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[. EXECUTIVE SUMMARY

Motivated by reports of accidents in high-altitude aircraft flights due to unforecast strato-
spheric turbulence caused by gravity waves over mountains, this research program aimed
to improve the theoretical understanding of various physical mechanisms relevant to the
generation of stratospheric gravity waves by orography. Specifically, the main objectives
were to study: the effects of the Earth’s rotation on nonlinear mountain inertia—gravity
waves; the generation of gravity waves by transient wind over mountains; the interaction of
mountain gravity waves with the tropopause and possible amplification of these waves in the
stratosphere; and possible transfer of energy from shear-flow instabilities to low-frequency
inertia—gravity waves via resonant nonlinear interactions.

Towards reaching these goals, the following problems have been studied:

(i) Effect of the Farth’s rotation on nonlinear mountain waves. Formally, the effect of
rotation on the generation of mountain waves by wind is controlled by the Rossby number,
Ro=U/(Lf), where U denotes the wind speed, L is the mountain length and f the Coriolis
parameter. Rotation is expected to be relatively unimportant when Ro > O (1), and this
regime is realized if the mountain is not too long, L < 50 km typically. However, even when
Ro > 1, rotation does affect the low-frequency part of the gravity wave spectrum, suggest-
ing that weak rotation effects could become important at long distances from the mountain.
This, in turn, raises the question: under what conditions can rotation be safely neglected in
analyzing/modeling mountain waves?

We have addressed this issue by constructing an asymptotic model. It turns out that ro-
tation behaves as a ‘singular perturbation’: the effects of rotation become equally important
to the effects of stratification far from the mountain, regardless of how large Ro is. As a
result, the response far from the mountain is dominated by inertia—gravity waves that would
be absent had rotation been ignored. Hence, the wave signature of the mountain extends
much further than would be expected. This piece of work forms part of the doctoral thesis
of B. Druecke (in preparation). For technical details, see §1 in Sec. II below.

(ii) Combined effect of rotation and the tropopause. The asymptotic model above was
generalized to account for the combined effect of the Earth’s rotation and the tropopause.
In the presence of the tropopause, the induced wave disturbance over the mountain can be
dramatically increased when the tropopause is at certain heights (depending on the wind
speed and the stratification). Under such ‘tuned’ conditions, nonlinear wave interactions are
particularly strong and, combined with rotation, drive inertia—gravity waves that propagate
far downstream of the mountain. Our theoretical results indicate that this generation mech-
anism is robust for mesoscale mountains, and rotation effects can be far more important
than previously thought, especially when tropopause tuning is taken into account. A nu-
merical code was also written for solving the Euler equations in the presence of stratification
and rotation. Fully numerical simulations of unsteady responses for various heights of the
tropopause lend support to the theoretical predictions. This piece of work is also part of B.
Druecke’s doctoral thesis (in preparation). Technical details can be found in §2 of Sec. II.



(iii) Effect of unsteady wind on nonlinear mountain waves. Previous work on mountain
gravity waves invariably assumes steady wind; apart from a few studies of the effect of a time-
harmonic wind component on the linear response, the possible significance of wind variations
remains unexplored theoretically. Using an earlier study by Kantzios and Akylas (Proc. Roy.
Soc. Lond. A 440, 1993) as the starting point, an asymptotic model was developed for the
evolution of the nonlinear response in the presence of slowly varying wind (timescale of the
order of hours). In the case of time-harmonic wind variation, the model reveals that the
appropriate perturbation parameter is the relative amplitude of the oscillatory wind compo-
nent divided by the wind frequency (made dimensionless by the buoyancy frequency). As
a result, a small-amplitude low-frequency oscillatory wind component can play a significant
role, and the response may be quite different from that predicted by steady-state theory.
We have also developed a fully numerical code to study the effects of unsteady wind and
validate the theoretical predictions. This work is part of B. Druecke’s doctoral thesis (under
preparation). Technical details are given in §3 of Sec. II below.

(iv) Energy transfer to low-frequency gravity waves via resonant nonlinear interactions.
We have examined the radiation of low-frequency gravity waves by weakly nonlinear wavepack-
ets propagating in a stratified fluid of variable buoyancy frequency. When wave trapping
is possible as, for example, in the case of a density inversion, we find that the mean flow
induced by nonlinear interactions can give rise to radiating gravity waves. This mechanism
is analogous to the transfer of energy from instability wavepackets, generated by shear-flow
instability, to low-frequency radiating gravity waves. This is work still in progress.

The main results of the present study are highlighted and discussed in connection with
atmospheric gravity wave generation, in §4 of Sec. II.
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II. TECHNICAL DESCRIPTION

1 Rotation Effects on Nonlinear Stratified Flow Over Topography

In the atmosphere, the typical value of the Brunt—Viisild (buoyancy) frequency N ~
1072 rad/s and the wind speed U ~ 10 — 30 m/s, so the characteristic vertical length-
scale of mountain waves, U/N ~ 1 — 3 km, is much shorter than the typical length of the
topography, L ~ 10 — 100 km; this justifies using the hydrostatic approximation, taking
dispersive effects to be weak. The significance of rotation effects is controlled by the Rossby
number Ro = U/ (Lf), f being the Coriolis parameter, and f/N ~ 1072 in the atmosphere.
On scaling grounds, then, rotation would be expected to be relatively unimportant when
Ro > 1 and this regime is realized if the topography is not too long, L < 50 km. Here we
make a systematic study of gravity waves over topography in the limit Ro > 1, which reveals
that weak rotation can have a significant effect in the far-field response. For simplicity, we
first consider the case of N constant. The effects of the tropopause, which turn out to be
crucial, are included in §2.

1.1 Governing Equations

The governing equations for incompressible, inviscid, stratified flow in a rotating coordinate

system are
<Du +f > B
Dv

th = Py — 9P

Dw B (1)
V-u=0
Dp
T _0
Dt

where f = 2Qsinf is the Coriolis parameter, 2 = 7.2722 rad/sec being the angular speed
of the earth’s rotation and @ the latitude. The Coriolis parameter ranges in value from f =
0 sec™! at the equator where rotation does not locally affect flows to f = £1.4544x 10~ sec™!
at the poles where local rotation effects are maximum. The assumption that the thickness
of the fluid is relatively small compared with the horizontal length scales has been made fol-
lowing Kundu and Cohen [12]. The coordinate system is chosen such that y is the outward-
pointing normal to the earth’s surface (vertical), = points in the eastward direction and z
southward, as depicted in Fig. 1.

