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ABSTRACT 

Wide bandgap semiconductors such as Zinc Selenide (ZnSe) have become 

popular for ultraviolet (UV) photodetectors.  ZnSe has a higher photosensitivity 

compared to silicon-based detectors due to its larger bandgap.  Its capability of turning 

optical power into valuable electrical signals makes it suitable for measurement and 

recording of UV exposure for military personnel.  The prospect of ZnSe’s unique medical 

and military applications has been the driving force of this study.  This thesis presents 

characterization of performance of UV detectors using ZnSe-based Schottky diodes.  

There are a total of 15 photodetectors involved in this study.  Three sets, each consisting 

of five photodetectors, were designed to detect Ultraviolet-A (320–400 nm), Ultraviolet-

B (290–320 nm) and combination of both (UV-A and UV-B) wavelength ranges. The 15 

detectors were analyzed for their photosensitivity using a photocurrent measurement 

system.  Each diode’s responsivity (ampere per watt) was determined as a function of 

wavelength of the incident radiation.  The second part of the characterization process 

includes the determination of the current-voltage (IV) characteristics of the 

photodetectors.  Each photodiode’s current response was plotted as a function of both 

reverse and forward biased voltages and compared with the expected behavior. 
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I. INTRODUCTION 

Ultraviolet (UV) light naturally occurs and is radiated by the sun.  It is classified 

to be located below the shorter wavelength end of the visible spectrum, which has 

wavelengths in the region of 400 to 700 nanometers.  UV rays are invisible to the naked 

eye and are commonly called “bluer than blue” of the light spectrum since their 

wavelengths range from 100 to 400 nanometers as shown in Figure 1.   

 

 

Figure 1.   The UV spectrum. (From [1]) 

The human skin is sensitive to UV light and prolonged exposure of a dangerous 

level of UV radiation can produce harmful effects.  Normally, the skin produces a protein 

called melanin, made by cells known as melanocytes, which are located in the bottom 

layer of skin. Melanin absorbs UV radiation in response to exposure to the sun.  The 
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melanin protects the skin by absorbing the UV radiation and, in turn, produces a tan when 

the skin is exposed to sunlight.  Overexposure to sunlight can lead to the malfunction and 

uncontrollable growth of melanocytes, resulting in skin cancer called malignant 

melanoma [2]. 

An elevated rate of military personnel contracting this type of disease prompted 

the Walter Reed Army Institute of Research, which is located in Bethesda, MD, to seek 

technical advice from Naval Postgraduate School (NPS) in identifying or developing a 

dosimeter suitable for monitoring UV exposure in military personnel.  The practical 

application is to have a dosimeter system, which is capable of detecting, recording and 

displaying UV exposure for a minimum period of one year that can be worn as a 

wristband or as some other unobtrusive wearable item. 

The detection of UV is typically achieved by using wide bandgap semiconductors 

such as gallium nitride (GaN) or zinc selenide (ZnSe) [3].  The sensors are made by 

forming Schottky barriers using a variety of metals such as Au or Ni.  In this thesis, 

Schottky barrier photodiodes based on tellurium-doped zinc selenide Te:ZnSe and nickel 

(Ni) with integrated UV filters are characterized.  Professor Craig Smith, Lawrence 

Livermore Chair at Naval Postgraduate School, spearheaded the requisition of both 

filtered and unfiltered types of the photodiodes to evaluate their performance for potential 

incorporation in UV dosimeters.  The resulting detector samples are composed of three 

sets, each consisting of five of the following photodetector groups: Ultraviolet-A (320–

400 nm), Ultraviolet-B (290–320 nm) and Unfiltered to include both (UV-A and UV-B) 

wavelength ranges manufactured by the staff of Dr. Volodymyr Ryzhikov from the 

Institute of Single Crystals in Kharkov, Ukraine.  These photodiodes were characterized 

in the Sensors Research Laboratory at the Naval Postgraduate School, and are the main 

focus of this thesis. 

A. DOSIMETER TO MONITOR ACCUMULATED UV DOSE 

Numerous types of UV sensors were considered in creating a dosimeter that will 

detect and record UV exposure over an extended period of time, which is approximately 

one year.  One possible type is a sensor based on the response of a photosensitive film 
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material [4].  In this case, the degradation of the film would be used for UV detection.  

