set of first-order formulae of the form 

antecedent => consequent. Here antecedent is either empty and is thus interpreted as T , or 

antecedent is of the form PI /\ ... /\ p", where each Pi is a literal for 1 ~ i ~ n. Furthermore, 

consequent is either empty and is thus interpreted as ~ ,or consequent is of the form qI v ... V q,,, 

where each qj is a literal for 1 ~ j ~ m. A set of formulae of this form is termed a specification. 

Satchmo implements a tableau proof method called Positive Unit Hyper-Resolution (PUHR). 
(Recall from Section 4.1.1 that a tableau is constructed by breaking complex formulae into 
atomic formulae - or their negation - through an application of tableau rules. The tableau is 
said to be saturated when no further rules can be applied.) Essentially, Satchmo constructs a 
particular tableau - called a PUHR tableau - for a given specification. The saturated tableau is 
such that the literals of its branches represent the models of the specification. If all branches of 
the saturated tableau are closed, then the specification is unsatisfiable. 

A PUHR tableau is constructed from an initial tableau consisting of a single empty branch 
using repeated applications of the conjunctive rule - described in Section 4.1.1 - and the 
PUHR rule outlined below. 
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Pl 

P" 
ql q2 q'1I-1 qlll 

-,q2 -,q3 -,qlll 

M M 

-,qll,-l -,q/IJ 

-,qllf 

Figure 10: PUHR rule 

Recall that all specifications contain formulae of the form Pl /\ ... /\ pn => ql v ... V qll,. As 
described in (Brtiggemann, Bry et al. 1996) the PUHR rule says that if a branch contains all the 
literals of a formula's antecedent pi, ... , PII add m sibling children to the leaf of the branch 
containing the literals qi, ... , qll, respectively. Then add to each leaf containing qi the chain of 
m - i nodes containing the complements of the literal qjwhere j > i. Namely if we have a tree 
with the following branch 

then add chains of nodes to the branch as follows 

PI 

I 

/In~ 
II 12 Im-I qm 

---,q2 ---,q3 ---,q m 

I 
I 

---,qm 

The 'complement splitting' process prunes the tableau and guarantees that the generated 
models are minimal. (Note that a model M of a specification 5 is said to be minimal if no 
proper subset of M is a model for 5.) As an example, consider the PUHR tableau for the 
specification {p /\ q => r v s v t, r => u, s => t, t => u}. 
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T 

P /\q 

I 
p 

I 
q 

r/~~ 
I I I 

:: ~~) u 

I I u u 

Figure 11: PUHR tableau 

We start with an empty branch and attach the antecedent of the first formula as a leaf. We 
then apply the conjunctive rule which extends the branch with two nodes containing p and q. 
Following this, we apply the PUHR rule which adds three sibling children to the branch 
containing the literals r, sand t. We then add to each leaf the chain of nodes containing the 
relevant complements of the consequent. We next apply the PUHR rule to the second formula 
of the specification. Since the branch on the left contains the antecedent of the second formula 
- namely r - we can extend the branch with the (single) consequent u. We don't need to add 
complements, since there are none. We now move on to apply the rule to the third formula. 
The middle branch contains the antecedent s, hence we can extend the branch with the 
consequent t. Again, there are no complements so we add no further branches. We twice 
apply the PUHR rule to the fourth rule, extending both the middle branch and the branch on 
the right with the consequent u. Since the middle branch contains a complementary pair, 
namely t and -,t, we can close the branch. We finally end up with the saturated tableau seen in 
Figure 10. 

The two open branches represent the two possible minimal models for the specification. We 
can see that the specification is true in a model where p, q, rand u are true. Moreover, we can 
see that the specification is true in a model where p, q, t and u are true. The literals of the 
middle branch (p, q, s, t and u) form a superset of the literals of the right branch (p, q, t and u). 
Forming a non-minimal model, the complement splitting introduced by the PUHR rule has 
closed this middle branch. 

