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1.0 EXECUTIVE SUMMARY 
 
1.1 Technical 
 
During the 18-month period of performance, the Louisiana State University (LSU) led team carried out 
an exhaustive study of a two-mode quantum optical sensor. The classical baseline of comparison was a 
standard two-mode coherent Light Detection and Ranging (LIDAR) system, shown schematically in 
Fig.2. The LSU quantum LIDAR system, indicated in Fig.1, has many of the same features of the clas-
sical system, with the critical exception that the photon source and detection scheme were treated quan-
tum mechanically and the complete analysis of loss was carried out in a quantum optical setting. A criti-
cal deliverable or our Phase I also is to provide a complete quantum theory and analysis of the perfor-
mance of what is typically known as classical coherent LIDAR. A crucial point to realize here is that 
there is no such thing as classical LIDAR. The standard laser beam used in classical LIDAR is a quan-
tum coherent state of light whose properties set the limits to resolution and sensitivity. Hence the clas-
sical baseline is in fact a quantum baseline, in this sense.  
 
It is the conclusion of our Phase I study that a quantum coherent LIDAR system, coupled with a num-
ber-resolving detection scheme, meets all the criteria and metrics for a successful Phase I study. As we 
will detail below, the primary result is that such a combination of a coherent quantum state propagation, 
plus number resolving detection, supports a ten-fold improvement of resolution of the target with no 
worse than the equivalent classical sensitivity (shot-noise) of a traditional classical coherent LIDAR.  
 
The primary conclusion is that by using a coherent state of light in an active sensor, which is as classical 
as you can get, we avoid the super-Beer’s law absorption effect which has been show to rapidly degrade 
super-resolving quantum entangled states of light as they propagate through absorbing and scattering 
media. The trick is to employ a novel quantum detection scheme, using newly available number-
resolving detectors, to extract far more information from the coherent state than is possible with simple 
“classical” homodyne detection schemes. Essentially a two-mode coherent state contains super-
resolution information, which if properly extracted, can be used to provide sub-Rayleigh resolution with 
sensitivity no worse than shot noise. 
 
We summarize our results against the Defense Advanced Research Projects Agency (DARPA) Quantum 
Sensors Program (QSP) requirements: 
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The following conditions must be simultaneously satisfied: 
 
1) The photons’ interaction with a target doesn’t cause the non-classical state to be entirely lost. 
 
The primary conclusion of our Phase I is that a coherent state is in fact non-classical and this non-
classicality can be exploited in the detection process. However, since the coherent state is “as classical 
as you can get” the photon interaction with the target follows typically coherent state rules for attenua-
tion and scattering. That is a coherent state becomes another coherent state of smaller amplitude but of 
the same photon number statistics.  
 
2) The quantum sensor can resolve two targets at a closer spacing than is possible with a classical sen-
sor. 
 
This is accomplished, as we shall outline below, by extracting the N00N and higher-order components 
of the two-mode coherent state and extracting the sub-classical resolution in the number resolving detec-
tion process. A proper post-processing of the phase information in the photon number basis allows us to 
beat the classical Rayleigh diffraction limit by a factor of ten.  
 
3) The energy that travels between the quantum sensor and the target propagates at the single-photon 
wavelength. 
 
This is accomplished in our modeling by assuming coherent states propagating at approximately the 1.5 
micron wavelength, a water vapor window in the atmosphere, and then by extracting the N = 10 N00N 
components and higher to get an effective resolution of 150 nanometers (vacuum ultraviolet).  
 
4) The quantum sensor suffers a loss of sensitivity and resolution that is no worse than the loss suffered 
by a classical sensor under all of the following conditions: 
 
a. The transmission medium between the sensor and the target absorbs or diffusely scatters photons. 
 
b. The target is in a 300K (Radio Frequency (RF) sensors) or daylight (optical sensors) environment. 
 
c. The target absorbs some incident photons. 
 
d. The target scatters incident photons non-uniformly over 4π steradians. 
 
These are all accomplished by propagating coherent states of light, which are the states used in classical 
sensors, and then by extracting super-resolution only at the end in the detection process in the number 
basis. Hence by definition, the propagation of the light in our quantum sensor exactly matches the prop-
erties of an ordinary sensor. By counting all photons at the detector we ensure super-quantum-resolution 
at no worse than classical shot-noise sensitivity.  
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The Phase I Program Metrics defining a successful Phase I are as follows: 
 
1. The quantum sensor concept has been shown to simultaneously satisfy all of the four conditions listed 
above. 
 
2. The quantum sensor concept has been shown to support at least a 10x improvement in resolution over 
the Rayleigh limit in the presence of 3 dB of transmission medium loss with a signal to noise ratio 
(SNR) of 26 dB. 
 
Our Phase I works support successful progress against both Phase I metrics, as outlined above, and de-
tailed below. Again the key point is that a coherent state LIDAR system, which transmits “classical” 
states through the atmosphere can meet all the DARPA requirements, provided it is augmented with a 
quantum number resolving detection scheme. Processing the photon number in detection allows for ten-
fold super resolution, and processing all the photons in detection allows for no worse than the classical 
shot noise of the equivalent classical sensor. The primary idea is that there is super-resolution resolution 
available in a number-resolving quantum detection scheme that is not available in the typical, classical, 
intensity measurement scheme employed in classical coherent LIDAR, even when classical coherent 
states are propagated through the atmosphere. The super-resolving scheme is able to discriminate against 
a background with over 40dB SNR, as we shall prove below. 
 