Although a good sensitivity can be obtained, the photosensitive film has the 

disadvantages of not being reusable, and not being capable of continuously recording 

data over an extended period of time [4].   

Other types of UV sensor were also considered, based on photoelectric response 

of a material [4], photoresistors or Schottky barrier structures [4].   The photoresistor has 

high photosensitivity; however, it could not operate in electro-generator mode.  Lastly, 

the Schottky diode, a combination of a metal and semiconductor with a potential barrier 

structure, becomes the most preferred type because it has high impedance, and can 

operate at shorter wavelengths.  Figure 2 shows a typical layout of a UV photodetector 

used in this thesis [4].   

 

Figure 2.   Layout of a UV photodetector device. (From [4]) 

The Schottky diode schematically shown in Figure 2 is based on tellurium doped 

zinc selenide (Te:ZnSe) and nickel (Ni).  It has high photosensitivity in UV spectrum and 

is blind to wavelengths in the visible range and higher (solar blind).  Compared to other 

compound semiconductors, such as gallium nitride (GaN), which is also sensitive in UV 

region, ZnSe has a broader spectral sensitivity, as shown in Figure 3.  It shows the 

relatively broad spectral characteristics of ZnSe-based photodiode in the UV region of 

300 to 450 nm, which is needed for fabricating dosimeters in the UV A and B ranges.  It 

was also found that the ZnSe based detectors have low leakage current compared to GaN 
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counterparts making them much less noisy [3].  A photograph of a typical ZnSe 

photodetector used in this study is shown in Figure 4.   

 

 

Figure 3.   Normalized responsivity of GaN and ZnSe based Schottky photodiodes (From 
[3]) 

 

Figure 4.   Packaged Ni-ZnSe Schottky photodiode 
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ZnSe(Te) photodiodes, based on Schottky diode and outfitted with appropriate 

filters, can be used as UV-A (320–400 nm) and UV-B (290–320 nm) photodiodes to 

measure UV dose rate.  With proper integration into a system, these photodiodes will also 

be able to record and display readings over an extended period of time and function as a 

dosimeter [4].   

B. SEMICONDUCTOR DETECTORS 

In semiconductors, the valence and conduction bands are separated by an energy 

gap commonly called bandgap energy, gE .  It is located between the top of the valence 

band and the bottom of the conduction band and has an average value of one electron-

volt (eV).  Some of the most common semiconductors’ gE  are shown in Table 1.   

 Material Symbol Bandgap (eV) @ 
300K 

Silicon Si 1.11 

Germanium Ge 0.67 

Silicon carbide SiC 2.86 

Aluminum nitride AlN 6.3 

Diamond C 5.5 

Gallium(III) arsenide GaAs 1.43 

Gallium(III) nitride GaN 3.4 

Indium(III) arsenide InAs 0.36 

Zinc selenide ZnSe 2.7 

Zinc telluride ZnTe 2.25 

Cadmium sulfide CdS 2.42 

Cadmium selenide CdSe 1.73 

Table 1.   Bandgap energy gE  for selected semiconductors. (After [5]) 
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The table shows that Diamond and Indium (III) Arsenide have the largest and 

smallest bandgap, respectively.  The zinc selenide has wide bandgap energy of 2.7 eV at 

room temperature. 

In a semiconductor, absorption occurs if the photon energy hv  is greater than the 

bandgap energy, (i.e., ghv E ).  An absorption will create an electron-hole (e-h) pair as 

schematically shown in Figure 5.   The electron absorbs the photon and gets excited to 

the conduction band (CB) leaving a hole, that is, the absence of an electron, in the 

valence band (VB).  The charge carriers (electrons and holes) in the presence of an 

electric field move in their respective bands, thus producing photocurrent [6].   

