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INTRODUCTION

Radiation therapy (RT) is a very effective treatment for early stage cancer but not for large tumors nor
for distant micrometastatic disease. Recently, immunotherapy (IT) has gained in popularity by finding some
patients have specific T cell response to prostate tumor-associated antigens such as prostate specific antigen
(PSA) and this can be boosted by vaccination. Yet, IT given alone is not a very effective clinical option in
prostate cancer. Combining IT with RT is an attractive concept as it might improve the therapeutic effects of
both treatments. There are studies, including our own, showing that radiation up-regulates the expression of
MHC class | and immune co-stimulatory molecules. We proposed that radiation generates these “danger”
signals and modulates the tumor microenvironment. We were the first to show that radiation inhibits dendritic
cell (DC) endogenous processing of MART-1 antigen but enhances exogenous MART-1 peptide presentation.
We hypothesized that the inhibitory effect of radiation is due to inhibition of 26S proteasome function, which is
critical for the generation of immunopeptides. This large multi-subunit protein is composed of core 20S and
19S regulator structures. IFN-y treatment of cells causes replacement of constitutive 20S enzymes subunits
with LMP7, LMP2, and MECL-1 and the 19S regulator with an 11S complex, forming an immunoproteasome
that favors cleavage of proteins into peptides better able to bind MHC class | molecules. However, most cells
do not express immunoproteasome with the notable exception of DC. If tumors express different epitopes to
the once that DC express, then the responses that are generated are unlikely to be effective. In this proposal,
we will examine how RT affects the immunological landscape of anti-tumor immunity by altering antigenic
epitope presentation by DC and tumor.

BODY

Our hypothesis is that radiation affects proteasome function and modifies peptides presented by DC
and tumor. Our previous study on MART-1 system has shown that irradiated DC presented exogenous peptide
more efficiently and antigen that was processed endogenously less efficiently. Therefore irradiation skews the
immune system. One obvious question was whether or not this applied to prostate tumor antigens. To examine
PSA protein processing and presentation, we had to develop a humanized mouse model. We placed PSA
within an adenoviral delivery vehicle to express it within DCs and used these DCs to immunize transgenic,
humanized C57BL/6 (C57BI/6-K"2.1), that express the chimeric mouse/human class | MHC, which will allow us
to examine the responses to human PSA epitopes that are clinically relevant. Irradiated DCs transduced with
AdVPSA were compromised in presenting PSA within the context of HLA-A2/Kb. T cell stimulation as judged
by IFN-y ELISPOT assay was decreased in mice injected with irradiated DC. We were also able to show that
the exogenous antigen presentation pathway was differentialy affected. PSA-3 peptide-pulsed DC showed
enhanced IFN-y and IL-4 expression following 10Gy radiation treatment. This clearly indicates that it is not a
guestion of cell viability, but an alteration in DC function following irradiation. More importantly, it shows that
our observation is not an artifact of the presentation of melanoma antigen, but it is also highly relevant within
the context of prostate tumor associated antigens.

Given the stark contrast between radiation effects on endogenous vs exogenous PSA presentation, we
asked whether irradiation affects antigen uptake and degradation by DCs. In order to dissect these specific DC
functions we utilized the well-defined ovalbumin (OVA) system. Bone-marrow dendritic cell cultures (C57BI/6)
were mixed with either OVA-FITC (uptake) or DQ-OVA (degradation). We noticed that the uptake (Figure 1)
and degradation (Figure 2) of the ovalbumin antigen was not adversely affected in irradiated, mature dendritic
cells. However, immature dendritic cells appeared to have their propensity to degrade antigen enhanced when
they had received radiation prior to antigen exposure (Figure 2C). The degradation of DQ-OVA by both mature
and immature DCs was inhibited in the presence of the proteasome inhibitor MG132 (40uM) (not shown). This
is important because it indicates — against general wisdom- that the proteasome is involved in the degradation
of exogenous antigen in addition to the endogenous pathway. It also implies that the differences in radiation
effect on exogenous and endogenous pathway of antigen presentation may be mediated by elements other
than changes in proteasome function. Finally, it seems that radiation may affect dendritic cells maturation.
Overall, we conclude from these experiments that the effects of radiation on antigen cross-presentation by
dendritic cells in vitro are encouraging with respect to prostate anti-tumor immunity after local radiotherapy.
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Figure 2: 10Gy radiation given to mature DC before or after antigen exposure does not greatly impact the rate of
antigen degradation. DQ-OVA (Molecular Probes) is a highly self-quenched conjugate of OVA. DQ-OVA
trafficking to the lysosomes. DQ-OVA is highly saturated with BODIPY which start to fluoresce once they
are sufficiently apart such as during proteolytic degradation. With time cells degrade DQ-OVA and become more
fluorescent. A) Initially, the degradation of antigen by immature and mature DC is comparable, yet immature DC
plateau out earlier than mature DC. C) 4-day (immature) and B) 7-day (mature) old bone-marrow derived
dendritic cells were harvested and loaded with DQ-OVA for 20mins at 37°C (10ug/ml). Some samples were
irradiated with 10Gy before or after DQ-loading. Degradation as increase in fluorescence was monitored by
FACS analysis in 20mins intervals.
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Figure 3: A) OT-I splenocytes cultures. Splenocytes from OT-I mice
were enriched for T cells over Nylon wool and incubated with bone-
marrow derived dendritic cells (C57BI/6) that had been pulsed with the
OVA-| peptidess7_oes4 (SIINFEKL) at 25uM for 5h. Some BM-DC had
been irradiated with 10Gy prior to pulsing. Responders and
stimulators were mixed at a ratio of 2:1, 10:1 or 100:1 in round-bottom
96-well plates. Controls included OT-l splenocytes mixed with
unpulsed BM-DCs. The top panel shows OT-I splenocytes cultures in
the presence of aCD3, aCD28, PHA or left alone. All pictures were
taken after 24h of culture. OT-I cells proliferate and produce IL-2 in
response to aCD3, aCD28, PHA and strongly to a combination of
aCD3/aCD28 (not shown). However, peptide-pulsed BM-DC elicit
even stronger activation of these cells. B) Importantly, irradiated,
pulsed BM-DC are equally potent in inducing OT-T cell activation.