There exist a number of optimisations and efficiency enhancing techniques designed for 
Satchmo. These techniques determine in which order formulae of the specification are 
decomposed within the tableau. For more information, see (Abdennadher, Bry et al. 1995; 
Brtiggemann, Bry et al. 1996). 
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5. Conclusion 

This report has described the theoretical underpinnings of the PENG system. We have seen 
how the restrictions of the controlled natural language allow authors to write text which 
captures the precision of a formal specification language. The writing process is guided by the 
automatic generation of look-ahead categories which indicate the possible sentence constructs 
allowable from the current input. The resulting PENG text looks seemingly informal, but has 
the same formal properties as the underlying FOL representation. Thus PENG can serve as a 
high-level interface language to standard FOL theorem provers and model builders. Although 
PENG is still very much a prototype at this stage, and has a number of issues, the system 
shows potential. 
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Appendix A: Sentence Structure 

Sentences in PENG are of the following form. Note that this is in no wayan exhaustive list; we 
simply want to give the reader a 'feel' for the language. We also show some of the restrictions 
placed on the grammar, intentional or otherwise. Words in italics represent content words, 
whereas words in normal font represent function words. 

[pn,det,card,conn:[If]l 

Agatha [aux:[doesl,cop: [isl,relpro:[that,whol,vl 

Agatha dances [adv,conn:[and,orl ,prep:[around,at,by,in,on,withl,fs: [.]] 

Here the word dances is a user-defined intransitive verb. 

Agatha dances enthusiastically [conn:[and,orl,fs: [.]] 

Agatha dances and [aux:[doesl,cop: [isl,vl 

Agatha dances or [aux: [doesl,cop:[isl,vl 

The grammar does not allow us to write Agatha dances then, however we can write If Agatha 
dances then. 

Agatha dances around [conn:[and,orl,fs: [.]] 

Agatha dances at [det,pn,varl 

Agatha dances at a [adj,nl 

Agatha dances at a famous nightclub [conn:[and,orl,prep:[of],pn,relpro:[that,whichl ,var,fs:[.]] 

Agatha dances at a famous nightclub and [aux: [doesl,cop:[isl,vl 

Agatha dances at a famous nightclub or [aux: [doesl,cop:[isl,vl 

Agatha dances at a famous nightclub of [det,pn,varl 

Agatha dances at a famou s nightclub of a corrupt businessman [conn:[and,or],prep:[of],pn,relpro:[that,whol,var,fs:[.]] 

Agatha dances at a famous nightclub of a dangerous city [conn:[and,or],prep:[of] ,pn,relpro:[that,whichl,var,fs: [.]] 

Agatha dances at a famous nightclub of a tumultuous time [conn:[and,orl,prep:[of],pn,relpro:[that,which],var,fs: [.]] 

Agatha dances at a famous nightclub Fifty-Four [conn:[and,or],prep:[of],relpro:[that,whichl,fs: [.]] 

Agatha dances at a famous nightclub that [aux:[does],cop:[isl,det,pn,var,vl 

Agatha dances at a famous nightclub which [aux: [does],cop:[isl,det,pn,var,vl 

Agatha dances at a famous nightclub Xl [conn:[and,orl,prep:[ofl,relpro:[that,whichl,fs:[.]] 

Agatha dances at a famous nightclub. 
Agatha dances at a tumultuous time [conn:[and,orl ,prep:[of],pn,relpro:[that,whichl ,var,fs: [.]] 

Agatha dances at all famous nightclubs [conn:[and,or],relpro:[that,whichl,fs: [.]] 

Agatha dances at all famous nightclubs that [aux: [do],cop:[arel,det,pn,var,vl 

Agatha dances at all famous nightclubs which [aux: [do],cop:[arel,det,pn,var,vl 

Agatha dances at an famou s nightclub [conn:[and,orl,prep:[of],pn,relpro:[that,whichl ,var,fs: [.]] 

It is not required that adjectives or nouns following the determiner an start with a vowel. 

Agatha dances at every famous nightclub [conn:[and,or],prep:[of],pn,relpro:[that,whichl,var,fs:[.]] 

Agatha dances at no famous nightclub [conn:[and,orl ,prep:[of],pn,relpro:[that,whichl,var,fs:[.ll 

Agatha dances at no famous nightclubs [conn:[and,orl,relpro:[that,whichl,fs:[.]] 

Agatha dances at the famous nightclub [conn:[and,orl,prep: [of],pn ,relpro:[that,whichl ,var,fs: [.]] 

Agatha dances at the famous nightclubs [conn:[and,orl,relpro:[that,whichl,fs:[.]] 

Agatha dances at Fifty-Four [conn:[and,orl ,relpro:[that,which],fs: [.]] 