 

Figure 5.   Electron-hole pair created from absorption of photon energy hν. (After [7]) 

The minimum photon energy must be at least equal to the bandgap, min ghv E  of 

the semiconductor.  Absorption is not possible if the photon energy is less than the 

bandgap, ghv E  since an electron-hole pair cannot occur and energy levels are not 

available for the electron in the bandgap.  As the wavelength gets longer, the photon 

energy becomes smaller.  Using c v  in the condition for absorption of ghv E gives: 

 g
g

hc hc
E

E



    (1.1) 
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and provides the subsequent equation for the maximum wavelength that can be detected 

by the semiconductor [6]: 

 max

1.24

g g

hc

E E
    (1.2) 

where the unit of the wavelength, λ is in m  and gE  is in electron volt (eV). 

Figure 6 shows an example of photoresponse for a typical silicon p-i-n 

photodiode.  Its effective spectral range is between 400–1100 nm.  The maximum 

wavelength that can be detected by the photodiode is around 1.1 m  which is 

approximately equal to silicon bandgap energy of 1.1 eV. The graph shows that neither 

detection nor absorption occurs at wavelengths greater than 1.1 m  since the photon 

energy becomes less than the bandgap energy.  On the other hand, responsivity 

(photocurrent per unity incident optical power) near the bandgap is strong but gradually 

decreases as the wavelength becomes smaller until it reaches the UV range (~400 nm).  

The lower responsivity at high photon energies is due to the waste of excess photon 

energy as heat and also strong absorption close to the surface of the diode where there is 

no electric field to generate photocurrent.  For detection in the UV spectral range, a 

Schottky diode is preferred over the silicon p-i-n diode due to the formation of its 

junction close to the surface.   

 

Figure 6.   Responsivity as a function of wavelength for typical silicon photodiode. (From 
[8]) 

C. SCHOTTKY PHOTODIODE 

A Schottky photodiode is made of a very thin, about 100 Å, layer of metal 

evaporated on a doped semiconductor.  If the semiconductor is n-type, the electrons from 
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the semiconductor will diffuse down to the metal to fill lower energy states.  A brief 

electron flow will occur until the electric field oE  created by the flow opposes the 

diffusion of additional electrons [6].  

Figure 7 shows the schematics of the metal and semiconductor material before 

and after forming the junction.  Before contact, the electrons in the n-type semiconductor 

occupy higher energy states compared to those in the metal.  After forming the junction, 

the energy levels of the conduction and valence bands of the semiconductor bends to 

allow its Fermi level FnE (dashed lines in Figure 7)  to be equal with that of the metal as 

illustrated in Fig. 7.   

 

Figure 7.   Formation of metal and semiconductor junction in a Schottky photodiode. Where 

FmE  is the Fermi level of metal, the work function M  is the minimum energy required 

to remove an electron from solid, the work function n   is the minimum energy 
required to remove an electron from the semiconductor, B  is the barrier height,  oV  is 

the built-in potential, and CE , VE  are the conduction and valence band edges. (From 

[9]) 

The transfer of electrons to the metal leaves behind ionized impurities in the 

semiconductor forming a depletion region, as well as a barrier (B), at the junction of the 

semiconductor and metal, as shown in Figure 7.   
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Schottky diodes are good photodetectors for UV rays.  In comparison with other 

light, UV has shorter wavelengths, but a higher absorption coefficient, which is 

about 4 5 110 10 cm [10].  When a UV ray is incident to a Schottky diode, absorption 

occurs almost at the surface, due to the very thin metal layer attached to the 

semiconductor, into the depletion region.  It is also the region where the electric field is 

present.  This is a big advantage of the Schottky over a p-i-n type photodiode [8].   

1. Depletion Layer Width 

The calculation of the width of the depletion region can be started by using 

Gauss’ law which gives a relationship between the electric field and the space charge 

density as follows: 

 ( )xdE

dx




  (1.3) 

where ( )x  = eNd is the space charge density at position x, E is the electric field, and   is 

the dielectric permittivity. Nd is the donor concentration in the semiconductor.  Since the 

electric field, E = 0 at the semiconductor end of the depletion region, integration of 

equation 1.3 across the depletion region gives the following result: 

 ( ) (0) d
x x

eN
E x E x


   (1.4) 

where E(0) is the electric field in the semiconductor at x = 0.  Since the depletion region 

is within the semiconductor, the variable d will be used to define its width.  Substituting 

these values to equation (1.4) results in: 