The question of how antigen uptake
and degradation might translate into changes
in antigen cross-presentation was addressed
in the following set of experiments using
CD8+ T-cell hybridoma cells, B3Z, or nylon
wool-enriched splenocytes from T cell
receptor transgenic mice, OT-l (C57BIl/6
background) as responders. Both responders
are specific for the chicken OVAys7 264
epitope presented within H-2K". B3z
(N.Shastri) utilize a reporter construct with the
B-galactosidase gene (lacz) under the control
of the NF-AT element of the IL-2 enhancer.
Appropriate T cell receptor engagement
triggers IL-2 production, accumulation of p-
galactosidase and hence blue X-gal staining.
The uptake of exogenous antigen was
imitated by pulsing the dendritic cells with the
OVA-I peptid6257_254 (S”NFEKL)
Engagement of the OVA-specific T -cell
receptors by mixing the responders with
peptide-pulsed dendritic cells led to strong
activation as measured by IL-2 production, p-
galactosidase activity (B3Z, Figure 4) and
proliferation (OT-l T cells, Figure 3).
Irradiation of BM-DC prior to ovalbumin
peptide pulsing somewhat reduces their
ability to present antigen to B3Z or to OT-I T
cells. But overall the effect of radiation on
antigen presentation appears to be only a
minor one and the question remains as to
whether these differences have any
importance at the physiological relevant (l.e.
much lower) antigen concentrations. Overall,
we conclude from these experiments that the
effects of radiation on antigen cross-
presentation by dendritic cells in vitro are -if
any- minor.
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Figure 5: Radiation causes an increase in cell surface markers in
dendritic cells. BM-DCs from 8-day bone-marrow cultures of C57BI/6
mice were irradiated with 10Gy and incubated for 72h prior to staining for
MHC Il and CD86 and FACS analysis. Dead cells were excluded with
7AAD (gray = unstained; black line = 0Gy; dotted line = 10Gy). The
expression of MHCII and CD86 increased following XRT and/or a loss in
the low staining population occurred. Double positive cells increased from
40% to 70% as result of radiation treatment.

Our main goal was to develop
PSA-expressing murine tumor lines to
determine if tumor rejection is affected.
An important aspect of this is the
stability of MHC class | molecules, to
be addressed in aim 1. Previously, We
examined the effect of RT on MHC
stability using the classic T2 cell model,
the hypothesis being that radiation
stabilizes MHC class | expression on
cells. Indeed we demonstrated that
irradiation  with  2Gy and 10Gy
appeared to increase the levels of
stable MHC | complexes over a 24 h
period suggesting a stabilization effect
by radiation. When studying the
radiation effects on the dendritic cell
membranes we also observed MHC
class | upregulation (shown in our
original proposal). We have taken this
one step further and we are now able
to report that surface molecules other
than MHC | are also increased
following radiation, e.g. MHC class Il
and CD86 (Figure 5). All of this
indicates to us that the radiation-
induced changes maybe membrane-
associated. In fact, this ties into our
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previous observations on radiation effects on membrane lipids, which are important for signaling proteins and
receptors and hence cellular responses to radiation. Radiation enhanced the clustering of lipid rafts but further
studies will have to determine exactly how this translates to effects further downstream.

We focused most of our efforts on the generation of TRAMP cells stably expressing hPSA. We had
previously prepared both TRAMP C1 and TRAMP C2 with the pSecTag2 construct containing hPSA
(Invitrogen). However any attempt to detect hPSA in vitro in any meaningful amounts failed (not shown). As a
backup strategy we used a retroviral system to introduce hPSA, again without any PSA production. Also, when
injected in vivo, PSA could not be detected. The fact that we could not detect PSA production by these cells
forced us to alter our approach regarding radiation responses and the ratio of constitutive proteasomes to
immunoproteasomes. As partial fulfillment of aim 2, we examined the radiation effects on proteasome function
of the parental cells before inserting PSA. As expected and as shown in our previous report, radiation
treatment of TRAMP C1 decreased proteasome chymotrypsin-like activity by ~40% by 10Gy. However, we
decided not to pursue this question further until we can confirm the expression of hPSA in these cells.

In light of absent hPSA detection we
changed our approach to address aim 4 and used

in vitro re-stimulation

TRAMP cells stably expressing the human HLA- 140 E ;:2:0'
A2.1 gene and examined if responses to other 120 | W steap
prostate tumor-specific antigens that are known to roo | @

have human homologs would be processed by
murine TRAMP cells and expressed in the clinically
relevant context HLAA2.1. We looked for prostate
stem cell antigen (PSCA), six-transmembrane
epithelial antigen of the prostate (STEAP) and
prostate-specific membrane antigen (PSMA). We
used these humanized prostate cancer cells 0
(TRAMP C1/2.1) and repeatedly injected 1x10° control | TRAMPCT-AZ - TRAMPCI-AZ 206Gy
cells into C57BI/6-K"2.1 mice and measured tumor- in vive immunization
specific immune responses by IFNy-ELISPOT. To | FIGURE 6: Irradiated TRAMP C1/2.1 are equally
address the issue as to whether radiation affect | immunogenic to non-iradiated tumor cells in male
tumor immunogenicity, the hierarchy of antigens C57BI/6-K 2.16 mice. Transgenic mice were vaqcmat_ed
and the immune-responses that ensues we s.c. with 1x10 irradiated or control tumor cells, twice with
. . a 5-day interval. Splenocytes were analyzed by IFNy-

compared responses to 20Gy-irradiated tumor cell .