Agatha dances at Friday [conn:[and,orl ,relpro:[that,which],fs: [.ll 

Agatha dances at Xl [conn:[and,orl,relpro:[that,whichl,fs: [.ll 
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The nouns following the function word at - in our examples these are nightclub, businessman, 
city and time - must be of type entity or time. For example, since smiles is base-defined as an 
intransitive verb, we cannot write smiles at Charles, smiles at all bartenders, nor smiles at a B-list 
celebrity, where Charles, bartenders and celebrity are of type person. Note that since the word 
shouts has not been base-defined, we can write shouts at Charles, shouts at bartenders, etc. but 
here shouts at must be user-defined as a prepositional transitive verb and we lose the ability to 
user-define shouts as an intransitive verb. 

Agatha dances by [det,pn,var] 

Agatha dances by a famous nightclub [conn:[and,or] ,prep:[of],pn,relpro:[that,which] ,var,fs:[.]] 

The nouns following the function word by must be of type entity. We cannot write dances by 
Charles nor dances by a B-list celebrity. Furthermore we cannot write the ungrammatical strings 
dances by Friday or dances by a tumultuous time. 

Agatha dances in a famou s nightclub [conn:[and,or] ,prep:[of],pn,relpro:[that,which],var,fs: [.]] 

Agatha dances in a tumultuous time [conn:[and,or] ,prep:[of] ,pn,relpro:[that,which] ,var,fs:[.]] 

Agatha dances on a famous nightclub [conn:[and,or],prep:[of] ,pn,relpro:[tha t,which],var,fs:[.]] 

Agatha dances on a tumultuous time [conn:[and,or] ,prep:[of],pn,relpro:[that,which] ,var,fs:[.]] 

The nouns following the function words in or on must be of type entity or time. Note we 
cannot write falls on a B-list celebrity or votes in Charles, where falls and votes are both base
defined intransitive verbs. 

Agatha dances with [det,pn,var] 

Agatha dances with a tattered feather boa [conn:[and,or],prep:[of] ,pn,relpro:[that,which],var,fs:[.]] 

Agatha dances with a B-list celebrity [conn:[and,or],prep:[of] ,pn,relpro:[tha t,who],var,fs:[.]] 

The nouns following the function word with must be of type entity or person. We cannot write 
the ungrammatical string dances with a tumultuous time. Moreover, we cannot combine any 
intransitive verb (either base or user-defined) with the prepositions about, for, like, of, over, than 
and to. Thus no votes for, dreams about, thinks about, thinks of, stands over, sleeps like, approves of, 
runs to, falls over, returns for, appears to, works for, runs like, exists to, acts like, waits for, lives like, 
resigns over, sings like, sleeps over, stands about, differs over, returns to, continues to, cries like, etc. 
We cannot tum any of these into prepositional transitives verbs since the intransitive verbs are 
already defined. We can user-define prepositional transitive verbs such as talks for, walks about 
and looks like, but we will then only be able to define talks, walks and looks as transitive, not 
intransitive verbs. 

Agatha dances. 
Agatha drives [det,pn,var] 

Here drives is a transitive verb, as are the words has, likes and hates (which are used later). Note 
that we cannot write a transitive verb followed by the function word that, hence no admits that, 
announces that, argues that, concludes that, confirms that, decides that, demands that, etc. 

Agatha drives a [adj,n] 

Agatha drives a yellow sportscar [adv,conn:[and,or] ,prep:[around,at,by,in,on,of,with] ,pn,relpro:[that,which] ,var,fs:[.]] 
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Agatha drives a yellow sportscar fast [conn:[and,orj,fs:[.jj 

Agatha drives a yellow sportscar Porsche [adv,conn:[and,orj,prep:[around,at,by,in,on,of,withj ,relpro:[that,which],fs:[.ll 

We cannot insert a proper noun between an adjective and a noun, hence we cannot write 
drives a yellow Porsche sportscar nor has a brown Cucci handbag. 

Agatha drives a B-list celebrity [adv,conn:[and,orj ,prep:[around,at,by,in,on,of,w ithj ,pn,relpro:[ that,who],var,fs:[.ll 

Agatha has a pleasant day [adv,conn:[and,orj,prep:[around,at,by,in,on,of,withj,pn,relpro:[that,which],var,fs:[.ll 

Agatha drives all B-list celebrities [adv,conn:[and,orj,prep:[around,at,by,in,on,withj,relpro:[that,whoj,fs:[.ll 

A ga tha d rives all afternoon [adv ,conn: [and,or j, prep: [around,a t,by ,in,on, w ith j,relpro: [that, which j,fs: [.ll 

Agatha likes New York [adv,conn: [and,or ]'prep:[around,at,by,in,on,withj,relpro:[that,whichj ,fs: [.ll 