 

 
(0)x

eN
E d


 

 (1.5) 

Substituting E(0) in equation 1.4, the electric field as a function of x is given by: 

 ( ) [ ]x

eN
E x d x


    (1.6) 
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Since
dV

E
dx

  , the built-in voltage can be found by integrating the area under the curve 

of the graph shown in Figure (8c) as 

 

Figure 8.   Schottky barrier showing (a) space charge density (b) Electric Field and (c) 
Voltage [After 12] 

  ' '

0
( ) ( )

d

O xV x E x dx   (1.7) 

 2

2

eN
Vo d


  (1.8) 

Therefore, the depletion width and built in potential are related by: 

 
2 Vo

d
eN


  (1.9) 

The longer the depletion layer width the higher the quantum efficiency of the sensor since 

it provides more material to capture light.  The depletion width is usually controlled by 

adjusting the doping density in the semiconductor since Vo ~ b .  The cutoff wavelength 

of detection is determined by bandgap of the semiconductor. 

D. PROPERTIES OF ZINC SELENIDE 

Zinc selenide is a light yellow binary compound from the elements Zinc (Zn) and 

Selenium (Se). Zinc is a transition metal, listed as the first element in Group II, which has 

two electrons in the outermost shell; Selenium is a nonmetal, in Group VI of the periodic 
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table, which has six electrons in the outermost shell.  Combined, ZnSe normally becomes 

an intrinsic semiconductor with a direct bandgap of about 2.7 eV at room temperature.   

Zinc selenide has the distinct property of having a high absorption coefficient at 

ultraviolet wavelengths and minimal absorption in the visible to near infrared region [13] 

as shown in Figure 9 [14]. 

 

Figure 9.   Absorption Spectra of Zinc Selenide in visible wavelength range. (After [14]) 

However, in this study, the compound was doped with tellurium, which is a p-

type dopant in ZnSe, and the Schottky barrier is formed in the valence band instead of the 

conduction band described above.  The relatively large Schottky barrier formed (~ 1 eV) 

generates high electric field in the depletion region, thus increasing the response speed 

(up to 910  s) and quantum efficiency (up to 70–80%) [15]. 
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II. CURRENT VOLTAGE MEASUREMENT 

The current-voltage characteristics of the ZnSe Schottky photodiodes are 

measured using an Agilent 4145B Semiconductor Parameter Analyzer.  The equipment 

simply applies voltage across the detector, and then measures the corresponding current.  

The dark or leakage current is measured under dark condition, wherein the lid of the 

fixture is closed and the photodiode is not exposed to any light source.  In this condition, 

the photodiode has high resistance.  The photocurrent can be measured by exposing the 

sensor to light and repeating the measurement.   

A. CURRENT VOLTAGE CHARACTERISTICS 

A typical current-voltage (IV) characteristic for a Schottky diode is shown in 

Figure 10.  The graph shows the value of current as a function of voltage.  At forward 

bias, the current rises dramatically, while a minimum leakage current occurs at reverse 

bias prior to the breakdown voltage.  The cause of this current behavior upon application 

of voltages will be further analyzed in the succeeding paragraphs. 

 

Figure 10.   Schottky diode’s current-voltage characteristic in dark condition.  
(From [16]) 
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In a forward-biased diode, as shown in Figure 11a for a n-type Schottky junction, 

the positive terminal of the battery is connected to the metal and the negative terminal is 

connected to the semiconductor.  The built-in electric field in the depletion region is 

directed towards the metal while the field due to applied voltage is directed towards the 

semiconductor thus reducing the built-in potential oeV  to ( )oe V V , and electrons flow 

with less resistance towards the metal.  The barrier height, B , at the junction of the 

metal and semiconductor remains unchanged.  The sudden surge of the charged carriers 

to the metal make the magnitude of the current rise exponentially with bias which can be 

estimated using [17]: 

 ( 1)
eV

kT
oI I e   (2.1) 

     

Figure 11.   Schottky junction showing (a) Forward-biased and (b) Reverse-biased 
conditions. (After [9]) 

On the other hand, the diagram of the reverse-biased Schottky junction is shown 

in Figure 11b.  In this mode, the negative terminal is connected to the metal, while the 

positive terminal is connected to the semiconductor, producing a reverse voltage, - rV .  