. . . . ELISPOT. Data are mean = SD of two independent
vaccine with responses seen to sham-irradiated experiments.
tumor cells. Overall, control mice had Ilow
background in IFNy-responses to the panel of prostate tumor-specific HLA-A2 antigenic peptides, apart from
PSCA (Figure 6) but responses increased significantly upon tumor vaccination. There appeared to be no
significant benefit or detriment from irradiating the tumor cells prior to vaccination, apart for anti-PSCA
responses, which were increased.

80 -

60

40

IFNy spots / 10° splenocytes

20

KEY RESEARCH ACCOMPLISHMENT

a Development of PSA-TRAMP C1, PSA-TRAMP C2 -100% completed.
Study of the radiation effect on MHC class | expression extended to MHC Il and CD86 upregulation.
Study of radiation effects on proteasome and immunoproteasome function — 50% completed.
Study of radiation effects on antigen uptake and degradation by DCs — 100% completed.
Radiation studies on antigen cross-presentation using OVA-specific T cells as a surrogate antigen.
Radiation effects on antigen hierarchy involving prostate-specific antigens in vivo.
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REPORTABLE OUTCOMES

o Schaue D., Comin-Anduix B., Ribas A., Zhang L., Goodglick L., Sayre J., Debucquoy A., Haustermans
K., and McBride W. H. (2008): T-Cell Responses to Survivin in Cancer Patients Undergoing Radiation
Therapy. Clin Can Res 14, 4883-4890.

o Kachikwu E.L., Schaue D., Liao Y-P., Economou J. McBride W.H.: Naturally-occuring Tregs and their
role in radiation-induced immune suppression in murine prostate cancer. In: Proceedings of the
American Association for Cancer Research in San Diego, CA, 2008.

O Schaue, D., McBride W.H.: lonizing radiation does not compromise the cross-presentation of antigen
by dendritic cells. In: Proceedings of the American Association for Cancer Research —Tumor
Immunology in Miami, Fl, 2008.

CONCLUSIONS

Our primary focus this year was to develop our hybrid murine-human prostate tumor model further. The
generation of murine prostate tumor cells expressing the human form of PSA is completed but initial results
regarding the production of this protein within the murine system proved challenging. We therefore followed an
alternative approach using the same parental murine prostate tumor cells but with a human MHC class
molecule which allowed us to monitor responses to prostate tumor specific antigens other than PSA that are
relevant in the clinical settings.

We were also able to show that radiation does not substantially impact the uptake and degradation of
antigen by mature dendritic cells. However, immature dendritic cells appeared to have their propensity to
degrade antigen enhanced when they had received radiation prior to antigen exposure. This is important
because the state of maturation is known to affect the composition of proteasomes, and hence the antigen
repertoire and might therefore be differentially targeted by radiation. We have also reasons to believe that
radiation affects antigen presentation independently from effects on proteasome antigen degradation, e.g. by
inducing cellular maturation. Additionally, we observed increases in cell surface markers on irradiated dendritic
cells such as MHC 1l and CD86, which should further add to their functional integrity. Overall, we conclude
from these experiments that the effects of radiation on antigen cross-presentation by dendritic cells in vitro and
in vivo are encouraging and give us no reason to believe that radiotherapy is not a good candidate to be used
in conjunction with cancer immunotherapy.

APPENDIX — see publication attached.
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T-Cell Responses to Survivin in Cancer Patients Undergoing
Radiation Therapy

Dérthe Schaue,’ Begonya Comin-Anduix,? Antoni Ribas,? Li Zhang,® Lee Goodglick,®
James W, Sayre,* Annelies Debucquoy,® Karin Haustermans,® and William H. McBride'

"':Abst_ract .
i enhances or diminishes tumo%'wspec:flcT-ceil reactivity. This is important i 1mmunothezfapy is to RO

Purpose The goal of this study was t0 determlne Ef radsatton therapy (RT) of human cancer '- :

be hafnessed to improve the outcome of cancer radigtherapy.

- .Expenmental Design: Lymphocytes were jsolated from colorectai cancer. (CRC) patlents:' '_
o befozre, during, and after presurgical chemoradiotherapy. Similar samples were taken from pro- - il
" ‘$tate cancer patients receiving standard RT.The level of CD8" Teells capable of bsndlng tetramers Sl

' :.for the tumor—assoczated antigen survivin, which is overexpressed in both cancer types, was ..