Assuming the flow is two-dimensional such that there is no variation in the z—direction,
the velocity components in the streamwise and vertical directions can be written using the



Figure 1: Local coordinate system xyz rotating about polar axis with frequency §2.

streamfunction, ¥, as
U(ﬁ,y,t) = (U,U,U)) = (\I]y7_\1j$7w) (2)

The governing equations then become

pe+J(p,¥) =0
p{qjyt + ‘](\ijullj> + fw} = —Dz
p{—Vo —J (U, W)} = —py, — gp

p{wt+J(w>qj)_f\ij}:_Pz

where J (¢,1) = ¢amy — ¢yn, is the Jacobian. For inviscid flow, only the kinematic boundary
condition can be imposed at the surface of the topography. For two-dimensional topography
given by y = h (x) as depicted in Fig. 2, the kinematic boundary condition is

dv

dx

The assumption that disturbances do not propagate far upstream is made. Therefore, far up-
stream as x — —oo, the wind velocity is uniform giving ¥ — Uyy and there is no transverse

u-n=0ony=~h(z) = =0 ony=h(x) = WVY=conston y=nh(z) (4)

d;
velocity, w — 0. The density field is unperturbed, p — 7 (y) and hydrostatic, d—p = —gp.

Finally, the pressure gradient in the transverse direction is geostrophic, giving p, = pfUp.



Figure 2: Physical system of stratified flow over topography in the presence of rotation.

1.1.1 Nondimensionalization

We nondimensionalize the variables as follows

U, L
x = L1, yzﬁoy', t:ﬁt'
0 0 (5)

] Ug 0’ fL / / UO /
= — w = w = = _—
NO ; ) Y Pop b gpo Nop

where L is the characteristic width of the mountain, Uy the characteristic wind velocity, Ny
the characteristic Brunt-Vaisala frequency and p, the characteristic density. Substituting
these into the governing equations of (3) and dropping the primes gives

pe+J(p,¥) =0
1
Bp {\ijt +J (\Dya ) + Rozw} = Pz

Bl p{Wo + J (U, U)} = py + p

p{we+J (w,¥) =¥y} = —p

Uog N,
where the dimensionless parameters are the Boussinesq parameter, 3 = g’ the longwave
Ui U
parameter p = N—OL and the Rossby number Ro = f—z. The Boussinesq parameter is the

ratio of the vertical length scale of fluid motion to the vertical length scale over which den-
sity changes, and the limit as § — 0 gives the Boussinesq approximation. The longwave
parameter is the ratio of vertical to horizontal length scales, and the limit as p — 0 gives
the hydrostatic approximation. The Rossby number is the ratio of the Coriolis time scale
to the advective time scale. Thus in the limit as Ro — oo, rotational effects are relatively
unimportant. The limit where Ro = 1 is the limit where both rotation and advection are of
equal importance, and as Ro — 0, rotation dominates.

Far upstream the flow is undisturbed, and the nondimensionalized flow is

UV—y, w—0, p,=—FpN* (x— —o0) (7)

5



The nondimensionalized boundary condition on the topography becomes
U = const on y = eh (x) (8)
hoNy

where € = is a parameter determining the importance of nonlinearity and hg is the

0
characteristic height of the topography. The nondimensional topographic profile used in the
analyses summarized below is either the Gaussian profile of functional form

2

h(x)=e" (9)
or the algebraic (Witch of Agnesi) profile

h(zx) = (10)

The flow is assumed to be hydrostatic, implying u — 0, and nearly steady. We define a slow
time
T=1v% vl (11)

Then the time derivatives in the governing equations can be rescaled and the hydrostatic
approximation imposed to give

J (pa \Il) = _VQpT

1
Bp {VZ‘I/yT +J (¥, V) + _ROQw} = —p,

by = —p
p{viwr +J (w, ) =¥, } = —p

Differentiating the second equation with respect to y and eliminating pressure in favor of
density using the third equation gives

J (pv ‘Ij) = _Vsz

1
s{o [P+ (9, 9) + o0} =,
vT v Ro? y

(13)
Py = —p

J(w,¥) =V, — (1 + ysz)



1.1.2 Integration of Density Equation

Making the assumption that the streamlines never become vertical, ¥, # 0, throughout the
domain, one can make the coordinate transformation

(x,y, T) — (x,V,T). (14)
Then substituting this into the density equation above gives

Uy puly = —1*pr (15)

Dividing through by ¥, and integrating with respect to x along contours of constant stream-
function (streamlines) gives

xT

p:F(\I/,T)—yz/ rr

da’ 16
T (16)

N4

where F' (W, T) is a constant of integration. The density profile far upstream as x — —o0 is
p—p(y) =p (V). Therefore F (¥, T) =p(¥) and

T

plo ) =p(w)-* [ 2

—00 Y

dx’ (17)
v
This implies that p (z,y,T) = p(z,¥) and pr = py¥7 = gy U7 + O (v?) Finally, combining

everything gives

p=p() - (v) [ T

—00 Yy

de' + O (1/4) (18)

1.1.3 Integration of In-Plane Momentum Equation

We next integrate the second equation in (13). Taking the y—derivative of the left-hand-side
gives

1 1 1
pJ (\I]yy» W) + puVyJ (\ij’ V) - B p“”:|‘1’ - qu,\llx = (pquT)y " Ro? (pw)y (19)
In order to simplify notation, we define
1
S = PV, + pu <2\If§ + z> (20)
Then
J(S, V) =59, —-S5,¥,
1, vy I o vy
= pJ (Uyy, V) + puJ 5‘1’3, + 3 V) + paly Uy Wy + povly §\I/y T B vy
(21)



and the momentum equation can be written as

1.9 ={oule (30 4)} <200, - oz o0, )

We next make the Boussinesq approximation, which can be written formally as the limit in
which the Boussinesq parameter, 3, approaches zero. Physically this means that the vertical
displacement of fluid particles is small compared with the vertical length scale over which
the density changes are significant. In the Boussinesq approximation, the vertical variation
of density scales as the Boussinesq parameter

py = pu¥, =0 (B) (23)
and the horizontal variation of density along a streamline can be written using (15) as
_aPr _ apyVr o, Wp 4 _ 24~ 2 Uy 4
puly = =V = =S = Vg + O (V) =B (D) N (W) G+ O () (24

Then the momentum equation becomes
2— 2 \IJT 2_
J(S,0) =vp(U)N” (V) | o=y | —v (V) Vyyr — ==
Yy

Defining

the momentum equation can be written as

p (v
Py
Ro?
As in the integration of the density equation, we again make the transformation (z,y,T) —

(z,¥,T) and assume the streamlines are not vertical throughout the domain (¥, # 0)Then
the momentum equation can be written

J(S,¥) = —*R — (26)

P (V)

