Semiconductor laser wish list MTO Symposium

Dr. Henryk Temkin San Jose, CA March 5-7, 2007

Report Documentation Page					Form Approved OMB No. 0704-0188		
Public reporting burden for the col maintaining the data needed, and c including suggestions for reducing VA 22202-4302. Respondents sho does not display a currently valid (lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	o average 1 hour per response, inclu ion of information. Send comments arters Services, Directorate for Info ny other provision of law, no person	ding the time for reviewing inst regarding this burden estimate mation Operations and Reports shall be subject to a penalty for	tructions, searching exis or any other aspect of th s, 1215 Jefferson Davis J failing to comply with	ting data sources, gathering and is collection of information, Highway, Suite 1204, Arlington a collection of information if it		
1. REPORT DATE 05 MAR 2007		2. REPORT TYPE N/A		3. DATES COVERED			
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER		
Semiconductor laser wish list					5b. GRANT NUMBER		
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) DARPA					8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)		
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
13. SUPPLEMENTARY NO DARPA Microsyst Presentations, The	otes ems Technology Syn original document o	nposium held in Sa contains color imag	n Jose, California es.	on March 5	-7, 2007.		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	CATION OF:	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 21	RESPONSIBLE PERSON		

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

Semiconductor laser wish list

Today

- Wide wavelength range and tunability (L-PAS, SAIL)
- Efficient mid-IR operation (EMIL)
- Scalable Power

Tomorrow

- Really small lasers
- Really fast lasers with
 engineered RF response
- Lasers and non-linear waveguides

Elytica

Quantum Cascade Laser

Tuning is a big deal

Laser Photoacoustic Spectroscopy (L-PAS)

Quantum Cascade Lasers enable development of new CWA sensors:

- Sub-ppb sensitivity (order of magnitude improvement over SOA)
- High specificity with false alarm rate reduced to < 10⁻⁶
- Response time reduced from ~ 1 min to ~ 10 seconds

Fundamental Limits for MWIR Lasers in Wall-Plug Efficiency (WPE)

Efficient Mid-Wave Infrared Lasers (EMIL)

Program Objective

- Breakthrough in wall-plug efficiency for lasers in the critical mid-wave infrared bands
 - Band IVa (3.8 4.2 μm)
 - Band IVb (4.5 4.8 μm)

DoD Benefits

- Reduce laser size/weight/power
 - Enable IRCM systems on smaller, vulnerable platforms (e.g., rotorcraft, UAVs)
- IRCM with higher modulation rates than SOA
 - Counter emerging threats (e.g., FPAs)

Slide 8

MJR1	BAE LAMBS
	51 optics
	4 resonators
	Mark J. Rosker, 11/23/2005

Raman beam combining and cleanup

1. Raman beam cleanup

Converts a low quality pump into a diffraction limited beam

- 2. Combine multiple pumps via self imaging in multimode waveguide
 - Incoherent power combining of N oscillators phase control not necessary
- 3. Silicon as the active material
 - High gain coefficient \rightarrow compact lasers and amplifiers
 - High thermal conductivity → power scaling, excellent cooling
 - High optical damage threshold \rightarrow high pulse energy
 - Low dn/dT and elasto-optic coefficient \rightarrow high beam quality

Simulation of Amplification Via Self Imaging in Multimode Si Waveguide

DARP/

Power evolution

Si and conventional Raman crystals

UCLA

Property	Silicon	Ba(NO ₃) ₂	LilO ₃	KGd(WO ₄) ₂	CaWO ₄
Optical damage threshold (MW/cm ²)	~1000-4000	~400	~100	-	-
Thermal conductivity (W/m-K)	148	1.17	-	2.6 [1 0 0] 3.8 [0 1 0] 3.4 [0 0 1]	16
Raman gain (cm/GW)	20 (1550nm)	11 (1064nm)	4.8 (1064nm)	3.3 (1064 nm)	-
Transmission Range (μm)	1.1-6.5	0.38-1.8	0.38-5.5	0.35-5.5	0.2-5.3
Refractive index	3.42	1.556	1.84	1.986 - 2.033	1.884
Raman shift at 300K (cm ⁻¹)	521	1047.3	770 822	901 768	910.7
Spontaneous Raman linewidth (cm ⁻¹)	3.5	0.4	5.0	5.9	4.8

- 10x higher optical damage threshold
- 100x higher thermal conductivity
- High Raman gain, excellent large crystals

Semiconductor AlGaN Injection Lasers (SAIL)

Objective

 Develop AlGaN injection lasers emitting in the ultraviolet; λ=340-280 nm.

Impact

 Stand-off bio-agent detection; Bio-LIDAR

Key technical goals

- •Reduce dislocation density of AIGaN structures by three orders of magnitude, to less than 10⁷/cm²
- •Increase p-type doping in AlGaN to support current densities of 10 kA/cm², to 1 x 10¹⁸ cm⁻³
- •Increase luminescence efficiency of AlGaN active layer to *IQE~60%*
- •Demonstrate stable laser operation

OUTH CAROLINA.

SAIL – Pulsed Lateral Overgrowth

State of the Art

- Strong injection locking can overcome the fundamental limit of relaxation oscillation
- Maximum enhanced resonance frequency under optical injection:

$$\tau_p \cdot f_{R,\max} = \frac{1}{4\pi} \sqrt{R_{\text{ext}}} \begin{bmatrix} \tau \\ R \end{bmatrix}$$

- *p*: photon lifetime
 *R*_{ext}: ext. injection ratio
- This "time-bandwidth product" provides a guideline for device optimization

Ultra-high injection ratio and near positive detuning edge

Optical Cavity Engineering For High Speed

• "Optical doublet" cavity

•Similar to high-order filter theory

-"Chebyshev" cavity

How can this concept be implemented in an integrated structure?

Calculated dispersion relation

Plasmons confined to nm thick layers propagate through μ m-length distances BUT: unknown loss-confinement relationship!

What does it take to make a small laser?

 $g_{th} = \frac{1}{\Gamma} (\alpha + \frac{M}{L})$ *M* is the mirror loss (dB), Γ is the modal confinement factor, and *L* is the cavity length

seni $R_{th} \sim \frac{1}{Q} \frac{V_c}{V_m} + (1 - \beta) \frac{N_{th} V_c}{\tau_r} + \frac{N_{th} V_c}{\tau_{nr}}$

Prof. Hooman Mohseni Northwestern

Need higher gain and new laser concepts

Lithographic placement and selective growth of GaN nanowires Defect-free structures for d<100 nm!

UNM, Prof. Steve Brueck

Lasing GaN nanowire, UNM and Sandia NL, L=5 µm

Young Faculty Award (YFA)

126 submissions from 72 Universities, from Harvard College to Texas Woman's. 24 Awards at \$150,000 each

Prof. C.W. Wong, Columbia

Waveguide coupled photonic cavity devices with high Q~ 247,000 and, at the same time, tightly confined mode with $V_m \sim (\lambda/n)^3$ have been obtained.

These Si-based structures show cavityenhanced optical bistability at low input powers, ~ 1mW, and thermal TPAinduced free-carrier dispersion. This result, attributed to suppression of radiative modes and excellent fabrication procedures, opens the possibility of Q~1 x 10⁶.

 Cavity radiation against input power vs detuning. Bistable contrast increases with larger detuning but at a higher threshold.
 a) 3D nonlinear FDTD bistable

simulation.