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Schlieren Imaging of a Single-Ejector, Multi-Tube Pulsed 
Detonation Engine 

J.L. Hoke* A.G Naples†, and L.P. Goss‡ 
Innovative Scientific Solutions Inc., Dayton, OH, 45440 

F.R Schauer§ 
Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433 

Single-ejector, multi-tube pulsed detonation engine configurations are examined utilizing 
high speed schlieren and coherent structural velocimetry.  The mechanisms of ejector 
augmentation are evident in secondary air entrainment and induced flow across the ejector 
lip.  An axisymmetric ejector with both a linear array and a more compact box array of 
detonation tubes was examined.  Good secondary entrainment and subsequent ejector flow 
was observed, supporting previous results indicating off-axis effects are relatively 
insignificant to ejector thrust augmentation.  A linear ejector with linear detonation tubes 
revealed limited secondary flow engagement with the ejector lip, likely due to structural ribs. 

 

Nomenclature 
d driver diameter  
Dej ejector diameter 
D*

ej ejector equivalent-area diameter (2-D ejector) 
φ equivalence ratio 
ff fill fraction 
Hej ejector throat height (2-D ejector) 
igd ignition delay- time between valve closing and spark deposit 
Lej ejector length 
pf purge fraction 
Rin ejector inlet radius 
W ejector width (2-D ejector) 
x ejector distance downstream from detonation tube exit 
y distance from detonation tube centerline 
 
 

Introduction 
 Previous studies have shown the potential of an ejector to almost double the thrust of a pulsed detonation engine 
(PDE) tube [1-3].   Axial misalignment of the detonation tube and ejector was shown to have little or no effect on 
augmentation to a y/d of 1.14[4].  However when multiple detonation tubes are bundled together and directed at a 
single ejector, it was found that the augmentation levels dropped significantly.  It was hypothesized that interaction 
between a starting vortex and the induced flow in the ejector by an adjacent tube was causing the decrease in multi-
tube performance.  In this study, Schlieren imaging of the PDE exhaust entering the ejector is used to examine the 
negative tube-tube interactions to determine methods to mitigate the reduction in performance for multi-tube, single 
ejector, PDE operation. 

                                                           
* Senior Engineer, 2766 Indian Ripple Rd, Dayton, OH 45440, AIAA Senior Member. 
† Engineer, 2766 Indian Ripple Rd, Dayton, OH 45440. AIAA Member 
‡ Senior Engineer, 2766 Indian Ripple Rd, Dayton, OH 45440, Associate Fellow. 
§ Research engineer, 1790 Loop Rd, WPAFB, OH 45433, AIAA Associate Fellow. 
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Experimental Setup 
 The thrust stand and research pulsed detonation engine located at the Pulsed Detonation Research Facility 
in the Air Force Research Laboratory were used for this study.  The PDE utilizes automotive valving to feed up to 
four detonation tubes.  The damped thrust stand was setup to measure PDE thrust alone for baseline tests or total 
thrust from ejector and PDE.  This experimental setup has been described in detail previously[5].  Unless otherwise 
noted, experiments were performed with stoichiometric hydrogen air, 10 Hz per detonation tube, 3.5" diameter 
detonation tubes, purge fraction of 0.5, 75" detonation tube length, with a 28" Schelkin-like spiral to promote 
deflagration-to-detonation transition.  Three ejector configurations will be examined.   
 In multi-tube operation, the fill and/or  purge from an adjacent tube can influence the flow into the ejector.  
Shown below in fig. 1 is a schematic of the timeline of the PDE for two complete cycles.  While tube 1 is firing, 
tube 3 is filling, tube 4 is finishing the purge period and tube 2 is idle.   
  

0 100 200 300 400 500 600 700

Angle [Deg]

Tube 4

Tube 3

Tube 2

Tube 1Purge Fill Detonate

 
Figure 1  Schematic of the timeline for two complete cycles of the PDE.  Notice the four 
detonation tubes are 90 degrees offset and the firing order is 1-3-4-2. 

 
  
A. Schlieren Setup 
Shown below in fig 2, is a schematic of the light source and spherical mirror arrangement.  Due to PDE vibration 
concerns the light source and camera are folded by flat mirrors to be as distant from the PDE is possible.   Images 
were process using standard PIV cross-correlation software with 50% overlap.  The camera frame rate was 4700 
frames per second or 213 μs between frames and an image resolution of 447 μm/pixel.   
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Figure 2  Schematic of Z-type schlieren mirror arrangement with fold mirrors used in this 
experiment. 