Both the built-in and applied fields are in the same direction, towards the metal.  The sum 

of their voltages creates a deeper potential barrier, with energy equal to ( )o re V V , thus 

making it more difficult for the electrons to travel from semiconductor to the metal. 

Similar to the forward-biased mode, the barrier height, B , at the junction of the metal 
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and semiconductor, remains unchanged. The limited movement of the charge carriers via 

thermal excitation across the Schottky barrier to the metal results in small reverse current, 

oI .  This phenomenon explains the tiny leakage current present in the Schottky diode at 

reverse-biased mode, as shown previously in Figure 10 [9].  As the reverse bias is 

increased, the tunneling of electrons from metal to semiconductor results in breakdown of 

the junction generating a large reverse current as shown in Figure 10.  Operation of 

photodiodes near breakdown provides gain in photodetection and such detectors are 

commonly known as avalanche photodiodes.  

B. MEASURED CURRENT VOLTAGE DATA 

The fifteen photodiodes were grouped according to the wavelength sensitivity as 

shown in Table 2.  Their current-voltage characteristics were taken in both the dark and 

under light illumination.   

 

Ultraviolet-A 

(320-400 nm), 

Ultraviolet-B 

 (290-320 nm) 

UNFILTERED 

(UV-A and UV-B) 

S4-41 S4-7 S4-1 

S4-26 S4-14 S4-2 

S4-17 S4-19 S4-3 

S3-10 S4-30 S4-4 

S4-18 S3-1 S4-6 

Table 2.   Ultraviolet sensors grouping  
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Figure 12.   Semiconductor Parameter Analyzer model 4155B 

The dark condition, wherein no visible light is present, was accomplished by 

closing the lid of the Agilent 16442A Test Fixture machine as illustrated in Figure 12.   

The Semiconductor Parameter Analyzer was set at the following parameters during the 

measurement of the photodiodes. 

Start voltage: -14 V 

Stop voltage:  4 V 

Number of steps: 100 at 20 mV 

Current compliance: 100 mA 

Graph display voltage: -14 V to 4 V 

Graph display current: -400 A  to 400 A  
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The number of steps signifies a current reading will be taken in every 20 mV 

increment while the current compliance gives the maximum current allowed to avoid 

damage to the photodiodes.   

The measured current, under dark conditions, of the photodiodes as a function of 

voltage is shown in Figures 13 to 15.  Each photodiode has its own distinct parameter.   

None of the photodiodes within the same group showed a similar characteristic.  All of 

the photodiodes’ current immediately rose exponentially in the forward direction.  The 

reverse voltages of each photodiode clearly show different breakdown voltages.   

 

Figure 13.   Current-voltage characteristics of UV-A photodiodes under dark 
condition. 
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Figure 14.   Current-voltage characteristics of UV-B photodiodes under dark 
condition. 

 

Figure 15.   Current-voltage characteristics of unfiltered photodiodes under  
dark condition. 
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The second part of the current-voltage measurement was performed under both 

dark and lighted conditions.  The parameters of the Agilent 16442A Test Fixture were set 

at smaller current scale to measure the relatively small photocurrent along with the dark 

under varying light conditions using a visible light source.  The resulting characteristics 

of the photodiodes’ current as a function of voltage are shown in Figures 16 to 18.  

 

Figure 16.   Current-voltage characteristics of unfiltered photodiodes in both dark and 
lighted conditions. 
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Figure 17.   Current-voltage characteristics of UV-A photodiodes in both dark and 
lighted conditions. 

 

 

Figure 18.   Current-voltage characteristics of UV-B photodiodes in both dark and 
lighted conditions. 
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The measured data in Figures 16 to 18 shows that the reverse current increases 

with the intensity of the incident light due to generation of photoexcited electron-hole 

pairs in the semiconductor.  The largest increase was observed for the unfiltered sensors 

(see Figure 16) since due to their broader spectral response compared to sensors with 

filters attached to them as shown in Figures 17 and 18.  The white light source used for 

illumination does not produce large quantity of UV photons making the overall 

photocurrent relatively small.  

