
 

AFRL-RH-WP-TR-2010-0023 

 
 Static and Dynamic Human Shape Modeling – A 

Review of the Literature and State of the Art 

 

 

 

 

Zhiqing Cheng 

Infoscitex Corp. 

4027 Colonel Glenn Highway 

Suite 210 

Dayton OH 45431-1672 

 

 

 

Kathleen Robinette 

Biosciences and Protection Division 

Biomechanics Branch 

 

 

April 2009 

 
Interim Report for October 2007 to December 2008 

 

 

 
 

 
 

 

 

 

 

                                                                                                     

Air Force Research Laboratory 

711
th

 Human Performance Wing 

Human Effectiveness Directorate 

Biosciences and Protection Division 

Biomechanics Branch 

Wright-Patterson AFB OH 45433 

Approved for public release; 

distribution unlimited. 



  
 

NOTICE AND SIGNATURE PAGE 
 
 
 
Using Government drawings, specifications, or other data included in this document for  

any purpose other than Government procurement does not in any way obligate the U.S. 

Government. The fact that the Government formulated or supplied the drawings,  

specifications, or other data does not license the holder or any other person or corporation;  

or convey any rights or permission to manufacture, use, or sell any patented invention that  

may relate to them.  
 

This report was cleared for public release by the 88
th

 Air Base Wing Public Affairs Office 

and is available to the general public, including foreign nationals. Copies may be obtained 

from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).   
 

AFRL-RH-WP-TR-2010-0023 HAS BEEN REVIEWED AND IS APPROVED FOR 

PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 

 
 
 

//SIGNED//             //SIGNED// 
_______________________________________         ______________________________________ 
Julia Parakkat, Work Unit Manager          Mark M. Hoffman, Deputy 

Biomechanics Branch            Biosciences and Protection Division 

              Human Effectiveness Directorate  

              711
th
 Human Performance Wing 

              Air Force Research Laboratory 
 
 
 
 
 

This report is published in the interest of scientific and technical information exchange, and its 

publication does not constitute the Government’s approval or disapproval of its ideas or findings.  
 
 



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

27-04-2009 
2. REPORT TYPE 

Interim 
3. DATES COVERED (From - To) 

October 2007 – December 2008 

4. TITLE AND SUBTITLE  

Static and Dynamic Human Shape Modeling – A Review of the Literature 

and State of the Art 

5a. CONTRACT NUMBER 

FA8650-07-C-6854 
5b. GRANT NUMBER 

 

5c. PROGRAM ELEMENT NUMBER 

  63231F 
6. AUTHOR(S) 

Zhiqing Cheng 

Kathleen Robinette 

 

 

 

 

 

5d. PROJECT NUMBER 

  7184 
5e. TASK NUMBER 

  02 
5f. WORK UNIT NUMBER 

  71840226 
 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

 
8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

Infoscitex 

4027 Colonel Glenn Highway, Ste 210 

Dayton, OH 45431-1672 

 

 

 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

     Air Force Materiel Command 

     Air Force Research Laboratory 

     711th Human Performance Wing 

     Human Effectiveness Directorate 

     Biosciences and Protection Division 

     Biomechanics Branch 

     Wright-Patterson AFB OH 45433-7947 

711 HPW/RHPA 

 

11. SPONSOR/MONITOR’S REPORT  

      NUMBER(S) 

AFRL-RH-WP-TR-2010-0023 

12. DISTRIBUTION / AVAILABILITY STATEMENT 

      

Approved for public release, distribution is unlimited 

13. SUPPLEMENTARY NOTES            

 88ABW/PA cleared on 19 Jun 09; 88ABW-2009-2663 

14. ABSTRACT 

This report provides a literature review of human shape modeling. The major topics related to both static and 

dynamic human shape modeling are addressed.  Recent research on these topics is introduced and various theories, 

techniques, and methodologies are discussed. The report covers the state of the art of human shape modeling 

methods and highlights key technologies.  The contents of the report are arranged as follows: 1. Introduction; 2. 

Static Shape Modeling; 3. Pose Change Modeling; 4. Dynamic Modeling; 5. Concluding Remarks; 6. References.  

 

 

15. SUBJECT TERMS 

     Static Shape Human Modeling; Pose Change Modeling; 3-D  Dynamic Human Shape Modeling  

16. SECURITY CLASSIFICATION OF: 

 
17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 

Julia Parakkat 
a. REPORT 

    

        U              

b. ABSTRACT 

 

    U 

c. THIS PAGE 

 

    U 

 

SAR 55 

19b. TELEPHONE NUMBER (include area 
code) 

        NA 
  Standard Form 298 (Rev. 8-98) 

Prescribed by ANSI Std. 239.18 

i 



 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE IS INTENTIONAL LEFT BLANK 



 

iii 

 

TABLE OF CONTENTS 

 

SUMMARY .................................................................................................................................. vii 
1.0 INTRODUCTION .............................................................................................................. 1 
2.0 STATIC SHAPE MODELING........................................................................................... 2 

2.1 Shape Description ............................................................................................................ 2 
2.2 Registration or Point-to-Point Correspondence ............................................................... 3 
2.3 Hole Filling ...................................................................................................................... 6 
2.4 Shape Variation Characterization..................................................................................... 8 
2.5 Shape Reconstruction ..................................................................................................... 12 

2.5.1 Direct Interpolation ................................................................................................. 12 
2.5.2 Reconstruction from Eigen-space ........................................................................... 12 
2.5.3  Feature-based Synthesis ......................................................................................... 13 

2.5.4  Marker-only Matching ............................................................................................ 15 
3.0 POSE CHANGE MODELING ......................................................................................... 16 

3.1 Pose Definition and Identification.................................................................................. 16 
3.2 Skeleton Model .............................................................................................................. 18 
3.3 Body Deformation Modeling ......................................................................................... 22 
3.4 Deformation Transfer—Pose Mapping .......................................................................... 26 

4.0 SHAPE MODELING OF HUMAN IN MOTION ........................................................... 27 
4.1 Motion Tracking ............................................................................................................. 27 
4.2 Dynamic Shape Capture ................................................................................................. 29 
4.3 Shape Reconstruction from Imagery Data ..................................................................... 32 

4.3.1 From Photos ............................................................................................................ 32 
4.3.2 From Video Sequences ........................................................................................... 34 

4.4 Animation ....................................................................................................................... 38 

4.5 Video-driven Animation ................................................................................................ 42 
4.6 Inverse Kinematics ......................................................................................................... 43 

5.0 CONCLUDING REMARKS ............................................................................................ 44 
REFERENCES ............................................................................................................................. 45 
 



 

iv 

 

LIST OF FIGURES 

 

Figure 1. Illustration of principal axis system and PSD. .................................................................8 
Figure 2. Summary of matching framework. ...................................................................................9 
Figure 3. The CC algorithms for point-to-point registration. ..........................................................5 
Figure 4. The mesh processing pipeline used to generate a training set. .........................................5 
Figure 5. Using a template mesh to synthesize detail lost in the scan .............................................6 
Figure 6. Hole-filling of a slice. .......................................................................................................7 
Figure 7. Examples of view completion ..........................................................................................7 
Figure 8. Shape variation  induced by some of main components ................................................10 
Figure 9. Shape variation induced by main components after height normalization.....................11 
Figure 10. Morphing between individuals. ....................................................................................12 
Figure 11. Reconstruction of human models .................................................................................13 

Figure 12. Feature-based synthesis ................................................................................................14 
Figure 13. Synthesis of human bodies ...........................................................................................14 
Figure 14. Modification of two individuals. ..................................................................................15 
Figure 15. PCA-based fitting. ........................................................................................................15 
Figure 16. Multiple Body parts obtained via segmentation. ..........................................................17 
Figure 17. A person at a particular time instant from multiple perspectives .................................17 
Figure 18. Overview of the proposed approach .............................................................................18 
Figure 19. Upper body skeleton .....................................................................................................19 
Figure 20. Illustration of the part-finding process .........................................................................19 
Figure 21. Four different poses from the puppet dataset ...............................................................20 
Figure 22. Parameterization of joint positions and coordinate systems.........................................20 
Figure 23. Some phases of the hierarchical fitting ........................................................................20 
Figure 24. Two examples of fitted skeletons .................................................................................21 