“enumerated in HLA-A"0201 patient samples. CD4*, CD25"9" Foxp3* cells were also enume-< . -7
_.rated to evaluate therapy-induced changes in Treguiatory cells. For CRC patients, most of whom

were enrolled in a clinical trial, pathologic response data were available, as well as blopsy and .

i 3'resectton specimens, which were stained for cytoplasmic and intranuclear survivin,

“."Results: Survivin-specific CD8":T Eymphocytes were detected in the penpheral b%ood of :
“CRC and prostate cancer patients and increased atter therapy in some, but not all,” patlents b
-'-'!ncreases were more common in CRC patignts whose tumor was downstaged after chemo-" ",
_'radxotherapy B:opsy specimens from this cohort generally had higher nuclear to cytoplasmic -

- survivin expressmn T,egugam,y ceils genefally mcreased in the csrcuiatlon foilowmg therapy but onEy :

in CRC patients, .

s Conchston This study mdlcates that RT may increase the !lkelzhood of some cancer patients

B : respondmg to immunotherapy and lays a basis for future =nvestlgat|on5 aimed at combrnzng L -

- radiation and lmmunotherapy

Management of cancers of the rectum and the prostate relies
heavily on radiation therapy (RT), but later-stage disease is
often hard to control. Harnessing the immune system to assist
in the elimination of cancer cells within, and outside, the
radiation field could be beneficial in such situations but this
will require knowiedge of the effects of RT on tumor-specific
immunity in humans, about which little is known, Preclin-
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ical data are not very helpful, suggesting consequences rang-
ing anywhere from favoring tolerance to enhancing immunity
(1-4).

Here, we used a sensitive tetramer assay for the tumor-
associated antigen survivin to ask what happens to tumor-
specific T-cell responses in colorectal and prostate cancer
patients during and after RT. Survivin is highly expressed in
many human cancers but is largely undetectable in most
normal tissues (3, 6). it augments cell proliferation and survival
(7). either by inhibiting caspase-9 and hence apoptosis (8}
or by directing chromosome movement during mitosis (9}
Hs location in the cytoplasm or nucleus may be crucial
in determining its function as well its prognostic potentiai
{10-12). lmportantly, it is associated with resistance to
therapy, inciuding RT {7, 13).

The evidence that survivin is immunogenic is strong. In
preclinical models, survivin-reactive CD8" CTLs can be
generated in vitre that efficiently lyse target ceils and confer
tumor protection on adoptive transfer in vive (14-16). In
humans, survivin-reactive T celis can be detected in primary
breast cancer and melanoma lesions and in lymph nodes
and blood of cancer patients (17, 18}, who also develop anti-
survivin antibodies (19). Both animals and patients respond
to vaccination with this antigen {20-22).

Unforiunately, clinical experience indicates that adaptive
antitumor immune responses generally fail to translate into
measurable tumer regression. This has been ascribed to a
variety of immune escape mechanisms, one of which is the

Clin Cancer Res 2008;14(15) August1, 2008
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presence of Tregulaory cells (23). Different types of Tregytatory Cells
have been described {24 - 26) but the CD4*, CD25™8", Foxp3*
subsets are generally considered important in suppressing
antitumor immunity (27}, Human tumors are frequently
infiltrated with such cells {28-30), which suppress effector
T cells through multiple mechanisms (31, 32). Although
older studies in mice showed that tumor-induced suppressor
T cells were more radiosensitive than other T-cell subsets (33},
there is litle data on the radiosensitivity of Treguiaory Subsets
in humans.

This study asks whether survivin-specific cytotoxic CD8* T
cells can be detected in patients with prostate or cclorectal
cancer (CRC), whether cancer treatment with RT or chemo-
radiotherapy (CRT) alters the fumor-specific immune status i
these patients, whether the level of circulating Tregulatory Cells
is affected, and whether any immune variabies correlate with
pathologic tumor regression.

Materials and Methods

Chemicals. The following were used: Ficoll-Pague (GE Healthcare
Bio-Sciences); human AD serum {OmegaSci;; DMSO and DNase
(Sigma); RPMI 1640 with i-glutamine and antibiotics (Fisher);
tetrtamers and anti-CD8 antibody (T8-FITC; clone SFCI21Thy2D3;
Beckman Coulter, Inc); 7-aminoactinomycin I3, FITC-anti-human
HLA-A2 {clone BB7.2), phycoerythrin (PE)-CyS-anti-human CIX25
(clone M-A251}, and R-PE-anti-human CD4 (clone RPA-T4; PharMin-

gen}); FITC-anti-human Foxp3 (<iome hFOXY), PE-Cy5-anti-human
Foxp3 (clone PCH101), FITC-anti-human CD4 (clone OKT4), and
PE-anti-human CD25 (cdone BC96; eBioscience); rabbit anti-human
survivin (clone NB500-201; Navus Biologicals); and biotinylated anti-
rabbit {BA-1000; Vector).

Patients and sample collection. Blood samples came from patients
with colorectal cancer {CRC; n = 28} or prostate cancer (n = 20) in
the University Hospital Gasthuisberg {Leuven, Belgium), with local
Institational Review Board approval and consent. Prostate patients
received conventional RT. All but three with CRC were part of a phase
il randomized, double-blind, piacebo-controlled dinical trial with the
cyclooxygenase-2 inhibitor celecoxib described previously (34).
Preoperative CRT was 45 Gy in 25 fractions with continuous 3-
fluarouracil infusion. Patients were randomized to celecoxib (2 » 400
mg/d) or piacebo before surgery, which was on week 6. Blood
samples were taken into Vacutainer CPT tubes (Becton Dickinsom)
before, during (week 3), and after CRT (week 5}. Peripheral blood
mononuclear cells (PBMC) were isolated following gradient centri-
fugation and frozen in human AB serum containing 10% (v/v)
DMSO. Frozen blood samples were shipped on dry ice and stored in
fiquid nitrogen on arrival in the United States. Setfal samples of
individual patients were assayed for tetramer and Tieguaory ceH
staining (see below) on the same day. PBMCs from eight healthy
volunteers were isalated on Ficoll-Paque at the University of
California at Los Angeles and stored as above. Prelreatment biopsies
{21) and residual tumor surgery specimens (10) of CRC patients were
fixed and processed for immunohistology. This trial was delayed
because of cyclooxygenase-2 inhibitor safety issues, resulting in some
incempleteness of data.