The experimental results of the current-voltage measurements under light 

illumination correspond to the expected output of the photodiodes.  The detailed 

photoresponse measurement of the sensors at different UV wavelengths will be discussed 

in the next chapter.  
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III. SPECTRAL CHARACTERISTICS 

A. OPTICAL SETUP 

The second part of the characterization process of the photodiodes is the 

measurement of the responsivity as a function of wavelength using the photocurrent 

measurement equipment shown in Figure 19.   

 

Figure 19.   Laboratory setup used for measurement of responsivity as a function of 
wavelength.    

A UV lamp is placed inside the Newport manual dual-source illuminator housing.  

The UV light goes through a motorized filter, which removes the higher order 

wavelengths.  From the equation, sind n   where n is the order number, the second 

order wavelength with
λ

sin 2
2

d   , third wavelength with 
λ

sin 3
3

d   , and higher 

order wavelengths are represented by the identical equation sind   .  The filter can 
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eliminate these higher order wavelengths preventing the second and higher order 

wavelengths from entering the monochromator, shown in Figure 20.   

 

Figure 20.   Monochromator (Oriel Cornerstone 260 ¼). 

The first order wavelength of UV light passes through the monochromator’s 

entrance slit, which is set at 1.0 mm width.  The UV light is reflected by a plane mirror to 

a parabolic mirror, which collimates the light towards the desired grating, Cornerstone 

260 triple grating model# 74065, which is designed to diffract UV rays with wavelengths 

from 180 to 500 nm.  The separated wavelengths reflect through the second parabolic 

mirror which, in turn, creates a parallel beam and focuses the desired wavelength to the 

exit slit, which has the same 1.0 mm width as the entrance slit.  The wavelength 

resolution of the photocurrent system is about 0.5 nm.  

Upon exit from the monochromator, the UV light passes through a mechanical 

chopper set at 140 Hz which switches the light on and off producing something similar to 

an alternating current (AC) signal.  The chopping frequency is relayed to the lock-in 

amplifiers, which look for a signal from the detector at the rated frequency.  
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The path of the light beam after exiting the spectrometer is shown in Figure 21.  

The beam splits up into two equal signals at the beam splitter.  Both beams travel at 

different directions at same path length to reach both the sample and the reference 

photodiodes.   

 

Figure 21.   Optical set-up showing the UV light travelling through the beam splitter 
then reflecting to both sample and reference photodiodes. 

The beam on the left side of the splitter is captured by the sample photodiode 

while the beam on the right side of the splitter is captured by the calibrated detector 

acting as the reference photodiode.  The signals from sample and reference photodiodes 

are both connected to separate lock-in amplifiers which measure the incident 

photocurrent produced on each respective photodiodes.   

The two lock-in amplifiers are connected to a computer which uses LABVIEW 

software.  The software graphs the photocurrents produced on both sample and reference 

photodiodes as a function of wavelength at certain number of steps with respect to a 

specified wavelength interval.   
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B. RESPONSIVITY  

Responsivity is the ratio of the photocurrent produced to the unit power incident 

to the photodiode.  The equation for responsivity is given by, 

 
I

R


  (3.1) 

where I is measured in amperes and   is in watts.  The current can be directly measured 

from the lock-in amplifiers; however, the estimation of incident power requires a 

calibrated reference photodiode and the measurement of the area of the photodiode 

exposure to the incident light.   

The photodiode used as a reference is a UV enhanced silicon p-i-n diode (UV-

035D calibrated by UDT Sensors, INC).  The graph of its responsivity as a function of 

wavelength is shown in Figure 22.   

 

Figure 22.   Reference silicon photodiode responsivity as a function of wavelength. 