Sz|\ll \ij = —’R— Ro? Wy (27)
and integrated along streamlines to give
“ R 1 v w
S=G(,T) - —| da' — — p(¥) 2| da 28
[ g [ p g (28)

The constant of integration, G (¥, T'), is determined by the behavior of the flow far upstream
as ¥ — —oo. Far upstream,

S— PN (W) T asz — —c0 = G(T)=—p(T)N?(T)T



and the solution to the momentum equation is

S:—p(\I!)Nz(\I’)\I/—VQ/_I 5

1 x
i’ — — [ p(w)

2
Ro? |_

dx’ (29)
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Substituting the definition of S given in (20) and utilizing the Boussinesq approximation
gives

1 [ w
2 _ Wy ro2 4

Wy, + N2 (D) (¥ —y) = — 5 Ooqqujdx+yH+(’)(y) (30)

where
a [° a [T Up o [* VUrp
H=-—— v "+ N* (V) — —| da' —yN* (V¥ / ’

We rewrite the first term on the right-hand-side of (30) to give

U, + N2 (0) (\Il—y):—la/x wly da’ + v*H + O (V) (31)

v Ro20W | 'Y

1.1.4 Integration of Transverse (Spanwise) Momentum Equation

We finally integrate the equation governing momentum in the z—direction, given by the
fourth equation in (13). Using the same coordinate transformation as above, again assuming
U £ 0 everywhere, we rewrite this equation as

wely U, =V, — 1 — 2wy (32)

T, -1 Tw
w = / L da -2 / L
Uy |y oo ¥y
where the constant of integration has been set to zero because w — 0 as x — —oo. The first
term can be rewritten to give

o [
wegg | @-ular =2 [ T

—0o0 —00

and integrate to obtain

dx’ (33)
v

da’ (34)

v

For the remainder of the report, we shall focus on the results in the limit of steady flow over
topography. The governing equations for steady flow are

p=7(¥)
Uy N2 (0) (0 —y) = ——— 2 [l d
vy Y= "Reow | v (35)
o [ ,
w= [y




subject to the boundary condition along the topography

U =0ony=ceh(z)

(36)

and the radiation condition as y — oo ensuring energy propagates outward away from the

topography.

1.2 Linear Solution for Uniformly Stratified Flow

In the limit when the topography amplitude is small, ¢ < 1, the governing equations become
linear because the streamline displacement, n = y — ¥ ~ ¢ scales with €. Thus derivatives
with respect to the streamfunction can be rewritten as derivatives with respect to y and the

linearized equations become

1 0 [7
Wy + N? (y) (¥ —y) = _Wﬁiy wdzx

a x
= — U —y)da
Y=y / Oo( y) da
Defining the streamfunction perturbation, v, as
vV=V—-y

and combining equations gives

1 62 v x/ " /
wyy—i-NQ(y)w:—ROQayQ/_oo/_oowdx dx

Taking two derivatives with respect to x gives

1

S A

(@byy + N (y) ¢>
subject to the linearized boundary condition
= —eh(zx) ony=0

Defining the Fourier transform in the horizontal and its inverse as

Foy=Fl @y =5 [ faeta

fa) =Fr {Fw= [ Foetar
the transformed differential equation becomes
(K* = 8%) by + *N* (y) & =0

10
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subject to the boundary condition
¢ =—eh (k) ony=0 (44)

and the radiation condition as y — oo, where g = %. The general solution is

= 2R {/OOO a (k) exp (Z\/kﬂkf@y> etkrdy 4+ /OOO b (k) exp <_i\/k‘2kf62y> eikmdx} (45)

In general, the radiation condition requires disturbances to radiate outward from their source
as time increases. Here the disturbances must radiate upward away from the topography.
The radiation condition can be formulated by requiring the vertical component of group
velocity to be positive. The linear dispersion relation is

k
w=k— S|gn| JE2 + 32m? (46)
m
and the vertical component of the group velocity is
~ Ow  sgn (km)k?
v Om T miRE T e

Therefore the radiation condition requires the signs of the vertical and horizontal wavenum-
bers to be the same.

(47)

Cql

¢gl, > 0= sgn (km) >0

In addition, the solution must be bounded as y — oo, which requires b (k) = 0 when
|k| < §. Applying the radiation condition and boundedness in conjunction with the boundary
condition at y = 0 given by (44) yields the solution

’ - AN % i o
¢ (%y) = —26% {/O exp <\/%> h (k) elkwdk + /IB exp (&) h (k) ezkwdk}
(48)

The equation governing the spanwise velocity in the linear limit is w, = v, and in Fourier

space W = —i% Using the solution for the streamfunction given in (48) gives the solution
for the spanwise velocity as

_ B ih (k) eth —ky = h (k) etk iky
w(z,y) = —26?)?{ i ﬁ exp (\/m) dk + ; ﬁ exp (\/W) cik:})
49

In both (48) and (49) the integral over wavenumbers 0 < k < (3 is evanescent in the vertical
and is the contribution dominated by rotation. The integrals for wavenumber k£ > [ are
oscillatory in the vertical. These are the relatively short wavelengths for which rotation is
negligible.
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Figure 3: Streamlines for linear solution of stratified flow over topography in the presence of rotation for
Ro = 5. The values of the Coriolis parameter, Brunt—Vaiséla frequency, freestream velocity, mountain width
and mountain height for this simulation were f = 1.0 x 107% sec™!, Ny = 1.0 x 1072 sec™!, Uy = 10 m/s,
Lo = 20 km and hy = 0.75 km, respectively. The topography shape is Gaussian (9).

Figures 3 and 4 show representative solutions for the linear streamlines and spanwise velocity;,
respectively. The solutions shown are for a Rossby number of 5 (8 = %) The streamlines
near x = 0 above the topography are dominated by stratification effects, whereas further
downstream of the topography the effect of rotation is evident in the the longer wavelength
inertial-gravity waves. The spanwise velocity is a purely rotational effect which is not present
in the limit as Ro — oo. Note that the first streamline in Figure 3 does not coincide with
the topography because the linear boundary condition has been applied.

1.3 Inner Nonlinear Solution and Lack of Uniform Validity

While the above solution accounts for rotation, it neglects the effect of nonlinearity. In order
to incorporate nonlinearity, we return to the original governing equations of (35). In the case
of weak rotation, the Rossby number is large and right-hand-side of the second equation in
(35) is a small correction. As a first approximation, we follow Smith [21] and examine the
solution to the nonlinear problem with weak rotation using a naive perturbation expansion
of the form

U =00 4 3200 4 g4g@ 4 ... (50)
Then the leading order equation is
g,é%) + 00—y =0 (51)
subject to
O =0 ony=eh(z) (52)
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Figure 4: Spanwise velocity, w [m/s], for linear solution of stratified flow over topography in the presence of
rotation as given in (49) for Ro = 5. The parameters are the same as those for Figure 3.

and the radiation condition as y — oo. This is the classic Long’s problem [14] in which
the nonlinear governing equations are reduced to a linear equation with nonlinear boundary
condition. The solution can be written by decomposing the streamfunction as above into its
undisturbed component, y, and a streamfunction disturbance, 1.