‘“Table 1. CRC patients show an increasing number of survivin-reactive CD8* T cells in peripheral bloed on
‘completion of radiation treatment ST S e e T R TR
Tetramer {% of CD8) CDhE (% of PEMC)

Before During After Tetramer set Before During After
CRC7 0.04 0.09 1 14.9 14.1
CRC 19 ] D.18 i 3.2 5.4
CRC 21 0.1 0.i6 1 15.5 1.6
CRC 22 0.76 2 1.2
CRC 23 1,57 1.93 2 12.8 10.9
CRC 24 1.16 0.27 0.97 2 5.78 15.5 12.1
CRC 27 1.67 0.75 2 1.9 4.8
CRC 28 0.42 2 9.4
CRC 29 0.68 2.25 2 18.1 24.5
CRC 30 1.48 1.46 2 7.24 10.1
CRC 33 0.1z 0.17 2 28,2 20.8
CRC 34 0.23 D.15 0,12 2 8.4 7.6 5.3
Rectum 5 0.02 0.18 1 11.9 14.9
Rectum 8 0.04 0.03 0.07 1 14,7 11.5 10,5
Rectum 10 0.01 0.07 1 18.2 8.95
Prostate 05 0.1 0.11 1 15.2 21.6
Prostate 1 0.23 0.29 0.37 2 16.4 13.7 13.8
Prostate 2 0.12 C.G65 0.25 2 17 18.7 17,7
Prostate 3 0.28 0.23 0.53 2 4 4.1 3.3
Prostate 4 1.33 0.18 2 17.7 18.5
Prostate 5 0,22 0.12 2 8.9 8.1
Prostate & 0.15 0.15 0.26 2 13.9 15.7 7.3
Prostate 9 0.45 0.16 0.15 2 5.4 7.7 9
Prostate 11 0.32 0.31 0.21 2 28 40 36
Prostate 12 0.15 0.5 0.32 2 5 25 5.5
Prostate 13 0.1 0.14 2 5.4 5.5
NOTE: Data are from 15 HLA-A2 - positive patients with CRC and 11 patients with prostate cancer. CRC indicates patients that were part of a
cyclooxygenase-2 inhibitos chnical trial. Data are COB* Tcells staining positive with the tetramer for survivin (%) and levels of CO8* PBMCs (%).
Two batches of survivin tetramer were used and are indicated. Five healthy volunteers served as control. Gray fieids highlight those samples that
stalned above the background level (zmean  2x SD of % survivin-reactive CD8" T cells in the healthy voiunteers for that tetramer batch},
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Fig.1. A, levels of circulating survivin-reactive CDB" Tcells for individual CRC {feft)
and prostate cancer (Fight) patients befare, during, and after treatment. Solid lines,
overall upward trend; dashed lines, downward trend. &, ratios of CD4" 1o CDB*
increase in patients before, during, and &fter treatment, Box and whisker diagrams
summarize individual CD4* to CD8™ T-cell ratios in cancer patients and in five
healthy controls. *, A = ¢.008,

HLA-A2 testing. PBMCs from patients and healthy subjects were
thawed by dilution in prewarmed RPMI 1640 with 10% (v/v} human
AB serum. Cells were treated with DNase, washed, and resuspended at
5 x 10/mL in human AB serum. Cells (1 x 10% 20 ul) were stained
with 1 ul of FITC anti-HLA-A2 antibody for 30 min at 4°C, washed, and
resuspended in 300 pl PBS for flow cytometry (FACSCalibur, BD
Biosciences),

Tetramer-binding assay. Cells {1 x 10%) ip human AB serum
(200 i) from HLA-A*0201 ~ positive subjects were stained with & pl of
the MHC tetramer for the HLA-A2 ~restricted survivin epitope Surli2
{LMLGEFLKL; ref. 18) along with 8 ui of anti-CD8 antibody. Sample
volume permitting {28 samples) a MHC class ! human negative
tetramer with no known specificity that does not bind CD8* T celis
of any HLA allele {Beckman Coulter) was used to determine back-
ground PE fluorescence. After incubation for 30 min at room
temperature and washing, samples were resuspended in PBS. 7-
Aminoactinomycin [} was added to detect nonviable cells 5 to 10
min before flow cytometry. PBMCs from a single HLA-A*0201-
positive volunteer were run as an internat control for each assay. Events
(1 % 10% to 2 % 10%) were accumulated. Quality control required
>10,000 viable events and 22,000 CD8” T cells.

The gating strategy was

1. plot EL3, set viability gate {gate 1); (fixed cells as control);.

2. plot FL1 versus FSC of population in gate 1; set gate 2 for Cpahish

iytnphocytes, excluding natural killer cells (CD8*"); and
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3. plot FI-2 versus FL-1 of cells in gates 1 and 2 (viable cpehie
lymphocytes). Samples of one healthy volunteer stained with
negative tetramer were used to set an arbitrary FL-2 lower limit
of 0.03% double positives (35).

‘Two batches of survivin tetramer were used and cosrection had to be
made for differences in binding. Positivity was based on a HLA-
A*0201" healthy volunteer having 0.053 * 0.023% reactive CD8'
T cells for one batch and five HLA-A*0201" healthy volunteers having
0.100 % 0.075% for the other {Table 1). The low limit for a positive
value was taken to be the mean + 2 SI» of these values (i.e, 0.099%
for batch 1 and 0,25% for the second batch).