The length, L  and width, W of the reference’s silicon photodiode are both 5.8 

mm while the length and width of the sample photodiodes are both 3 mm.  Since the slit 

width of the output of the spectrometer is 1 mm, the effective area exposed to UV 

radiation is 1 mm x 5.8 mm and 1 mm x 3 mm for the reference and sample photodiodes, 
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respectively.  Since the intensity of light at each detector is the same, the power received 

by the sample (S) and reference (R) are related by  

 S R

S S R RL W L W

 
  (3.2) 

where L and W are the height and width of the light beam seen projected on sample (S) 

and reference (R).    The width dimension in the equation cancels out since it is the same 

(1 mm) for both the sample and reference.  Thus, the incident power on the sample is 

given by: 

 S
S R

R

L

L
   (3.3) 

Using equation 3.1, the incident power on the sample can be determined using the 

measured photocurrent of reference detector as 

 R S
S

R R

I L

R L
   (3.4) 

The equation for responsivity for the sample is 

 S
S

S

I
R


  (3.5) 

Substituting equation 3.4 into equation 3.5 gives, 

 S R R
S

R S

I R L
R

I L
 . (3.6) 

The heights of the illuminated area for the reference and the sample are 5.8 mm 

and 3 mm, respectively.  The reference detector responsivity, RR , given in Figure 22 can 

be used for determining the responsivity of the sample. 
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C. RESPONSIVITY MEASUREMENT 

The spectral characterization process of the photodiodes started with the 

measurement of the photocurrent as a function of wavelength.  Table 3 shows the settings 

used for the LABVIEW program and lock-in amplifiers.  These values were adjusted to 

suit each of the photodiode’s wavelength sensitivity.  

  

PHOTODIODE 
WAVELENGTH 

RANGE 
WAVELENGTH 

INTERVAL 
SAMPLE 
SCALE 

SAMPLE 
MAGNIFICATION 

REFERENCE 
SCALE 

REFERENCE 
MAGNIFICATION 

UV – A 290 – 430 nm 3 nm 30 mV 610  3 mV 610  

UV – B 250 – 350 nm 3 nm 100μV  610  3 mV 610  

UNFILTERED 250 – 500 nm 3 nm 100 mV 610  3 mV 610  

Table 3.   LABVIEW and lock-in amplifiers settings used for spectral 
characterization. 

The measured photocurrents as a function of wavelength for each of the 

photodiodes are shown in Figures 23–25.  Similar to the first part of the characterization 

process for current-voltage measurements, photodiodes were grouped according to their 

respective spectral sensitivities for comparison.  The photodiodes exhibited different 

amount of photocurrent and none shared a common response in terms of amplitude, 

though the response shapes were similar.  In the UV-A range, photodiode S4-26 

produced the most photocurrent with a peak of 1.14 nA at 368 nm.  In UV-B range, 

photodiode S4-7 had the highest photocurrent of 0.116 nA at 322 nm and finally the 

unfiltered photodiode S4-2 had 16.03 nA at 455 nm. 

 

 



 29

 

Figure 23.   Measured photocurrent as a function of wavelength for UV-A 
photodiodes. 

 

Figure 24.   Measured photocurrent as a function of wavelength for UV-B photodiode. 
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Figure 25.   Measured photocurrent as a function of wavelength for unfiltered 
photodiodes. 

It can be seen from Figures 23–25 that the unfiltered photodiodes produced the 

highest photocurrent since they are receiving the full optical power from the incident 

light.  The filtered sensor’s actual power received depends on the transmittance of the 

filters which are not known at present. 

The spectral responsivities of the photodiodes were estimated using the measured 

photocurrents and equation 3.6 and are shown in Figures 26–29.  Similar to the measured 

photocurrents, each photodiodes has its own distinctive responsivity.  Two photodiodes 

with the highest responsivity were selected from UV-A and UV-B group and plotted in 

Figure 28.  It can be seen that the photodiode S4-26 from UV-A had a peak responsivity 

of 0.05 A/W compared to the photodiode S4-7 from UV-B with a much lower 

responsivity of 0.01 A/W. 

Similar to the photocurrent characteristics, the unfiltered photodiodes exhibited 

the largest responsivity.  It was expected since the unfiltered photodiode receives larger 

power on the surface of it compared to the filtered sensors.  The higher the value for the  
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photocurrent, the larger the resulting responsivity.  The measured values of responsivity 

for unfiltered photodiodes are in good agreement with previously reported values for 

similar Schottky diodes [18]. 

 

Figure 26.   Spectral Responsivity as a function of wavelength for UV-A photodiodes. 
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Figure 27.   Spectral Responsivity as a function of wavelength for UV-B photodiodes. 

