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We consider the problem of distributed estimation in a power constrained collaborative wireless

sensor network, where the network is divided into a set of sensor clusters, with collaboration

allowed among sensors within the same cluster but not across clusters. Specifically, each cluster

forms one or multiple local messages via sensor collaboration (in particular, linear operation is

considered) and transmits the messages over noisy channels to a fusion center. The final estimate

is constructed at the fusion center based on the noisy data received from all clusters. In this

collaborative setup, we study the following fundamental problems. Given a total transmit

power constraint, shall we transmit the raw data or some low-dimensional local messages for

each cluster? What is the optimal collaboration scheme for each cluster? How do we optimally

allocate the power among different clusters? These questions are addressed in this article. We

will show that the optimum collaboration strategy is to compress the data into one local message

that, depending on the channel characteristics, is transmitted using one or multiple available

channels to the fusion center. The optimal power allocation among the clusters is also

investigated, which yields a water-filling type of scheme.

Key words: Distributed estimation; wireless sensor network; sensor clusters; power

allocation; collaboration strategy; data transmission; estimation distortion.

D
istributed estimation has attracted
much attention recently. One of the
network architectures for distributed
estimation involves a set of spatially
distributed sensors linked with a

fusion center (FC). Each sensor makes a noisy
observation of the phenomena of interest and transmits
its processed information to the FC, where a final
estimate is formed. The problem of optimal power
allocation among sensors given a total transmit power
constraint was considered in Cui et al. (2007), Li and
AlRegib (2007), Wu, Huang, and Lee (2008), and
Xiao et al. (2006); the goal was to minimize the
estimation distortion at the FC. For most of these

works, intersensor communication is not considered.
Intersensor collaboration can indeed be exploited to
enhance transmission energy efficiency and improve
system performance.

In this article, we consider distributed estimation in
a hierarchical network architecture with localized
collaboration. Specifically, we assume that the network
is divided into a number of sensor clusters linked with a
FC. The sensors within the same cluster have the
communication resources to locally collaborate, where-
as no collaboration is allowed across clusters. This
might be the case for scenarios where multiple sets of
sensors are spatially distributed, with each set of
sensors within a small neighborhood. Each cluster
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then transmits one or multiple one-dimensional
messages, which could be the raw data or obtained
via sensor collaboration over noisy channels to the FC
where a final estimate is formed based on the data
received from all clusters. In this context, the following
natural questions arise: Given a fixed amount of total
transmit power, how should each cluster process its
local measurements such that a minimum estimation
distortion can be achieved at the FC? How should we
allocate the power among the different clusters in an
optimal power-distortion fashion? These questions are
be addressed in this article, and we develop a
fundamental understanding of this important hierar-
chical collaborative strategy for distributed estimation.
Our work is closely related to the distributed
compression-estimation approaches in Fang and Li
(2008), Luo, Giannakis, and Zhang (2005), Schizas,
Giannakis, and Luo (2007), Song, Zhu, and Zhou
(2005), Zhang et al. (2003), and Zhu et al. (2005);
their objective is to reduce the transmission require-
ments via dimensionality reduction. While sharing
certain similarities with the distributed compression-
estimation approaches, our work focuses on the
optimal collaboration among sensors in a power
constrained scenario.

System model and problem formulation
We consider a wireless sensor network consisting of

N spatially distributed sensors, with each sensor
making a noisy observation of an unknown random
parameter h: x 5 hnh + wn, where hn denotes the
observation gain and wn denotes the additive observa-
tion noise. The sensors in the network are divided into

M sensor clusters (Figure 1). Each cluster, say cluster
m, consists of Nm closely located sensors. The sensors
in each cluster are able to collaborate to form local
messages that are sent to the FC, whereas no
communication is allowed across different clusters.
The objective is to obtain an estimate of the unknown
parameter at the FC based on the information received
from the clusters. In practice, the sensor collaboration
can be easily implemented. For each cluster, we choose
one sensor to be the cluster head whose task is to
collect the data from other sensors within the same
cluster and carry out the collaborative processing. The
resultant local messages are then transmitted by the
cluster head to the FC. We adopt the following
assumptions for this collaborative setting.

A1: The links between sensors and the cluster head
within each cluster are ideal. Sensor collaboration is
confined to linear operations.

A2: An uncoded analog amplify-and-forward
scheme is employed to transmit the local messages
from the cluster heads to the FC over noisy, wireless
channels.