1.2 Administrative 
 
This work was carried out by Jonathan P. Dowling (professor), Hwang Lee (assistant professor), Tae-
Woo Lee (research staff), Christoph Wildfeuer (postdoc) and Sean Huver (graduate student), at Louisi-
ana State University (LSU), as well as by Ulvi Yurtsever (principal scientist) at MathSense Analytics 
(MSA) and Steven Wilkinson (senior program manager) at Raytheon Corporation. The original proposal 
contained a subcontract with the National Aeronautics and Space Administration (NASA) Jet Propulsion 
Laboratory (JPL) that proved contractually untenable. This JPL work was recontracted through an ad-
dendum to the original proposal to Dr. Tae-Woo Lee (research staff) at the LSU Center for Computation 
and Technology (CCT). Unfunded collaborators included Prof. Georgios Veronis (associate professor) 
at the Electrical and Computer Engineering (ECE) Department of LSU and Dr. Dmitry Uskov (research 
staff) at the Physics Department of Tulane University. Deliverables include a number of scientific pre-
prints and reprints that are attached in the Appendix of this report. The work was completed on sche-
dule, as the rate charged by Dr. T.W. Lee was increased so his project would end simultaneously with all 
the others on 31DEC08. At this time we are still awaiting one final invoice from Raytheon Corporation, 
and also are processing some final travel paperwork. We are on time and anticipate being on budget.  
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Figure 1: LSU Quantum LIDAR Concept 
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2.0 INTRODUCTION 
 
2.1 Overview and Summary 
 
In a classical coherent LIDAR system, Fig.2, the optical radiation propagates at the single photon wave-
length, the resolution is typically the Rayleigh limit of λ/2, and the phase sensitivity is given by the 
shotnoise Δϕ = 1/ n , where n  is the mean number of photons that is proportional to the intensity 
[Dowling2008]. It is this restriction to the Rayleigh resolution that we will overcome with a quantum 
approach. It is typical in such a classical coherent LIDAR scheme to perform difference intensity detec-
tion, as indicated in Fig.2. For such a scheme the relevant expectation of the appropriate quantum opera-
tor gives, 
 

M ϕ( )≡ ID − IC = IA cos ϕ( ).     (1) 
 
Since ϕ/2 = kx/2 = πx/λ,   we can solve to get Δx = λ/2 for the peak-to-peak spacing, which is the Ray-
leigh limit. Simple linear error propagation theory then gives the shot-noise sensitivity [Gerry2005], 
 

ΔϕSNL =
ΔM

∂M / ∂ϕ
=

ΔM
IA

∝
1
n .    (2) 

 

 
 

Figure 2: Classical Michelson and Mach-Zehnder Interferometer 
 
To again clarify the terminology, which is now standard in quantum metrology, quantum super-
resolution is defined as an interference period shorter than 2π in Eq.1 and quantum super-sensitivity is 
defined as a scaling law that beats the shot-noise limit scaling with intensity of Eq.2. The origin of the 
relation between intensity uncertainty and phase uncertainty is quantum mechanical in nature [Ger-
ry2005, Dowling2008], but can be illustrated simply in Fig.3. 
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Figure 3: Classical Interferogram 

 
Our team initiated the concept of quantum remote sensing with a paper in 2000, indicating theoretically 
that the classical Rayleigh diffraction limit in resolution could be beaten by exploiting entangled photons 
[Boto2000, Kok2001]. This effect is now universally known as quantum super-resolution. We also 
pointed out in subsequent papers that a similar strategy could beat the classical shotnoise limit to sensi-
tivity, in what is known as quantum super-sensitivity [Lee2002, Kok2002, Lee2002, Kok2004, Dowl-
ing2008]. Base on our ideas, the concept of super-resolution was demonstrated in a series of experi-
ments [Mitchell2004, Walther2004, Sun2006, Resch2007, Kawabe2007, Sciarrino2008, Liu2008]. Su-
per-sensitivity has also now been demonstrated as well [Nagata2007, Okamoto2008, Higgens2007]. 
Most of these strategies invoked the production and measurement of the so-called N00N states, also in-
vented by our team, which have the form, 
 

N :: 0 AB

ϕ ≡ N A 0 B + eiNϕ 0 A N B ,     (3) 
 
where A and B refer to the two optical modes in Fig.4, the N is the number of photons in the state, and ϕ 
is the phase shift to be measured, that is proportional to the arm path-length difference.  
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Figure 4: Schematic of Quantum Sensor Model 

 
 
We can see in Eq.3 that according to the phase factor of Nϕ that the phase difference between the two 
arms of the interferometer oscillates with a period that is N times faster than the classical interference 
pattern of Eq.1, as shown in Fig.5. In the absence of photon loss, a suitable number counting detection 
scheme produces an interference prediction of [Dowling2008],  
 

MNOON ϕ( )= IA cos Nϕ( ),      (4) 
 
where the N-fold improvement in oscillation period is apparent in Eq.4 when compared to Eq.1. For 
N = 10, there is a 10-fold improvement in quantum super-resolution, which automatically meets QSP 
resolution improvement metric, in the absence of loss. The higher frequency oscillations are also the 
origin of the improved quantum super-sensitivity. Consider Fig.5 where we show the oscillations of the 
classical interferometer against those of the N00N interferometer, for the case of N = 4.  
 