Figure 25. Example fittings............................................................................................................21 
Figure 26. A model for the segmentation of 3-D voxel data .........................................................22 
Figure 27. The steps in the segmentation in Laplacian Eigenspace (LE) ......................................22 
Figure 28. An example-based method for calculating body deformations ....................................23 
Figure 29. The body shapes for various poses ...............................................................................23 
Figure 30. Blending three data sets ................................................................................................24 
Figure 31. Mesh processing pipeline used to generate a training set .............................................25 
Figure 32. Examples of muscle deformations captured by the SCAPE pose model .....................25 
Figure 33. Comparison of EigenSkin and skeletal subspace deformation.....................................26 

Figure 34. Deformation transfer by the SCAPE model .................................................................27 
Figure 35. Model based on a kinematic chain with 17 segments ..................................................28 
Figure 36. Configurations of the pixel map sampling points.........................................................28 

Figure 37. A comparison of Condensation with the annealed particle filter .................................28 
Figure 38. A system architecture for human motion capture at interactive frame rates ................29 

Figure 39. Capture and animation of the dynamic motion of the human body .............................30 
Figure 40. Capture setup ................................................................................................................30 
Figure 41. Extracting silhouettes from video sequences ...............................................................31 
Figure 42. Deformable primitives used to describe the human body ............................................31 
Figure 43 Input video including images of the subject in various poses .......................................31 
Figure 44. The models recovered from motions. ...........................................................................32 



 

v 

 

Figure 45. An approach for reconstructing human body models from 2-D photos .......................33 

Figure 46. Image projection and silhouette extraction ...................................................................33 
Figure 47. Distance between corresponding feature points ...........................................................34 
Figure 48. A reconstructed model by using a single image input ..................................................34 
Figure 49. The layered human body model. ..................................................................................35 
Figure 50. Detailed human shape and pose from images ..............................................................35 
Figure 51. SCAPE from images.....................................................................................................36 
Figure 52. Algorithm Overview. ....................................................................................................36 
Figure 53. Cost function ................................................................................................................36 
Figure 54. SCAPE-from-image results ..........................................................................................37 
Figure 55. Automatic recovery of detailed human shape and pose from images ..........................37 
Figure 56. Example animated model from captured 3D surface measurements ...........................38 
Figure 57. Functional Models Pipeline for Animating Michelangelo’s David .............................39 

Figure 58. Animation of a Cyberware whole body scan ...............................................................39 
Figure 59. Motion captured animation applied to four of our models ...........................................40 
Figure 60. Confluent marker-based animation ..............................................................................41 
Figure 61. Illustration of the Conuent Motion pipeline .................................................................41 
Figure 62. A template model .........................................................................................................41 
Figure 63. Input markers ................................................................................................................42 
Figure 64. Video-driven animation ................................................................................................42 
Figure 65. Latent spaces learned from different motion capture sequences ..................................43 
Figure 66. Trajectory key framing using a style learned from the baseball pitch data ..................44 

 

 

 

LIST OF TABLES 

 

Table 1 Mode interpretation for non-normalized heights ................................................................9 
Table 2 Mode interpretation for normalized heights .......................................................................9 

 
 



 

vi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE IS INTENTIONALLY LEFT BLANK 



 

vii 

 

SUMMARY 

 

This report provides a literature review of human shape modeling. The major topics related to 

both static and dynamic human shape modeling are addressed.  Recent research on these topics is 

introduced and various theories, techniques, and methodologies are discussed. The report covers 

the state of the art of human shape modeling methods and highlights key technologies.  The 

contents of the report are arranged as follows: 1. Introduction; 2. Static Shape Modeling; 3. Pose 

Change Modeling; 4. Dynamic Modeling; 5. Concluding Remarks; 6. References.  
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1.0 INTRODUCTION 

 

Creating a realistic, morphable, animatable, and vivid human shape model is one of the grand 

challenges for anthropometry and computer graphics. Since people are accustomed to seeing 

other humans with an acute ability to detect flaws, convincingly modeling human shape, motion, 

and appearance is difficult. A variety of human shape modeling methodologies is available, 

which can be classified as either creative or reconstructive depending on how the model is 

constructed  (Thalmann et al. 2004).  Some earlier anatomically based modelers, such as 

Scheepers et al. (1997), Shen and Thalmann (1995) and Wilhelms and Van Gelder (1997) fall 

into the creative approach. These models intend to mimic actual components of the body and 

consist of multi-layer structures for simulating individual muscles, bones and tissues. Lately, 

much work has been devoted to the reconstructive approach.  This approach builds a three-

dimensional (3-D) geometry of the human body automatically by capturing existing shape data 

from stereo imagery (Devernay and Faugeras 1994), 3-D scanners (Cordier and Thalmann 2002), 

and two-dimensional (2-D) images either from video sequences (Fua 1999) or from photos 

(Hilton et al. 1999, Lee at al. 2000). As 3-D whole body laser scanning becomes a viable 

technology, building a human shape model from the range scan data becomes a major approach 

(Allen et al. 2003, Azouz et al. 2005b).    

 

From the perspective of the motion status of the subject to be modeled, human shape modeling 

can be classified as either static or dynamic. Static shape modeling creates a model to describe 

human shape at a particular pose, usually a standing pose.  The major issues involved in the 

static shape modeling include shape description, registration, hole filling, shape variation 

characterization, and shape reconstruction. Dynamic shape modeling addresses the shape 

variations due to the pose changes or while the subject is in motion. The major issues involved in 

the shape modeling of pose changes include pose identification, skeleton modeling, and shape 

deformation. The shape modeling of motion involves issues of motion tracking, shape capturing, 

shape reconstruction, animation, and inverse kinematics.  

 

Extensive investigations have been performed on human shape modeling. The following list is a 

small selection of articles that represent the state-of-the-art of human modeling technology: 

  

1. Articulated Body Deformation from Range Scan Data.
2
 

2. From 3D Shape Capture to Animated Models.
22

 

3. The space of human body shapes: reconstruction and parameterization from range scans.
3
 

4. ―Synthesizing Animatable Body Models with Parameterized Shape Modifications.
37

 

5. Continuous Capture of Skin Deformation. 
35

 

6. Analysis of Human Shape Variation using Volumetric Techniques.
11

 

7. SCAPE: Shape Completion and Animation of People.
6
 

8. Capturing and Animating Skin Deformation in Human Motion.
29

 

9. A Framework for Natural Animation of Digitized Models.
1
 

10. Detailed Human Shape and Pose from Images.
9
 

 

The models presented in these papers exhibit various unique features that may be of great 

interest to the H-MASINT program. A more detailed description of these models is provided in a 

separate presentation. The major topics of human shape modeling will be addressed in the 
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following sections where various theories, techniques, and methodologies used in human shape 

modeling, including those presented in the above list, will be discussed.   

 

 

2.0 STATIC SHAPE MODELING 

2.1 Shape Description 

In general, a shape descriptor is a set of numbers that are produced to describe a given shape. A 

shape may not be entirely reconstructable from its descriptor, but the descriptors for different 

shapes should be different enough that the shapes can be discriminated. Shape description is a 

fundamental problem for human shape modeling. Traditional anthropometry is based on a set of 

measurements corresponding to linear distances between anatomical landmarks and 

circumference values at predefined locations. These measurements provide limited information 

about the human body shape (Robinette et al. 1997). With the advances in surface digitization 

technology, a 3-D surface scan of the whole body can be acquired in a few seconds. While whole 

body 3-D surface scan provides very detailed description of the body shape, the verbose scan 

data cannot be used directly for shape analysis. Therefore, it is necessary to convert 3-D scans to 

some form of useful representation for the latter purpose. For searching and mining from a large 

3-D scan database, Robinette (2003) investigated 3-D shape descriptors where the Paquet Shape 

Descriptor (PSD) (as shown in Figure 1.) developed by Paquet and Rioux (1998) was examined 

in detail. While PSD is able to discriminate or characterize different human shapes, it is not 

invertible. In other words, it is impossible to reconstruct a human shape from PSD.    