For notational convenience, we use xm,n to denote the
sensor measurement of sensor n in cluster m, where n M
{1,…, Nm}, m M {1,…,M}, and

xm,n~hm,nhzwm,n ð1Þ

in which hm,n and wm,n denote the corresponding
observation gain and additive observation noise,
respectively. To capture the cluster-based collabora-
tive scenario, we write the measurements within a

Figure 1. Collaborative setting: the network is divided into a number of sensor clusters. Sensors within each cluster can collaborate to

convert their noisy observations {xm} into some local messages: {zm}.
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cluster in a vector form: xm~½xm,1 xm,2 . . . xm,Nm
�T ,

which is given by

xm~hmhzwm, ð2Þ

with hm~½hm,1 hm,2 . . . hm,Nm
�T and wm~½wm,1 wm,2

. . . wm,Nm
�T . The local messages via sensor collaboration

within each cluster can therefore be expressed as

zm~Cmxm, ð3Þ

where Cm [ Rpm|Nm denotes the collaboration matrix for
cluster m, pm # Nm is the dimensionality of the message
vector zm whose choice is discussed later. The signal
received at the FC from the mth cluster is given by

ym~GmAmCmxmzvm, ð4Þ

where Gm [ Rpm|pm denotes a fading multiplicative
channel matrix, which can be diagonal or nondiag-
onal, depending on the transmission scheme (e.g.,
orthogonal vs. nonorthogonal channel access); Am~

diag a1, . . . , apm

� �
is the amplification matrix with ai

denoting the amplification factor used in transmitting
the ith message of zm; vm [ Rpm denotes the additive
channel noise vector. Without loss of generality, we
assume Gm 5 I and Gm 5 I, where I denotes the
identity matrix, because the multiplicative effect of the
channel matrix can be removed by carrying out a matrix
inverse using an estimate of the channel matrix Gm at
the receiver and the amplification matrix Am can be
absorbed into Cm. We have the following assumption
regarding observation noise {wm} and channel noise
{vm}.

A3: Noise {wm} and {vm} are zero mean with positive
definite autocovariance {Rw,m} and {Rv,m}, respec-
tively, which are available at the FC. The noise
across different clusters is mutually uncorrelated, i.e.,
E½wiwj

T � ~ 0 and E½vivj
T �~ 0 Vi = j .

Let y 5 [y1 y2 … yM]T denote a column vector
formed by stacking the data received from all clusters.
We have

y~Cxzv~C(hhzw)zv, ð5Þ

where C 5 diag{C1, …, CM} is a block diagonal matrix
with its mth block-diagonal element equal to Cm, x 5

[x1 x2 … xM]T, v 5 [v1 v2 … vM]T, h 5 [h1 h2 …
hM]T, and w 5 [w1 w2 … wM]T. A natural question
arising from this scenario is to find an overall optimal
collaboration matrix C, or equivalently, a set of

individual collaboration matrices Cmf gM
m~1, to achieve

a minimum estimation distortion at the FC. Also,
because the amplification factors {Am} are incorporated

into the collaboration matrices {Cm}, the overall
collaboration matrix C has to satisfy a total transmit
power constraint. Specifically, using a Linear Mini-
mum Mean-Square Error (LMMSE) estimator (Kay
1993), it can be readily verified that we are faced with
the following optimization problem:

min
C

E½(h{^
h)2�~s2

h{s4
hh

T CT (CRxCT zRv){1Ch

s:t: tr(CRxCT )ƒP, ð6Þ
where s2

h denotes the signal variance; Rx 5 E[xxT];

tr(CRxCT) is the average transmit power required to
send the local messages from all clusters to the FC; and
P is a prespecified power budget for transmission.

Single cluster case
The development of the optimal collaboration

matrix for the single cluster case is quite involved.
Because of space limitations, we only present the main
results without providing the proof.

THEOREM 1: Consider the optimal collaboration design
problem formulated in (6) and described in Figure 1,
where the sensor measurements xm, the local messages
zm, and the received messages at the FC ym are given by
(2), (3), and (4), respectively. When M 5 1, the
optimal solution to (6) is

C�~c
ffiffiffiffi
P
p

Uv½:, 1�hT R{1
x , ð7Þ

where Uv[:, 1] denotes the first column of Uv; Uv is an
orthonormal matrix obtained by carrying out the

eigenvalue decomposition of Rv, i.e., Rv~UvDvUT
v ;

and c~1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hT R{1

x h

q
. The associated estimation Mean

Square Error (MSE), i.e., the value of the minimum
objective function of (6), is given by

Ef½h{^
h(C�)�2g~s2

h{s4
h

P

Pzmin(dv)
hT R{1

x h ð8Þ

PROOF: A rigorous proof is provided in Fang and Li (in
press).