Agatha hates Charles [adv,conn:[and,orj,prep:[around,at,by, in,on,withj,relpro:[ that,whoj,fs:[.ll 

Agatha drives Xl [adv,conn:[and,orj ,prep: [around,at,by,in,on,with],relpro:[that,which,whoj ,fs:[.jj 

Note we cannot combine any transitive verb determiner noun sequence nor transitive verb 
proper noun sequence (either base or user-defined) with the prepositions about, for, like, over, 
than and to. Thus no approached X about, adds X to, allows X to, arranges X to, brings X to, blames 
X for, buys X for, creates X to, converts X to, compensates X for, describes X to, drives X to, enables X 
to, explains X to, finds X for, fixes X for, gets X for, has X for, makes X for, meets X to, needs X for, 
orders X to, prefers X over, reads X to, receives X for, reports X to, searches X for, sells X to, sends X 
to, takes X to and wants X to, etc. Here X represents either a noun phrase (i.e. a determiner 
adjective noun sequence) or a proper noun. We cannot turn any of these into prepositional 
ditransitive verbs since the transitive verbs are already defined. 

We can convert any transitive verb into a prepositional transitive verb as long as we only use 
the prepositions around, about, at, for, like, of, over, than, and to. For some unknown reason the 
lexical editor will accept prepositional transitive verbs using the prepositions by, in, on and 
with, but the PENG editor will not let us enter them. 

Agatha adapts [prep: [toll 

Agatha adapts to [det,pn,varj 

Here adapts to is a prepositional transitive verb. For some unknown reason the base-defined 
prepositional transitive verb participates in causes an error. 

Agatha adapts to a [adj,nj 

Agatha adapts to a B-list celebrity [adv,conn:[and,orj ,prep:[around,at,by,in,on,of,withj ,pn,reIpro:[that,who],var,fs:[.ll 

Agatha adapts to a famous nightclub [adv,conn:[and,orj ,prep:[around,at,by,in,on,of,with]'pn,reIpro:[that,whichj ,var,fs:[.ll 

Agatha adapts to a tumultuous time [adv,conn:[and,or]'prep:[around,at,by,in,on,of,withj ,pn,relpro:[that,whichj,var,fs:[.ll 

Agatha adapts to Charles [adv,conn:[and,or]'prep:[around,at,by,in,on,with],relpro:[that,whoj ,fs:[.ll 

Agatha adapts to New York [adv,conn:[and,orj ,prep:[around,at,by,in,on,withj ,relpro: [tha t,which],fs:[.ll 

A ga tha adap ts to Friday [adv,conn: [and,or j, prep: [around,at,by ,in,on, w i th j,relpro: [that, w hich j,fs: [.ll 

A ga tha adap ts to X I [adv ,conn: [and,or], prep: [around,at, by,in,on, w ith j,relpro: [tha t, w hich, w ho ],fs: [.j j 

There are a number of words such as appears, goes, stands, wakes, etc. which are base-defined as 
intransitive verbs and are also used in base-defined prepositional transitive verbs, i.e. appears 
in, goes to, stands in, wakes up, etc. Below lists the look-ahead categories generated by appears 
and appears in. 

77 



DSTO-TR-2301 

Agatha appears [adv,conn:[and,orl ,prep:[around,at,by,in,on,with],fs:[.]] 

Agatha appears in [det,pn,varl 

Agatha appears in a famous nightclub [conn:[and,orl,prep:[o£],pn,relpro:[that,which],var,fs:[.]] 

Agatha appears in a tumultuous time [conn:[and,or],prep:[o£],pn,relpro:[that,which],var,fs:[.]] 

The word appears is initially treated as an intransitive verb. Note however, that if the 
preposition in follows, then the look-ahead categories for appears in do not unfold as for a 
prepositional transitive verb; they unfold as for an intransitive verb. Note also that the 
preposition determines the noun type. We can have adapts to followed by a noun phrase or 
proper noun of type person, entity or time; but we cannot have appears in followed by a noun 
phrase or proper noun of type person. Nor, for example, could we have agrees with followed 
by a noun phrase or proper noun of type time. A different effect is produced by the word 
turns which is base-defined as a transitive verb and also used in the base-defined 
prepositional transitive verb turns around. Below lists the look-ahead categories generated by 
turns and turns around. 

Agatha turns [det,prep:[aroundl,pn,varl 

Agatha turns around [det,pn,varl 

Agatha turns around a famous nightclub [adv,conn:[and,orl,prep:[around,at,by,in,on,of,withl,pn,relpro:[that,whichl ,var,fs:[.]] 