 

An ideal human shape descriptor should be concise, unique, and complete for human shape 

description, efficient for shape indexing and searching, and invertible for shape reconstruction. 

Finding such a descriptor still remains a challenge.   Alternatively, various graphic elements or 

graphic representation methods can be used to describe the human shape. For instance, Allen et 

al. (2003) and Anguelov et al. (2005b)  basically dealt directly with the vertices or polygons of a 

scanned surface for shape description;  and Allen et al. (2002) used subdivision of the surface in 

their pose modeling. Ben Azouz et al. (2004) utilized volumetric representation to convert 

vertices to voxels in their human shape modeling. While these methods guarantee reconstruction, 

they are not quite efficient for shape identification, discrimination, and searching.  
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Figure 1. Illustration of principal axis system and PSD (Robinette 2003). 

 

 

2.2 Registration or Point-to-Point Correspondence  

Three-dimensional full body scanning technology allows efficient full scale digitization of the 

human body and provides a tremendous amount of shape information about the body. The 3-D 

scan data can be used to measure, compare, and conduct statistics and has applications in, for 

example, the ergonomic design of products such as automobiles, furniture, and clothes, and also 

in human identification. Processing the surface data collected by scanners, however, proves to be 

a challenge. The main difficulty is the surface registration or point-to-point correspondence 

among the scan data of different subjects. The digitized scan data may have different number of 

points since the human body comes in all shapes and sizes. This correspondence information is 

essential to many problems such as the study of  human variability (Allen et al. 2003, Ben Azouz 

et al. 2005b) and pose modeling and animation (Allen et al. 2002, Anguelov et al. 2005b), as 

long as multiple subjects or multiple poses are involved. One methodology for establishing 

point-to-point correspondence among different scan data sets or models is usually called non-

rigid registration.  Given a set of markers between two meshes (two approximate representations 

of a surface), the task of non-rigid registration is to bring the meshes into close alignment while 

simultaneously aligning the markers.  

 

Allen et al. (2002, 2003) solved the correspondence problem between subjects by deforming a 

template model which is a hole-free, artist-generated mesh to fit individual scans, as shown in 

Figure 2. The resulting individually fitted scans or individual ―models‖ all have the same number 

of triangles and point-to-point correspondences. The fitting process relies on a set of 

anthropometric landmarks provided in the Civilian American and European Surface 

Anthropometry Resource (CAESAR) database (Robinette et al. 1999).  These landmarks were 

marked on the measured subjects prior to scanning. They provide the seed correspondences that 

guide the deformation of the rest of the points.  
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Figure 2. Summary of matching framework (Allen et al.. 2003). 

 

 

To find a set of affine transformations Ti, that, when applied to the vertices vi of the template 

surface T, result in a new surface T0 that matches the target surface D. This diagram shows the 

match in progress; T0 is moving towards D, but has not yet reached it. The match proceeds by 

minimizing three error terms. The data error, indicated by the red arrows, is a weighted sum of 

the squared distances between the transformed template surface and D. Note that the dashed red 

arrows do not contribute to the data error because the nearest point on D is a hole boundary. The 

smoothness error penalizes differences between adjacent Ti transformations. The marker error 

penalizes distance between the marker points on the transformed surface and on D (here v3 is 

associated with m0). 
 

 

Anguelov et al. (2005a) developed an unsupervised algorithm for registering 3-D surface scans 

of an object among different poses undergoing significant deformations. The algorithm called 

Correlated Correspondence (CC) does not use markers, nor does it assume prior knowledge 

about object shape, the dynamics of its deformation, or scan alignment. The algorithm registers 

two meshes with significant deformations by optimizing a joint probabilistic model over all 

point-to-point correspondences between them. This model enforces preservation of local mesh 

geometry, as well as more global constraints that capture the preservation of geodesic distance 

between corresponding point pairs. The algorithm applies even when one of the meshes is an 

incomplete range scan; thus, it can be used to automatically fill in the missing surface areas of a 

partial scan, even if those missing surfaces were previously only seen in a different 

configuration.  The results produced by the CC algorithm are shown in Figure 3.  
 

Anguelov et al. (2005b) used the CC algorithm to obtain the markers for the non-rigid 

registration, as shown in Figure 4. The CC algorithm computes the consistent embedding of each 

instance mesh (the mesh of a particular pose) into the template mesh (the mesh of a reference 

pose) that minimizes the deformation from the template mesh to the instance mesh and matches 

similar-looking surface regions.  
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(a) The results produced by the CC algorithm 

were used for unsupervised recovery of 

articulated models. 15 puppet parts and 4 arm 

parts, as well as the articulated object 

skeletons, were recovered. 

(b) Partial view completion results. The 

missing parts of the surface were estimated by 

registering the partial view to a complete 

model of the object in a different 

configuration. 

Figure 3. The CC algorithms for point-to-point registration (Anguelov et al. 2005a). 
 

 

 

Figure 4. Mesh processing pipeline used to generate a training set (Anguelov et al. 2005b).  
(a) Two data sets spanning the shape variability due to different human poses and different physiques 

were acquired. (b) A few markers were selected by hand to map the template mesh and each of the range 

scans. (c) Correlated Correspondence algorithm is used to compute numerous additional markers. (d) 

The markers are used as the input to a non-rigid registration algorithm, producing fully registered 

meshes. (e) A skeleton reconstruction algorithm is implemented to recover an articulated skeleton from 

the registered meshes. (f) The space of deformations due to pose and physique is learnt. 
  

 

Ben Azouz et al. (2005b) used a volumetric representation of human 3-D surface to establish the 

correspondences between the scan data of different subjects. By converting their polygonal mesh 

descriptions to a volumetric representation, the 3D scans of different subjects are aligned inside a 

volume of fixed dimensions, which is sampled to a set of voxels. A human 3-D shape is then 

characterized by an array of signed distances between the voxels and their nearest point on the 
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body surface. Correspondence is achieved by comparing for each voxel the signed distances 

attributed to different subjects. Surfaces are reconstructed from the volumetric description using 

the marching cubes algorithm. The main advantage of the volumetric representation is that 

correspondence between the surfaces of different subjects is achieved without using anatomical 

landmarks, thus avoiding a time-consuming process of placing markers at the landmark locations 

before scanning. This landmark-free approach allows the comparison and the extraction of 

certain modes of variation of the human body. However, it has the limitation that the volumetric 

representation provides only an approximation of the anthropometric correspondence between 

different human subjects (Ben Azouz et al. 2006). 

2.3 Hole Filling 

Surfaces acquired with scanners are typically incomplete and contain holes.  Filling a hole is a 

challenging problem in its own right, as discussed by Davis et al. (2002). A common way to 

complete a hole is to fill it with a smooth surface patch that meets the boundary conditions of the 

hole (Curless and Levoy 1996, Davis et al. 2002, Liepa 2003). While these methods fill holes in 

a smooth manner, which is reasonable in some areas such as the top of the head and possibly in 

the underarm, other areas should not be filled smoothly. Therefore, Allen et al. (2003) developed 

a method that maps a surface from a template model (a hole-free, artist-generated mesh) to the 

hole region by minimizing the smoothness error, as shown in Figure 5.  

 

 
Figure 5. Using a template mesh to synthesize detail lost in the scan (Allen et al. 2003). 

