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Preface 

 
 This book grew out of several courses on atmospheric entry offered at the Air 

Force Institute of Technology.  I was a student in the first course when it was created 

in the mid-1980s.  The course was taught from an analytical perspective, with finding 

closed-form solutions being the preferred approach.  The professor’s goal was to get 

us to understand how “families of solutions” behaved as well as the general trends, 

tradeoffs, and (above all else) the nature of atmospheric entry before picking point 

designs to study in detail.  That analytical mindset stuck with me and carried over to 

how I approached engineering tasks for the next 20+ years.   

 This book uses the same approach to “get back to the basics” for a new 

generation of students who’ve become more comfortable with numerical solutions 

than analytical ones.  You’ll find the pages are loaded with equations.  That’s because 

I’ve tried to include the details of many of the derivations so you won’t have to spend 

inordinate amounts of time recreating something that “is easily shown.”             

 Does this book present anything new?  Well, yes and no.  Many of the 

fundamental areas in atmospheric entry have studied by very capable people already 

and it would be a disservice to gloss over that fact.  This book pulls together many 

classical analyses and presents them in a consistent notation for the first time.  It 

provides a convenient starting point for an analytical understanding of atmospheric 

entry, with plenty of references to those original works.  It ties together results that 

were originally published years apart by different authors.  And, peppered throughout, 

you’ll find some new approaches and results.   

 How is this book different?  This book approaches solutions with one thought 

always in the back of our minds:  “How little can I know about the vehicle and still 

study its atmospheric entry?”  Current books tend to quickly turn to numerical 
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solutions.  Many of the numerical approaches require you to know the mass, surface 

area, etc. of the vehicle before beginning.  While that approach certainly has its place, 

what happens early in the design when you don’t even know if the vehicle should be a 

cone or a sphere?  The approaches in this book help you make those early decisions by 

avoiding “point designs.” 

 Why is there so much emphasis on analytical formulations?  There’s definitely 

a time to run screaming to the computer for a solution.  But, in doing so, it’s easy to 

lose sight of the “big picture” or miss “general trends” that could lead you to a better 

vehicle design.  By thoroughly understanding the classic analytic analyses first, we can 

better use the computer to solve the hard problems.  We’ll use easily visualized 

variables to solve the analytical problems and keep them (more-or-less) consistent as 

we move to the computer.  As you’ll see, the consistency will enable us to “know very 

little about the vehicle” and still study its entry!    

 Who should use this book?  It was designed for senior undergraduate and 

graduate engineering students since a basic understanding of differential equations is 

required.  Students should also be currently enrolled in or have taken a “basic orbital 

mechanics” class to get the most out of it.    

 I’ve tried to catch and correct all of the mistakes in this book.  But, I realize 

errors will “magically” appear.  If you find any, or you have any other comments, I 

encourage you to contact me by email at the address below.  All comments are 

important! 

spam4dayton-reentrybook@yahoo.com 
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Chapter 1   

Introduction 

1.1 Applicable Missions 

 Not all space missions end with a satellite, vehicle, or payload entering a 

planet’s atmosphere; in fact, most do not.  And, of those that do end with a plunge 

through the atmosphere, only some of those require the object to actually survive 

the trip!  At least three missions require surviving the entry:  ballistic-missile 

warheads, planetary probes, and manned missions. 

 Ballistic missiles provided the first real experiences with atmospheric 

entry (or “reentry”).  The German V-2 program was the first to encounter reentry 

problems.  (The rockets had a nasty habit of exploding when they hit the Earth’s 

atmosphere.)  Later, the warheads of ballistic missiles became the first reentry 

“vehicles” to be tested as the United States and the Soviet Union sought to 

develop better and more accurate ways to deliver nuclear weapons to each other’s 

cities. 

 Planetary probes developed to explore the solar system are similar in 

many ways to ballistic-missile warheads.  However, the probes usually contain 

more delicate sensors so they might be designed to reduce the deceleration forces.  
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Similarly, the probes may intend to gently land on the planet’s surface whereas 

the warhead doesn’t mind plowing into the surface at hypersonic speeds.  The 

National Reconnaissance Office’s Corona spy satellites (1959-1972) used a type 

of “film bucket” comparable to a planetary probe.  After taking pictures in orbit, 

the satellite deorbited a small reentry capsule (shown in Figure 1-1) with the film.  

The capsule was recovered and the film developed.   

 Manned missions absolutely require surviving the atmospheric entry.  

There are even more constraints on the vehicle (and its trajectory) when humans 

are onboard.  At the very least, there is a relatively small maximum deceleration 

limit and a greater need to control the interior temperature.   

1.2 Phases of Flight 

 Typical ballistic missile trajectories are composed of three parts:  the 

powered boost phase from launch until burnout, the free-flight (or orbital) phase, 

and the reentry phase that begins at the somewhat arbitrary point where the 

atmosphere “begins.”  (Perhaps more correctly, we should say it is at the point 

Image:  NROImage:  NRO Image:  NROImage:  NRO  

Figure 1-1:  Corona Reentry Capsules and Their Recovery 
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where the atmospheric drag becomes significant in some sense.)  Figure 1-2 

shows a typical ballistic missile trajectory. 

 During the powered boost phase, the propulsion system (rocket motor, 

hypersonic scramjet, etc.) is continuously adding energy to the vehicle.  The on-

board guidance and navigation system largely determines the trajectory followed, 

so gravity and atmospheric effects take a secondary role.  There may be a period 

of time between when powered flight ends and the vehicle “clears” the 

atmosphere.  During that “gap,” the vehicle is “coasting” unpowered, but might 

still be influenced by atmospheric drag.  We will, however, restrict our study to 

assuming the boost phase ends after the vehicle has “cleared” the atmosphere.  

Further, since the guidance and navigation system plays the dominant role in 

setting the trajectory during boost, we will not study that motion in detail here. 

 Once the engine cuts off and the vehicle has cleared the atmosphere, the 

free-flight phase begins.  In this region, the trajectory is governed by orbital 

motion.  For our purposes, we will assume the only gravity source is the planet we 

 

Free-Flight
“Orbital Motion”

Phase

Powered Boost Phase

Reentry Phase

Direction of Motion

Atmospheric
Boundary

Free-Flight
“Orbital Motion”

Phase

Powered Boost Phase

Reentry Phase

Direction of Motion

Atmospheric
Boundary

 

Figure 1-2:  Geometry of a Typical Ballistic Missile Trajectory 
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are near and that the planet is perfectly spherical.  (In-other-words, simple two-

body orbital mechanics is sufficient to describe the motion.)  This motion will be 

addressed in Chapter 2. 

 When the vehicle (or its payload) returns to the atmosphere, drag 

dramatically influences the trajectory and the reentry phase begins.  Chapter 3 

derives the general equations of motion for this phase.  Chapter 7 addresses the 

aerodynamic heating encountered during this reentry. 

 For certain missions, the boost phase may be absent (or so long ago as to 

be irrelevant).  Figure 1-3 illustrates this.  Examples include the space shuttle’s 

return to Earth as well as an Apollo capsule return from the moon.  The free-

flight/orbital motion phase is identical that in the ballistic missile discussion 

above while the portion in the atmosphere is simply called “entry” instead of 

“reentry.”  For consistency, “entry” will be used for all situations where a vehicle 

is entering a planet’s atmosphere in the remainder of this text.    

Free-Flight
“Orbital Motion”
Phase

Entry Phase

Direction of Motion

Atmospheric
Boundary

Free-Flight
“Orbital Motion”
Phase

Entry Phase

Direction of Motion

Atmospheric
Boundary

 

Figure 1-3:  Geometry of a Typical Atmospheric Entry Trajectory 
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1.3 Tradeoffs for Atmospheric Entry Planning 

 Designing a reentry trajectory requires carefully balancing three 

competing requirements:  deceleration limits, heating limits, and impact/landing 

accuracy.  A large portion of this text is dedicated to qualitatively comparing 

entry profiles so that we can make initial design choices to satisfy these 

requirements.  Chapter 5 looks at some broad categories of entry profiles and 

(among other things) examines the deceleration during the entry.  Chapter 7 

revisits some of those same entry profiles and examines the total heating a vehicle 

might experience as well as its instantaneous heating rates.  The entry theories are 

expanded and generalized in Chapter 9 and Chapter 10.  In Chapter 11, orbits 

perturbed by drag are studied. 
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Chapter 2   

Orbital Motion Near a 
Planet 

2.1 Introduction 

 In this text, any motion outside an atmosphere and “near” a planet will be 

referred to as “orbital motion.”  In terms of the flight phases introduced in Section 

1.2, this is the “free-flight” or “orbital” phase after burnout (if applicable) and 

before atmospheric entry.  We will assume the only gravitational force 

encountered by the vehicle (or satellite) will be from that nearby spherical planet.  

(In other words, the motion can be modeled as a simple two-body problem.) 

 Simple two-body motion is well-defined and well-derived in a multitude 

of other texts, including References 5, 20, 24, 63, and 65.  Since this is not a study 

in orbital motion, we’ll limit our effort to presenting and understanding the 

equations to be used rather than deriving them. 
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2.2 Equations of Motion 

 This is the simplest gravitational problem:  two point masses where one 

mass (the satellite) is negligibly small compared to the other (the planet).  

(Perfectly spherical planets behave as if they are point masses, hence the 

assumption our planet is spherical!)   If the center of mass is used as a reference 

point (Figure 2-1), then the equation of motion for the (small) satellite about the 

planet’s center is 

3

r
r

r


 

  

where Gm  .  G  is the universal gravitational constant and m  is the mass of 

the planet.  For our purposes, we can assume a coordinate system at the planet’s 

center is fixed and inertial.  We could write the acceleration in Eq. (2.1) as  

2

2

Id r
r

dt


  

to help distinguish it as “inertial” and different from the “relative” acceleration 

that will be introduced in the next chapter.  At this point, however, we won’t 

introduce this new (more explicit) notation because all of the velocities and  

 

r

r


 

Figure 2-1:  Simple Two-Body Orbital Motion 

2.1

2.2
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accelerations in this chapter are inertial and there is no danger of confusion.  The 

solution to Eq. (2.1) provides us with expressions we will use in other chapters.      

2.3 Constants of the Motion 

 With simple two-body motion, specific momentum is conserved in 

magnitude and in direction: 

a constant vectorr r r V h    
    

In Eq. (2.3), V r
   has been introduced as the inertial velocity.  A constant 

momentum vector h


 requires that the orbital plane is fixed in space.  Thus, the 

motion in this phase is restricted to a fixed plane that passes through the center of 

the planet and contains the radius and velocity vectors.  The orbital plane the 

satellite “flies” during this phase will be the initial “entry plane” when 

atmospheric entry begins.  (Once the atmosphere begins to affect the motion, Eq. 

(2.3) will no longer hold true.) 

 If we introduce the “local horizontal plane” as the plane perpendicular to 

the radius at any given instant (Figure 2-2), then the (constant) magnitude of the  

r


V


Local Horizontal



r


V


Local Horizontal



 

Figure 2-2:  Flight-Path Angle Defined 

2.3
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specific momentum will give us another expression 

 sin 90 cosh rV rV     

where   is the “flight-path angle” and is defined to be positive when the velocity 

is above the local horizontal plane.  (When 0  , the satellite is moving away 

from the planet; i.e., it is gaining altitude.) 

 Other constants related to the energy and momentum are the specific 

mechanical energy   

2

constant
2

V

r

     

 and the semilatus rectum p : 

2

constant
h

p


   

The geometric interpretation of p  is shown in Figure 2-3 for the various orbit 

types. 

F, F’

F

F’ F

F’F

Parabolic Orbit Hyperbolic Orbit

Circular Orbit Elliptical Orbit

2a 2a

-2a

2p 2p

2p2p
a = •

F, F’

F

F’ F

F’F

Parabolic Orbit Hyperbolic Orbit

Circular Orbit Elliptical Orbit

2a 2a

-2a

2p 2p

2p2p
a = •

 

Figure 2-3:  Geometrical Dimensions in Conic Sections (Orbital Types) 

2.4

2.5

2.6
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 Finally, there are the constants describing the orbit itself.  The classical orbital 

elements are well-known and easily visualized, so they will be used in most 

instances throughout this text.  Two elements (semimajor axis a  and eccentricity 

e ) describe the size and shape of the orbit.  Figure 2-3 already shows how the 

semimajor axis defines the size or the orbit.  The eccentricity describes the shape:  

0e   is circular, 0 1e   is elliptical, 1e   is parabolic, and 1e   is hyperbolic.  

Orbital inclination i  and right ascension of the ascending node   define how the 

orbit plane is oriented relative to the planet.  Figure 2-4 shows these angles for an 

elliptical orbit, but they are defined identically for parabolic and hyperbolic orbits.  

The argument of periapsis   (also shown in Figure 2-4 and similarly defined for 

parabolic and hyperbolic orbits) completes the list of constants of the motion.  

(Note, the Cartesian coordinate system formed from the ˆxe , ˆye , and ˆze  directions 

is often called the “geocentric-equatorial coordinate system.”) 

ˆxe

ˆye

ˆze

A
scending N

ode

(Reference Direction)

Equatorial Plane

Orbital Plane


Direction 
of Motion

h


i

Radius 
through
periapsis



Radius through 
current position 

ˆxe

ˆye

ˆze

A
scending N

ode

(Reference Direction)

Equatorial Plane

Orbital Plane


Direction 
of Motion

h


i

Radius 
through
periapsis



Radius through 
current position 

 
Figure 2-4:  Angles Used in Classical Orbital Elements 
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2.4 Motion in the Orbit 

 For completeness, Figure 2-4 shows the true anomaly   of the orbit at any 

given time.  It is not a constant of the motion, but rather fixes the position of the 

satellite at a specific point along the trajectory at any given time.  The true 

anomaly and the radius between the planet center and satellite are related by: 

1 cos

p
r

e 



 

For the mathematician, Eq. (2.7) represents the polar form of a conic section with 

the origin at one focus.  This equation explains why orbits take the shape of a 

conic section (circle, ellipse, parabola, or hyperbola).      

 To find an expression for the velocity corresponding to any radius in the 

orbit, the energy equation (Eq. (2.5)) can be solved by evaluating the constant at 

the periapsis (the point of closest approach) and rearranging: 

2 2 1
V

r a
    
 

 

Equation (2.8) is called the vis-viva equation in some texts and is valid for all of 

the orbit types.  Equations specific to orbital types are given in the following 

sections. 

2.4.1 Elliptical Orbits 

 Satellite and ballistic missile trajectories are elliptical orbits.  Since an 

ellipse is a closed curve, an object in an elliptical orbit will repeat its path around 

the planet over and over again.  In the case of ballistic missiles, however, the 

(theoretical) orbit happens to pass through the Earth so it never completes the first 

orbit. 

2.7

2.8
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 For any non-parabolic orbit, the semilatus rectum is related to the 

semimajor axis and eccentricity by:   

 21p a e   

Then, for ellipses, Eq. (2.7) can be rewritten as:  

 21

1 cos

a e
r

e 





 

From this, it is clear the periapsis (closest approach) pr  is at 0   and:  

 1pr a e   

Again, for ballistic missiles, the satellite (or, more correctly, reentry vehicle) may 

never reach this point because it impacted the planet’s surface.  The apoapsis 

(furthest orbital point) ar  is at    and: 

 1ar a e     

 For ellipses, the true anomaly is sometimes replaced by the eccentric 

anomaly E .  Figure 2-5 shows the geometric relationship between   and E .  

Mathematically, they are related by: 

cos
cos

1 cos

e
E

e








 

 
1

2 21 sin
sin

1 cos

e
E

e









 

1
21

tan tan
2 1 2

e E

e

                
 

2.9

2.10

2.11

2.12

2.13

2.14

2.15
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Figure 2-5:  The Geometric Relationship between True Anomaly   and 
Eccentric Anomaly E  

In terms of E , Eq. (2.8) for the velocity becomes: 

2 1 cos

1 cos

e E
V

a e E

        
 

and Eq. (2.10) for the radius:  

 1 cosr a e E   

 The orbital period P  is the time it takes to travel completely around the 

ellipse once (barring impact with the planet, of course).  The period is given by: 

3

2
a


P    

2.16

2.17

2.18
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The mean motion n  is the “average angular rate” of the satellite in the orbit.  

Thus, to travel 2  in true anomaly in one period: 

3

2
n

a

 
 

P
 

2.4.2 Circular Orbits 

 Circular orbits are really just a special case of elliptical orbits.  An 

important exception is that circular orbits cannot impact the planet.  For circular 

orbits, Eq. (2.7) becomes trivial:  

r a  

Often, this radius (or, equivalently, semimajor axis) is written as cr , with the 

“c” signifying “circular.”  Obviously, a periapsis and apoapsis do not exist for 

circular orbits and the true anomaly and eccentric anomaly are equal. 

 The orbital period P  is given by 

3

2 cr


P    

and the mean motion by: 

3
c

n
r


  

The vis-viva equation reduces somewhat to give a simplified expression for the 

constant velocity found with circular orbits: 

c
c

V
r


  

2.19

2.20

2.21

2.22

2.23
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2.4.3 Parabolic Orbits 

 Parabolic orbits might be encountered when examining asteroids or 

interplanetary probes.  Such objects might be in elliptical orbits about the sun, but 

as they approach a planet, they are moving fast enough to be in parabolic (or 

hyperbolic) orbits with respect to the planet.   

 For parabolic orbits, Eq. (2.7) can be written to relate radius, momentum, 

and true anomaly:  

2

1 cos

h

r




 
 
 


 

The periapsis is found from Eq. (2.24) by substituting 0  : 

2

2p

h
r


  

Since this is an “escape” orbit, the apoapsis is undefined.  Similarly, the period 

and mean motion are meaningless.  Eccentric anomaly is undefined. 

 The vis-viva equation can be used to find the velocity “dividing line” 

between closed (circular/elliptical) orbits and hyperbolic orbits.  At speeds above 

the “escape velocity,” the satellite is on a hyperbolic orbit.  At speeds below the 

escape velocity, the satellite is on a closed orbit.  If the velocity is exactly the 

escape speed, then the orbit is parabolic.  Escape velocity is calculated by 

evaluating: 

2
escV

r


  

With parabolic orbits, the satellite has just enough energy to reach “infinity,” 

where both the velocity and gravitational attraction drop to exactly zero. 

2.24

2.25

2.26
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2.4.4 Hyperbolic Orbits 

 If an orbit isn’t elliptical it is much more likely to be hyperbolic than 

parabolic.  This is because a parabolic orbit requires an exact speed at a given 

radius  escV V  while a hyperbolic orbit only requires that the speed is greater 

than minimum speed at that radius  escV V .   

For hyperbolic orbits, the radius and true anomaly are related by  

 21

1 cos

a e
r

e 





 

where 0a   and 1e  .  The periapsis pr  is at 0   and:  

 1pr a e   

As with parabolic orbits, the eccentric anomaly, apoapsis, period, and mean 

motion are not defined.   

 The specific mechanical energy can be evaluated at two different points 

along the orbit and set equal: 

2 2

2 2
a b

a b

V V

r r

       

If the first point is at a distance r , and the other is at infinity, we can get an 

expression for the “left over” speed when the satellite reaches infinity:  

2 2

2 2

2

esc

V V
r

V V


  

 
 

2.27

2.28

2.29

2.30
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V  is termed the “hyperbolic excess speed” because it represents the speed 

beyond the minimum required to escape the gravity field of the planet.  Notice 

that for a parabolic orbit, a    and the hyperbolic excess speed is zero. 

2.5 Determining the Orbital Elements from Position and 
Velocity 

 If you have the position and velocity for a satellite at any given time, you 

can calculate the corresponding orbital elements.  This section is intended to give 

you a “cookbook” approach to getting the classical orbital elements when you 

start with position and velocity measured in the coordinate frame shown in Figure 

2-4.  (We will ignore the situations where the classical orbital elements fail to be 

defined.  Any of the orbital mechanics books in the references will provide 

solutions using other orbital element sets.)   

Step 1:  Form the three fundamental vectors:  h


 (specific momentum), n


 (a 

vector along the line of nodes in the direction of the ascending node), and e


 (a 

vector pointing at periapsis and having a magnitude equal to the eccentricity of 

the orbit). 

h r V 
 

 

ˆzn e h 


 

 21
•e V r r V V

r



        

   
 

2.31

2.32

2.33
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Step 2:  

2

2

V

r

    

and 

 for  0
2

 for  0
a

 




  
  

 

Step 3: 

e e


 

Step 4:  The inclination i  is the angle between h


 and ˆze : 

1 ˆ•
cos zh e

i
h

  
   

 


 

Since the 180i   , there is no quadrant ambiguity in Eq. (2.37). 

Step 5:  The n


 vector lies in the equatorial plane, so it must have the form:  

ˆ ˆx x y yn n e n e 


 

Or, when converted to a unit vector ˆ
n

n
n




, this is simply 

ˆ ˆ ˆcos  sin  x yn e e     

since   is the angle between ˆxe  and the line of nodes.  With both the sine 

and cosine of   known in Eq. (2.39), there isn’t any quadrant ambiguity in the 

2.34

2.35

2.36

2.37

2.38

2.39
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angle.  (There is a case, however, where   is undefined.  When the inclination is 

exactly zero, ˆ 0n 


 and the orbit plane does not “break” the equatorial plane, so 

  does not exist.) 

Step 6:  The angle between n


 and e


 is the argument of periapsis  .  Its cosine 

can be found by taking the dot product: 

1

1

ˆ •
ˆcos     • 0

ˆ •
ˆcos 180     • 0

z

z

n e
for e e

e

n e
for e e

e







       
      



 

 
 

Notice the solution for   when ˆ• 0ze e 


 is not listed in Eq. (2.40).  This case is 

more complicated because it can occur in multiple situations:  either the line of 

nodes contains the periapsis ( 0    or 180   ) or the orbit is circular ( 0e 


 

and   is undefined).  Working through this special case is left as an exercise for 

the reader. 

Step 7:  Similarly, the angle between r


 and e


 is the true anomaly (at the time of 

interest)  .  Its cosine can be found by taking the dot product: 

1

1

•
cos     • 0  (moving towards apocenter)

•
cos 180     • 0  (moving towards pericenter)

e r
for r V

er

e r
for r V

er







       
      



 

 
 

Once again, this solution isn’t all-inclusive.  It does not give a solution for when 

• 0r V 


.  When • 0r V 


, the vehicle is at periapsis or apoapsis ( 0    or 

2.40

2.41
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180   , respectively).  A less obvious “feature” of Eq. (2.41) is that it does not 

work for circular ( 0e  ) orbits because   is undefined! 

 Similar algorithms exist for other orbital element sets.  This one will 

suffice for most of our work. 

2.6 Determining Position and Velocity from the Orbital 
Elements 

 Similar to the last section, we can create a cookbook algorithm for finding 

the position and velocity vectors from the classical orbital elements at any specific 

time.  The process is simplified somewhat by introducing the perifocal coordinate 

system shown in Figure 2-6.  The unit vector ˆPe  points from the planet center to 

the periapsis, ˆQe  is out the semilatus rectum (i.e., in the orbit plane and rotated 

90o from ˆPe ), and Ŵe  is along the momentum vector h


.  

 

ˆPe

ˆQe

r



ˆPe

ˆQe

r



Line of Nodes

Equatorial Plane

Periapsis direction

Ŵe

ˆPe

ˆQe
 directionh


Line of Nodes

Equatorial Plane

Periapsis direction

Ŵe

ˆPe

ˆQe
 directionh


ˆPe

ˆQe

r



ˆPe

ˆQe

r



Line of Nodes

Equatorial Plane

Periapsis direction

Ŵe

ˆPe

ˆQe
 directionh


Line of Nodes

Equatorial Plane

Periapsis direction

Ŵe

ˆPe

ˆQe
 directionh


 

Figure 2-6:  Perifocal Coordinate System 
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Step 1:  We can immediately write the position vector 

ˆ ˆc o s  s in  P Qr r e r e  


 

where, for non-parabolic orbits the scalar radius is calculated with:  

 21

1 cos

a e
r

e 





 

For the odd case when the orbit turns out to be parabolic, Eq. (2.43) can replaced 

with  

2

1 cos

h

r




 
 
 


 

and we are required to have additional information that allows us to evaluate h . 

Step 2:  The velocity is found by simply differentiating Eq. (2.42) and 

simplifying: 

 ˆ ˆsin  cosP QV e e e
p

       


 

p  is found from: 

 

2

2

    

1    -  

h
for all orbits

p or

a e for non parabolic orbits


  
  

 
 
 


 

2.42

2.43

2.44

2.45

2.46
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Step 3:  The unit vectors of the perifocal system ( ˆPe , ˆQe , and Ŵe ) are replaced to 

put the position (Eq. (2.42)) and velocity (Eq. (2.45)) in terms of the geocentric-

equatorial coordinates introduced back in Figure 2-4.  This involves a simple 

rotation from one coordinate system to another.  The substitutions for the 

perifocal unit vectors are given below (5:80-83).   

 
   

ˆ ˆcos cos sin sin cos

ˆ ˆ sin cos cos sin cos sin sin

P x

y z

e i e

i e i e

 

  

   

    
 

 
   

ˆ ˆcos sin sin cos cos

ˆ ˆ sin sin cos cos cos cos sin

Q x

y z

e i e

i e i e

 

  

    

     
 

     ˆ ˆ ˆ ˆsin sin cos sin cosw x y ze i e i e i e       

2.47

2.48

2.49
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2.7 Problems 

1. At a given moment in time (the “epoch” time), a satellite’s orbital elements 

are: 

2.21 DU

0.870

132.9

21.8

203

157

a

e

i










 













 

The units are canonical units, where unit length = 1 DU, unit time = 1 TU, and 

the gravitational parameter, , is given by 23 /1 TUDU .   

a. Calculate the position and velocity vectors in perifocal coordinates. 

b. Calculate the position and velocity vectors in geocentric equatorial 

coordinates. 

2. The orbit given in Problem 1 above is representative of a ballistic missile 

trajectory.   

a. Calculate the periapsis radius of the orbit in the Problem 1 above.  If 

the radius of the planet is 1 DU, is the periapsis you found realistic?  

Why or why not?  

b. If the atmosphere of the planet extends to a radius of 1.2 DU, what is 

the flight-path angle e  and the magnitude of the velocity e eV V


 

when atmospheric reentry begins?  
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3. At a given moment in time, a satellite’s position and velocity are given by: 

ˆ2  DU

ˆ ˆ0.6422 0.3708  DU/TU

x

y z

r e

V e e



 


  

Find the orbital elements ( , , , , ,a e i   ) at that moment in time.  (Assume 

3 21 /DU TU  .) 

4. For the orbit in Problem 3, calculate the flight-path angle   at the time the 

position and velocity were measured. 
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Chapter 3  

Equations of Flight 

3.1 Introduction  

 In this chapter, we’ll derive the equations of motion for a point mass 

flying in the atmosphere of a rotating planet.    The position and velocity will be 

given by vector equations )(tr


 and )(tv


, respectively.  We begin by defining the 

coordinate systems to be used in the derivations. 

3.2 Reference Frames 

 A variety of coordinate systems and reference frames are needed.  These 

are the inertial geocentric-equatorial system, a planet-fixed rotating system, and a 

quickly rotating, vehicle-pointing frame. 

3.2.1   Geocentric-Equatorial Coordinate Frame 

 The geocentric-equatorial system (OXYZ) is an inertial reference frame 

with its origin at the center of the planet.  The x-axis, xê , points in the direction of 
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the vernal equinox and the z-axis, ˆze , passes out the North Pole.  The y-axis, yê , 

completes the system such that it lies in the planet’s equatorial plane and 

ˆ ˆ ˆz x ye e e  . 

3.2.2 Planet-Fixed Coordinate Frame 

 Choose the OX1Y1Z1 frame to be a planet-fixed system originating at the 

planet’s center with the z1-axis pointing out the North Pole and the x1-y1 plane in 

the plane of the equator.  Further, assume the planet rotates with constant velocity 

given by  zz êê
1    .  Figure 3-1 shows the relationship of the OX1Y1Z1 

frame to the geocentric-equatorial system where it has been arbitrarily assumed 

the axes align when 0t . 

yê

xê

1
êx

1
ê y

1zz ê,ê

t

t

 

Figure 3-1:  Inertial (OXYZ) and Planet-Fixed (OX1Y1Z1) Reference Systems 



E Q U A T I O N S  O F  F L I G H T  

29 

 A coordinate transformation from the OXYZ frame to the OX1Y1Z1 frame 

is given by 

 
   
     1

cos sin 0

ˆ ˆsin cos 0  

0 0 1

t t

t t

 
 
 

 

  
     
  

e e  

where  ê  and  1ê  represent the unit vectors of the OXYZ and OX1Y1Z1 frames, 

respectively.  A convenient way to express the “transformation” matrix (or 

“rotation” matrix) in Eq. (3.1) is to rewrite the equation as 

     1ˆ ˆtz  e R e  

where the subscript on the R matrix indicates the axis of rotation and the 

argument indicates the angle of the rotation. 

3.2.3 Vehicle-Pointing System 

 As shown in Figure 3-2, let the frame OX2Y2Z2 originate at the planet’s 

center and be aligned with the x2-axis pointing along the vehicle’s position vector, 

the y2-axis parallel to the equatorial plane, and the z2-axis completing a right-

handed system.    and   represent the longitude and latitude of the vehicle’s 

position, respectively.   

 This frame can be created by a rotation   around the z1-axis followed by a 

  rotation about the y2-axis: 

 
   

   
 12 ˆ 

100

0cossin

0sincos

cos0sin

010

sin0cos

ˆ ee





































 






 

3.1

3.2

3.3
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1
êx

1
ê y

1zê






r


2
ê y

2
êx

2zê

1
êx

1
ê y

1zê






r


2
ê y

2
êx

2zê

 

Figure 3-2:  Planet-Fixed (OX1Y1Z1) and Vehicle-Pointing (OX2Y2Z2) Systems 

 

Using notation similar to that in Eq. (3.2), we could write: 

       
12 12

ˆ ˆ zy   e R R e  

Multiplying the matrices gives us a single matrix for relating the unit vectors of 

the OX2Y2Z2 and OX1Y1Z1 systems: 

   12 ˆ 

cossinsincossin

0cossin

sinsincoscoscos

ˆ ee
























 

3.4

3.5
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Substituting for  1ˆ e  from Eq. (3.2), provides the relationship between the 

OX2Y2Z2 and OXYZ systems as well: 

          2 12
ˆ ˆ  tz zy     e R R R e  

Multiplying out       
12

  tz zy    R R R  to form a single transition matrix 

is left as an exercise. 

 Figure 3-3 illustrates two more angles we’ll need to understand and use.  

The flight-path angle   is defined as the angle between the local horizontal plane 

(the plane passing through the vehicle and orthogonal to r


) and the velocity v


.   

1
êx

1
ê y

1zê






r


2
ê y

2xê

2zê

Projection of     on 
local horizontal plane  

V


Local parallel of 
latitude

 
v


1
êx

1
ê y

1zê






r


2
ê y

2xê

2zê

Projection of     on 
local horizontal plane  

V


Local parallel of 
latitude

 
v


 

Figure 3-3:  Flight-path and heading angles in relation to Planet-Fixed 
(OX1Y1Z1) and Vehicle-Pointing (OX2Y2Z2) Systems 

3.6
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By convention,   is positive when v


 is above the local horizontal plane.  The 

heading angle,  , is the angle between the local parallel of latitude and the 

projection of v


on the local horizontal plane.    is measured positively in the 

right-handed direction about the x2-axis.  (Another way to visualize these two 

angles is to think of their effects on the motion.  γ describes how much the 

velocity vector contributes to moving “in and out” along the radius while   

describes how much the velocity vector contributes to moving “toward and away” 

from the planetary equator.) 

3.2.4 A Velocity-Referenced Coordinate System  

 Before moving too far from the introduction of the vehicle-pointing 

OX2Y2Z2 system, it is helpful to develop another coordinate system for use later 

in the derivations involving aerodynamic and thrusting forces. 

 Consider a rotation of the OX2Y2Z2 axes about the x2-axis by   so that 

the “new” y-axis, y′, is aligned with the projection of v


on the local horizontal 

plane.  This is shown in Figure 3-4.  The unit vectors in the new OX′Y′Z′ system 

are given by the rotation: 











































































2

2

22

ˆ

ˆ

ˆ

cossin0

sincos0

001

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

z

y

x

z

y

x

z

y

x

e

e

e

e

e

e

e

e

e


  

Or, more simply, 

    22
ˆ ˆx  e R e  

3.7

3.8
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2yê

2zê

yê

zê

v




Rotation by ψ as seen 
looking down the x2-axis

v


2yê
yê

2xx êê 

Rotation by ψ as seen 
looking down the z2-axis 
(ψ obscured by       axis)



2yê

2yê

2zê

yê

zê

v




2yê

2zê

yê

zê

v




Rotation by ψ as seen 
looking down the x2-axis

v


2yê
yê

2xx êê 

Rotation by ψ as seen 
looking down the z2-axis 
(ψ obscured by       axis)



2yê  

Figure 3-4:  Rotation of OX2Y2Z2 System About x2-axis  

where the notation the subscript and argument on the rotation matrix indicate the 

axis and angle of rotation, respectively. 

 Next, consider a negative rotation of the OX′Y′Z′ system by γ about the z′-

axis.  This aligns the “new” y-axis, y″, with the velocity vector v


as shown in 

Figure 3-5.  Expressions similar to those in Eqs. (3.7) and (3.8) are readily 

deduced as 

   
   











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seen looking down the z′-axis
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yê 

xê 



v


yê
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xê 


 

Figure 3-5:  Rotation of the OX′Y′Z′ System About the z′-axis 

or, after using trigonometric identities, 
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and 

    eRe  ˆˆ z  

where the subscript and argument on the rotation matrix have again been used to 

designate the axis of rotation and the angle. Combining these two rotations relates 

the final OX″Y″Z″ system to the original vehicle-pointing system OX2Y2Z2: 

      22
ˆ ˆxz    e R R e  

3.10

3.11

3.12



E Q U A T I O N S  O F  F L I G H T  

35 

After multiplying out the matrices, the relationship becomes  
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

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 We’ll return to these relationships later in the chapter.  For now, just note 

the following relationships: 

 ye ˆ  points along the velocity vector v


and can be equivalently called vê  to 

clarify its direction 

 ze ˆ  is perpendicular to both the velocity v


 and radius r


 vectors and lies in 

the local horizontal plane 

3.3 Relative Angular Motion 

 As we work towards deriving the equations of motion, the relative angular 

motion between several of the coordinate frames will become important.  So, 

while it may seem like a diversion, it is probably best to approach the topic now, 

while all of the coordinate transformations are still fresh in our minds. 

 We have already seen an angular rotation between two frames when Eq. 

(3.1) was written.  In that case, the angular rotation of the OX1Y1Z1 frame relative 

to the OXYZ (and written in terms of the planet-fixed OX1Y1Z1 frame) is simply: 

1
ˆ ze


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Eq. (3.5) lets us convert coordinates in a third frame – the OX2Y2Z2 frame: 

   
2 2

2
cos cos cos sin sin 0ˆ

sin cos 0  0
1/ 0 sin cos sin sin cos

sin

 0

cos

ˆ ˆsin  cos  x ze e

    
 

     






   





 

   
                    

 
   
  

 

e
ω


 

The notation 
2ˆ

0/1

e
ω



 

 is a somewhat cumbersome way to explicitly remind us we 

are writing the angular rate of Frame 1 (OX1Y1Z1) relative to Frame 0 (OXYZ) 

written in terms of coordinates along the  2ê  unit vectors.  This notation is shown 

to reinforce the fact that, in spite of using  2ê coordinates, the rotation rate given 

by Eq. (3.14) is, indeed, that of  1ê  unit vectors relative to the inertial  ê  unit 

vectors (or, equivalently, the OX1Y1Z1 system relative to the OXYZ system).  We 

normally will not require (or use) such explicit notation. 

 Another relative angular motion relationship that will be needed is the one 

between the planet-fixed OX1Y1Z1 system and the quickly rotating, vehicle-

pointing OX2Y2Z2 system.  The overall angular rate can be assembled by 

remembering how we created the  2ê  vectors from the  1ê  vectors:  a rotation   

around the z1-axis followed by a   rotation about the y2-axis.  In terms of 

angular rates: 

21
ˆ   ˆ yz ee  

   
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Once again, Eq. (3.5) lets us write this entirely in terms of the vehicle-pointing 

frame: 

 
222

ˆ )cos( ˆ  ˆ sin zyx eee  
  

For completeness, this could be expressed as  

 
2 2 2

2ˆ
ˆ ˆ ˆ sin     ( cos ) 

2 /1
x y ze e e    

 
   

 

e
Ω
     

if we wanted to use the more explicit notation analogous to that in Eq. (3.15). 

3.4 Equations of Motion 

 It requires six independent quantities to define the motion of a point mass 

at any time.  Normally, we think of these as being the three components of a 

position and three components of a velocity.  However, that is not always the 

most convenient description.  As an example, the motion of a satellite orbiting a 

planet is often given in “classical orbital elements,” none of which independently 

equate to a component of position or velocity in the traditional (e.g., Cartesian or 

polar) sense.  We will be finding three position quantities, a velocity magnitude, 

and two angles to describe the direction of the velocity.  With that in mind, we’ll 

go back to the basics to begin finding our equations of motion. 

 At any instant, the total force, F


,  acting on the point mass is given by 

gmATF


  

where T


is the force from thrust, A


is the aerodynamic forces (lift and drag), m  is 

the mass, and g


is the force of gravity.  Newton’s Second Law of Motion can  
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be applied when the mass is constant (or “constant enough”) and the reference 

frame is inertial: 

Idv
m F

dt

T A mg



  

 

 
 

The notation “I” superscript has been used to reinforce the fact that the derivative 

is with respect to an inertial frame.   

 Much of the motion we wish to describe is more conveniently measured 

relative to the planet-fixed (i.e. rotating) reference frame.  In order to accomplish 

this, recall from dynamics that an inertial derivative can be written in terms of a 

rotating reference frame by 

r
dt

rd

dt

rd RI 
   

and 


















 r

dt

rd
r

dt

rd

dt

d

dt

vd RRRI 
  

where the “R” superscript has been introduced to indicate a derivative in a 

rotating frame.  


 is the angular velocity of that rotating frame relative to the 

inertial frame.  Take note:  The 


  in Eqs. (3.21) and (3.22) is general and should 

not automatically be assumed to be the same as the 


 developed in Section 

3.3!   

 If the rotating frame is assumed to be our planet-fixed OX1Y1Z1 system, 

then Eq. (3.22) can be simplified since 


 is a constant vector: 

2

2
2 ( )

I R Rdv d r dr
r

dt dtdt
         

     
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The terms 
2

2

dt

rdR 
 and 

dt

rdR 
 should be recognized as the “relative acceleration” 

and “relative velocity” (i.e., as seen in the rotating frame), respectively.  In 

addition, the superscript “R” on these terms could be replaced with a superscript 

“1” to indicate they are derivatives taken with respect to the OX1Y1Z1 planet-fixed 

frame; however, we will retain the “R” notation for the time being to avoid any 

confusion between “I” and “1.”  The term  
dt

rdR 
2  is the Coriolis acceleration 

and )( r


    is the centripetal acceleration term.  Introducing Newton’s 

Second Law from Eq. (3.20) into this gives:  

)(2
2

2

rm
dt

rd
mF

dt

rd
m

RR 
    

The last term on the right is what an observer in the rotating frame would call 

“centrifugal force.”  In reality it is just an acceleration term taken to the “wrong 

side of the equation.”   

 For convenience, we can introduce VR


as the velocity relative to the planet 

dt

rd
V

R
R


  

and substitute it into Eq. (3.24) 

   1

2   ( )
R R R

R
d V d V

m m F m V m r
dt dt

          

 
    

 

where we have, for completeness, noted that the rotating (“R”) frame is actually 

the OX1Y1Z1 (“1”) frame in this situation by showing both corresponding 

superscripts on the derivative.  At this point, we turn our attention to deriving 

expressions for the various vector quantities on the right-hand side of Eq. (3.26).  
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Once that is done, we can substitute into Eqs. (3.25) and (3.26) and equate 

components on the left and right sides to find the equations of motion.   

3.4.1 Kinematic Equations 

 The position vector r


 is easily expressed in terms of the vehicle-pointing 

system OX2Y2Z2: 

2
ˆxerr 


 

 The (relative) velocity vector is more complicated, but we have already 

done the hardest part of the derivation!  In Eq. (3.13), the unit vector ye ˆ  points in 

the direction of the velocity, so:  

y

R

ê

ˆ 

R R

v

V V

Ve






 

The second line of Eq. (3.28) simply uses notation to reinforce the visualization of 

the unit vector’s direction.  Replacing that unit vector with what is found in Eq. 

(3.13), we get the velocity in terms of the vehicle-pointing system: 

     
222

ˆ sincosˆ coscosˆ sin z
R

y
R

x
RR eVeVeVV  


 

( VR


could also have been written directly by examining Figure 3-3.)  Take note:  

this is an equation for the velocity as viewed (or measured) by an observer on the 

rotating planet-fixed system, but written in terms of the vehicle-pointing system!  
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 Another expression for VR


can be written by again recalling from 

dynamics how the derivative of a vector in one frame is related to the derivative 

in another frame 

r
dt

rd

dt

rd 
 1/2

21

  

where the pre-superscript on the derivative indicates the reference frame for the 

derivative and the “2/1” subscript indicates the angular rate is for “Frame 2 

relative to Frame 1.”  (This should look familiar since Eq. (3.21) used a special 

case of this same relationship.)  Recognizing VR


 is the velocity with respect to 

(i.e., as seen in) the planet-fixed frame (“Frame 1” or, equivalently OX1Y1Z1) and 

making use of Eq. (3.18), Eq. (3.30) can be rewritten: 

  r
dt

rd
VR 

  
1/2

2









 Ω  

Substituting for the vectors on the right-hand side, this becomes  

22 ˆ

0

0

r

  

ˆ

cos

sin

ˆ 
2

ee

erV x
R
















































 

when written in  2ê  components (which is what the temporary superscript on Eq. 

(3.32) is intended to emphasize.)  The cross-product is straight forward   

   
2 2

2 2
ˆ ˆ

sin r

ˆ ˆ  0  cos    

cos 0
y z

e e

r e r e

 
   

 

   
         
     


  


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and allows us write an expression for VR


: 

   
222

ˆ  ˆ cosˆ zyx
R erererV  


  

Equations (3.29) and (3.34) are both valid equations for VR


 and are both written 

terms of  2ê  coordinates, so they must be equal, component-by-component: 

sinVr R   




cos

coscos

r

VR

  

cos sinRV

r

    

These three differential equations are the kinematic equations.  When integrated, 

they provide the position of the vehicle as seen from the rotating planet. 

3.4.2 Force Equations 

 Equations (3.35) - (3.37) are not a complete set of equations of motion 

since they only provide three independent quantities   ,,r .  We now turn our 

attention to completing the right-hand side of Eq. (3.26): 

 
)(  2 rmVmF

dt

Vd
m R

RR 
    

The rotation vector of the planet-fixed system with respect to the inertial system  
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has already been found and written in vehicle-pointing coordinates: 

   
22

ˆ cosˆ sin
ˆ

0/1

2

zx ee   





e
ω


 

Using Eqs. (3.29) and (3.39) to find the cross product  RV 


  

2 2 2
ˆ ˆ ˆ

  sin 0 cos

sin cos cos cos sin

x y z

R

R R R

e e e

V

V V V

    
    

   


 

and simplifying, we get: 

 
 

2

2

2

ˆ cos cos cos  

ˆ cos sin sin cos sin  

ˆ ( sin cos cos ) 

R R
x

R
y

R
z

V V e

V e

V e

    

     

   

 





  

 





 

Crossing 


 with Eq. (3.27) gives:  

 
2

ˆ cos  yr r e    
 

 

This, in turn, yields:   

     
2 2

2 2 2ˆ ˆ   cos   sin cos  x zr r e r e             
  

 

 The aerodynamic force, A


, in Eq. (3.19) can be broken into a drag force 

D


 acting in a direction opposite of the velocity vector  

     
2 2 2

ˆ ˆ

ˆ ˆ ˆsin  cos cos  cos sin  

y v

x y z

D De De

D e D e D e    

   

   


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and a lift force L


 perpendicular to the velocity vector.  The bank angle, σ, defines 

the orientation of L


 relative to the  vr


,  plane.  This is illustrated in Figure 3-6. 

 

 In the figure, the unit vector ze ˆ  has been shown as well.  Realizing ze ˆ  lies 

in a plane perpendicular to the  vr


,  plane, we can deduce the angle between the 

lift vector L


 and  ze ˆ  to be (900 – σ).  Following the process from Section 3.2.4, 

we can perform a coordinate rotation about the v


 vector (or, equivalently, 

vy ee ˆˆ  ) to align a “new” z-axis ze ˆ with the lift vector: 

   ˆ ˆ(90 ) y   e R e  

 

Figure 3-6:  Bank Angle Defined 
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Expanding this out gives: 

   

   



































 




















































































z

y

x

z

y

x

z

y

x

z

y

x

e

e

e

e

e

e

e

e

e

e

e

e

ˆ

ˆ

ˆ

sin0cos

010

cos 0sin

ˆ

ˆ

ˆ

90cos090sin

010

90sin 090cos

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ













 

Equation (3.13) can be substituted into Eq. (3.46) and simplified: 

   

   

2

2

2

ˆˆ sin cos sin sin cos cos sin sin sin sin cos cos

ˆ ˆsin cos cos cos sin

ˆ cos cos cos sin cos sin sin cos sin sin sin cos ˆ

xx

y y

z z

ee σ γ σ γ ψ σ ψ σ γ ψ σ ψ

e γ γ ψ γ ψ e

e σ γ σ γ ψ σ ψ σ γ ψ σ ψ e

       
        
            

 

 Before continuing, it is helpful to examine the OX3Y3Z3 frame described 

by the  e ˆ  unit vectors.  ze ˆ  is aligned with the lift (which was the entire reason 

for the latest coordinate transformation).  ye ˆ  is still aligned with the velocity.  xe ˆ  

completes the system such that zyx eee  ˆˆ  ˆ  and is analogous to the pitch axis of 

an aircraft as is seen in Figure 3-7.  Equation (4.41) below summarizes these 

“more descriptive” unit vector names: 

 
ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

x p

y v

z L

e e

e e

e e

   
        
      

e  

pê  has been used to reinforce xe ˆ ’s similarity to a pitch axis.  We’ll call this the   

OXpYvZL frame.   
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L


px ee ˆ ˆ 

v


Lz ee ˆ ˆ 

vy ee ˆ ˆ 

r


L


px ee ˆ ˆ 

v


Lz ee ˆ ˆ 

vy ee ˆ ˆ 

r


 

Figure 3-7:  Visualizing Unit Vectors of the OX3Y3Z3/ OXpYvZL System 

 Moving forward with these vectors, an expression for lift is easily written 

as: 

2 2

2

ˆ

ˆ ˆ(cos cos ) ( cos sin cos sin sin ) 

ˆ( cos sin sin sin cos ) 

L

x y

z

L Le

L e L e

L e

      

    


   

  



 

The net thrusting force, T


, can be resolved into components in a similar manner.  