The optimal solution (7) has very important
implications that we shall explore in the following.
Considering the scenario of independent channels, i.e.,
Rv is diagonal; Uv 5 I and Uv[:, 1] 5 e1, where ei

denotes the unit column vector with its ith entry equal
to 1 and its other entries equal to 0. Therefore the
optimal collaboration matrix becomes

C�~
c
ffiffiffiffi
P
p

hT R{1
x

0(p{1)|N

" #
, ð9Þ

which is a matrix with its first row equal to
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c
ffiffiffiffi
P
p

hT R{1
x and all other rows equal to 0. The solution

suggests that we should compress the measurements into
only one local message and transmit it via the best-quality
channel (note that the first row corresponds to the first
channel, which has the smallest noise variance because
the diagonal elements of Rv are assumed in an ascending
order) to the FC. If the channels have identical qualities,
then we can use any of them to send out the local message.
Also, by rewriting the collaboration weighting vector

c
ffiffiffiffi
P
p

hT R{1
x as

c
ffiffiffiffi
P
p

hT R{1
x ~c

ffiffiffiffi
P
p

s{2
h s2

hhT R{1
x

~c
ffiffiffiffi
P
p

s{2
h RhxR{1

x , ð10Þ

where Rhx5 E[hxT], we can immediately see that the

local message is exactly the LMMSE estimate RhxR{1
x x

multiplied by a scalar c
ffiffiffiffi
P
p

s{2
h . This means that when

channels are independent, LMMSE estimation followed
by an amplification factor is optimal in a power-
distortion sense.

We now investigate the case where the channels are
correlated, i.e., Rv is nondiagonal. Each row of the
optimal collaboration matrix can be readily expressed as
follows by combining (7) and (10):

C�½i, :�~Uv½i, 1�c
ffiffiffiffi
P
p

s{2
h RhxR{1

x , ð11Þ

where Uv[i, 1] is the (i, 1)th entry of Uv. Therefore the
LMMSE estimate is transmitted by multiple channels
with different amplification gains that are proportional

to Uv½i, 1�f gp
i~1. The number of local messages to be

transmitted, p, 1 # p # N, should be as large as possible
because the more channels employed, the more diversity
that can be provided. However, system complexity will
also increase as more channels are involved.

Multiple cluster case
We now examine a general scenario where the network

consists of multiple sensor clusters. In this case, the
collaboration matrix C has a block diagonal structure
because intercluster collaboration is not allowed. The
approach described in previous subsection, therefore,
cannot be directly applied here. To solve (6), we hope to
decouple the optimization problem into a set of tractable
subtasks. To this goal, we rewrite the estimation MSE as
follows (Fang and Li in press).

E½(h{ĥh)2�~s2
h{s4

hh
T CT (CRxCT zRv){1Ch

~ s{2
h z

XM
i~1

hT
i CT

i (CiRw,iC
T
i zRv,i)

{1Cihi

 !{1

,

ð12Þ
where we use the fact that Rx~s2

hhhT zRw, along

with the block diagonal structures of C, Rw, and
Rv. Therefore the optimization problem (6) be-
comes

max
Cif g

PM
i~1

hT
i CT

i (CiRw,iC
T
i zRv,i)

{1Cihi

s:t:
PM
i~1

tr(CiRx,iC
T
i )ƒP ð13Þ

in which the power constraint follows from

tr(CRxCT )~
XM
i~1

tr(CiRx,iC
T
i ):

To use the theoretical results obtained for M 5 1, we
express the component hT

i CT
i (CiRw,iC

T
i zRv,i)

{1Cihi

in (13) as a function of hT
i CT

i (CiRx,iC
T
i zRv,i)

{1Cihi,
which can be done by resorting to the Woodbury identity:

s2
h{s4

hhT
i CT

i (CiRx,iC
T
i zRv,i)

{1Cihi

~(s{2
h zhT

i CT
i (CiRw,iC

T
i zRv,i)

{1Cihi)
{1:ð14Þ

For notational convenience, let

mi(Ci)~hT
i CT

i (CiRw,iC
T
i zRv,i)