(a) The template mesh. Since the ear was not well scanned, the weight of ear vertices is set to zero (shown 

in green). (b) Since the template mesh does not have the CAESAR markers, a different set of markers 

based on visually-identifiable features is used to ensure good correspondence. (c) A head of one of the 

subjects. Interior surfaces are tinted blue. (d) The template head has been deformed to match the scanned 

head. Note that the ear has been filled in. (e) Another scanned head, with a substantially different pose 

and appearance from the template. (f) The template mapped to (e). The holes have been filled in, and the 

template ear has been plausibly rotated and scaled. 

 

 

Alternatively, hole-filling can be based on the contour lines of a scan surface (Ben Azouz et al. 

2005b), as shown in Figure 6. These approaches work well when the holes are small compared to 

the geometric variation of the surface. In contrast to small hole-filling, the filling of large holes 

or partial view completion is often required. Anguelov et al. (2005b) developed a model-based 
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method that projects the template surface to the target region with a set of observed markers via 

optimization, as illustrated in Figure 7. 

 

 
Figure 6. Hole-filling of a slice (Ben Azouz et al. 2005b). Black curves correspond to 

original data and red curves correspond to estimated data. 

 

 

Figure 7. Examples of view completion (Angelov et al. 2005b). 
Each row represents a different partial view scan. Subject (i) is in the shape data set but not in the pose 

data set; neither subjects (ii) and (iii) nor their poses are represented in the data set. (a) The original 

partial view. (b) The completed mesh from the same perspective as (a), with the completed portion in 

yellow. (c) The completed mesh from a view showing the completed portion. (d) A true scan of the same 

subject from the view in (c). 
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2.4 Shape Variation Characterization 

The human body comes in all shapes and sizes.  Characterizing the range of human body shape 

variation has applications ranging from better ergonomic design of human spaces (e.g., chairs, 

car compartments, and clothing) to easier modeling of realistic human characters for computer 

animation.  Characterizing human shape variation is traditionally the subject of anthropometry—

the study of human body measurement. The sparse measurements of traditional anthropometric 

shape characterization curtail its ability to capture the detailed shape variations needed for 

realism. While characterizing human shape variation based on a 3-D range scan could capture 

the details of shape variation, the method relies on three conditions: noise elimination, hole-

filling and surface completion, and point-to-point correspondence. 

 

Also, whole body scanners generate verbose data that cannot be used directly for shape variation 

analysis. Therefore, it is necessary to convert 3-D scans to a compact representation that retains 

information about the body shape. Principal components analysis (PCA) is a potential solution to 

this need. After de-noising and hole-filling, the central issue in applying PCA to 3-D 

anthropometric data is bringing the surfaces of all subjects in correspondence to each other.  

Allen et al. (2003) captured the variability of human shape by performing PCA over the 

displacements of the points from the template surface to an instance surface. Anguelov et al. 

(2005b) also used PCA to characterize the shape deformation and then used the principal 

components for shape completion. Ben Azouz et al. (2005b) applied PCA to the volumetric 

models where the vector is formed by the signed distance from a voxel to the surface of the 

model. While these methods retain the details of human shape and reveal the global variations of 

shape variations, the problem size of PCA is usually huge, as the vector usually contains a great 

number of elements.  

 

Principal component analysis helps to characterize the space of human body variation, but it does 

not provide a direct way to explore the range of bodies with intuitive control parameters, such as 

height, weight, age, and sex.  Allen et al. (2003) showed how to relate several variables 

simultaneously by learning a linear mapping between the control parameters and the PCA 

weights. Ben Azouz et al. (2004, 2005b) attempted to link the principal modes to some intuitive 

body shape variations by visualizing the first five modes of variation and gave interpretations of 

these modes, as shown in Table 1 and Table 2 as well as Figure 8 and Figure 9. While PCA is 

shown to be effective in characterizing global shape variations, it may smear local variations for 

which other methods (e.g., wavelets) may be more effective.  Still, PCA is just one tool in the 

statistician's toolbox, a tool that treats the data as samples drawn from a single, multi-

dimensional Gaussian distribution. Applying more sophisticated analyses (e.g., mixtures of 

Gaussians) to determine the true landscape of human shape variations remains an area for future 

work (Allen et al. 2003). 
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Table 1 Mode interpretation for non-normalized heights (Ben Azouz el al 2005b) 

Mode Interp. Variability 

   

1
st
 weight & height 35.0% 

2
nd

 weight/(height)
3
 15.0% 

3
rd

 alignment artifact 9.53% 

4
th

 leaning posture 4.02% 

5
th

 muscularity 3.17% 

 

 

Table 2 Mode interpretation for normalized heights (Ben Azouz el al 2005b) 

Mode Interp. Variability 

   

1
st
 weight 33.86% 

2
nd

 leaning posture 15.11% 

3
rd

 muscularity 8.93% 

4
th

 arm-torso spacing 4.0% 

5
th

 head position 3.64% 
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Figure 8. Shape variation induced by some of main components (Ben Azouz et al. 2004). 

Components are sorted in decreasing order of their variances.  (a) The first component is correlated to 

the height. (b) The second component is correlated to the weight and the height. (c) The third component 

reflects a posture variation. (d) The fourth component corresponds to a variation of muscularity. 
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Figure 9. Shape variation induced by some of the main components after height 

normalization (Ben Azouz et al. 2004). 
Components are sorted in decreasing order of their variances. (a) The first component is correlated to the 

weight. (b) The second component reflects a posture variation. (c) The third component corresponds to a 

variation of muscularity. (d) The fourth component corresponds to a variation of mass distribution 

between the torso and the legs and a variation in the arms position. 
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2.5 Shape Reconstruction 

Given a number of scan data sets of different subjects, a novel human shape can be created that 

will have resemblance to the samples but is not the exact copy of any existing shapes. This can 

be realized via morphing. There are four ways of morphing. 

2.5.1 Direct Interpolation 

We can morph between any two subjects’ scans by taking linear combinations of their vertices. 

Figure 10 demonstrates this way of morphing (Allen et al. 2003). In order to create a faithful 

intermediate shape between two individuals, it is critical that all features are well-aligned; 

otherwise, features will cross-fade instead of moving.  

 

 

 
Figure 10. Morphing between individuals (Allen et al. 2003). 

Each of the key frame models (outlined) are generated from a Gaussian distribution in PCA space. These 

synthesized individuals have their own character, distinct from those of the original scanned individuals. 

The in-between models are created by linearly interpolating the vertices of the key frames. 

 

2.5.2 Reconstruction from Eigen-space 

After PCA analysis, the features of sample shapes are characterized by eigen-vectors or eigen-

persons which form an eigne-space. Any new shape model can be generated from this space by 

combining a number of eigen-models with appropriate weighting factors. Figure 11 illustrates an 

example (Ben Azouz et al. 2005b).     
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Figure 11. Reconstruction of human models (Ben Azouz et al. 2005b). 

Use the first 64 eigenvectors extracted from the volumetric representation of 300 male subjects. (a) 

Original models; (b) repaired models; (c) reconstructed models. 

 

2.5.3  Feature-based Synthesis 

Once the relationship between human anthropometric features and eigen-vectors is established 

(as we discussed in the preceding section), a new shape model can be constructed from the 

eigen-space with desired features by editing multiple correlated attributes (such as height and 

weight), as shown in Figure 12. 
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Figure 12. Feature-based synthesis (Allen et al. 2003). 

The left part demonstrates feature-based synthesis, where an individual is created with the required 

height and weight. The right demonstrates feature-based editing. The outlined figure is one of the original 

subjects that has been parameterized. The gray figures demonstrate a change in height and/or weight. 

Notice the double-chin in the heaviest example, and the boniness of the thinnest example. 

 

 

Seo et al. (2003) developed a synthesizer for obtaining higher level of manipulations of body 

models by using parameters such as fat percentage and hip-to-waist ratio.  Figure 13 and Figure 

14 are the illustrations of their models.  

 

 

 
Figure 13. Synthesis of human bodies (Seo et al. 2003). 