Figure 3-8 shows the general case where the thrust may not be directly aligned 

with the velocity.  By studying the figure (or with another coordinate 

transformation), the thrust vector can be written as: 

      Lvp eTeTeTT ˆ sincosˆ coscosˆ sin  

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  of Projection



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
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



ζ

 

Figure 3-8:  Relationship of Thrust Direction to Lift and Velocity Directions 

Putting this into vector/matrix form, the thrust vector can be directly written from 

Eq. (3.50) as: 

 

















L

v

p

e

e

e

TT

ˆ

ˆ

ˆ

 sincoscoscossin 


 

Making use of Eq. (3.47), gives the thrust vector in terms of vehicle-pointing 

coordinates 

 
   

   

2

2

2

sin cos cos cos sin

ˆsin cos sin sin cos cos sin sin sin sin cos cos

ˆ sin cos cos cos sin

cos cos cos sin cos sin sin cos sin sin sin cos ˆ

x

y

z

T T

eσ γ σ γ ψ σ ψ σ γ ψ σ ψ

γ γ ψ γ ψ e

σ γ σ γ ψ σ ψ σ γ ψ σ ψ e

    

     
     
        


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which “simplifies” to: 

 
 

 
 

  







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



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































2

2

2

ˆ 
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sincoscoscoscoscossinsinsinsin

ˆ 
sinsincossincossincos                          

coscoscoscossincoscossinsinsin

ˆ coscossincossincoscoscossinsin

z

y

x

e

e

e

TT










 

 The gravity term, gm


 is the only force vector in Eq. (3.19) left to be 

written in vehicle-pointing coordinates.  Since gravity always acts along the 

radius vector,  

2
ˆ)( xermggm 


 

 We now have all of elements in Eq. (3.38) written in components of the 

vehicle-pointing system and can assemble the right-hand side:   
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 
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In the same manner we wrote a second expression for VR


 in Section 3.4 using the 

relationship between derivatives in different reference frames (i.e., Eq. (3.31)), we 

can write: 

   
V

dt

Vd

dt

Vd R
RR 

 
1/2

21









 Ω  3.56
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 1 Rd V

dt



 in Eq. (3.56) is the same term 
   1R R Rd V d V

dt dt


 

 in Eq. (3.26).   

 
dt

Vd R


2

 can be computed in  2ê  coordinates directly from Eq. (3.29): 
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The cross-product is: 
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Before combining Eqs. (3.57) and (3.58), recognize that the kinematic equations 

give us expressions for   and  : 
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cos

RV
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 

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cos sin
 

RV

r

    
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Combining Eqs. (3.57) - (3.60): 
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Finally, this can be compared component-by-component to Eq. (3.55) to get three 

coupled, scalar differential equations:  
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These can be solved for , , VR  and   
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Equations (3.65) - (3.67) are the force equations.  When solved simultaneously 

with the kinematic equations ((3.35) - (3.37)), they describe the velocity and its 

orientation.  The three kinematic and three force equations together are the 

equations of motion and their solutions give the six independent parameters 

3.64

3.65

3.66

3.67



E Q U A T I O N S  O F  F L I G H T  

53 

,,,,,(  Vr R and )  required to define the motion of a point mass at any time.  

Using geometric relations (such as the rotation matrices already written), these 

quantities can transformed to the more familiar )(tr


 and )(tVR


 when necessary. 

 The equations of motion above cannot be solved in closed form (i.e., 

analytically) and must be solved by numerical integration subject to the 

appropriate boundary conditions.  While these equations are good for visualizing 

the problem, in practice, they may not be the most appropriate equations for 

numerical methods.  Instead, it may be better (numerically) to work in Cartesian 

coordinates directly with the vector equations 

Idr
V

dt


 
 

( , , )
IdV

f r V t
dt


  

 

where the time derivatives are in the inertial frame and f


 is the sum of the forces 

on the vehicle (per unit mass).  Once solved, the results can then be transformed 

to whatever coordinate system is desired.  Equations (3.35)–(3.37) and (3.65) - 

(3.67) have the advantage of directly providing the major parameters of interest 

(once solved), so we will use them for our purposes. 

3.5 Summary 

 Equations (3.35) - (3.37) and (3.65) - (3.67) are not in the forms typically 

found in other texts for similar three-degree-of-freedom formulations.  Most texts 

will use V  instead of VR  and assume the reader recognizes it as a velocity 

relative to the rotating atmosphere.  Less obvious is our inclusion of thrust force 
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components which may lie outside the lift-drag (or, equivalently, lift-velocity) 

plane.  These components are introduced when 0 .  To compare the force 

equations to other texts, set 0 . 

 Another subtlety that might cause confusion between texts is that we’ve 

measured  the flight-path angle   and heading angle   with respect to the 

relative velocity RV .  For complete clarity, we could have written R  and R  to 

distinguish them from values measured relative to an inertial velocity IV .  

However, the more cumbersome notation is not necessary since we will rarely 

mention the inertial quantities.  (In Chapter 2, the “orbital” flight-path angle was 

an inertial value and in Chapter 12 we will see an example where we are only 

given inertial values for a real-world example.)   

 The majority of this text will involve working with various simplifications 

and/or manipulations of these equations.  However, before moving on, we should 

stop and summarize the assumptions made to this point in our derivations.  These 

are listed in Table 3-1.   

 Finally, we will not address five- or six-degree-of-freedom simulations in 

this text.  (The increased complexity comes from considering such things as roll, 

pitch, and yaw of the vehicle.)  The additional effort does not significantly add to 

understanding the fundamentals of atmospheric entry.  Such simulations are 

discussed in several of the references (47:369-423; 53:255-261, 414-450; 68:289-

361, 367-480). 
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Table 3-1:  Assumptions in Equations of Motion 

Assumption First Introduced 

Point mass Section 3.1 

Planet rotation is constant about 
north pole 

Section 3.2.2 

Planet-fixed and inertial 
coordinate systems aligned at t=0 

Section 3.2.2 
Eq. (3.1) 

Constant mass 
Section 3.4 
Eq. (3.20) 

Drag acts in direction opposite the 
velocity 

Section 3.4.2 
Eq. (3.44) 

Lift force is perpendicular to 
velocity 

Section 3.4.2 
Eq. (3.45) 

Gravity force is directed along a 
vector from point mass to the 
center of the planet 

Section 3.4.2 
Eq. (3.54) 

 

3.6 Problems 

1. Multiply out Eq. (3.6) to find a general expression for the transition matrix 

between  2ê  and  ê . 

2. An alien civilization, whose planet has an extremely thick atmosphere, has 

developed an anti-drag engine for their spacecraft in low orbit.  The engine 

produces a thrust exactly equal to the drag and in the opposite direction; i.e., 

T D 
 

.  Assuming they design the spacecraft to avoid any lift forces, what 

are the three “force equations” of motion?   
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Chapter 4  

Equations for Planar 
Entry 

4.1 Introduction 

 As a step towards qualitatively comparing entry trajectories, we’ll look at 

the relatively simple case of motion confined to a single “entry plane.”  We’ll 

further simplify the problem by assuming planetary rotation is negligible during 

the entry phase.  These assumptions aren’t as restrictive as they might seem.  

Ballistic entry (e.g., no lift) essentially stays within a plane as does entry where 

the aerodynamic lift is used only to “pull up” or “pull down” along the radius.  

Ignoring the rotation of the planet is justified due to the small amount of rotation 

that occurs during short entry phases.  Of course, precise velocity or position 

requirements would invalidate these assumptions, but they’re sufficient for initial 

study. 
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4.2 Assumptions for Planar Entry Trajectories 

 Planar entry is defined as motion confined to the plane of a great circle.  

Such a plane contains the vehicle’s radius and velocity vectors and the planet’s 

center point.  Figure 4-1 shows the relevant geometry as viewed perpendicular to 

the great circle plane and Figure 4-2 shows the three-dimensional view.  (The 

similarity of the entry plane to an orbital plane in the three-dimensional view is 

not accidental.)   

 Many books begin with the two-dimensional view in Figure 4-1 and 

derive the equations of motion all over again for the planar case.  That’s too 

simple for us after we spent so much effort finding relatively general equations in 

Chapter 3!  Instead, we will start with Eqs. (3.35) - (3.37) and (3.65) - (3.67) and 

apply the appropriate assumptions to simplify them. 
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Figure 4-1:  Two-Dimensional View of Planar Entry 
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Figure 4-2:  Three-Dimensional View of Planar Entry 

 To maintain planar flight, assume there is no banking of the lift vector 

(i.e., 0 ) and no thrust force.  The equations of motion from Chapter 3 

simplify to:  

sinRr V   




cos

coscos
 

r

VR

  

r

VR  sincos
  

  cossinsinsincoscossin 2  rg
m

D
VR   

4.1

4.2

4.3

4.4
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 



sinsinsincoscoscos

coscos2coscos

2

2




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V
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V
g
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R
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 








coscossin
cos

sintancossin2tancoscos

2

2









r

V
r

V
V R

R


  

 To make the problem more analytically palatable, assume the planetary 

rotation can be ignored (i.e., 0 ) and these equations reduce even further: 

sinRr V   




cos

coscos
 

r

VR

  

r
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sin g
m

D
VR   
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R   
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Because we have ignored the rotation of the planet (effectively “stopping it”), the 

planet relative and inertial velocity are the same.  We could (but won’t) drop the 

“R” superscript on the velocity to simplify the appearance of these equations.   

 It is tempting to make the erroneous assumption the heading angle    can 

be set to zero.  (Looking at only the “flat world” view in Figure 4-1 tends to 

reinforce the belief because the velocity lies in the plane.)  Recall, however, that 

  is the angle between the local parallel of latitude and the projection of VR


on 

the local horizontal plane as shown in Figure 4-3.  (  describes how much the 

velocity vector contributes to moving “toward and away” from the planetary 

equator.)    is much like the inclination for orbital motion except    may not be 

constant (because the reference – the local parallel of latitude – changes).  In fact, 

at the point where the entry plane and the equatorial plane meet,   would 

measure the same angle as an orbital inclination.  

 Before leaving the discussion of  , it is helpful to take a geometric look 

at the relationship between ,  ,   and  .  If the entry plane is fixed in space, as it 

is with our planar entry assumptions (including 0 ), then a vector normal to 

the plane is fixed in space also (i.e., a constant direction).  The fixed entry plane 

(for planar motion) contains both the radius and the velocity vector.  Thus, a unit 

vector normal to the plane can be defined by 

Vr

Vr
e

R

R

n 



 

 
ˆ




  
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Figure 4-3:  Heading Angle during Planar Entry 

When written in terms of the planet-fixed OX1Y1Z1 coordinates, this is:  

111
ˆ ),,,(ˆ ),,,(ˆ ),,,(ˆ zzyyxxn efefefe    

where fx, fy, and fz are simply scalar equations involving the rotation angles 

resulting from the coordinate transformations (e.g., Eq. (3.6)).  To the accuracy of 

4.14
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our assumptions, each component of  nê  will remain constant when solving Eqs. 

(4.7) - (4.12).  Some would view Eq. (4.14) as a “constraint” equation since it 

describes the “constraining” of the “no longer independent” variables of ,  ,   

and  .  For example,   would be “fixed” by the current values of   and   at 

any point during the planar entry. 

4.3 Basic Planar Equations  

 Equations (4.7) - (4.12) must be solved simultaneously to obtain the 

vehicle’s complete position and velocity.  However, if we aren’t concerned with 

the footprint on the planet (  and  ), then Eqs. (4.7), (4.10), and (4.11 ) can be 

solved independent of the other three equations to find the magnitude of velocity 

and radius (or, equivalently, altitude).  This leaves us with the three equations 

many books start with:      

sin Vr R  

sinR D
V g

m
    

 coscos
2

r

V
g

m

L
V

R
R   

 Lift and drag are often replaced with the following 

2

2
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SC
L RL
  
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SC
D RD
  
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where  is the atmospheric density.  CL and CD are the coefficients of lift and 

drag, respectively and S is a reference area used in calculating these aerodynamic 

coefficients.  In general, CL and CD may be complex functions of the angle of 

attack , Mach number M, and the Reynolds number Re: 

 , ,ReL LC C M    

 , ,ReD DC C M    

However, in the case of hypersonic flow (and other special cases), the 

aerodynamic coefficients are essentially functions of angle of attack only.  For our 

case, we can further assume the angle of attack is held constant, so CL and CD are 

constants.   

 The gravity term in Eqs. (4.16) and (4.17) is a function of radius and can 

be written in terms of a reference radius r0 and the gravity constant at that radius 

g0: 

 
2

0
0

r
g g r g

r
    
 

 

 Finally, with these assumptions, our equations become: 

sin Vr R  
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 The deceleration expected during an atmospheric entry is an important 

quantity to know when designing trajectories or entry vehicles.  As a vector, the 

deceleration is defined as: 

 R
decel

d
a a V

dt
   

 
 

In terms of the OXpYvZL  coordinate system found in Chapter 3, this can be 

written:  

 ˆR
decel v

d
a Ve

dt
 


 

The derivative (as seen in the entry plane) is straight-forward  

 ˆ

ˆ ˆ

R
decel v

R R
v L

d
a Ve

dt

Ve Ve

 

  



 
 

where our assumption of planar entry ensures there is no component in the ˆpe  

direction.  From this point forward, we will refer to the tangential (along the 

velocity vector) deceleration as 

  R
decel v

a V    

and the normal (along the lift vector) deceleration as: 

  R
decel L

a V    
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With the help of Eqs. (4.24) and (4.25), these can also be written as:  

 
22

0
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R
D

decel v

rC S V
a g

m r


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   

 

4.4 Basic Planar Equations in Non-Dimensional Form 

 Equations (4.23) – (4.25) cannot be solved analytically in general.  Vinh, 

et al. simplified the equations into a convenient non-dimensional form (58:102-

107).  Following their procedure, we can obtain a set of differential equations that 

can be solved analytically for a several realistic entry scenarios.   

 These three differential equations can be collapsed into two with a change 

of variables.  Let a non-dimensional distance be defined by 

r

r
z 0  

and we can change the independent variable from t to z by dividing Eqs. (4.23) – 

(4.25) by 

 2

0
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z
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Examining Eq. (4.36) (and a lot of luck) leads to another substitution.  Let the 

non-dimensional kinetic energy be given by: 





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
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Equation (4.36) becomes 

1
sin2
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


mz

STCr

dz

dT D  

and Eq. (4.37) becomes: 

 cos
2

11

2
sin

2
0





 

Tzmz

SCr

dz

d L  

This last equation can be simplified further with yet another variable substitution, 

 cos : 
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To summarize, our two “reduced” equations for planar entry are: 

1
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 cos  

The system of Eqs. (4.43) - (4.47) is “exact” to the accuracy of our 

approximations (CL and CD constant, no planetary rotation, etc.).  Once 

atmospheric density  as a function of z is specified, it can be solved. 

 A simple, yet reasonable, approximation for atmospheric density is that of 

an exponential atmosphere: 

)(  Rr
se

  

In Eq. (4.48), R  is the planetary radius, s is the atmospheric density at the 

surface, and -1 is a scale height selected to best match the atmosphere to the 

assumed exponential form.  We will further assume a strictly exponential 
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atmosphere which has a fixed (constant) value of   for any given planet.  The 

height (or altitude) h can be substituted into Eq. (4.48): 

h
se

    

 If we follow the customary derivation (or get extremely lucky), we’ll see 

that another change of the independent variable in Eqs. (4.49) will aid in the 

analytic integration.  To do this, we introduce a non-dimensional altitude variable 

that is proportional to the density: 




m

SCD

2

 
   

(Note that our new “altitude” variable  increases with decreasing altitude.)  

Taking the logarithmic derivative 

dr
d

 



   

and using Eq. (4.35), we arrive at: 

0
2

rd

dz z

 
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To change the independent variable in Eqs. (4.43) and (4.44), divide by Eq. 

(4.52): 
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Strictly speaking, the variable 
r

r
z 0  in Eqs. (4.53) and (4.54) should be replaced 

with the equivalent value of the new independent variable .  When required, Eq. 

(4.50) can be solved 

1

0 0

1
 ln ln

2
s DR SC

z
r r m




 




         

    
 

and z replaced in Eqs. (4.53) - (4.54).  However, it is not always necessary to 

make this somewhat painful substitution.  If 0r  is taken to be the initial altitude of 

entry (or any altitude within the atmosphere), then for planets with atmospheres 

similar to that of Earth:  

10 
r

r
z   

Mathematically, this can be justified by noting most of the atmospheric effects 

take place within about 100 km of the Earth’s surface.  Setting 1z   only 

introduces a few percent of error – small in comparison to the other assumptions 

made to this point.  (To put this in perspective, if Earth were scaled to the size of a 

peach, the atmosphere would be about as thick as the fuzz – negligible when 

measuring the radius of the peach!) 

 With this latest simplification, we have the basic equations of motion for 

planar atmospheric entry: 

0

2 1
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 The components of deceleration in Eqs. (4.31) and (4.32) can be similarly 

written  

  2
0 0 02 1decel v

a r g T g      

   0 0 02 1 2L
decel L

D

C
a r g T g T

C
  

 
    

 
 

where the choice of sign in Eq. (4.59) coincides with the sign of the flight-path 

angle.  The derivation is left as an exercise. 

  The basic equations we have derived in this chapter are sufficient for 

preliminary study of atmospheric entry.  They are in a form which will provide 

analytic insight.  In the next chapter, they will be solved using traditional first-

order solutions for special cases.  Later chapters will develop a second-order 

theory and investigate numerical solutions to the full equations of motion (Eqs. 

(3.35) - (3.37) and (3.65) - (3.67)). 
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4.5 Problems 

1. Equations (4.23) - (4.25) can be used to describe an orbit by applying the 

appropriate simplifications.  Apply those simplifications and find the resulting 

three equations of motion.  For the case where the flight-path angle is 

constant, show that the velocity given by Eq. (4.25) is that typically given in 

orbital mechanics books for circular orbit speed:  cV r
 , where  is a 

gravitational constant.  (In our case, 2
0 0g r  .) 

2. If the entry plane is fixed in space, then a vector normal to the plane is fixed in 

space also (i.e., a constant direction).  The fixed entry plane (for planar 

motion) contains both the radius and the velocity vector.  Thus, a unit vector 

normal to the plane can be defined by 

ˆ
I

n I

r V
e

r V







  

where IV


 is the inertial velocity.  When written in terms of the inertial OXYZ 

coordinates, this is  

ˆ ˆ ˆ ˆ( , , , , ) ( , , , , ) ( , , , , ) n x x y y z ze f t e f t e f t e                     

where fx, fy, and fz are simply scalar equations involving the rotation angles 

resulting from the coordinate transformations (e.g., Eq. (3.6)).  If  ˆne  is fixed 

in space then 
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(where each iC  is a constant) describe the “constraints” on ,  ,   and   

required to remain planar.  Find these three constraints.  You do not need to 

(and probably can’t) solve for the variables – just write the expressions for 

, ,x y zf f f .   Simpler option:  Assume the planet does not rotate ( I RV V
 

) and 

the OXYZ frame is aligned with the OX1Y1Z1. 

3. Prove the components of deceleration in Eqs.  (4.31) and (4.32) can be 

approximated as 

  2
0 0 02 1decel v

a r g T g      

   0 0 02 1 2L
decel L

D

C
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when 
0

1
r

r
 . 

4. Starting with Eq. (4.50), derive Eq. (4.55). 
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Chapter 5  

Classic Closed-Form 
Solutions 

5.1 Introduction 

 In this chapter, we’ll derive several first-order solutions and a specialized 

second-order solution to the basic equations for planar entry we found in the last 

chapter.  Each solution will be examined to study how altitude, speed, 

deceleration, and/or other parameters interact during atmospheric entry.  With 

today’s desktop computers, the equations of motion could be solved without the 

(somewhat painful) derivation of closed-form analytic and semianalytic 

approximations.  However, these solutions (and insights gained in their 

derivations) are very helpful in understanding the motion at the conceptual level.  

And, while each is a “specialized case,” they have the added benefit of being 

helpful for making preliminary planning decisions.  
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 The differential equations we found in Chapter 4 by following Vinh, et 

al.’s work are ideal for our analysis.  For convenience, they are repeated below:  

0

2 1
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dT T
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   

0

1 1
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where:  

 

2
hs DSC

e
m





   











00

2

2

1

rg
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 cos   

 In working with these, it will be helpful to understand the physical origin 

of the individual terms in Eqs. (5.1) and (5.2).  The first term on the right side of 

Eq. (5.1) is from the drag force as can be seen by referring back to Eq. (4.24).  

The second is the force of gravity along the velocity vector (also seen from Eq. 

(4.24)).  In Eq. (5.2), the first term is, obviously, the lift force.  The second can be 

seen to be the centrifugal force if you refer back to Eq. (4.25).  Finally, the third 

term is the gravity term (also seen by referring back to Eq. (4.25)).  These insights 

are summarized in Figure 5-1.   

5.1
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5.3
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Figure 5-1:  Physical Origin of Terms in the Planar Motion Equations (58:109) 

5.2 Shallow Gliding Entry 

 This first-order analysis assumes the vehicle produces enough lift to 

maintain a lengthy hypersonic glide at a small flight-path angle.  Clearly, this type 

of entry is an idealization, since in reality it is not practical to maintain a small 

entry angle at hypersonic speeds all the way to the planet surface!  However, it 

can be used to study a large portion of the entry profile for a gliding entry.  As a 

practical example, the Space Shuttle uses such an entry for the initial phase of 

reentry -- from entry interface to about 24 km in altitude.    

 For shallow entry, the main assumption is that the flight-path angle is 

small and the usual small angle assumptions 

sin    

cos 1   

5.6

5.7
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can be made.  Further, if changes in cos   are small, we have a quasi-

equilibrium glide condition first formulated by Sänger and Bredt (48:82-127).  

Equation (5.2) becomes simply an algebraic equation: 

0

1 1
1 0

 2
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C r T 
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This can be solved to relate the kinetic energy to altitude 
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or, equivalently, velocity to altitude: 
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A circular orbit at the reference radius has a velocity of 0 0 0V g r .  If it is 

assumed this “reference velocity” is the maximum speed at which entry begins, 

then Figure 5-2 shows the relationship in Eq. (5.10) over the span of 

0 00 RV g r   for various values of the lift-to-drag ratio L DC C .  (It is possible 

to study cases where  0 0
RV g r ; however, for simplicity, we will restrict 

ourselves to 0 0
RV g r .)  The resulting range of 0r   values shown in the 

figure has not been limited to those which can be physically obtained.  Recall as 

altitude approaches zero, 

2
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Figure 5-2:  Analytic Altitude/Velocity Relationship for Shallow, Gliding Entry 

which places a finite upper limit on 0r  .   For practical values of 0r  , and   

because we assumed hypersonic speeds, we can restrict ourselves to the lower 

right side of this curve.  Figure 5-3 expands the area of interest. 

Equation (5.1) also relates the flight-path angle to the kinetic energy.  If 

gravity force along the velocity vector is considered small relative to the drag 

force, then we can write:  

2 2

sin

dT T T

d  
   

(This may seem inconsistent with the “practical” values for 0r   in Figure 5-3; 

however, the choice to ignore 
0

1

r 
 in Eq. (5.1) was based on its magnitude 

5.12
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Figure 5-3:  Altitude/Velocity Relationship for Shallow, Gliding Entry 

relative to the drag force and not on it being close to zero!)  When differentiated, 

Eq. (5.9) gives another expression for 
dT

d
: 
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Combining Eqs. (5.12) and (5.13) lets us solve for the flight-path angle: 
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Or, using the small angle approximation, we can also write:  
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Note that, while we assumed the flight-path angle was small and its cosine almost 

constant, we did not (in this case) assume γ itself was constant!  Equations (5.14) 

and (5.15) are consistent with those assumptions.  Next, substitute the definition 

of our kinetic energy variable T into the latter of these expressions: 
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From this equation, we can see that larger lift values allow a more shallow entry 

(smaller magnitude of γ).   Rearranging this slightly to introduce the same non-

dimensional velocity term we used in Figure 5-2 and Figure 5-3 

2

0 0

0

2
R

L

D

g r

VC
r

C




 
       
 

  

we can see the flight-path angle tends to become steeper over the course of the 

glide (if L DC C  remains unchanged).  Figure 5-4 shows the relationship in Eq. 

(5.17) for various vehicles entering an Earth-like atmosphere.  When considering 

Eq. (5.17) and Figure 5-4, bear in mind that the assumption of a small flight-path 

angle begins to breakdown as the angle increases.     
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Figure 5-4:  Flight-Path Angle/Velocity Relationship for Shallow, Gliding 
Entry 

 We can also develop expressions for the distance covered during the glide.  

To do this, we start with the expression for the velocity along the trajectory given 

by Eq. (4.24).  Ignoring the gravity force along the flight path (relative to the drag 

force), this becomes: 

2
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Or, using our dimensionless altitude variable :   

2 
R

Rd V
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If s is the arc length traveled since the initial time, then we can also write: 

Rds
V

dt
    

Hence, after dividing Eq. (5.20) by Eq. (5.19), we can relate velocity to arc-

length: 

 
2
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R R
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d V V
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We can eliminate the product from this relationship by substituting in our 

solution from Eq. (5.10) and simplifying: 
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For reasons which will be explained shortly, we will designate the entry speed as 

R
eV  and integrate Eq. (5.22) between R

eV  and to RV to get the total arc-length 

during the glide: 
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Or, grouping terms into non-dimensional elements, this can be written as: 
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For this statement to be valid, 0 0
R

eV g r , which is the reason we specifically 

called out the entry speed as R
eV  instead of simply 0 0g r .  Once again, for 

simplicity, we will restrict ourselves to the situations where 0 0
R

eV g r .  Further, 

for Eq. (5.24) to give non-negative values for the arc-length, R R
eV V , which 

means the velocity decreases from entry speed to some final velocity.   

 Equation (5.24) confirms what you might have already expected – the 

range can be maximized by using the largest lift-to-drag ratio available.  A 

boundary on that maximum can be found by artificially assuming the velocity can 

decrease until it reaches zero.  This “limiting” distance is given by 
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and shown in Figure 5-5 for various lift-to-drag ratios and entry velocities. 

 In a similar manner, Eq. (5.10) can be used in Eq. (5.19) to get it into a 

form that can be integrated to give flight time: 
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After consulting an integral table (or a math graduate student), this can be 

integrated from the entry to the point of interest: 
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Figure 5-5:  Limiting Arc-Length for Shallow, Gliding Entry 

Note that the condition on the integration, 0 0V g r , is consistent with that in 

the arc-length calculations.   Substituting in the limits on the integration and 

simplifying the expression: 
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Taking a final velocity of 0RV   yields a maximum (limiting) flight time to go 

along with the limiting arc-length in Eq. (5.25): 

0 00
limit

0

0 0

1
1

ln
2

1

R
e

L
R

D e

V

g rg C
t

r C V

g r

  
  

             
    

 

Figure 5-6 shows the (non-dimensional) limiting flight time for various lift-to-

drag ratios across a range of entry velocities.  

 A physical parameter of interest to designers is the maximum deceleration 

the vehicle experiences.  The deceleration for this type of entry (a near spiral with 

1  ) is predominantly along the tangential direction, so we can approximate  
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Figure 5-6:  Limiting Flight Time for Shallow, Gliding Entry 
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the total deceleration as simply  
R

decel decel v

d V
a a

dt
   .  Using Eq. (5.19), we 

quickly get a non-dimensional expression in terms of altitude and velocity: 
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This could also have been obtained directly from Eq. (4.59) after noting cos 1  .  

Rewriting the right-hand-side slightly:   
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We can get an expression for 0r   from Eq. (5.10)  
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and use it in Eq. (5.31) to express the deceleration in terms of velocity only 
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 Both equations show the surprising result that deceleration becomes larger 

as the vehicle slows and it continues to become larger throughout the trajectory.  

The equation also shows lift reduces the maximum deceleration.  Figure 5-7 

graphically illustrates these observations by plotting Eq. (5.33). 

5.3 Medium and Steep Gliding Entry at Near Circular Speed 

 Section 5.2 looked at the quasi-equilibrium case where lift was sufficient to hold 

the flight-path angle small and cos constant  .  Lees, et al. examined the case 

for the situation where neither of these assumptions is valid; specifically, they 

examined a first-order solution for gliding entry at medium and large flight-path 

angles (36:633-641). 
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Figure 5-7:  Deceleration for Shallow, Gliding Entry  
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 In this case, we can assume the lift force is the dominant term in Eq. (5.2): 
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This is equivalent to saying the difference between the gravity force and the 

centrifugal force is small compared to the lift.  More precisely,  
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which is the same as saying the velocity is near circular orbital speed ( 1
2T  ) 

and/or the term 
0

1

r 
 is small.  When 

0

1

r 
 is small, Eq. (5.35) remains valid 

even if the velocity is not “as near” to the equivalent circular orbital speed.   

 Separating the variables and integrating Eq. (5.35) from the entry 

conditions (denoted by an “e” subscript) forward, this becomes: 
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One way of plotting this equation is shown in Figure 5-8.  Equation (5.37) 

contains a few subtleties that should be mentioned.  First, since   increases as the 

vehicle enters the atmosphere, the right-hand side is non-negative for positive lift-

to-drag ratios.  This means the flight-path angle becomes less steep (less negative) 

as the vehicle moves along this trajectory!  Second, because of the realistic range 

for flight-path angles on left-hand side,  0 1L
e

D

C

C
     at all points during 

the entry.  Figure 5-9 illustrates the relationship in terms of physical 

(dimensional) parameters for two vehicles with the same entry conditions but 

different lift-to-drag ratios.   
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Figure 5-8:  Flight-Path Angle/Altitude Relationship for Medium/Steep Gliding 
Entry 

 

Figure 5-9:  Physical Interpretation of Flight-Path Angle/Altitude Relationship 
for Medium/Steep Gliding Entry 



C L A S S I C  C L O S E D - F O R M  S O L U T I O N S  

91 

 If drag is assumed to be the dominant term in Eq. (5.1), we can write: 

2

sin

dT T

d 
  

Equation (5.35) becomes 

 cos
sin L

D

d Cd d

d d d C

 
  
     

which, when combined with Eq. (5.38), eliminates the dimensionless altitude : 

2

L

D

dT
d

T C

C

 
 
 
 

 

Again integrating forward from entry conditions, we find the relationship between 

kinetic energy and flight-path angle: 

 2
exp e

e L

D

T

T C

C

 
 
     
  
   

 

Figure 5-10 illustrates this relationship.  Equations (5.37) and (5.41) are the first-

order solution of Lees et al. for gliding entry at medium positive lift-to-drag ratio 

and medium flight-path angle (36; 58:113-114). 
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Figure 5-10:  Kinetic Energy/Flight-Path Angle Relationship for Medium/Steep 
Gliding Entry 

 To examine the deceleration for this type of entry, we begin with Eqs. 

(4.59) and (4.60):   

  2
0 0 02 1decel v

a r g T g      

   0 0 02 1 2L
decel L

D

C
a r g T g T

C
  

 
    

 
 

For most planets of interest, 0 1r  .   Combined with our assumption that 

1 2T  , these deceleration components are approximated by  

  0 02decel v
a r g T   
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and: 

  0 02 L
decel L

D

C
a r g T

C
 

 
   

 
 

It is often assumed    decel decelv L
a a  for these types of entries (58:113).  

However, when comparing the components 

 
 

decel v D

decel LL

a C

a C
  

the assumption doesn't always seem justified.  It’s not much more difficult to 

avoid making such an assumption by working with the total deceleration 

magnitude: 

   
2

2 2

0 02 1 L
decel decel decelv L

D

C
a a a r g T

C
 

 
     

 
 

Notice that both components and the total deceleration are proportional, so they 

experience their respective maxima occur at the same point in the trajectory.  

Substituting our solutions for  and T from Eqs. (5.37) and (5.41) into Eq. (4.40), 

we can write an expression for the total deceleration: 

 2

0
0

2cos cos
2 1 exp edecel eL

e e
D L L

D D

a C
r T

g C C C

C C

  
 

   
                                
         

 

Recall 0 as h   , so it is reasonable to set 0e   for high-altitude entry  
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and rewrite this slightly simpler as: 

 
 

2

0

0

2 1 cos cos
2

exp

L
e e

D edecel

L L

D D

C
r T

Ca

g C C

C C

  
 

  
                      

     

 

The point of maximum deceleration occurs when  

0 0

decela
d

g

d

 
 
    

Or, after substituting Eq. (5.49) and simplifying 

 * *

1
sin cos cos

2
L

e
D

C

C
  

 
   

 
 

where the γ* signifies the flight-path angle at which the maximum deceleration 

occurs.  (In general, we will denote the “critical” conditions – flight-path angle, 

altitude, velocity, etc. – corresponding to a maximum or minimum with an 

asterisk subscript.)  Equation (5.51) can be solved analytically for *sin .   

 Start by writing Eq. (5.51) as 

* *sin cos cosek       

where  

1

2
L

D

C
k

C

 
  

 
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has been used to simplify the expression we are about to develop.  Squaring both 

sides and simplifying: 

     2 2 2
* *1 sin 2 cos sin sin 0e ek k          

This is a quadratic equation in *sin .  Equation (5.54) has two roots, given by: 

2 2

* 2

cos sin
sin

1
e ek k

k

 


 



   

To decide which root (or both or neither) is physically realistic, consider that  

*sin 0   

cos 0e   

must be true for atmospheric entry.  Given the condition in Eq. (5.56), then: 

2 2cos sin 0e ek k     

For positive lift, cos 0ek    and the only possible way for Eq. (5.58) to be valid 

is if:  

2 2cos sin 0e ek k     

In-other-words, the “+” root cannot yield a result for *sin 0   when 0L

D

C

C
 .  

Equation (5.59) deserves a little more study.  Are there physically realistic values 

of e  for which it would not be satisfied?  Rewrite the inequality in Eq. (5.59) as: 

2 2cos sine ek k    
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Squaring both sides and simplifying, we see  

2
1

1
4

L

D

C

C

 
  

 
 

must be true for a valid solution to Eq. (5.55).  Since this inequality is always true, 

we do not have to be concerned that any particular positive lift-to-drag ratio will 

cause an erroneous solution to Eq. (5.54).  (This broad statement assumes the 

earlier simplifications leading to Eq. (5.54) are valid, of course.)  Thus, we find 

the flight-path angle at the point of maximum deceleration is: 

2

2

* 2

1 1
cos sin

2 4
sin

1
1

4

L L
e e

D D

L

D

C C

C C

C

C

 



   
    

   
 

 
 

   

Figure 5-11 shows the nearly linear relationship between *  and e  for a given 

lift-to-drag ratio.   

 The altitude at which the maximum deceleration occurs can be found by 

first evaluating Eq. (5.37) at the corresponding flight-path angle 

 * *cos cos L
e e

D

C

C
       

and then using Eq. (5.51) to eliminate the cosine terms: 

*
*

sin

2e

     
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Figure 5-11:  Relationship Between Entry and Critical Flight-Path Angles 

Or, using Eq. (5.62), this can be written in terms of the entry flight-path angle and 

the lift-to-drag ratio: 

2

2

* 2

1 1
cos sin

2 4

1
2 1

4

L L
e e

D D
e

L

D

C C

C C

C

C

 
 

   
     

    
  
  
   

 

In Figure 5-12 we can see vehicles with a larger lift-to-drag ratio experience their 

maximum deceleration at a higher altitude than those with a lower lift-to-drag 

ratio.  Bear in mind, however, this says nothing about the relative magnitudes of  
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Figure 5-12:  Altitude Change Between Entry and Maximum Deceleration 

their corresponding maximum decelerations!  Although we may suspect the 

deceleration to be less at higher altitudes, we haven’t found equations proving it. 

The speed at which maximum deceleration occurs can be found from Eq. (5.41) 

once γ* is known (from Eq. (5.62)):   

 ** exp
R

e
R

e L

D

V

V C

C

 
 
   
  
  
   

 

   The ratio *
R

R
e

V

V
 is shown as a function of e  in Figure 5-13.  From the 

equation (and the figure), we can see that more lift results in less reduction in  
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Figure 5-13:  Entry Flight-Path Angle/Velocity Relationship at Maximum 
Deceleration  

speed from entry to the point of maximum deceleration.  Additionally, the figure 

demonstrates the dramatic difference between how the equation behaves at 

shallow entry and steep entry angles for low-lift/high-drag vehicles. 

   The maximum deceleration can also be found by substituting the 

appropriate terms from Eqs. (5.41) and (5.64) into Eq. (5.48):   

 

2

0 0 * *

0 0 0max *

2

**
0

2
1

2sin
2 1 exp

2

decel decel L

D

eL
e e

D L

D

a a r g T C

g g g C

C
r T

C C

C

 

 
 

     
       

    

 
                     
   
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Since the components experience their respective maxima at the same time, they 

can be evaluated using Eqs. (5.44) and (5.45)   

   **
0

0 *

2sin
2 exp

2
decel ev

e e

L

D

a
r T

g C

C

 
 

 
                     
   

 

   **
0

0 *

2sin
2 exp

2
decel eL L

e e
D L

D

a C
r T

g C C

C

 
 

 
                          
   

 

where the value for *  in Eqs. (5.67) – (5.69) is the same numerical value and is 

found by solving Eq. (5.62).   

 For the case where the initial altitude is sufficiently high ( 0e  ), Eq. 

(5.67) can be simplified as  

 2

*
0 *

0 *

2
sin 1 exp edecel L

e
D L

D

a C
r T

g C C

C

 
 

 
                    
   

 

and plotted in Figure 5-14 for entry into Earth-like atmospheres.  Note how large 

the total deceleration can be at steep entry angles.  For completeness, the 

components are shown in Figure 5-15 and Figure 5-16.  Between the three plots, it 

is obvious why the normal component of deceleration cannot be ignored in all 

situations.   
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Figure 5-14:  Relationship Between Entry Flight-Path Angle and Maximum 
Total Deceleration, Te=1/2  
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Figure 5-15:  Relationship Between Entry Flight-Path Angle and Maximum 
Tangential Deceleration, Te=1/2 
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Figure 5-16:  Relationship Between Entry Flight-Path Angle and Maximum 
Normal Deceleration, Te=1/2 

 To be consistent with the assumption of near circular speeds, eT  should be 

replaced with 1 2eT   throughout this section; however, we avoided the 

replacement because we will “reuse” these equations in a later section where 

1 2eT  .  Finally, it should be noted that when Lees, et al. presented their results, 

they examined entry angles to around 15◦ (0.26 radians).  However, nothing in the 

equations derived specifically limits the range on γ (as long as the other 

assumptions are valid).  The relations found in this section can be applied to 

medium and large entry angles (where “medium” and “large” are somewhat 

subjective). 
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5.4 Medium Gliding Entry at Supercircular Speed 

 The equations presented in Section 5.3 were valid when the entry speed 

was near the equivalent circular speed at the entry radius.  (This limitation was 

due, in large part, to the assumptions called out in Eq. (5.36).)  Wang and Ting 

presented an “approximate” analytic solution for steep gliding entry without this 

restriction on the entry speed (64:565-566).  However, in their derivations, they 

introduced the restriction that the flight-path angle is “small enough.”  In this 

section, we will investigate their approach to an approximate analytic solution. 

 During the initial portion of the entry trajectory, there is a period where 

the velocity does not change significantly, particularly for at medium flight-path 

angles (for example, in Figure 5-13).  Wang and Ting used this observation to 

replace the (non-constant) bracketed term in Eq. (5.2), with a constant value 

evaluated at entry conditions 
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where the flight-path angle has been assumed to be small enough to 

simultaneously replace cos   with unity.  Thus, Eq. (5.2) becomes 
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and can be easily integrated from the entry point forward: 
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If the cosine terms are replaced by their series approximations (and truncated to 

the quadratic terms), the following relationship is found: 

 2 2
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2 1
2  1 ln
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Retaining the expansions through the quadratic terms is one way of allowing the 

range of γ to be somewhat larger while still assuming 1  .  (Also, the 

assumption on ξ  was “bundled” with the “approximately constant velocity” 

assumption.)  For entry trajectories, we want the negative root of Eq. (5.74):  

 
1
2

2

0

2 1
2  1 ln

2
L

e e
D e e

C

C r T

   
 

     
          

      
  

 Taking Eq. (5.1) and, as in the other planar approaches, assuming the drag 

term is dominant, we have: 

2

sin
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d 
  

Replacing the sine term with a series expansion (through the quadratic term), lets 

us simplify this as:  

2dT T

d 
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After substituting our relationship for   from Eq. (5.75), we get a differential 

equation which can be separated for integration: 
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Unfortunately, Eq. (5.78) cannot be solved in closed form.  Various approaches 

can be taken to approximate the solution.  Wang and Ting expanded the 

denominator out in terms of 
e



 
 
 

 and integrated from the entry point to the point 

of maximum deceleration.  Vinh, et al. combined Eqs. (5.72) and (5.76) to get 
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and then assumed the denominator was approximately constant for integration 

purposes (58:115-116).  They found: 
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The relative accuracy of this assumption is left as an exercise.  Equations (5.75) 

and (5.80) are Wang and Ting’s first-order solution for entry at supercircular 

speeds (58:116). 

 For the moment, we can avoid choosing between the two approaches for 

integrating 
dT

T
and still find an expression describing when the maximum 

deceleration occurs.  Once again, we can ignore the gravity terms in Eqs. (5.42) 

and (5.43) and write an expression for the total deceleration as: 
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This is a maximum at the altitude satisfied by: 
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Replacing 
dT

d
 with the aid of Eq. (5.76) and simplifying: 
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Since the kinetic energy T is not zero during the period of interest, we can divide 

it out, eliminating the unknown value/expression for T!  Again denoting the 

critical point with an asterisk subscript, our condition for maximum deceleration 

then becomes: 

  * *sin 2 0    

Recall, during the derivation of Eq. (5.75), series expansions out to quadratic 

terms were used.  Consistent with that,  

* *sin    

to the same order since the sine expansion does not have a quadratic term.  Thus, 

we can simplify Eq. (5.84): 

* *2 0    

Evaluating Eq. (5.75) at the altitude *  corresponding to *  and substituting 

it into this equation, we get a new equation of only one unknown, * : 
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 This, as written, must also be solved numerically, but it is a simple 

algebraic relationship.  We also cannot solve for the actual maximum deceleration 

yet because we do not have a relationship for T* without integrating Eq. (5.78).  

At this point, we can fall back on the approximation by Vinh, et al. to find the 

value of the maximum deceleration 
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where the value for *   is found from Eq. (5.87) and the corresponding *  from 

Eq. (5.75).  Because the total and component decelerations differ only by a 

“scaling” constant, their maxima are, again, at the same point in the trajectory and 

can be easily written with the aid of Eqs. (5.42) and (5.43):  
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5.5 Planar Skip Entry 

 A special case of lifting reentry is one in which the vehicle intentionally 

uses lift to pull back out of the atmosphere – a “skip.”  During a skip maneuver, a 

lifting vehicle enters the atmosphere (at hypervelocity), generates lift in the “up 

direction,” and flies back out of the atmosphere as shown in Figure 5-17.  (During 

the solution to some of the computational homework problems, you may already 

have encountered motion similar to this.)  While this type of maneuver could be 

used to change the orbital plane, we will only consider a constant lift-to-drag ratio 

and motion confined to the entry plane.  Skip maneuvers take place over a short 

range, so centrifugal motion can be ignored.  Further, aerodynamic forces 

dominate the gravitational forces.  With these assumptions, the equations of 

motion can be simplified from Eqs. (5.1) and (5.2) as:  
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Figure 5-17:  Planar Skip Entry 
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These equations are the same as we found in Section 5.3 for medium/steep gliding 

entry at near circular speeds, but the assumptions are slightly different.  Perhaps 

most importantly, we did not restrict ourselves to near circular speeds in deriving 

Eq. (5.92).   