Agatha turns around a tumultuous time [adv,conn:[and,orl ,prep:[around,at,by,in,on,of,withl ,pn,relpro:[that,which],var,fs:[.ll 

Agatha turns around a B-list celebrity [adv,conn:[and,orl ,prep:[around,at,by,in,on,of,with]'pn,relpro:[that,who],var,fs:[.ll 

Note that turns is initially treated as a transitive verb with the preposition around added to the 
look-ahead category. As before, the look-ahead categories for turns around do not unfold as for 
a prepositional transitive verb; they unfold as for a transitive verb. 

Agatha tells [det,pn,varl 

Here tells is a ditransitive verb, as is the word regards (which is used later). Note we can 
convert a ditransitive verb to a prepositional transitive verb, hence we can user-define tells to, 
offers to, sends for, and sticks to. 

Agatha tells a [adj,n l 

Agatha tells a B-list celebrity [det,prep:[o£],pn,relpro:[that,whol,varl 

Agatha tells a B-list celebritI) of [det,pn,varl 

Agatha tells a B-list celebritI) Max [adv,conn:[and,orl ,det,prep:[around,at,by, in,on,of,withl,pn,relpro:[that,whol ,var,fs:[.]] 

Agatha tells a B-list celebrity Friday [a dv,conn:[and,orl ,det,prep:[around,at,by,in,on,of,withl,pn,relpro:[that,which,whol,var, fs:[.ll 

Agatha tells a scan) ston) [det,prep:[ofl,pn,relpro:[that,whichl ,varl 

Agatha tells a scan) ston) The Ghost of Dreadsbun) [adv,conn:[and,orl ,det,prep:[around,at,by,in,on,of,with],pn, 

relpro:[that,whichl ,var,fs:[.]] 

Agatha tells a scan) ston) Max [adv,conn:[and,orl ,det,prep:[around,at,by,in,on,of,with]'pn,relpro:[ that,which,who],var,fs:[.ll 

Agatha regards a sunny day [det,prep:[o£],pn,relpro:[that,whichl,varl 

Agatha tells Max [det,pn,relpro:[that,whol ,varl 

Agatha regards Friday [det,pn,relpro:[that,which],varl 

Agatha regards Xl [det,pn,relpro:[that,which,whol ,varl 

The base-defined ditransitive verb sends is also base-defined as a transitive verb. Below lists 
the look-ahead categories generated by sends. 
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Agatha sends [det,pn,varj 

Agatha sends a [adj,nj 

Agatha sends a B-list celebrihj [adv,conn:[and,or],det,prep:[around,at,by,in,on,of,withj ,pn,relpro:[that,whoj,var,fs:[.ll 

Agatha sends a lascivious postcard [adv,conn:[and,orj,det,prep:[around,at,by, in,on,of,withj,pn,relpro:[that,which],var,fs:[.jj 

A ga tha s ends Max [adv,conn: [and,or ],det, prep: [around,at, by,in,on, w ith j, pn,relpro: [that, who j, vad s: [.jj 

Agatha sends New York [adv,conn:[and,orj,det,prep:[around,at,by,in ,on,with]'pn,relpro:[that,whichj ,var,fs :[.jj 
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It looks like the look-ahead categories generated for ditransitive and transitive verbs have 
been combined to form the look-ahead categories for sends. 

Agatha hands [det,pn,varj 

Here hands over is a prepositional ditransitive verb. 

Agatha hands a [adj ,nj 

Agatha hands a troublesome child [prep:[of,over],pn,relpro: [that,whoj,varj 

Agatha hands a troublesome child of [det,pn,varj 

Agatha hands a troublesome child of an [adj,nj 

Agatha hands a troublesome child of an unemployed actor [prep:[of,overj,pn,relpro:[that,whoj,varj 

Agatha hands a troublesome child of an unemployed actor over [det,pn,varj 

Agatha hands a troublesome child of an unemployed actor over a [adj,nj 

Agatha hands a troublesome child of an unemployed actor over a fence [adv,conn:[and,orj, 

prep: [around/at, by ,in/of,on , w ith], pn,relpro: [ that, which], var ,fs: [.]] 