{1Cihi

gi(Ci)~hT
i CT

i (CiRx,iC
T
i zRv,i)

{1Cihi: ð15Þ

Therefore (14) can be rewritten as

mi(Ci)~
1

s2
h

1

1{s2
hgi(Ci)

{1

 !
: ð16Þ

Substituting (16) into (13), we arrive at the following
optimization

max
Cif g

PM
i~1

1

s2
h

1

1{s2
hgi(Ci)

{1

 !

s:t:
PM
i~1

tr(CiRx,iC
T
i )ƒP: ð17Þ

Clearly, (17) can be decoupled into two sequential
subtasks, i.e., a power allocation (among clusters)
problem and a set of collaboration matrix design
problems that can be solved using the previous results.
To see this, suppose P�1 , P�2 , . . . , P�M

� �
is an optimum

power assignment with

tr(CiRx,iC
T
i )ƒP�i Vi [ 1, . . . , Mf g

XM
i~1

P�i ƒP

Fang, Li, Dorleus, & Cui
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then (17) is simplified into a set of identical problems as

max
Cif g

1

s2
h

1

1{s2
hgi(Ci)

{1

 !

s:t: tr(CiRx,iC
T
i )ƒP�i : ð18Þ

Note that s2
hgi(Ci) must lie within the interval

(0, 1) because we have g(Ci) . 0 and mi(Cj) . 0 from
their definitions. Hence (18) is equivalent to

max
Ci

gi(Ci)

s:t: tr(CiRx,iC
T
i )ƒP�i , ð19Þ

which is exactly the optimization problem discussed in
the previous section. The optimal solution to (19) is
given in Theorem 1. The key problem, therefore,
is to determine the optimum power assignment

P�1 , P�2 , . . . , P�M
� �

. To meet this goal, we need to

find out the relationship between the maximum
objective function value gi(C

�
i ) and P�i . Recalling

Theorem 1, more precisely, (8), we have

gi(C
�
i )~

P�i
P�i z min (dv,i)

hT
i R{1

x,i hi~
aiP

�
i

bizP�i
, ð20Þ

where we define ai ~ hT
i R{1

x,i hi, bi 5 min (dv,j), and

dv,j is a column vector consisting of the eigenvalues of
Rv,i (note that Rv,j can be nondiagonal). Substituting
(20) into the objective function of (17), we get

XM
i~1

1

s2
h

1

1{s2
hgi(C

�
i )

{1

 !
~
XM
i~1

aiP
�
i

(1{s2
hai)P

�
i zbi

:

ð21Þ

Clearly, the optimal power allocation P�1 , P�2 , . . . , P�M
� �

must be the one, among all feasible power assignments,
that maximizes (21). Therefore, it can be found out by

min
P1,...,PMf g

{
XM
i~1

aiPi

(1{s2
hai)Pizbi

s:t:
XM
i~1

PiƒP

Pi§0 Vi [ 1, . . . , Mf g: ð22Þ

It is easy to verify that the optimization problem (22)
is convex because its Hessian matrix, which is a diagonal
matrix in this case, is positive semidefinite on the convex
set defined by the linear constraints. Although (22) is
efficiently solvable by numerical methods, it can also be
solved analytically by resorting to the Lagrangian
function and Karush-Kuhn-Tucker conditions, which
leads to a water-filling type power allocation scheme.
The details are omitted here because of space limita-

tions. Briefly speaking, for a threshold l, we have

Pi~

1

Qi

ffiffiffiffiffi
wi

l

r
{1

 !
wi§l

0 otherwise

8><
>: ð23Þ

where wi 5 ai /bi, Qi~(1{s2
hai)=bi. It is easy to see

that each cluster can decide whether to transmit or
keep silent by the criterion wi $ l. Note that wi is

the ratio of hT
i R{1

x,i hi to min (dv,i), with the former

is a measure of the cluster’s estimation quality (a
larger value indicates a better estimation accuracy)
and the latter a measure of the cluster’s channel
quality (a smaller value indicates a better channel
quality).

So far we have developed an analytical approach that
leads to an optimal solution to (6). For clarity, we now
summarize the steps of our proposed method.

1. Given the prior knowledge of the autocorrelation
matrices Rv,if gM

i~1, Rw,if gM
i~1, and the observa-

tion gain vectors hif gM
i~1, compute aif gM

i~1, and

bif g
M
i~1, where ai~hT

i R{1
x,i hi and bi 5 min(dv,i).