(a) scan data; (b) template model with animation structure is fitted to the scan data; (c) the fitted 

template mesh (d) modification of the physique (fat percent 38%) and modified posture; (e) modification 

of the physique (fat percent 22%) and modified posture. 
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Figure 14. Modification of two individuals controlled by fat percent, hip-waist ratio and 

height (Seo et al. 2003). 

 

2.5.4  Marker-only Matching 

Marker-only matching can be considered as a way of reconstruction with provided markers.  

This is important for many applications such as deriving a model from video imagery, since 

marker data can be obtained using less expensive equipment than a laser range scanner (e.g., 

using a handful of calibrated photographs of a stationary subject).  Figure 15 is an example from 

Allen et al. (2003). 

 

 

Figure 15. PCA-based fitting (Allen et al. 2003). 
(a) A scanned mesh that was not included in the data set previously, and does not resemble any of the 

other scans. (b) A surface match using PCA weights and no marker data. (c) Using (b) as a template 

surface to get a good match to the surface without using markers. (d) Using very sparse data; in this case, 

only 74 marker points. (e) A surface match using PCA weights and no surface data. 
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3.0 POSE CHANGE MODELING 

During pose changing or body movement, muscles, bones, and other anatomical structures 

continuously shift and change the shape of the body.  For pose modeling, scanning the subject in 

every pose is impractical; instead, body shape can be scanned in a set of key poses, and then the 

body shape corresponding to intermediate poses can be determined by smoothly interpolating 

among these poses using scattered data interpolation techniques.  The issues involved in pose 

modeling include pose definition and identification, skeleton model derivation, shape 

deformation (skinning), and pose mapping.  

 

3.1 Pose Definition and Identification 

The human body can assume various poses.  In order to have a common basis for pose modeling, 

we need to have a distinct, unique description of difference poses.  Since it is impossible to 

collect the data or create template models for all possible poses, it is necessary to define a set of 

standard, typical poses.  This is pose definition.  A convention for pose definition is yet to be 

established. One approach is to use joint angle changes as the measures to characterize human 

pose changing and gross motion.  This means that poses can be defined by joint angles.  By 

defining poses and motion in such a way, the body shape variation caused by pose changing and 

motion will consist of both rigid and non-rigid deformation.  Rigid deformation is associated 

with the orientation and position of segments that connect joints.  Non-rigid deformation is 

related to the changes in shape of soft tissues associated with segments in motion, which, 

however, excludes local deformation caused by muscle action alone.   
 

In order to measure, define, or represent joint angles, one method (which may be the best 

method) is to use a skeleton model. In the model, the human body is divided into multiple 

segments according to major joints of the body, each segment is represented by a rigid linkage, 

and an appropriate joint is placed between the two corresponding linkages.  The skeleton model 

derivation will be discussed in the following section. 

Given a set of scan data, imagery, or photos, the determination or identification of the 

corresponding pose can be done by fitting a skeleton model to the data set.  Alternatively, there 

are several methods for pose identification that are not based on skeleton models. Mittal et al. 

(2003) studied human body pose estimation using silhouette shape analysis.  They developed an 

algorithm for human body pose estimation from multiple views that is fast and completely 

automatic. The algorithm works in the presence of multiple people by decoupling the problems 

of pose estimation of different people. The pose is estimated based on a likelihood function that 

integrates information from multiple views and thus obtains a globally optimal solution. Figure 

16 shows the parts obtained via segmentation. Figure 17 illustrates the results of the algorithm 

for a person at a particular time instant from multiple perspectives. 
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Figure 16. Multiple Body parts obtained via segmentation (Mittal et al. 2003). 

 

 

 
Figure 17. A person at a particular time instant from multiple perspectives (Mittal et al. 

2003). 

 

 

Cohen and Li (2003) proposed an approach for inferring the body posture using a 3D visual-hull 

(a bounding geometry of the actual 3D object) constructed from a set of silhouettes.  An 

appearance-based, view-independent, 3D shape description was introduced for classifying and 

identifying human posture using a support vector machine (a set of related supervised learning 

methods used for classification and regression).  This shape representation is used to train a 

support vector machine that characterizes human body postures from the computed visual hull.  

Figure 18 is the overview of their proposed approach.  

 

http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
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Figure 18. Overview of the proposed approach (Cohen and Li 2003). 

 

3.2 Skeleton Model 

Allen et al. (2002) constructed a kinematic skeleton model to identify the pose of a scan data set 

using markers captured during range scanning. The goal is to have a skeleton model that is a 

good representation of true human kinematics but not too complicated to construct and animate. 

Their upper body skeleton model is shown in Figure 19.  

 

Anguelov et al. (2004) addressed the problem of unsupervised learning of complex articulated 

object models from 3-D range data and developed an algorithm that automatically recovers a 

decomposition of the object into approximately rigid parts, the location of the parts in the 

different poses, and the articulated object skeleton linking the parts. Figure 20 illustrates the 

procedure of this method, and Figure 21 shows a set of poses recovered. 

 

Robertson and Trucco (2006) developed an evolutionary approach to estimating upper-body 

posture from multi-view markerless sequences.  In their method, a skeleton model with 24 

degree-of-freedom (DOF) was fitted to sparse 3-D stereo data set from an array of cameras.  A 

particle swarm optimization algorithm was used which can incorporate constraints and does not 

require motion models.  The high-dimensional search space is subdivided based on limb 

dynamics from application sequences and the hierarchical fitting from the least to the most 

uncertain body parts is performed.  Figure 22 displays the joint positions and coordinate system 

of the skeleton model used.  Figure 23 shows the phases of hierarchical fitting.  Figure 24 

illustrates two examples of fitted skeletons.  Figure 25 is the example fittings. 
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Figure 19. Upper body skeleton (Allen et al. 2002). 

The large spheres are quaternion joints, and the cones are single-axis joints. (b) The control points for 

this skeleton, and the corresponding subdivision surface. The checkerboard pattern delineates the 

subdivision patches. (c) The control points and subdivision surface after refitting. 

 

 

 
Figure 20. Illustration of the part-finding process (Anguelov et al. 2004). 

(a) A template mesh is registered to all other meshes by CC algorithm. (B) The mesh is divided into parts 

by clustering the estimated local transformations for each template point, different parts are color-coded. 

(b) The mesh is randomly divided into small patches of approximately equal areas, different parts are 

color-coded. (C), (c) results in (B), (b) are used to initialize the EM algorithm which solves for the part 

assignments and the transformation for each part. (D), (d) the joints linking the rigid parts are estimated. 
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Figure 21. Four different poses from the puppet dataset (Anguelov et al. 2004). The 

articulated skeleton with 15 rigid parts is recovered automatically. 

 

 

 
Figure 22. Parameterization of joint positions and coordinate systems (Robertson and 

Trucco 2006). 

 

 

 
 

 

Figure 23. Some phases of the hierarchical fitting (Robertson and Trucco 2006). 
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Figure 24. Two examples of fitted skeletons (Robertson and Trucco 2006). 

 

 

 

 
(a) Real teleconferencing scene with skeleton 

overlaid 

(b) Real teleconferencing scene with skeleton 

overlaid (in plan) 

Figure 25. Example fittings (Robertson and Trucco 2006). 

 

 

Sundaresan et al. (2007) proposed a general approach using Laplacian Eigen-maps and a 

graphical model of the human body to segment 3-D voxel data of humans into different 

articulated chains. In the bottom-up stage, the voxels are transformed into a high dimensional (6-

D or less) Laplacian Eigenspace (LE) of the voxel neighborhood graph. One-dimensional splines 

are fitted to voxels belonging to different articulated chains such as the limbs, head and trunk. A 

top-down probabilistic approach is then used to register the segmented chains, utilizing both their 

mutual connectivity and their individual properties such as length and thickness. The approach 

can deal with complex poses such as those where the limbs form loops. Figure 26 shows the 

model used and Figure 27 illustrates the procedure of the approach.  
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Figure 26. A model for the segmentation of 3-D voxel data (Sundaresan et al. 2007). 