Agatha hands a troublesome child of an unemployed actor Max [prep:[of,overj,relpro:[that,whojj 

Agatha hands a troublesome child of an unemployed actor that [aux: [does],cop:[isj,det,pn,var,vj 

Agatha hands a troublesome child of an unemployed actor that does [neg:[notll 

Agatha hands a troublesome child of an unemployed actor that does not [v j 

Agatha hands a troublesome child of an unemployed actor that does not dance [adv,conn:[and,or], 

prep: [around,a t,by lin,on/over, with]] 

Agatha hands a troublesome child over [det,pn,varj 

Agatha hands a troublesome child Maxine [prep:[of,over],relpro:[that,wholl 

Agatha hands a best-selling novel [prep:[of,over],pn,relpro:[that,whichj ,varj 

Agatha hands Maxine [prep:[overj,relpro:[that,whojj 

Agatha hands The Deathly Hallows [prep:[overj,relpro:[that,whichjj 

Agatha hands Xl [prep:[overj,relpro:[that,which,whojj 

The base-defined ditransitive verb gives is also used in the base-defined prepositional 
ditransitive verb gives to. Below lists the look-ahead categories generated by gives to. 

Agatha gives [det,pn,varj 

Agatha gives a [adj,nj 

Agatha gives a troublesome child [det,prep:[of,to],pn,relpro:[that,who],varj 

Agatha gives a best-selling novel [det,prep:[of,to],pn,relpro:[that,whichj,varj 

Agatha gives Maxine [det,prep:[toj,pn,relpro:[that,who],varj 

Agatha gives Xl [det,prep:[toj,pn,relpro:[that,which,whoj ,varj 

Again, it looks like the look-ahead categories generated for ditransitive and prepositional 
ditransitive verbs have been combined to form the look-ahead categories for gives to. 
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Agatha does [neg:[notJ] 

Agatha does not [vl 

Agatha is [adj ,det:[a,an,thel,neg:[notl ,prep:[a t,by,in,on,withl,pn,varl 

Agatha is tall [ad v,conn: [and,or], prep: [around,at, by,in,on, with ],fs: [.J] 

Agatha is a [adj,nl 

Agatha is a tall woman lady, conn:[and,orl,prep:[around,at,by, in,on,withl ,pn,relpro:[that,whol ,var,fs:[.J] 

Agatha is a tall woman that [aux:[doesl,det,pn,var,vl 

Agatha is a tall woman who [aux:[doesl,det,pn,var,vl 

Agatha is not [adj,det:[a,an,the],neg:[notl ,prep:[at,by,in,on,withl ,pn,varl 

Agatha is at [det,pn,varl 

Agatha is by [det,pn,varl 

Agatha is in [det,pn,varl 

Agatha is on [det,pn,varl 

Agatha is with [det,pn,varl 

Agatha is Ms. Dreadsbunj [adv,conn:[and,or]'prep:[around,at,by,in,on,withl ,relpro:[that,who],fs:[.J] 

Agatha is X I [ad v,conn: [and,or 1, prep: [around,at, by ,in,on, with l,relpro: [that, which, who l,fs: [.J] 

Agatha that [aux:[does],cop:[isl,det,pn,var,vl 

Agatha that is [adj,det:[a,an,the],neg:[not]'prep:[at,by,in,on,withl ,pn,varl 

Agatha who [aux:[doesl,cop:[isl,det,pn,var,vl 

New York [aux:[does],cop:[isl,relpro:[that,which],vl 

Friday [aux:[doesl,cop:[isl,relpro:[that,which],vl 

A [adj,nl 

A famous nightclub [aux:[does],cop:[isl,prep:[of],pn,relpro:[that,whichl,var,vl 

All [adj,nl 

All famous nightclubs [aux:[do],cop:[are],relpro:[that,whichl ,vl 

Eight [adj,nl 

Eight B-list celebrities [dis:[each,togetherl ,relpro:[that,whoJ] 

Eight B-list celebrities each [aux:[dol,cop:[arel ,prep:[of],relpro:[that,whol ,vl 

Eight B-list celebrities together [aux:[do],cop:[arel,prep:[of],relpro:[tha t,whol ,vl 

Eight B-list celebrities that [aux:[dol,cop:[arel,det,pn,var,vl 

Eight B-list celebrities who [aux:[do],cop:[arel ,det,pn,var,vl 

Eight best-selling novels [dis:[each,togetherl ,relpro:[that,whichJ] 

Eight sunny days [dis:[each,together],relpro:[that,whichll 

If [det,pn,varl 

If a B-list celebrity [aux:[doesl,cop:[is],prep:[o£],pn,relpro:[that,whol,var,v1 

If a B-list celebrity is [adj,det:[a,an,thel,neg:[notl,prep:[at,by,in,on,withl,pn,varl 