TO =y 4O (53)
Then the solution becomes
YO =2(a(x)cosy — b(x)siny) (54)
The radiation condition requires
b(k) = —isgnka(k) = b=—H{a} (55)

where H {a} is the Hilbert transform of a (z). Finally, the boundary condition requires
1
a(x)cos (eh) + H {a} sin (eh) = —§eh (x) (56)
which must be solved for a ().

The leading order equation for the spanwise velocity is

s, v
©0) — _ ) _ !
w =C (V) + 590 /0 (\I’ y)‘q](o) dx (57)
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where the integral is evaluated along the contours of constant ¥(®). Substituting the leading
order solution for ¥ gives

8 v / / : /
W =0 ) + 2505 [ la@)cosy b singlyo da (58)

We wish to examine the asymptotic behavior of the solution for the streamfunction and
spanwise velocity in the limit as x — 4o00. In order for the Fourier transform of the topog-
raphy to converge in the linear solution, it is necessary that h (z) = o (%) as r — £oo. In
this limit when z is large, the amplitude is small and the solution is linear. Thus we have

a~ —%h(m) = 0<1>

T
as r — oo

b=— =—i [ a(k)e™dk+cc ~=a(0)=— ') da
H{a} Z/O a(k)e +c.c xa(O) mg/ooa(x) x

(59)
Since a () < b(z) as © — £o0o, the behavior of the leading-order streamfunction solution

as ¢ — £00 IS A
O~y — —a(0)siny as 2 — Fo0 (60)
x

which decays to the undisturbed solution, ¥ = y, as x* — 400. In the limit as * — 400, the
spanwise solution behaves as
O 99 [T 22, 0) sin yda’ 0 ;
w ~ 2 a (0)sinydx’ + C <\Il ) ~ —4a (0)In|z|cosy as x — £o0 (61)
dy J, =«

Thus the spanwise velocity diverges logarithmically far from the topography, and the naive
perturbation solution of (50) is not uniformly valid, which agrees with the findings of Smith
[21]. As Smith suggests, there are really two horizontal length scales present. The first is the
width of the mountain used above, and the second is the length over which rotational effects
act, and is L, ~ Y2. The procedure of matched asymptotic expansions can be used to
account for these two distinct length scales and the logarithmic divergence of the spanwise
velocity. In this matching, the domain is divided into an inner solution for x — 0 and
an outer solution as |x| — oo. The above naive perturbation solution represents the first
approximation for the inner solution, for which rotation is a weak perturbation. Far from
the topography as length scales become large and Coriolis acceleration has sufficient time
to act, rotation is of leading order importance. However, assuming the topography decays
as h = o (%), the disturbances far from z = 0 are small and the solution becomes linear,

allowing the application of the linear boundary condition and superposition. Figure (5) shows
the effect of rotation in the linear limit. Near the topography, the solutions with and without
rotation are nearly identical. Rotational effects become important further downstream. This
provides a justification for the approach of matched asymptotic expansion, wherein rotation
is weak in the inner solution and is of leading order importance in the outer solution.
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Figure 5: A comparison of streamlines showing the effect of rotation for the linear solution. Downstream
of the topography rotational effects become more important as the Coriolis force has more time to act.
Far downstream the inertia—gravity waves decay as energy is radiated upward. The values of the Coriolis
parameter, Brunt—Vaiséla frequency, freestream velocity, mountain width and mountain height for Ro = 10
were f = 1.0x 107 % sec™, Ny = 1.0x 1072 sec™!, Uy = 10 m/s, Lo = 10 km and hy = 0.75 km, respectively.
For the linear limit of Long’s solution the parameter values were the same, with the exception that the
Coriolis parameter was set to zero. The topography shape is Gaussian (9).
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1.4 Outer Solution

Far from the center of the topography, the solution is linear and the governing equations are
given by (40) and (1.2) subject to the boundary condition given in (41). In order to account
for the leading-order importance of rotation, the horizontal coordinate and wavenumber
should be scaled by ( as

=1
T=px, k=-=k (62)
g
and the streamfunction and velocity variables as
V=0, u=1+pi, v=7pF%, w=u (63)
where 4 = @y and ¥ = —1);. Then the governing equations become

(iyy + NZ@Z) iz T J)yy =0
(64)
Wz = wy
Far from the topography in the stretched coordinate, z, the topography appears to be a

Dirac J—distribution. Then the linearized boundary condition along y = 0 in this outer
region can be written as

W = fp = —2meh (0)6 () ony =0 (65)

where the factor 2reh (0) is the area under the topography curve. Then the solution to these
is found via Fourier transforms to be

= —2¢h (0) (I + 1)

A (66)
W = —2¢h (0) (I3 + 1y)
where
1 iy \
L =R {/ exp (~) e’kxdk}
0 V1 — k2
L=R {/ exp (f/fy) ”“”dl%}
1 k% —1
(67)



In order to match this solution with the inner solution near the topography, it is necessary
to examine (66) in the limit as £ — 0. The limit of this outer solution as & — 0 is

~ sin y

U ~ 2¢h (0)

X

cosy

i

@i ~ 2¢h (0)

“ siny (68)

W ~ 2¢h (0) cosyIn |Z| + meh (0) siny sgn Z

zb|j_)0+ — 27eh (0) siny

z—0~

The details of the evaluation of these limits is found in Appendix A.