 
The detonator tube array is typically horizontal, and imaging through three exhaust plumes give little information on 
the  effect of the off-axis detonator tubes.  An adaptor was constructed to rotate the tube array to vertical so that the 
effect of the detonator tube location relative to the edge of the ejector could better be visualized.  In Fig 3a, an image 
of the adaptor used to rotate the detonation tubes from a horizontal array to a vertical array is shown.  Interestingly, 
the length and angle of all four tubes connecting the horizontal flange to the vertical flange are identical.  In this 
arrangement, only three detonator tubes could be located within the diameter of the ejector and the fourth outside 
tube was not used.  Figure 3b, shows an adaptor to fit all four detonation tubes within the perimeter of the round 
ejector.  The length and angle of the tubes connecting the two flanges are not identical but similar.  The tube inner 
diameter in Fig 3 is 2.06" and the distance from flange to flange is 12" .  Detonation tubes 60" long and 3.5" in 
diameter were fabricated so that the exit of the detonation tube was approximately 72" and little adjustment of the 
mirrors was required. 
 
 

      
 

 
 

Figure 3  Adaptors used to a) rotate tube array from horizontal to vertical and, b) to adjust 
the array so all tubes are within the perimeter of the ejector. 

 
 

a b 
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B.  Round Ejector, Linear Tube Array 
In this experiment, three detonation tubes were directed into the inlet of a single, round, 13" diameter 

ejector, The ejector to detonation tube diameter ratio, Dej/d was 3.86, and x/d varied from 0 to 5, although, all of the 
imaging was done at x/d of 2.  The ejector Lej/Dej was 5.7 and the inlet radius to ejector diameter was 0.66.  The 
ejector hardware available was a straight walled ejector with a rounded inlet.  A tapered diffusion section was not 
available but was found previously to nearly double ejector augmentation[3].   

The detonation tubes were 72" long with a volume of 580 in3.  The centerline spacing between the 3.5" 
diameter detonation tubes was 4", therefore tubes 1 and 3 were 4" or y/d of 1.14 off axis. A schematic of the 
detonation tube arrangement is shown in fig. 4 and a picture of the hardware is shown in fig 5.  The adaptor to rotate 
the array from horizontal to vertical is not shown in this schematic, but an image is shown in fig 3a.  The conditions 
were identical to those of the off-axis ejector experiment previously conducted with each tube firing at a frequency 
of 10 Hz, ignition delay of 0 ms and an equivalence ratio of one[4].  The valves in this engine were operated by a cam 
shaft and therefore the relative timing between tube firing was fixed by the rotational speed of the cam shaft.  This 
was a four tube engine and the firing order was 1, 3, 4, 2 (effectively: 1, 3, 4, with 2 skipped for this configuration).  
At 10 Hz, there was 25 ms between each tube firing.  Since tube two was not used, there were 50 ms between the 
initiation of a detonation in tube 4 and that in tube 1.  Schlieren images collected show the unused tube, 2, the top 
corner of the ejector and part of tube 4. 
 

 
 

 
 

Figure 5 A picture of the round ejector and vertical tube array. 

 
Figure 4.  Schematic of multi-detonation tube single round ejector configuration 
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C.   Round Ejector, Box Tube Array 
 In this configuration, four detonation tubes were arranged to be quasi-symmetric about the ejector axis.  
The tubes are closer to the center of the ejector than the outboard tubes of the linear tube array.   The detonation tube 
volume was again 580 in3, and the same round ejector was used.  The tube arrangement and a picture of the ejector 
and detonation tubes is shown in fig 6. 

 

 
 
 

Fig 6  Box configuration, a) tube arrangement as viewed from the tailpipe and, b) picture of 
the ejector inlet and detonation tubes. 

