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DARPADARPADARPA It is Costly to Test, Qualify, Re-Qualify, 
and Generally Manage Materials
B-2 Program Experience

Between 1981 and 1986
• $100M Spent by Boeing 
Alone

• 12,000 Specimens Broken, 
Range from Small Adhesion 
Test to 8’ Wing Box

• Combinations of all Layups 
Were Tested

Engineering Estimated That
• $20M Could be Saved with 
AIM Methodology

• 2-Years Could be Shaved Off

• Cytec Fiberite 934/T300 Wing 
BMS 8-297

• Hexcel F584/T300 Center
BMS 8-256
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What About AIM-C Accelerates Insertion?

• Definition of requirements
• Focus based on insertion needs (DKB)

– Focused Testing

• Earlier risk reduction
• Validated analysis tools
• Approach for use of existing knowledge
• Reduced rework
• Knowledge management
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The AIM-C Team

• Boeing – Seattle and St. Louis – AIM-C CAT, Program Management
• Boeing – Canoga Park – Integration, Propagation of Errors
• Boeing – Philadelphia – Effects of Defects

• Convergent Manufacturing Technologies - Processing
• Cytec Engineered Materials – Constituent Materials, Supplier

• Materials Sciences Corporation – Structural Analysis Tools
• MIT – Dr. Mark Spearing – Lamina and Durability
• MIT – Dr. David Wallace – DOME, Architecture
• Northrop Grumman – Bethpage – Blind Validation
• Northrop Grumman – El Segundo – Producibility Module
• Stanford University – Durability – Test Innovation

CMTCMT
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The objective of the AIM-C Program is to provide concepts, an approach, 
and tools that can accelerate the insertion of composite materials 

into DoD products

AIM-C Will Accomplish This Three Ways
Methodology - We will evaluate the historical roadblocks to effective 

implementation of composites and offer a process or protocol to eliminate 
these roadblocks and a strategy to expand the use of the systems and 
processes developed.

Product Development - We will develop a software tool, resident and accessible 
through the Internet that will allow rapid evaluation of composite materials 
for various applications. 

Demonstration/Validation - We will provide a mechanism for acceptance by primary 
users of the system and validation by those responsible for certification of the 
applications in which the new materials may be used.

AIM-C Alignment Tool

CC20044.03
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Producibility ModuleProducibility Module
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DARPADARPADARPA Technical Components
of AIM-C

Materials Insertion Methodology
Baseline Material and Structure
Modular Approach to Modeling

Prediction of Structural Response 
Composite Mechanical Properties, including
Progressive Damage Failure, and
Durability

Distributed Object-based Modeling Environment (DOME)
An emergent network of models (information services)

Robust Design Computational System (RDCS)
Distributed computing capability 
Uncertainty and Error Propagation
Probabilistic Analysis

Materials, Processing, Producibility and Manufacturing (M&P)2

Raw material physical and mechanical properties
Residual stress state as dependent on processing
Producibility aspects of new materials and structure

Validation
Design, Certification, Implementation Considerations
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Module Development

of the CAT
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Near Term or Current Capabilities
1. Processing Module

– Processing Window Studies
– Spring-In and Deformation Calculations 
– Evaluation of Novel Processes (i.e. staging, VaRTM)
– Thick Laminate Structure 

2. Structures Module
– Stiffener termination/pull off problem
– OHC, OHT, Un-notched Coupon Prediction
– Large Notch Type Damage Problem

3. Robust Design Computational System (RDCS)
– Already in use by Sonic Cruiser
– Combined Structure/Processing Effects -- Microcracking
– Sensitivity Analysis/Design Space Scans, Optimization, etc. 

• Qualification/Re-qualification of Materials



DARPADARPADARPA Processing Module
CMT’s COMPRO

2D FEM

Tool
Model

Part
Model

Autoclave
Model

Boundary Conditions

Program Controls
Cure Cycle
Layup Definition
Choice of Material

Resin Models

Output formatted for 
text, Excel or Tecplot 

Fiber Properties

Module
Processing

Module
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AIM-C Structural Property Prediction

Basic Effort Goals

• Direct your efforts to the areas that matter the most
• Analytically “weed out” non-viable design concepts
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Effect of Specimen Width on OHC
Effect of Mfg Tolerances on OHC 
Effect of Tooling Material CTE on OHC
Effect of Fiber/Matrix Interface on OHT