1.5 Matching

In order to match the inner and outer solutions, one must return to the inner solution
and evaluate its limit as * — oo more precisely. The inner solution for the streamfunction
disturbance was given in (54). Since the integrals involved in evaluating w are along contours
of constant streamfunction, it is useful to rewrite the solution in terms of harmonic functions
of streamfunction, ¥, as

PO =g _y =9 [a (z) cos U — b (z)sin \II(O)} + Y rpsin n¥©® 45, cosn®  (69)

n=1

where 7, and s, are coefficients arising from nonlinearity and can be determined analytically
by expanding

Y0 =2 (acosy — bsiny) = 2 [a (z) cos U — b (x)sin \II(O)} + 3 7, sinn¥© + 5, cosn¥©
n=1

The first few terms can be shown by hand to be
leb(aQ—I—bQ), slz—a(a2+b2)
r2:2(a2—b2), S9 = 4ab

r3 = 3b <3a2 — 62) , S3=3a (3()2 — a2)
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Substituting the above expansion into the leading order equation for the spanwise velocity
given in (57), the spanwise velocity is

w(® (m, \II(O)) =C (\IJ(O)) -2 [sin \IJ(O)/ a(z') dz’ + cos \II(O)/ b(z") dm’}
0 0

(70)
+> n [cos n©® / 7 (2') dz’ — sinn®©® / s (7)) daz’]
n=1 0 0
Then the jump in spanwise velocity across the inner solution is found to be
w(o)‘io = 47 (0)sin ¥ + 273" n (fn (0) cosnW® — 5, (0) sin n\I/(O)) (71)
o n=1

Details of this computation are found in Appendix B.

In summary, we have thus far obtained an inner solution of

w(o) =2 (a cos U0 — psin \IJ(O)> + Z (rn sinnW© + Sy, COS n\IJ(O))
n=1
w® = -2 lsin \II(O)/ a(z") dz’ 4 cos \IJ(O)/ b(x') d:c’}
0 0

+> n [Cos nw© / o () da’ — sinn¥© / $p (2) dx’] +C (\I/(O))
0 0

n=1

with asymptotic behavior

¢(0) ~ —44(0) siny
’ || — 00
w®  ~ —4a(0)cosyln|z| + C (\II(O))
w® io = —47ma (0)siny + 21 Y n[f, (0) cosny — §, (0) sin ny|
e n=1

and an outer solution of

O = —2eh (0)R{L + I}

0 = —2eh (0)R{Is+ L}
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with asymptotic behavior

b~ 2eh (0) 22Y

T
,2—0

W ~ 2eh (0)cosyln|z| — g sgn Tsiny

|0 = 2meh (0) siny

At present, the inner and outer solutions do not match. Thus it is necessary to superimpose
a second linear solution in the outer domain upon the current outer solution in order to
satisfy the matching conditions as £ — 0. The derivation is found in Appendix C and the
result is

b= 40 (0) = 3 5, (0)| R{L + B} + > @

L )
@ = [4a (0) = 3" 3, (0)| R{Ls + Lu} + ) @
- n=2 e n=2

where

O = 27 cos ky [ (0) sinny + 3, (0) cosny) H (z) + 25, (0) (5 + 1), n> 1 (73)

where . -
(n) _ k’e’ z k}y
I5 :%{/0 MGXP<—m>dk},n>1
(74)
00 ikT
W =a{f e () o o

This results contains the proper jump condition for higher harmonics, n > 2. However, the
first harmonic in the outer domain still does not match the first harmonic in the inner. In
order to correct that, we add another linear solution to the solution in the outer domain,
such that the the first harmonic also satisfies the jump condition. The final result is

b= [46(0) = Y 80 (0)| RAL + L} + 3 00 + 2[5, (0) 0 + 74 (0) "]

: n=2 : n=2 (75)
B = [4a(0) = > 8, (0)| R{Ls + Li} + 3 B + 2 (31 (0) &) + 71 (0) 1y

L n=2 i n=2
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where

v =L+1;
P = g /OO sin (ky ) e“;idl;:}
b = ~
{ 1 V2 -1
bV = Iy + Iy

1.6 Analytic Results

Figures 6 and 7 show the streamlines for the linear and nonlinear cases, respectively for a
Gaussian mountain (9) of amplitude € = 0.75 and a Rossby number Ro = 3. The solution
is only shown downstream of the topography where the outer, nonlinear analytic theory is
valid for x > 0. Qualitatively the linear and nonlinear streamlines are very similar. This is
consistent with the numerical simulations of Triib and Davies[22].

Figures 8 and 9 are spanwise velocity analogs of Figures 6 and 7, respectively, showing
the spanwise velocity far downstream of the topography. Here the linear and nonlinear
solutions are qualitatively quite different. While the linear spanwise velocity has relatively
long contours of constant velocity running primarily from a high altitude upstream to a low
altitude downstream, the nonlinear spanwise velocity exhibits much more structure as shown
by the closed contours of spanwise velocity in Figure 9. This is indicative of the nonlinearity
in the inner solution, which forces higher harmonics in the outer solution. These higher
harmonics propagate far downstream of the topography and do not dissipate because the
analytic model does not include viscous and turbulent dissipative effects.

1.7 Computational Approach

In addition to an analytic theory for the examination of rotation effects on nonlinear flow
over topography, a computer code has been developed for the fully numeric simulation of
these waves. The code solves Euler’s equations in a rotating coordinate system as given
in (1) using a projection method for density-stratified fluid based on the work of Bell and
others [2, 3] as implemented by Skopovi [18, 19, 20].

20



4O S e e e e B —

gy ——D

=

N
E
!

Altitude -y [km]
5

500 1000 1500

Horizontal Position — x [km]

Figure 6: Streamlines from linear analytic solution far downstream of Gaussian topography for e = 0.75 and
Ro = 3. The values of the Coriolis parameter, Brunt—V4iiséla frequency, freestream velocity, mountain width
and mountain height for this simulation were f = 1.0 x 107 sec™!, Ny = 1.0 x 1072 sec™!, Uy = 10 m/s,
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Lo = 33.3 km and hg = 0.75 km, respectively. The topography shape is Gaussian (9).
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Figure 7: Nonlinear analytic streamfunction in the outer domain given by the matched asymptotic solution.

The parameters used are the same as those for Figure 6.
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Figure 8: Spanwise velocity from linear analytic solution far downstream of Gaussian topography for e = 0.75
and Ro = 3. The values of the Coriolis parameter, Brunt—Vaisild frequency, freestream velocity, mountain
width and mountain height for this simulation were f = 1.0x107% sec™!, Ny = 1.0x1072 sec ™!, Uy = 10 m/s,
Lo = 33.3 km km and hy = 0.75 km, respectively. The topography shape is Gaussian (9).
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Figure 9: Nonlinear analytic spanwise velocity in the outer domain given by the matched asymptotic solution.
The parameters used are the same as those for Figure 8.
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1.7.1 Overview of Projection Method

One of the difficulties in the modeling of incompressible flow is that the time derivative of
pressure does not appear explicitly, so it is not straightforward to write a time-evolution
equation for it and integrate in time, as done with velocity and density. One approach to
resolve this is known as the projection method wherein the velocity is evolved in time using
a finite-difference approximation, and the time derivative of velocity is given by all the terms
in the Navier-Stokes equation with the exception of the pressure gradient term. For a simple
forward Euler time discretization, this could be written as

u' = u™ 4+ A (77)

where u* is an initial approximation to the velocity vector at the next time step, and f is

the vector of forces acting on the fluid including all stresses with the exception of pressure.
This new approximation of velocity, u* will not be divergence-free in general, which violates
conservation of mass. In order to make the new velocity field divergence-free, the projection
step is used, whereby u* is projected onto a divergence-free vector space. In time the velocity

is advanced as
u™ = u* — AtVp (78)

Taking the divergence of this gives
V-ul") =v.u — AtV?p

The left-hand-side of this is zero in order for the flow to be incompressible, and the appro-
priate pressure is determined by solving the Poisson equation

1
2 *
. 79
Vip= 4 Vu (79)
Once the pressure is known, its gradient can be determined and the velocity can be updated
using (78).