(a) Human body model with six articulated chains; (b) and (c) denote various poses. 

 

 

 
Figure 27. The steps in the segmentation in Laplacian Eigenspace (LE) to estimate human 

body model (Sundaresan et al. 2007). 

 

3.3 Body Deformation Modeling 

Body deformation modeling is also referred to as skinning in animation, since for 3D shape 

modeling only surface (skin) deformation is a concern.  Two main approaches for modeling body 

deformations are anatomical modeling and example-based methods.  The anatomical modeling is 

based on an accurate representation of the major bones, muscles, and other interior structures of 

the body.  These structures are deformed as necessary when the body moves, and a skin 

simulation is wrapped around the underlying anatomy to obtain the final geometry of the body 

shape.  The finite element method is the primary modeling technique used for anatomical 

modeling.  There is a large body of work on anatomical modeling based approaches, including 

Wilhelms and Gelder (1997), Scheepers et al. (1997), and Aubel and Thalmann (2001).  

 

An alternative paradigm is the example-based approach where an artist generates a model of 

some body part in several different poses with the same underlying mesh structure.  These poses 

are correlated to various degrees of freedom, such as joint angles.  An animator can then supply 

values for the degrees of freedom of a new pose and the generated body part for that new pose is 

interpolated appropriately.  Lewis et al. (2000) and Sloan et al. (2001) developed similar 

techniques for applying example-based approaches to meshes.  Both techniques use radial basis 

functions to supply the interpolation weights for each example, and, for shape interpolation, both 

require hand-sculpted meshes that ensure a one-to-one vertex correspondence exists between 

each pair of examples.  Instead of using artist-generated models, recent work on the example-

based modeling uses range-scan data.  
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Allen et al. (2002) presented an example-based method for calculating skeleton-driven body 

deformations.  Their example data consists of range scans of a human body in a variety of poses. 

Using markers captured during range scanning, a kinematic skeleton is constructed first to 

identify the pose of each scan.  Then a mutually consistent parameterization of all the scans is 

constructed using a posable subdivision surface template.  The detail deformations are 

represented as displacements from this surface, and holes are filled smoothly within the 

displacement maps.  Figure 28 illustrates how to deform the template surface to scanned surface. 

Figure 29 shows the body shapes for various poses made from skeletally driven subdivision 

surfaces.  Figure 30 displays part-blending for surface generation.  

 

 

 
Figure 28. An example-based method for calculating body deformations (Allen et al. 2002). 
(a) To construct a displaced subdivision surface, rays are cast (red arrows) perpendicular to the template 

subdivision surface (dashed blue line) to the nearest scanned surface (thick gray line). (b) If the template 

surface is too curved and the scanned surface is too far away, then the rays can cross, causing the 

parameterization to fold over on itself. This can be avoided by ensuring that the template surface is close 

to the scanned surface. 

 

 

 
Figure 29. The body shapes for various poses made from skeletally driven subdivision 

surfaces (Allen et al. 2002). 
Each of these 3D meshes is made from a skeletally driven subdivision surface. The displacements for the 

subdivision surface are interpolated from range-scan examples of the arm, shoulder, and torso in various 

poses. The joint angles for each pose are drawn from optical motion capture data. 
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Figure 30. Blending three data sets (Allen et al. 2002). 

(a) A sample arm pose. (b) A sample shoulder pose. (c) A sample torso pose. (d) Blend of arm, shoulder, 

and torso, with a mirrored right shoulder and right arm. Color indicates the blending weight. 

 

 

Anguelov et al. (2005b) developed a method that incorporates both articulated and non-rigid 

deformations.  A pose deformation model was constructed from training range scan data that 

derives the non-rigid surface deformation as a function of the pose of the articulated skeleton. A 

separate model of shape variation was derived from the training data also.  The two models were 

combined to produce a 3D surface model with realistic muscle deformation for different people 

in different poses, when neither appears in the training set.  The method (model) is referred to as 

the Shape Completion and Animation for People (SCAPE), a data-driven method for building a 

human shape model that spans variation in both subject shape and pose.  Figure 31 illustrates the 

process to generate training set. Figure 32 shows the examples of muscle deformations of the 

human body that can be captured in the SCAPE pose model.  
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Figure 31. Mesh processing pipeline used to generate a training set (Anguelov et al. 2005b). 
(a) Two data sets spanning the shape variability due to different human poses and different physiques; (b) 

A few markers by hand mapping the template mesh and each of the range scans; (c) Correlated 

Correspondence algorithm used to compute numerous additional markers; (d) The markers used as input 

to a non-rigid registration algorithm, producing fully registered meshes; (e) A skeleton reconstruction 

algorithm implemented to recover an articulated skeleton from the registered Meshes; (f) The space of 

deformations due to pose and physique. 
 

 

 
Figure 32. Examples of muscle deformations captured by the SCAPE pose model 

(Anguelov et al. 2005b). 
 

 

Kry et al. (2002) developed a technique which allows subtle nonlinear quasi-static deformations 

of articulated characters to be compactly approximated by data-dependent eigen-bases which are 

optimized for real time rendering on commodity graphics hardware.  The method extends the 

common Skeletal-Subspace Deformation (SSD) technique to provide efficient approximations of 

the complex deformation behaviors exhibited in simulated, measured, and artist-drawn 
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characters. Instead of using displacements for key poses (which may be numerous), principal 

components of the deformation influences for individual kinematic joints is pre-computed so that 

the optimal eigen-bases describing each joint’s deformation subspace is constructed.  Pose-

dependent deformations are then expressed in terms of these reduced eigen-bases, allowing pre-

computed coefficients of the eigen-basis to be interpolated at run time. Vertex program hardware 

can then efficiently render nonlinear skin deformations using a small number of eigen-

displacements stored in graphics hardware. Figure 33 shows some results of this technique.  
 

 

 

Figure 33. Comparison of EigenSkin and skeletal subspace deformation for an extreme 

pose not in the training data (Kry et al. 2002). 
Note significant differences in the thumb between a) the new pose computed from our finite element hand 

model, b) skeletal-subspace deformation only, and c) EigenSkin with one eigen displacements and one 

normal correction per support. d) shows an EigenSkin hand example being animated using a 

CyberGlove. The hand model shown here consists of 55,904 triangles and is drawn using display lists 

with a GeForce3 vertex program. 

 

3.4 Deformation Transfer—Pose Mapping 

For pose modeling, it is impossible to acquire the pose deformation for each person at each pose. 

Instead, we need to transfer pose deformation from one person to another person for a given 

pose. Anguelov et al. (2005b) addressed this issue by integrating a pose model with a shape 

model reconstructed from eigen-space.  As such, they were able to generate a mesh for any body 

shape in their PCA space in any pose.  Figure 34 shows some examples of different synthesized 

scans, illustrating variation in both body shape and pose.  The figure shows that realistic muscle 

deformation is achieved for very different subjects, and for a broad range of poses. 
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Figure 34. Deformation transfer by the SCAPE model (Anguelov et al. 2005b). 

The figure shows three subjects, each in four different poses. Each subject was seen in a single reference 

pose only. 

 

 

4.0 SHAPE MODELING OF HUMAN IN MOTION 

4.1 Motion Tracking 

Human motion tracking or capturing is an area that has attracted a lot of study and investigation.  

The acquisition of human motion data is of major importance for creating interactive virtual 

environments, intelligent user interfaces, and realistic computer animations.  Today’s 

performance of off-the-shelf computer hardware enables marker-free, non-intrusive optical 

tracking of the human body. In addition, recent research shows that it is possible to efficiently 

acquire and render volumetric scene representations in real-time.  The following discussion 

presents some of the research particularly related to shape modeling.  
 