If a B-list celebritIj is unemployed [adv,conn:[and,or,then]'prep:[around,at,by,in,on,withJ] 

If a B-list celebrity is unemployed then [det,pn,varl 

If a B-list celebrity of [det,pn,varl 

If a B-list celebrity of a [adj,nl 

If a B-list celebrity of a trashy sit-com [aux:[doesl,cop:[is],prep:[ofl,pn,relpro:[that,whichl,var,vl 

If a B-list celebrity Max [aux:[does],cop:[isl,prep:[o£], relpro:[that,whol ,vl 

If a B-list celebrity Xl [aux:[does],cop:[isl,prep:[ofl ,relpro:[that,whol,vl 

If a B-list celebrity dances [adv,conn:[and,or,thenl ,prep:[around,at,by,in,on,withll 

If a B-list celebrity drives [det,pn,varl 

If a best-selling novel [aux:[doesl,cop:[is],prep:[o£],pn,relpro:[that,which],var,vl 

If a sunny day [aux:[does],cop:[isl,prep:[ofl,pn,relpro:[that,whichl,var,vl 

If all sunny days [aux:[dol,cop:[arel,relpro:[that,whichl ,vl 

If Agatha [aux:[doesl,cop:[isl,relpro:[that,who],vl 

If Ag at ha dances [adv,conn: [and,or, then 1, prep: [around,a t,by,in,on, with J] 

If Xl [aux:[does],cop:[isl,relpro:[that,who,whichl,vl 
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Below we list the look-ahead categories for questions posed in PENG. 

[wh_quest:[Who,What, Where, When,Howl,yn_quest:[Does,Is]] 

Who [aux:[doesl,cop:[isl,vl 

Who does [det:[a,an,every,no,thel,neg:[not]'pn, varl 

Note that we cannot construct the ungrammatical string V\lho does all. 

Who does a [adj,nl 

Who does a B-list celebrity [prep:[ofj ,pn,relpro:[that,whol,var,vl 

Who does a famous nightclub [prep:[ofl,pn,relpro:[that,whichl,var,vl 

Who does a sunny day [prep:[of],pn,relpro:[that,whichl ,var,vl 

Who does not [vl 

Who does Agatha [relpro:[that,whol ,vl 

Who does Agatha avoid [adv,conn:[and,orl,prep:[around,at,by,in,on,withl,qm:[?]] 

Who does Xl [relpro:[tha t,which,whol ,vl 

Who is [adj ,det:[a,an,thel,neg:[notl,prep:[at,by,in,on,withl,pn,varl 

Who is ta II [adv,conn: [and,or l, prep: [around,at, by,in,on, w ith l,qm: [?]] 

Who is a [adj,nl 

Who is a B-list celebrity [adv,conn:[and,or]'prep:[around,at,by,in,on,withl,pn,relpro:[that,whol ,var,qm:[?]] 

Who is a famous nightclub [adv,conn:[and,orl,prep:[around,at,by,in,on,withl,pn,relpro:[that,which],var,qm:[?]] 

Who is a sunny day [adv,conn:[and,orl,prep:[around,at,by,in,on,withl ,pn,relpro:[that,which],var,qm:[?]] 

Who is not [adj,det:[a,an,thel,prep:[at,by,in,on,withl,pn,varl 

Who is not tall [adv,conn:[and,or]'prep:[around,at,by,in,on,with]'qm:[?]] 

Who is not a [adj,nl 

Who is not a B-list celebritlj [adv,conn:[and,orl,prep:[around,at,by,in,on,withl,pn,relpro:[that,who],var,qm:[?ll 

Who is Agatha [adv,conn:[and,orl,prep:[around,at,by,in,on,with],relpro:[that,whol,qm:[?]] 

Who is Xl [adv,conn:[and,orl,prep:[around,at,by,in,on,withl ,relpro:[that,which,whol ,qm:[?ll 

Who dances [adv,conn: [and,or]'prep:[around,at,by,in,on,withl ,qm:[?ll 

What [aux:[doesl,cop:[isl,vl 

What does [det:[a,an,every,no,thel,neg:[not]'pn,varl 

What is [adj,det:[a,an,thel,neg:[notl ,prep:[at,by,in,on,withl,pn,varl 

What affects [det,pn,varl 

Where [aux: [does],cop:[is]] 