 Dividing Eq. (5.92) by Eq. (5.91) gives 

sin
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which can be separated for integration after replacing cos  : 
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Integrating from the entry point forward to some later point gives: 
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In terms of velocity this can be expressed as:  
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Equation (5.92) can be integrated directly to find the flight-path angle as a 

function of altitude: 

 cos cos L
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Or, solving for the altitude: 
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 For a “complete” skip (i.e., one that doesn’t impact the planet), the final 

altitude is equal to the entry altitude: 

f e   

By comparing Eqs. (5.98) and (5.99), the final flight-path angle can be easily 

found  

f e    

as can the final velocity:  
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 We can also develop an equation for the horizontal (“downrange”) 

distance traveled during the skip.  To do this, we start with the expression for the 

velocity along the trajectory given by Eq. (4.24) and again ignore the gravity  
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force along the flight path (relative to the drag force): 

2

 
2

RR
DC S Vd V

dt m


   

(Note, ignoring this component of gravity is also what you would have with a 

“flat” planet.)  Using our dimensionless altitude variable , Eq. (5.102) becomes:   
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If X  is the horizontal distance traveled since the entry, then we can also write: 

cosRdX
V

dt
  

Hence, after dividing Eq. (5.104) by Eq. (5.103), we can relate velocity to 

horizontal distance by: 
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Equation (5.94) and the definition 
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(Note, for this type of trajectory,   is monotonically increasing from e  to f , so 
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terms of the flight-path angle using Eq. (5.98) to give an equation which can be 

separated for integration: 
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Separating and integrating from entry forward: 
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The last integral can take on several forms, depending on the sign and relative 

magnitude of the term cos L
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.  For entry from a high-altitude (and/or 

for very small lift-to-drag ratios), the term is dominated by cos e .  Therefore, for 

all but the steepest of entries (which are impractical for skip anyway):  
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In these situations, the appropriate form of the integral is 
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Eq. (5.108) becomes 
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has been used as shorthand notation.  In a slightly different non-dimensional form, 

the horizontal range is:  
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To find the horizontal distance covered from atmospheric entry to atmospheric 

exit, Eq. (5.113) can be evaluated at f e   : 
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 It’s reasonable to check to see if the skip really is complete by comparing 

the lowest altitude max  in the trajectory to the radius of the planet.  At the surface 

of the planet, 
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to avoid an undesired deceleration at the planet’s surface.  (Recall,   increases 

with decreasing altitude!)  To find this maximum, it is sufficient to maximize Eq. 

(5.98) with respect to the flight-path angle and then use the corresponding 

“critical” angle *  to calculate the maximum.  Doing so yields 
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where * 0   is the corresponding angle.  Thus, to ensure a successful skip 

trajectory, a design trade can be made between vehicle’s aerodynamic coefficients 

and the entry flight-path angle:   

1 cos
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 The equations of motion (Eqs. (5.95) and (5.97)) are identical (albeit for 

different assumptions) to those derived for steep gliding entry at near circular 

speed in Section 5.3.  This allows us to “steal” an expression for the total 

deceleration 
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without deriving it again in this section.  Similarly, we can use the previous 

discussion to give the point at which the maximum deceleration occurs 
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and the expression for the maximum deceleration itself:  
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Notice we have included both components of deceleration in the total 

deceleration.  Lift is significant, and the normal deceleration may well dominate 

during portions of the entry.  The maximum deceleration as a function of entry 

flight-path angle is shown in Figure 5-18 for several configurations.  The 

maximum goes up with both steeper and faster entry.  At shallow entry angles, lift 

decreases the maximum, but at steeper entry angles, lift increases the maximum.       
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Figure 5-18:  Relationship Between Entry Flight-Path Angle and Maximum 
Total Deceleration 
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 All of the discussion on skip entry to this point has been for one skip (a 

single entry and exit from the atmosphere).  If the vehicle leaves the atmosphere 

with a speed less than escape velocity, it will return to the atmosphere again.  If 

another skip is performed, the process is repeated (Figure 5-19).  Eventually, after 

multiple skips, the vehicle loses so much kinetic energy it cannot (or need not) 

pull back out of the atmosphere.  At that point, the entry ceases to be skip entry 

and becomes gliding entry, ballistic entry, or something in between. 

5.6 Steep Ballistic Entry 

 The first ballistic problem to be studied is that of steep entry.  This is 

applicable to such things as ballistic missile reentry, where the trajectory is 

designed to pass through the atmosphere as quickly and as straight as possible.  

By coming in fast and relatively straight down, the vehicle minimizes the time 

spent in the atmosphere and, as a result, minimizes the uncertainty in the 

trajectory.  We will be looking at two solutions for this problem, one which 

includes gravity and one which does not. 

 

Figure 5-19:  Planar Multi-Skip Entry 
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5.6.1 Analysis Including Gravity 

 In the case of ballistic entry, lift forces are zero.  For steep entry angles, 

the centrifugal force can also be ignored when compared to the gravity force, so 

Eq. (5.2) becomes:  

02

d

d r T

 
  


  

If the entry angle is steep enough,  cos  is small.  Further, as the vehicle 

penetrates the atmosphere, the dimensionless altitude   (which is proportional to 

atmospheric density) quickly becomes greater than one.  Thus, the right-side of 

Eq. (5.122) quickly becomes small.  As a first-order approximation, assume 

0
d

d



  

which can be immediately integrated to show that the cosine of the flight-path 

angle remains constant.  While it is possible at times to consider the cosine of an 

angle to remain approximately constant longer than the angle itself, in this case 

the flight-path angle itself can also be considered constant.    Substituting this into 

our other basic planar equation gives us a linear, constant-coefficient differential 

equation for our kinetic energy parameter T  

0

2 1

sin e

dT T

d r   
   

where e  has been used as the initial (or “entry”) flight-path angle.  Before  

solving, we can simplify the algebra by substituting 
2

sin e





 : 

0

1dT
T

d r  
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 The homogeneous solution to Eq. (5.125) is given by integrating  

dT
d

T
 

   

to get 

 HT ke    

where k is a constant of integration.  Numerous authors have shown that the 

particular solution to Eq. (5.125) is given by 
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r

 


  
  

 
 

with c being a constant of integration.  The exponential integral function is 

defined as: 
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This solution can be verified by direct substitution of Eq. (5.128) back into the left 

side of Eq. (5.125) and verifying it produces the right side: 
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The total solution is the sum of the homogeneous and particular solutions: 
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Or, introducing A as a new constant: 
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The value for A can be found by evaluating the initial conditions on the velocity.  

(This is left as an exercise.)  Alternatively, A can be expressed in terms of the 

entry (initial) kinetic energy and -value: 

 0
e

e eA T r e Ei
    

The exponential integral function could easily be a button on a calculator like sine 

and cosine.  However, since we’d be hard-pressed to find a calculator with an 

Ei(x) button, a Taylor series is often used as a numerical technique to find the 

value: 
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0.5772156E  is the Euler constant.  Values for Ei(x) are tabulated in reference 

books.  Before declaring victory and moving on to solve another “special case,” 

we can examine Eq. (5.132) in more detail to learn more about the dynamics of 

steep entry angles.   

 Equation (5.132) describes the velocity as a function of altitude once 

variable substitutions are reversed (and the constant is evaluated).  When the  
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truncated expansion ( ) ln( )EEi      is used, this expression is: 
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Significantly, the velocity is dependent on an exponential of an exponential.  The 

velocity is extremely sensitive to the altitude and slightly less sensitive to the drag 

factor, mass, and other parameters in the exponential. 

 With a constant flight-path angle, 0   so there isn’t any normal 

component of deceleration.  Thus, we can use Eq. (4.59) to write: 
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For entry into most planets  
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in the region of interest, so we can drop the second term on the right.  With the 

variable change 
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where  T T  .  This is maximized (with respect to , a measure of the altitude)  

when:  
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Substituting Eq. (5.138) into Eq. (5.139) and simplifying, we can get an 

expression for * corresponding to the altitude of maximum deceleration: 

    *
* *1 0A Ei e        

Once the constant A is determined from initial conditions, * can be found 

numerically.  The value of the maximum deceleration is then 
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where * 1   is found by solving Eq. (5.140).   

 It is possible for Eq. (5.140) to yield values of *  corresponding to 

altitudes below the planet surface, so care must be taken in solving the equation.  

Specifically,  

* sin
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SC
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allows the maximum value to be reached before impacting the planet surface.  If 

the physical parameters of the problem are such that the inequality in Eq. (5.142) 

is not satisfied, the deceleration increases from the entry point until impact and 

never reaches the analytic maximum given by Eq. (5.141).    (Mathematically, 

this is true.  However, other assumptions we’ve used, such as hypersonic flight, 

begin to fail before the planet surface is actually reached.  None-the-less, it is 

traditional to find conditions analogous to Eq. (5.142) for this problem.) 

  In addition to finding the maximum deceleration, we can also find the 

“terminal” or “limiting” velocity of a high-drag vehicle.  During the last phases of 

entry, the vehicle may approach a point where drag and gravity are essentially 
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balanced and the change in kinetic energy is essentially zero.  Thus, Eq. (5.1) 

becomes:   

0

2 1
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sin e
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Solving this for the velocity 
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Note that the limiting velocity is altitude dependent.  Skydivers do not notice this 

altitude dependence since the altitude range they are concerned with is typically 

such that 0 / 2 0.25h  , or a maximum change of about 28%. 

5.6.2 Analysis Ignoring Gravity 

 Equations (5.132) and (5.141) give the solutions for kinetic energy and 

maximum deceleration, respectively, during steep ballistic entry.  Neither 

equation lends itself to “generalized” plots such as those in Figure 5-2 and Figure 

5-14.  Equation (5.141) for the maximum deceleration even requires a numerical 

solution to a transcendental function!  They are difficult (to say the least) to use 

for qualitative comparisons of trajectories with different initial velocities and/or 

different entry flight-path angles.  To simplify the analysis, we need to do 

something very non-intuitive – we’ll ignore gravity!  (But, by example, we’ll 

show the solution without gravity closely follows the more complicated solution 

with gravity.) 

 When gravity is ignored, Eq. (5.1) becomes 
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and Eq. (5.2) remains the same as we found in Eq. (5.123): 

0
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Equation (5.146) integrates immediately to give: 
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Like before, with this type of entry we can assume the flight-path angle remains 

constant  e  .  Substituting this into Eq. (5.145) and solving yields a closed-

form solution for the kinetic energy: 
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Equations (5.147) and (5.148) are the first-order solution for steep ballistic entry 

presented by Allen and Eggers (Ref. 1), Chapman (Ref. 16), and Gazley (Ref. 26).  

This solution is shown in Figure 5-20 for entry starting at high altitudes ( 0e  ). 

   The tangential deceleration can be found by substituting this solution for 

kinetic energy into Eq. (5.138) (and “unreplacing” 
2
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
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 ):  
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Deceleration for high-altitude entries are shown in Figure 5-21.  To find the 

maximum value, Eq. (5.149) can be differentiated with respect to altitude and set  
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Figure 5-20:  Steep Ballistic Entry Solution Ignoring Gravity 
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Figure 5-21:  Deceleration During Steep Ballistic Entry (Ignoring Gravity)  
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it equal to zero.  Solving gives the altitude of maximum deceleration: 
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Otherwise, the deceleration will increase (by Eq. (5.149)) until impact with the 

ground.  Assuming the critical altitude is reached before the vehicle hits the 

surface, the deceleration at *  is:  
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For high-altitude entry, Eq. (5.152) reduces to:  
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This “locus of maximum values” is also shown in Figure 5-21. 

5.6.3 Comparison of Analyses 

 The kinetic energy solutions with and without gravity are given by Eq. 

(5.132) and Eq. (5.148), respectively.  The two are much closer numerically than 
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the difference in algebra would seem indicate.  Further, it’s possible to show Eq. 

(5.132) can be approximated by Eq. (5.148).  Rearranging Eq. (5.132), 
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and substituting the first two terms of a Taylor series expansion for  Ei   yields: 
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When 
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1

er T
 is sufficiently small (which it is for most planets of interest), this 

becomes: 
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Thus, the two solutions (with and without gravity) produce the same results under 

many circumstances.   

 Equations (5.132) and (5.148) can be plotted on the same graph for several 

cases to see how accurately the “simple” solution without gravity tracks the “more 

complete” solution with gravity.  (In other words, we can use a graph to convince 

ourselves that 
0

1

er T
 is sufficiently small.)  Two different trajectories (whose 

specifics are given in Table 5-1) are shown in Figure 5-22 computed with and 

without gravity.  Together, the two cases span a wide range of possible “steep” 

ballistic entries.  The figure shows the solutions represented by Eqs. (5.132) and 

(5.148) are, for all practical purposes, very close. 
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Table 5-1:  Sample Ballistic Entry Initial Conditions 

Case #1 Case #2 
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Figure 5-22:  Comparison of Steep Ballistic Solutions 

 Similarly, Figure 5-23 shows how the deceleration varies with altitude for 

both solution methods.  Notice that the qualitative information (the trends) is 

identical and the quantitative information (the values) is very similar for the two 

solution methods.  In fact, Figure 5-24 shows that the deceleration values differ 

by less than 5% of the maximum values over the entire solution.  (The “steeper” 
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Figure 5-23:  Comparison of Deceleration Solutions for Steep Ballistic Entry 
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Figure 5-24:  Comparison of Deceleration Solutions for Steep Ballistic Entry 
(Differences as a Percentage of Maximum Values) 
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case, Case #2, has less than a 0.5% difference!)  For completeness, Figure 5-25 

shows that the two methods of computing the altitude of maximum deceleration 

*  and maximum deceleration 
0 *

decela

g

 
 
 

 are quite close also. 

 In light of the comparisons made in Figure 5-22 through Figure 5-25, we 

can make a strong argument that the “simpler” equations derived without gravity 

are adequate for initial analysis of these types of entries.  Indeed, we will use 

these solutions in a later chapter to help us compare heat transfer between types of 

reentry trajectories. 
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Figure 5-25:  Comparison of Critical Deceleration Values for Steep Ballistic 
Entry 
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5.7 Shallow Ballistic Entry at Near Circular Entry Speed 

 In this section, we will cover ballistic entry at shallow angles and nearly 

orbital speeds.  The approach will be one by V. A. Yaroshevskii published in 

1964 shortly after Yuri Gagarin’s orbital flight.  The method is semianalytical 

rather than strictly analytical and is probably more accurately classified as a 

second-order solution.  Despite this, it fits well with the first-order solutions in 

this chapter. 

 Backing up one step and starting with an earlier form of the planar entry 

equations given by Eqs. (4.23) - (4.25) in Chapter 4, we begin by introducing the 

small angle approximations sin  and cos 1   along with setting lift to zero: 

 Rdr
V

dt
  

22
0

0 
2

RR
D rC S Vd V

g
dt m r


     

 
 

22
0

0

R
R rd V
V g

dt r r

     
 

 

Unlike for steep ballistic entry, we have retained the centrifugal force term in Eq. 

(5.159).   If we further assume a thin atmosphere and ignore the tangent gravity 

force in the velocity equation, these equations become: 

 Rdr
V

dt
  

2

 
2

R R
Dd V C S V

dt m


   

5.157

5.158

5.159

5.160

5.161
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2R
R d V
V g

dt R






   

The radius change is small, so it has been assumed to be constant on the right side 

of Eqs. (5.160) - (5.162) and set equal to the sea-level radius R .  Similarly, 

gravity has been assumed to remain constant at the sea-level value g .  Using Eq. 

(5.161) to change the independent variable to RV : 

2
 

R R
D

dr m

d V C S V




   

2

2

2 R
R

R R
D

d m V
V g

Rd V C S V


 



 
  

 
 

Yaroshevskii introduced a new independent variable x and a new dependent 

variable y defined by 

lnx V   

2
D RC S

y
m



  

where V  is a dimensionless velocity defined relative to the sea-level circular 

velocity by 

RV
V

g R 

  

and -1 is a scale height selected to best match the atmosphere.  For this strictly 

exponential atmosphere, we have assumed 

h
se

    

5.162

5.163

5.164

5.165

5.166

5.167

5.168
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where h r R   is the altitude, s is the atmospheric density at the surface, and 

  is constant.  Thus, from Eqs. (5.166) and (5.168), we can write: 

dy d
dr

y

 


    

Equations (5.165) and (5.167) can be differentiated and combined to give:  

R

R

dV d V
dx

V V

 
   

Substituting Eqs. (5.169) and (5.170) into Eqs. (5.163) and (5.164) to change the 

dependent and independent variables gives the new equations of motion: 

dy
R

dx
    

2

1 1
1

d

dx Vy R




    
 

 

Finally, differentiate Eq. (5.171) to get  

2

2

d y d
R

dxdx

   

and substitute in Eq. (5.172) for 
d

dx


: 

2

2 2

1 1
1

d y

ydx V
   
 
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5.170
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If we realize from Eq. (5.165) that xV e , the differential equation of motion 

becomes surprisingly simple:  

 
2

2
2

1
1xd y

e
ydx

   

This second-order, non-linear differential equation is Yaroshevskii’s equation for 

studying entry into planetary atmospheres (specialized to the case of no lift and 

constant drag coefficient).  For the problem at hand, the initial conditions to be 

used when integrating this equation are: 

i

0  (entry speed is the circular orbital speed)

0  (entry begins at high altitude, 0)

0  (circular orbit, 0)

i

i

i

x

y

dy

dx






 

 

  

 To solve Eq. (5.175), Yaroshevskii turned to a series solution.  

(Computers were not readily available in the Soviet Union of the early 1960s.)  

Expanding out the exponential, Eq. (5.175) becomes 

2x
y

y
   

where the primes have been used to denote differentiation with respect to x.  This 

equation is singular near 0y   (unless, of course, x is well-behaved and goes to 

zero at least as fast as y).  If we assume a solution of the form py Ax  near 

0y  , then Eq. (5.177) becomes: 

2 2
( 1) p

p

x
Ap p x

Ax
    

5.175

5.176

5.177

5.178
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Equating the exponent on x on each side gives 3
2p  .  Similarly, equating the 

coefficients gives 8
3A  .  Thus, for small x the solution is: 

3
2

8

3
y x  

 Equation (5.179) satisfies the initial conditions given by Eqs. (5.176), but 

is not general enough for studying many of the properties along the trajectory 

(and it is an approximate solution near 0y  ).  Thus, we generalize Eq. (5.179) to 

be a series 

 3 22
0 1 2

8

3
y x c c x c x     

where we have yet to determine the unknown coefficients ic .  (However, we 

should expect to find 0 1c   so that this solution simplifies to Eq. (5.179) for  

sufficiently small x  near 0y  .)  Rewriting Eq. (5.175) as 

2 1xyy e    

and substituting in the assumed series solution, we find 

2 2 2 3
0 0 1 0 2 1

8 3 9 19 15

3 4 2 2 4
yy c x c c x c c c x

                      
 

when terms smaller than 4x are ignored.   (Recall that x is small.)  Expanding the 

exponential in Eq. (5.181) and combining with Eq. (5.182) gives an algebraic 

equation in x.  Ignoring the terms smaller than 4x , this expression is simply: 

2 2 2 3 2 3
0 0 1 0 2 1

8 3 9 19 15 4
2 2

3 4 2 2 4 3
c x c c x c c c x x x x

                       
 

5.179

5.180

5.181

5.182

5.183
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For this equation to be true, the coefficients in front of like powers of x must be 

equal on the left and right sides.  Thus, 0 1 2
1 11,  ,  6 24c c c  and  and the 

approximate solution to the second-order differential equation becomes: 

3 228 1 1
1

3 6 24
y x x x    

 
 

This solution is sufficient to analyze the properties of interest in our problem. 

 For this “near spiral” trajectory, the deceleration is very nearly all along 

the tangential direction ( 0  ).  Thus, our usual non-dimensional term can be 

written using Eq. (5.161) 

 

2

2

deceldecel v

R

R
D

aa

g g

d V

dt

g

C S V

m

g



 





  
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   
  
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  

 
 
 
 
 
 

 

where we have used g  instead of 0g  since gravity has been assumed constant.    

5.184

5.185
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Grouping terms allows us to simplify this with our definitions of y  and V : 

   22

2

2
D

Rdecel

RC S

m Ra y
V V g R

g g g R

yV R

 
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


 

   



 
       

 



 

We have approximate answers for y  and V , so this simplifies to 

3 2 22
8 1 1

1
3 6 24

xdecela R
x x x e

g

 



        
  

 

Taking the derivative with respect to x and setting it equal to zero gives an 

expression for where the maximum deceleration occurs: 

3 5 71 22 2 2 2
3 19 3 1

0
2 12 16 12

xx x x x e     
 

 

For 0x   and x   , this can be simplified: 

3 2
* * *4 9 76 72 0x x x     

The solution to this cubic equation is * 0.835x  .  The corresponding value for 

the velocity is * 0.434V  from Eq. (5.165) and for the dependent variable 

* 1.46y   from Eq. (5.184).  Finally, the maximum deceleration is given by Eq. 

(5.186): 

*

0.275decela
R

g
 



 
 

 
 

5.186

5.187

5.188

5.189

5.190
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Note that this maximum deceleration and the velocity at which it occurs is 

independent of the vehicle drag coefficient!  High- and low-drag vehicles 

experience the same maximum deceleration at the same speed during reentry.  For 

Earth, these values are  

 
*

8.2decela g  

* 3.4 km/secRV   

Only the altitude at which the maximum occurs changes as a result of the vehicle 

configuration (as seen in Eq. (5.166)). 

 Decelerating at eight “gees” is about the limit the human body can endure.  

An eight gee deceleration also imposes significant structural requirements on the 

vehicle.  It is possible to reduce the maximum deceleration by adding lift and 

staying in the upper atmosphere longer.  The first Soviet Vostok and American 

Mercury capsules were purely ballistic and the equations of this section are 

applicable.  However, the capsules that followed could produce lift to reduce the 

structural (and human) durability requirements.   

 Before leaving this section, it is important to note we have only covered a 

small portion of Yaroshevskii’s theory.  For a more complete treatment, Vinh, et 

al. provide a more in-depth (and general) look at the theory (58:157-177).  In 

particular, they present a general expression for the unknown ic  coefficients for 

series expansions beyond 3x  as well as a discussion on the radius of convergence 

for the series.  They also present Yaroshevskii’s theory as it applies to non-

circular entry and lifting entry. 
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5.8 Summary 

 This chapter found a variety of classic closed-form solutions for specific 

types of entry trajectories.  For each, we derived explicit equations relating flight-

path angle, kinetic energy, and altitude that were, for the most part, independent 

of requirements to specify details about the vehicle (other than L DC C ) and the 

atmosphere.  We found similarly general expressions for the deceleration and 

maximum deceleration in each case.  Depending on the type of entry, we also 

found other “convenient” solutions such as maximum range and time-of-flight.   

 Each solution in this chapter applies to a specific set of assumptions (e.g., 

shallow lifting entry or steep ballistic entry).  As such, the solutions fail to model 

reality outside of the region for which they were intended.  (For the interested 

reader, a few examples comparing several of these closed-form solutions to much 

more complex numerical solutions are presented in Ref. 32.)  The next chapter 

presents a solution which gives up the simplicity of the explicit relationships we 

found here in favor of a set of transcendental equations valid over a wide range of 

entry trajectories.       

5.9 Problems   

Material Understanding: 

1. Why is it an “artificial assumption” that the velocity in Eq. (5.24) can 

decrease to zero to give the limiting value of arc-length in Eq. (5.25)? 

2. Show that the following two expressions are equivalent:  

* *sin cos cosek       

     2 2 2
* *1 sin 2 cos sin sin 0e ek k          
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3. Prove that the flight-path angle corresponding to the minimum altitude during 

a skip entry is * 0   (assuming, of course, the vehicle doesn’t impact the 

planet surface first). 

4. Evaluate the constant A in the steep-entry angle energy equation (Eq. (5.132)) 

if the initial altitude he (or, equivalently, an initial radius re) and initial velocity 

R
eV  are known. 

5. Prove Eq. (5.142). 

6. Yaroshevskii’s solution for shallow ballistic entry assumed a solution of the 

form:  

 3 2 3 42
0 1 2 3 4

8

3
y x c c x c x c x c x       

In Section 5.7, we discussed solving this for a series truncated after 2
2c x  (i.e., 

3 4 5, , 0c c c  ).  Specifically, we found values for 0 1, ,c c and 2c  to give us a 

solution 
3 228 1 1

1
3 6 24

y x x x
    
 

.  While this was sufficient for circular 

entries, at least one more term is needed to study elliptical entries.  Expand the 

solution to include 3c  and solve for the constants 0 1 2, , ,c c c  and 3c . 
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Computational Insights: 

7. Investigate how velocity changes with altitude for a gliding vehicle entering 

the atmosphere at near circular speed and at a medium flight-path angle.  

Specifically, for an entry flight-path angle of .20 radianse   , combine Eq. 

(5.37)  

 cos cos L
e e

D

C

C
       

and Eq. (5.41)  

 2
exp e

e L

D

T

T C

C

 
 
 

    
     

 

to plot altitude change, e  , versus velocity change, 
R

R
e

V

V
, for a range of 

lift-to-drag ratios.  You do not need to analytically combine the equations. 

8. Equation (5.78) 
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can be numerically integrated to find  T  and compared to the closed-form 

approximation in Eq. (5.80) 
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where   is given by Eq. (5.75): 
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2  1 ln
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D e e

C

C r T
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          

      
  

a.  Select two specific examples with supercircular entry speeds ( 0.5eT  ), 

“medium” entry angles, and realistic lift-to-drag ratios and graphically 

compare the results using Eqs.( 5.78) and (5.80) for  T  .  You can 

assume the entry conditions and atmosphere are such that 0 910r  , and 

41 10e x  .   

b.  How constant is the “constant”  

0

1 1
 1

2
L

D e

C

C r T 
 

  
 

 

for each trajectory?      

9. During supercircular gliding entry at medium flight-path angles, Eqs. (5.87) 

and (5.88) give the altitude and magnitude of the maximum deceleration.  

Compare the effect of changing the entry angle e  for an lunar-return capsule 

( 01.4R R
eV V  and 0.2L

D

C

C
 ) on the altitude *  and magnitude 

0 *

decela

g

 
 
 

 of 

the maximum deceleration.  Use the Earth-like values of -10.14 km  , 

0 6500 kmr  , 31.225 kg/ms  , and 29.81 m/secsg   and assume 

41  10e
  .   Suggestion:  Create plots such as the ones below to capture 

the answer.  



C L A S S I C  C L O S E D - F O R M  S O L U T I O N S  

143 

A
lti

tu
de

 o
f 

M
a

x 
D

ec
el

, 
 *

Flight-Path Angle at Entry, e

CL/CD=0.2

Flight-Path Angle at Entry, e

CL/CD=0.2

M
ax

 D
ec

el
er

at
io

n,

A
lti

tu
de

 o
f 

M
a

x 
D

ec
el

, 
 *

Flight-Path Angle at Entry, e

CL/CD=0.2

Flight-Path Angle at Entry, e

CL/CD=0.2

M
ax

 D
ec

el
er

at
io

n,

 

10. For steep ballistic entry (ignoring gravity), plot 0r   as a function of 
R

R
e

V

V
 

for several entry flight-path angles in the range 0
2 e

    .  (Note:  the 

equations are not necessarily valid for the entire range – this is for illustration 

purposes only.)  Use the Earth-like values of -10.14 km  , 0 6500 kmr  , 

31.225 kg/ms  , and 29.81 m/secsg  .  If required, assume 41  10e
  .  

When 0 0
R

eV g r   and e  is “small,” this plot can be compared to Figure 

5-2 for shallow gliding entry with small values of lift.  Compare the major 

similarities/differences.  Does it appear the equations would give similar 

answers near the overlap?  What does this say about understanding the type 

of entry prior to picking the equations to use? 
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Chapter 6  

Loh’s Second-Order 
Solution 

6.1 Introduction 

  In Chapter 4, we derived dimensionless equations for planar entry (Eqs. 

(4.53) and (4.54)).  Those equations could not be solved analytically so we spent a 

great deal of effort in Chapter 5 solving for several closed-form approximate 

solutions (all but one of which were “first-order”).  Each of those was for a 

specific (and somewhat limited) type of entry.  Loh, however, derived a more 

general solution which covers all of the special cases in Chapter 5 (Refs. 39, 58) 

as well as more general situations.  His solution is usually referred to as Loh’s 

Second-Order Solution.  Loh’s theory is empirical, based on the results of 

extensive numerical integrations of entry trajectories.  Even so, it turns out to be 

quite accurate (limited to the accuracy of the assumptions made in the original 

derivation of the differential equations, of course) (58:226).  
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 We can begin with the equations of planar entry from Chapter 4, Eqs. 

(4.53) and (4.54), as are repeated below 

2

0

2

sin

dT T z

d r   
   
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1 1
 

2
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d C z

d C r z T

 
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    
 

 

where 

r

r
z 0  











00
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rg

V
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R

 

cos   




m

SCD

2

 
   

Loh’s first assumption was to assume a thin atmosphere and set 0 1
r

z
r

  , 

simplifying the equations to the same ones we used throughout the majority of 

Chapter 5: 

 0 

1

sin

2

r

T

d

dT
  

0

1 1
1

2
L

D

d C

d C r T

 
  

    
 

 

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8
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Loh noted through numerical integration of different types of entry trajectories 

that  

0

1 1
1

2
G

r T


 
    

 
 

remained nearly constant for each trajectory, even for varying lift-to-drag ratio 

(39:28; 47:211-212; 58:129).  Therefore, although G is actually a function of 

,  ,T  and  , Loh considered it a constant for integration with respect to   or  .   

6.2 Loh’s Unified Solution for Entry Trajectories 

 Treating G as a constant, our equation of motion for the flight-path angle, 

Eq. (6.8) becomes: 

L

D

d C
G

d C



   

For constant lift-to-drag ratio, this can be integrated to give 

 cos cos L
e e
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C
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C
   

 
    

 
 

where e  and e  are constants of integration and can be evaluated at the initial 

point (which may or may not be the same altitude as the reference radius 0r ).   

Replacing G with its definition and rearranging, this becomes: 

 
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6.9

6.10

6.11

6.12
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To simplify derivations later, this can be rewritten as: 
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 To integrate Eq. (6.7), we’ll need to change the independent variable to  .  

Begin by substituting cos   into Eq. (6.10) to relate d  and d  

sin L

D

d C
G

d C




    

and rearranging: 
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Dividing Eq. (6.7) by Eq. (6.15) changes the independent variable to  : 
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To complete the variable change, we rearrange Eq. (6.11) as  

cos cos e
e
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C
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
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and use it to eliminate   in Eq. (6.16): 
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6.14
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If the entry starts at high altitude, we can assume 0e   (at least for the purposes 

of the integration).  This reduces the equation for T to: 

 0

2 sin

cos cosL e

D

dT T
Cd rG
C


   
 


 

This is a non-homogeneous, linear differential equation for T that can be written 

as 

 dT
KT f

d
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
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2

L

D

K
C

G
C




 

and: 
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f
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
  




 

If K is considered a constant, then Eq. (6.20) can be integrated using integrating 

factors to give: 

 KT Ce F    

where  

   K KF e e f d      

and C is a constant of integration that can be evaluated based on initial conditions.  

Note that, once the integral in Eq. (6.24) is computed (with K treated as a  

6.19

6.20

6.21

6.22

6.23

6.24
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constant), then  

0
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should be substituted into Eq. (6.23) to make both terms on the right-hand side 

functions of ,  ,T   and  .  G (and, hence, K) is only considered to be a constant 

for the purposes of integration with respect to   and   and not for evaluating the 

resulting equations of motion.  Evaluating Eq. (6.23) at the entry conditions 

allows us to solve for the constant of integration 

   e eK
e eC T F e      

where:  
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Finally, combining these constants gives the solution for kinetic energy: 

       e e e eK K K K
e eT T e F F e           

Strictly speaking,  
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 should be used in writing Eq. (6.28), but for simplicity (and to keep the type size 

big enough to read) the shorthand K has been used.  Equations (6.13) and (6.28) 

constitute Loh’s Unified Solution for Entry.  Between them, we can solve for any 

two variables (from ,  ,T   and  ) as a function of the remaining one. 

6.25

6.26

6.27
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 A detail about this solution should be noted.  The value of the drag 

parameter DC  alone is only required in the computation of e .  If entry is from 

high altitude, 0e   then the need to know DC  is eliminated (except when 

recovering the actual altitude from   is required).  However, setting 0e   

introduces a singularity in Eq. (6.27); therefore, the constant K should be 

evaluated at some other point along the trajectory (e.g., a non-zero reference 

altitude 0 ). 

6.3 Loh’s Second-Order Solution for Entry 

 In general, Loh’s Unified Solution, Eqs. (6.13) and (6.28), are too tedious 

to use since they both are transcendental in ,  ,T   and  .  Luckily, they can be 

simplified without destroying their universality.  Except in cases where accuracy 

is paramount (and the previous assumptions in the derivations haven’t already 

negated the accuracy required), we can take advantage of the fact 
0

1
1

r
  for 

atmospheres such as Earth, Venus, Mars, and Jupiter (with 0r 900, 500, 350, 

and 3000, respectively).  For 
0

1
1

r
 , Eq. (6.22) becomes 

  0f       

and we can completely avoid the numerical integration in Eq. (6.24).  Equation 

(6.20) then becomes simply a homogeneous differential equation: 

0
dT

KT
d

   

6.30
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This can be separated 
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T
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and integrated:  
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Substituting in the definition of K from Eq. (6.25) gives 
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For convenience later, this can be rewritten as: 
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Equation (6.13) can be left as already found: 
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Equations (6.34) (or, equivalently, (6.35)) and (6.36), are Loh’s Second-Order 

Solution for Entry.  They are, however, still transcendental in ,  ,T   and  !   

 The two equations for Loh’s solution must be solved simultaneously.  A 

common technique (usually employed when solving by hand) is to “serially” 

solve one equation then the other and iterate until the solution converges.  

6.32

6.33

6.34

6.35

6.36
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However, a word of caution is in order.  Equation (6.34) tends to be sensitive to 

errors when solving for T  or eT , while Eq. (6.36) tends to introduce round-off 

error when solving for   or e .  The order of the “serial” process can make the 

difference between converging to a realistic solution and iterating forever.  The 

key thing to realize is that, if one method fails to converge, try rearranging the 

equations.  The same idea also applies to true simultaneous solution also; e.g., if 

Eq. (6.34) causes problems, try rewriting it as Eq. (6.35).       

 The computational effort to solve the equations can be reduced when e  

corresponds to a high-altitude entry.  In this case, 0e


  and Eq. (6.36) can be 

simplified further:  
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Conveniently, even though we have assumed  e  is small, we don’t need to worry 

about the singularity in Eq. (6.27) mentioned in Section 6.2 because the value of  

eK never needs to be computed!  Solving this (flight-path angle) equation for  :  
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and substituting into the kinetic energy equation Eq. (6.35) gives a relationship for 

  in terms of T only (albeit, transcendental).  This relation is:  

6.37
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For specified values of T , this equation can be solved for   which can then be 

used in Eq. (6.38) along with T  to solve for  .  It is possible to restore some 

accuracy in the solution by rewriting Eq. (6.36) as 
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and using it to solve for   instead of  Eq. (6.38).  Even when the assumption 

0e
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  is used,  
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this still retains some accuracy over Eq. (6.38) because the (possibly non-zero) 

value of e  is used in the calculation (when known). 

 Loh has shown that the second-order solution, as derived, is very accurate 

compared to the numerical integration of Eqs. (6.7) and (6.8).  The underlying 

basis for this solution is that the term G is nearly a constant.  Since the assumption 

is based on observations of extensive numerical integrations of Eqs. (6.7) and 

(6.8), the accuracy is to be expected.  There are physical explanations as to why G 

remains constant and they will be shown in the upcoming sections. 
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6.4 Reduction to First-Order Solutions 

 Chapter 5 presented a series of first-order solutions for specific (and 

somewhat limited) cases.  In each case, the appropriate approximations were 

made and the equations of motion simplified to the point they could be solved 

analytically.  Each solution is valid only for the specified type of trajectory.  

Loh’s second-order solution, on-the-other-hand, is valid for all types of 

trajectories.  As such, Loh’s solution should reduce to the first-order solutions 

when the corresponding simplifications and approximations are made.  Several of 

these reductions are included in the following sections.   

6.4.1 Shallow Gliding Entry 

 When the flight-path angle is small and the entry altitude high:  

sin    

cos 1   
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Thus, Loh’s second-order equation Eq. (6.36) becomes: 
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Or, when simplified: 
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Solving for kinetic energy, this can be written as:  
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This equation is identical to the kinetic energy equation found in the first-order 

solution for shallow gliding entry (Eq. (5.9)).  When cos 1  , the expression for 

G becomes: 
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Or, slightly rearranging: 
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2
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
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Comparing this to Eq. (6.46) shows us:  

L

D

C
G

C
   

In this case, the “constant” G turns out to be equal (or approximately equal) to the 

constant lift-to-drag ratio (which explains G remains constant along the 

trajectory). 

 Turning to the other of Loh’s second-order equations, this time in the form 

of Eq. (6.39) we can write: 

 
0

1
ln

2

1 1cos cos
cos cos 1 cos

2

L

D ee

e
e

C T

C T

r T

 
    



  
   

    
     

 
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When cos cos 1e   , the right-hand side becomes:   
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When the entry speed is near circular speed, 
1

2eT  , so the logarithm term in Eq. 

(6.52) can be rewritten as:   
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T
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At and below circular speed, 
1 1

2 2T
  so a series expansion for the natural 

logarithm takes the form:  
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Using this in Eq. (6.51) reduces the right-hand side to: 
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The left-hand side requires a little more care, since 

0

cos cos 0
e

e

 
 





 

as e  .  Thankfully, l’Hospital’s Rule can be used to evaluate the expression 

in the limit:  

1
lim

cos cos sine
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e
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(Technically, the   on the right-hand-side of Eq. (6.57) should be replaced with 

e , but since e  , we will leave it as written.)  Finally, replacing the right-hand 

side of Eq. (6.51) with Eq. (6.55) and the left-hand side with Eq. (6.57) yields 

(when simplified):  
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This is identical to the corresponding first-order equation (Eq. (5.14)) in Chapter 5 

for the flight-path angle.  

 Equations (6.47) and (6.58) prove Loh’s second-order solutions will 

reduce to the first-order solution for shallow gliding entry.  Further, we have seen 

Loh’s “constant” G is essentially equal to the constant lift-to-drag ratio in this 

situation, giving a physical justification for his empirical observation. 
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6.4.2 Medium and Steep Gliding Entry at Near Circular Speed 

 When the flight-path angle is not small, Eq. (6.36), remains the same.  However, 

if we ignore the terms multiplied by 
0

1

r
, then it reduces to simply:  

 cos cos L
e e

D

C

C
       

With the same assumption, Loh’s other second-order equation, Eq. (6.34), 

becomes: 

 2
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   
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 
 

 

These equations correspond to Eqs. (5.37) and (5.41) in Chapter 5’s first-order 

solution to medium and steep gliding entry.  Note also, these correspond to setting 

Loh’s constant 0G  , which means the second-order assumption assuming G is 

constant is reasonable. 

6.4.3   Steep Skip Entry 

 In steep skip entry, two terms in Loh’s constant G conspire to make it 

small:  cos 1   and 
0

1
1

r
 .  So, if it is assumed G is small relative to the lift 

term in Eq. (6.11), we immediately get a solution for flight-path angle: 

 cos cos L
e e

D

C

C
       

If the same assumption ( 1G ) is used in Eq. (6.34), we can get a solution for  
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kinetic energy:  
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ln e
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With some simple rearranging, this becomes:  

 2
exp e

e L

D

T

T C

C

 
 
      
  
   

 

Equations (6.61) and (6.63) are identical to the first-order solutions we found in 

Section 5.5 for skip entry.   Again in this case, Loh’s constant is 0G  . 

 It is important to note Loh’s equations are not very accurate for the “pull-

out” portion of a skip trajectory with a shallow entry angle or large amounts of lift 

(39:55-59).  While Eq. (6.36) appears to give the correct first-order answer of 

cos cosf e   for f e  , when compared to the numerically integrated 

solution, Loh’s equations completely miss the oscillatory nature of skip 

trajectories.  However, the “inbound” portion of the skip trajectory is well-

matched. 

6.4.4 Steep Ballistic Entry 

 By definition, 0LC   for ballistic entry.  This, combined with ignoring 

the terms multiplied by 
0

1

r
, Eq. (6.36) reduces to:  

cos cos e   
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Like in Eq. (5.123) in Chapter 5, Eq. (6.64) above says the flight-path angle 

remains essentially constant.  However, we can retain a little more accuracy (and 

eventually get the answer we want) by keeping the terms multiplied by 
0

1
r : 
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1 1
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Turning to Loh’s other equation, Eq. (6.35), and setting lift to zero gives us  
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after some minor simplification.  When cos 0  , we can divide Eq. (6.66) by 

Eq. (6.65): 
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We’ve already seen that the terms on the left-hand side can be rewritten as  
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when e  .  Thus, Eq. (6.67) can be solved as:  
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This is not (algebraically, at least) equal to the first-order solution for kinetic 

energy we found in Section 5.6.1 (Eq. (5.132)).  It is, however, the “simplified” 

solution we found when we ignored gravity in Section 5.6.2 (Eq. (5.148))!  In 

Section 5.6.3 we showed this was a good approximation for the “more 

complicated” solution found by including gravity.  So, have shown Loh’s second-

order solution reduces to the first-order solution for steep ballistic entry. 

 We can also examine Loh’s constant G in this case.  By comparing Eqs. 

(6.65) and the definition of G 

0

1 1
1 cos

2
G

r T


 
    

 
 

we see we can rewrite Eq. (6.65) as: 

 cos cos e eG        

Or, if we solve for G:  
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cos cos e
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G
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 



 

When the flight-path angle is nearly constant (as it is in this type of entry), 0G  .  

Thus, the constancy of G is again explained with physical justification. 

6.5 Second-Order Estimate for Maximum Deceleration 

 If we, once again, assume the drag force is the dominant term in the 

tangential direction and lift is dominant in the normal direction, we can write non-

dimensional deceleration terms as:  

 
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 
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Since these are all proportional, the maxima occur at the same point in the 

trajectory.  It will suffice to maximize just one to find that point.  In this case, we 

will solve: 

0 0

decela
d

g

dT

 
 
    

Expanding out the derivative, this becomes 

* *
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with the “*” subscript denoting the value at the critical point of maximum 

deceleration.  Equation (6.7) can be used to replace 
*
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(In solving Eq. (6.7) for 
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 
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, it was assumed drag forces dominated the 

equation.)  Rearranging, we get the solution 

*
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    
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relating the altitude to the flight-path angle at the maximum deceleration point.   

 We can use Loh’s Second-Order Solution to relate the altitude, kinetic 

energy, and flight-path angle at this critical point.  For high-altitude entry, Eqs. 

(6.35) and (6.37) are appropriate:  
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Equations (6.79) - (6.81) comprise three equation in three unknowns, and when 

solved simultaneously (numerically), * *,  ,T   and *  can all be found.  Thus, with 

the help of Eq. (6.75), we have the altitude of maximum deceleration * , the 

velocity at which it occurs 2
* 0 0 *2RV g r T , the flight-path angle at that instant * , 

and the magnitude of the maximum deceleration itself: 

2
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0 0max *
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     
       

    
 

It is left as an exercise to compare these values with the corresponding first-order 

estimates. 
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6.6 Problems 

Computational Insights: 

1. For gliding entry from a high altitude into an atmosphere with 0 910r  , 

graphically compare the first-order, second-order (Loh’s), and the “exact” 

solutions for kinetic energy as a function of altitude and flight-path angle as a 

function of altitude.  Use the parameters  0.2L

D

C

C
 , 3.0e    , 61 10e x  , 

and 0.5eT   to describe the vehicle and entry conditions. Use the solutions 

found in Section 5.2 for first-order theory and those in Section 6.3 for Loh’s 

second order solution.  Numerically integrate Eqs. (6.7) and (6.8) for the 

“exact” solution.   

 

2. For a high-altitude ballistic entry into an atmosphere with 0 910r  , compare 

the first-order and second-order estimates of maximum deceleration for the 

two cases given in the table below. 

Case 1 0.5eT   1.0e   

Case 2 0.75eT  85e     
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Chapter 7  

Aerodynamic Heating  

7.1 Introduction 

 The overall focus of this text is to present an understanding of atmospheric 

entry from a dynamics point-of-view.  As such, we’ve avoided details of the 

aerodynamics as much as possible.  Unfortunately, aerodynamic heating is one of 

the major tradeoffs in designing (or choosing) a reentry scheme, so we can’t avoid 

it entirely.  The goal in this chapter is to provide a basic understanding of the 

thermal problems encountered during entry without delving into the aerodynamic 

and heat transfer physics any more than absolutely necessary. 

7.2 Fundamentals of Entry Heating 

 To this point, we’ve only considered particle dynamics, defining the 

vehicle completely by L DC C  and DC S m .  The thermal dynamics and thermal 

loads experienced are equally important (even though we’ll choose not to study 

them in as much detail).  When a vehicle enters the atmosphere from space, it has 

a tremendous amount of total energy, due to its kinetic energy as well as its 
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potential energy.  As the vehicle enters, a shock wave forms ahead of it, creating a 

high-temperature region between the shock and body.  Further, the relative 

velocity of the fluid (“air”) drops to zero at the vehicle’s surface, causing an even 

greater increase in the static enthalpy of the fluid.  (This is called a “zero slip” 

condition.)  Thus, the fluid temperature a short distance from the vehicle surface 

may be much greater, so thermal energy may be transferred to the vehicle.  (The 

opposite is also true, of course.  If the vehicle is hotter than the surrounding fluid, 

energy is transferred out of the vehicle and to the fluid.)  Two mechanisms move 

energy between the vehicle and the surrounding environment:  convection and 

radiation.  

 Convection by energy transport in the boundary layer moves heat between 

the fluid and the vehicle.  Radiation (radiant heating) moves energy from the hot 

gas to the vehicle and away from the hot surface of the vehicle to cooler areas of 

the surrounding environment.  

 Thermal control is a significant design challenge.  As Regan notes, the 

specific kinetic energy dissipated during entry from low-Earth orbit is on the 

order of 710  /J kg (46:135).  This is sufficient to vaporize a heat shield made of 

pure carbon and equal to half of the initial vehicle mass!  A good vehicle design 

will divert all but a few percent of this energy to the atmosphere rather than the 

vehicle. 