In Fig.5 it is apparent that the N00N-state interferogram has a slope that is N-times steeper than the clas-
sical curve. Hence it is much easier to tell if the green fringe moves compared to the red curve, indicat-
ing a reduced phase uncertainty Δϕ. Note this comes about at a result of increased intensity uncertainty 
ΔM, in accordance with the quantum number-phase Heisenberg uncertainty principle [Dowling2008]. A 
rigorous analysis, including the effects of counting the photons N at a time in the quantum interferome-
ter, indicates an over all improvement of,  
 

ΔϕN00N =
ΔM N 00 N

∂M / ∂ϕ
=

ΔM N 00N

IA

∝
1
N ,    (5) 
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Figure 5: Classical Interferogram (Red) Versus the Quantum Interferogram 
(Green) for a N00N State with N = 4  

 
Note this is a quadratic improvement over the shot-noise limit (SNL) of the classical interferometer, 
Eq.2. The N00N state actually saturates the Heisenberg uncertainty principle, in the determination of 
local phase measurement [Durkin2007], and hence this 1/N behavior is called the Heisenberg limit (HL). 
Our team now has interlocking numerical and analytic proofs that the N00N-state approach is optimal 
for achieving super-resolution and local super-sensitivity in the absence of loss. Hence the N00N state 
interferometer serves as an important benchmark in any modeling of an interferometric sensor scheme in 
that: (1) it serves as a starting point for quantum states to test for super-resolution; and (2) any new 
theory or numerical approach that includes loss must recover the N00N result when the loss is turned 
off. Let us recall that the QSP metrics state we are to achieve ten-fold resolution with no worse than 
classical sensitivity. Hence, it the conclusion of our Phase I that ten-fold super-resolution is possible 
with no worse than the SNL in signal to noise, and we will outline how we achieve this below.  
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It is now well known that the N00N state approach degrades extremely rapidly in the presence of photon 
loss, a fact that is easy to calculate, and which we now refer to as super-Beer’s law [Rubin2007, Gil-
bert2008a, Gilbert2008b]. What is trickier to understand is why N00N states perform so poorly, which 
we have done as part of this Phase I [Huver2008]. For this work we define photon loss to include pho-
tons, which are absorbed or scattered out of the modes of interest but otherwise do not reach the detec-
tor. In fact, as we shall see, we model absorption loss by using beam splitters to randomly scatter out 
photons from the modes of interest, which we prove in Sec.9.0, below, reproduces Beer’s law for clas-
sical, linear loss. We now understand that the N00N susceptibility and consequent super-Beer’s law is a 
consequence of the which-path information available to the environment. Hence, we were able to miti-
gate (somewhat) the effects of photon loss by erasing the which-path information using the M&M states 
[Huver2008]. Our computer optimization confirms that N00N states are optimal for zero loss and M&M 
states are optimal for low loss, say 3dB to 6dB. For the high loss regime of concern to the DARPA QSP 
program, our analytical and numerical results have converged on a QSP Type-II sensor approach, which 
transmits classical coherent states through the atmosphere to the target, but then extracts super-
resolution in the number basis in the detection using number resolving detectors.  
 
First let us see why N00N states are so susceptible to loss. Consider Fig.6 where we show the interfero-
gram for a coherent state (red) and a N00N state (green) in the presence of 3dB of loss. While super-
resolution is still apparent in the N00N state curve, the visibility of the N00N state degrades like exp(–
NβL) as a function of  distance L, absorption coefficient β, and photon number Ν. This is to be com-
pared to the “classical” or coherent state, which degrades only like  
exp(–βL). Hence the N00N state obeys a super-exponential decay law or super-Beer’s law.  
 

 
Figure 6: The Interferogram of a Classical Coherent State (Red) Against an N = 
4 N00N State in the Presence of 3dB Total Loss  
 

9



 

While the N00N state still shows super-resolution in the presence of loss, the sensitivity, which depends 
on the maximum slope of the curve via Eq.5, can be see to be equal to that of the classical coherent state 
for this loss. Hence while still super-resolving, the N00N state quickly losses its super-sensitivity, which 
is its ability to beat the shot-noise limit. For sufficiently high loss the N00N state actually has worse than 
shot-noise sensitivity, as the slope of the curve becomes very small compared to the coherent state [Ru-
bin2007, Gilbert2008a, Gilbert2008b, Huver2008]. The graphic gives a simple intuitive means of under-
standing this effect.  
 