 
 
D. Linear Ejector, Linear Tube Array 
 Although a round ejector has certain advantages, a linear arrangement of detonation tubes may be more 
desirable in application.  In this experiment, four detonation tubes were directed into the inlet of a linear ejector.  
The ejector mouth was 22" wide and 7" high.  The radius of the inlet lip was 1" giving an inlet radius to ejector 
height ratio of 0.133. The ejector was tapered by a half angle of four degrees from inlet to exit.  The centerline 
spacing between the detonation tubes was 4" and two different sets of detonation tubes were used.  Both sets of 
detonation tubes were 3.5" in diameter.  The first set was used to image the flow into the ejector as displayed in the 
“Side View” of fig. 7 and had a tube volume of 650 in3.  The second set of tubes was used to image the flow into the 
ejector as displayed in the”Top View” of fig. 7 and had a tube volume of 580 in3.  The discrepancy in tube volume is 
due to keeping the overall length of the detonation tubes 72" (to minimize mirror adjustments) and the adaptor 
shown in fig. 3a used to rotate the tube array from horizontal to vertical.  The dimensionless ratios of ejector height 
to driver diameter tested were 2.1, and Lej/d was 6.3.  A schematic showing the tubes as they relate to the ejector in 
the vertical configuration is shown in fig. 8a and a picture is shown in fig. 8b. 
  

 
Figure 7  Schematic of PDE-linear ejector configuration with 3.5" detonation tubes. 

 

a) b) 
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Fig 8 The linear ejector in the vertical arrangement, a) tube numbering as viewed from the 
tailpipe, and b) picture of linear ejector inlet and tube detonation tubes. 

 
 

Experimental Results and Discussion 
 
A. Round Ejector, Linear Tube Array, single tube operation 
 Previously, it has been shown that detonation tubes located off of the centerline of the ejector can produce 
augmentation ratios as large as a detonator tube located on the centerline.  During multi-tube operation, however, 
there has been shown to be a slight decrease in the augmentation ratio[4].  Schlieren images of the flow field 10 ms 
after the exiting shock wave collided with the ejector showed the greatest amount of induce flow into the ejector.  
These images are shown in fig. 9 for a single detonation tube interacting with the ejector.  Figure 9a is the uppermost 
tube, Figure 9b is the central tube and 9c is the lowest tube.  The tube centered on the ejector (fig 9b) shows the 
most induced flow and coherent flow pattern.  The top and bottom tube must be engaging the ejector on either side 
locally producing higher velocity.  The suction pressure on the lip of the ejector is proportional to the square of the 
velocity, so the off axis tubes may produce higher velocities over reduced areas.   

a) b) 
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Figure 9 Flow field approximately 10 ms after the shock interacted with the ejector.  Only 
one detonation tube is being used a) detonation tube at the top of the ejector (note:  the 
highest tube in the view is not being used),  b) tube centered on the ejector (actual tube is not 
in the view), c)  detonation tube at the bottom of the ejector (tube is not in the view). 

 
B.  Round Ejector, Linear Tube Array, Multi-tube operation 
 The flow field for multi-tube operation appears to be more coherent than single tube operation, see fig 10.  
The images are again arranged from uppermost detonation tube to lowermost from fig. 10a to c respectively at 10 
ms after the shock wave interacted with the ejector.  It appears that the flow from the previous firing tends to center 
the flow induced flow on the ejector, compare fig. 9 with 10.  The center tube, fig 10b, still appears to have the most 
coherent flow field and the largest induced flow on the upper lip of the ejector.  Based on these images, the multi-
tube operation would be expected to have greater augmentation than single tube operation. 
 

b    a

c
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Figure 10  Flow field approximately 10 ms after the shock interacted with the ejector.  Three 
tubes firing order is : tube centered on ejector, tube lowest on ejector and tube at the top of 
the ejector. (The uppermost tube in the image is not active and there is a ¼ cycle pause 
between the tube at the top of the ejector firing and the center tube firing) a) detonation tube 
at the top of the ejector, b) tube centered on the ejector (actual tube is not in the view), c)  
detonation tube at the bottom of the ejector (tube is not in the view). 