Where does [det:[a,an,every,no,thel ,pn,varl 

Where does a [adj,nl 

Where does a B-list celebrity [neg:[notl,prep:[ofl ,pn,relpro:[that,whol,var,vl 

Where does a B-list celebritlj not [vl 

Where does a famous nightclub [neg:[notl ,prep:[ofj ,pn,relpro:[that,which],var,vl 

Where does a sunny day [neg:[not],prep:[ofj,pn,relpro:[that,which],var,vl 

Where is [det,pn,varl 

Where is a [adj,nl 

Where is a B-list celebrity [adj,det,neg: [notl,prep:[at,by,in,of,on,withl,pn,relpro:[that,whol ,varl 

Where is a famous nightclub [adj,det,neg:[not],prep:[at,by,in,of,on,with],pn,relpro:[that,whichl,varl 

Where is a sunny day [adj,det,neg:[not]'prep:[at,by,in,of,on,with]'pn,relpro:[that,which],varl 

Where is Agatha [adj,det,neg: [no tl,prep:[at,by,in,of,on,withl ,pn,relpro:[that,whol ,varl 

Where is New York [adj,det,neg:[not]'prep:[at,by,in,of,on,withl,pn,relpro:[that,whichl ,varl 

Where is Xl [adj ,det,neg:[notl ,prep:[at,by,in,of,on,with]'pn,relpro:[that,which,whol ,varl 

When [aux:[doesl,cop:[is]] 

When does [det:[a,an,every,no,thel ,pn,varl 

When is [det,pn,varl 
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When is Aga tha [adj,det,neg:[not],prep:[at,by,in,of,on, w ithj,pn,relpro: [that, w ho j, varj 

When is Agatha a [adj,nj 

When is Agatha a B-list celebrity [conn:[and,orj,prep:[at,by, in,on,withj ,pn,relpro:[that,whoj,var,qm:[?Jj 

When is Agatha not [adj,det,prep:[at,by,in,of,on,withj,pn,varj 

When is Agatha not a [adj,nj 

When is Agatha not a B-list celebrity [prep:[at,by,in,on,with]'pn,relpro:[that,whoj ,varj 

How [aux:[doesj,cop: [is]] 

How does [det:[a,an,every,no,thej ,pn,varj 

How is [det,pn,varj 

Note tha t the grammar does not allow us to ask questions such as Where is New York?, Where is 
the famous nightclub?, How is Agatha?, How is the B-list celebrity? nor When is the wedding? 
Furthermore we cannot ask questions beginning Who do all, What do all, Where do all, When do 
all and How do all, nor Who are all, What are all, Where are all, When are all and How are all. 

Does [det:[a,an,every,no,thej ,pn,varj 

Does a [adj,nj 

Does a B-list celebrity [neg:[not],prep: [ofj,pn,relpro:[ that,whoj ,var,vj 

Does a famous nightclub [neg: [notj,prep:[ofj ,pn,relpro:[that,whichj,var,vj 

Does a sunny day [neg:[notj,prep:[ofj ,pn,relpro:[that,whichj,var,vj 

Does Agatha [neg:[notj,relpro:[that,who],v j 

Does Agatha not [vj 

Does Agatha dance [adv,conn:[and,orj,prep:[around,at,by,in,on,with]'qm:[?]] 

Does Xl [neg:[notj ,relpro:[tha t,which,whoj,vj 

Is [det: [a,an,every,no, the], pn, var j 

Is a [adj,nj 

Is a B-list celebrity [adj,det,neg: [notj,prep:[at,by,in,of,on,withj,pn,relpro:[tha t,who],varj 

Is a famous nightclub [adj,det,neg:[notj ,prep:[at,by,in,of,on,with],pn,relpro:[that,whichj ,varj 

Is a sunny day [adj,det,neg:[not],prep:[at,by,in,of,on,with],pn,relpro:[that,which],varj 

Is Agatha [adj,det,neg:[no tj,prep:[at,by,in,of,on,withj,pn,relpro: [tha t,wh oj,varj 

Is Agatha tall [adv,conn:[and,or]'prep:[around,at,by,in,on,withj ,qm: [?]] 

Is Agatha a [adj,nj 

Is Agatha a ta II person [adv,conn: [and,or j, prep: [around,at, by,in,on, w ith j, pn,relpro: [tha t, w ho j, var,qm: [?]] 

Is Agatha Max [adv,conn:[and,orj,prep:[around,at,by,in,on,with],relpro:[that,whoj ,qm:[?]] 

Is Xl [adj,det,neg: [notj , prep: [at, by,in,of,on, with], pn,relpro: [tha t, w hich, w ho j, var j 
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