7.3 Thermal Protection Systems 

 Even if only a small fraction of the initial total energy reaches the vehicle 

as heat, there can be a significant amount of energy to be dealt with.  (A small 

fraction of a very large number can still be large!)  Thermal protection systems 

can be designed to absorb the energy or reject it.  (Both methods can be used 

simultaneously.)   
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 With heat sinks, a large mass is used to “soak up” heat energy during the 

entry.  The initial suborbital Mercury capsule design used this approach with a 

beryllium heat shield.  The larger energy dissipation requirements for the Mercury 

orbital flights forced a change to an ablative heat shield.  Ablative techniques 

absorb the energy and the dissipate (or reject) it through the vaporizing of an 

expendable material.  Ablative techniques are generally less massive (and more 

practical) than heat sink techniques.  Figure 7-1 shows two examples of ablative 

systems. 

 The space shuttles (both US and Soviet) use radiative techniques to reject 

heat.  The skin of the vehicle is allowed to absorb heat (through convection) and 

literally become “red hot.”  As it heats, energy is lost through radiation.  Once an 

equilibrium is reached, equal amounts of energy are absorbed and rejected with 

the surface maintaining relatively “safe” temperatures.  Note, however, the hot 

skin must be very well insulated from the rest of the vehicle or else the heat will 

be transferred to the rest of the vehicle through conduction.  The silica tiles on the  

 

Figure 7-1:  Examples of Ablative Systems (Yuri Gagarin’s Vostok-1 and a 
Raduga Ballistic Return Capsule) 
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space shuttle are designed to be just that type of insulating skin.  Figure 7-2 shows 

the thermal protection tiles on the Soviet shuttle Buran.   

 Heat sinks are best suited to brief, high-drag entry.  Radiative cooling 

techniques are better for long, “gliding” entries where the heating rates are 

smaller and there is sufficient time for the surface to reach equilibrium.  Ablative 

cooling offers more flexibility in the entry profile than either of these, but 

sacrifices some reusability (30:300-301).    

7.4 Heat Flow into the Vehicle 

 Two of the most important parameters of the entry trajectory (for thermal 

analysis) are the total heat input and the maximum rate of heating.  The total heat 

input is important for scaling the cooling system as well as for determining the 

average temperature rise in the vehicle during the entry.  The heating rates are a 

concern because they impact the maximum instantaneous heat rejection 

requirements.  Tradeoffs between these two are often necessary.  For example, 

long flights at high altitude (e.g., shallow, gliding entry) reduce the heating rates 

but last longer so the total heating increases.     

 

Figure 7-2:  Thermal Protection Tiles on Buran Orbiter 
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 Many authors have already looked at these and formulated empirical, 

theory-based, and/or hybrid approaches to estimating each parameter.  While the 

approaches differ in the numerical factors, range of validity, etc., the basics have 

remained the same.  For simplicity, we’ll follow one of the earlier formulations by 

Allen and Eggers (1; 30:301-305; 58:141-144).   

 To simplify their analysis, Allen and Eggers made five assumptions: 

1. Convective heat transfer is the dominant form of energy transfer and 

all radiation transfer can be ignored.  This simplification is justified 

because most vehicle materials will experience similar maximum surface 

temperatures regardless of the shape, so the radiation away from the 

vehicle will be approximately the same.  Thus, ignoring radiation will not 

alter the qualitative results even when comparing relative heating between 

types of entry profiles.  (It will, however, impact the quantitative results!)   

2. Real gas effects, particularly dissociation, can be ignored.  For speeds 

below 3 km/sec, this is a good assumption.  At higher speeds, this is a 

conservative assumption resulting in estimates of higher heating rates that 

are actually experienced (58:141). 

3. Shock-wave boundary-layer interaction can be ignored.  This 

assumption has been shown to hold under speeds of about 6 km/sec (Refs. 

37, 38). 

4. Reynolds’ analogy is applicable.  Reynolds’ analogy is one of the most 

powerful methods for obtaining simple heating estimates (31:81).  The 

analogy is exact only when the Prandtl number is one (Pr=1), but gives 

useful trends for many other cases (58:142).  It also has the distinct 

advantage of producing a result which contains constants that can be 

adjusted to improve the accuracy (when compared to experimental 

results). 
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5. Prandtl number is one.  This allows Reynolds’ analogy to be invoked. 

 Using Allen and Eggers’ approach, the primary source of the energy input 

is assumed to be convective heating from the laminar boundary-lay flow over the 

vehicle.  Thus, we can equate the heat flux (a rate per unit area) at the wall, wq , 

with the change in total enthalpy across the boundary layer:  

 
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 = total enthalpy
2

 conditions at wall of the vehicle

 conditions at "outer edge" of boundary layer

P

w

oe

y

V
H C 





T

T
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Total enthalpy is conserved for inviscid flow across the normal shock wave (and 

one most certainly will exist), so we can relate the total enthalpy at the edge of the 

boundary layer to conditions just ahead of the vehicle’s bow wave: 

2

2

2

2

oe

P

V
H H h

V
C


 




  

 T
 

The “∞” subscript denotes conditions upstream of the vehicle and its effects and 

Ph C  T  is specific enthalpy upstream.  For reasonably fast entry into Earth’s  

atmosphere, 
2

2P
VC 


 
 
 

T  (30:303).  Thus, Eq. (7.2) reduces to simply: 

2

2oe

V
H   

We can regroup the terms in Eq. (7.1) as 

    1 1w wL
w oe oeoe oe

L oe oe

H HNu
q V H V St H

Pr Re H H
 

    
             

  

where:  

 Stanton number

 Reynold's number based on a reference length 

L

L

L

Nu
St

Pr Re

VL
Re L




 


 
 

Reynold’s analogy for laminar boundary layers lets us approximate the Stanton 

number in terms of an average skin friction coefficient fc  as 
2

fc
St  .  Using this and  

7.2

7.3

7.4
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Eq. (7.3), the relationship for the heating rate at the wall becomes: 

  2 1
4

f w
w oe

oe

c H
q V V

H
 

 
  

 
  

For us, R
oeV V V   and 1w

oe

H

H
 , so we arrive at the simple, albeit approximate, 

equation for the rate at which heat (per unit area) is transferred to/from the vehicle: 

31

4
R

w fq c V  

Notice that this energy flux is independent of the vehicle temperature.  This flux 

is an average for the vehicle.  There will be, in all probability, areas on the 

vehicle with higher and lower values for wq  than those predicted by Eq. (7.6). 

  It is well known that for any blunt body the bow wave shock (Figure 7-3) 

is detached and a stagnation region exists on the vehicle at the “nose.”  Stagnation 

heating at this point on the body can be approximated by  

 n R m
s

K
q V

R
  

where R is the radius of curvature for the forward portion of the vehicle, ,  ,K n  

and m  are constants (Refs. 31, 43, 58).   ,  ,K n  and m  can be adjusted to reflect 

laminar or turbulent flow as well as to match observed data.  For our purposes, we 

will limit ourselves to laminar, incompressible flow behind the shock where the 

values 1/ 2n   and 3m   are characteristic.  If we slightly redefine the constant 

in Eq. (7.7), we arrive at the relationship: 

31
2

0 0 0

R

s

k V
q

R g r




  
        

  
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Photo:  NASAPhoto:  NASA
 

Figure 7-3:  Detached Shockwave Forward of Blunt Body 

As usual, the “0” subscript denotes our reference point (which, more often than 

not, is the atmospheric entry point).  The stagnation point is a “local” point, so sq  

can be appropriately termed a “local heat flux” or “local heating rate per unit 

area.”  Since the stagnation point tends to be the “hot spot” on the vehicle, sq  

often represents the maximum heat flux into the vehicle. 

 Integrating the average heat flux over the vehicle surface gives us the total 

heating rate (power input) to the body 

31

4
R

w f

surface
area

Q q dA c V A    

where A is the total surface area of the vehicle.  Equation (7.9) can be integrated 

for the duration of the atmospheric entry to find the total energy transferred into 

the vehicle. 

7.9
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 When integrating Eq. (7.9) to find the total energy transfer, it will be 

easier to change the independent variable to our kinetic energy variable T.  Begin 

with Eq. (4.24): 

 
22

0
0= sin

2

R
R R D rC S Vd
V V g

dt m r


     

 
  

During the time when heat transfer is significant, drag is significantly larger than 

the tangential component of gravity, so the second term can be ignored relative to 

the first term:  

 
2

= 
2

R
R DC S Vd
V

dt m


  

Substituting 0 02RV g r T  and simplifying yields:  

3
2

0 0

1 1

2 2

dt

dT g r T 
   

This relationship can be used to change the independent variable in Eq. (7.9) to T:     

3
3

2
0 0

1 1 1

4 2 2
R

f

dQ dQ dt

dT dt dT

c V A
g r T


 



           

 

This reduces to the simple relationship: 

 0 02
f

D

c AdQ m
g r

dT C S

  
   

  
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This equation is separable and can be immediately integrated to give the total heat 

transfer to the vehicle: 

 0 02
f

D

c A m
Q g r dT

C S

  
    

  
  

Integrating from the entry conditions gives the net heat transfer for the entire 

trajectory up to the point of interest: 

 

   

0 0

0 0

2

2

e

T
f

D T

f

e
D

c A m
Q g r dT

C S

c A m
g r T T

C S

   
     

  

   
     

  


 

Equation (7.16) gives us a somewhat expected answer – the heat transfer to the 

vehicle is directly proportional to the change in kinetic energy during atmospheric 

entry.  For simplicity, Q  will be written as simply Q  for the remainder of this 

text. 

7.5 Non-Dimensional Heating Equations 

 Like in the earlier chapters, the equations we found in Section 7.4 can be 

written in terms of non-dimensional variables.  By doing this, we can better focus 

on the trends in the heating relationships without having to sort through the 

vehicle- or atmosphere-specific characteristics.  Since our heating equations are 

very approximate anyway, we are more interested in the qualitative results rather 

than the quantitative results.   

 Inserting our definitions for kinetic energy 

2

0 0

1

2

RV
T

g r

 
  

 
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and altitude   

2
DSC

m




  

into Eq. (7.6) and simplifying, we get: 

   
3

2 30 0 2
2

w f
D

m g r
q c T

SC


   

The non-dimensional group of terms 
3

2T  is free of characteristics of the vehicle 

and the atmosphere.  In effect, it describes the general nature of the heat transfer 

per unit time per unit area at the vehicle surface (wall).  So, we define  

3
2

wq T  

as the non-dimensional heating rate per unit area (i.e., heat flux) at the wall.  

Remember, wq  is an “average” value, not specific to any particular point on the 

vehicle.)  The surface heat flux “profile” can be determined once the appropriate 

relationships for   and T  are substituted into Eq. (7.20).  These relationships 

describe the characteristics of the entry trajectory; therefore, they dictate the 

atmospheric heating experienced! 

 Similarly, we can write the stagnation heat flux (Eq. (7.8)) as: 

 
1

2
31

2 2

0

4
s

D

k m
q T

SCR

 


 
  

 
  

If we define Sq  to be the non-dimensional stagnation heat flux, then  

1
2

0

4
s s

D

k m
q q

SCR




 
  

 
  
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where: 

31
2 2

sq T   

As with the surface heat flux, a stagnation heat flux “profile” can be found once 

the trajectory is described by providing solutions for   and T . 

 Finally, we can form an expression for a non-dimensional total heat 

transfer variable Q .  To do so, we can simply divide Eq. (7.16) by an appropriate 

constant (with energy dimensions).  Choosing that constant isn’t quite as obvious, 

because two logical choices come to mind.  These are the initial kinetic energy at 

entry, 21

2
R

em V , and the “reference” kinetic energy using the same reference point 

as we’ve used in forming our other non-dimensional terms in earlier chapters, 

2
0 0 0

1 1

2 2
Rm V mg r .  We’ll choose the latter because it simplifies the algebra later.   

(And, quite often, the reference conditions are the entry conditions!)  Thus, we 

write: 

 
2

0

1

2

f
e

R D

c AQ
Q T T

C Sm V

 
    

 
 

At times, we will find it more helpful to leave Eq. (7.24) a little “less simplified” 

as: 

 0 0
2

2 0
0

1

2

f
eR

R D

c A g rQ
Q T T

C S Vm V

  
     
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7.6 Heat Transfer for Various Entry Profiles 

 In Chapter 5, we found several first-order trajectory profiles which we can 

use to begin examining the heat transfer during atmospheric entry.  In this section, 

we will examine several of those.   

7.6.1 Shallow Gliding Entry 

 In Section 5.2, we examined atmospheric entry where the vehicle produces 

enough lift to maintain a hypersonic glide at small flight-path angles for extended 

periods.  For this shallow gliding entry, we derived an expression for kinetic 

energy as a function of altitude.  This relationship was: 

0

1

2 1 L

D

T
C

r
C

 


  
  

    

 Immediately, we can write the total heat transfer to the vehicle during the 

entry trajectory as 

 f
f f e

D

c A
Q T T

C S

 
   

 
 

where fT  and eT  denote the final and entry kinetic energy, respectively, found by 

evaluating Eq. (7.26).  If entry begins at high altitude ( 0e  ), and nearly circular 

speed (
1

2eT  ), then this can be written as:  

1

2
f

f f
D

c A
Q T

C S

      
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The limiting case for this type of trajectory is entry at high altitude and flight until 

0fT   (or at least until f eT T ).  Thus:  

limit

1

2
f

f
D

c A
Q

C S

 
  

 
   

limitfQ  represents the total energy (heat) transferred to the vehicle during entry.  To 

minimize this total, the skin friction and exposed surface area (“wetted area”) can 

reduced and/or the drag quantity ( )DC S  increased.  Taken together, small  fc A  

and large  DC S  is equivalent to saying that a blunt vehicle will minimize the 

total heat absorbed. 

 The average heating rate per unit area (heat flux) is given by Eq. (7.20).  

Solving Eq. (7.26) for     
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1 2

2 L

D

T

C
r T

C







 
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and substituting into Eq. (7.20) yields the heat flux as a function of kinetic energy: 
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  

Alternatively, we could have found the flux as a function of altitude:  
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Figure 7-4 shows this heat flux as a function of altitude for an Earth-like 

atmosphere ( 0 910r  ).  Notice that it only takes a small amount of lift can 

dramatically decrease the peak flux experienced. 
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Figure 7-4:  Average (Wall) Heat Flux for Shallow Gliding Entry at Near 
Circular Speeds 
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 The maximum value of wq  is important in analyzing the peak “average” 

heat load the vehicle thermal system will need to handle.  It is easiest to find the 

point at which this maximum occurs from Eq. (7.31).  Solving 

0wdq

dT



    

gives the kinetic energy where the maximum occurs: 

*

1

6
T   

This has the surprising result of being independent of vehicle characteristics!   

The corresponding maximum is 

max *

0

1

3 6
w w

L

D

q q
C

r
C


 

 
 
 

   

and occurs at an altitude of  

*

0

2

L

D

C
r

C





 
 
 

 

and velocity of : 
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 Similarly, the stagnation heat flux profile can be found using Eqs. (7.23), 

(7.26), and (7.30).  In terms of kinetic energy the profile is 

1
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and in terms of the altitude it is: 
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This is plotted in Figure 7-5.   

 The maximum stagnation flux 
*s

q  is useful for estimating the peak heat 

load the vehicle thermal system will need to handle (albeit over a small area).    

Solving 

0sdq

dT



    

gives the kinetic energy where the maximum occurs: 

*

1

3
T   

As before, note that this value is completely independent of vehicle 

characteristics! 
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Figure 7-5:  Stagnation Heat Flux for Shallow Gliding Entry at Near Circular 
Speeds 
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at an altitude of  

*
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 Comparing Eqs. (7.36) and (7.43) reveals the point of maximum 

stagnation heat flux occurs earlier (higher) in the entry trajectory than does the 

point of maximum average heat flux.  Similarly, Eqs. (7.35) and (7.42) confirm 

the stagnation heating is, under realistic conditions, larger than the average 

heating.  Figure 7-6 combines both heat flux terms for a representative entry 

trajectory. 

 The maximum heating fluxes and where they occur during shallow gliding 

entry are summarized in Table 7-1. 
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Figure 7-6:  Typical Heat Flux for Shallow Gliding Entry 
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Table 7-1:  Points of Maximum Heat Flux for Shallow Gliding Entry 
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7.6.2 Medium and Steep Gliding Entry at Near Circular Speed 

 We examined medium and steep gliding entry at near circular speeds in 

Section 5.3.  In that section, we found the kinetic energy in terms of the flight-

path angle and the entry conditions:      
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The flight-path angle, in turn, could be written in terms of the altitude and entry 

conditions: 

cos cos e
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For high-altitude entry, 0e   and this is simplified:  
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With the aid of Eq. (7.24), we can formulate the total heat transfer to the vehicle 

as 
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where the final flight-path angle f  is found by solving Eq. (7.47) at the final 

altitude: 

1cos cosL
f f e

D

C

C
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Care should be taken when solving this inverse cosine to insure the angle found 

satisfies the physical requirement:  

0f   

 Unlike for the case of shallow gliding entry, we can’t assume 0fT   in 

order to find a limiting value for fQ .  With steep entry angles, it is entirely 
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possible the vehicle will impact the ground before the kinetic energy is 

significantly decreased from its entry value.  We can, however, see from Eq. 

(7.48) that blunt bodies appear to reduce the total heat absorbed.  It is left as an 

exercise to prove if that is actually the case. 

 Turning to examining the heating rates, we can start with the average wall 

flux, given by Eq. (7.20):  

   
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  

Figure 7-7 plots Eqs. (7.47) and (7.51) simultaneously for an Earth-like 

atmosphere.  While the plots are for 90e    , the basic shape and trends are the 

same for less steep entry.  (In the figure, the curves end abruptly for larger values  
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Figure 7-7:  Average (Wall) Heat Flux for Steep Gliding Entry at Near Circular 
Speeds (High-Altitude Entry)   
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of L DC C  because there is sufficient lift to increase the flight-path angle from e  

to zero.  When the flight-path angle reaches zero, the curve stops because the 

vehicle begins to climb.) 

 The point where wq  is a maximum is found in terms of the flight-path 

angle by solving: 

0wdq

d



 

Taking this derivative and equating to zero doesn’t give us as simple of a solution 

as in the previous section.  Instead, we need to solve   
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to find * .  Equation (7.53) can be solved numerically, or with a little work, a 

“simplified” closed-form solution can be found: 
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The numerator in the arctangent is negative, so the principle value of the will have 

the proper sign ( * 0  ).  Once *  has been found, the corresponding kinetic 

energy is found with Eq. (7.45):  

 *
*

2
exp e

e

L

D

T T
C

C

 
 
   
  
  
   

 

7.52

7.53

7.54

7.55



A E R O D Y N A M I C  H E A T I N G  

191 

Using the definition of our kinetic energy term in this, we can write the relative 

change in velocity from entry to this point as  

 ** exp
R
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Equations (7.47) and (7.53) combine to give the corresponding altitude: 
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Finally, the maximum value for the average heat flux at the vehicle surface 

(“wall”) can be computed: 
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 Following the same process, the stagnation heat flux is written as 
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in terms of the flight-path angle.  Figure 7-8 shows the altitude/stagnation heat 

flux relationship found by evaluating Eqs. (7.47) and (7.59) simultaneously (with 

90e    ).  The maximum stagnation flux 
*s

q  is again found by solving  

0sdq

d



 

for the critical flight-path angle * .  In this case, the equation to be solved for *  

is: 
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Figure 7-8:  Stagnation Heat Flux for Steep Gliding Entry at Near Circular 
Speeds (High-Altitude Entry) 
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Or, similar to what we found earlier, we can solve for * :  
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(Again, this shows us the proper value of the flight-path angle is negative.)  The 

maximum occurs at an altitude of:  
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The corresponding expressions for the kinetic energy and velocity at this point,  
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appear to be the same as Eqs. (7.55) and (7.56).  However, the value for *  in 

these equations will be different when identifying the point of 
maxwq  (Eqs. (7.54) - 

(7.57)) and 
maxsq  (Eqs. (7.62) - (7.65)). 
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Using these expressions in Eq. (7.59), we can express the maximum stagnation 

heat flux as 
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once we’ve found * .   

 Comparing Eqs. (7.57) and (7.63) does not readily tell us which heat flux 

occurs first because the value of *  is computed differently in each equation.  The 

relative magnitude of the maximum fluxes isn’t evident from Eqs. (7.59) and 

(7.66) either.  These comparisons are left as an exercise. 

 The maximum heating fluxes and where they occur during medium and 

steep gliding entry are summarized in Table 7-2. 

7.6.3 Skip Entry 

 We examined skip entry in Section 5.5.  In that section, we found the 

kinetic energy in terms of the flight-path angle and the entry conditions:  

 2
exp e

e

L

D

T T
C

C

 
 
   
  
  
   

 

Similarly, we found the relationship between flight-path angle and altitude:  

 cos cos L
e e

D

C

C
       

 

7.66

7.67

7.68
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Table 7-2:  Points of Maximum Heat Flux for Medium and Steep Gliding Entry 

 
*wq  

*s
q  

Maximum 
Value 

 3
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**
3sin
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ee
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 

 
     
  
   

 
 1

23 **2
3sin
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e
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L

D

T
C
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 
 
          
  
   

*T  
 *2

exp e
e

L

D

T
C

C

 
 
  
  
  
   

 
 *2

exp e
e

L

D

T
C

C

 
 
  
  
  
   

 

*  *sin

3


  *sin

6


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*
R

R
e

V

V
 

 *exp e

L

D

C

C

 
 
  
  
  
   
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C
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 
 
  
  
  
   

 

*  given 

by 

 * *

3
sin cos cos 0e

L

D

C

C

    
 
 
 

 * *

6
sin cos cos 0e

L

D

C

C

    
 
 
 

 

 

At the end of a skip, we found f e   , so we can write the final kinetic energy 

(after one skip) as:  

4
exp e

f e

L

D

T T
C

C



 
 
    
  
   

 7.69



 

196 

Thus, using Eq. (7.24), the total heat transfer during each skip is: 

4
exp 1f e

f e
D L

D

c A
Q T

C S C

C



  
                       

 

 To study the heat transfer during multiple skips, let 
ieT  and 

if
T  be the 

initial (entry) and final (exit) kinetic energies, respectively, during the ith skip.  

Then, the total heat transfer during n passes into the atmosphere is the sum of that 

generated in each skip:   

 
1

total i i

n
f

f f e
iD

c A
Q T T

C S 

 
   

 
  

Using the equations in Chapter 2 for the orbital portion between atmospheric 

encounters, we can find the relationship between 
1ieT


 and 
if

T .  Or, we can accept 

from the symmetry of the orbit that  

1i ie fT T

  

and:  

 

 

 

1

1 1

1

1
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n

n

i

n
f

f e e
iD

f
e e

D
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f e

D
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Q T T

C S

c A
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C S
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C S







 
   

 
 

   
 
 

   
 



 

Thus, the overall heat transfer during multiple skips looks identical to what we 

found for shallow gliding entry (Eq. (7.27)) -- simply proportional to the 

difference in initial and final kinetic energy.  If the skip entry is followed by a 

7.70

7.71

7.72

7.73
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shallow glide, we can “steal” the result for the limiting (maximum) total heat 

transfer from Section 7.6.1:  

limit 1

f
f e

D

c A
Q T

C S

 
  
 

   

Or, when the initial entry speed is near circular:  

limit

1

2
f

f
D

c A
Q

C S

 
  

 
   

Looking at this equation, we can see a blunt vehicle will minimize the total heat 

absorbed.  

  The heat flux equations are easily found at this point.  First, solve Eq. 

(7.68) for  : 

cos cos e
e

L

D

C

C

 
 


 

 
 
 

 

Then, compare our solution skip entry (Eqs. (7.67) and (7.76)) with what we 

found for steep gliding entry (Eqs. (7.45) and (7.46)).  The equations are the same 

(albeit, for dramatically different reasons); therefore, we’ll have the same results 

for the flux rates, maximum flux rates, and critical altitudes!  There is no need to 

repeat the derivations.   

 Plots of the heat fluxes are similar to those in the previous section, except 

that the flight-path angle can be assumed to run the range e e    during the 

skip.  Also, since there is no requirement for the entry to be steep, we need to look 

at the heating at various entry angles in addition to with various L DC C  values.  

Figure 7-9 shows the heat fluxes for an extremely steep ( 90e    ) skip entry 

with three lift-to-drag ratios.  Note that for 0.1L DC C  , there isn’t enough lift to 

“pull out” of the dive.  Figure 7-10 shows the same information for a shallow 

7.74

7.75

7.76
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Figure 7-9:  Heat Flux for a Steep Skip Entry (High-Altitude Entry) 

 ( 5e    ) skip entry.  In it, all of the calculated trajectories are able to complete 

the skip.  By comparing the two plots, we can observe that more lift and less steep 

entries result in lower heat fluxes.  (What isn’t shown, however, is the total heat 
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Figure 7-10:  Heat Flux for a Shallow Skip Entry (High-Altitude Entry) 

transfer to the vehicle and the final kinetic energy remaining to be dissipated!  

Both may be important in the trajectory selection.)  Table 7-3 summarizes the 

critical values for heat fluxes. 
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Table 7-3:  Points of Maximum Heat Flux for Skip Entry 
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7.6.4 Steep Ballistic Entry 

 The next trajectory type of interest is that of steep ballistic entry.  We first 

examined this type of entry back in Section 5.6.  Before looking at the more 

precise solution we found, it is helpful to look at a somewhat simplified analysis. 
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7 .6 .4 .1  Ste e p  B a l l i s t i c  Entry ,  Ignor i ng  G rav i ty  

 We've already shown (in Section 5.6.2) that we can find a somewhat 

“simplified” approximation for steep ballistic entry by ignoring gravity.  As a first 

analysis, we will use that solution to solve for the heat transfer during these types 

of entries.  The solution was  

cos cos e   

 (more precisely, e  ) and: 

 2
exp

sin
e

e
e

T T
 


 

  
 

 

In this case, we’ll write the total heat transfer slightly differently by using Eq. 

(7.25) 

 
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f e eR
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Q T T
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      

 

which, with some simplification, this becomes:  
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0
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R
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D e
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Q
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When entry is from a high altitude, fQ  can be reduced further to:  

2

0

21
exp 1

2 sin

R
f fe

f R
D e

c A V
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Two different and distinct “classes” of steep ballistic entry are represented by Eq. 

(7.81).  

7.77

7.78

7.79

7.80

7.81
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 When the vehicle has a “relatively” small mass,  

1
2
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
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
   

after it has descended into the appreciable atmosphere.  Thus, for “light” vehicles,   
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and the exponential term in Eq. (7.81) approaches zero and the total heat transfer 

is simply:  
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Note that this is mathematically equivalent to assuming f eT T  or 0fT  in Eq. 

(5.26).  Both of these conditions are representative of what actually happens for 

light entry vehicles.  Equation (7.84) indicates the total heat transfer for these 

vehicles is minimized with blunt geometries.  

 For a “dense” (and likely more massive) vehicle,  
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and:  
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In this situation, the exponential term in Eq. (7.81) can be approximated with the  
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first few terms of a Taylor series expansion: 
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In turn, the expression for total heat transfer during the entry becomes 
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for dense vehicles.  Equation (7.88) indicates the total heat transfer for these 

vehicles is minimized when the surface friction fc  and “wetted” area A  are small 

and the mass is large.  (“Small” surface area and “large” mass are seemingly 

logical characteristics of “dense” vehicles.) 

 Substituting Eq. (7.78) into the definition of the average wall heat flux, we 

can get an expression for the flux at any point in the trajectory: 
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Or, when entry is from a high altitude, this becomes:  

3 2 3
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sinw e
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
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Figure 7-11 plots this relationship.
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Figure 7-11:  Average (Wall) Heat Flux for Steep Ballistic Entry Ignoring 
Gravity (High-Altitude Entry) 

When this expression is maximized with respect to (non-dimensional) altitude,  
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and solved, we find the altitude for maximum average wall heat flux to be: 

*

sin

3
e    

Of course, this is achieved only if * s  ; i.e., the vehicle does not impact the 

planet first!  The corresponding kinetic energy at the critical altitude given in Eq. 

(7.92) is found by evaluating Eq. (7.78): 
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Notice that this kinetic energy (and, hence, the velocity) is completely 

independent of vehicle characteristics!  Finally, the maximum flux rate can be 

evaluated using the values in Eqs. (7.92) and (7.93):  

*
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e e
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q
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This maximum flux (and its corresponding altitude) was shown in Figure 7-11. 

 Turning to the stagnation heat flux, we can get an expression for the flux 

at any point in the trajectory by using Eq. (7.78): 
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Or, when entry is from a high altitude, this becomes  
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and can be seen in Figure 7-12.  When this expression is maximized with respect 

to (non-dimensional) altitude,  
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and solved, we find the altitude for maximum stagnation heat flux to be: 

*
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6
e    

 

7.94

7.95

7.96

7.97

7.98



 

206 

0 0.05 0.1 0.15 0.2 0.25
1 10

4

1 10
3

0.01

0.1

1

10

N
on

-d
im

en
si

on
a

l A
lti

tu
de

, 


0 910r 

90e   

50e    70e   

10e   

30e   

*s
qMaximum Flux, 

3
2

s

e

q

T


Stagnation Heat Flux Term 

0 0.05 0.1 0.15 0.2 0.25
1 10

4

1 10
3

0.01

0.1

1

10

N
on

-d
im

en
si

on
a

l A
lti

tu
de

, 


0 910r 

90e   

50e    70e   

10e   

30e   

*s
qMaximum Flux, 

*s
qMaximum Flux, 

3
2

s

e

q

T


Stagnation Heat Flux Term 3

2

s

e

q

T


Stagnation Heat Flux Term 

 

Figure 7-12:  Stagnation Heat Flux for Steep Ballistic Entry Ignoring Gravity 
(High-Altitude Entry) 

 (Again, this is possible only if * s  .)  The corresponding kinetic energy at the 

critical altitude given in Eq. (7.98) is found by evaluating Eq. (7.78): 

* 1 3
eT

T
e

  

As with the critical kinetic energy for the average wall flux, this critical kinetic 

energy is completely independent of vehicle characteristics!  The maximum 

stagnation flux rate can be evaluated using the values in Eqs. (7.98) and (7.99):  

*
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6
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The maximum stagnation heat flux (and its corresponding altitude) was shown in 

Figure 7-12.  The critical heat flux values for this type of entry are summarized in 

Table 7-4. 
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Table 7-4:  Points of Maximum Heat Flux for Steep Ballistic Entry Ignoring Gravity 
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7 .6 .4 .2  Steep  Ba l l i s t i c  Entry ,  Inc lud ing  Grav i ty  

 The previous section looked at steep ballistic entry while ignoring gravity.  In 

Section 5.6.1, however, we found a “better” solution for steep ballistic entry 

which included gravity.  (It was better in the sense it used one less simplifying 

assumption.)   

It was: 
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where: 

2

sin e





  

7.101

7.102



 

208 

We can use this solution to examine this type of entry again, but with gravity 

included this time.  As before, we’ll write the total heat transfer by using Eq. 

(7.25): 
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Unfortunately, we can’t simply assume entry is from a high altitude and blindly 

substitute 0e   this time because 0e   means 0e   and (0)Ei   !  To 

proceed, we need to take a look at the exponential integral more closely for high 

altitudes. 

 In the range of (about) 0 0.37e  ,  eEi   rapidly becomes finite and 

small; indeed,  0.1 1.65Ei  .  (  eEi   becomes positive for 0.373e  .)  At 

the other end of the trajectory,  fEi   will become large compared to  eEi  .  

By the time 3.8f  ,   17fEi   .  In light of these observations, it is 

reasonable assume for entry from high altitude we can make the approximation:  

     e f fEi Ei Ei      

Implicit in this approximation is the requirement that the initial entry isn’t from a 

“hard vacuum” or else 0e   and ( )eEi    .  This is not overly restrictive 

since very little (relatively speaking) aerodynamic heating occurs in the thinnest 

parts of the atmosphere for most planets.  Equation (7.103) is then reduced to  
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after some rearranging.  This can be simplified even more. 
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 The last term in the bracket is very small compared to eT .  The portion due 

to altitude 
 

f

fEi

e


 is small as shown in Figure 7-13.  Further, 
0

1
1

r
  for most 

atmospheres of concern, so the entire term can be safely ignored for our purposes.  

Replacing eT  with its definition, we can simplify our expression for the total heat 

transfer during entry:   
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If   is replaced by its definition in Eq. (7.106) and a negative sign factored out, 

we have:   
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Figure 7-13:  Relative Magnitude of Exponential Terms 
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This is identical to what we found for the total heating when we ignored gravity 

(Eq. (7.81)), so we can immediately conclude  
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for “light” vehicles and 
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for dense vehicles. 

 The average wall heat flux for this type of entry is simplest when written 

in terms of   since we have both     and  T  :  
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But, for those that like consistency, wq  can be written in terms of   also: 
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Unlike for the other entries studied in this chapter, we cannot easily remove the 

requirement to pick an initial kinetic energy by plotting 
3
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
 versus  .  (Notice 

how it doesn’t factor out of the brackets in Eq. (7.111).)  It can be shown, 

however, that plots of 
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 versus  are relatively insensitive to the specific value 
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of eT  used for any given (steep) entry angle e .  Similarly, we must select a 

nonzero value for e  to avoid the singularity in Eq. (7.111).  Figure 7-14 shows 

the typical trends of the wall heat flux for steep ballistic entry with gravity 

included. 

 Maximizing wq  with respect to   (using Eq. (7.110)) leads to solving  
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to find * .  In turn, *
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  gives the corresponding altitude.  (Note, this 

altitude could have been found directly by maximizing Eq. (7.111) with respect to  
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Figure 7-14:  Average (Wall) Heat Flux for Steep Ballistic Entry Including 
Gravity (High-Altitude Entry) 
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 , but that is left as an exercise.)  Evaluating  *T   and simplifying with the aid 

of Eq. (7.112) gives us the kinetic energy 
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and velocity:  
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In writing Eqs. (7.113) and (7.114), we have assumed 2
3*  .  Interestingly, for a 

large range of initial conditions, *  is very close to violating this mathematical 

constraint!  Based on these two equations, that would imply this heating 

maximum is very near a velocity maximum.  Finally, the maximum flux 
*wq  can 

be assembled  
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and was shown in Figure 7-14. 

 Finding and maximizing the stagnation heat flux is only slightly more 

difficult.  Beginning with  
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and maximizing with respect to   leads to solving 
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  where sq  reaches its peak value.  Representative plots for the 

stagnation heat flux are shown in Figure 7-15. 

 Equations (7.117) and (7.101) combine to give the corresponding kinetic 

energy at the point of maximum heat flux: 
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Figure 7-15:  Stagnation Heat Flux for Steep Ballistic Entry Including Gravity 
(High-Altitude Entry) 
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Similarly, the velocity is:  

1
2

*

0
0 *

2
1

3

R

R

V

V
r 

 
 
 

      

 

Note, Eqs. (7.118) and (7.119) require 1
3*   in order to be valid.  The 

maximum value itself is:  

*

3
2

1
231 2 *2

* *

0 *

sin 1
12
3

e
sq T

r

 
 

 
                

  

 Table 7-5 summarizes the critical values for wall and stagnation heat 

fluxes for the steep ballistic entry when gravity is included in the analysis.  
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Table 7-5:  Points of Maximum Heat Flux for Steep Ballistic Entry Including Gravity 
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7.7 Problems 

Material Understanding: 

1. Starting with 

 
2

= 
2

R
R DC S Vd
V

dt m


  

show that:  

3
2

0 0

1 1

2 2

dt

dT g r T 
   

2. Equation (7.48) gives the total heat absorbed by the vehicle during gliding 

entry at medium and steep entry.  If you are free to tailor the vehicle, what can 

be done to minimize fQ ?  Identify at least two characteristics of the vehicle 

and/or the entry conditions that appear to result in less overall heat transfer.  

Why do you suspect they reduce fQ ? 

3. Starting with Eq. (7.52), show that the solution for the flight-path angle at 

which the maximum wall heat flux 
*wq  for medium/steep gliding entry is 

given by Eq. (7.54).  

4. Is it possible for 
*wq  to be larger than 

*s
q  for any given steep ballistic entry?  

Use the simplified solution ignoring gravity (Section 7.6.4.1) to justify your 

answer. 
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5. In Section 7.6.4.2, we found the altitude *  corresponding to the maximum 

average heating flux wq  for a steep ballistic entry (with gravity included).  We 

did this by maximizing Eq. (7.110) with respect to   and then finding *  to 

get eventually get * .  Show that you can find this “critical” altitude directly 

by maximizing 

  

3
2

0
0

2
exp

sin 2 2 2
exp

sin sin sin
e e e

w e
e e e

q T r Ei Ei
r


    

   

  
                      

       
  

  

with respect to   and solving for *  directly. 

6. Beginning with  

   
31 2 2

1 2 3 2
0

0

sin

2
e e

s e e

e
q T T r e Ei Ei

r


    



              
  

show that maximizing sq  with respect to   leads to solving 

      *
0 * *1 3 3 0e

e eT r e Ei Ei e
              

for * . 
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Computational Insights: 

7. In Problem 1 of Chapter 6, a gliding entry was solved using first-order, 

second-order, and numerical integration methods.  Those solutions can be 

used to plot the heat flux rates for the trajectories.  Plot altitude   versus 

3 / 2
w

e

q
T


 and 3 / 2

s

e

q
T


 for each of the three solutions. 

8. Over a range of steep entry angles, compare the timing and magnitude of the 

maximum heat fluxes experienced during gliding entries.  Use 1L DC C   for 

simplicity. 

9. Sections 7.6.4.1 and 7.6.4.2 derived solutions for heat flux rates for steep 

ballistic entry without and with gravity (respectively) in the analyses.  Using 

at least four different sets of initial conditions ( ,  e eT  ), make plots of sq  

versus  .  (Assume an Earth-like atmosphere with 0 910r  .)  Show the 

solution curves for both analyses on each plot.  How similar are they in peak 

values?  How similar are the estimates of the altitude of that peak?  

10. Demonstrate the assertion on page 210 that plots of 3
2

w

e

q

T


 versus  are 

relatively insensitive to the specific value of eT  used for a given entry angle in 

steep, ballistic entry (including gravity).  Pick at least four values of  eT  and 

plot 3
2

w

e

q

T


 versus   for results.  (Assume an Earth-like atmosphere with 

0 910r  .)   



A E R O D Y N A M I C  H E A T I N G  

219 

11. Is the assertion in Problem 10 valid for Mars ( 0 350r  ) and Jupiter 

( 0 3000r  )?   
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Chapter 8   

Entry Corridor 

8.1 Introduction 

 For a given vehicle (or object), there is a fairly restrictive set of conditions 

which must be met to ensure it survives atmospheric entry.  The two most obvious 

restrictions (deceleration and heating limits) were discussed in Chapter 5 and 

Chapter 7.  The entry conditions and, in most situations, the vehicle design will 

dictate the maximum deceleration and heating that will be encountered.  If the 

entry angle is too steep at its entry speed, the vehicle will be destroyed by 

dynamic and/or thermal loads.  If it is too shallow, the vehicle may simply pass 

through the upper atmosphere and continue on past the planet forever.  Between 

these two extremes is an entry corridor where the vehicle can be guaranteed to 

not only to be “captured” by the atmosphere but also to stay within its design 

limits.     

 Before a vehicle begins its atmospheric entry, we can assume it is on an 

orbital conic (trajectory) with respect to the planet.  In Figure 8-1, a point on the 

orbit (outside the atmosphere) is labeled with a “1.”  Within the plane of the 

motion and using 1r


 as a reference direction, the inertial velocity 1V , flight-path  
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Figure 8-1:  Orbital Parameters and Associated Entry Conditions 

angle 1 , and radius 1r  completely describe the orbit.  (These do not, however, 

specify the orientation of  the orbital plane in space.)  That orbit is fixed and the 

conditions later at entry ( eV , e , and er ) are already ordained.  However, if  the 

vehicle has the ability to maneuver, it can change the orbit and “target” an entry 

corridor.  This chapter is concerned with defining and finding the entry corridor.   

8.2 Finding Entry Conditions from Approach Conic 

 If 1V , 1 , and 1r  are known values (measured with respect to an inertial 

point) well outside the atmosphere on an orbital trajectory (a “conic”), then we 

can find the entry conditions when the atmosphere is entered at er .  In theory, 

there is some arbitrariness in setting the value of er  because the radius to the “top 

of the atmosphere” is poorly defined.  In practice, though, the value can be 
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selected based on some criterion such as when the atmospheric drag force reaches 

a certain fraction of the gravity force.  For our purposes, we’ll assume an 

acceptable value of er  has been dictated. 

 The equations found in Chapter 2 can be used to relate the given orbital 

parameters (at “1”) to those at atmospheric entry (at “e”).  For any orbit, the vis-

viva equation 

2 2 1
V

r a
    
 

 

can be solved for the semimajor axis from the position and velocity at any point 

on the orbit.  Thus, given the conditions at “1,” we have 

1
2

1 12

r
a

rV




 

  
 

  

for this orbit.  Then, at entry (where er  is known), the velocity can be calculated:  

2 1
e

e

V
r a


 

  
 

 

The flight-path angle is found by noting specific momentum is conserved along 

the orbit 

1 1 1cos cose e eh rV rV     

and solving:  

1 1 1 1cos
cose

e e

rV

rV

   
  

 
  

8.1

8.2

8.3

8.4

8.5
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In this equation, the solution with 0e   should be selected since the radius is 

decreasing as point “e” is approached. 

 As you might imagine, this problem can be turned around.  Given an entry 

radius, velocity, and flight-path angle, the approach conic can be found.  It is this 

“backwards” solution that tends to be used to find the entry corridor and the 

associated entry conics.  The next sections illustrate the process.   

 Before continuing, however, a word of caution is required.  The velocities 

on the conic are all inertial and care must be taken not to confuse their values 

with those relative to a rotating planet; i.e., R
e eV V  in general.     

8.3 Finding the Approach Conic from Entry Conditions 

 When the entry radius er , velocity eV  (or kinetic energy eT ), and flight-

path angle e  are known, it is possible to determine the approach conic (e.g., the 

orbit) the vehicle followed to arrive at the atmosphere.  (More correctly, it is 

possible to determine the orbit shape within the orbital plane – three scalar values 

are insufficient to define the orientation of the orbital plane in space.)   

 Given the entry velocity and radius, the vis-viva equation can be solved 

for the semimajor axis of the orbit:  

2

2

e

e e

r
a

rV




 

  
 

  

The eccentricity and specific angular momentum are related by 

 
2

21
h

a e


   

for all conics.  (In the case of parabolic orbits, a    and 1e  , so some care may  

8.6

8.7
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needed in certain applications.)  The constant value of h  is known from: 

cose e eh rV   

Combining Eqs. (8.6) - (8.8) and solving for eccentricity, we find  

2 2
21 2 cose e e e

e

rV rV
e 

 
  

    
  

 

Or, equivalently:  

2
2

2 2sin 1 cose e
e e

rV
e  


  

    
  

 

The semimajor axis and eccentricity found with Eqs. (8.6) and (8.9) or (8.10), 

respectively, define the approach orbit.  If more detail is required, the conic 

equation can be solved 

2

1 cose
e

h

r
e




 
 
 


 

for the true anomaly at entry e .  

8.4 Approach Periapsis 

 We will find it helpful to describe these approach conics in terms of the 

periapsis radius that would exist if the atmosphere (or planet surface) did not 

change the two-body motion.  Figure 8-1 shows periapsis radius pr  relative to the 

“initial” point and entry point.  To find a general expression for pr , we will need 

to find the orbital eccentricity e  first. 

8.8

8.9

8.10

8.11
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 For two-body orbital motion, eccentricity and specific angular momentum 

are related by 

 
2

21
h

a e


   

for all conics.  Using Eqs. (8.2) and (8.4), this can be solved for eccentricity in 

terms of given orbital parameters: 

2 2
21 1 1 1

11 2 cos
rV rV

e 
 

  
    

  
 

 (This equation correctly gives 1e   for parabolic orbits.)  For non-parabolic 

orbits, the periapsis can be written entirely in terms of the given conditions: 

 
2 2

21 1 1 1 1
12

1 1

1 1 1 2 cos

2
p

r rV rV
r a e

rV


 


                   
 

 

For parabolic orbits, the expression is somewhat simpler:  

2 2 2 2
1 1 1cos

2 2p

h r V
r


 

   

 As shown in Figure 8-2, there is a maximum periapsis radius which will 

still allow the vehicle to be “captured” in one pass past the planet.  Similarly, 

there is a minimum radius below which the vehicle encounters too much drag.  

These radii define the “overshoot” and “undershoot” boundaries, respectively.  

The difference between the radii is pr  and all of the conics (orbits) with 

periapsis values between these boundaries lie in the “entry corridor.” 

8.12

8.13

8.14

8.15
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Figure 8-2:  Entry Corridor 

8.4.1 Undershoot Boundary 

 The undershoot boundary is the limiting entry path which results in a 

“safe” atmospheric entry.  For illustration, we will assume the limiting factor is a 

maximum allowed deceleration, say 
0 0 failure

decel decela a

g g

 
  
 

.  (The limit could just as 

easily be defined by a maximum heating rate.)  If we restrict ourselves to a planar 

entry, we can use the second-order solution from Chapter 6 to find the entry 

trajectory which “just hits” the maximum deceleration.  (Using a second-order 

solution frees us from the necessity of deciding which specific first-order solution 

is appropriate.)  To simplify the analysis (without affecting the qualitative 

results), we can also assume the planet’s atmosphere does not rotate; i.e.,  
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R
e eV V .  Setting the maximum deceleration on an arbitrary entry trajectory to 

our maximum allowed value, we have 

2

0 * *
0

sin 1decel L

Dfailure

a C
r T

g C
 

   
     

  
 

*
* *

0 * *

1 2 1
ln 1 cos

2 sin 2
L

e
e D

T C

T C r T
  

 
    

       
    

 

*

*

0 *

sin
cos

2
cos

1 1
1 1

2

L
e

D

C

C

r T






     
  
 

  
 

 

where, as usual, 0r  is a reference radius (which may or may not be the same as 

er ).  In these three equations, there are four unknowns:  *,  ,  ,e eT   and *T .  Two 

( *  and *T ) are “fixed” by dynamics and cannot be “selected” and two ( e  and 

eT ) are “free” variables.  Only one of the two free variables can be arbitrarily 

selected since there are just three equations in the four unknowns.  Typically, it is 

harder to change the magnitude of the orbital velocity (i.e., eT ) than it is to change 

its orientation slightly (i.e., e ), so it is normally assumed to be known.  Given 

eT , Eqs. (8.16) - (8.18) can be solved for *,  ,e   and *T .  (Note:  there is nothing 

to preclude selecting a value for e  and solving for *,  ,eT   and *T  instead.)     