Treguintory CéHl staining. CD4%, CD25M8" cells with intracetiular
Foxp3® were examined. For most samples, 1 X 105 cells were stained
in 100 p} human AB serum with 20 ul FITC-anti-human CD4 and
20 pl PE-anti-human CD25 and incubated for 30 min on ice. Cells were
washed and incubated in 1 mL of fixation/permeabilization buffer for
45 nin on ice, washed twice, and resuspended in 2% {v/v) normal rat
serum in 100 pl of permeabilization buffer. PE-Cy5-anti-Foxp3
(20 pl; clone PCH101) was added followed by 30 min on ice. Cells
were washed, resuspended in 200 u! of 10% fetal bovine serum, and
analyzed by flow cytometry. In an earlier protocol, the antibedy
cocktail containing PE-CyS-anti-CD25, R-PE-anti-CD4, and the first-
generation FITC-anti-Foxp3 antibody (clone hFOXY) were apphied
simultaneously after fixation and permeabilization. PBMCs from
one volunteer served as an internai contro! for each assay. if possible,
1 % 10% events were accumutated. Quality control required all acquired
data to be 270% viable and 22,000 CD4" T cells.
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Fig. 2. The frequencies of circulating Teguawnry cefls in CRC and prostate cancer
patients were generally Iess than those cbserved in eight healthy volunteers and
seemed 1o rise toward completion of CRT in CRC patients but not after RTin
prostate cancer patients, Data are the % of CD4™ cells that are CD25"%" and Foxp3”
presented as box and whisker diagram (4) and as time course for individual patients
(8). with salid fines indicating an upward trend {*, P = 0.039}, dashed lines da not.
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The gating strategy was

1. FL-1 versus FSC of all events, set gate 1 for CD4” cells, excluding
debris and monocytes {CD4°%);.

2. FL2 versus FL1 of population in gate 1, set gate 2 for
CD4*CD25"8" double-positive lymphocytes; and.

3. plot FL-3 of cells in gates 1 and 2 to determine fraction of
CD4*CD25P e Foxp3* triple-positive cells.

Immunchistochemistry for survivin, Tissues were deparaffinized at
75°C {30 min) in xylene and decreasing percentages of alcohol
and washed five times in water. Sections were steamed in citrate
buffer (100 mmol/L, pH 6.0; 25 min) and washed five times with
PBS. Endogenous peroxidase was blocked with 3% H,Q; in methanol
{15 min), washed, and incubated with 5% normal goat serum in
0.05% Tween 20 in PBS. Polydonal rabbit anti-human survivin (1:200)
was added and slides were incubated {30 min, room tempera-
ture; overnight at 4°C). Biotinylated anti-rabbit Ig {1:200) in 5%
normal goat serum in 0.05% Tween 20 was added (40 min} followed
by 3,%-diaminobenzidine (3 min). After counterstaining with hema-
toxylin {10 s), slides were dehydrated and mounted. The identity of
slides was blinded through a number code and scored in Belgium.
Cytoplasmatic survivin was scored for percentage tumor tissue stain-
ing positive and for intensity on a scale from 0 to 3. For the nu-
clear staining, we only scored the percentage because the intensity did
not vary.

Statistics, All but one set of data were analyzed for statistical
significance with the sign test and, after a square root transformation,
with a Student’s ¢ test (36), Whether the level of circulating Tregutatory
cells was significantly different from control levels was determined with
the Wilcoxon signed rank test {36}, Statistical significance was at the 5%
level, In general, pooled patient data sets were compared as cohorts to
the healthy contro] levels, Longitudinal responses for each patient
compared outcome values {during or after) to individual baseline levels
{before} and were then summarized for the whole cobort.

Box plots are box whisker diagrams summarizing the distribution
of data as {a) the box spanning the 75% to 25% percentile and {b}

the median (line), {¢) the minimum and maximum {whiskers above
and below the box), and {d} individual outlying data points (open
circles).

Survivin-specific CD8" T cells. Of 49 patients, 28 (57%)
were HLA-A*0201 positive and eligible for tetramer analysis.
However, two samples did not meet the cuaiity control
standards and were excluded from analyses.

Levels of survivin tetramer-reactive CD8" cells were signifi-
cantly higher in patients than five healthy controls (P < 0.001;
Supplementary Figure), indicating the presence of antigen-
specific T cells, and exceeded those for the negative control
tetramer for all cohorts (P < 0.001).

Samples for tetramer analysis were available for 10 patients
before, during, and after treatment, for 14 patients from two
time points, and for 2 patients at a single time point. Overall,
there were 19 lymphocyte samples before RT, 21 during RT, and
20 after RT (Table 1).

Samples from four of nine {44%) CRC patients before CRT
treatrment were positive for survivin tetramer binding (>2 SD
from the mean of healthy contrels), 5 of 10 {50%) during
treatmnent, and 8 of 12 (67%) after treatment (Table 1}, This
trend toward increased responses on completion of CRT in
CRC patients (P = 0.499) was not apparent in prostate cancer
patients (P = 0.352} who exceeded the criterion of positivity
in 5 of 10 {50%} cases before RT, 4 of 11 {36%]) during RT,
and 4 of 8 {50%) after RT.