In our recent work, supported by this grant, we not only confirmed that N00N states do poorly in the 
presence of loss but also have developed an simple means to understand why they do so bad. As out-
lined below in the Appendix [Huver2008], we can understand that the zero component of a N00N state 
provides complete which-path information to the environment. Hence the effects of loss can be miti-
gated (somewhat) by replacing N00N states with the so-called M&M states of the form 
 

M :: ′ M AB

ϕ ≡ M A
′ M B + ei(M − ′ M )ϕ ′ M A M B ,   (6) 

 
where N = M − ′ M  is the super-resolving factor, as before, but now the state no longer hits the Heisen-
berg limit (HL) in sensitivity, but rather is between the SNL and HL in the absence of loss, as discussed 
below. Nevertheless for loss in the range of 3dB to about 6dB this state outperforms the N00N state in 
terms of super-resolution and super-sensitivity. The idea is that by putting some extra photons where 
only vacuum was before we erase the which-path information available to the environment, and mitigate 
the effects of loss, somewhat. However the M&M state still suffers from a super-Beer decay law and for 
the large loss regime, greater than 6dB, this scheme also begins to degrade rapidly. 
 
As we proposed, and we discuss in detail in Secs. 6.0 and 7.0 below, we have developed a detailed com-
putational modeling framework for the design and optimization of a simple two-mode quantum sensor 
with loss. This code recovers our analytical results in the low-loss regime. That is the code finds the op-
timal state in the 0dB–3dB range is the N00N state, and in the 3dB–6dB range the M&M state. What is 
of most interest to our successful Phase I is the result that the code always finds that a two-mode cohe-
rent state, coupled with a sum of number-resolving-detectors scheme, always is optimal in the high loss 
regime of greater than about 6dB. Such a scheme can provide ten-fold improvement in resolution with 
no worse than shot-noise sensitivity in comparison to a classical scheme using coherent light and ordi-
nary intensity difference detection. The super-resolution comes about from the ability of number resolv-
ing detectors to extract the high-frequency oscillations of the individual number components of the two-
mode coherent state. The loss is no worse than ordinary Beer’s law, as ordinary coherent classical states 
propagate to the target and through the delay line. No worse than the SNL in sensitivity is achieved by 
counting all the available photons. It is then our primary result that a classical coherent LIDAR system 
can be made into a simple quantum super-resolving sensor by simply replacing the classical intensity 
detection scheme with a quantum number-resolving scheme. As number-resolving detectors have been 
recently developed, primarily in the context of their use in linear optical quantum computing [Kok2007], 
we assert that a quantum sensor can be made from a classical one simply by altering the detection 
scheme. Our approach should be compared a competing approach, where also classical coherent light is 
propagated, but the detection scheme mixes the coherent light with squeezed light in homodyne detec-
tion to get super resolution. The number basis is quantum conjugate to the phase basis, and it is well 
known that phase information in the phase basis can be translated into the number basis by a rotation in 
the SU(2) group that is carried out by a simple 50:50 beam splitter [Yurke1986]. Hence our approach 

10



 

can be viewed as complementary to that of the squeezed-state approach, but like the squeezed-states ap-
proach all the action takes place in the quantum detection scheme, putting our scheme squarely in the 
QSP Type-II sensor domain — only classical coherent light is propagated to the target. Let us see how 
this all works. 
 
The classical two mode coherent state inside the classical coherent baseline LIDAR interferometer can 
be written in the photon number basis as, 
 

α AB = α / 2
A

α / 2
B

= e−n /2
α / 2( )n+ m

n!m!m=0

∞

∑
n=0

∞

∑ n A m B ,  (7) 

 
where n = α 2 is the mean photon number proportional to the total intensity [Dowling2008]. What is 
remarkable is that even though each number component obeys a super-Beer decay law, these all cancel 
out in the sum, uniquely for the coherent state, so that we have in the case of equal loss βL in both arms,  
 

α / 2
A

α / 2
B

→ e−βLα / 2
A

e−βLα / 2
B
,    (8) 

 
which is the standard loss model of ordinary Beer’s law for coherent LIDAR. Here it is critical to note 
that this Beer’s law is not only a property of the state but also of the number-insensitive detection 
scheme shown in Fig.2.  This leads us to our primary observation. The dual coherent state in Eq.7 con-
tains highly oscillating super-resolving terms, which all tend to average out in a number-insensitive de-
tection scheme. Hence, by moving to a number-resolving detection scheme, we can exploit the higher 
harmonics in Eq. 7 and attain super-resolution, while suffering no worse than the classical Beer’s law in 
loss. This is essentially the experimental and theory result of the recent experiment by Andrew White’s 
group at the University of Queensland, where six-fold super-resolution was observed using only classic-
al light but exploiting a number resolving detection scheme  [Resch2007]. A similar experiment using a 
Fabry-Perot interferometer, number resolving detectors, and classical coherent light was recently ob-
served by our team in collaboration with the laboratory of Alan Migdall at National Institute of Stan-
dards and Technology (NIST) [Wildfeuer2008]. These results are discussed in detail below in Sec.8.0.  
 