 Armed with eT  and e , we can solve for the approach conic defining the 

undershoot boundary.  Rewriting Eq. (8.6) and Eq. (8.9) in terms of eT  in place of 

8.16

8.17

8.18
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eV  we can define the approach conic for the undershoot boundary:   

0 02 1

e

e e

r
a

r T g r




  
  
  

   

20 0 0 04
1 1 cose e e e

e

r T g r r T g r
e 

 
  

    
  

 

In a homework problem in Chapter 4, it was shown for the current assumptions 

2
0 0g r    

so Eqs. (8.19) and (8.20) can be simplified:  

0

2 1

e

e
e

r
a

r
T

r


  
  

  

   

2

0 0

1 4 1 cose e
e e e

r r
e T T

r r


    
      

    
 

Notice these equations simplify even more when the reference radius 0r  is 

selected to be the entry radius er : 

 2 1
e

e

r
a

T



   

  21 4 1 cose e ee T T     
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   Finally, Eq. (8.14) gives the corresponding periapsis radius for an 

undershoot boundary (for 0 er r ): 

      21 1 1 4 1 cos
2 1under

e
p e e e

e

r
r a e T T

T
      

 
 

Varying the assumed value of eT  (or, alternatively, the presumed value of e ), 

Eqs. (8.16) - (8.18) and (8.24) - (8.26) can be repeatedly solved to find a “family” 

of conics which all meet the criterion:  

0 0max failure

decel decela a

g g

   
   

   
 

8.4.2 Overshoot Boundary 

 At the other end of the problem, there is a boundary above which the 

vehicle will not be captured.  On the overshoot boundary, the vehicle encounters 

just enough atmospheric drag to avoid exiting the atmosphere.  Traditionally, 

assuming the velocity on the overshoot boundary is reduced to circular orbital 

velocity (at a radius of er ) is considered adequate for defining the boundary.  

(Note that this assumes there is enough energy and/or lift for the vehicle to “skip” 

back to the edge of the atmosphere.  When skip does not occur, we will be forced 

to define the overshoot boundary differently.)     

 It is tempting to use the second-order equations from Chapter 6 like we 

did for the undershoot boundary.  However, Loh’s equations (and the first-order 

skip solution from Chapter 5) do not give realistic results for an important entry 

scenario.  Specifically, negative lift can be used to “hold” the vehicle in the 
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atmosphere while it decelerates.  As a simple validation of this assertion, consider 

an entry at eT  and e  with 0er r .  Then, both Loh’s solution and the first-order 

solution become 

41
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for the overshoot boundary.  For entry, 0e   so with negative lift 
4
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.  

It is apparent Eq. (8.28) cannot be satisfied for negative lift when 
1

2eT   (which 

is the only case of interest when looking for an overshoot boundary).  Thus, for 

negative lift, we are forced to abandon the solutions we have already derived if 

we wish to define the overshoot boundary.  Another alternative would be to 

directly solve the differential equations for planar entry (Eqs. (5.1) and (5.2)) 

subject to the known boundary conditions.   

 Rewriting these with kinetic energy as the independent variable gives: 

0

0

sin

2 sin

rd

dT T r

  
  




 

0

0 0

1 1
1 cos

2 2 sin
L

D

rd C

dT C r T T r

  
    

                
 

8.28

8.29

8.30



 

232 

Equations (8.29) and (8.30) can be integrated as a two-point boundary value 

problem (TPBVP) with the boundary conditions 

   at   e eT T     

2

0   at   
2 2

R
f

e f
o o e

V r
T

g r r
     

where it has been assumed eT  is “fixed” and the flight-path angle throughout is 

unknown (but will be found when the TPBVP is solved).   

 This TPBVP is, mathematically at least, well-posed and straight-forward 

to set up for solution.  Once solved,    

      21 1 1 4 1 cos
2 1over

e
p e e e

e

r
r a e T T

T
      

 
 

gives the periapsis radius for the overshoot boundary (for 0 er r ).  However, 

numerically solving the problem can be exceedingly difficult.  Both   and   are 

very small at entry and exit.  Further complicating the numerics,   probably 

remains small but changes sign while   may vary over several orders of 

magnitude!   

 Because of these difficulties (and other less obvious reasons), traditional 

texts often introduce another non-dimensional form of the equations better suited 

for studying the entry corridor, specifically Chapman’s theory ( 14-17; 39:169-

177; 58:178-225).  Rather than introduce an entirely new approximation theory 

(complete with new variables and a requirement to numerically integrate), we will 

simply accept and present Chapman’s results for the overshoot boundary.  (In 

Section 9.4 we will revisit the overshoot boundary with a new theory related to 

Chapman’s.) 
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 Chapman, in his classic analyses, chose to characterize the entry conic 

with a parameter more convenient to his particular equations than our periapsis 

radius pr  (Refs. 14-17).  This “periapsis parameter” pF  is defined by 

2
p D p

p p p

SC r
F r

m


 


   

where the “p” subscript again denotes the conditions at the periapsis of the  

hypothetical two-body conic.  Note, since p  is a function of pr , there is a one-to-

one correspondence between Chapman’s pF  parameter and the periapsis radius 

pr  we introduced earlier.  His results for the overshoot boundary are presented in 

Figure 8-3.   
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Figure 8-3:  Chapman’s Overshoot Boundaries for Single Pass Entries (15:18; 
39:170; 58:220) 

8.34



 

234 

 In this figure, each curve represents an overshoot boundary for specific 

entry kinetic energy over a range of entry flight-path angles (as reflected in the 

range of periapsis parameters).  Above the curve, the vehicle fails to remain in the 

atmosphere or, at best, requires multiple passes to complete the entry.  Below the 

curve, entry occurs on the first pass.  The term r  on the y-axis (and Eq. 

(8.34)) should be replaced with the appropriate average value for whatever 

atmosphere is of interest to be consistent with Chapman’s formulation.  (For 

Earth, Chapman used the value 30r  .) 

8 .4 .2 .1  S p e c i a l  C a s e  o f  P o s i t i ve  L i f t   

 When there is positive lift, either Loh’s solution or the first-order skip 

solution from Section 5.5 can be used to directly solve for the overshoot 

boundary.  Both approaches relate the entry kinetic energy to the entry flight-path 

angle on the overshoot boundary by 
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when 0er r .  With this same condition, the corresponding approach radius is: 
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1 1 4 1 cos ln 2
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The derivation of Eq. (8.36) is left as an exercise. 
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8 .4 .2 .2  Spec ia l  Case  for  Unobta inab le  Overshoot  

Boundar i e s  

 Certain entries may exclude the possibility for a skip-type trajectory based 

on physically realizable entry conditions.  Consider three examples: 

 Steep ballistic entry:  The vehicle may never reapproach the upper edge 

of the atmosphere before impacting the planet, so the overshoot 

boundary (as defined earlier) doesn’t exist. 

 Entry with small positive lift or large negative lift:  Mathematically, it 

might be possible to find a combination of eT  and e  to define an 

overshoot boundary.  However, other considerations (such as 

maneuvering fuel) might prevent the vehicle from actually realizing such 

an orbital approach.  For all intents and purposes, the overshoot 

boundary in this case might as well be undefined. 

 Entry at less than circular speed:  If the vehicle’s entry speed is already 

less than what is required to maintain a circular orbit, no overshoot 

boundary needs to be defined.  (Of course, if eT  is free to change, an 

overshoot boundary can be found.)  

In situations such as these, the convention is to use the radius of the planet R  in 

lieu of an overshoot radius 
overpr .   

8.5 Entry Corridor Width 

 Earlier, 
over underp p pr r r    was introduced as a “measure” of the entry 

corridor.  The undershoot radius 
underpr  is easily obtained directly from Eq. (8.26).  
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When defined, the overshoot radius 
overpr  can be found by solving the TPBVP 

defined by Eqs. (8.29) - (8.32) or by using Chapman’s solution and solving for the 

radius from the periapsis parameter.  (When lift is positive, Eq. (8.36) also 

provides the value.)  When undefined, the overshoot radius is replaced by R  

(39:173).  Thus, the entry corridor can be defined by 

Entry Corridor = 

Entry Corridor =  (when the overshoot boundary cannot be realized)
over under

under

p p p

p

r r r

R r

  


 

Just as easily, the entry corridor could be defined in terms of Chapman’s periapsis 

parameter   

under overp p pF F F    

(with the obvious changes when the overshoot boundary cannot be realized). 

 Chapman’s original works contain a wide range of calculated overshoot 

and undershoot boundaries and those should be referenced for more detailed 

discussions (Refs. 14-17).  Loh and Vinh provide excellent summaries of his work  

(39:170-177; 58:178-225). 
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8.6 Problems 

Material Understanding: 

1. Prove that Eq. (8.13)  

 
2 2

21 1 1
1 12

cos
1 2

rV
e rV

 


    

 reduces to 1e   for parabolic orbits. 

2. For an overshoot boundary, show that Loh’s equations and first order theory 

both reduce to Eq. (8.28)  
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when 0er r .   

3. Show that the equations of motion for planar entry from Chapter 5 (Eqs. (5.1) 

and (5.2)) can be written in terms of kinetic energy as the independent 

variable:  
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4. Show that for the case where 0L

D

C

C
  and 0er r , the approach radius for the 

overshoot boundary can be written as:   
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5. For the situation where 0.4L

D

C

C
  and 0.2e    radians, the overshoot 

boundary is well-defined using our first-order skip equations (from Section 

5.5).  Assume the reference radius is equal to the entry radius (i.e., 0 er r ) and 

answer the following:  

a. Find the required entry kinetic energy eT  which places this vehicle exactly 

on the overshoot boundary. 

b. Find the overshoot radius 
overpr . 
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Chapter 9   

Unified Theory  

9.1 Introduction 

 In earlier chapters, classical theories for planar entry were presented.  

Chapter 5 derived several closed-form solutions that were each limited to one 

specific type of entry trajectory.  In its range of validity, each solution is accurate 

and helpful for identifying trends (such as the benefits of adding lift to reduce 

deceleration or heating rates).  Loh’s theory in Chapter 6, while empirical, 

alleviated most of the restrictions and is applicable to a broad range of entries.  It 

is, in fact, actually quite accurate also (58:226).   

 The next level of complexity is to remove the restriction of planar entry.  

In doing so, it is also desirable to retain the “universality” of the equations.  That 

is to say, whenever possible, explicit knowledge of the vehicle mass, shape, size, 

etc. should not be required; “universal” variables similar to   and T  should be 

used if possible.  Vinh and Brace derived a set of “universal equations” of this 

form valid for three-dimensional planetary entry as well as orbital motion (40:9-

11; 57:295-299; 58:227-232; 59).  This chapter will derive and analyze their 

universal equations. 
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9.2 Universal Equations for Three-Dimensional Entries   

   For a non-thrusting entry near a spherical, non-rotating planet, the 

kinematic equations (Eqs. (3.35) - (3.37)) and force equations (Eqs. (3.65) - 

(3.67)) become:  
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Introducing our usual assumptions for the forms of lift and drag,  
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the last three equations of motion can be rewritten as:  
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 Vinh found that changing the independent variable from time to  

0

cos

t
RV

s dt
r

 


 

facilitated the problem formulation in universal variables.  This variable is 

monotonically increasing when cos 0  , so it is a reasonable replacement for 

time in this application (58:229).  Note, however, this substitution will make it 

impossible to examine perfectly vertical trajectories  2   .  Dividing Eqs. 

(9.1) - (9.3) and (9.9) - (9.11) by  cos
Rds V

dt r
 , the equations of motion 

become: 
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 The gravity term in these (universal equations) should be replaced by an 

inverse square, central gravity term 

2
( )g g r

r


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where   is the gravitational constant for the planet.  To be consistent with our 

previous derivations, the atmospheric density will be considered to vary 

exponentially (at least locally) according to: 
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(Vinh expands the equations to include more general isothermal atmospheres as 

well and his works should be reviewed for details if required (58:228-230; 59).) 

 Vinh also introduced a pair of dependent variable changes 
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to replace velocity and radius, respectively (16; 58:229).  (u  is a measure of 

kinetic energy along perpendicular to the radius and Z  is a measure of altitude.)  

Vinh refers to these as “modified” Chapman variables because of their similarity 

to those used by Chapman in his classic papers (Refs. 14-17).  The derivatives of 

these new variables (for a strictly exponential atmosphere where   is a constant) 

are straight-forward to calculate.  They are    

1
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after simplifying.  Strictly speaking, r  in Eqs. (9.23) and (9.24) should be 

replaced in favor of Z ; however, Vinh (and Chapman before him) shows 

replacing r  with an average value r  greatly simplifies the mathematics and 

does not significantly change the results when studying trajectories into most 

atmospheres of interest (15:6-7; 58:230).  Further, since r  is typically large, 

Eqs. (9.23) and (9.24) can be simplified to 
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with little loss in accuracy. 
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 The differential equations for   and   still contain r  and RV , so they need 

to be rewritten with modified Chapman variables:   
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 The differential equations for   and   do not contain r  or RV  so they do 

not need to be changed and we can now assemble a complete set of the six three-

dimensional equations of motion:  
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Equations (9.29) - (9.34) are forms of those first derived by Vinh and Brace (59).  

They are valid for a constant drag coefficient.  (The definition of Z  in Eq. (9.22) 

introduces this requirement.)  Like the equations derived in Section 4.4, they are 

free from the characteristics of mass, size, and shape of the vehicle.  Once the 

atmosphere has been specified with a characteristic average r , these equations 

can be integrated just one time for each set of specified entry conditions, constant 

lift-to-drag ratio L

D

C
C , and constant bank angle  .  Solutions, given in “Z-

Tables” and graphs have been calculated and published for Z  (7; 18:106-277; 

58:241-246).  With modern desktop computers, we can easily solve these 

equations in a few seconds, so we will not rely on tables for the solutions to the 

differential equations.  (In addition, finding our own numerical solutions frees us 

to vary the bank angle rather than hold it constant.)   

9.3 Reduction to Other Solutions 

 In Chapter 6, we developed Loh’s Second Order-Solution and 

demonstrated it could be reduced to classic first-order solutions when the same 

simplifying assumptions were introduced.  In much the same way, we can show 

Eqs. (9.29) - (9.34) are consistent with all known first- and second-order solutions 

(58:227).  The text by Vinh, et al. details four of these reductions (58:232-241).  

Here, we will only cover two:  the Keplerian solution and Loh’s Second-Order 

solution.   

9.3.1 Keplerian Solution 

 If Eqs. (9.29) - (9.34) represent a unified solution for all atmospheric 

entries, then they should model two-body orbital motion outside of the 
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atmosphere.  From the definition of Z , it is clear 0Z   in orbital problems.  

Taking the limit as 0Z  , the differential equations become:  
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 Solving these begins with dividing Eq. (9.36) by Eq. (9.13) to get: 

du u

dr r
   

This is readily integrated as 

  1ln ur k  

where 1k  is a constant of integration.  Putting this in a slightly different form and 

renaming the constant to p  will aid us later: 
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Notice this relates velocity (through u ) to the radius, so we can expect to use it 

later in finding the vis-viva and the classic conics equations first introduced in 

Chapter 2. 

 Dividing Eq. (9.38) by Eq. (9.40) yields 

tan

tan

d

d

 
 

   

which separates and integrates to give:  

  2ln cos cos k    

2k  is a constant of integration.  Rewriting this slightly in terms of a new 

integration constant i : 

cos cos cos i    

 Similarly, dividing Eq. (9.37) by Eq. (9.40) gives:  

1

sin

d

d


 

   

The sin  term can be eliminated in favor of an expression containing only 

constants and  .  From Eq. (9.46):  

2

2

cos
1    for 0

cos 2

sin

cos
1    for 0

cos 2

i

i






 


         


 

   
    

 

 

9.44

9.45

9.46

9.47

9.48
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For compactness, this will be written as  

2
cos

sin 1
cos

i


 
    

 
 

where the “upper” sign is for 0
2

   and the “lower” sign is for 0
2

 
  .  

Noting 
2 2

    , this can be written: 

2 2cos cos
sin

cos

i



   

Therefore,  

2 2

1 cos

sin cos cos

d

d i

 
  

  


  

With a simple variable change,  

sinx   

this can be put in a form that is easily integrated: 

2 2sin

dx
d

i x
 





   

Doing so yields 

1
3 sin

sin

x
k

i
   
    

 
  

where 3k  is a constant of integration.  Changing back to the original variables and 

simplifying, this can be written  

 3sin sin sini k     

9.49

9.50

9.51

9.52

9.53

9.54

9.55
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A new constant of integration, 4 3 2
k k


  , can be introduced to change the sine 

to a cosine:  

 4sin cos sini k     

With two more simplifications, Eq. (9.56) can be put into the form found by 

Vinh.  First, assume 0 i    so that sin 0i  .  (When the physical meaning of i  

is established, this assumption will be clearly justified.)  Second, assume the 

constant 4k  is replaced with a new constant so that the positive sign on the right-

hand side of Eq. (9.56) is valid: 

 sin cos sini     

 Dividing Eq. (9.39) by Eq. (9.36) relates the flight-path angle   and 

kinetic energy variable u : 

21 cos
1

tan

d

du u u

 

 

   
 

 

A change of variables with 
2

1

cos
y


 , allows this to be written as a linear first-

order differential equation:  

2

2 2dy
y

du u u
   

The solution this form of differential equations is 

5
2

2u k
y

u


  

where 5k  is a constant of integration (19:43-44).  Substituting for y , the solution  

9.56

9.57

9.58

9.59

9.60
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relating flight-path angle and the kinetic energy parameter becomes:  

 

 

The constant 5k  has been replaced with  2
5 1k e    in Eq. (9.61) to simplify 

later discussions.   

 At this point, it is helpful to introduce some spherical trigonometry to aid 

in identifying the physical significance of some of the integration constants.  

Consider the right spherical triangle shown in Figure 9-1.  Using the notation 

shown, we can write down several identities to help us in the derivations: 

sin sin sina c   

cos cos cosc a b  

sin tan cotb a   

cos tan cota c   

90
a

b

c

a

b

c



O

A

C

B



90
a

b

c

a

b

c



O

A

C

B



 

Figure 9-1:  General Right Spherical Triangle 

9.61

9.62

9.63

9.64

9.65

2
2

2
cos

2 (1 )

u

u e
 

 
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These are well-known and will not be proven here (6:145-148; 8:8-9).  Figure 9-2 

shows this geometry superimposed on our entry trajectory.  (This figure illustrates 

the case for    .  The situation for    is similar and will not be shown 

here.)  From the figure, it’s obvious that, if we prove this motion is orbital motion, 

the constant   will be the right ascension of the ascending node.  Similarly, the 

angle labeled   is the orbital inclination if we are modeling orbital motion.  The 

angle c  is an angular measure “travel” about a normal to the plane of motion.  

xê

zê

ê y





r


Local parallel of 
latitude

2

  

v




c



 

c



Projection of     on 
local horizontal plane  

V


xê

zê

ê y





r


Local parallel of 
latitude

2

  

v




c



 

c



Projection of     on 
local horizontal plane  

V


 

Figure 9-2:  Spherical Geometry of Vehicle Trajectory 
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 Continuing on with proving our equations model Keplerian motion, we 

rewrite Eqs. (9.62) - (9.65) to reflect the variables we are using (and those shown 

in Figure 9-2):  

sin sin sinc   

 cos cos cosc     

 sin tan cot     

sin tan cot c   

We can show the angle   in Figure 9-2 and the constant of integration i  in Eq. 

(9.57) are one in the same.  Begin by squaring and combining Eqs. (9.46) and 

(9.57): 

 
2

2 2 2cos
sin cos cos sin

cos

i
i   


 

       
 

 

After recognizing the right-hand-side is equal to one and simplifying, this 

becomes:  

 2 2 2sin tan cot i    

Taking the square root gives  

 sin tan cot i    

where the positive root has been taken.  (The negative root is a valid solution and 

would imply different values for the constants   and i  or a situation where 

  .  While valid, we do not need to discuss such situations since the geometry 

is similar and the final results are the same.)  Comparing Eqs. (9.68) and (9.72) it 

9.66

9.67

9.68

9.69

9.70

9.71

9.72



U N I F I E D  T H E O R Y  

253 

is evident i  , although we have yet to show this is orbital motion and i  is, 

therefore, the inclination.   

 Combining Eqs. (9.57) and (9.67) and differentiating with respect to s  

gives:  

sin sin cos cos

sin sin sin sin

dc d d

ds c i ds c i ds

                        
         

 

Equations (9.38) and (9.40) eliminate 
d

ds

 
 
 

 and 
d

ds

 
 
 

, respectively:  

   

 2 2

1
sin sin sin cos cos cos tan

sin sin

1
sin sin sin cos

sin sin

sin

sin sin

dc

ds c i

c i

c i

      

   



               

   
 



 

If Eq. (9.66) is substituted into this (and i   is recognized), the equation 

becomes  

1
dc

ds
   
 

 

or, rewritten with the aid of tan
du

u
ds

   : 

1

tan

dc

du u 
   

 
 

9.73

9.74

9.75

9.76
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Equation (9.61) can be solved for cos  and sin : 

2
cos

2 (1 )

u

u e
 

 
 

2 2

2

2 (1 )
sin

2 (1 )

u e u

u e
   
 

 
 

Since 
2 2

 
  , there is no sign ambiguity in the cosine, but the sine term may 

be either positive or negative.  These two equations can be used to eliminate tan  

in Eq. (9.76):  

2 2

1

2 (1 )

dc

du u e u

   
    

  

Changing the independent variable to 1x u   puts this into a form easily found 

in integral tables:  

2 2

1dc

dx e x

    
  

 

Integrating and simplifying, this becomes 

 61 cosu e c k    

where 6k  is a constant of integration.  As we’ve done before, we can select the 

constant (and call it  ) such that the positive sign in Eq. (9.81) is valid:  

 1 cosu e c     

9.77

9.78

9.79

9.80

9.81

9.82
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Eliminating u  with the solution we found in Eq. (9.43), we (finally) get an 

expression relating the radius to the polar angle c  :  

 1 cos

p
r

e c 


 
 

This is the well-known equation for a conic.  For two-body orbital motion, it is 

normally written as  

1 cos

p
r

e 



 

when true anomaly c    is used to describe the polar angle.  Similarly, Eq. 

(9.82) can be rewritten as:  

1 cosu e    

This form will be useful in a later section. 

 Equation (9.84) shows that our universal equations (Eqs. (9.29) - (9.34)) 

give a solution for Keplerian motion when 0Z  .  Having established this as 

orbital motion, the constants of integration we found along the way are easily 

identified with their orbital counterparts:  p  is the semilatus rectum; i  is the 

inclination;   is the right ascension of the ascending node; e  is the eccentricity; 

and   is the argument of periapsis.  

9.3.2 Loh’s Solution 

 Equations (9.29) - (9.34) can be shown to be consistent with Loh’s 

solutions we found in Chapter 6.  Those solutions were for planar motion, so we  

9.83

9.84

9.85
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set 0   .  Equations (9.29), (9.30), and (9.33) decouple from the rest to give 

equations of planar motion:  

tan
dZ

rZ
ds

    

2 sin
1 tan

cos 2
L

D

Zu rdu C

ds C Z r

 
 

 
    
 
 

 

2cos cos
1

cos
L

D

Z rd C

ds C uZ r

  
 

  
    
   

   

Recall from Chapter 6, Loh made the empirical observation that the group of 

terms 

0

1 1
1 cos

2
G

r T


 
    

 
 

was constant for the purposes of integration.  In terms of this chapter’s universal 

variables 

 
Z

r



   

and: 

 
22cos

u
T


  

(In getting these two relationships, it has been assumed 0r r   and 0 0g r gr  

during the entry.)  Thus, G  can be rewritten as:   

21 cos
1 cosG

urZ

 


 
  

 
 

9.86

9.87

9.88

9.89

9.90

9.91

9.92
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Substituting for Loh’s constant G  and changing the independent variable to Z  in 

Eq. (9.88) by dividing by (9.86), we get an easily integrated equation:  

1

sin

L

D

Cd
G

dZ Cr



 

 
  

 
   

Or, after integrating,  

 cos cos

L

D
e e

C
G

C
Z Z

r
 



 
 

     

where e  and eZ  are the entry conditions.  Replacing Z  with   this exactly 

matches Eq. (6.11):  

 cos cos L
e e

D

C
G

C
   

 
    

 
 

This is one-half of Loh’s Second-Order Solution (and is one-half of Loh’s Unified 

Solution as well). 

 To find the other half of Loh’s solution, we begin by dividing Eq. (9.87) 

by Eq. (9.88): 

2 sin
1 tan

2
L

DL

D

du u C

d CC Z rG
C


 

     
     

 

 

9.93

9.94

9.95

9.96
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Rewriting this slightly, it becomes:  

2 2

2

2 sin sin cos sin cos sin
1 tan

2

2 sin 2cos
1 tan 1

2

L

DL

D

L

DL

D

du u C

d CC Z r Zu r Zu r Z rG
C

u C
G

C uC Z rG
C

     
    

 


        
     

 

    
               

 
 

Rearranging and grouping terms, this becomes:  

22cos
sin 1

2
2 tan

2L L

D D

udu u
u

d C C
G Z r G

C C







 
                  

   

 

Eliminating Z  with Eq. (9.94) and assuming a high-altitude entry ( 0eZ  ):  

 

22cos
sin 1

2
2 tan

2 cos cos eL

D

udu u
u

d rC
G

C




   

 
              

 

 

Or, with a little more creative manipulation, we “simplify” it as 

 

2

2

2 2

2cos
sin 12

2cos

2cos 4cos cos cos eL

D

u
ud u

d rC
G

C




     

                   
 

 

9.97

9.98

9.99

9.100
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which makes the substitution of T  straightforward: 

  2

1
1

2 sin

4coscos cos eL

D

dT T T
d rC

G
C


   

            
           

 

Equation (9.101) is very similar to, but not exactly, the differential equation we 

solved in Chapter 6 for Loh’s Universal Theory (Eq. (6.19)).  However, if we 

make the same assumption as we did for his second-order solution, 1r  , then 

we can exactly match Eq. (6.31)  

2
0

L

D

dT T

d C
G

C


 
 

 
 

 

and develop the same solution as in Eq. (6.35):  

 
0

1 1 1
ln 1 cos

2  2
L

e
e D

T C

T C r T
  

 
           

    
 

 Finding Eqs. (9.95) and (9.103) from Vinh and Brace’s universal 

equations (Eqs. (9.29) - (9.34)) shows they are consistent with Loh’s Second-

Order Solution.  Since we have already shown examples (in Chapter 6) where 

Loh’s Second-Order Solution reduces to first-order solutions, we can state with 

confidence Vinh and Brace’s universal equations also reduce to known first-order 

solutions. 

9.101

9.102

9.103
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 Before leaving this section, we can revisit finding the second of Loh’s 

equations without relying on the assumption 1r  .  Vinh, et al. began with an 

expression for 
du

dZ
 which we can get by dividing Eq. (9.87) by Eq. (9.86)  

2 sin
1 tan

sin 2
L

D

du u C

dZ Cr Z r


  

 
   
 
 

 

(58:240).  Rearranging it slightly, we will begin with: 

1 1 2
1 tan

sin
L

D

du C

u dZ CZ r r


  

 
   

 
      

 The left-hand-side is a perfect derivative, so it simplifies to: 

1 2
ln ln 1 tan

sin
L

D

d C
u Z

dZ Cr r


  

  
    

   
      

 If this is divided by Eq. (9.93), the independent variable is changed to   

1 2
ln ln 1 tanL

DL

D

d C
u Z

d Cr C
G

C


 

   
          

 

      

and is easily integrated (with the aid of a basic integral table):  

 1 2 cos
ln ln ln

cos
L

e
e e D eL

D

Cu Z

u Z Cr C
G

C

 


      
                   

 

 

9.104

9.105

9.106

9.107

9.108
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The entry conditions have been used in place of a constant of integration.  When 

rearranged, it takes on a more familiar looking form: 

cos 1
ln ln ln

cos 2 2

L L

D DL
e

D e e e

C C
G G

C CC u Z
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Equations (9.94) and (9.109) constitute Loh’s Unified Solution in the current 

variables (58:240).  As was the case in Chapter 6, we have two equations in three 

variables and by choosing one, we can solve for the other two at any point along 

the trajectory. 

9.4 Entry Corridor Revisited 

 In Chapter 8 we introduced the concept of an entry corridor.  Calculating 

the undershoot boundary was fairly simple; however, the overshoot boundary 

proved to be a numerically difficult task.  To that end, we simply introduced 

Chapman’s results without proof and moved on.  With the current unified theory, 

we can now revisit the problem to obtain a robust solution technique.  In this 

formulation, we will follow the method described by Vinh, et al. and approach the 

problem from a consideration of decelerations experienced by the vehicle 

(58:244:252).  

 If we, once again, assume the drag force is the dominant term in the 

tangential direction and lift is dominant in the normal direction, we can write the 

total non-dimensional deceleration as  
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Since these are all proportional, the maxima (or minima) occurs at the same point 

in the trajectory.  The point of the extrema (“critical”) deceleration is given by 

cos cos 2 sin 0
dZ du d

u Z Zu
ds ds ds

              
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Using Eqs. (9.86) - (9.88) to simplify, this “optimality condition” becomes  

 
2
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2sin cos
2 1 sin 0rZ r

u

        

where the “*” subscript denotes conditions at the critical point.  From this 

equation, it is obvious the maximum (or minimum) can only be satisfied when 

* 0  ; in-other-words, during an inbound portion of a trajectory.  Of course, at 

this point, the total deceleration is   

2

* *
2

0 **

1
cos

decel L

D

Z u ra C

g C




   
    

  
 

and it remains to be determined if this is a minimum or maximum value along the 

trajectory. 

9.4.1 Overshoot Boundary 

 If we assume atmospheric entry occurs when the deceleration reaches 

some small fraction f  of the gravity acceleration, then along the overshoot 

boundary 
0

decela

g
 should never drop below f .  (This definition is different from 

the one used in Section 8.4.2, but produces similar results.)  Put another way, the 

minimum value of deceleration along the overshoot boundary is f  and occurs at 
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the point satisfying Eq. (9.112).  The value of f  is somewhat arbitrary; we’ll 

follow Vinh’s lead and use 0.05f   (58:251).  If we choose a *Z  and solve 
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for *u  and * , we can find a point along an overshoot boundary.  Since the entry 

corridor is considered a “planar problem,” integrating Eqs. (9.29), (9.30), and 

(9.33) “backwards” to the point where 
0

decela
f

g

 
 

 
 again is all that is required to 

get the entry conditions ,  ,e eZ u  and e .   

 As in Section 8.4, we can find the periapsis of non-parabolic approach 

orbits with the following equation: 
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Equivalently (and perhaps more conveniently in this situation), we can form the  

Chapman periapsis parameter 
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where, by observation, we note p pF Z .  pZ  is easily found by solving 
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simultaneously.  Equations (9.118) and (9.119) were found from the definition of 

Z  and by evaluating the orbital constants p  and e  at both the entry radius and 

hypothetical periapsis.  The derivation/proof is left as an exercise.  Once found, 

this pZ  is the Chapman periapsis parameter for the overshoot boundary; i.e., 

over overp pF Z . 

 By scanning through values of *Z , a range of overshoot boundaries can be 

found, each with different entry conditions.  Figure 9-3 shows the solutions for 

ballistic entries into Earth’s atmosphere for entry speeds between circular and 2.2 

times circular.  This was generated by scanning 3 3
*1.68 x 10 1.91 x 10Z    and 

repeatedly solving the problem described above.   
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Figure 9-3:  Overshoot Boundary for Ballistic Entry into Earth’s Atmosphere 

 To summarize this section, a “cookbook” approach to finding overshoot 

boundaries is given below.   

Step 1:  Pick a value for *Z . 

Step 2:  Solve Eqs. (9.114) and (9.115) for *u  and * .  This is a point of 

minimum deceleration on the trajectory. 

Step 3:  Integrate Eqs. (9.29), (9.30), and (9.33) “backwards” until 

0

decela
f

g

 
 

 
 again to find the entry conditions ,  ,e eZ Z u u   and 
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e  .  This is a two-point boundary value problem (TPBVP), defined by 

solving the three differential equations subject to the boundary conditions 

* * * *,  ,    at  Z Z u u s s      
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where *s  is an unknown value corresponding to the point of 

minimum deceleration.   

Step 4:  Solve Eqs. (9.118) and (9.119) simultaneously to find 

over overp pF Z .  (Equivalently, the initial conditions from Step 3 could be 

used to calculate a dimensional radius 
overpr .) 

Step 5:  Select another value for *Z  and repeat. 

9.4.2 Undershoot Boundary 

 On the undershoot boundary, the vehicle experiences a maximum 

deceleration equal to some value dictated by structural, thermal, or some other 

limitation.  In this case, we are looking for a deceleration maximum found by 

satisfying Eq. (9.112).  Similar to the overshoot boundary, we solve for the 

“critical” point by simultaneously solving Eqs. (9.112) and (9.113), this time 

setting the maximum deceleration to the maximum allowed: 
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This solution for * *,  Z u  and *  represents a point along an undershoot boundary.  

This point can be used as the starting point for a backwards integration to the 

point given by 
0

decela
f

g

 
 

 
 to get the entry conditions ,  ,e eZ u  and e .  Then, just 

as in finding the overshoot boundary, the undershoot periapsis radius 
underpr  or 

periapsis parameter 
under underp pF Z  can be calculated.  Figure 9-4 shows the 

undershoot boundaries for ballistic entry with six different deceleration limits.  

Using these equations, it can be shown the minimum peak deceleration is in the 

range 
0 *

5.5 6.55decela

g

 
  
 

 and occurs at slightly hyperbolic entry speeds.    

p PZ FPeriapsis Parameter

V
el

oc
ity

 R
at

io

0.05

900

0L

D

f

r

C

C









Overshoot 
Boundary

* 016decela g
* 012decela g

* 09decela g

* 08decela g

* 07decela g

* 06.55decela g

p PZ FPeriapsis Parameter p PZ FPeriapsis Parameter

V
el

oc
ity

 R
at

io
V

el
oc

ity
 R

at
io

0.05

900

0L

D

f

r

C

C









0.05

900

0L

D

f

r

C

C









Overshoot 
Boundary

* 016decela g
* 012decela g

* 09decela g

* 08decela g

* 07decela g

* 06.55decela g

 

Figure 9-4:  Overshoot and Undershoot Boundaries for Ballistic Entry into 
Earth’s Atmosphere 
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 To summarize this section, a “cookbook” approach to finding undershoot 

boundaries is given below.   

Step 1:  Define a limiting deceleration 
0

decel

failure

a

g

 
 
 

. 

Step 2:  Pick a value for *Z . 

Step 3:  Solve Eqs. (9.114) and (9.122) for *u  and * .  This is a point of 

maximum deceleration on the trajectory. 

Step 4:  Integrate Eqs. (9.29), (9.30), and (9.33) “backwards” until 

0

decela
f

g

 
 

 
 to find the entry conditions ,  ,e eZ Z u u   and e  .  This 

is a TPBVP, defined by solving the three differential equations subject to 

the boundary conditions 
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where *s  is an unknown value corresponding to the point of 

maximum deceleration.   

Step 5:  Solve Eqs. (9.118) and (9.119) simultaneously to find 

under underp pF Z .  (Equivalently, the initial conditions from Step 4 could be 

used to calculate a dimensional radius 
underpr .) 
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Step 6:  Select another value for *Z  and repeat Steps 2-5 until the entire 

undershoot boundary is defined. 

Step 7:  Define a new 
0

decel

failure

a

g

 
 
 

 (if desired) and repeat Steps 2-6.  

9.4.3 Entry Corridor Width 

 In Section 8.5, one definition of the entry corridor width was given as:  

under overp p pF F F    

Or, in the notation of this chapter: 

under overp p pZ Z Z    

In the case of ballistic entry, these differences can be read directly from Figure 

9-4 once an entry speed is selected.  Similar plots can be made for lifting entry.  

 As an example, consider a ballistic parabolic entry.  Figure 9-5 shows the 

line of constant entry velocity along which the entry corridor width can be 

measured.  Figure 9-6 replots the information along that line to show the 

maximum deceleration experienced as a function of pZ .  The figure also shows 

the entry corridor for a maximum deceleration of 010g  (
* 010decela g ) is given by 

0.065 0.295pZ   or 0.23pZ  .  For Earth, this represents a width of about 

10.8 km. 

 It is possible to increase the corridor width by using lift.  Negative lift 

raises the overshoot boundary radius (i.e., 
overpZ  is reduced) by enabling the 

vehicle to approach at a more shallow angle (or faster speed) and still be captured.  

This, along with the opposite effect with positive lift, is shown in Figure 9-7. 
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Figure 9-5:  Measuring the Entry Corridor Width for Parabolic Ballistic Entry 
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Figure 9-6:  Measuring the Entry Corridor Width for 
* 010decela g  
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Figure 9-7:  Overshoot Boundary for Parabolic Entry with Lift 

Likewise, positive lift can allow steeper (or faster) entries for a given maximum 

deceleration.  This lowers the undershoot boundary radius (i.e., 
underpZ  is 

increased).  Figure 9-8 shows this for a parabolic entry with 
* 010decela g  and a 

range of lift capability.  For example, a vehicle with 0.34 0.34L

D

C

C
    can 

expand its entry corridor to 0.015 15.020pZ  , or 15pZ  .  For Earth, this 

represents about 49.4 km – almost 4.5 times as large as ballistic entry alone!  
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Figure 9-8:  Undershoot Boundary for 
* 010decela g  Parabolic Entry with Lift 

9.5 Multipass Entry 

 As we’ve already shown, Eqs. (9.29) - (9.34) are valid for both entry and 

orbital trajectories.  With these, we can examine multipass entries like the one in 

Figure 9-9 by integrating a single set of equations forward from a set of initial 

conditions until impact with the planet.  There are, however, some practical 

aspects which need to be addressed before running to the computer.  Specifically, 

to handle the portions of the trajectory where 0Z  , a few changes and warnings 

will make the solution much easier to numerically find. 
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Figure 9-9:  Multipass Entry 

 As written, Eqs. (9.30), (9.33), and (9.34) have an apparent singularity at 

0Z  .  A slight rearranging of the equations will eliminate it.  These equations 

(and the other three for completeness) become:  
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2
sin cos tan
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   

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 Assuming we begin our integration from an initial point where 0Z  , a 

perfect computer could easily integrate these equations to find trajectories.   

Unfortunately, no computer is perfect and, at some point in the integration, Z  

might take on the value of exactly zero.  When 0Z   (or the computer thinks 

0Z  ), Eq. (9.127) yields 0dZ ds   and the value of Z  remains fixed at 0Z   

forever more.  (This statement assumes we are integrating “forward” in s  and 

find our value of Z  becoming “numerically” zero.)  Fortunately, there is a 

method to handle this situation.   

 As the trajectory leaves the atmosphere and Z  becomes sufficiently small, 

two-body orbital motion can be assumed.  (We can assume Z  is very small 

without assuming it to be exactly zero.)  If the vehicle returns to the atmosphere, 

the orbit is elliptical.  Figure 9-10 illustrates the situation.  Symmetry lets us 

immediately relate three of the exit conditions to three of the conditions at the 

next entry: 

2 1Z Z  

2 1u u  

2 1    
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Figure 9-10:  Keplerian Portion of the Trajectory 

During the orbit (just after moving beyond the “exit point”), these parameters are 

easily related by 

0Z   

and 

2
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u e
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 
 

where the (constant) eccentricity is found by evaluating  Eq. (9.137) at 1u  and 1 .  

The other three trajectory parameters can be found by integrating 
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cos tan
d

ds

     

forward from 1 1,  ,   and 1  once the value of 2s  is known.  (These are just Eqs. 

(9.129), (9.130), and (9.132) rewritten with 0Z  .)   

 To calculate 2s , consider the definition of s  given in Eq. (9.12):  

0

cos

t
RV

s dt
r

 


  

Between 1s  and 2s , the trajectory is simple two-body motion and, since the planet 

isn’t rotating, R IV V .  Thus, we can simplify this expression by introducing the 

(constant) angular momentum to eliminate the flight-path angle during our time of 

interest:  
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The variable of integration can be changed by using the two-body relationship 
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to replace time in favor of true anomaly:  

2

1

2 1 21

h
s s d

a e








 


   

9.140

9.141

9.142

9.143

9.144



U N I F I E D  T H E O R Y  

277 

Since the motion must be elliptical during this time,  2 21hp a e    and Eq. 

(9.144) simplifies to:  
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2 1 2 1s s d
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        

Figure 9-11 illustrates the symmetry in the orbital portion of the problem.  With 

the aid of the graphic, it is obvious 
12 2    ; therefore, we have:  

 2 1 12s s       

The exit true anomaly is found by evaluating Eq. (9.85) at the exit point 
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Figure 9-11:  True Anomaly for Exit and Reentry Points 
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where the eccentricity e  is similarly calculated from the conditions at the exit 

point by solving Eq. (9.137): 

2
1

12
1

2 1
cos

u
e u


    

When the vehicle reenters the atmosphere, 2 1 0Z Z   and the numerical 

integration of Eqs. (9.127) - (9.132) can continue from 2s  to the next atmospheric 

exit (if one exists).   

 Figure 9-12 shows a typical multipass entry as viewed in the u   plane.  

The approximate points of entry into and out of the atmosphere are marked and 

can be distinguished by the abrupt changes in the ellipse-like shape of the curve.  

In this case, the vehicle clearly enters and exits the atmosphere twice.  On the 

third entry, it is captured. 
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Figure 9-12:  Ballistic Multipass Entry on the u   Plane 
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 When the vehicle is outside the atmosphere, its trajectory is Keplerian and 

its motion in the u   plane is given Eq. (9.137).  As the vehicle passes through 

the atmosphere, the instantaneous value of the eccentricity rapidly changes and 

the path in the u   plane changes.  When it exits the atmosphere, the 

eccentricity becomes constant again and the vehicle follows a new curve given by 

Eq. (9.137) for the new value of eccentricity.  To illustrate, Figure 9-13 plots the 

eccentricity corresponding to the same multipass entry.  Notice how the 

eccentricity changes once the vehicle encounters the atmosphere; its motion is no 

longer Keplerian and eccentricity is not even approximately constant.   

 Before leaving this section, it’s a simple matter to look at the effect of lift 

on multipass entries.  As we would expect, positive lift (i.e., lift pulling the 

vehicle “up” away from the planet) increases the number of passes required to be 

“captured.”  Figure 9-14 compares the typical impact on eccentricity for a purely 
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Figure 9-13:  Eccentricity Change in Ballistic Multipass Entry      
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Figure 9-14:  Effect of Lift on Multipass Entries 

ballistic entry and one with positive lift.  For completeness, the u   plane view 

of entry with lift is shown in Figure 9-15.  The climb and dive “porpoising” 

motion caused by the lift is evident in the final portion of the entry.  As the lift 

tries to pull the vehicle up,   becomes positive (or less negative) and the vehicle 

continues to lose speed (u decreases).    Then, as it loses speed, it loses lift and 

begins to fall (or fall faster).  Falling, it builds up more lift, only to repeat the 

cycle.  Finally, gravity wins and the vehicle never generates enough lift to 

significantly alter the flight-path angle again. 

9.6 Applied Skip Entry:  NASA’s Orion Crew Exploration 
Vehicle 

 NASA's Crew Exploration Vehicle (CEV) will use a skip entry to increase 

its flexibility.  When returning from low-Earth orbit (LEO), the CEV will use a  
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Figure 9-15:  Multipass Entry with Lift on the u   Plane 

skip to extend the in-track range (if required).  When returning from the moon, a 

skip followed by a partial Keplerian orbit gives the vehicle the freedom to leave 

the moon at any time and still land at any point on the Earth.  Multiple authors 

have examined various vehicle configurations and the corresponding skip 

performance (2; 25; 34; 44; 45; 67).  Of particular interest to us,  Kaya used a form 

of Vinh and Brace’s universal equations (as given in Eqs. (9.127) - (9.132)) to 

study the “current” (as of late 2007) configuration of the Orion CEV for lunar 

return trajectories (34:29, 38-42). 

 Kaya studied planar trajectories with a fixed lift-to-drag ratio.  He 

developed software to choose the entry flight-path-angle and latitude required to 

land at any selected point on the Earth without exceeding a predetermined 

deceleration limit.  A typical trajectory is shown in Figure 9-16 with the scale of 

the atmosphere and skip greatly exaggerated for clarity.  As the figure shows, the  
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Figure 9-16:  Notional Orion CEV Skip Entry 

CEV performs an initial skip, completely exiting the atmosphere.  At the apogee 

of the ensuing orbital portion, the vehicle could perform a thrusting maneuver and 

circularize its orbit.  Assuming it does not, the CEV returns to the atmosphere 

again.  On this second entry, the lift vector could be adjusted to correct position 

errors and better “target” the landing point.  