The main challenge in articulated body motion tracking is the large number of degrees of 

freedom (around 30) to be recovered from motion data.  Search algorithms, either deterministic 

or stochastic, search such a space without constraint and fall afoul of exponential computational 

complexity.  Deutscher et al. (2000) studied general tracking without special preparation of 

subjects or restrictive assumptions and developed a modified particle filter for search in high 

dimensional configuration spaces.  The new algorithm, termed annealed particle filtering, uses a 

continuation principle based on annealing and is shown to be capable of recovering full 

articulated body motion efficiently.  Figure 35 and Figure 36 are the models used for the 

tracking, and Figure 37 is a comparison of the results. 

Theobalt et al. (2004) developed a system to capture human motion at interactive frame rates 

without the use of markers or scene-introducing devices. Instead, 2-D computer vision and 3-D 

volumetric scene reconstruction algorithms are applied directly to the image data.  A person is 

recorded by multiple synchronized cameras, and a multi-layer hierarchical kinematic skeleton is 

fitted into each frame in a two-stage process.  The architecture of the system is shown in Figure 

38. 
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Figure 35. Model based on a kinematic chain with 17 segments (Deutscher et al. 2000). 

 

 
Figure 36. Configurations of the pixel map sampling points (Deutscher et al. 2000). 

 

 

Figure 37. A comparison of Condensation with the annealed particle filter (Deutscher et al. 

2000). 
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Figure 38. A system architecture for human motion capture at interactive frame rates 

(Theobalt et al. 2004). 

 

 

4.2 Dynamic Shape Capture   

During dynamic activities, the surface of the human body moves in many subtle but visually 

significant ways: bending, bulging, jiggling, and stretching.  Park and Hodgins (2006) developed 

a technique for capturing and animating those motions using a commercial motion capture 

system and approximately 350 markers, as shown in Figure 39.  Although the number of markers 

is significantly larger than that used in conventional motion capture, it is only a sparse 

representation of the true shape of the body.  They supplemented this sparse sample with a 

detailed, actor specific surface model.  The motion of the skin can then be computed by 

segmenting the markers into the motion of a set of rigid parts and a residual deformation 

(approximated first as a quadratic transformation and then with radial basis functions).  The 

power of this approach was demonstrated by capturing existing muscles, high frequency 

motions, and abrupt decelerations on several actors.  Figure 40 shows the capture setup.  
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Figure 39. Capture and animation of the dynamic motion of the human body (Park and 

Hodgins 2006). 

 

 

 

Figure 40. Capture setup (Park and Hodgins 2006). 
(a) Twelve cameras surrounding a small capture region. Two cameras (shown in red) were aimed up 

rather than down to capture downward facing markers; (b) 350 small markers attached to the subject's 

body. 

 

 

Sand et al. (2003) developed a method for the acquisition of deformable human geometry from 

silhouettes.  Their technique uses a commercial tracking system to determine the motion of the 

skeleton and then estimates geometry for each bone using constraints provided by the silhouettes 

from one or more cameras.  These silhouettes do not give a complete characterization of the 

geometry for a particular point in time, but when the subject moves, many observations of the 

same local geometries allow the construction of a complete model.  Their reconstruction 

algorithm provides a simple mechanism for solving the problems of view aggregation, occlusion 

handling, hole filling, noise removal, and deformation modeling.  The resulting model is 

parameterized to synthesize geometry for new poses of the skeleton.  The procedure of the 

method is shown in Figure 41.  The method uses a needle model (Figure 42).  The input video 

included images of the subject in a wide variety of poses, as shown in Figure 43.  The 

―goodness‖ of the model depends on training time and method, as shown in Figure 44. 
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Figure 41. Extracting silhouettes from video sequences to build a deformable skin model 

that can be animated with new motion (Sand et al. 2003). 

 

 

 
Figure 42. Deformable primitives used to describe the human body (Sand et al. 2003). 

 

 

 
Figure 43. Input video including images of the subject in various poses (Sand et al. 2003). 
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Figure 44. The models recovered from motions (Sand et al. 2003). 

(a) With 3 minutes of motion observed with a single camera, a good model is obtained but its range of 

motion is limited. (b) With only 30 seconds of motion observed from a single camera, the model has a 

number of unpleasant artifacts. (c) When a model is trained without any deformation, the joints are 

poorly represented, illustrating that deformation is essential to an accurate human skin model. 

 

4.3 Shape Reconstruction from Imagery Data 

4.3.1 From Photos 

Seo et al. (2006) presented a data-driven shape model for reconstructing human body models 

from one or more 2-D photos.  Based on a data-driven, parameterized deformable model that is 

acquired from a collection of range scans of a real human body, the key idea is to complement 

the image-based reconstruction method by leveraging the quality, shape, and statistical 

information accumulated from multiple shapes of range-scanned people.  In the presence of 

ambiguity either from the noise or missing views, the technique has a bias towards representing 

as much as possible the previously acquired knowledge on the shape geometry.  Texture 

coordinates are then generated by projecting the modified deformable model acquired from range 

scan data onto the front view and back view images.  The technique has shown to successfully 

reconstruct human body models from a minimum number of images, even from a single image 

input.  Figure 45 is an overview of the approach.  Figure 46 displays image projection and 

silhouette extraction.  Figure 47 shows the distance between corresponding feature points and 

non-overlapping area error.  Figure 48 illustrates a reconstructed model by using a single image 

input.  
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Figure 45. An approach for reconstructing human body models from 2-D photos (Seo et al. 

2006). 

 

 

 
Figure 46. Image projection and silhouette extraction (Seo et al. 2006). 

(a) Projection of images onto the HSV color space: Empty background (left), front (middle) and side 

(right) views. (b) Silhouette extraction results of two subjects with white (left) and black (right) 

underwears. 
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Figure 47. Distance between corresponding feature points (left) and non-overlapping area 

error calculated (right) (Seo et al. (2006). 

 

 

 
Figure 48. A reconstructed model by using a single image input (Seo et al. 2006). 

(a) front image (b) side image. 

 

4.3.2 From Video Sequences 

One of the earliest studies of human motion capture from video was performed by D’Apuzzo et 

al. (1999), as shown in Figure 49.  Given video sequences of a moving person acquired with a 

multi-camera system, they tracked joint locations during the movement and recovered shape 

information.  The recovered shape and motion parameters can be used to either reconstruct the 

original sequence or to allow other animation models to mimic the subject's actions.  
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Figure 49. The layered human body model (D’Apuzzo et al. 1999). 

(a) Skeleton. (b) Ellipsoidal metaballs used to simulate muscles and fat tissue. (c) Polygonal surface 

representation of the skin. (d) Shaded rendering. 

 

 

One recent work is done by Balan (2007), as shown in Figure 50.  While much of the research on 

video-based human motion capture assumes the body shape is known a priori and is represented 

coarsely (e.g. using cylinders or super quadrics to model limbs), in this paper, they proposed a 

method for recovering such models directly from images.  Specifically, they represented the 

body using a recently proposed triangulated mesh model called SCAPE which employs a low-

dimensional, but detailed, parametric model of shape and pose-dependent deformations that is 

learned from a database of range scans of human bodies.  Previous work showed that the 

parameters of the SCAPE model could be estimated from marker-based motion capture data.  

Here they went further to estimate the parameters directly from image data, as shown in Figure 

51 and Figure 52.  They defined a cost function between image observations and a hypothesized 

mesh and formulated the problem as an optimization over the body shape and pose parameters 

using a stochastic search, as displayed in Figure 53.  Their results (Figure 54 and Figure 55 

showed that such rich, generative models enable the automatic recovery of detailed human shape 

and pose from images. 

 

 

 
Figure 50. Detailed human shape and pose from images (Balan et al. 2007). 
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Figure 51. SCAPE from images (Balan et al. 2007). 

Detailed 3D shape and pose of a human body is directly estimated from multi-camera image data. 

Several recovered poses from an image sequence of a walking subject are shown. 

 

 

 
Figure 52. Algorithm Overview (Balan et al. 2007). 

The learning phase is to build a 3D body model from range scans. The fitting phase is to fit the pose and 

shape parameters of the model to image data. 

 

 

 
Figure 53. Cost function (Balan et al. 2007). 