To see how the state of Eq.7 contains terms of ten-fold improved resolution, let us consider a simple de-
tection operator, which is known to be optimal in the absence of loss with the use of N00N states 
[Kok2004], 
 

OAB
N 00N = 0 A N B N B 0 A + N A 0 B 0 B N A ,   (9) 
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which can be implemented with a number-resolving detector that detects only the photon number n = N. 
This so-called 0NN0-N00N operator picks out the N00N component of any two mode state. We take the 
expectation of this operator against the two-mode coherent state in Eq.7 to get, 
 
MN

n ϕ( )= n Ne−n cos Nϕ( )/N!         (10) 
 
We see immediately that the quantum number resolving 0NN0-N00N operator picks out a super-
resolving component of the dual-mode coherent state. Here we note α = eiϕ n , where ϕ is the phase to 
be detected.  We also have not yet included the effects of loss, which would produce an additional factor 
of e−βL , which is the ordinary Beer’s law factor, and can be included easily by redefining n  to be the 
normalized intensity at the detector rather than at the transmitter. Hence, for example, if N = 10, then a 
ten-number resolving detector picks out only the ten-fold improved resolving component, which is the 
QSP metric for resolution. However, the naive scheme of Eq.10 is not super sensitive, and in fact has a 
sensitivity that is worse than shot noise, due to the degradation of the fringe visibility by the factor of 
n Ne−n N! This factor is plotted in Fig.7 below. 
 
 

n 

n Ne−n /N!

 
 

Figure 7: The Two Mode Coherent State Projected onto the N00N Basis Has a 
Weight Factor Of n Ne−n /N! for N = 10 

 
We note that this function peaks at n =10, which suggests a strategy by which we adjust the initial am-
plitude of the coherent state such that the return intensity, now defined to be n , has this value after loss 
so that the primary contribution is the ten-fold super-resolving term. The properly normalized N00N 
component expectation of Eq.10 is plotted in Fig.8 below, for n = N =10, as a function of the phase. It 
has a visibility of only 12%  compared to the classical difference counting scheme shown in red in Fig.5. 
However it has the desired ten-fold improved super resolution! A simple calculation shows that the sen-
sitivity is worse than the SNL for the equivalent coherent state, simply due to the fact that the single 
N = 10, 0NN0-N00N detection scheme of Eq.9, throws away too many photons by counting only the 
N = 10 events.  
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As mentioned above, this naive approach of selecting only the N=10 term is too crude to give both ten-
fold super-resolution and no worse than the SNL for an equivalent classical scheme (where intensity dif-
ference is used upon detection instead of 0NN0-N00N). This poor performance is due to the fact that a 
quantum detection scheme, which only counts N = 10, throws away too many photons, compared to the 
classical detection scheme, which keeps all of them. The quantum 0NN0-N00N scheme is optimal for a 
N00N state but clearly is not optimal for this dual coherent state protocol. Even if we optimize to n =10 
in the return pulse, we have a Poisson distribution of coherent-state pulses that will contain many states 
with more or less than ten photons and will not be counted. Hence a smarter strategy is needed to attain 
both ten-fold super resolution and no worse than SNL sensitivity of the equivalent classical scheme, as 
required by the primary QSP metric.  
 
Such as scheme is suggested by our computer optimization results, detailed in Secs. 6.0 and 7.0, below, 
which indicate a dual mode coherent state combined with a sum of number-resolving detections (NRD) 
provides the optimal phase information in the presence of large loss. 
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Figure 8: The 0NN0-N00N-Expectation Operator of Eq.10 For a Single Detection 
Event Corresponding to n = N =10 in a Two-Mode Coherent State  

 
 
Such a smarter strategy is to recognize that number-resolving detectors (NRD) can in principal detect all 
photon numbers, not just N = 10. Current technology can efficiently detect in the range of 0 through 20 
photons with 95% efficiency and virtually no dark counts (10–6 per second) [Lita2008]. Hence the NRD 
will produce a sequence of interference terms of the form of Eq.10, each with its own weight factor 
Ne−n /N! and super-resolving phase factor, cos Nϕ( ). The key idea is to treat each of these 20 or so 
terms as individual terms in a Fourier cosine series. We are then at liberty to sum the contributions from 
each of the N = 0 through N = 20 photons counted, while keeping a fixed n =10. This can all be carried 
out in post-processing of the data. Hence we define a new operator, the sum of 0NN0-N00N operators 
over N, as, 
 

SAB
N 00N = 0 A N B N B 0 A + N A 0 B 0 B N A( )

N= 0

∞

∑ ,    (11) 

13



 

 
where we have taken the sum to infinity, without loss of generality, to reflect that the probability of the 
large N terms contribution drops off exponentially for any N >> n , as seen in Fig.7. Taking the expecta-
tion with respect to the operator of Eq.11 and the dual coherent state of Eq.7, we arrive at the expres-
sion,  
 

M Σ
n ϕ( )≡ e−n n / 2( )N cos Nϕ( ) / N !⎡⎣ ⎤⎦

N =0

∞

∑ = 2e−n 1/2+sin2 ϕ /2( )⎡⎣ ⎤⎦ cos n sin ϕ( ) / 2⎡⎣ ⎤⎦ , (12) 

 
where the infinite series, somewhat surprisingly, may be summed exactly to give the final expression. 
This is then the measurement outcome corresponding to applying a sum of 0NN0-N00N operators to the 
dual mode coherent state. In Fig.9, below, we plot the sum of 0NN0-N00N measurements (green, 
n =10), over the range from –π to π. Here again we note that n =10 is tuned to be the number of pho-
tons on average arriving at the detector after loss.  
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Figure 9: The Sum of All the 0NN0-N00N, for Eq.12 from the Number Resolving 
Detection of the Dual Coherent State With n =10 
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From Fig.9 we see that the sum of 0NN0-N00N strategy keeps a super-resolving central peak, but the 
fringes or side lobes in a single 0NN0-N00N term have washed out. Unfortunately a signal-noise-
analysis shows that this detection scheme is also worse than the SNL, and again the culprit is that we 
have thrown out too many photons. The sum over the 0NN0-N00N terms are a sparse set in the entire 
dual mode coherent state. However, this result suggests what will be our final protocol. We will sum 
over all the photons in the dual-mode coherent state, in such a way that we keep all of the photons, but 
sum over the phase carrying off-diagonal terms in the two-mode density matrix for the dual-mode cohe-
rent state. 
 