 After solving the problem in non-dimensional universal variables, Kaya 

converted the results to physical parameters for analysis.  Typical results in 

physical parameters are shown in Figure 9-17.  Kaya found the baseline Orion 

configuration (a capsule reminiscent of Apollo) could leave the moon at any time 

and land at any point on the Earth if it employed a skip trajectory of this type 

(34:64).  Adding to the flexibility, a reasonable thrusting maneuver at the apogee  
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Figure 9-17:  Typical Orion CEV Skip Entry 

of the skip could enable the capsule to enter an Earth orbit for an extended 

number of orbits. 

9.7 A (Very) Quick Look at Non-planar Entries 

 By its definition, the analysis of the entry corridor Section 9.4 involved 

looking at planar entries.  Strictly for convenience, the multipass examples in 

Section 9.5 were computed as planar problems (even though nothing required  

them to be planar).  Kaya, to limit the scope of his study, also limited his work to 

planar entries.  The universal equations allow us to look at using lift to modify the 

impact (or landing) point of a reentry vehicle to some point not in the original 

entry plane. 

 In Figure 9-18, three trajectories are shown.  Each enters the atmosphere 

with exactly the same flight-path angle and velocity in a plane aligned with the 

equator.  The ballistic entry continues with planar motion until impact.  The two 

with lift and bank move out of the entry plane and impact the planet with cross-

track and in-track range differences.  Figure 9-19 shows these changes in ground 

tracks (and impact points) as well as flight times. 
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Figure 9-18:  Effect of Lift Vector on Three-Dimensional Trajectory  
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Figure 9-19:  Corresponding Ground Tracks and Altitude Profiles 



U N I F I E D  T H E O R Y  

285 

 The two figures demonstrate the value of using a lift vector to modify the 

entry path.  While these examples used constant lift vectors for the entire entry, 

it’s easy to see that a varying lift vector could be used to truly customize the 

trajectory.  The topic of “maneuvering entry vehicles” is worthy of at least a 

chapter by itself and will not be addressed here. 

9.8 Summary 

 In this chapter, we removed the restriction of planar entry in our analyses.  

To do this, we derived Vinh and Brace’s set of motion equations and verified they 

are valid during all non-thrusting phases of entry.  We maintained the 

“universality” of the equations so we do not need detailed knowledge of the 

vehicle mass, shape, size, etc. (We did, however, change our non-dimensional 

variables somewhat.)  These universal equations can be used for more detailed 

analyses (such as extending Kaya’s work to include out-of-plane lift).  Chapter 10 

will further generalize these equations to include variable lift and bank. 
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9.9 Problems 

Material Understanding: 

1. The expression for 
dZ

ds
 in Eq. (9.23) is for a strictly exponential atmosphere.  

Other models of planetary atmospheres still have the exponential 

characteristic  

d
dr

 


   

but   may not be a constant.  (E.g., for an isothermal model,   is 

proportional to the gravity of the planet; i.e., g  k .)  Show that a more 

general expression for 
dZ

ds
 is given by  

2

1 1
1 tan

2 2

dZ d
r Z

ds dr r

 
 

 
   

 
 

2. Show how to find Eq. (9.110):  

2

2
0

1
cos

decel L

D

Zu ra C

g C




 
   

 
 

Make use of the appropriate equations already derived in other chapters. 
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3. Prove that satisfying Eq. (9.112)  

 
2

* *
* *

*

2sin cos
2 1 sin 0rZ r

u

        

is necessary (but not sufficient) to identify the point of maximum deceleration. 

4. Show that the entry conditions are related to the hypothetical periapsis 

conditions by Eqs. (9.118) and (9.119):  

2
2

2
2 2

cos
e

e p p
e

u
u u u


     

exp 1e e
p e

p p

u u
Z Z r

u u

  

       
 

5. Using a value of 0.14  km-1, show 0.065 0.295pZ   represents a 

periapsis altitude range of about 10.8 km. 

6. The discussion on multipass entries in Section 9.5 addressed how to 

numerically integrate the universal equations across portions of the trajectory 

that pass out of the atmosphere and then return.  It did not, however, address 

how to begin the problem when the initial conditions are outside the 

atmosphere.  Discuss how you would solve for the trajectory from an initial 

point (at 0is  ) given by 0iZ  , iu , i , i , i , and i  to the atmospheric 

entry point (at es ) given by 0eZ  , eu , e , e , e , and e .  You can assume 

you have one additional piece of information, such as the initial radius ir  or 

eccentricity ie  (if required). 
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Computational Insights: 

7. Negative lift (i.e., 180    to give lift that pulls the vehicle down towards the 

planet) can be used to “hold” a vehicle in the atmosphere at speeds greater 

than the ballistic overshoot speed.  This expands the width of the entry 

corridor.  NASA’s Crew Exploration Vehicle (CEV) can generate a lift-to-

drag ratio of 0.34L

D

C

C
 .  Calculate and plot the overshoot boundary for a 

CEV with negative lift for the range 
2

1 2.2
cos

e

e

u


  .  Show that the 

overshoot boundary for parabolic entry is shifted to the left to 0.015
overpZ   

when CEV uses negative lift.  When “paired” with a ballistic undershoot 

boundary, show that the corresponding corridor width for a maximum 

deceleration of 010g  expands to about 21.3 km.    (Caution:  depending on the 

accuracy of your TPBVP solver, this answer may vary somewhat; i.e., 

0.013 0.016
overpZ   .) 
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Chapter 10   

Entry with Variable Lift 
and Bank 

 

10.1 Introduction 

 We’ve been examining situations where the lift-to-drag ratio and bank 

angle have been held constant.  Indeed, the universal equations in Chapter 9  were 

derived in a form that could be integrated just once for a given atmosphere, set of 

entry conditions, constant lift-to-drag ratio, and constant bank angle  .  Such 

solutions have been calculated and published in “Z-Tables” and graphs (7; 

18:106-277; 58:241-246).  With modern desktop computers, it’s usually quicker 

to integrate the differential equations than it is to refer to the Z-Tables, but the 

solutions are still in our handy non-dimensional variables, freeing us from the 

need to integrate for every possible vehicle configuration. 

 There are several interesting classes of entry where variable lift and bank 

can be studied without knowing too much about the design of the entry vehicle.  

(In-other-words, we can keep the results as general as possible and not require any 
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detailed knowledge of the vehicle mass, surface area, etc.)  This chapter will 

introduce the equations necessary for study and look at the control profiles a 

vehicle might use to follow several classes of entry.  It is intended only as an 

introduction to the maneuvering entry vehicle problem.      

10.2 Equations of Motion for Variable Lift and Bank 

 The non-dimensional universal equations derived in Chapter 9 allow us to 

examine situations where the lift varies as long as the drag coefficient DC  is 

constant.  For reference, these equations were 

tan
dZ

rZ
ds

    
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1 cos tan

cos 2
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Zu rdu C

ds C Z r
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 
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 
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Z rd C

ds C uZ r

  
 

  
    
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 
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where 

0

cos

t
RV

s dt
r

 


 was used as the independent variable instead of time 

(with flight-path angle constrained such that cos 0)  .  The modified Chapman 

variables 

2 2cosRV
u

gr


      

2
DC S r

Z
m




  

related the non-dimensional kinetic energy u  and altitude Z  to their physical 

counterparts.   

 The assumption of a constant drag coefficient may be a good 

approximation in some cases; however, it’s generally more accurate to model the 

increase in drag that accompanies a reentry vehicle’s increase in lift (47:240-246; 

53:236-237; 58:308-311).  The dimensional equations we derived in Chapter 3 

can certainly be used, but we will stick with non-dimensional equations and 

“universal variables” similar to u  and altitude Z  (or T  and   before them).  

Vinh, et al. derived several variations to Eqs. (10.1) - (10.6) to allow DC  (as well 

as LC ) to vary during entry (62:1617-1618; 58:308-313).  We will derive one set 

of their equations for use here.   

 When a entry vehicle develops lift, there is a corresponding increase in the 

drag.  A simple, yet fairly general, relationship between the drag DC  and lift LC  

is known as the drag polar and can be written as 

0

n
D D LC C KC   

10.7

10.8

10.9
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where 
0DC  is the zero-lift drag coefficient; K  is the induced drag parameter; and 

n  is the drag polar parameter.  In our application, 
0DC , K , and n  are constants 

and we’ve assumed the minimum drag occurs at the zero lift condition.  (A 

similar expression can be given when the minimum drag is at nonzero lift 

(68:269).  The induced drag caused by lift is represented by the term n
LKC .   

 With this relationship, the lift-to-drag ratio can be written: 

0

L L
n

D D L

C C

C C KC



 

To find the maximum ratio, LC  can be treated as the independent variable and  

 
 

0

0

2

1
0

n
D LL

n
L D D L

C KC nCd

dC C C KC

  
  

  
 

  solved to find the constant K : 

 
0

*1
D

n
L

C
K

n C



 

*LC  is the lift coefficient corresponding to the maximum lift-to-drag ratio and not 

necessarily the maximum value of LC .  (Similarly, the drag coefficient 

corresponding to the maximum lift-to-drag ratio is *DC .)  Substituting into Eq. 

(10.10) gives the corresponding maximum  

 
0

**

**

1 LL L

D D D

n CC C

C C nC

 
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which readily identifies   

0* 1D D

n
C C

n
    

 

as the drag coefficient corresponding to the maximum lift-to-drag ratio. 

 Rescaled lift and drag coefficients can be defined as:    

*L LC C   

 *D DC C f   

Notice they take on their “critical” values ( *LC  and *DC ) when * 1   .  

Because of this, these two definitions are introduced as “normalized” lift and drag 

coefficients in some formulations: 

*

L
L

L

C
C

C
    

 
*

D
D

D

C
f C

C
    

Note that there will be a maximum value max  based on the maximum lift a 

vehicle can generate.  At this point, we do not need to worry about that value but 

we should know it exists.  (A similar limit exists for maximum negative lift.)   

 Regardless of how   and  f   are introduced, comparing Eqs. (10.9), 

(10.12), (10.14), (10.15) gives  f  : 
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Using L

D

C
L

C
  as shorthand, a corresponding “normalized” lift-to-drag ratio can 

also be introduced: 

*

*

L

D

L

D

C

C L
L

LC

C

 
 
  
 
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 

 

With these definitions, we will now turn to rewriting Eqs. (10.1) - (10.6) to allow 

DC  and LC  to vary during entry. 

 The altitude variable Z  is a poor choice since it is dependent on a (now) 

non-constant DC .  Instead, we can replace it with a similarly defined variable W :      

 
* *

2
LC S Lr

W Z
m f


 

   

With this substitution, the four equations of motion that change become:  
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These four equations, together with Eqs. (10.3) and (10.4), can be numerically 

integrated for variable lift problems with relative ease. 

 Vinh, et al. showed the equations can be simplified somewhat by 

introducing another variable change:   

2

2cos

Ru V
v

gr
   

v  is related to the kinetic energy and we will refer to it as a kinetic energy 

parameter.  With this change, the full set of six differential equations of motion 

becomes:  

tan
dW
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ds
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2
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These six equations are “universal” in two respects.  First, they are valid during 

entry as well as in orbit (since they are just a form those in Chapter 9).  Second, 

they are “almost” free of vehicle characteristics.  The lift and drag profiles are 

required to integrate, but not detailed knowledge of the mass, surface area, etc.  

These are the equations we will use to examine entry with variable lift. 

10.3 Parabolic Drag Polar 

 The drag polar in Eq. (10.9) has been left in its general form to this point.  

In particular, we have not assigned a value to the exponent n .  Regan and 

Anandakrishnan show it’s in the approximate range 1.9958 2.5n   for conical 

shapes at hypersonic speeds (47:242).  Vinh, et al. show 1.5n   for thin-winged 

hypersonic vehicles (58:309).  For simplicity (and because it represents many 

useful situations), we will assume the drag polar is parabolic with 2n   for our 

purposes. 

 For a parabolic drag polar, the induced drag parameter becomes simply 

0

2
*

D

L

C
K

C
  

and the drag polar (Eq. (10.9)) reduces to:  

0

21D DC C      

Equation (10.16) gives another expression for DC , where  f   is now given by: 

 
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Comparing these two expressions for DC  reveals:  

0* 2D DC C  

This tells us drag is evenly split between the zero-lift drag and induced drag when 

the vehicle is at the maximum lift-to-drag ratio *L .  As a check, the induced drag 

at this point ( * 1   ) is given by 

   0

0

22
* *2*

*

D
L L D

L

C
KC C C

C


 
  
 

 

 which is exactly half of the total drag.   

 Equation (10.10) can be evaluated using these expressions for a parabolic 

drag polar.  After simplifying, the lift-to-drag ratio is: 

 
*

* 22
*

2
2

11
L L

D D

C C
L

C C

 


      
 

Figure 10-1 summarizes the key aspects of this type of drag polar.  For a 

symmetrical vehicle capable of negative lift, Figure 10-2 shows the obvious 

extension to the polar. 
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Figure 10-1:  Parabolic Drag Polar Relationships 
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Figure 10-2:  Drag Polar Expanded to Include Negative Lift 
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10.4 Planar Entry 

 For planar motion about a non-rotating planet, we can define the entry 

plane to be equatorial without loss of generality.  For equatorial entry with 

0   , Eqs. (10.30) - (10.32) can be solved to give 0    and d ds   

throughout the entry.  (We can arbitrarily assume   and s  are zero at the same 

time and let s   if we so desire.)  Equations (10.27) - (10.29) are decoupled and 

describe the motion: 

tan
dW

rW
d

 


   

 
*

2
(2 ) tan

cos

Wvf rdv
v

d L

 


 
     

1
1

cos

W rd

d v

 
 

    
 

 

 The values spanned by W , v , and   are the “state space” of solutions to 

Eqs. (10.39) - (10.41).  Following the lead of Vinh, et al., we can visualize the 

state space in a cylindrical coordinate system, with 1h W  for the “height,” v  

for the “radius,” and   for the angular measurement (58:313-314).  This is shown 

in Figure 10-3.   

 If the solution to Eqs. (10.39) - (10.41) can be related by a yet-to-be-

determined relationship F  between W , v , and   such that 

 , , 0W v  F  

10.39

10.40
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10.42
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1
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v


1
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

 

Figure 10-3:  Cylindrical Representation of the  , ,W v   State Space 

is true at any  , then the aggregate of all of the solutions to Eq. (10.42) forms a 

two-dimensional surface in state space.   (We cannot, however, assume F  is an 

easy or nice, closed-form relationship!)  If a second (different) constraint must 

also be satisfied, the solution (if it exists) is on the intersection of two surfaces.  A 

few of these relationships (and their two-dimensional surfaces) are relatively easy 

to examine. 

10.4.1 Entry at a Constant Flight-Path Angle 

 If the lift is varied to maintain a constant flight-path angle e , then a 

relationship between the state variables in the form of Eq. (10.42) is simply: 

 , , 0eW v       10.43
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The entire entry trajectory is contained in the  1 , vW  plane as shown in Figure 

10-4. The “shape” shown within the plane is notional, but the plane’s orientation 

is exact since it is set at the fixed angle e .  As a result, the projection of the 

entire entry onto the  ,v   plane is simply a line along v .  The actual shape in the 

 1 , vW  plane, as well as how it maps from cylindrical coordinates to “physical” 

space, can be established by evaluating Eqs. (10.39) - (10.41) in more detail.   

 The left-hand-side of Eq. (10.41) becomes zero and can be solved for the 

lift profile required to maintain e  during entry:  

cos 1e v

Wvr




   
 

 

At any particular point in the entry, the values of  W  and v  “set” the required 

value of lift   required to maintain e .  This “lift profile,” given by Eq. (10.44), 

would continue throughout the entry until a physical limit such as max   or  

 

1

W

v e 

1

W

v e 

1

W

v e 

 

Figure 10-4:  Entry at Constant Flight-Path Angle 
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min   is reached.  At that point, the vehicle can no longer maintain the same 

flight-path angle and the dynamics would change.    

 Equation (10.39) is separable and can be easily integrated to give the 

altitude W  at any point during the entry 

   exp tane e eW W W r           

where eW  is the initial altitude.  This is the equation for a logarithmic spiral.  

Simply put, in the physical entry plane of the vehicle, the non-dimensional 

altitude falls exponentially with “range”  .  

 Equation (10.40) can be divided by (10.39) to relate W  and v .  Assuming 

a parabolic drag polar and incorporating Eq. (10.44), the relationship becomes:   

2

*

cos 1 2
1

sin

e

e

dv v v v

dW Wvr W rL r


  

       
  

 

Rather than running screaming to a computer to solve this rather hideous 

differential equation, we can attempt to simplify it.  For most atmospheres of 

interest, 
1

1
W r

  once the vehicle is sufficiently deep into the atmosphere.  

Keeping only the largest term on the right-hand-side leaves us with a rather 

simple equation: 

* sin e

dv v

dW L r 
  

This is easily integrated to give 

*

exp
sin

e

e e

W Wv

v L r 

  
 
 
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where the e  subscript again denotes entry conditions.  This relationship gives the 

shape of the trajectory in the  1 , vW  plane shown in Figure 10-4.  Substituting 

for W  using Eq. (10.45), gives us an expression for v  as a function of  : 

 
  

*

exp tan 1
exp

sin

e e e

e

e

W r
v v v

L r

   


 

          
 

 

Here, we see the non-dimensional kinetic energy falls off as an exponential to an 

exponential as the range   increases. 

 Alternatively, we could approach finding  v   directly from Eq. (10.40).  

Using Eqs. (10.44) and (10.45) and assuming a parabolic drag polar, we get: 

       
2

1
2 tan 0e

vdv
f v g v

d v
  




      

In this equation,  

   
*

exp tan
cos

e
e e

e

W r
f r

L


    



 
      

 
 

and  

   
*

cos
exp tane

e e

e

g r
W L r

    


     

are used as shorthand for functions of   only.  Equation (10.50) could be 

integrated (maybe even analytically with a lot of pain and suffering) to find v  as a 

function of   (i.e.,  v  ).  For our purposes, we will simply assume the solution 

 v   has been found.  (It can be shown numerically that Eq. (10.49) is a very 

good approximation for realistic entries so it can be used as the solution.) 

10.49

10.50
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 As a final note, Eq. (10.43) is not unique in describing the relationship 

between W , v , and  .  Equation (10.48) can also be arranged to give:  

 
*

exp 0 , ,
sin

e

e e

W Wv
W v

v L r


 

    
 
 

  

The single constraint ( constant  ) resulted in the  , ,W v   defining motion 

within the  1 , vW  plane.  While not quite as obvious, the totality of solutions 

satisfying Eq. (10.53) also lie within the  1 , vW  plane.   

10.4.2 Entry at a Constant Sink Rate 

 The sink rate of an entry vehicle is the vertical component of its velocity: 

sinR R
sV V   

Putting this into our current dimensionless variables, we can write 

2
2sin

R
sV

v
gr

   

For all of the planetary atmospheres of interest, constantgr   during the entry  

(because of the “thin” atmosphere).  Thus, for a constant sink rate, Eq. (10.55) 

becomes  

2
1sinv k   

where 1k  is simply a new constant.  We can then write 

  2
1, , sin 0W v v k   F  
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as a relationship between the states.  This constraint will limit the motion in a 

two-dimensional “sheet.”  (As we’ll see, it is not a plane in cylindrical 

coordinates.) 

 The projection of the entry path onto the  ,v   plane is shown in Figure 

10-5 as the curve labeled 2
1sinv k  .  As the kinetic energy drops (and   

becomes more negative), the projection approaches the circle with a radius 1k .  

For a large sink rate, the radius is large.  For a small sink rate, the radius is small.   

  Like in the last section, we can solve for the lift profile for this type of 

entry.  Differentiating Eq. (10.56) gives us:  

2sin 2 sin cos 0
dv d

v
d d

  
 

   
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2
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k 
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2
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1
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2
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Figure 10-5:  Entry at Constant Sink Rate as Seen in  ,v   Plane 
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Equations (10.40) and (10.41) can be used to replace the derivatives.  After 

assuming a parabolic drag polar and simplifying, we are left with a quadratic 

equation to solve for   anywhere along the entry: 

   
2

2 *
*

2 sin
sin 2 cos sin 1 1 0

2

L
L v

Wv r

    


  
        

  
 

This has both positive and negative roots (giving positive and negative lift, 

respectively) when: 

2
*2 sin

4sin sin 1 1 0
2

L
v

Wv r

 


           
    

   

(The choice of the root may depend on the capabilities of the vehicle and will 

impacts other aspects of the entry, such as the deceleration experienced.)  

Assuming 0   throughout entry, this can be rearranged to give: 

 2 2
* 1

1

2sin 2 sin

sin

L k
W

k r

 

 

      

When this condition on altitude is reversed, only negative lift is possible.  At 

some point in the entry, a “control limit” may be reached.  A control limit occurs 

when   falls outside its allowed bounds ( min max    ) or no longer has any 

real values.  The roots become imaginary when: 

2
2 2 *
*

2 sin
4 cos 4sin sin 1 1 0

2

L
L v

Wv r

  


           
    

      

 Vinh, et al. arrived at an expression similar to Eq. (5.59) after assuming a 

flat-planet entry.  We can match their result by making the same flat-planet 
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assumption.  Start by letting the dimensionless horizontal distance, altitude, and 

kinetic energy be defined by: 

x r   

r
z

W


  

2RV
rv

g

 v  

Substituting these definitions into Eq. (10.59) and simplifying gives:  

   
2

2 *
*

2 sin
sin 2 cos sin 1 1 0

2

L z
L

r

    


  
        

  

v
v

 

In this scale rv , so we can simplify the result to just:  

   2 *
*

2
sin 2 cos sin 0

L z
L        

v
 

Or, letting 2k  be a positive constant such that 2
2 1k rk , Eq. (10.67) becomes:  

   
2

2 *
* 2

2

2 sin
sin 2 cos sin 0

L z
L

k

          

Physically, 2k  is the absolute value of the non-dimensional sink rate.  Equation 

(10.68) is the expression derived by Vinh, et al. for a constant sink rate entry over 

a flat planet (58:337; 62:1620-1621).  With Eq. (10.68), two solutions are possible 

when:  

2
2

*2 sin

k
z

L 


    
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(One solution is for positive lift and the other is for negative lift.)  When this 

condition on altitude is reversed, negative lift is the only possible solution.  For 

the flat-planet approximation,   becomes imaginary when:  

 2 2 2 2
2 *

3
*

cos sin

2 sin

k L
z

L

 



 
 
 
 

 

(Again, we have assumed 0   in the derivation of Eqs. (10.69) and (10.70).) 

 Unlike entries with a constant flight-path angle, the equations of motion 

for these entries are not readily solved analytically.  Finding W , v , and   as 

functions of   (or each other) is probably best left to numerical methods and 

won’t be presented here.  For the interested reader, Vinh, et al. provide a detailed 

look at the relationship between   and   (58:337-343; 62:1620-1622).  Even 

without finding W , v , and  , we can say with certainty that the motion is 

confined to a “sheet” whose projection on the  ,v   plane is the curve shown in 

Figure 10-5 (as long as the sink rate remains constant).   

10.4.3 Entry at a Constant Velocity  

 If the lift is varied to maintain a constant velocity R
eV , then 

2

constant
R

e
e

V
v v

gr
    

 for a “thin” atmosphere.   Therefore, a relationship between the state variables 

can be written as: 

 , , 0eW v v v     
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In cylindrical state space, the entire entry trajectory is contained on a cylinder of 

radius ev  centered on (and oriented along) the 1
W  axis as shown in Figure 10-6.  

(Only the valid half of the cylinder, for 90 90    , is shown.)  The motion on 

the surface of the cylinder cannot be easily found analytically, so it won’t be 

presented here.  However, finding the lift profile is straightforward. 

 Substituting ev v  into the differential equation for v  (Eq. (10.40)) and 

assuming a parabolic drag polar gives us the required lift profile to maintain a 

constant velocity:  

  * sin
2 1e

e

L
v

Wv r




 
    
 
 
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Figure 10-6:  Entry at Constant Velocity 
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The choice of the sign, once again, affects other aspects of the entry such as the 

deceleration.  Once 

  * sin
2 1 0e

e

L
v

Wv r





 
   
 
 

 

the roots are imaginary and the velocity can no longer be held at the same value.  

Similarly, when   falls outside the allowed boundaries min max    , the 

velocity must change.   

10.4.4 Entry at a Constant Dynamic Pressure 

 The aerodynamic forces acting on a vehicle as it enters the atmosphere is 

proportional to the dynamic pressure 21

2
RV  (Ref. 22).   In non-dimensional 

terms, we can write the dynamic pressure as:  

2

*

1

2
R

L

V
rWv

mg

SC




 
 
 

 

For an entry with constant dynamic pressure and a thin atmosphere (so that 

g  constant), Eq. (10.75) can be written simply as  

3Wv k    

where 3k  is a constant.  With a simple rearrangement, we can write this as  

  3, , 0
1
v

W v k

W

   
 
 
 

  
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In our cylindrical state-space, this is the equation for a circular cone just touching 

the origin and centered on the 1 W  axis.  This is shown in Figure 10-7.  (Only 

half of the cone is shown since 90 90    .) 

 The motion on the cone surface (e.g.,  W   and  v  ) is too complicated 

to bother finding analytically, but the lift profile can be found by differentiating 

Eq. (10.76)  

3
2

kdv dW

d W d 


  
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Figure 10-7:  Entry at Constant Dynamic Pressure 
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and substituting Eqs. (10.39) and (10.40) for the derivatives.  If a parabolic drag 

polar is assumed, the profile is: 

*

3

sin 2
1 1

L W
r

kW r

 


 
     

 
 

As long as the value for   remains real and min max    , a vehicle entering 

with this lift profile will maintain a constant dynamic pressure.   

10.4.5 Entry at a Constant Heat Flux 

 In Chapter 7, we saw that the average heat flux and stagnation heat flux 

were proportional to 3RV  and 
1 32 RV , respectively.  When looking at an entry 

with a constant heat flux, we can simply write  

3
4

a RV k   

to cover both cases.  For average (wall) heat flux 1a   and for stagnation heat 

flux  1
2a  .  Rewriting in terms of the current state variables, this relationship 

becomes:  

 2 32 3
5

aaW v r k    

For a thin atmosphere constantr  , our constraint equation can be written:  

 
3

62
, , 0

1
a

v
W v k

W

   
 
 
 

  

10.79

10.80

10.81

10.82
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For 1a   (constant average heat flux), Eq. (10.82) is the equation for the surface 

of a “semicubic paraboloid,” created by rotating a semicubic equation about the 

1 W  axis.  For 1
2a   (constant stagnation heat flux), the surface is that of a 

“cubic paraboloid,” created by rotating a cubic equation about the 1 W  axis.  The  

intersection of each of these paraboloids with the  1 , vW  plane (for the same 

value of 6k ) is shown in Figure 10-8.  A three-dimensional rendering of both 

constraint surfaces is shown in Figure 10-9.   

 Using a process similar to how we found the lift profile for entry with a 

constant dynamic pressure, Eq. (10.82) can be differentiated to give:  

2 6
2 1

2
3

a

akdv dW
v

d W d 


  

1

W

v

1

W

v  

Figure 10-8:  Semicubic and Cubic Equations for Constant Heat Flux as Seen 

in the  1 , vW  Plane 

10.83
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1

W

1

W

 

Figure 10-9:  Entry at Constant Heat Flux 

Equations (10.39) and (10.40) can be used to replace the derivatives and a 

parabolic drag polar assumed.  Once done, a solution for  ,W   or  ,v   can 

be obtained with minimal effort.  The solution is left as an exercise for the reader 

as is the solution to the motion on the paraboloids. 

10.4.6 Other Planar Entries 

     The five planar entries already discussed are just a few of the interesting 

planar trajectories.  They were singled out because various aspects (like   or the 

“plane of motion”) can be found analytically with relative ease.  Each had 

relatively simple (and constant) constraints (e.g., constant flight-path angle or 

constant sink rate).  It is possible, however, for constraints to change during an 
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entry.  We have already seen two situations that might force a change:  reaching a 

limit on the allowable range of   or failing to find a real solution for  .  Another 

situation is a planned change in one or more constraint. 

 Certain entry vehicles, including the US and the (then) Soviet space 

shuttles, have multiple entry “legs.”  The vehicles switch between different 

constraints on the motion in discrete “segments” (perhaps triggered by altitude or 

speed).  For example, early in the entry the control system may maintain the 

maximum drag (subject to heating and deceleration limits) in order to slow the 

vehicle while high in the atmosphere.  Later, the control might shift to 

maintaining a fixed heat flux. Finally, when the vehicle is low enough, a constant 

sink rate might be commanded.  To study these types of vehicles, each leg can be 

investigated independently and sequentially, beginning at entry.  

 If a vehicle’s entry is designed as an “optimal” trajectory (e.g., maximum 

range or minimum total heating), the control can become even more complex.  A 

full treatment and solution requires the application of modern optimal control 

theory.  Optimal control is beyond the scope of this text and won’t be covered.  

References 9 and 10, as well as many other books, can provide a good 

introduction to the theory.  Some examples of optimal entry trajectories, while not 

necessarily planar, are discussed in References 11, 13, 33, 50, 54, 55, 60, and 61. 

  

10.5 Non-Planar Entry 

 For entry with lift and a non-zero bank angle, all six differential equations 

are required.  After assuming a parabolic drag profile, these become:  

tan
dW

rW
ds

    10.84
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 2

*

1
(2 ) tan

cos

Wv rdv
v

ds L

 





     

1
cos 1

cos

W rd

ds v

  


    
 

 

cos

cos

d

ds

 


  

sin
d

ds

   

2
sin cos tan

cos

W rd

ds

    


   

In general, solving these equations will require numerical methods.  In three-

dimensional motion, both lift   and bank   can be adjusted to meet restrictions 

(constraints) on the trajectory.  (In control theory,   and   would be called the 

“control variables.”)  The next few sections introduce a few examples of non-

planar motion and the controls used to meet their requirements. 

10.5.1 Equilibrium Glide 

 In Section 5.2, the concept of a quasi-equilibrium glide was introduced, 

albeit for planar entries.  In that section, we used the small angle approximation to 

replace:    

sin    

10.85

10.86

10.87

10.88

10.89

10.90
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cos 1 constant    

If we take this one step further and restrict the flight-path angle to a small, nearly 

constant value, we have something even closer to equilibrium glide and Eq. 

(10.90) becomes:   

sin g    

where g  is the “gliding” flight-path angle (which may or may not be equal to 

the entry flight-path angle).   

 With this assumption, four of the differential equations simplify:  

g

dW
rW

ds
    

 2

*

1
(2 ) g

Wv rdv
v

ds L

 



     

1
cos 1 0

d
W r

ds v

         
 

 

sin cos tan
d

W r
ds

        

Equation (10.93) can be integrated if the flight-path angle changes slowly enough 

to be considered constant:  

 0 0exp gW W r s s       

The “0” subscript denotes the conditions at the beginning of the (near) 

equilibrium glide.  The flight-path angle equation (Eq. (10.95)) reduces to a 

10.91

10.92

10.93

10.94

10.95

10.96

10.97



 

318 

simple algebraic equation that can be solved: 

 1
cos

v

Wv r
 




  

Or, substituting the solution for  W s  into this, we find: 

   0

0

1
cos exp g

v
r s s

W v r
   




     

The left-hand-side is the radial (local vertical) component of the lift force.  These 

two equations show the radial lift force balances the combined force of gravity 

and centrifugal force.  (If it isn’t clear why this is true, look back at Eq. (5.2) and 

Figure 5-1.)   

 The four remaining equations of motion are coupled and not easily solved.  

Eliminating W  in favor of the control variables using Eq. (10.98), they can be 

written: 

   2

*

1 1
(2 )

cos g

vdv
v

ds L




 

 
     

cos

cos

d

ds

 


  

sin
d

ds

   

 1
tan cos tan

vd

ds v

   


   

10.98

10.99

10.100

10.101

10.102

10.103
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In the region of interest, Eq. (10.100) is dominated by the first term on the right 

(because gW r  ), so it can be replaced with 

   2

*

1 1

cos

vdv

ds L



 

 
   

to yield a set of equations free from the flight-path angle.  (This equation is 

“exact” when 0g  .)  This set of equations can be numerically integrated to 

produce the entry trajectory.   

 For a “nearly true” equilibrium glide 0g   and the equation for W  (Eq. 

(10.93) fails to provide a solution for the changing altitude.  Instead, it is found 

with Eq. (10.98).  Equations (10.101) - (10.104) must be integrated to obtain the 

remaining states of the solution (  v s ,  s ,  s  ,  s ) to completely solve 

for the trajectory of an equilibrium glide.    

10.5.2 Maximum Cross Range at a Fixed Bank Angle 

(Assumed Equilibrium Glide) 

 One of the advantages of lifting entry vehicles is their ability to shift the 

landing/impact point off of their initial entry plane.  This “shift” gives the vehicles 

a cross range capability.  Vinh and Gell, in separate publications, built on the 

work of Eggers to find a “sub-optimum” control law to maximize the cross range 

of a vehicle entering the atmosphere in an equilibrium glide at near circular speed 

(23:13.51-13.53; 27:28-37; 57:346-363; 58:347-356).  Since their solution allows 

some analytical insight without delving into modern control theory, it is a good 

example to present here.    

10.104
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 For entry about a non-rotating, spherical planet, we can define the entry 

point to be  

0e   

0e   

0e   

without loss of generality.  For equilibrium glide at near circular 

velocity, we can write:   

0e    

1ev   

Lift and bank are to be selected such that they will maximize the cross range 

(measured in terms of  ).   

 To maximum distance, we’ll assume the velocity is reduced all the way to 

zero.  It is reasonable to assume that the “longer” the distance (measured in terms 

of s ) it takes for the velocity to be reduced to zero, the more distance can be 

covered by the vehicle.  (This is one of the assumptions that make this a sub-

optimal solution.)  Minimizing the change in velocity means 
dv

ds
 should have the 

smallest magnitude possible; therefore, the right-hand-side of Eq. (10.104) should 

minimized.  For a given bank angle and speed,  

1   

minimizes 
dv

ds
.  In-other-words, the optimal (or at least “nearly optimal”) glide 

is at the maximum lift-to-drag ratio.  The bank angle, however, must be varied in 

some optimal manner.   

10.105

10.106

10.107

10.108

10.109

10.110
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 In order to obtain an analytic solution, the problem must be simplified a 

little further.  First, we can look at the situation where the bank angle is held 

constant.  This does not strictly limit the application to a vehicle that can only 

hold a constant bank angle.  Vinh suggests we can assume there is an average 

value   that provides comparable performance to the varying value (58:347).  

Regardless of the reason, we will assume the bank angle is a yet-to-be-determined 

constant  .  Second, we can assume changes to the heading   and latitude   are 

small and:  

sin   

cos 1   

sin   

cos 1   

 With these simplifications, the equations of motion become:  

 
*

2 1

cos

vdv

ds L 


   

1
d

ds


  

d

ds

   

 1
tan

vd

ds v

  


   

10.111

10.112

10.113

10.114

10.115

10.116

10.117

10.118
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 The equation for velocity is separable and easily integrated if the entry 

speed is not exactly circular ( 1ev  ):  

   
*

2
1 1 exp

cos
e

e

s s
v v

L 
 

    
 

 

Equations (10.117) can be differentiated with respect to s  and combined with Eq. 

(10.118) to form a single second-order differential equation:  

 2

2

1
tan

vd

ds v

  


   

For simplicity, Equation (10.119) has not been used to eliminate v  in favor of  s  

yet.  The complete solution to this differential equation involves first finding the 

homogeneous solution and then the particular solution. 

 The homogeneous solution to this differential equation is simple 

     1 2cos sinh s c s c s    

where 1c  and 2c  are constants that can be evaluated using initial conditions once 

the entire solution is known.  The particular solution is more difficult to find, but 

is manageable with a few modifications.  Let  

 
*

*

1

2
1 exp

cos

2
exp

cos

e

e

v

s
v

L

s

L








 

 
   

 
 

  
 

  

be a new independent variable.  (Note that 0es   has been arbitrarily assumed.)   

10.119

10.120

10.121

10.122
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With this change, the relationships between the differential operators become:  

   * cos

2

d dL

d ds


 

   
 

 

     2 22 2
*

2 2 2

cos1

4

d d dL

d d ds


   

       
   

 

Using these to transform Eq. (10.120) gives 

 2 22
*2 *

2

sin 2cos

2 8 1

LLd d

d d

    
  

                         
 

where the trigonometry identity  

 sin 2 2 cos sin    

was used to simplify the right-hand-side slightly.  By its definition, 1   for all 

but the very last instant of the entry, so the right-hand-side can be expanded in a 

binomial series:   

 2 22
*2 *

2
1

sin 2cos

2 8
n

n

LLd d

d d

    
 





              
      

  

A particular solution can be built by assuming a power series of the form: 

 
1

n
p n

n

a  




    

10.123

10.124

10.125

10.126

10.127

10.128
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Substituting this into Eq. (10.127) and equating like powers of  , gives the 

coefficients of the power series:  

 2
*

2 2 2
*

sin 2

8 2 cosn

L
a

n L







  

Converting the homogeneous solution to a function of   and combining with the  

other pieces of the total solution for  , we get:  

 

 

* *
1 2

2
*

2 2 2
1 *

cos cos
cos ln sin ln

2 2

sin 2
           

2 4 cos

e e

n

n

L L
c c

L

n L

   
 

 






                   
         

 
    



 

 At this point, we can use the initial conditions 0e   and 0e   to 

evaluate 1c  and 2c .  The latter condition requires a slight amount of work.  In 

terms of  , Eq. (10.117) becomes  

* cos

2

Ld

d

 
 

   
 

 

telling us  0
e

d

d  


 

 .  With these boundary conditions, we can easily solve for 

1c  and 2c : 

 2
*

1 2 2 2
1 *

sin 2

2 4 cos

n
e

n

L
c

n L

 






 
     

  
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1

2 * 2 2 2
1 *

2 sin
4 cos

n
e

n

n
c L

n L








 
  

(Once again, the identity in Eq. (10.126) was used.)  Finally, the solution for   

can be written: 

   

 

2
* *

2 2 2
1 *

1
*

* 2 2 2
1 *

2
*

2 2 2
1 *

sin 2 cos
cos ln

2 4 cos 2

cos
2 sin sin ln

4 cos 2

sin 2

2 4 cos

n
e

n e

n
e

n e

n

n

L L

n L

n L
L

n L

L

n L

    
 

  
 

 














                          

                  

 
    







 

(The solution for   could found by substituting this into Eq. (10.131) if desired.)   

 For an equatorial entry, maximizing the change in latitude   equates to 

maximizing the cross range.  We need to maximize this “simplified” solution with 

respect to   to find the optimal bank angle.  The oscillatory terms are small when 

the entry is near circular speed ( 1e   when 1ev  ) so they can be ignored.  

After evaluating at the end of the flight ( 1f   when 0fv  ), we are left with:  

   2
*

2 2 2
1 *

sin 2 1

2 4 cosf
n

L

n L


 







 
    

  

The initial temptation might be to take the first few terms of this series and use the 

resulting approximation to maximize  .  Given enough effort, that tactic can be 

“forced” to work, but there is a more elegant approach.   

10.133

10.134

10.135
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 A fraction of the form 
1

a b
 can be written as:  

 
1 1 b

a b a a a b
 

 
 

Applying this identity to the summation in Eq. (10.135), enables us to write:  

 

 

2 2
*

2 2 2 2 2 2 2 2
1 1* *

2 2
*

2 2 2 2 2
1 1 *

cos1 1

4 cos 4 4 4 cos

cos1 1

4 4 4 cos

n n

n n

L

n L n n n L

L

n n n L


 




 

 

 

 

 
  

   

 


 

 

 

A quick search of a math handbook reveals 

2

2
1

1

6n n





  

which, in turn, enables us to write Eq. (10.135) as:  

   
 

2 2 22
* *

2 2 2 2
1 *

sin 2 cos

2 24 4 4 cos
f

n

L L

n n L

  






  
   

    
  

If the maximum lift-to-drag ratio *L  is small, the summation can be ignored.  

Without the summation, we are left with Eggers’ formula for cross range 

(23:13.53; 57:356; 58:351):  

   
2 2
* sin 2
48f

L     

10.136

10.137
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From this equation, we can deduce that a bank angle of about * 45    maximizes 

the cross range.  (Note, however, Vinh, et al. show that Eq. (10.140) 

overestimates the actual value of   f   when compared to the value found 

numerically integrating Eqs. (10.101) - (10.104) with 45    (58:352).) 

 Gell found a relatively “inspired” way to analytically maximize Eq. 

(10.139).  Backing up to the previous form of the equation in Eq. (10.135) and 

“undoing” the trigonometric identity, he started with:   

   2
* 2 2 2

1 *

1
sin cos

4 cosf
n

L
n L

   







  

With a little rewriting, this becomes 

  *
2 2
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*
2 2

1
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sin 1 1
2

4

sin 1 1
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f
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L x

n x

L x
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L x

x n x x

 

















     

               

             







 

where * cos

2

L
x


  has been introduced for simplicity.  The term in square 

brackets is the series expansion for a hyperbolic cotangent:  

 2 2
1

1
2 coth

n

x
x

x n x
 





 
  
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(Recognizing this fact is what I call “inspired” on Gell’s part!)  With the 

substitution, the expression for  f   becomes: 

  * *sin cos tan
coth

4 2 2f

L L             
   

 

This expression can be maximized by taking the derivative (with respect to  ) 

and setting it equal to zero to find the optimum bank angle * .  This  yields 

 

2 2 2
2* * * * * * * *

2
*

cos cos sin cos
coth 1 coth

4 2 8 2

1
                                                                                1 tan 0

2

L L L L       



                       
    
 

 

where we can restrict ourselves to *0 2
   to avoid any quadrant 

ambiguities.  (The problem is symmetrical, so a negative value of *  would 

simply result getting the corresponding negative value of   f  .)  Equation 

(10.145) must be solved numerically, but it is straight-forward.  Table 10-1 gives 

a few discrete results. 

Table 10-1:  Optimum Constant Bank Angles to Maximize Cross Range 

Maximum Lift-
to-Drag ratio,  

Optimum Bank 
Angle,  (radians)

Optimum Bank 
Angle,  (degrees)  

0.5  0.7953 45.57
1.0  0.8212 47.05
1.5  0.8553 49.00
2.0  0.8910 51.05
2.5  0.9249 52.99
3.0  0.9556 54.75
3.5  0.9830 56.32
4.0  1.0071 57.70

10.144

10.145
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 To compare the improvement in cross range using Gell’s optimum *  

from Eq. (10.145) and Egger’s 45   , we can numerically integrate Eqs. 

(10.101) - (10.104) using both solutions for  .  Note, however, that some care 

must be used to insure the integration “debanks” the vehicle to 0    when the 

heading angle   reaches 90  .  This eliminates “back-tracking” and ensures the 

vehicle continues to maximize the cross range.  Figure 10-10 notionally illustrates 

the difference a debank maneuver makes in the final latitude. 

 For comparison purposes, a near circular equatorial entry into Earth’s 

atmosphere was simulated by integrating Eqs. (10.101) - (10.104) using the initial 

conditions 0.99ev  , 0e  , 0e  , and 0e  .  The equations were integrated 

forward until 0.001fv  .  Solutions using Gell’s *  and Egger’s 45    are 

shown in Figure 10-11.  The figure shows the optimum (constant) bank angle is 

not 45  for all *L .   Above about * 2L  , the angles computed with Eq. (10.145) 

provide a greater cross range.  For * 4L  , the cross range is effectively the entire 

planet. 

 
Figure 10-10:  “Debanking” to Maximize Cross Range 
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Figure 10-11:  Comparison Cross Range using Egger’s and Gell’s Solutions for 
Constant Bank Angle 

10.5.3 Maximum Cross Range with a Variable Bank Angle 

(Assumed Equilibrium Glide) 

 To this point, we’ve elected to search for a constant bank angle to 

maximize the cross range.  This is a suboptimal solution; however, the actual 

optimal control for this scenario is to begin with a large bank and decrease it to 

zero as 90     (13:77-81; 27:38; 57:346-351; 58:351).  Gell suggests using  

1
0

cos
tan

tan

 


  
  

 
 

since it is a function with the desired behavior.  0  is a scaling factor selected to 

maximize f .  In his dissertation, he empirically found  

*
0

1
exp

2 5

L    
 
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for *0 3.5L   (27:37-39).  A typical control profile using “Gell’s equation” 

*
151 cos

tan
2 tan

L

e



  
  

 
 

for continuous control during a near circular equatorial entry is shown in Figure 

10-12.  (For reference, * 2.0L   was used to create the figure.)  The resulting 

cross ranges for different values of  *L  are shown in Figure 10-13. 