2. Given the total power constraint P, find the
optimal power allocation among clusters via (22).

3. With the optimal power assignment P�1 ,
�

P�2 , . . . , P�Mg derived in the previous step, deter-
mine the optimal collaboration matrices Cif gM

i~1

via (19), whose solution is detailed in Theorem 1.

Simulation results
We consider the single cluster case and carry out a

simple performance analysis to corroborate our theo-
retical results (more analysis and simulation results are
available in Fang and Li [in press]). We compare our
optimal collaboration strategy with the scheme pro-
posed in Cui et al. (2007), where there is no intersensor
collaboration and each sensor transmits its observation
to the FC with optimally assigned power. For
simplicity, we consider a homogeneous environment
with identical observation and channel qualities, where
s2

w denotes the observation noise variance and s2
v

represents the channel noise variance. Also, all
observation and channel gains are assumed to be
unitary, i.e., 51, throughout all examples in the article.
Clearly, an equal power allocation is optimum for Cui
et al. (2007) and the corresponding estimation MSE
can be shown to be

MSENC~
Ps2

ws
2
hzNs2

vs
4
hzNs2

vs
2
hs

2
w

PNs2
hzPs2

wzNs2
vs

2
hzNs2

vs
2
w

, ð24Þ

where the subscript NC denotes noncollaboration. For
our collaboration strategy, the estimation MSE can be
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computed by using (8), which reduces to

MSEOC~
Ps2

ws
2
hzNs2

vs
4
hzs2

vs
2
hs

2
w

PNs2
hzPs2

wzNs2
vs

2
hzs2

vs
2
w

, ð25Þ

where the subscript OC denotes optimal collaboration.

For notational convenience, let a~Ps2
ws

2
hzNs2

vs
4
h and

b~PNs2
hzPs2

wzNs2
vs

2
h. It can be easily verified that

(azN s2
vs2

hs2
w)(bzs2

vs2
w)

§ (azs2
vs2

hs2
w)(bzN s2

vs2
w), ð26Þ

where (26) becomes an equality only when N 5 1.
Hence as expected, the relationship MSENC $

MSEOC holds, which means that the optimal collab-
oration scheme should always outperform the noncolla-
boration scheme.

Figure 2 depicts the estimation MSEs of the two
schemes as a function of N under a total transmit power
constraint, with s2

w~0:2 and s2
w~1, respectively.

From Figure 2, we see that both schemes benefit from
an increasing number of sensors; as N increases, the
estimation MSEs will asymptotically approach certain
values that, however, are nonzero. This observation can
be readily verified from (24)–(25). Also, it can be seen
that the noncollaborative scheme is sensitive to the value
of s2

w; as the observation quality deteriorates, its
performance degrades considerably. In contrast, the

collaborative strategy demonstrates a certain degree of
robustness against the observation quality deterioration.
In Figure 3, we plot the estimation MSE versus the total
transmit power. We see that the performance gap
between the two strategies shrinks as the transmit power
increases. In fact, from (24)–(25) we observe that as the
transmit power goes to infinity, these two strategies
approach identical performance. This suggests that the
collaborative strategy should be preferred especially
when the sensor observation qualities are bad and
transmit power is severely constrained.

Conclusion
We studied an optimal collaboration and power

allocation problem for distributed estimation in a
power-constrained collaborative sensor network, where
the network consists of a number of sensor clusters,
and collaboration is allowed within the same cluster
but not across clusters. Our theoretical results showed
that, given a specified total transmit power, the power
should be assigned among the clusters in a water-filling
manner, with each cluster deciding whether to transmit
or keep silent by comparing with a threshold the ratio
of a measure of the cluster’s estimation quality to a
measure of the cluster’s channel quality. Also, for each
cluster, if the channels from this cluster to the FC are
independent, then an optimal collaboration yields only
one local message, which is sent from the best channel

Figure 2. MSEs of collaborative and noncollaborative strategies versus number of sensors s2
v~0:1, s2

h~1, and P 5 1.
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within the cluster to the FC; otherwise the local
message has to be sent across all channels within the
cluster at different power levels matched to their
channel quality. Specifically, in either case, the
compressed local message is exactly the local LMMSE
estimate multiplied by an amplification factor. Simu-
lation results have been presented to corroborate our
theoretical analysis. C
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