We define an off diagonal two mode Hermitian operator μ̂  based on the M&M states as, 
 

μ̂ ≡ M A
M , ′M = 0

∞

∑ ′M B A M B ′M ,      (13) 

 
which reduces to the sum of 0NN0-N00N operators when M = N and ′M = 0 . It is easy to show that, 
due to symmetry of interchange of the summation indices, that μ̂† = μ̂  and hence the operator is Hermi-
tian. The operator is idempotent, as is easy to show, and hence μ̂2 = Î , the identity operator. It is easy to 
see that this operator is the sum of all the phase carrying off diagonal terms in the two-mode space of the 
dual mode coherent state, and the square of this operator is just the sum of the diagonal terms, which 
give the two-mode identity. With these properties we can now find the expectation value and the minim-
al detectible phase for the two-mode coherent state, Eq.7 as the remarkably simple expressions, 
 

μ̂ = AB α μ̂ α AB = e−2n sin2 ϕ /2( ) ,    (14) 
 
and  
 

Δϕ 2 =
e4n sin2 ϕ /2( ) − 1
n 2 sin2 ϕ( )

     (15) 

 
In Fig.10, below, we plot together the coherent state with classical detection (red) the single N = 10 
N00N component (purple) and the expectation of the μ̂  operator with n = 10  (blue) and 
n = 100 (green).  
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Figure 10: The Classical State (Red), the Single 0NN0-N00N Term (Purple), and the 
Sum of All the Off Diagonal M&M Terms with n = 10  (Blue) n = 100 (Green)  

 
We see that the blue and green curves are both super-resolving, but it takes a return power of n = 100  
now to get ten-fold super-resolution, instead of the n = 10  required of the 0NN0-N00N schemes. This is 
easy to see analytically in that Eqs.14 and 15 may be expanded in a Taylor series around ϕ = 0 to get, 
 

μ̂ ≅ e−nϕ2 /2 ,       (16) 
 
and 
 

Δϕ ≅ 1 / n .      (17) 
 
We can see from Eq.16 that signal is approximately a Gaussian of width given by Eq.17. Hence the sig-
nal to noise is exactly the SNL from Eq.17, but the signal is n -fold super-resolving. The cost of add-
ing more photons in the detection scheme to achieve the SNL is that a higher return power is required to 
achieve 10-fold super-resolution; that is n = 100 .  
 
Remarkably, the green interferogram of Fig.10 also illustrates a solution to a problem that has plagued 
N00N-state metrology in the absence of loss. Recall that a pure N00N state with a single 0NN0-N00N 
detection, depicted in Fig.5, has the N-fold increased oscillation period, which is the hallmark of the 
N00N state scheme. This super-resolution allows for improved local phase sensitivity, which requires 
that one have a priori information about which fringe you are on [Durkin2007]. Without this a priori in-
formation, one must use too many photons to decide which fringe one is at before one can take advan-
tage of the N-fold steeper slope, and hence the N00N state scheme performs much worse for global 
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phase measurement, typically only at the SNL. For some applications, such as Doppler velocity mea-
surements, the need is only to have the ability to tell with high precision if any given fringe moves by a 
small amount. For such applications the over-all phase or global phase is not important; one just locks to 
the side of one fringe not caring which fringe it is. For other applications, such as LIDAR Mie scattering 
measurements, the absolute phase provides absolute information on aerosol particle diameter [Hig-
gens2007], and here it is important to have global phase. Shapiro suggested an approach to global phase 
measurement using a coherent sum of N00N states, reducing the multiple fringes to a single narrow 
fringe in the range –π  to π [Shapiro1993, Shapiro1995]. Here we achieve the same effect not by trans-
mitting a weighted superposition of N00N states, which would be rapidly attenuated by absorption and 
scattering, but rather by transmitting a dual mode coherent state, which suffers no worse absorption and 
scattering than classical light, and then executing a weighted superposition of phase carrying off-
diagonal M&M detection operators. We have moved all of the “quantum” of the quantum sensor from 
the source to the detection, again putting us squarely in DARPA QSP Type-II. It also can be shown that 
the operator μ̂  of Eq.13 is closely related to the parity operator, discussed in Refs. Chiruvelli2008a, 
Gao2008, and Chiruvelli2008b. The parity operator can be implemented without NRDs, by using single-
photon detectors, which can distinguish between zero or one or more photons. Such detectors are readily 
available and operate at much higher temperatures than the NRDs. This connection is a topic of ongoing 
research, but we feel that super-resolution with no worse than SNL sensitivity is well within reach of a 
realistic QSP Phase II statement of work.  
 