Treatment-dependent responses to survivin, Because samples
were taken before, during, and after treatment, we were able to
evaluate individual patient respenses over time (Fig. 1A). The
percent survivin-specific CD8* T cells increased in 9 of 13

Fig. 3. The tumor antigen survivin was
highly exprassed in CRC patient specimens,
whereas it remained mostly undetectable in
normal colon tissue. Survivin seemed to be
primarily located in the cytoplasm but
occasionally nuclear staining was evident.
Magnitication, 800,
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Table 2, Summarized data from 30 CRC patients that were part of the clinical trial ..
CRC T downstaging N downstaging HLA-A2 Tetramer Tyeguiatery Survivin expression Survivin expression
patient increasing increasing in biopsy in resect
%  intens. % %o intens, %
cyto., cyto. nuclear cyto. cyto. nuclear
11 0 0 74 3 14 52.5 2 3.75
12 0 1 0 1 8O 1 10
16 0 1 o] a0 2 o] 100 3 5
17 0 0 73.3 1 3.3
19 0 N/A 1 1 77.5 2 3
24 o] 1 1 0 1 92 2 24
26 o] 1 0 1 0 0 20 34.2 1 1.4
27 0 0 1 0 N/A 58 ] 0 77 3 7
33 0 1 1 1 1
i 1 1 0 66,7 2 6.7
2 1 1 0 70 2 7.5
3 1 1 74 2 12
4 1 o] a0 3 2
7 1 1 1 1 50 1 N/A 55.4 2 0.38
B 1 N/A N/A 88 3 1
9 1 1 68.3 3 28.3
10 1 i B8 2 40
18 1 N/A 70 3 1.25
20 1 1 0 32.8 2 37.14 100 3 0
21 1 0 1 1 65 1 2.5
22 1 1 1 N/A
23 1 1 1 1 30 1 0
28 1 L 1 N/A N/A 10 1 40
29 1 1 1 1 1 40 1 0
30 1 1 1 i 1 75 2 0
31 1 1 0 1
32 1 1 4] 1
34 1 1 1 0 0
35 1 1 0 L
36 1 1 0 1
MOTE: “1"is a positive indicator for the respective variable, whereas “0" specifies a negative response. Tumnor (7 = 21) and lymph node {n w22}
stage decreased or did not (n = § and 5, respectively). Twelve patients were HLA-A2 positive. The number of survivin-reactive CDB™* T ceils
increased in the peripheral hlood in four of six responding patients and in two of four nonresponders, The frequency of systemic Tregutatory CBHS
increased in six of seven responding patients and in four of four nonresponders, All biopsies tested stained positive for survivin, which was
mostly in the cytopiasm and lesser so in the nucleus. In most sampies, nuclear but not cytoplasmic survivin staining decreased and, in all
resection specimens from the three responders, was essentiaily zero.
Abbreviations: % cyto,, percent tumor staining positive for survivin in cytoplasm; intens. cyto,, intensity of the cytopiasmic staining; % nuclear,
percent tumor staining positive for survivin in the nucleus; N/A, not available.

{69%) CRC patients as a result of treatment, including before
— during RT (2 of 5 cases}, during — after RT (4 of 7), and
before — after RT (5 of 7). Statistical significance was not
reached (P = 0.267}, but in only 2 of 13 cases (15%) was there
a clear decrease in survivin-specific CD8™ T cells after CRT.
Seven of 11 (64%; P = 0.599) prostate cancer patients also
responded to RT with an increase in survivin-specific CD8*
T cells, including before — during RT (3 of 10 cases)}, during —
after RT {5 of 8 cases), and before — after RT (5 of 7 cases).
Hence, CRT of CRC and RT of prostate cancer generally
increased the percent of circulating survivin-specific T celis in
the CD8" pool (P = 0.076).

Interestingly, the ratio of CD4* to CD8" T cells increased in
most patients from before o after completion of therapy
(Pcrepatiens = 0.071 and Pprogsiare = 0.47; Fig. 1B). This was most
marked for CRC patients, who had a iow CD4 to CD8 ratio
before therapy compared with ali other cohorts (P = 0.008,
compared with healthy volunteers). Overall, cancer patients
tended to have less CD4" in their circulation than healthy
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contro} subjects (33.6 * 6.5%} at the beginning of therapy
{Supplementary Table).

Time course of response of circulating Tropiator, cells. The
number of Treguiatory Cells varied in eight healthy volunteers
(aged 30-64) from 1% to 4.6% of total CD4* (mean, 2.5 &
1.1% CI14*CD25" Foxp3*) ceils, which compares well with
the literature, indirectly validating our protocol. Most patients
started treatment with less Tiepulaory Cells in their circuiation
than the volunteers {Fig. 24; Supplementary Table). This was
true for 7 of 8 (88%; P = 0.182) CRC patients and for 13 of 17
(76%; P = 0.083) prostate cancer patients. All seven CRC
patients with matched samples from before and after treatment
ended the study with more Tigutuoy cells than they had
initially; hence, there was an overall trend for these values
to increase (P = 0.039; Fig. 2B). Notably, the majority of
prostate cancer patients (8 of 13) did not adhere to this trend
(Fig. 2B).

Intratumoral survivin expression. . Tumor biopsies and resec-
tions from patients who were part of the CRC trial were stained

Clin Cancer Res 2008;14{15) August 1, 2008
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with an antibody that recognizes both cytoplasmic and nuclear
survivin. Examples are shown in Fig. 3. All biopsies, with one
exception, tested positive for cytoplasmic survivin, in most
cases covering an extensive area of the tumor, whereas survivin
was mostly undetectable in normal colon tissue, with the
exception of crypts. Nuclear staining was seen more sporadi-
cally and in a smaller area of the turnor (Tabie 2).