(a) original image I (top) and hypothesized mesh H (bottom); (b) image foreground silhouette FI and 

mesh silhouette FH, with 1 for foreground and 0 for background; (c) Chafer distance maps CI and CH, 

which are 0 inside the silhouette; the opposing silhouette is overlaid transparently; (d) contour maps for 

visualizing the distance maps; (e) per pixel silhouette distance from FH to FI. 
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Figure 54. SCAPE-from-image results (Balan et al. 2007). 

Reconstruction results based on the views shown for one male and two female subjects, in walking and 

ballet poses, wearing tight fitting as well as baggy clothes. Top: input images overlaid with estimated 

body model. Middle: overlap (yellow) between silhouette (red) and estimated model (blue). Bottom: 

Recovered model from each camera view. 
 

 

 
Figure 55. Automatic recovery of detailed human shape and pose from images (Balan et al. 

2007). 
First row: Input images. Second row: Estimated mesh models. Third row: Meshes overlaid over input 

images. By applying the shape parameters recovered from 33 frames to the template mesh placed in a 

canonical pose, we obtained a shape deviation per vertex of 8.8 ± 5.3mm, computed as the mean 

deviation from the average location of each surface vertex. 
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4.4 Animation  

Realistic human representation and animation remains a primary goal of computer graphics 

research.  The animation of the subject can be realized by displaying a series of human shape 

models for a prescribed sequence of poses.  Hilton et al. (2002) built a framework for 

construction of animated models from the captured surface shape of real objects.  Algorithms 

were developed to transform the captured surface shape into a layered model.  The layered model 

is composed of an articulation structure, a generic control model and a displacement map to 

represent the high-resolution surface detail.  Novel methods were presented for automatic control 

model generation, shape constrained fitting and displacement mapping of the captured data.  The 

framework enables rapid transformation of captured data into a structured representation suitable 

for realistic animation.  An example animated model from captured 3-D surface measurements is 

shown in Figure 56.  The pipeline for reconstructing animated models from captured 3-D surface 

data is illustrated in Figure 57. Figure 58 displays an animation of a Cyberware whole body scan. 

 
Figure 56. Example animated model from captured 3D surface measurements (Hilton et al. 

2002). 
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Figure 57. Functional Models Pipeline for Animating Michelangelo’s David from captured 

data (Hilton et al. 2002). 

 

 

 
Figure 58. Animation of a Cyberware whole body scan (Hilton et al. 2002).  

The model was reconstructed using a generic humanoid model of approximately 2500 polygons. 
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Seo et al. (2003) developed a synthesizer for manipulations of body models by using parameters 

such as fat percentage and hip-to-waist ratio.  On any synthesized model, the underlying bone 

and skin structure is properly adjusted, so that the model remains completely animatable using 

the underlying skeleton.  Figure 59 illustrates the motion captured animation applied to their 

models. 

 

 
Figure 59. Motion captured animation applied to four of our models (Seo et al. 2003). 

 

 

Aguiar et al. (2006) developed a novel versatile, fast and simple framework to generate high 

quality animations of scanned human characters from input motion data, as shown in Figure 60. 

The method is purely mesh-based and, in contrast to skeleton-based animation, requires only a 

minimum of manual interaction.  The only manual step that is required to create moving virtual 

people is the placement of a sparse set of correspondences between triangles of an input mesh 

and triangles of the mesh to be animated.  The proposed algorithm, as illustrated in Figure 61, 

implicitly generates realistic body deformations, and can easily transfer motions between human 

subjects of completely different shape and proportions.  The approach handles many different 

types of input data, e.g. other animated meshes and motion capture files, in just the same way. 

Finally, and most importantly, it creates animations at interactive frame rates.  Figure 62 displays 

the pose deformation transfer.  Figure 63 shows how the acquired motion is realistically 

transferred to the final human body scan. 



 

41 

 

 
Figure 60. Confluent marker-based animation (Aguiar et al. 2006). 

Subsequent frames showing the female scan authentically performing a soccer kick. Motion data have 

been acquired by means of a marker-based motion capture system. Note the realistic protrusion of the 

chest when she blocks the ball, as well as the original head motion. 

 

 
Figure 61. Illustration of the Conuent Motion pipeline (Aguiar et al. 2006). 

 

 
Figure 62. A template model (Aguiar et al. 2006). 

(a) A high-resolution body scan (b) In their respective reference poses.  Inuence of the number of markers 

on the quality of the deformation: the template in a pose obtained via motion capture (c). While 22 

triangle correspondences already suffice to transfer this pose in good quality to the scan (d), 180 triangle 

correspondences reproduce even subtle details (e). 
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Figure 63. Input markers (Aguiar et al. 2006). 

(a) are used to generate an intermediate biped model (b). By applying our deformation technique the 

acquired motion is realistically transfered to the final human body scan (c). 

 

4.5 Video-driven Animation 

Video-driven animation animates a subject using the motion of the same or a different subject 

captured from video.  In Aguiar et al. (2006) (as shown in Figure 64), the motion parameters 

were extracted from raw video footage of human performances (top row).  By this means, body 

poses of a video-taped individual can easily be mapped to body scans of other human subjects 

(second and third row).  Note that skin deformations are naturally modeled (middle column). 

Scans are faithfully animated regardless of the differences in body shape and skeletal 

dimensions. 

 
Figure 64. Video-driven animation (Aguiar et al. 2006). 
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4.6 Inverse Kinematics  

Inverse kinematics (IK), the process of computing the pose of a human body from a set of 

constraints, is widely used in computer animation. However, the problem is inherently 

underdetermined.  For example, for given positions of the hands and feet of a character or an 

animated figure, there are many possible character poses that satisfy the constraints.  Even 

though many poses are possible, some poses are more likely than others — an actor asked to 

reach forward with his arm will most likely reach with his whole body, rather than keeping the 

rest of the body limp.  In general, the likelihood of poses depends on the body shape and style of 

the individual person, and designing this likelihood function by hand for every person would be a 

difficult or impossible task.  Grochow et al. (2004) developed an inverse kinematics system (as 

shown in Figure 65) based on a learned model of human poses that can produce the most likely 

pose satisfying those constraints in real time.  Training the model on different input data leads to 

different styles of IK.  The model is represented as a probability distribution over the space of all 

possible poses.  This means that the model can generate any pose, but prefers poses that are most 

similar to the space of poses in the training data.  Figure below illustrates the process of 

modeling learning.  Figure 66 shows an example of creating a motion by key framing using three 

key framed markers. 

 

 
Figure 65. Latent spaces learned from different motion capture sequences (Grochow et al. 

2004). 
The motion sequences include a walk cycle, a jump shot, and a baseball pitch. Points: The learning 

process estimates a 2D position associated with every training pose. Plus signs (+) indicate positions of 

the original training points in the 2D space. Red points indicate training poses included in the training 

set. Poses: Some of the original poses are shown along with the plots, connected to their 2D positions by 

orange lines. Additionally, some novel poses are shown, connected by green lines to their positions in the 

2D plot. Note that the new poses extrapolate from the original poses in a sensible way, and that the 

original poses have been arranged so that similar poses are nearby in the 2D space. 
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Figure 66. Trajectory key framing using a style learned from the baseball pitch data 

(Grochow et al. 2004). 
Top row: A baseball pitch. Bottom row: A side-arm pitch. In each case, the feet and one arm were key 

framed; no other constraints were used. The side-arm contains poses very different from those in the 

original data. 

 

 

5.0 CONCLUDING REMARKS 

Human shape modeling spans various research areas from anthropometry, computer graphics and 

computer vision to machine intelligence and optimization.  In addition to traditional uses, human 

modeling is finding many applications in some new areas, such as virtual environment, human 

identification, and human-borne threat detection.  These new applications pose great challenges 

to human modeling technology.  With the advancement of human modeling technology, creating 

a realistic, dynamic human model that can be rendered in real-time or nearly real-time is 

achievable. 
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