Capture the Effect of Changes in Material, Design, 
Manufacturing/Processing, and Testing Variables
On Typical Failure Values 

Two Methods for Structural Property Prediciton
The Strain Invariant Failure Theory (SIFT) 

The Boeing Company

Mechanistic Approaches
Materials Sciences Corporation

Module
Structure
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Lower Lying Modules

Fiber

Module

Fiber Module
Fiber does not change during processing (excluding interface)
Basic Effort  - properties, variability through historical data, 
Include placeholders for interface
Option Effort - Expand selection of Fibers, explore interface issues
Phase II - Add interface capability

Module

Resin

Resin Module
Resin does change during processing
Basic Effort  - Properties, Models
Option Effort - Expand Models, Add Resins
Phase II - Out time, Add resin/fiber interface capability, aging?

Prepreg

Module

Prepreg Module
Combines constituents with controlled changes to resin properties
Basic Effort  - properties, variability through historical data
Option Effort - Model resin staging
Phase II - Predict tack and drape
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Resin Module Simple Demonstration
Ran in Isolation

Output to Text File to Excel

Execute Resin Module
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Resin Module Output
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Logic Relay

Power
Supply

Heating Chambe
Fixed Support

Fiber

ThermocoupleHeater

Linear Stages
Load Cell Resin

nputInput

Computer

Output

 Motion
 Controller

Schematic of CIST Apparatus
cure-induced stress test 
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Linking Processing to Structures

Effects of Processing Variables 
on Laminate Performance

Demonstration of Problem Solving

AIM-C

•Approach
• Experimental Design
• Input Variable Description
• Output Variable Description

• CAT Architecture and Interface
•Results

•Processing Module
•Stress Free Temperature
•Structures Module
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•Processing
•Maximum Temperature in Laminate
•Maximum Air to Part Delta (Exotherm)
•Maximum Internal Part Gradient

•Structures (Laminate)
•Stress-Free Temperature

•Structures (SIFT)
•Load to First Crack

Approach – Output or Response Variables



DARPADARPADARPA Experimental Design

The “design scan” (one-factor at a time) with six input parameters, required only 2*6+1 = 13 
runs per material. It is performed at 3 levels – a maximum, a minimum and a center point) so 
that non-linearities can be assessed.

Input/Design Variables:

Output/Response Variables:

Materials: IM7/977-3 and IM7/8552

Level 2
(Nom.)

A Part Thickness 0.08 0.39 0.7
B Tooling Material Invar 42 Alum.
C Pressure 15 82.5 150
D First Hold Time 1 60 120
E Second Ramp Rate 1 5.5 10
F Autoclave Heat 

Transfer Coefficient
5 12.5 20

Input Variable 
Description/Name

Level 1 
(Min)

Level 3 
(Max.)

Composite

Variable Name
1 Maximum Laminate Temperature during Cure
2

Approx. Stress Free Temperature resulting from Cure
3

Load at first matrix cracking using SIFT method
4
5

Maximum Air to Part Delta during Cure
Maximum Laminate Gradient during Cure
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System Architecture

Max.  Lam. 
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RDCS Math Model



DARPADARPADARPA

•Tooling Thermal Conductivity

•Part Configuration – Thickness

•Processing – Pressure, Temperature

•Autoclave  - Heat Transfer Coefficient

8 ply (0.0.080) inch
64 ply (0.70 Inch) 

TimeTime
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Approach – Input/Design Variables

Composite INVAR Aluminum
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Processing Module 

Part Temperature at Max. Exotherm (977-3) 

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700

Time (min)

Te
m

pe
ra

tu
re

 (F
)

All Variables Nominal except Part thickness – High (0.7”)

In Depth Analysis Using Processing Module
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Processing Module 

Part Temperature at Max. Exotherm (8552) 
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DARPADARPADARPA Results – Importance of Main Variables
Stress Free Temperature Sensitivity Results
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•Part Thickness and Pressure are the most important drivers 
– High Pressure and thin parts are better

•Tool Material and Autoclave Heat Transfer Coefficient have a moderate effect 
– Higher is better for both parameters

•Hold Time and Ramp Rate have little effect
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AIM Analysis Results 

Stress Free Temperature
Resin Modulus and & Cure Shrinkage for 8552 (1995)

180 C Cure Temperature
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Critical Load Vs. Stress Free Temp.
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We Have to Get This Right!!!
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We Have to Get This Right!!!