The Euler equations are inherently nonlinear because of the advective terms. In this nu-
merical model, the advective terms are treated using a finite-volume approach in order to
conserve momentum. The second-order Godunov method is used to approximate fluxes
across finite-volume boundaries. The implementation follows the work of Bell and others
2, 3] and is the approach used by Skopovi [18, 19].

1.7.2 Viscous Boundary Layers

Throughout the analytical derivation, the radiation condition was utilized to ensure energy
propagates upwards and downstream, away from the topography. The radiation condition
was required for the steady-state solution. If an initial value problem is solved, as is the
case for these fully numeric simulations, a radiation condition is not needed because energy
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will naturally propagate outward from the topography. However, another difficulty arises
because the computational procedure is inherently limited to a finite domain. Thus the
issue arises of what to do when the wave energy reaches the boundary of the computational
domain. Methods of canceling the wave energy have been proposed for a monochromatic
spectrum [7]. However, in the current problem, the spectrum is not monochromatic. Skopovi
[18, 19, 20] has used viscous boundary layers to dissipate the wave energy before it reaches
the boundary of the domain.

In this approach, the Euler equations of (1) are modified to include a Newtonian viscous

dissipation term as
Du Pu Ou
(20 ) = gD 0

Dt ox?  0y?
Dy o
th_ py gp Iu axQ ayQ
(l)w_fu>__ + 827w+827w (80)
P\ Di BEECRE W r oy?
V-u=0
Dp
E_O

where p = p(x,y) is a nonuniform coefficient of viscosity. Note that this formulation does
not agree with physical formulation of flow in a field of nonuniform viscosity, where the
gradient of the stress tensor appears on the right-hand-side and

V- (uVu) # pViu

Nevertheless, the viscous boundary layers are inherently non-physical and our only concern
is the prevention of reflections at the boundary. Thus the choice of viscous layer thickness
and viscosity profile is empirical. Following the work of Skopovi, we choose a sinusoidal
profile for the viscosity in the viscous layers. In the viscous layer at the top of the domain,
the viscosity is given as

 prosin [T Y W0
H = o 2Y — 4o

>7y0<y<Y

where y is the vertical coordinate, gy, the height at at which the viscous boundary layer
begins, and Y the height of the top of the computational domain. An analogous formula
is implemented for the viscous boundary layers at the left and right edges of the computa-
tional domain, and the reader is referred to Skopovi [19] for more detail. A representative
distribution of viscosity is shown in Figure 10 where x and y are nondimensional coordinates
used in the computations.
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Figure 10: Contours of viscosity for viscous boundary layers used to damp and absorb waves at boundaries
of domain. The viscous boundary layers are used as an artificial radiation condition.
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The inclusion of viscous terms in an explicit temporal discretization results in a more severe
stability constraint, requiring At ~ O (Ax?, Ay?) as opposed to the stability constraint for
inviscid flow of At ~ O (Ax,Ay). In order to eliminate the need for an extremely small
timestep, the viscous terms are treated implicitly by solving

u' = u™ + AtpVia*
using Cholesky factorization.

1.8 Computational Results

Figures 11 and 12 show the streamlines and spanwise velocity, respectively, evaluated using
the fully numeric simulation for stratified flow over topography with weak rotation. The
results are for a nondimensional mountain amplitude of € = 0.40 and the results are scaled
up linearly to an amplitude of € = 0.75 for comparison with the nonlinear results shown in
Figures 13 and 14. The results are qualitatively quite similar to the linear, analytic solution
shown in Figures 3 and 4 with different scaling because a Rossby number of 5 had been used
for the linear, analytic results previously. The waves propagate upward and downstream
(rightward) from the topography. The plotted solution has not yet reached steady-state far
aloft and downwind of the topography. The results are plotted for this time despite having
not achieved steady-state because as time increases, the viscous layers become saturated and
are no longer able to dissipate all waves at the boundary. Thus for large times, spurious
reflections from the viscous layers and boundaries are found in the interior of the domain.
The results shown in Figures 11 through 14 have negligible reflections but have not reached
steady-state throughout the domain.

Figures 13 and 14 show the numerically calculated streamfunction and spanwise velocity re-
spectively. These plots are analogous to those in Figures 11 and 12 with the only difference
being that the topography amplitude is € = 0.75 for Figures 13 and 14, whereas it is € = 0.40
for Figures 11 and 12.

Qualitatively, the numeric results with ¢ = 0.40 differ very little from those with ¢ = 0.75.
While the analytic theory showed much more structure in the spanwise velocity for the case
of € = 0.75, the fully numeric solution does not show this. Part of the reason for this is that
the numerical solutions have achieved steady-state for a very limited horizontal domain. The
analytic results in Figure 9 show closed contours of spanwise velocity far downstream of the
topography, and very few of these contours are present in the domain z < 900 km, for which
we have numeric results.

1.9 Discussion

The results of this section show that, for a single layer of uniformly stratified flow, nonlinear
interactions above the mountain generate higher-harmonic disturbances that propagate far
downstream of the topography. This is best seen in comparing Figure 9 for nonlinear span-
wise velocity with Figure 8 for the corresponding linear result of spanwise velocity. While
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Figure 11: Streamlines from fully numeric simulation for relatively weak nonlinearity. The values of charac-
teristic Coriolis parameter, Brunt—Vaiisala frequency, undisturbed wind speed, mountain width and mountain
height for this simulation were f = 1.0 x 10™* sec™!, Ny = 1.0 x 1072 sec™!, Uy = 10 m/s, Lo = 33.3 km and
ho = 0.40 km, giving nondimensional parameters Ro = 3, ¢ = 0.40 and u = %. The streamlines are plotted
at a computational time of tcomp = 200, corresponding to a nondimensional time of ¢ = 33.33 or a physical
time of tgimensional = 185 hr. The amplitude of the streamfunction disturbance is scaled by a factor of 1.875