Clinical responses. For patients in the clinical CRC tral,
Table 2 summarizes the data on clinical tumor and lymph node
stage and immunologic variables of survivin-specific CD8”
T cells, Tregulatory celis, and intratumoral survivin expression.
The patient numbers and subgroups were too small and
the responses were too variable to derive statistical signifi-
cance, but there were indications that a larger study couid
valuabiy explore.
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Fig. 4. The expression of survivin in CRC tissue sections (21 biopsies, 10
resections). Responders {Tdownstaging) had higher nuctear survivin levels at
biopsy and less at resection, Cytaplasmic survivin levels also were lower in resection
specimens from responders. A, hox and whisker diagram showing data as median
percent tumor staining positive for cytoplasmic (feff) and nuciear (right) survivin,
Biopsies of patients who responded to preoperative CRT had higher ratios of
nuciear to cytoplasmic survivin {B), express more survivin {C} and have more
promising changes in circulating survivin-specific CcD8* Tcells than biopsies from
nonresponders {0). Solid #nes indicate an upward trend; dashed Hines do not.
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Biopsy specimens from patienis whose tumors were down-
staged tended to have higher nuclear survivin levels at biopsy
than those who were not downstaged {Fig. 44, right). Both
the ratio of muclear to cytoplasmic survivin and staining
intensity in biopsy specimens were higher for the responders
(Fig. 4B and C). The number of resection specimens was
inevitably low, but both cytopiasmic and nuclear survivin were
decreased over the compatable biopsy specimens, particularly
for nuclear staining (Fig. 44 and B). Only six patients who
responded with T downstaging and four wha did not respond
could be evaluated for therapy-related changes in survivin
tetramer-positive T cells, with the former showing more
promising changes {Fig. 4D).

Discussion

Although reverse immunology has clearly established
that survivin is immunogenic, it remains uncertain whether
anti-survivin responses occur in unireated cancer patients. We
were clearly able to detect T cells binding survivin tetramer in
almost half of CRC and prostate patients before treatment
when compared with healthy controls. This agrees with
Coughlin et al. {37), who measured similar frequencies in
pediatric cancer patients using the same tetramer, and Grube
et al. {38), who detected survivin-reactive T cells in 40% of
patients with multiple myeloma using IFN-y mRNA as a
readout. it contrasts Casati et al. (15), who, using a different
tetramer, reported that <0.1% of CD8" T cells from a CRC
patient bound survivin, although this level could be boosted by
in vitro stimuiation.

From a phase 1 clinical vaccination trial, we know that
anti-survivin responses are not easily induced in CRC patients
with only 1 of 15 responding (39). Assessing whether re-
sponses increase or decrease following RT or CRT alone
therefore inevitably stretches the sensitivity and reprodu-
cbility of the assays being used. Nonetheless, we observed
that tumor-specific T cells clearly increase in most CRC
patients after completion of CRT and in most prostate can-
cer patients afier RT. Perhaps more important is that only a
few patiems showed a decrease in survivin-reactive CI}8*
T cells, which suggests that their ability to respond is not
compromised by treatment. This was also suggested in a
randomized phase II clinical trial in prostate cancer patients
where RT did not obstruct T-cell responses to prostate-specific
antigen when given at the end of a cancer vaccination regi-
men (40).

It is tempting to ascribe the increase in tumor-specific T
cells to a radiation-induced increase in antigenic peptide
liberation (41) and presentation by dendritic cells, which we
have shown can be boosted by radiation (42). The rate of
tumor regression (ie., tumor kinetics} may modulate this
and hence the generation of immunity. The fact that this was
not detected (40} by enzyme-linked immunospot in patients
with prostate cancer receiving RT could be due to the refative
sensitivity of the assays. We have not been able to distinguish
the two treatment arms of the CRC cohont with some
patients receiving the cyclooxygenase-2 inhibitor celecoxib
because this tral is still ongoing. There are suggestions in
the literature that celecoxib might further enhance the
development of antigen-specific Temocor cells (43, 44}, but
this will not alter the conclusions from the study. The fact
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that CRC patients who responded with T downstaging
tended to have higher levels of nuclear survivin suggests
that this is a potential predictive matker of response, with
the understanding that nuclear survivin relates more fo
proliferation and hence may signal a more rapid response
(1%, 45).

There are several ways to interpret radiation-induced
antitumor-reactive CD8* T-cell levels. Loss of immune sup-
pression due to decreased turnor burden is one. In recent years,
Tregulatory Cells have gained prominence as a powerful suppres-
sive mechanism. The frequency of Trguiaoy Cells that we
detected in the majority {80%) of our patients was actually
lower than in heafthy subjects, who were well within the
pubtished range for normal individuals (30, 46}. This contrasts
to several reports of high levels of circulating Treguiatory Cells in
cancer patients (30, 46, 47).

In our study, levels of Trguiatory Cells in CRC patients
increased on completion of CRT, whereas this did not happen
in prostate cancer patients. It may be that in CRC Tegulatory
cells, and perhaps other CD4* T-cell subsets, relocate to
tumor sites, for which there is evidence (28), and are rem-
obilized by therapy-induced changes in the tumor micro-
environment. RT-induced adhesion molecule and chemokine
expression could aiter migratory behavior of Tegulatory cells

{30, 48). It is also feasible that systemic effects induced by
the CRT more so than by RT could have contributed to such
a selective increase in Tregyaory Cells in CRC by affecting
the balance in lymphocyte subpopulations {49). Such increases
in circulating Tregutatory Cells may therefore be more appa-
rent than real. Even local irradiation can affect the lympho-
cyte balance because lymphocyte subsets have differential
sensitivity to radiation, with the simplified picture being that
naive T cells are more sensitive than effector cells (50), whereas
antigen-induced Treguiawny cells gain in radiosensitivity (33).
The fact that we observed an increase in CD4*CD25™"Foxp3*
Tregs might simply reflect changes in other CD4" subpo-
pulations.

Perhaps, the most important point from this study is that
CRT and RT do not induce immune tolerance to survivin,
making immunotherapy approaches feasible in combination
with RT. Funthermore, tetramer technology coupled with other
flow-based methods provides us with powerful tools to study
the antitumor immune status in patients undergoing such
treatments.
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