We can estimate the signal to noise associated with the green interferogram in Fig.10. The curve has a 
non-zero minimum value at the point ϕ = π. Here we may evaluate the expression of Eq.12 to obtain, 
 

SNRϕ =π
n =100 ≡ 10log

μ̂ϕ =0
n =100

μ̂ϕ =π
n =100

⎛

⎝
⎜

⎞

⎠
⎟ = 869dB ,    (18) 

 
which corresponds to the separation in signal at ϕ = 0 and noise at ϕ = π. If we instead average the sig-
nal over this range, vis, 
 

SNRAVG
n =100 ≡ 10log

μ̂ϕ =0
n =100

1
2π

μ̂ϕ
n =100

−π

π

∫

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 14dB ,    (19) 

 
still provides a huge separation for the signal at ϕ = 0 and the average signal over the 2π range.  
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To summarize, we have discovered numerically, and then provided analytical reasoning, that the optimal 
quantum LIDAR (QuLidar) scheme in the presence of high loss (greater than 6dB) is to use a dual-mode 
coherent state, which suffers only the classical Beer’s law for loss due to attenuation and scattering. 
Then in the number resolving detector we project out this essentially classical state into the quantum 
M&M basis and then sum over all M. Such a quantum detection scheme is radically different than typi-
cal intensity differencing. The terms in the sum near n = N = 100  add constructively to give the well 
defined, super-resolving peak, with unit visibility, indicated in Fig.10 (green), that is separated by 
869dB from the minimal background and by 14dB from the average count. The point then is that by us-
ing “classical” coherent light in propagation, we do not suffer the super-Beer loss associated with propa-
gating quantum states, putting our proposed scheme firmly in QSP Type-II quantum sensor, defined as 
where only classical light propagates to the target. However a “classical” coherent state is a quantum 
state. We exploit this in the quantum detection scheme with number resolving detectors to project out 
the super-resolving terms, and the sum them so that we do no worse than shot-noise in sensitivity while 
maintaining ten-fold super resolution. In addition the connection between the sum of the M&M operator 
and the parity operator −1( )n̂  opens the door for not using NRD at all but instead the much more com-
monly available single-photon counters, which need only distinguish between zero and more photons 
[Chiruvelli2008a, Gao2008, Chiruvelli2009]. Such a single-photon detection scheme is quantitatively 
the same as a similar result arrived at independently by Tsang [Tsang2009]. 
 
In the following we will provide more details of the work supported by this DARPA QSP grant but the 
above summary is our primary conclusion. Our proposed dual coherent state scheme with number-
resolving detectors meets all of the DARPA QSP metrics for a successful Phase I. What is especially 
appealing about our proposal for the quantum LIDAR is that it does not require squeezed light, only 
number resolving detectors, which are now becoming widely available due to development for quantum 
information processing tasks. In Sec.8.0 below we illustrate a proof of principal experiment, performed 
in collaboration with Dr. Alan Migdall at NIST, which illustrates the super-resolving phase components 
for each photon number in a coherent state interferometer [Wildfeuer2008].  
 
In the Appendix we will recap the M&M state results [Huver2008], which are optimal for low loss, and 
also include a discussion of a high flux M&M and N00N generation schemes [Glasser2008, Cable2009]. 
In Secs. 6.0 and 7.0 we will discuss the results of the numerical code and optimization. In Sec.8.0 we 
will discuss the number-resolving detection experiment [Wildfeuer2008]. In the Appendix we present 
our work on a unified measurement scheme for N00N state interferometry and the investigation of 
another type of “optimal” state interferometry in the presence of loss [Gao2008, Chiruvelli2008a, Chi-
ruvelli2008b]. In Sec.9.0 we discuss the quantum derivation of Beer’s and super-Beer’s laws, discuss a 
class of entangled states that obey ordinary Beer’s law, and then finally in Sec.10.0 we discuss the 
Raytheon models of atmospheric loss and turbulence we plan to utilize for Phase II. Given that our plans 
for Phase II amount to coherent state propagation, the other great thing about our proposal is that we do 
not need to adapt the atmospheric codes to propagate quantum states. They can be used as is. 
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2.2 Summary of Deliverables 
 
Deliverables Theory Base: 

• Theory and models of Type-I and Type-II spontaneous parametric down conversion (SPDC), 
optical parametric amplifier (OPA), optical parametric oscillator (OPO), and entangled-photon 
Laser (EPL) sources of bright squeezed and entangled light sources for QuLidar A & B. (Com-
pleted except for the EPL source, which we decided was too weak and too fragile for practical 
Type II LIDAR.) 

• Theoretical comparison of the performance such bright sources of squeezed and entangled light 
sources in the QuLidar A & B configurations, with respect to a 10-fold resolution and 26 dB sig-
nal to noise improvement in a 3 dB noise environment (completed). 

• Theoretical models of noise degradation in QuLidar A & B systems due to photon losses (com-
pleted). 

• Theory and models of noise and loss mitigation through decoherence-free subspace approaches 
(completed). 

• Theory and models of quantum-enhanced timing and ranging (completed). 
• Theory and models of dispersion cancellation in QuLidar A & B systems (in progress). 
• Provide technical reports and systems engineering analysis to determine military utility, mission 

control operations (CONOPS), and viable concept designs for quantum-sensor applications 
(completed). 