 Also shown in Figure 10-13 are the results using the “real” optimal control 

found by using modern control theory.  Chern and Vinh applied that theory to 

Eqs. (10.101) - (10.104) and found the bank angle profile given by 

 
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Figure 10-12:  Typical Control Profile and Corresponding Heading Angle 
using Gell’s Equation, Eq. (10.148) 

10.148

10.149
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Figure 10-13:  Comparison of Cross Range for Various Bank Angle Solutions 

maximizes f  (13:77-81; 57:346-351; 58:351).  The subscript “f” denotes final 

conditions.  To use this solution, the final longitude f  must be known at the 

beginning of the maneuver, so its application is more difficult than simply using 

Gell’s equation.  But, as Figure 10-13 demonstrates, the solution from modern 

control theory gives marginally better cross range for * 3.0L  .  A typical bank 

profile found using Eq. (10.149) (and * 2.0L  ) is shown in Figure 10-14.  Notice 

its similarity to the one shown in Figure 10-12.  (Both of the solutions shown in 

Figure 10-13 and Figure 10-14 assumed allowable maximum bank angle of 

max 85   .)    
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Figure 10-14:  Typical Control Profile and Corresponding Heading Angle 
using Modern Control Solution for   

10.5.4 Maximum Cross Range with a Variable Bank Angle 

(Shallow Entry) 

 All of the optimal bank angle solutions in the previous two sections were 

found by using equilibrium glide assumptions and then integrating Eqs. (10.101) - 

(10.104) to find the cross range.  It’s instructive to look back and use these 

solutions in the full system of equations (Eqs. (10.84)-(10.89)) in the hope that 

we’ve found “near optimal” solutions for the “full dynamics” case.  If we wanted 

to delve into modern control theory, we could actually find the “true” optimal 

control profile for non-equilibrium flight and then compare the answers.  We 

aren’t that industrious, so we’ll settle for showing that shallow entries remain 

“close enough” to equilibrium glide for our bank angle profiles to be “close” to 

optimal.   We’ll use results found with Eq. (10.149) convince ourselves.   
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 Using the initial conditions 0.0005eW  , 0.99ev  , 4e    , 

0e e e     , a maximum lift-to-drag ratio of * 2L  , a maximum bank of 

max 85   , and an Earth-like atmosphere with 900r  , Eqs. (10.84)-(10.89) 

were integrated forward until 0.001fv   to compare with the previous 

equilibrium glide solutions.  Figure 10-15 plots the control history (found with 

Eq. (10.149)) and corresponding heading angles for this example as a function of 

longitude.  This plot is analogous to Figure 10-14 except it reflects the use of “full 

dynamics” for this shallow entry instead of assuming equilibrium glide.  The 

basic trends are the same, with the bank angle starting at its maximum value and 

decreasing to zero as the heading angle approaches ninety degrees.  

 The results for latitude as a function of longitude are presented in Figure 

10-16.  Notice that equilibrium glide overestimates the longitude (or time-of- 

flight), but accurately predicts the final latitude.  (While this plot is for a solution 

 

Figure 10-15:  Control Profile and Corresponding Heading Angle using 
Modern Control Solution     
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 Figure 10-16:  Latitude as a Function of Longitude for Flight using Modern 
Control Solution for   

using the modern control theory solution, experience with numerous examples 

shows that this overestimation of   is typical when comparing equilibrium glide 

to the “real” solution.)  We’ll use latitude on the x-axis for the remainder of the 

comparisons and quietly forget about the longitude discrepancy. 

 The bank angle solutions are compared in Figure 10-17.  (It’s difficult to 

see in the plot, but both solutions start with 85   .)  Given the similarity, we 

can (rightfully) expect the dynamics solutions to be similar.   Solutions for W ,  , 

v , and   are shown in Figure 10-18 - Figure 10-21.  (For equilibrium glide, W  

was found with Eq. (10.98).)  Notice how the solutions for equilibrium glide 

represent (more or less) “averaged” or “smoothed” simplifications of the more 

general solutions, especially in the first two figures.  This fact and the realization 

(from Figure 10-19) that the flight-path angle remains small gives us confidence 

we are “close” to equilibrium glide for shallow entries; therefore, the bank angle  
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Figure 10-17:  Bank Angle   as a Function of Latitude   using Modern 
Control Solution  

 

Figure 10-18:  Altitude Variable W  as a Function of Latitude   using Modern 
Control Solution for   
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Figure 10-19:  Flight-Path Angle   as a Function of Latitude   using Modern 
Control Solution for   

 

Figure 10-20:  Kinetic Energy Variable v  as a Function of Latitude   using 
Modern Control Solution for   
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Figure 10-21:  Heading Angle   as a Function of Latitude   using Modern 
Control Solution for   

solutions found in Sections 10.5.2 and 10.5.3 can be applied to shallow entries in 

general.   

 If we were to apply each of the solutions we’ve found to an arbitrary 

shallow entry, we can expect the results would show similar trends.  For example, 

Figure 10-22 compares the cross range as a function of *L  for the current 

problem.  While not as definitive as when we assumed equilibrium flight (Figure 

10-13), the same trends are evident in this figure.  In order of increasing 

“optimality,” we have the two constant solutions, 45    and *   (from Eq. 

(10.145)), producing nearly the same results.  The latter generally gives more 

cross range.  Next, the solutions for   from Gell’s Equation (Eq. (10.148)) and 

the Modern Control theory (found with Eq. (10.149)) also produce similar results 

with the latter generally giving more cross range at larger values of *L .  A 

dedicated student might want to explore other examples to verify the trends hold 

in general, but we won’t.  
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Figure 10-22:  Comparison of Cross Range for All Bank Angle Solutions 
(Shallow Entry Example)  

10.5.5 Diveline Guidance 

 Diveline guidance (DG) is a type of control that provides a trajectory-

shaping and trajectory-targeting algorithm.  In its use, one or more “divelines” are 

selected that intersect the Earth (at “targeted points”).  When the DG control is 

initiated, the orientation and magnitude of the vehicle’s lift vector L


 is 

continuously adjusted to guide the vehicle until it is flying “down” the first 

diveline.  (See Figure 10-23.)  At some point, it breaks off that approach and the 

lift vector reorients to maneuver and fly down the next diveline.  This continues 

until the vehicle flies down the final diveline, which intersects the Earth exactly at 

the desired impact point.   
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Figure 10-23:  Diveline Guidance Geometry 

 Finding the orientation of L


 is rather simple, so this algorithm is relatively 

simple to implement (at least in theory).  The control is continuously varying, 

however, and the equations of motion must be numerically integrated.  The details 

for finding the desired L


 will not be presented here, but are rigorously covered in 

Regan and Anandakrishnan’s text (47:252-257).  Cameron’s and Gracey, et al.’s 

works also provide a good background on the subject (12:670-678; 28:558-563).    
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10.5.6 Other Non-Planar Entries 

 Other useful non-planar trajectories which require finding control profiles 

(both   and  ) include a wide assortment of optimized paths (e.g., minimum 

heating), interceptor avoidance maneuvers (e.g., random changes), and energy 

management maneuvers (e.g., limiting the speed).  Of course, for manned entry 

(and nuclear warheads), there is always the requirement to maneuver from the 

actual entry trajectory to the desired trajectory to insure the vehicle “lands” where 

the user intends it to land!  As the last few sections have no doubt shown, 

analytically finding control profiles quickly becomes difficult, so we will not 

delve into these.  The interested reader can easily find a plethora of “special 

cases” to study, including those discussed in Refs. 11, 13, 33, 50, 54, 55, 60, and 

61.     

10.6 Problems 

Material Understanding: 

1. Show that Eq. (10.23) for 
du

ds
 becomes 

 
*

2
(2 ) tan

cos

Wvf rdv
v

ds L

 



     

when u  is replaced by 
2cos

u
v


 . 

2. Show that 2k  in Vinh’s equation for the control law of a planar, constant sink 

rate entry is a non-dimensional representation of the sink rate.  ( 2k  is 

introduced in Eq. (10.68).) 
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3. Show the more general condition on altitude W  given by Eq. (10.60)  

 2 2
* 1

1

2sin 2 sin

sin

L k
W

k r

 

 

        

reduces to  

2
2

*2 sin

k
z

L 


    

by changing to “flat planet” variables. 

4. Using a process similar to how we found the lift profile for entry with a 

constant dynamic pressure, find the solution for  ,W   for entry at a 

constant heat flux.   

5. In Section 10.5.2, 
dv

ds
 was minimized with respect to   to maximize the 

“time” it took for the velocity to drop to zero.  Explain why the other control 

variable,  , cannot be used in a similar manner to maximize the cross range. 
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Computational Insights: 

6. In Section 10.4.1, we assumed a vehicle was “sufficiently deep into the 

atmosphere” to set 
1

1
W r

 .  For entry into Earth’s atmosphere ( 900r  ) 

with 5e    , 0.98ev  , * 2L  , and * 2LC  , graphically compare the 

solutions to Eqs. (10.46) and (10.48) to show that for entry from 41 10eW x  , 

the “sufficiently deep” requirement is rapidly met.  Compare the lift profile 

( L

D

C
C  versus entry “time”  ) for the two solutions to show they are 

consistent.   
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Chapter 11   

Orbital Contraction 

11.1 Introduction 

 In Chapter 9, a set of equations originally presented by Vinh and Brace 

were derived as a “unified theory” valid for both orbital motion and entry into a 

non-rotating planetary atmosphere.  Those equations can be modified somewhat 

to examine the motion of a non-lifting satellite perturbed by a rotating 

atmosphere.  The process is documented in detail in several works (40:6-18; 

58:274-283).  While useful, the full set of equations is beyond what we need for a 

cursory look at the effects of drag on a satellite’s orbit.  Instead, we will take a 

somewhat simplified approach and eventually end up with equations consistent 

with Vinh’s but more suitable for “simplified” analyses.   
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11.2 Relating Inertial and Relative Velocity 

 Our usual expression for drag 

2
R RDC S

D V V


 
 

 

is based on the velocity relative to the atmosphere RV


.  Orbital motion, on-the-

other-hand, is described using the inertial velocity IV


.  To examine orbits 

perturbed by drag, we need an expression relating the two velocities.  While the 

expression is easy to derive, we’ll need to expend some effort to put it into a 

simple form written in coordinates we can use. 

 Using our usual notation, the satellite’s velocity relative to the atmosphere 

RV


 to its inertial velocity IV


 is simply 

R I
AV V V 

  
 

where AV


 is the inertial velocity of the atmosphere.  If it is assumed the 

atmosphere moves along with the planet, then at a radius r  the atmosphere is 

moving with a speed of   

cosAV r   

in a direction parallel to the equator.  (  is positive when the planet rotates 

in a positive sense about its north pole.)  One way to write this as a vector is to 

introduce an inertial “nodal” reference frame with one axis pointed along the  

11.1

11.2

11.3
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ascending node ˆnodee , one along ˆze , and one completing the system such that 

ˆ ˆ ˆnode p node ze e e   as shown in Figure 11-1.  In this frame:  

   ˆ ˆcos sin cosA node p nodeV r e e          


 

 Using the spherical trigonometry identities 

   cos cos cos       

   cos sin cos sini       
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Figure 11-1:  Relationship of AV


, Orbit Plane, Inertial OXYZ Frame, and 

Nodal Reference Frame 

11.4

11.5

11.6
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enables us to eliminate the longitude and latitude from Eq. (11.4) and write:  

   ˆ ˆcos sin cosA node p nodeV r i e e           


 

For convenience, the common definition of argument of latitude,   u , can 

be introduced:   

   ˆ ˆcos sin cosA node p nodeV r i e e     u u


 

 Another coordinate frame, aligned with the orbital plane, is convenient to 

use.  As illustrated in Figure 11-2, let ˆRe  be in the orbit plane and aligned with the 

satellite’s radius vector.  Perpendicular to ˆRe  and still in the orbit plane is another 

vector ˆSe .  ( ˆSe  is in the local horizontal plane.)  Finally, Ŵe  completes the system 

such that ˆ ˆ ˆW R Se e e  .  (Note that Ŵe  is parallel to the orbit normal.)  In the  
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r
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Figure 11-2:  The ORSW Reference Frame 
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convention of Chapter 3, this frame could be labeled as the ORSW frame for easy 

reference.  The ORSW frame is related to the nodal frame by a series of two 

rotations:   

   
ˆ ˆ

ˆ ˆ

ˆ ˆ

R node

S W node p node

W z

e e

e R R i e

e e


   
      
      

u          

Expanding out the rotations and simplifying, this becomes: 

ˆ ˆcos sin 0 1 0 0

ˆ ˆsin cos 0 0 cos sin

ˆ ˆ0 0 1 0 sin cos

ˆcos sin cos sin sin

ˆsin cos cos cos sin

ˆ0 sin cos

R node

S p node

W z

node

p node

z

e e

e i i e

e i i e

i i e

i i e

i i e





       
               
              

   
       
      

u u
u u

u u u
u u u

 

With the aid of this transform, Eq. (11.8) becomes:  

   ˆ ˆcos sin cosA S WV r i e i e    u


 

In this same coordinate frame, the satellite’s inertial velocity is simply: 

ˆ ˆI
R SV re r e 


  

Combining Eqs. (11.2), (11.11), and (11.12) allows us to write an expression for 

the velocity vector of the satellite relative to the atmosphere  

   ˆ ˆ ˆcos sin cosR
R S WV re r r i e r i e       u


  
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and its magnitude:    

 
2 2 2

22 2 2 2 2
2 2

2 cos
1 cos sin cosR R I

I I

r i r
V V V i i

V V

   
     

 

 
u  

For most planets,   is small and terms multiplied by 2  can be ignored.  Thus, 

we have the approximation:  

 
2

2 2 2
2

2
2

2

2 cos
1

2 cos
1

R I
I

I
I

r i
V V

V

r i
V

V











 
   

 

 
  

 

O



 

(The notation  O  has been used to denote “on the order of   ” in the equation 

above.)  If the satellite is assumed to be in an elliptical orbit, the radius and time 

derivatives can be eliminated using well-known two-body solutions 

 21

1 cos

a e
r

e 





 

2

sin

1

ane
r

e





  

2 2

2

1na e

r
 
     

where 
3

n
a


  is the mean motion.  (Technically, we must also assume the 

satellite orbit is simple two-body motion to make these substitutions.  Drag makes 

this assumption somewhat false; however, it’s a good approximation for short 

time periods.)  Leaving the vector expression intact for the moment, we can use 
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11.15

11.16

11.17

11.18



O R B I T A L  C O N T R A C T I O N  

351 

these substitutions to rewrite Eq. (11.15) for the magnitude in terms of orbital 

elements:  

 
1

2 2 2

2 2
2

2 1 cos
1R I

I

na e i
V V

V


     
 

 

Slightly rewriting the small term in the brackets by replacing the mean motion 

and introducing the vis-viva equation to “partially” replace IV  yields: 

     
 

1 1 1 12 2 2 2 2 2

12
2

2 1 cos 2 1 1 cos

2
I I

na e i a e e r i

V V a r

  
  




 

 This term will, eventually, represent the effects of atmospheric rotation on 

drag.  Since that effect is small and the Eq. (11.19) itself is an approximation, a 

few more approximations won’t change the results appreciably.  This term is most 

important near periapsis (where drag effects are greatest), so it is reasonable 

approximate it by an “average” value based on periapsis conditions.  Specifically, 

we can use the initial values at periapsis:  0
I

pV , 0pr , and 0i .  (Inclination rarely 

changes by more than a degree during a satellite’s lifetime, so assuming a 

constant value of 0i i  is easily justified for this situation (35:24).)  With these 

substitutions, Eq. (11.20) becomes:    

 
1

2 2 2

0 0

2
0

2 1 cos 2 cosp

I I
p

na e i r i

V V

  


  

Substituting this back into Eq. (11.15) gives a simple expression relating the  

11.19

11.20

11.21
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satellite’s relative and inertial velocity magnitudes:  

1
2

0 0

0

2 cos
1 pR I

I
p

r i
V V

V

 
   

 
 

With one final approximation, this can be rewritten with the help of a binomial 

series and truncated to two terms: 

0 0

0

cos
1 pR I I

I
p

r i
V V V F

V

 
    

 
 

where 

 

2

0 0

0

cos
1 p

I
p

r i
F

V

 
   
 

 

has been introduced as a notational convenience (and because it matches classical 

results).  While derived somewhat differently, this relationship matches that found 

by King-Hele in his classic text (35:24-25).   

 We can now return to the vector equations.  Starting with Eq. (11.12) and 

eliminating r , r , and   with Eqs. (11.16) - (11.18) gives the inertial velocity 

vector:  

 
2 2

1 cossin
ˆ ˆ

1 1

I
R S

na enae
V e e

e e

   
    

    


 

For perfect two-body motion, the inertial velocity is along a tangent to the orbit, 

so Eq. (11.25) can be used to define a tangent direction: 

ˆ
I

T I

V
e

V


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(Once again, we are assuming the drag has a small effect on the satellite motion, 

so the orbit “almost” follows two-body dynamics.)  With this definition, inertial 

velocity is simply:  

ˆI I
TV Ve


 

 Define a new ONTW reference frame with one axis along the inertial 

velocity (orbit tangent) T̂e , another perpendicular to the orbit plane along Ŵe  

(parallel to the angular momentum vector), and third ˆNe  in the orbit plane such 

that ˆ ˆ ˆN T We e e  .  ( ˆNe  can be thought of as an “outward normal” to the orbit path 

in the orbit plane.)  The ORSW frame and the ONTW frame are related by 

1 cos sin
0

ˆ ˆ
sin 1 cos

ˆ ˆ0

ˆ ˆ
0 0 1

N R

T S

W W

e e

f f
e e

e e
e e

f f
e e

 

 

  
 
    

         
        
  

  

where 

   
1 1

2 22 21 2 cos 1
IV

f e e e
na

      

has been introduced for convenience (24:166).   

 Using this rotation (and eliminating r , r , and  ), the relative velocity 

vector given in Eq. (11.13) becomes  

ˆ ˆ ˆR R R R
N N T T W WV V e V e V e  


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where the components are:  

 
 

21 sin cos

1 cos
R

N

ae e i
V

f e

 


 




 

 
 

3
2 2

1 2
2 2

1 cos
1

1

R
T

e inaf
V

nfe


    

   

 

 21 sin cos

1 cos
R

W

a e i
V

e




 




u
 

 R
NV  is dominated by the small multiplier e  throughout the orbit.  

When the satellite is nearest to the planet, sin makes it even smaller, eventually 

reaching zero at periapsis (when the drag effect is largest).   Thus, R
NV  will be 

neglected.  R
WV  is proportional to the small term   and not the (even smaller) 

sine   terms, so it will kept.  Our vector becomes: 

ˆ ˆR R R
T T W WV V e V e 


 

(Note that neglecting R
NV  relative to R

TV  also implies the drag component in the 

orbital plane is along the inertial velocity vector and tangent to the orbit.)  King-

Hele makes the same assumption in his classic formulation as do Vinh, et al. in 

their text (35:40; 58:279).  An excellent derivation which retains R
NV  can be 

found in Fitzpatrick’s text (24:319-323).     
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 We can rewrite R
TV  using the definition  

1
2 21

IV
f e

na
  : 

 
1

2 2 2

2

1 cos
1R I

T I

na e i
V V

V


    
  

 

Comparing this with Eq. (11.21), we can see we have already derived an 

appropriate approximation:  

 
1

2 2 2
0 0

2
0

1 cos cos
1 1 pR I I

T I I
p

na e i r i
V V V

V V

  
           

   

 

(At first glance, it appears Eqs. (11.23) and (11.36) say that R R
TV V ; however, 

they really only say R R
TV V .  Because R R

W TV V , the magnitude of  RV  is 

dominated by R
TV  and R R

TV V .)  Substituting back into Eqs. (11.33) and (11.36) 

into Eq. (11.34), we can write the relative velocity vector as: 

 2
0 0

0

1 sin coscos
ˆ ˆ1

1 cos
pR I

T WI
p

a e ir i
V V e e

eV





  
          

 u
 

 It could be argued that the Ŵe  component in Eq. (11.37) should be 

similarly evaluated near perigee like we have done with the T̂e  component; 

however, there is a somewhat subtle difference in the effect of such an 

approximation.  In the T̂e  component, we made an approximation to a term of the 

form  1   where   is small.  The “1” dominates the value and the   almost 

“lost in the noise” of the calculation.  In the Ŵe  component, we have a small term 

11.35
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alone.  It is not added to anything “larger,” so the term itself dominates the value.  

Because of this, the Ŵe  component is left “exact.”  

 The definition of F  can be inserted to simplify Eq. (11.37) (and to match 

classical results):  

 21 sin cos
ˆ ˆ

1 cos
R I

T W

a e i
V V Fe e

e






 
  

  

 u
 

Since   is small for most planets, Eq. (11.38) tells us most of the velocity 

relative to the atmosphere is aligned with the inertial velocity vector tangent to the 

orbit.  Some authors choose to ignore the out of plane component altogether, 

while others retain it (24:319-323; 35:40; 58:274-280).  We will retain it for now.    

11.3 Drag Acceleration Vector 

 If Eq. (11.1) is divided by the mass of the satellite, we have an expression 

for the acceleration caused by drag: 

R R
drag

D
a B V V

m
  

 
 

where  

2
DC S

B
m

  

is one of many ways of defining the ballistic coefficient (5:423-424; 49:330-333; 

56:140; 65:86).  (Variations include the reciprocal of this expression and twice 

this expression!)  Substituting for RV


 and RV  from Eqs. (11.23) and (11.38), this 

becomes  

ˆ ˆdrag T Wa Te We 

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where  

2IT BF V   

 21 sin cos

1 cos
I

a e i
W B F V

e







 
  

  

u
 

are the components along each axis of the ONTW frame.   (If R
NV  had not been 

neglected, there would also be a component N in the ˆNe  direction.) 

 King-Hele and Fitzpatrick treated T  and W  as perturbing accelerations to 

pure two-body orbital dynamics by using Lagrange planetary equations (24:175, 

322-323; 35:31-36, 40-42).   The advantage in this case is that the drag effects are 

seen in terms of easy-to-visualize orbital elements.  The disadvantage is that the 

resulting equations are only valid when drag is a minor perturbation to an orbit 

and not during atmospheric entry.    

 Vinh, et al. modified the universal theory equations (Eqs. (9.29) - (9.34)) 

to include the effect of T  by modifying the drag coefficient and the effect of W  

by treating it as “pseudo-lift” (58:279).  The advantage is they find a set of 

equations bridging the gap between orbital motion and planetary entry into a 

rotating atmosphere.  The disadvantage (albeit minor) is that the modification is 

not entirely intuitive.  (Vinh, et al. also formulate a perturbation technique related 

to the Lagrange planetary equations (LPEs) in order to look at long term effects 

on orbits (58:280-281).)   

 We will follow the LPE approach in upcoming sections.  But, before 

proceeding, it is helpful write draga


 in terms of the eccentric anomaly E  instead 

of true anomaly  .  In Chapter 2, several mathematical relationships between    
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and E  were given.  They are repeated below for convenience: 

cos
cos

1 cos

e
E

e








 

 
1

2 21 sin
sin

1 cos

e
E

e









 

1
21

tan tan
2 1 2

e E

e

                
 

The orbital radius and velocity were also given in terms of E : 

 1 cosr a e E   

2 1 cos

1 cos
I e E
V

a e E

        
 

These relationships allow us to rewrite Eqs. (11.42) - (11.43) in terms of eccentric 

anomaly: 

1 cos

1 cos

e E
T BF

a e E

         
 

   
1 12 2 21 cos 1 cos sin cosW B F na e E e E i     u  

In Eq. (11.50), the positive roots are always taken because they come from 

simplifying the product of two positive terms, 
1 1

2 21 cos

1 cos
I e E
V

a e E

           
 and 

 1 cose E .  Equations (11.49) and (11.50) are in the form we need to apply the 

LPEs.  
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11.4 Lagrange Planetary Equations 

 The Lagrange planetary equations describe changes in orbital elements 

when an orbit is perturbed from the nominal two-body solution.  The equations 

are well-documented in many forms and will not be derived here (5:396-407; 

20:327; 24:145-175; 42:146-148; 65:78-85, 94-98).  The two we need for this 

chapter are: 

1
22 1 cos

1 cos

da e E
T

dt n e E

    
 

 

12 2

1
2 2

1 1 cos 2cos sin

1 cos 1 cos 1

de e e E E E
T N

dt na e E e E e

 
             

 

Previous approximations have left us with 0N   and we can change the 

independent variable to eccentric anomaly by dividing Eqs. (11.51) and (11.52) 

by the identity:  

1 cos

dE n

dt e E



 

Making these changes, the differential equations become:  

   
1 1

2 2
2

2
1 cos 1 cos

da
e E e E T

dE n
    

  12
2

2

2 1 cos 1 cos

1 cos

e Ede e E
T

dE n a e E

     
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Finally, T  can be replaced with Eq. (11.49):  

 
 

3
2

2
1

2

1 cos
2

1 cos

e Eda
a BF

dE e E



 


 

 
1

2
21 cos

2 1 cos
1 cos

de e E
aBF e E

dE e E
      

 

The theory is somewhat simpler to derive if we define  

x ae  

to replace the eccentricity.  Equation (11.56) is unchanged, but Eq. (11.57) is 

traded for:  

 
1

2
2 1 cos

2 cos
1 cos

dx de da e E
a e a BF E e

dE dE dE e E
           

 

(Strictly speaking, the eccentricity in Eq. (11.59) should be replaced with 
x

e
a

  

to complete the variable change.  We will, however, leave it in for the moment.) 

 To put these in the (nearly) final form, we need to replace the density   

with an expression in terms of orbital elements.  If we assume a strictly 

exponential atmosphere, we can write  

   
00

exp
p prr r r        

where 
0pr  is the density at the initial periapsis radius 

0pr .  (This definition is 

consistent with that in earlier chapters.  We have merely chosen to use the 

periapsis radius instead of the planetary radius as the reference point.)  Equation 

11.56

11.57

11.58

11.59

11.60



O R B I T A L  C O N T R A C T I O N  

361 

(11.47) can be used to eliminate the radius in favor of the eccentric anomaly and 

semimajor axis to get: 

    00
exp 1 cos

p prE a e E r          

In terms of the initial semimajor axis and eccentricity 

0 0 0(1 )pr a e   

so the density can also be expressed as 

   
   

0

0

0 0 0

0 0

exp cos

exp exp cos

p

p

r

r

E a a e a ae E

a a x x E

   

 

     

    
 

where 0 0 0x a e . 

 Combining Eq. (11.63) into the two LPEs of concern, we have:  

     
 0

3
2

2
0 0 1

2

1 cos
2 exp exp cos

1 cos
pr

e Eda
a BF a a x x E

dE e E
 


     


 

 

   

0

2
0 0

1
2

2 exp

1 cos
                     exp cos cos

1 cos

pr
dx

a BF a a x
dE

e E
x E E e

e E

       

    


 

Once solved, these two equations will describe the reduction in the semimajor 

axis and the orbital “circularization” due to atmospheric drag.  (Collectively, the 

two effects will be called “orbital contraction” or “orbit contraction.”)  

Numerically integrating Eqs. (11.64) and (11.65) is definitely possible, but very 

inefficient due to the long times required to see the small effects of drag on the 

orbit.  Fortunately, the problem can be simplified to study “the trends.” 
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11.5 Average Rates of Orbital Contraction 

 On the right-hand-side of Eqs. (11.64) and (11.65), the orbital elements a  

and e  change very little in a single orbit (an interval of 2  in E ).  If “average” 

values are used for a  and e  (and, of course, x ), then we can average over one 

orbit to find the average rate of change for a  and x .  Mathematically, these 

averages are  
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where the  brackets are used to denote “average over an orbit.”  The 

integrands can be simplified for integration if they are expanded in a power series 

in e .  For the case when 0.2e  , King-Hele suggested an expansion retaining 

terms to order 3e  (35:43).  In Eq. (11.66), the expansion is  
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and in Eq. (11.67) it is: 
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When Eq. (11.68) is substituted into Eq. (11.66), a closed-form answer is obtained  
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where ( )n nI I x  is shorthand for the modified Bessel functions of the first kind 

and of order n  (35:43-44; 56:606; 58:284).  For reference, these Bessel functions 

are defined as: 
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
   

Equation (11.70) gives the average rate of change (with respect to eccentric 

anomaly) in the semimajor axis.  Since the semimajor axis describes the size of an 

orbit, this could be viewed as one measure of the orbit’s “shrinking” due to drag. 

 Similarly, Eqs. (11.67) and (11.69) give: 
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Buried in this equation, through the relationship x ae , is a measure of the 

“circularization” of the orbit due to drag.  

 Equations (11.70) and (11.72) have been integrated to find a  and x  in 

closed-form by King-Hele, Longuski, Vinh, and others using various formulations 

and approximations (35:41-73; 40:27-37; 58:284-291).  The interested reader can 

refer to any of their texts for details.  As we are only interested in some general 

trends, these two equations will suit our needs as written.   

 We can use Eqs. (11.70) and (11.72) to calculate the semimajor axis and 

eccentricity of an orbit perturbed by drag.  Figure 11-3 illustrates the process and 

typical results for a few orbits are shown in Figure 11-4.  The “stair step” 

appearance is a result of holding the orbital elements constant during each orbit.  

The stair steps are unnoticeable when the values are plotted for the (typically) 

large number of orbits in a satellite’s lifetime.  Several results using this technique 

will be given in the next section.        
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Figure 11-3:  Method for Using Averaged Equations 
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Figure 11-4:  Example Results for Averaged Equations 

11.6 Observations about Orbital Contraction 

 Even without delving into complicated solutions, we can already draw 

some conclusions from the results in Eqs. (11.70) and (11.72): 

 Since ( ) 0nI x   for all x , Eq. (11.70) proves the semimajor axis a  

decreases with each orbit.  
 Equation (11.72) proves x ae  decreases with each orbit for the same 

reason. 
 Both a  and x  decrease faster when the eccentricity is larger. 
 It’s not immediately obvious how quickly the eccentricity decreases 

relative to how quickly the semimajor axis decreases. 

Figure 11-5 shows typical orbital contraction profiles computed using the method 

described in Section 11.5 and shown in Figure 11-3.  These graphs visually 

confirm two of the observations above; a  and x  decrease with time.  The shapes 

in these plots remain surprisingly constant over a wide range of elliptical orbits 

with 0.2e  .  Only the scales on the axes change.  
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Figure 11-5:  Typical Orbital Contraction Profile 

 Mathematically, we can demonstrate the often stated “fact” that an orbit is 

circularized by drag before its periapsis begins to significantly drop (56:609; 

65:86; 66:85).  To make the derivations a little simpler, we start by rewriting Eqs. 

(11.70) and (11.72) slightly as  
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where  

 
0

0 02 exp
prC BF a x    

has been used as shorthand for the constants.  Retaining terms smaller than order  
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e  is unnecessary to demonstrate trends, so these are further simplified to:  
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Recall the definitions of periapsis and apoapsis and write them in our current 

variables: 

 1p

x
r a e a


        

 1a

x
r a e a


     

Differentiating these and assuming we can take averages over an orbit as we did 

in the previous section, we have: 

  1pd r da dx

dE dE dE
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  1ad r da dx

dE dE dE
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After substituting Eqs. (11.76) and (11.77), these become:  
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To compare the relative changes, form the ratio of the magnitudes of these rates 

of changes  

 

 
 
 

   

   

0 1 1 0 2

0 1 1 0 2

1
2 3

2

1
2 3

2

p

p

aa

d r
I I e I I IdE d r

d rd r
I I e I I I

dE

          
         

    

where we have treated the derivatives as continuous and dropped the   

brackets on the right-hand-side.  Since   0nI x  , the ratio can be bounded:  
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Equation (11.85) proves the apoapsis radius changes faster than the periapsis 

radius on a drag-perturbed orbit.  This effect circularizes the orbit as the apoapsis 

lowers to the periapsis radius.  Closer examination of Eq. (11.85) also reveals that 

the larger the eccentricity, the faster the apoapsis drops.  Had we carried all of the 

terms in Eqs. (11.73) and (11.74) through to Eq. (11.85), we would have found 

the same trends, only with significantly more effort. 

 Figure 11-6 graphically illustrates the relatively dramatic difference in the 

rates at which periapsis and apoapsis change for both nearly circular and 

moderately elliptical orbits.  (For reference, these were computed using an Earth-  
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Figure 11-6:  Circularization of Two Orbits 

like atmosphere and the method described in Section 11.5.)  Notice that for both 

orbits, once the periapsis and apoapsis are equal, they both drop more rapidly.  

This is the subject of the next few paragraphs. 

 If we accept the concept that an elliptical orbit tends to circularize when 

perturbed by drag, then we can treat the “end game” of the orbit as a decay from a 

circular orbit.  Late in the orbit lifetime (or at least once it is circular), 0x  ,  

 0 1I x  , and  1 0I x  , so Eqs. (11.73) and (11.74) are simply:  

2 ada
Ca e

dE
   

0
dx

dE
      

(Once again the derivatives have been assumed to be continuous and the  

brackets dropped.)  The latter is easily solved, giving 0x   for all values of the 

eccentric anomaly.  This says that a circular orbit remains circular.  (More  
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precisely, it says a circular orbit remains circular as long as the drag is only a 

perturbation to the orbit!)  The first equation requires a little more work. 

 For a circular orbit, the semimajor axis can be replaced in favor of the 

altitude h  and Eq. (11.86) rewritten as  
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where R  is the planetary radius.  Since, for most atmospheres of interest 

h R , we can make the approximation:  

2
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If the altitude is 0h  when the eccentric anomaly is 0E , this separable differential 

equation is easily solved to give:  
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Equations (11.75), (11.88), and (11.89) can be used to evaluate the constant 3C :  
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density at the planet’s surface.   With this change, Eq. (11.90) becomes:   

 0 2
0

1
ln 2h

sh e BF R E E  
       

Finally, to get a rough estimate of the time it takes to decay completely from a 

circular orbit, we can simply replace the eccentric anomaly in favor of time using  

0 3 3
E E t t

a R

 



      

and solve for when the altitude reaches zero:  
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s

t e
BF R



   

    

 As you might expect, Eq. (11.94) shows the lifetime of a low-altitude 

satellite is inversely proportional to its ballistic coefficient B  and the atmospheric 

density s .  We can’t control either of these very easily to extend the life of a 

satellite.  Luckily, however, the equation also shows lifetime is directly 

proportional to the exponential of its initial altitude 0h .  Increasing 0h  by 1   will 

almost triple t . 

11.7 Summary 

 Unlike previous chapters where we looked at trajectories dominated by 

drag (i.e., “atmospheric entry”), this chapter focused on two-body orbital motion 

perturbed by drag.  We simplified the equations and analyzed changes to 

eccentricity and semimajor axis.  These are the dominant effects of drag, but for 

completeness, we should note it is possible to look at the (lesser) effect of drag on 

the orbital inclination.  (The rotation of the planet, through Eq. (11.50), introduces 
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an out-of-plane acceleration that causes the inclination to change.)  Fitzpatrick 

follows a very similar process to that in Sections 11.3 and 11.4 to find 

perturbations to all six classical orbital elements (24:319-330).  

11.8 Problems 

Material Understanding: 

1. Show that  

2 2
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2. Starting with ˆ ˆdrag T Wa Te We 


 in terms of true anomaly   (as given in Eqs. 

(11.41) - (11.43)), show the components can be written in terms of eccentric 

anomaly as:  

1 cos

1 cos

e E
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a e E
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   
1 12 2 21 cos 1 cos sin cosW B F na e E e E i     u  

3. Not all formulations use the periapsis radius as the reference point when 

writing an expression for the density.  Show that density in a strictly 

exponential atmosphere can also be expressed in terms of semimajor axis by 

   exp cosaE ae E    

where a  is the density at a radius equal to the semimajor axis.   
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4. Equation (11.94) gives an estimate for the decay time for a low-altitude 

satellite.  For a non-rotating atmosphere, it becomes 
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Show that increasing the initial altitude by 1
  almost triples t . 
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Chapter 12   

Apollo 10 Reentry 

12.1 Introduction 

 In the previous chapters, we’ve tried to stick to the “quest” to 

develop universal results and free ourselves from detailed knowledge of 

the vehicle whenever possible.  This enables us to see general trends and 

narrow down the characteristics a vehicle might require to meet a mission 

goal.  For example, to limit the maximum deceleration, the methods 

discussed all the way back in Chapter 5 can help us identify the minimum 

required lift-to-drag ratio, which, in turn, begins to define the vehicle.  

While this is an excellent approach early in the design (and is a primary 

goal of this book), there comes a point where we would like to examine a 

vehicle whose design is “fixed.”   

 The reentry trajectory of Apollo 10 is quite well-documented, so it 

makes an excellent example for us to compare methods from this 

introductory text to actual flight results (Refs. 3, 29, 51).  (If you’re 

wondering why I didn’t select the more famous Apollo 11 as the example, 

it’s because a data loss during the mission prevented a detailed postflight 
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analysis (29:2).)  We’ll assemble the necessary information to simulate the 

flight and compare the results to “reality.”  Then, we’ll examine a few 

“perceived” improvements to our simulations, introducing a few ways to 

analyze results along the way.  

12.2   Actual Vehicle and Entry Characteristics     

 You might expect assembling the necessary entry interface (EI) 

conditions ( e , etc.), control laws ( , etc.), and vehicle parameters ( DC , 

etc.) would be relatively easy given the plethora of data that was collected 

with Apollo.  Unfortunately, it requires sorting through multiple reports 

which are lengthy and sometimes conflicting.  We’ll start with the easiest 

information to find and identify any conflicts and estimates as we 

complete the task. 

 At entry interface, Apollo 10’s telemetry recorded the values in 

Table 12-1 (51:3).  (As we’ll discuss later, two different EI times were 

given in NASA’s own postflight analysis report.  The values given in the 

table reflect the time prominently given in the front of the report.)  The 

entries are shown with the same number of significant digits cited in the 

NASA source document but it’s unlikely they are as accurate as they 

appear.  (We’ll maintain a similar number of significant figures for 

consistency.) 
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Table 12-1:  Actual Apollo 10 States at Entry Interface (51:3) 

State  Value

Inertial Velocity, I
eV  11.06715 km/s

Inertial Flight-Path Angle, I
e 6.6198381   

Inertial Azimuth, 90I I
e e   71.9317

Longitude, e  174.24384 East 
Geodetic Latitude, 

egd 23.653003 South 
Geodetic Altitude, 

egdh 123.55077 km

 

 The bank angle   was varied during entry to target the desired landing 

point as well as to manage the deceleration.  Rather than trying to model the  

control logic for the capsule, we will simply treat the bank angle as a known 

function of time.  The actual bank angle history for Apollo 10’s entry is tabulated 

in Reference 51 and Figure 12-1 presents it graphically (and assumes 

instantaneous changes).  The drogue chutes deployed 498 seconds after entry so 

0    has been added to the plot at that point and beyond (51:24).   

 The magnitude of the lift was not employed as a control parameter during 

Apollo entries, with one possible exception.  Rolling the capsule about the 

velocity vector (i.e., rotating the bank angle through 360 ) could be used to 

effectively cancel out lift.  Such a maneuver could be used to “stay the course” 

when the capsule’s trajectory is already “on target.”  In the case of Apollo 10, 

however, Figure 12-1 seems to indicate this was not utilized.   

 Not controlling the lift magnitude doesn’t mean the lift-to-drag ratio 

remains a constant.  For real vehicles, it varies with the Mach number.  Figure 

12-2 shows the actual L DC C  values recorded during Apollo 10’s entry as well as 

preflight predictions for it and Apollo 11 (29:4; 51:36).  The data sets are similar 
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Figure 12-1:  Bank Angle History for Apollo 10 Command Module (51:16) 
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Figure 12-2:  Lift-to-Drag Ratio as a Function of Mach Number (29:4; 51:36) 
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across the range of Mach numbers and all three sets are fairly “flat” (nearly 

constant) above Mach 25, with the recorded (actual fight) values remaining flat 

down to about Mach 15.   

 NASA’s postflight analysis for Apollo 10 did not document separate 

values for LC  and DC  (51).  Without these values, we won’t be able to integrate 

the equations of motion.  Fortunately, the preflight estimates for Apollo 11 are 

documented (29:4).  These two capsules were virtually identical aerodynamically, 

so we will use the Apollo 11 values shown in Table 12-2.   

 Finally, we need a couple of constants for the capsule.  The reference area 

S  upon which LC  and DC  are based is the maximum cross section for capsules 

(21:2-3).  Using the design diameter of 154 in, we can calculate 12.017S  m2 

(4:84).  The estimated pre-entry mass for Apollo 10 was m=5498.22 kg (51:11).       

 

Table 12-2:  Aerodynamic Coefficients for the Apollo 11 Command Module (29:4)  

Mach 
Number

0.4 0.24465 0.853 0.286811

0.7 0.26325 0.98542 0.267145

0.9 0.32074 1.10652 0.289864

1.1 0.49373 1.1697 0.4221

1.2 0.47853 1.156 0.413953

1.35 0.56282 1.2788 0.440116

1.65 0.55002 1.2657 0.434558

2 0.53247 1.2721 0.418576

2.4 0.5074 1.2412 0.408798

3 0.47883 1.2167 0.393548

4 0.44147 1.2148 0.36341

10 0.42856 1.2246 0.349959

≥29.5 0.38773 1.2891 0.300776

LC DC L

D

C
C
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12.3   Setting up the Simulation 

12.3.1 Equations of Motion 

 We have almost all of the information necessary to integrate the 

dimensional equations of motion we found in Section 3.4 (Eqs. (3.35)-(3.37) and 

(3.65)-(3.67)).  Only a few easily obtained tidbits remain, such as determining the 

alignment of the inertial and Earth-fixed coordinate frames at the time of entry 

and setting a value for Earth’s rotation rate.  For our immediate purposes, we 

won’t need these, however. 

 We can simplify the dimensional equations of motion by first ignoring the 

Earth’s rotation 

sinVr R   




cos

coscos

r

VR

  

cos sinRV

r

    

sinR D
V g

m
    

2

cos cos cos
R

R L V
V g

m r
       

2sin
cos cos tan

cos

R
R L V
V

m r

   


   
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12.2

12.3
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and then making our usual assumptions about gravity, density, lift, and drag:  

 
2

s

R
g g r g

r
    

 
 

)(  Rr
se

  

2

2
V

SC
L RL
  

2

2
V

SC
D RD
  

Implicit in Eq. (12.7) is the fact we’ve used the Earth’s radius as the reference 

radius ( 0r R ).  The physical constants needed for Eqs.  (12.7) and (12.8) are 

given in Table 12-3.  With the proper initial conditions, we can integrate Eqs. 

(12.1) - (12.6) and compare the results to the actual reentry. 

 

Table 12-3:  Physical Properties of the Earth 

Radius of the Earth, R  6378.137 km 

Acceleration of gravity at the Earth’s 
surface, sg  9.81 m/s2 

Atmospheric density at the Earth’s 
surface, s  1.225 kg/m3 

Inverse scale height,   0.14 km-1 
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12.3.2 Conditions at Entry Interface 

  In addition to the longitude  , NASA gave the entry position in terms of 

“geodetic” altitude gdh  and latitude gd  instead of the “geocentric” values r  and 

  we’ve been using throughout this book.  Their relationship is shown in Figure 

12-3.  The radius r  is easily found by evaluating the following equation: 

 
2 2

2

2 2 2

2 2 2 2

1
cos sin

1 sin 1 sin

ee
gd gd gd gd

gd gd

a ea
r h h

e e
 

 

   
      
       

 

(This equation and others relating geodetic and geocentric values are readily 

found in other references, including References 5 and 68.)  For Earth, 

6378.137 ea km  and 0.08181919e   (5:98; 68:387).  Substituting these values 

and those from Table 12-1, we can calculate the entry radius: 

6498.270 er km  

 

Figure 12-3:  Geocentric and Geodetic Latitude (Exaggerated Geometry) 

12.11
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Geodetic and geocentric latitudes are related by the following:  

 2

2 2

2 2

1

1 sin
tan tan

1 sin

e

gd

gd

gd

e
gd

gd

a e
h

e

a
h

e


 



 
 
  
 
 
  

 

When evaluated at EI, we get a geocentric latitude of:  

23.51457  Southe    

Combined with the entry longitude value already given in Table 12-1, these 

values define the position vector at entry.   

    Consistent with ignoring Earth’s rotation in the equations of motion, the 

values for the inertial entry velocity, flight-path angle, and heading angle in Table 

12-1 can be assumed to be Earth-relative: 

11.06715 /

6.6198381

90 18.0683

R I
e e

I
e e

I I
e e e

V V km s

 

  

 

  

   



 

 

These three values define the magnitude and direction of the capsule’s velocity at 

entry (i.e., the velocity vector).   

 Table 12-4 summarizes the entry states (initial conditions) for integrating 

Eqs. (12.1) – (12.6). 

12.12
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Table 12-4:  Apollo 10 States at Entry Interface 

State Value
Radius, er  6498.270 km

Flight-Path Angle, e 6.6198381 

Heading Angle, e 18.0683

Velocity, R
eV  11.06715 km/s

Longitude, e  174.24384  East

Latitude (Geocentric), e 23.51457  South

12.3.3 Aerodynamic Coefficients During Entry 

 As we saw in Figure 12-2, the lift-to-drag ratio varies with Mach number.  

On-the-other-hand, the figure also shows the ratio is fairly constant to down to at 

least Mach 15 for Apollo 10.  In fact, an “averaged” fit to the entire graph might 

be a horizontal line at, more or less, the Mach 15 value.  A reasonable first 

approach is to assume constant values for LC  and DC .  Averaging the top two 

entries in Table 12-2 gives us 

0.40815

C 1.2569
L

D

C 


 

to use as constant values.   

 When we (finally) plot our results, we’ll see that these constants give 

excellent results.  If they did not, one alternative is to calculate the Mach number 

(based on the speed and altitude) as we integrate and continuously adjust LC  and 

DC  by interpolating Table 12-2.  (We’ll cover this in Section 12.5.2 when we 

examine improvements to our simulation.)  Another option is to simply select LC  

and DC  values that give the best results while still being realistic for the problem 

at hand.   
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12.4   Comparing the Simulation to Reality 

 The previous sections established the equations of motion (Eqs. (12.1) - 

(12.6)) and corresponding initial conditions (Table 12-4) for the Apollo 10 entry.  

Figure 12-1 provides the bank angle “program” and the remaining constants in the 

equations (mass, reference area, LC , and DC ) have been established.  At this 

point, Eqs. (12.1) - (12.6) can be numerically integrated quickly (and quite easily) 

using a wide range of software programs.1 

 After integrating to find the trajectory, we need to convert the radius r  

and (geocentric) latitude   values we find to geodetic altitude gdh  and latitude 

gd  to compare with the actual trajectory published by NASA.  (It is easier to 

convert our results than the other way around.  We know our solution completely 

and can simply apply the conversion before graphing the results.)  The conversion 

is as simple as simultaneously solving Eqs. (12.11) and (12.12) for gdh  and gd  

for each point on our trajectory.  Figure 12-4 shows the small difference between 

geocentric altitude 

h r R   

and the geodetic altitude for this problem.  Figure 12-5 illustrates the similarly 

small difference in latitude values.   