 

Figure 28.   Comparison of the two sensors with highest spectral responsivity from 
both UV-A and UV-B photodiodes. 
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Figure 29.   Spectral Responsivity as a function of wavelength for unfiltered 
photodiodes. 

D. CUTOFF WAVELENGTH AND BANDGAP 

Figure 29 shows a broader spectral responsivity spectrum for the unfiltered 

photodiodes compared to the results for UV-A and UV-B ranges.  A sudden decrease in 

responsivity was measured at around 458 nm.  At this point, the photon energy reached 

the bandgap.  Any photon with a wavelength greater than 458 nm has less energy than the 

amount necessary for absorption and will pass through the photodiode.  Using the above 

cutoff wavelength, the corresponding photon energy can be estimated using 

 
1.24

h


 (eV) (3.7) 

where the wavelength ,  is in m . The estimated bandgap of the ZnSe is about 2.7 eV.  

In addition, the type of band gap of ZnSe can be determined from the 

experimental results of Figure 29 near the cutoff.  The amount of the photocurrent 

produced during absorption of a photon depends on the excess energy produced from the 
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difference of the photon energy hv  and the bandgap energy, gE .  Near the bandgap edge 

of the semiconductor, the proportionality of the photocurrent in relation to the excess 

energy determines the type of the bandgap as shown in the following equations: 

 Direct Bandgap: 

1

2( )gI hv E       (3.8) 

2 ( )gI hv E       (3.9) 

 

 

 Indirect Bandgap: 

2( )gI hv E       (3.10) 

( )gI hv E       (3.11) 

Plotting the values of the photocurrent near the cutoff of 458 nm as a function of 

the photon energy in relation to equations 3.9 and 3.11 it is possible to determine the type 

of ZnSe bandgap.  Figure 30 shows the plot based on equation 3.9 giving a linear 

relationship indicating the direct nature of the bandgap.  The intercept of the line at x-axis 

gives the bandgap of ZnSe and found to be about 2.64 eV.  This value agrees well with 

the reported value of 2.7 eV [5]. 

 

 

 

 

 

 

 

 

 



 35

 

 

 

 

 

 

 

Figure 30.   Plot of square of photo current versus photo energy near the band edge. 
The x-intercept is 2.64 eV showing agreement with the reported value of 2.7 eV. 
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IV. CONCLUSION 

The electrical and optical properties of a set of Te:ZnSe/Ni Schottky barrier  

photodiodes were studied experimentally.  The study included three different types 

(unfiltered, and with filters to detect either UVA or UVB).   

The I-V characteristics clearly showed the expected diode-like behavior.  The 

measured I-V under light illumination showed the increase in reverse current due to 

generation of photocurrent in the diodes.  As expected, unfiltered diodes showed the 

largest photocurrent since the filters reduce the amount of light entering the sensors.   

Spectral responses of the photodiodes were probed using photocurrent 

spectroscopy.  The unfiltered sensors show broad response in UV spectral range.  The 

filtered detectors clearly showed detection either in UVA or UVB ranges with good 

discrimination.  None of the detectors show any response in the visible spectral range due 

to large bandgap of ZnSe.  The responsivities of all 15 detectors were estimated using the 

measured photocurrent and UV power using a calibrated silicon p-i-n photodiode. 

Maximum responsivity of 0.11 A/W was obtained for unfiltered sensors which are 

comparable to reported values for similar detectors.   

In addition to responsivity, the bandgap and material type of the sensors was 

determined using the responsivity data near the band edge.  The data showed that ZnSe is 

direct bandgap material with bandgap energy of 2.64eV.  These findings are in good 

agreement with published data.  Without a doubt, the filtered and unfiltered photodiodes 

tested are ready to perform their designed purpose to detect UV radiation.  Further work 

in integration with electronics, these photodiodes will become perfectly suitable for 

application as dosimeter to detect, measure, record and display UV exposure of military 

personnel for an extended period of time. Hopefully, the medical benefits, in addition to 

the potential prevention of skin cancer, of this study will expand significantly and great 

success can be anticipated in the intended applications to save precious life. 
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