Thermal Expansion Effect
Side Study on Sensitivity due to CTE
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Summary
• Processing Module is Ready to be Used

– Rich History of Commercial and Military Studies
– Strong at Solving 2D Heat Transfer Problem
– Good at Solving Residual Deformation Problem

• Structures Module -- Useful Functionality
– Predict Simple Coupon-Level Properties
– Solve Sub-Component Problem? 

• Combined Effects of Processing and Structure
– Residual Stresses from Process Passed Directly to Structures 

Analysis.
– Understand the relationship between processing and structural 

performance. 
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Backup Charts
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Understanding Uncertainty –
The Benefit of Linked Simulation Tools and 

Methodology

Statistical Statistical 
ToolsTools

Probabilistic Probabilistic 
ToolsTools

Risk Risk 
Analysis Analysis 

ToolsTools

Errors in material property 
definition, errors in coding, 
errors in integrating process and 
structural models.

The formulation is believed to be 
most accurate when the cure 
cycle temperature is higher than 
the Tg.  Otherwise the residual 
stress calculated can be an 
overestimate.

Micro-stresses are 
considered to be 
independent of meso-
stresses; there are few 
independent 
measurements of residual 
stress.

Many parameters can 
affect residual stress: 
local fiber volume 
fraction, …

Residual Stresses

Error in defining layup, or 
alternatively errors in the 
manufactured part compared to 
model

The layers are smeared 
within an element and it 
is assumed that the 
smeared response is 
representative

Variation in lay-up during 
hand or machine lay-up.

Layup

Tool Part 
Interaction

Temperature 
Boundary 
Conditions

Tool-part interaction is 
very complex, and very 
local effects may at times 
be significant

Modeling of heat transfer 
coefficient of autoclave 
includes pressure effect 
but not shielding of part.  
Assumptions made about 
tool-part resistance.

Uncertainty due to lack of 
knowledge 
(Epistemic 
uncertainty) 

inadequate 
physics models
information from 
expert opinions.

Current model of tool-part 
interaction is too simple for large 
parts on high CTE tools.

Convergence of mesh must be 
checked.  Time-steps and 
temperature steps must be small 
enough.

Known Errors (acknowledged)
e.g. round-off errors 
from machine 
arithmetic, mesh size 
errors, convergence 
errors, error propagation 
algorithm

Errors in calibrating the tool-
part interaction

Part to part and point to 
point variations in tool 
finish and application of 
release agent

Errors in setup files, and other 
initialization procedures.  
Errors/bugs in code.

Variation in temperature 
throughout an autoclave; 
variation in bagging 
thickness across part

Mistakes (unacknowledged 
errors)

human errors e.g error 
in input/output, 
blunder in 
manufacturing

Inherent variations 
associated with physical 
system or the 
environment (Aleatory
uncertainty)

Also known as 
variability, 
stochastic 
uncertainty

E.G. manufacturing 
variations, loading 
environments

Errors in material property 
definition, errors in coding, 
errors in integrating process and 
structural models.

The formulation is believed to be 
most accurate when the cure 
cycle temperature is higher than 
the Tg.  Otherwise the residual 
stress calculated can be an 
overestimate.

Micro-stresses are 
considered to be 
independent of meso-
stresses; there are few 
independent 
measurements of residual 
stress.

Many parameters can 
affect residual stress: 
local fiber volume 
fraction, …

Residual Stresses

Error in defining layup, or 
alternatively errors in the 
manufactured part compared to 
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The layers are smeared 
within an element and it 
is assumed that the 
smeared response is 
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Variation in lay-up during 
hand or machine lay-up.
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Temperature 
Boundary 
Conditions

Tool-part interaction is 
very complex, and very 
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Modeling of heat transfer 
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includes pressure effect 
but not shielding of part.  
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tool-part resistance.

Uncertainty due to lack of 
knowledge 
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physics models
information from 
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Convergence of mesh must be 
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enough.
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e.g. round-off errors 
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errors, convergence 
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Modeling of the Process



DARPADARPADARPA Results – Importance of Main Variables

Part Temperature Gradient Sensitivity Results

•Part Thickness, Pressure, and Tool Conductivity are the most important drivers 
– Thin parts, High tool conductivity, and lower Pressure are better

•Other variables have little effect
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AIM Processing Module (COMPRO)

Convection Boundaries

5” thick part on 0.5” thick Invar tool

Adiabatic Boundary

Convection Boundary

• Look at part temperature with respect to time and position along center line

Top Caul Sheet
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