 
 

Figure 11, shows component velocities in the vicinity of the upper lip of the ejector as a function of time.  
In figure 11a, only one detonation tube fires, and the velocity toward the ejector oscillates with a period of about 10 
ms.  The Positive x component and negative y component indicate the velocity vector is to the right and downward 
into the ejector.  Counting the first, noisy flow into the ejector at about 10 ms there are 4 oscillations that occur prior 
to the purge gas exiting the detonation tube.    In fig 11b, two tubes are firing 180 degrees out of phase and the flow 
oscillations into the ejector are almost damped out when the next tube fires.  The first tube fires at 2 ms, the second 
fires at 52 ms and the first fires again at 102 ms.  For four tube operation, the flow at .025 ms and .075 ms will be 
interrupted by the next detonation, potentially reducing the augmented thrust produced by a single tube. 

b)   a)   

c)
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Figure 11.  Velocity components toward the ejector inlet as a function of time, a) single tube 
operation.  b)  two tubes firing 180° out of phase. 

 
C  Round Ejector, Box Array, Multi-tube Operation 

The box configuration schlieren imaging and analysis is shown in figure 12.  Although the lower tubes are 
not visible in the field-of-view, strong secondary entrainment is evident, indicating high entrainment ratio.  
Although lip velocity is only visible in frames b. and d. for the images shown, this not likely truly indicative of the 
actual flow as lack of focused structure near the ejector lip likely resulted in poor CSV results in this region.  Based 
upon the consistent secondary flow entrainment visible in all four frames, it is more likely that the lip flows result in 
significant ejector thrust augmentation, as evident in thrust augmentation results. 
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Figure 12  Flow field approximately 10 ms after the shock interacted with the ejector.  Box 
configuration, all four tubes firing a) Tube 4, lower right , b) tube 2, lower left, c)  Tube 1, 
upper right, d) Tube 3 upper right.  Firing order is  4-2-1-3. 

 
 
D.   Linear Ejector Linear Array, Multi-Tube Operation 

Imaging of the linear ejector in the vertical plane is shown in figure 13.  Tube 2 and 4 (the upper two) are 
visible on the left side of the image.  Entrainment from the upper tube (frame a) appears to be symmetric.  The 
primary flow from tube 1 is evident in the lower row of flow vectors of frame b.  Tube 3 is not evident in frame c, 
appearing below the imaging field, but secondary airflow entrainment can be observed.  Tube 4 looks much as tube 
2 did, with symmetric entrainment.  Although secondary airflow entrainment is evident in the frames shown, the 
flow field vectors indicate the majority of the flow is toward the primary jet and upstream of the ejector lip.  Only 
frames a. and b. show significant lip velocities, and those vectors are localized to a short section of ejector width.  
This is believed to be due to the ribs in ejector which likely interfered with vertical entrainment (up/down in fig 13) 
capacity of the linear ejector and correlates with the low thrust augmentation ratio observed for the linear ejector. 

 

a )  Tube 4   b)  Tube 2  

c)  Tube 1   d)  Tube 3   
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Figure 13  Flow Field approximately 10ms after shock interacted with ejector.  Linear 
ejector, vertical configuration a) Tube 2, b)  Tube 1, c) Tube 3, d) Tube 4 

 
 
Due to the deep field of view, imaging of the linear ejector in the horizontal plane encompassed all four tubes 

and spanned the ejector width.  For this reason, it was not possible to resolve the firing order with respect to imaging 
as there is no visual frame of reference.  This is evident in the schlieren visible within the ejector lip of figure 14.  
Although it is clear that mass is entrained in these images, separation is apparent at above the lip, particularly in 
image a. and c.  These frames suggest that the lip radius could be larger, possibly resulting in greater thrust 
augmentation. 

 

a) Tube 
2

b) Tube 1    
li

c) Tube 3  d) Tube 4  
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Figure 14  Flow Field approximately 10ms after shock interacted with ejector.  Linear 
ejector, horizontal configuration, each tube firing shown sequentially (1-3-4-2 firing order, 
timing unknown). 

 

 

Summary and Conclusions 

Schlieren imaging and Coherent Structural Velocimetry was performed on a variety of single ejector, multi-PDE 
tube geometries.  Both linear arrays of detonation tubes and a more tightly configured box array resulted in 
significant secondary entrainment and ejector lip flow, with resultant ejector thrust augmentation.  Previously 
obtained poor thrust augmentation results from a linear ejector with linear PDE tube driver configuration was 

a) 1st firing in sequence  b) 2nd firing in sequence  

c) 3rd firing in d) 4th firing in sequence   
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supported by the current results:  excessive separation at the lip and limited engagement of secondary airflow, likely 
caused by flow limitations from the structural ribs. 
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