for comparison with results for the larger-amplitude mountain below.
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Figure 12: Spanwise velocity, w [m/s], from fully numeric simulation for relatively weak nonlinearity. The
parameters for these results are the same as those for Figure 11. The amplitude of the spanwise velocity is
scaled by a factor of 1.875 for comparison with results for the larger-amplitude mountain below.
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Figure 13: Streamlines from fully numeric simulation for mountain with nondimensional amplitude ¢ = 0.75.
The parameters are the same as those for Figure 12, with the exception of the topography height and
nondimensional amplitude, for which the values are hg = 0.75 km and € = 0.75, respectively. Furthermore,
the amplitude of the response is unscaled.
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Figure 14: Spanwise velocity from fully numeric simulation for relatively strong nonlinearity.
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these higher harmonics are present for a single layer atmosphere, they are relatively weak
because the nonlinear interactions in Long’s solution for a single layer are relatively weak.
Thus the analysis serves as a proof-of-concept showing inertia—gravity waves far downstream
produced by nonlinear interactions above the mountain, but these waves have relatively
small amplitude due to weak nonlinear interactions. The subsequent section shows that in a
two-layer atmosphere, the effect of the tropopause can significantly increase the amplitude
of the nonlinearly generated inertia—gravity waves downstream.

The numerical results in this section are rather inconclusive. The primary cause is limited
computational resources. The fully numeric simulation is constrained to a finite domain and
the simulations are started from a uniform velocity field and allowed to evolve in time. The
spatial and temporal domains shown in Figures 11 through 14 are insufficient to conclusively
resolve nonlinearities far downstream of the topography at steady-state. For example, the
horizontal domain for the numerical results is limited to x < 900 km in the numerical results
of Figures 11 through 14. This implies that the analytical theory provides a predictive model
yielding information unable to be obtained from these numeric simulations.

In summary, the results of this analysis show that nonlinearity in the inner solution slightly
affects the spanwise velocity in the outer solution. However, this forcing is relatively weak
because the nonlinearities above the topography in Long’s solution for a single, uniformly
stratified layer are relatively weak, and the nonlinear solution does not differ appreciably
from Long’s solution in the linear limit. Next we examine the effect of the tropopause in a
model atmosphere with two layers of uniformly stratified flow and seek conditions for which
the nonlinear forcing of the outer solution is stronger.
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2 Two Layers of Uniform Stratification — Effect of the Tropopause

2.1 Governing Equations

In general, there is a change in the Brunt—Vaisala frequency across the tropopause, with
the Brunt—Vaisala frequency typically being smaller in the troposphere and larger in the
stratosphere. While the Brunt—Vaisala frequency is not spatially uniform in either layer of
the atmosphere, we formulate a model to examine the effect this change in Brunt—Vaisala
frequency across the tropopause has in conjunction with nonlinearity and rotation. The
effect of the tropopause for cases excluding rotation has been previously studied by several
investigators including Durran[6] and Davis[5]. In this investigation, we utilize the frame-
work of matched asymptotics developed above to analyze a system with two layers of uniform
Brunt—Viisala frequency in the presence of nonlinearity and rotation. The model under in-
vestigation is sketched in Figure 15.

Figure 15: Physical system of stratified flow over topography in the presence of rotation incorporating the
effect of the tropopause.

The governing equations for this system are those derived in §1.1 and given in (35) and
(36) where we set the Brunt—Vaiisild frequency to Nj in the troposphere and Ny in the
stratosphere, with a step-change at the tropopause.

19 [ )
\Ij(l)vyy + *Nvl2 (qj(l) - y) = _RO28\I// w|\1, d$,7 U <V
2 1 a ’ / *

V(o) gy + Ny (‘I’(2) - ?/) = TRV wly da', ¥ >V (81)

g [° ,
w:alp/oo (¥ —y)|g dz', Yy > eh (z)

30



where U* is the streamline on the tropopause separating the troposphere and stratosphere.
As in the case of a single layer of stratified flow, the kinematic boundary condition at the
surface of the topography is imposed, implying that there is no flow normal to the surface
and resulting in the fact that the topography is itself a streamline.

U =0, y=ceh(x) (82)

The radiation condition as y — oo must also be imposed. Finally, we must impose some
interfacial conditions at the tropopause. The first is the kinematic condition requiring the
flow in the vertical direction to be equal on either side of the tropopause, resulting in the
fact that tropopause itself is a streamline and the streamfunction on either side must be
equal to zero.

Yy =V =", ¥ =u (83)
Since the mass flow rate between two streamlines is proportional to the difference in stream-
function, this is consistent with the fact that the troposphere and stratosphere are in contact
with each other and there is no flow between the two layers. This assumes the tropopause
has infinitesimal thickness, consistent with the model proposed in (81).

The second interface condition is a dynamic condition coming from a balance of pressure on
either side of the tropopause streamline, U*.

pr=p2, ¥ =U"
which implies u; = us on ¥ = U* in the hydrostatic limit. Rewriting the horizontal velocity
in terms of the streamfunction gives the second boundary condition at the tropopause.
oV _ 9V

5 TR (84)

2.2 Linear, Uniformly Valid Solution

In the limit of € — 0, the streamfunction disturbances are small (of order €) and surfaces of
constant altitude approach surfaces of constant streamfunction.

U=y+v, v=0(e)

Then the boundary conditions at the topography and tropopause can be applied along
contours of constant altitude. Decomposing the streamfunction into its undisturbed value,
y and a streamfunction disturbance, ¢, the governing equations become

1 T z’
Yy + NV + 5 / / by gydada’, y < H

V@)yy + N3t) + / V) yda"ds’, y > H (85)



subject to

Yoy =Y, y=H (86)
OYay O
A7 A S & =H

ay ay y Y

and the radiation condition. The solution is

B
Yoy = 2R {/0 [—eﬁ cosh (\i};ﬂ) + gsinh (g;ﬁ%)] ik g1,

* 7 ley . ley ikx
+/ﬁ [—Eh COSs <\/m> -+ g s (\/m)] e dk , Y < H
—Noky Noky

B ) 00 .
17/)(2) = 2R {/ dexp (M) ezkxd/{: +/ﬁ cexp <2M> elkxdk} Loy > H
0 — _

f—iN, ~ Niky Niky ik
wey = 2?)?{ i ﬁ [—ehsmh (W) + g cosh (mﬂ ok g1,

/ \/7@ [EA sin (%) + g cos (%)] eikwdk}, y< H

N2ky ikx
W) = 2?)?{/ \/Walexp<\/7k2>el’C dk

o0 N2 . Ngk'y ik
+/ﬁ WOGXP <Zl{32—ﬁ2>6 dk , Y > H
(87)
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with constants of integration ¢ (k), d (k) and g (k) determined from the matching conditions

to be

¢ (k) = 2N, eh (k) e
(N2 = Ny) excp (12500280 ) — (N V) excp (12272000
d (k) = —2N16ﬁ(/<:) ks
o () 5~ ()
(N1 + Na) exp (W) + (Ny — Ny) exp (W) )
(N1 + N2) exp ((NI\/N—Q)M) + (N1 — Ny) exp (U\V/I+—]V2)W> ch(k), 0<k<p

_ (N1t No)RH ) - (No—N)EH
_i<N1 Ny) exp <z i ) (N7 + Ns) exp (z i >

~(N1+N2)k’H ~(N27N1)kH
(NQ — Nl) €xXp <Z\/m) — (N1 + NQ) exp (Z\/m>

eh(k), B<k<oo

(88)

The details of this solution are found in Appendix D.