 NASA’s postflight analysis report presents most of the information in the 

form of graphs, many of which cannot be read to more than a few significant 

figures (51).  Except where specific values are called out in the text of the report, 

any comparisons we make are only as accurate as our ability to read the graphs.   

                                                 

1 Results in this chapter were found by integrating Eqs. (12.1) - (12.6) with PTC’s Mathcad, Version 14. 
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Figure 12-4:  Simulation Results for Geodetic and Geocentric Altitude 

 

Figure 12-5:  Simulation Results for Geodetic and Geocentric Latitude 
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Further, the “true” values derived from telemetry are plotted as discreet points in 

the report.  For simplicity, values from NASA’s graphs have been manually 

digitized and reconstructed here as continuous curves.  Some error is inevitable in 

the process but is negligible for our purposes.   Having made the appropriate 

disclaimers about accuracy, we can begin to compare simulation results and the 

actual values recorded by NASA.   

 Figure 12-6 and Figure 12-7 compare the geodetic altitude and inertial 

velocity, respectively.  (Recall, by ignoring Earth’s rotation, we’ve assumed 

R IV V  throughout the entry.)  In lieu of the flight-path angle, NASA computed 

the altitude (or sink) rate h .  A comparable value from the simulation is easily 

computed: 

sinRh V   

 

Figure 12-6:  Geodetic Altitude Comparison for Apollo 10 Reentry 
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Figure 12-7:  Inertial Velocity Comparison for Apollo 10 Reentry 

Figure 12-8 compares the altitude rates.  Finally, the deceleration profiles are 

compared in Figure 12-9, where 

2 sin
2

R RD
decel

C S
a V V g

m

      

has been used to calculate an approximate deceleration from our simulation.   

 Visually, the simulated and actual trajectories are very similar, following 

the same trends and matching closely in magnitudes.  A few specific values are 

called out in NASA’s postflight analysis report ; however, the report contains 

conflicting information.  It cites two different times (differing by 1.2 seconds) for 

the point of entry interface (51:3, 15).  Events throughout it are referenced relative 

to the EI or to the mission clock (starting at launch).  Sometimes the same event is 

12.15
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Figure 12-8:  Altitude Rate Comparison for Apollo 10 Reentry  

     

Figure 12-9:  Deceleration Comparison for Apollo 10 Reentry 
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referenced inconsistently to both, so we must accept that either time could be 

correct and make the appropriate allowances when comparing our simulation 

results.  (To further complicate the comparison, at least two numerical entries in 

NASA’s report have an unexplained 1.4 second discrepancy!)  

 Table 12-5 compares the geocentric radius at four event times called out in 

the report.   When different times are cited, the times and simulation results are 

shown as a range.  Figure 12-6 and Table 12-5 show the simulation closely 

matches the actual altitude throughout most of the flight.  

 Table 12-6 compares the inertial velocity at seven event times cited in the 

postflight analysis report.   Figure 12-7 and Table 12-6 both show the simulation 

agrees with reality quite well, with the biggest differences occurring near the end 

of the flight.   

 A few key deceleration events can also be compared.  Specifically, the 

largest, second largest, and first minimum deceleration values are called out in the 

postflight report.  Table 12-7 compares the telemetry-derived values with our 

simulation results.  Again, the graphic (Figure 12-9) and table confirm fairly good 

agreement, with the simulation providing slightly “optimistic” lows and 

“pessimistic” highs.   

 

Table 12-5:  Geocentric Radius at Specific Event Times (51:10, 17-18) 

Time after EI

(sec)
Event

Actual Simulation

80.8 ‐ 81.4 Max. deceleration 6431.159 6433.133 ‐ 6433.129

128.8  ‐ 129.4 First min. deceleration 6435.110 6436.734 ‐ 6436.672

136.8 Final guidance phase 6434.462 6435.636

436.8 ‐ 438.0 Guidance termination 6395.657 6396.021 ‐ 6395.721

Geocentric Radius (km)
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Table 12-6:  Inertial Velocity at Specific Event Times (51:10, 15, 23) 

Time after EI

(sec)
Event

Actual Simulation

27.4 First encounters 0.05g 11.0929 11.0886

28.0 Encounters 0.043g 11.0926 11.0886

30.0 Zero bank angle set 11.0935 11.0882

76.8  ‐ 78.0 Initiate "Huntest" guidance  10.0048 9.81044 ‐ 9.72584

128.0 Time of interest 7.89310 7.68931

136.8 Final guidance phase 7.62997 7.44351

436.8 ‐ 438.0 Guidance termination 0.70308 0.320477 ‐ 0.312815

Inertial Velocity 

(km/sec)

   

Table 12-7:  Deceleration Comparison at Specific Events (51:12) 

Deceleration Event

Actual Simulation

Largest 6.76 7.19

Second largest 4.60 5.21

First minimum 2.80 2.70

Magnitude (g's)

 

 

 A final comparison we can make is the touchdown point.  Apollo 10 

landed  at 15.07  South (geodetic) latitude and 164.65  West longitude (51:25).  

Our simulation does not model the trajectory after the drogues deploy, but we can 

approximate the touchdown point by assuming it is directly below where they  

deploy.  At this time (EI+498 seconds), the simulation results are 15.06  South 

(geodetic) latitude and 163.67  West longitude.  The difference of roughly 110 

km is certainly acceptable given the numerous simplifications we’ve used.           
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12.5   Where to Improve the Simulation? 

 Even though the results just presented are “good enough” for most 

purposes (including estimating maximum deceleration, range, and flight time), the 

engineers among us will always want to push for the maximum accuracy.  Several 

relatively “obvious” enhancements are: 

 Include the Earth’s rotation 

 Include effect of Mach number on lift and drag 

 Improve the atmosphere model 

 Improve the gravity model 

However, it’s not as simple as just throwing additional terms into the numerical 

integration.  Assumptions and approximations that went into deriving Eqs. (12.1) 

- (12.6) tend to “balance out” and removing one or two assumptions may not 

improve the overall results.  To demonstrate, we’ll look at each of these four 

enhancements individually. 

12.5.1 Including Earth’s Rotation 

 Consider adding the rotation of the Earth back into the dynamics.  

Equations (12.4) – (12.6) would be replaced by 

 2sin cos cos sin sin sin cosR D
V g r

m
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
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where   is Earth’s rotation rate.  To use these, we’ll need to convert the inertial 

values we are given to values relative to the rotating Earth.  In addition to RV , we 

can’t forget that   and   in the equations of motion are actually relative 

quantities since they are measured with respect to the relative velocity vector RV .  

(This “subtlety” was called out in Section 3.5 as a warning for this very example.) 

 Using a geocentric-equatorial coordinate system aligned with the prime 

meridian at EI as our reference, we can use the values in Table 12-1 (and the 

conversions in Eqs. (12.11) and (12.12) ) to can calculate the inertial position  

and velocity vectors.  These are:    

-5928.60

597.622

-2592.694
er km

 
   
 
 


 

-1.23773

-10.3795 /

3.63549

I
eV km s

 
   
 
 


 

(Once again, these numbers are shown with more significant figures than we can 

reasonably expect to be valid.)  The corresponding relative velocity and inertial 

angles are easily computed: 

10.6589 R I
e e eV V r km   
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 We can use these as initial conditions to integrate the equations of motion.  

After integrating, we must assemble the (relative) position and velocity vectors 

and then transform them to the inertial frame to compare to our previous 

simulation and to “reality.”  The simple (but cumbersome) transforms make good 

use of the matrix rotations derived in Chapter 3 and will not be detailed here. 

 Figure 12-10 compares the geodetic altitude for the previous (non-rotating 

Earth) simulation with this one and Apollo 10’s actual trajectory.  Graphically, the 

results appear comparable with this simulation appearing to give slightly better 

results between about 90 and 400 seconds.  To help compare overall “goodness” 

of the simulations, we can use the root mean square (RMS) error between 

simulated and actual altitudes: 

     
2

1
gd

n

gd i gd isimulation actual
i

h

h t h t
RMS

n


  



  

(The debate of using 1n   or n  in the denominator of Eq. (12.19) is pointless; the 

difference is insignificant if we use enough points!)  The RMS is comparable to the 

standard deviation of the error along the entire trajectory.  When compared at one 

12.19
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Figure 12-10:  Geodetic Altitude for Simulations with and without Rotation 

second intervals between entry and drogue deployment, the RMS can be written 

as   

     
498 2

0

499gd

gd gdsimulation actual
t

h

h t h t
RMS 

  


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for  simplicity.  Using this measure, 3.21 
gdhRMS km  when Earth’s rotation is 

included and 3.63 
gdhRMS km  when isn’t.  For altitude, it appears we have  

marginally improved the simulation accuracy on average along the trajectory.  

12.20
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 Figure 12-11 provides a similar comparison for the inertial velocity.  In 

this plot, it’s more difficult to decide which simulation provides better results.  

Between 110 and 350 seconds, the first simulation gives better results while this 

one better matches reality after 350 seconds.  (The velocity prediction at drogue 

deployment is near perfect.)  Evaluating the velocity RMS for each simulation  

   
498 2

0

499
I

I I

simulation actual
t

V

V V
RMS 

  



  

we find 187 IV
RMS m s  with rotation included and 241 IV

RMS m s  without 

rotation.  For inertial velocity, overall accuracy appears to be improved when the 

Earth’s rotation is modeled. 

 

Figure 12-11:  Inertial Velocity for Simulations with and without Rotation 

12.22
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 Deceleration results are shown in Figure 12-12.  As before,  

I
decela V    

was used to estimate the deceleration from the simulation results.  (The 

oscillations in the rotating Earth values after about 450 seconds are a numerical 

artifact caused by round-off error as the velocity approaches a constant.)  Both 

simulations tend to overestimate deceleration maximums and underestimate 

minimums.  At two of the three peaks, this simulation produces better estimates 

but is worse at the third.  The RMS   

   
498 2

0

499

I I

simulation actual
t

decel

V V
RMS 

  



  

 

Figure 12-12:  Deceleration Comparison for Simulations with and without 
Rotation 
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suggests this simulation produces slightly worse results overall, with a 

25.40 decelRMS m s  for it with a 24.60 decelRMS m s  when we ignore the 

Earth’s rotation!  Most of this difference, however, comes in the last 125 seconds.  

The RMS values are much closer at 22.94 m s  (with rotation) and 23.21 m s  

(without rotation) during the first 375 seconds.  Neither simulation is a clear 

“winner” when it comes to estimating decelerations.    

 Finally, we can compare the estimates of the touchdown point.  Table 12-8 

summarizes the results.  Both simulations predict the geodetic latitude 0.01  north 

of the actual location.  The non-rotating simulation predicts a longitude 0.98  east 

of the actual location while the rotating simulation predicts one 0.97  west of the 

actual location.  At first glance, we could conclude these show equal accuracy, but 

recall we assumed the touchdown point for our simulations was immediately 

below where the drogues deployed.  The capsule was traveling eastward when the 

drogues deployed and likely continued along that path until the main parachutes 

deployed (Figure 12-13).  As a result, the touchdown point would be more 

eastward than we’ve assumed, making the non-rotating simulation results worse 

and the rotating simulation better.  Without knowing the actual latitude and 

longitude when the drogues deployed, we cannot quantify the results any more 

accurately. 

Table 12-8:  Touchdown Point Comparison for Apollo 10 

 Latitude (geodetic) Longitude 

Actual 15.07  S 164.65  W 

Non-rotating simulation 15.06  S 163.67  W 

Rotating simulation 15.06  S 165.62  W 
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Photo:  NASA

 

Figure 12-13:  Apollo 10 Descending on its Main Parachutes 

 With the possible exception of deceleration predictions, adding Earth’s 

rotation to the simulation does appear to improve the overall accuracy (as 

measured by the root mean square).  However, the differences in RMS for the 

simulations are only 420 m  and 54 m s  for geodetic altitude and inertial 

velocity, respectively!  The dramatic increase in complexity (especially 

converting between rotating reference frames) may not justify the relatively small 

improvements in accuracy for many situations.         

12.5.2 Including the Effect of Mach Number on Lift and Drag 

 Before we can incorporate LC  and DC  as functions of Mach number M  

in our simulation, we must calculate the Mach number from the velocity.  For an  
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ideal gas, the speed of sound is given by 

c  kRT  

where k is the specific heat ratio, R  is the gas constant per unit weight, and T  is 

the absolute temperature of the atmosphere (52:38).  For Earth,   

20.0468  mc s T  

when T  is in degrees Kelvin (32:C29).  Thus, the Mach number is given by 

20.0468

R RV V
M

c
 

T
 

at any instant.   Our equations (Eqs. (12.1) - (12.6) ) don’t provide the atmospheric 

temperature, so we must compute it separately while integrating.   

 To be completely consistent with our equations of motion, our temperature 

model should be based on the same assumptions as our atmospheric model.  An 

oft-forgotten assumption in our simple exponential model is that the atmosphere 

is isothermal (46:15)!  The dilemma, of course, is what temperature should be 

used – an average, sea level, or something else?  If we are willing to accept a 

small inconsistency, we can use a more accurate model of the atmosphere for 

evaluating Eq. (12.27) and avoid the question all together. 

 A model of the “1962 Standard Atmosphere” is readily available and can 

be used with Eq. (12.26) to find the speed of sound at any altitude (32:C28-C29; 

46:14-20).  Figure 12-14 plots the altitudes of interest.  This function of altitude 

and Eq. (12.27) are used when integrating the equations of motion to determine 

the Mach number along the reentry trajectory.  (As a side note, notice how the 

speed of sound in Figure 12-14 oscillates around an average value below about 

110 km.  This gives some “visual” justification for our usual assumption of an 

isothermal atmosphere.) 

12.25

12.26

12.27
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Figure 12-14:  Speed of Sound in Earth’s Atmosphere 

 Before the actual reentry, our best estimates for lift and drag coefficients 

are the predicted values in Table 12-2.  If we linearly interpolate between values, 

we can estimate values at any Mach number (Figure 12-15).  (These values are  

actually for Apollo 11; as before, we’ve assumed they are appropriate for Apollo 

10.)    Armed with LC  and DC  as functions of Mach number (and Figure 12-14 

and Eq. (12.27) to calculate the Mach number), the equations of motion can be, 

once again, integrated and compared to the actual trajectory. 

 Figure 12-16 - Figure 12-18 compare the results using constant and Mach 

number dependent aerodynamic coefficients to the actual observed trajectory.  

Unlike in Section 12.5.1, these plots clearly show our “improved” model failed to 

actually improve the simulation.  In fact, the predicted altitude, velocity, and 

deceleration are worse at most points along the trajectory!  The root mean square 

error values summarized in Table 12-9 confirm this observation.   
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Figure 12-15:  Lift and Drag Coefficients as Functions of Mach Number 

 
Figure 12-16:  Geodetic Altitude with and without Mach-dependent LC  and DC  
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Figure 12-17:  Inertial Velocity with and without Mach-dependent LC  and DC  

 

Figure 12-18:  Deceleration with and without Mach-dependent LC  and DC  
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           Table 12-9:  RMS Errors with and without Mach-dependent LC  and DC  

 LC  and DC  Constant LC  and DC  Functions 

gdhRMS  3.63 km  4.48 km  

IV
RMS  241 m/s  814 m/s  

decelRMS  24.60 m s  28.43 m s  

    

 

 It shouldn’t come as much of a surprise that we’ve failed to improve the 

simulation accuracy.  The functions for LC  and DC shown in Figure 12-15 are 

based on preflight estimates of the capsule aerodynamics.  Turning back to Figure 

12-2, notice the preflight estimates and measured lift-to-drag values are 

sometimes off by 5%.  (Apollo 11 displayed a similar, if not greater, discrepancy 

between predicted and observed values (41:21).)  It’s likely our functions are 

equally wrong! 

 Just how much of a difference 5% can make is illustrated in Figure 12-19 

and Figure 12-20.   The “band” of trajectories shown is generated by changing the 

constant LC  in our (original) simulation by 5% .  Clearly, unless there’s reason 

to believe the preflight values are extremely accurate, there isn’t a need to 

complicate the simulation.  Errors in the aerodynamics are as likely to worsen the 

predictions as they are to improve them!   
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Figure 12-19:  Effect of Slight Changes in LC  on Apollo 10 Geodetic Altitude 

 

Figure 12-20:  Effect of Slight Changes in LC  on Apollo10 Inertial Velocity 
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 NASA didn’t use either the preflight estimates or the measured values 

when they established the “Best Estimated Trajectory” (BET) in the postflight 

analysis report (51:11, 36).  Instead, they “tweaked” the values to match other 

observed measurements (altitude, velocity, etc.).  The “reconstructed” lift-to-drag 

ratio required to calculate the BET is shown in Figure 12-21 along with the 

predicted and recorded values.  Not only are the reconstructed values at least 5% 

different than the measured values, they are biased larger for almost the entire 

range.   

 What do all of these graphs tell us?  First, aerodynamic uncertainties can 

dramatically change the predicted trajectory.  Second, until you are “certain” of 

your vehicle properties, you have no reason to believe your simulation is any  

 

 

Figure 12-21:  Apollo 10 Lift-to-Drag Ratio as a Function of Mach Number 
(51:36) 
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more accurate simply because you have modeled it “better.”  Third, even if you  

have the best knowledge available (as NASA did), predicting the precise 

trajectory can be elusive.  Finally, “tuning” the (sometimes) uncertain vehicle 

aerodynamic properties provides a convenient tool for better matching 

simulations to observed data.  The “tuned” aerodynamics can then be used to 

better predict the next reentry.   

12.5.3 Improving the Atmospheric Model 

 Improving our atmospheric model is as straight-forward as replacing the 

simple exponential in our simulation (Eq. (12.8)) with any other (better) model.  

(This assumes we are limiting our atmospheric model to predicting the density.  If 

wind predictions, etc. are included, other changes would be needed to incorporate 

their forces into the equations of motion.  Such changes would require us to 

revisit the original derivations in Chapter 3 and, therefore, won’t be considered 

here.)  Once the atmospheric model is replaced, we can integrate the equations of 

motion and “rate” any improvement in the simulation results.   

 The 1962 Standard Atmosphere model introduced in the previous section 

breaks the atmosphere below 150 km into 12 exponential “bands” to better match 

reality, so it’s a reasonable replacement to try (32:C28-C29; 46:14-20).   Figure 

12-22 and Figure 12-23 compare the two models in the region of interest.  The 

first shows the (almost identical) estimates on a logarithmic scale, while the 

second plots the “percentage of difference”  

1962

1962

% 200  diff
 
 
 

   
 12.28
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Figure 12-22:  Comparison of Atmospheric Models 

 

Figure 12-23:  Percent Difference Between Atmospheric Density Models 
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and absolute difference  

1962      

between the models.  In these equations,   is the density given by Eq. (12.8) and 

1962  is the density given by the model of the 1962 Standard Atmosphere.   

 We can see good agreement between the two atmospheric models, with 

the largest percentage differences tending to occur where the absolute difference 

is the smallest (high altitude).  At high altitude, the drag has a lesser effect on the 

trajectory.  At lower altitudes (where drag is much more pronounced), the two 

models match better (in terms of percentage of difference).  If nothing else, this 

pair of graphs should give you confidence the “simple” atmospheric model we’ve 

been using in all of our previous work is actually fairly good (at least below 125 

km)!  Of course, the real proof is to compare trajectories calculated with our usual 

(simple exponential) model and the 1962 model.  

 Figure 12-24 - Figure 12-26 show the nearly identical results for 

simulations using the two atmospheric models.   The altitude and velocity 

predictions never differ by more than 1.1 km and 100 m/s, respectively.  The 

deceleration predictions are likewise similar.  The two atmospheric models 

produce results within 0.5 g’s of each other for the entire trajectory.  The 

maximum difference is at the peak deceleration point (near 80 seconds after EI), 

with the 1962 Standard Atmosphere matching the actual value better.  (This is 

probably a lucky coincidence.) 

 The root mean square error values in Table 12-10 help quantify the 

accuracy of both simulations over the entire reentry.  For this particular example, 

the simple model yields slightly better estimates (when we use the RMS to rate 

“overall” accuracy).  The differences are so small, however, a minor change in an  

12.29
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Figure 12-24:  Geodetic Altitude with Two Different Atmospheric Models 

 

Figure 12-25:  Inertial Velocity with Two Different Atmospheric Models 
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Figure 12-26:  Deceleration with Two Different Atmospheric Models 

Table 12-10:  RMS Errors for Different Atmospheric Models 

 Simple Exponential 1962 Standard Atmosphere Model 

gdhRMS  3.63 km  3.64 km  

IV
RMS  241 m/s  261 m/s  

decelRMS  24.60 m s  24.71 m s  

 

aerodynamic coefficient or a slightly different entry profile could easily reverse 

the results.   In short, either model of the atmosphere is just as likely to give 

“better” results.   
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 By now, it should be obvious there is little to be gained by complicating 

our equations of motion with the 1962 Standard Atmosphere Model.  

Assumptions made when we originally derived the equations (point mass, 

relationship of drag to 2RV , etc.) as well as real-world  factors (imperfect 

aerodynamics, wind gusts, etc.) easily mask potential accuracy gains!  Other, 

more complicated, simulations with better dynamics equations might benefit from 

a better atmospheric model, but it appears we cannot. 

 Even with a far superior simulation, there is a bit of “magic” involved with 

modeling the atmosphere.  NASA, with full knowledge of the vehicle and 6-

degree-of-freedom modeling, had to “fudge” their best estimated trajectory by  

using an atmospheric model for 30  North in January (51:11).  Apollo 10 

reentered between 16  and 24 South in May! 

12.5.4 Improving the Gravity Model 

 The largest unmodeled gravity acceleration is due to the Earth’s 

oblateness.  When this “J2” effect is included, the gravity vector remains in the 

plane containing the radius and the north pole (or, equivalently, in the plane along 

the current longitude meridian) but is no longer directed at the center of the Earth.  

Instead, it has components opposite the radius vector ˆre  and perpendicular to the 

radius (along the ê  direction): 

ˆ ˆe g e  r rg g    


 

(The choice to attach the negative signs to the vector equation instead of the 

components is arbitrary.  As shown in Eq. (12.30), we follow the convention used 

in Chapter 3 when we defined gravity as simply ˆ( ) rg g r e 


.)  The components  

12.30
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in Eq. (12.30) are given by 

 
2

2
22

3
= 1 3sin 1  

2r

R
g J

r r

 
     

   
 

2

2
2

3
cos sin

RJ
g

r r
     

 
 

where   is the gravitational constant and 3
2 1.0827 10J x   for Earth (46:35, 36; 

53:52).  (We’ve shown 2g R   .)  Comparing these two, we can see rg  is 

approximately 1000 times larger than g .  This large difference is the very reason 

we have ignored g  until now.    

 In terms of the vehicle-pointing system introduced in Section 3.2.3, Eq. 

(12.30) can be equivalently written: 

2 2
ˆ ˆe g e  r x zg g   


 

Inserting this directly into Newton’s Second Law of Motion (Eq. (3.38)) and 

solving for the force equations in the same manner as in Chapter 3, we get three 

new equations of motion:  

sin sin cosR
r

D
V g g

m        

2
2cos cos sin cos

R
R

r

L V
V g g

m r         

2sin cos
cos cos tan

cos cos

R
R L V
V g

m r 
    
 

    

These replace Eqs. (12.4)-(12.6) and can be integrated along with Eqs. (12.1)-

(12.3) to simulate the trajectory with this “better” gravity model. 

12.31

12.32

12.33

12.34

12.35

12.36
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 The resulting trajectory is even closer to our original solution than when 

we tried a different atmospheric model; in fact, the two simulation results are 

virtually indistinguishable when plotted as functions of time.  The maximum 

difference is 280 m, 262 m/s, and 0.075 g’s for geodetic altitude, inertial velocity, 

and deceleration, respectively.  The root mean square error values in Table 12-11 

help quantify the accuracy of both simulations over the entire reentry. 

 For this specific example, the “better” gravity model did slightly better at 

predicting altitude but worse when it came to velocity and deceleration.  The 

differences between the results are so small they are easily overshadowed by other 

real-world factors including wind effects, seasonal variations in atmospheric 

density, etc.  Clearly, adding the J2 component of gravity does not improve the 

overall accuracy of the simulation.   

12.6   Summary 

 The equations of motion we’ve used (in one form or another) throughout 

this book can provide solutions accurate enough to study “real” problems.  Of the 

four “obvious” enhancements, none improved all three critical states (altitude, 

velocity, and deceleration) when the entire trajectory was examined using the  

Table 12-11:  RMS Errors for Gravity Models 

 Spherical J2 Included 

gdhRMS  3.63 km  3.57 km  

IV
RMS  241 m/s  253 m/s  

decelRMS  24.60 m s  24.69 m s  
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RMS errors.  (See Table 12-12.)  Where there did appear to be improvements, 

they were small and could be overshadowed by unmodeled real-world variations 

in the atmosphere or aerodynamics.  (For example, asymmetric ablation of the 

heat shield can cause the drag coefficient to change and could introduce an extra 

lift force.)   

 You may wonder how NASA predicted the splash-down points so 

accurately now that you’ve seen how sensitive the trajectory is to small changes 

in the aerodynamics.  The answer is simple – NASA didn’t have to get it perfect. 

The active control of the capsule drove it to the touchdown point.  Their a priori 

simulations only had cover the range of possible entries to insure the guidance 

would work.  Our simulations are accurate enough to meet that requirement.    

  

 

Table 12-12:  RMS Errors for Different “Improvements” to the Simulations 

  Improvement to Dynamics 

 Baseline Rotation Aero Atmosphere J2 

gdhRMS  3.63 km  3.21 km  4.48 km  3.64 km  3.57 km  

IV
RMS  241 m/s  187 m/s  814 m/s  261 m/s  253 m/s  

decelRMS  24.60 m s  25.40 m s 28.43 m s 24.71 m s  24.69 m s  
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12.7   Problems 

1. For a non-rotating planet, Newton’s Second Law of Motion can be written as 

 R Rd V
m L D mg

dt
  


    if lift, drag, and gravity are the only forces acting on the 

vehicle.  (Details can be found in Section 3.4.)  Show that substituting gravity in 

the form   

2 2

ˆ ˆe g e

ˆ ˆe g e  

r r

r x z

g g

g

 



  

  


 

and lift and drag vectors in their usual forms into this vector equation gives us 

the three scalar force equations:  

sin sin cosR
r

D
V g g

m        

2
2cos cos sin cos

R
R

r

L V
V g g

m r         

2sin cos
cos cos tan

cos cos

R
R L V
V g

m r 
    
 

    

Hint:  Make use of Eq. (3.61) to replace 
 R Rd V

dt


 and equate the vector 

components on each side of the equation.   
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Appendix A 

Apollo 10 Revisited 

 Chapter 12 examined Apollo 10’s reentry using dimensional equations 

(Eqs. (12.1) – (12.6)).  We can repeat that example to compare the relative 

accuracy of results using the non-dimensional Universal Equations (from Chapter 

9 or Chapter 10).  In case you’re wondering,  the dimensional equations are far 

easier to use in this particular situation (where the vehicle is well-defined and the 

bank history is given as a function of time) and would normally be the desired 

approach.  However, it’s a good opportunity to compare the results.        

 The Chapter 9 forms of the Universal Equations are the easiest to apply 

here since we’ll be assuming a single (constant) lift-to-drag ratio for the entire 

flight.  These equations are    

tan
dZ

rZ
ds

    

2 sin
1 cos tan

cos 2
L

D

Zu rdu C

ds C Z r

  
 

 
    
 
 

 

cos

cos

d

ds

 


  

A.1

A.2

A.3
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sin
d

ds

   

2cos cos
cos 1

cos
L

D

Z rd C

ds C uZ r

  
 

  
    
   

   

2

2

cos
sin cos tan

cos
L

D

Z rd C

ds C Z r

   
 

 
  
 
 

 

where 

2 2cosRV
u

gr


      

2
DC S r

Z
m




  

and 900r   for Earth.  To incorporate the bank profile given by Figure 12-1, 

we need to integrate  

cosR

dt r

ds V 
  

along with Eqs. (A.1) - (A.6) to get time.  r  and RV  are found by simultaneously 

solving Eqs. (A.7) and (A.8) during the integration. 

 Using the same initial conditions as those given in Chapter 12 (converted to 

non-dimensional values where necessary), these equations were integrated.  The 

results were then converted to back to dimensional values and compared to the results 

of the “baseline” solution in  Chapter 12.  The results for all six states are shown in 

Figure A-1 - Figure A-6.   As you can see, the results are very close  for all of the 

states.  The differences are easily within the accuracy of many of the assumptions.  

(See Chapter 12 for more details on the impact of errors in the drag coefficients, etc.)  

A.4

A.5

A.6

A.7

A.8

A.9
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Figure A-1:  Geodetic Altitude Comparison for Apollo 10 Reentry        

              

Figure A-2:  Longitude Comparison for Apollo 10 Reentry        



 

420 

 

Figure A-3:  Latitude Comparison for Apollo 10 Reentry 

 

Figure A-4:  Velocity Comparison for Apollo 10 Reentry 
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Figure A-5:  Flight-Path Angle Comparison for Apollo 10 Reentry 

 

Figure A-6:  Heading Angle Comparison for Apollo 10 Reentry 
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 We should have expected similar answers.  The Universal Equations are 

approximations to the dimensional equations, with the primary assumptions 

being:  

1
1

r
      

constantr r    

For Earth, these are both very good approximations. 

A.10

A.11
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Appendix B 

Capstone Project 

B.1  Project Set Up 

 A good way to tie together all of the material through Chapter 9 is with a 

capstone project.  (Material from Chapter 10 and may be used as well if desired.)  

This sample project, the Katcoan Science Probe, addresses the design of an 

atmospheric entry mission.  The main focus of the project is to practice using the 

material learned to “solve” and perhaps “optimize” an entry profile.  Then, with a 

solution (and there are many) in hand, the deceleration and heating profiles are 

examined.   

 Creativity is encouraged as is “bending the rules” to meet the mission 

requirements.  For example, some students have added a thrusting maneuver just 

before hitting the atmosphere the first time to slow the probe down.  (Others 

considered that “cheating” and opted to execute an atmospheric deceleration.  

Sadly, there was also the one student that relied on a 10,000g “dirt” deceleration, 

better known as a “splat” maneuver.)  

 One word of caution is in order; however, this project can eat up 

tremendous amounts of time.  Sometimes it’s because students have difficulty 
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finding a trajectory to meet the mission requirements.  But, more often than not, 

it’s because they spend so much time “tweaking” their trajectory to get the best 

performance for the mission.  In spite of this, the feedback on this project has 

been 100% positive.  Enjoy. 

B.2  The Katcoan Science Probe  

 The following pages are the project assignment in a format that is 

“almost" ready to hand out.  Feel free to photocopy those pages for use in class.  

For smaller classes, the project can be worked as a group project to get a “systems 

engineering” view of the tradeoffs experienced to maximize mission time.   
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The Katcoan Science Probe 
 
 

Background:  Researchers at the Imperial 
Science Academy of the planet Katco have 
been ordered to send a scientific probe to a 
backwards little planet known to the locals 
as “Earth.”   
 
The Katcoans are trying to design the 
mission so that the probe will dip into the 
atmosphere to collect samples.  The probe 
should arrive at Earth traveling no more 
than 15 km/sec (to avoid detection) and then 
spend as long as possible in the atmosphere below an altitude of 80 km.  At the 
end of the mission, the probe should be outside the atmosphere so that it can be 
recovered by a cloaked Katcoan science ship.   Your goal is to analyze/design this 
mission.  You must live with the dictated vehicle parameter values given below.   
  
Katcoan technology routinely creates probes with the following parameters:   
 

o 0.5DC   

o A reference area of 2100S m  

o Lift-to-drag ratios that range 0 6.6L DC C   without changing DC  or S  

o By law, all probes to primitive planets must have a mass of exactly 

1000m kg  

(Don’t ask me how or why -- it’s Katcoan technology!)  
 
The planned mission will be examined with two things in mind – deceleration and 
heating.  The pertinent questions are summarized below:   
 

 Deceleration:  What does the deceleration profile look like?  What is the 
maximum and where does it occur? 

 Heating:  What does the non-dimensional stagnation heat flux sq  look like?  What 

is the maximum and where does it occur? 
 Dynamics:  What does the flight profile look like?   

 



 

426 

Deliverables:   

1. A short “report” to be handed in  
a. Explain your approach to solving the problem 
b. Give your initial conditions (e.g., R

eV , e , e , etc.) and assumed 

values for the vehicle parameters (e.g., L DC C , S , m , etc. where 

appropriate) 
c. As a minimum, present graphs showing your solution to the trajectory 

for velocity, altitude, and flight-path angle (as they change with 
“time”). 

d. Present the graphs required for your particular assignment (from the 
table above). 

e. Discuss any “trends” you think are worth mentioning (such as “any lift 
in the range 0.5 2.0L DC C  will satisfy the mission”) and feel free 

to add extra graphs if they help. 

2. You will present your findings to the class during a short (10-15 minutes 
or so) briefing.  You can steal graphs from your report to make most of the 
briefing.  The goal of the briefing is to make sure everyone in the class 
understands how you solved the problem and what your major findings 
were. 

 

You will be evaluated on (in no particular order): 

1. Correctness in your methods 
2. Meeting the constraints (assuming they can all be met) 
3. Ease of understanding what you did 
4. Completeness of your results (summary, graphs, etc.) 
5. Neatness, “readability,” and clarity 
6. Special consideration will be given for these “separating factors:” 

a. Adding extra (but useful) plots to help explain any special features 
of your solution 

b. Going beyond the minimum [e.g., showing how selecting a 
mission for maximum time impacts the maximum deceleration 
experienced).  
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Answers to Selected Problems 

 

Chapter 2 

1a.   ˆ ˆ2.483 1.054  P Qr e e DU  


,   ˆ ˆ0.5331 0.06890  P Q
DUV e e TU  


 

b.   ˆ ˆ2.5047 1.0018  x yr e e DU 


, 

 ˆ ˆ ˆ0.4993 0.00050 0.19904  x y z
DUV e e e TU  


 

2a.  0.287 pr DU      

b.  0.982 e rad   , 1.10 e
DUV TU  

3.  2.22 ,  0.100,  0.524 ,  0 ,  0 ,  0 a DU e i rad rad rad rad         

4.  0 rad   

Chapter 3 

2.  

 

 

 

2

2
2

22

sin cos cos sin sin sin cos

cos cos 2 cos cos cos cos cos sin sin sin

cos cos tan 2 sin cos tan sin sin cos cos
cos

R

R
R R

R
R R

V g r

V
V g V r

r

rV
V V

r

       

            

           




 




   

     

    






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Chapter 4 

1a.  
2 22

0 0
0 0 sin ,   sin ,  cos

R
R R Rr rV

r V V g V g
r r r

   
            

     
   

 b.  For 0  , the third equation above becomes 
2

0 0R g r
V

r
 .  Comparing this 

to the two-body equation for circular velocity, you can see 2
0 0g r  . 

2.  (Simpler option): 

sin sin cos sin cos

sin cos cos sin sin

cos cos

x

y

z

c

c

c

    
    

 

 

  



 

3.  Starting with Eq. (4.31): 

 

 

  

22
0

0

2

2 0
0

2

0
0 0 0

2

0
0 0 0

sin
2

sin

2 sin

2 sin

R
D

decel v

R

rC S V
a g

m r

r
V g

r

r
g r T g

r

r
r g T g

r

 

 

 

  

    
 

    
 

    
 

    
 

 

For thin atmospheres 0 1
r

r
 .  Also, 2sin 1 cos     where the sign is 

determined by the sign of  .  Thus, we get 

  2
0 0 0

2
0 0 0

2 1 cos

2 1

decel v
a r g T g

r g T g

  

   

  

  
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Starting with Eq. (4.32): 

 

   

   

 

22 2
0

0

2
22

0

2
2

0

0 0
0 0 0

0 0 0

cos
2

1

2
2

2 1 2

R R
L

decel L

R
R

L
D

R
RL

D

L

D

L

D

rC S V V
a g

m r r

V
C V g

C r

C V
V g

C r

g r TC
g r T g

C r

C
r g T g T

C

 

 

 

 

  

       
   

   
      

  
   

      
  

  
     

   
 

    
 

 

 

Chapter 5 

3.  For skip entry,   and   are related by: 

cos cos e
e

L

D

C
C

 
 


 

  
 

 

To find a maximum, minimum, or inflection point: 

*sin
0

L

D

d
Cd

C





 
  
 

 

Solving gives * 0  .  To prove this is a maximum (i.e., a “minimum” in 

altitude since large   means low “physical” altitude), take the second  
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derivative: 

*

*

2

2

cos 1

L L

D D

d
C Cd

C C
 

 

 






 
 
      
   

 

For positive lift, 
*

2

2
0

d

d  






 , so this point is a maximum for  . 

6.  0 1 2 3

1 1 47
1,  ,  ,  

6 24 4752
c c c c     

7.  Answers may vary, but this is a typical plot: 
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8.  Part a.  Consider the two cases 

shown in the table to the right.  

The pair of figures below compare 

the solutions from numerically 

integrating Eq. (5.78) with the 

closed-form solutions given by 

Eq. (5.80).   

Part b. The next figure plots the  

 

“constant” 
0

1 1
1

2
L

D e

C

C r T 
 

  
 

 for 

both cases.  Notice how the curves 

asymptotically approach L DC C .  

The fact that this term is dominated 

by the lift-to-drag ratio is what 

enables the assumption of “constant” 

to work.   

Case #1 Case #2 

0.51eT   0.60eT   

0.15 radianse    0.10 radianse    

0.2L DC C   0.2L DC C   

0 910,r   410e
  
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9.  A more than sufficient answer that covers the entire range of entry angles is 

given in the plots below.  Two other lift-to-drag ratios are plotted to help 

illustrate the effect of changing the lift. 

A
lti

tu
d

e 
of

 M
a

x D
e

ce
l, 
 *

M
a

x 
D

e
ce

le
ra

tio
n,

Flight-Path Angle at Entry, e (radians) Flight-Path Angle at Entry, e (radians)

A
lti

tu
d

e 
of

 M
a

x D
e

ce
l, 
 *

M
a

x 
D

e
ce

le
ra

tio
n,

Flight-Path Angle at Entry, e (radians)Flight-Path Angle at Entry, eFlight-Path Angle at Entry, e (radians) Flight-Path Angle at Entry, e (radians)Flight-Path Angle at Entry, eFlight-Path Angle at Entry, e (radians)  

Chapter 6 

1.  Results may vary slightly (especially with Loh’s solutions) depending on the 

initial guess values and initial altitude selections. 
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Chapter 7 

1.  

 

   

 

 

2

0 0 0 0

0 0
0 0

3
2

0 0

= 
2

2 = 2
2

21
= 2

2

= 2 2

R
R D

D

C S Vd
V

dt m
C Sd

g r T g r T
dt m

g r dT
g r T

T dt
dT

g r T
dt





 

 









 

Inverting both sides gives the desired result:  

3
2

0 0

1 1

2 2

dt

dT g r T 
   

4.  Since 0e   and sin 1e  , we can write the true statement: 

sin sine e     

Recognizing 3 6e e , we can divide the left side by 3e  and the right side by 

6e  and still have an inequality: 

sin sin

3 6
e e

e e

  
  

Finally, if we multiply by 
3

2
eT : 

* *

3
2 3

2
sin sin

3 6
e e e

e

sw

T
T

e e

q q

  


 
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7.  The heat flux graph is shown here.  This corresponds to the dynamics graphed in 

Problem 1 of Chapter 6. 

 

10.  An example is shown below for 80e     and 0 910r  . 
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Chapter 8 

2.  Starting first with the Loh’s equation given by Eq. (6.36) and setting f e  : 

 

0

0

cos 1

cos
1 1

1 1 1
2

cos 0
cos

1 1
1 1 0

2

cos cos

eL
e

D f

f

e

f

e
f

f

f e

C

C

r T

r T


 





 






 

 
   

 
         




 
   

 



 

which gives the expected result f e   .  Turning to the other of Loh’s 

equations, given by Eq. (6.34), and setting 1
2fT   and f e    

 

 

0

0

2
ln

1 1
1 cos

 2

41
ln

12 0 cos
 

41
ln

2

f ef

e L
f

D f f

e

Le
f

D f

e

e L

D

T

T C

C r T

CT
C r

T C

C

 


 




 



  
        

 

 
 

  

 
    
 
 

 



A N S W E R S  T O  S E L E C T E D  P R O B L E M S  

437 

and solving: 

41
exp

2
e

e

L

D

T
C

C



 
 
    

  
   

 

Proving the first-order solution reduces to this same expression is trivial and 

won’t be duplicated here. 

5a.  3.69eT  , b.  0.977
overp er r  

Chapter 9 

5.  Given the definition  exp
2 2
p D p pD

p s p

SC r rSC
F r R

m m


 

  

 
        

 
, we 

can form the ratio between the “high” and “low” values: 

 exphigh high

high low

low low

p p

p p
p p

F r
r r

F r
      

For thin atmospheres, 1high

low

p

p

r

r
 .  Using this fact and the given information on 

the range of pF , we can solve for  high lowp pr r : 

  1

1 1 0.065
ln ln 10.8

0.14 0.295
high

high low

low

p

p p
p

F
r r km

F km 

              
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7.  A graph of the overshoot boundary is shown below.  A line at  

2
2

cos
Re

e

u
V


   helps us to read the chart at parabolic entry.  The graph 

easily shows 0.015
overpZ   as the point of interest.  You must still convert that 

to an altitude (for Earth) and compare it to the undershoot value of 

0.295
underpZ  .  (Problem #5 from this chapter solves a similar problem for a 

strictly ballistic problem.  In the problem we find that corridor width to be 

10.8 km.)  A question you should ask yourself – because it makes a great test 

question – is “Can can I expand the corridor even more by using positive lift 

to change the undershoot boundary?” 
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Chapter 10   

2.  2k  was defined just above Eq. (10.68) as 2
2 1k rk .  Replacing 1k  using Eq. 

(10.56), we have  2 2
2 sink r v  .  Using Eq. (10.26) to replace v  and 

simplifying: 

2
2 2
2

2

sin

sin

R

R

V
k r

gr

r
k V

gr

 

 

 
  

 



 

For thin atmospheres, constantgr   and 
gr

r
 has units of velocity and can 

be used as a scaling factor to “non-dimensionalize” a velocity.  Since sinRV   

is the (dimensional) sink rate, dividing it by 
gr

r
 creates a non-dimensional 

form of a sink rate. 

6.  The first plot below shows the altitude versus velocity curves are, for all 

intents and purposes, identical.  The second shows some difference in the 

commanded lift, but not enough to significantly alter the trajectory.  The final 

plot helps explain why there is so little difference – the vehicle has dropped to 

10% of its initial kinetic energy ( 0.1
e

v
v  ) by the time the control laws 

diverge.  Recalling that lift is proportional to velocity squared (or proportional 

to kinetic energy), you can see that the difference, while growing, has less and 

less of an effect on the motion.  (A log scale was used on the x-axis of the 

final plot simply to “blow up” the region where the results differed.)   
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e

v
v 

e

v
v

e

v
ve

v
v 

e

v
ve

v
v  

Chapter 11 

1.  Begin by expanding out the mean motion and simplifying:  

   
1

2 1
2 21

2 2 2

2 2

2 1 cos2 1 cos
I I

a e ina e i a
V V

  


       

Next, approximate the velocity by its initial periapsis value using the vis-via 

equation 

 
 

0

0

0 0

1 1 112 2 222 12 1

1
pI

p
p p

a r e
V

r a r a a e

 
                                       
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and replace one of the velocities in the equation.  At the same time, replace 

the inclination with its initial value.  This gives: 

    

 

0

0

0

1
2 1

1 2
2 2 2 0

2 1 1
2 2

0

0 0

2 1 1 cos2 1 cos

1

1

2 1 cos

2 cos

I

I
p

I
p

p

I
p

a e e ina e i a
V e

V
a e

a e i

V

r i

V

 














         
             






 

This is the desired result. 

4.  For small changes in the orbit, we can assume the denominator is almost a 

constant.  (The only changing value is F , and it’s a constant close to 1.)  

Thus, we can take the ratio between the “higher” orbit and the “lower” orbit to 

get: 

 1
0

0

1

1

h
higher

h
lower

t e

t e

 












 



 

442 

Realize  1
0 0 1

h he e
  


   and simplify: 

 

 

1
0

0

1
0

0

0

0

1

1

1

2.7

h
higher

h
lower

h

h

h

h

t e

t e

e

e

e

e
e

 



 
































 

Chapter 12 

1.  After equating, the three component equations are: 

2 2cos
sin cos cos cos sin

R
R R

r

V L D
V V g

r m m

            

 

 

2

cos cos sin cos cos sin

                     cos cos sin tan cos sin

                     cos sin cos sin sin cos cos

R R R

R

V V V

V

r
L D

m m

       

     

      

 

 

   

  

 

 

 

2
2

cos sin sin sin cos cos

                     cos cos cos tan sin sin

                     cos sin sin sin cos cos sin

R R R

R

V V V

V

r
L D

g
m m 

       

     

      

 

 

    

  

 



A N S W E R S  T O  S E L E C T E D  P R O B L E M S  

443 

The second and third component equations combine to gives one force 

equation  

2sin cos
cos cos tan

cos cos

R
R L V
V g

m r 
    
 

    

and another equation we’ll need:  

2

cos sin cos sin cos sin cos sin
R

R R V L D
V V g

r m m                 

Combining this latter equation with the first component equation yields the 

other two force equations: 

sin sin cosR
r

D
V g g

m        

2
2cos cos sin cos

R
R

r

L V
V g g

m r         
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