2.3 Inner Solution

The preceding solution neglects the effect of nonlinearity, which is the primary concern of
this study. In order to account for nonlinearity, a matched asymptotic solution is derived
as in the case of a single layer of uniformly stratified flow. In the inner solution near the
topography, treated as a weak perturbation to the two-layer analog of Long’s solution. The
governing equations for the inner solution are then

v () (0)
2 o *
o + N; (q/(l)—y) =0, U<V

() 0
2
oz TV (v

w = 85(0) /:; (\I](O) N y)’\mm dz’

—y) =0, U >V (89)

where the superscript (0) denotes the leading-order solution and the subscripts denote
whether the solution is in the troposphere, (1), or the stratosphere, (2). Here the stream-
line, ¥ = U* is the streamline of the tropopause, which is not known a priori and must be
determined as part of the solution of the equations.
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The problem of two layers of uniformly stratified flow in the absence of rotation is an ex-
tension of Long’s classic solution [14] and has been studied by Durran|6] and Davis[5]. The
solution can be formulated generally as

Yay = a(z)cos (Ny) + b (x)sin (Nyy), U< ¥*
(90)
Yoy = ¢ () cos (Noy) + d () sin (Noy), ¥ > U*
where we have decomposed the streamfunction, ¥, into the sum of its undisturbed value,

y and a streamfunction disturbance, . Then the kinematic boundary condition at the
topography, y = h (x), requires

acos (N1h) + bsin (N1h) = —h (x) (91)
and the radiation condition as y — oo gives
d(r) =H{c(r)} (92)

resulting in wave energy propagating vertically upwards. As in the linear case, two conditions
are needed at the tropopause to match the solutions in the troposphere and stratosphere.
We can write the curve of the troposphere as

V' =H+ 4" (v) = H —n(x) (93)

where H is the undisturbed height of the tropopause and 7 is the vertical displacement of the
tropopause, giving the tropopause location as y = H + n(z), which is also unknown. The
first matching condition at the tropopause is the kinematic matching condition requiring
the streamfunction in the troposphere and stratosphere to be equal at the tropopause. This
gives

acos [Ny (H 4+ n)] + bsin [Ny (H +n)] = ccos [Ny (H +n)] + dsin [Ny (H + n)] (94)

The second interface matching condition is the dynamic boundary condition requiring the
pressure to be equal on either side of the tropopause. Integrating Bernoulli’s equation from
far upstream and noting that the density in the troposphere at the tropopause is equal to
the density in the stratosphere at the tropopause, gives

Iy _
dy oy’

uny =u@, y=H+n = =H+n (95)

Substituting the general solution of (90) gives

Ny {—asin[Ny (H +n)] + bcos [Ny (H +n)]} = No{—csin [Ny (H +n)] + dcos [Ny (H + n)]}
(96)
Finally, the fifth equation needed is simply a specification of the tropopause displacement,
7.
n=—¢" = —a(z)cos[Ny (H +n)] = b(x)sin [Ny (H +n)] (97)
Thus (91), (92), (94), (96) and (97) are the five equations used to determine a (x), b(x),
¢(z), d(x) and n(x). These are system of nonlinear equations because the boundary and
matching conditions are applied along contours of constant streamfunction, as opposed to
contours of constant altitude. They can be solved numerically using an iterative procedure,
such as Newton-Raphson.
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2.4 Outer Solution

The outer solution is obtained by scaling the linear, uniformly valid solution of (87) into the
outer variables as done for the single-layer case above. Without loss of generality, we can set
the nondimensionalized Brunt—Vaisala frequency in the stratosphere equal to unity, Ny =1,
and the nondimensionalized Brunt—Viisala frequency in the tropopause to Ny = N. Then
the outer solution is

7;(1) =2 (1:1 =+ fz)
@Z(z) =-2 (1:3 + j4>
(98)
12)(1) = -2 (]5 + IG)
ﬁ)(g) = -2 <j7 + fg)
where the integrals are defined in Appendix E and have asymptotic behavior as & — 0 of

~ - 1 N sin Ny
~ 2¢eh (0) =
Y eh )iN2COSQNH—I—sin2NH

~ - 1 N ) .
Py ~ 2eh (0) PNV ol NH + sl NH [sin NH cos (y — H) + N cos NH sin (y — H)]
N 2¢h (0) N .
~ N1 N
U0) ™ Wi NH + s NE Y I cos Ny .
Y T —
—l—g sgn T [NZCOSNHSiIlN(y — H)+sin NH cos N (y — H)}}
2¢h (0) N
W) ~ N oos? ]E\TP([ —)i— ST NE {In|Z|[N cos NH cos (y — H) —sin NH sin (y — H)]
g sgn T[N cos NH sin (y — H) + sin N H cos (y — H)]}
(99)
and a jump in the spanwise velocity across the inner domain of
_ ot omeh (0) N 5 , _
w(l)’m = Voo NH + sl NE [N cos NHsin N (y — H) +sin NH cos N (y — H)}
_ o |of 2meh (0) N _ _
w(z)‘o— = NToo? NH +sZNH [Ncos NHsin(y — H)+sin NH cos (y — H)| o
100
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2.5 Matching

Rewriting the inner solution as

1/1(((1))) =7 (x)cos Ny + s (z)sin Ny

(101)
W) = p (x) cos (y — H) + H{p (x)} sin (y — H)
the asymptotic behavior as r — oo is
C
p(x) ~ -
CN 1
Hip (@)}~ tan NH x
r(x) ~ —eh(x) y & 00 (102)
C 1
s(z) ~ sin NH z
n(x) ~—p(z)

where the constant C' must be determined numerically. In the linear limit, the constant C
approaches

2Neh (0)sin NH
Clin = : 103
: N2cos