 
Publications and Preprints Produced: 
 
[Cable2009] Cable, H; Vyas, R; Singh, S; Dowling, JP; Theoretical investigation of a non-degenerate 
optical parametric oscillator as a high-flux source for quantum lithography, in preparation (to be submit-
ted to Physical Review).  

[Chiruvell2008] Chiruvelli, A; Lee, H; Parity Measurements in Quantum Optical Metrology; ar-
Xiv:0901.4395 (to be submitted to Physical Review). 

[Chiruvell2009] Chiruvelli, A; Lee, H; Canonical Phase Measurements in the Presence of Photon Loss; 
arXiv:0811.2780 (to be submitted to Physical Review). 

[Dowling2008] Dowling, JP; Quantum optical metrology — the lowdown on high-N00N states; 
CONTEMPORARY PHYSICS, 49 (2): 125-143 2008. 

[Gao2008] Gao, Y; Lee, H; Sub-shot-noise quantum optical interferometry: a comparison of entangled 
state performance within a unified measurement scheme; JOURNAL OF MODERN OPTICS, 55 (19-
20): 3319-3327 2008. 

[Gao2009] Gao, Y; Wildfeuer, CF; Lee, H; Dowling, JP; Super-Resolution at the Shot-Noise 
Limit with Coherent States and Photon-Number-Resolving Detectors, in preparation (to be sub-
mitted to Physical Review). 

[Glasser2008] Glasser, RT; Cable, H; Dowling, JP; Entanglement-seeded, dual, optical parametric am-
plification: Applications to quantum imaging and metrology; PHYSICAL REVIEW A, 78 (1): Art. No. 
012339 JUL 2008. 
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[Huver2008] Huver, SD; Wildfeuer, CF; Dowling, JP; Entangled Fock states for robust quantum optical 
metrology, imaging, and sensing; PHYSICAL REVIEW A, 78 (6): Art. No. 063828 Part B DEC 2008. 

[LeeTW2009] Lee, TW; Huver, SD; Lee, H; Kaplan, L; McCracken, SB; Min, C; Uskov, D; 
Wildfeuer, CF; Veronis, G; Dowling JP; Optimization of quantum interferometric metrological 
sensors in the presence of photon loss, in preparation (to be submitted to Physical Review). 

[Sciarrino2008] Sciarrino, F; Vitelli, C; De Martini, F; et al., Experimental sub-Rayleigh resolution by 
an unseeded high-gain optical parametric amplifier for quantum lithography, PHYSICAL REVIEW A, 
77 (1): Art. No. 012324 JAN 2008. 

Invited Talks: 
 
“Quantum Technologies — The Second Quantum Revolution,” Jonathan P. Dowling, US Army Emerg-
ing Technologies Seminar, 6–9 October 2008, McLean, Virginia (invited). 

“Quantum Technologies — The Second Quantum Revolution,” Jonathan P. Dowling, US Army Future 
Technology Seminar, 19–21 August 2008, Portsmouth, Virginia (invited). 

“Linear Optical Quantum Computing, Imaging, and Sensing,” Jonathan P. Dowling, Asia Pacific Confe-
rence on Quantum Information Science, 2–5 July 2008, Cairns, Australia (invited).  

 “What’s New with N00N States?” Jonathan P. Dowling, SPIE Photonics West: Quantum Electronics 
Metrology, 19–24 January 2008, San Jose, California (invited). 

 “Quantum Sensors: The Lowdown on High-N00N”, Jonathan P. Dowling, 38th Winter Colloquium on 
The Physics of Quantum Electronics, 6–10 January 2008, Snowbird, Utah (plenary). 

“Quantum Optical Metrology,” Christoph F. Wildfeuer and Jonathan P. Dowling, Conference: IV work-
shop ad memoriam of Carlo Novero, Advances in Foundations of Quantum Mechanics and Quantum 
Information with Atoms and Photons, 19–23 May 2008, Turin, Italy (invited). 

“Metrology with a Fabry-Perot interferometer and entangled states of light,” Christoph F. Wildfeuer, 
Sean D. Huver, and Jonathan P. Dowling, SPIE Photonics West, San Jose, CA, 24–29 January 2009 (in-
vited). 

“Density Matrix Formalism for Heisenberg-Limited Interferometry,” Hwang Lee, SPIE Photonics West 
2009, San Jose, CA, January 24–29, 2009 (invited). 

“Heisenberg-Limited Optical Interferometry: A Universal Detection Scheme,” Hwang Lee, 17th Interna-
tional Laser Physics Workshops, Trondheim, Norway (June 30–July 4, 2008, (invited). 

“Quantum Sensors in a Lossy Medium,” Hwang Lee, SPIE Defense and Security Symposium, Orlando, 
FL, March 16–20, 2008 (invited). 

“The effect of path absorption on phase sensitivity with entangled states” Yang Gao and Hwang Lee, 
SPIE Photonics West 2008, San Jose, CA, January 19–24, 2008 (invited). 
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“Sub-Shot-Noise Optical Interferometry,” Hwang Lee, 38th Winter Colloquium on the Physics of Quan-
tum Electronics, Snowbird, UT, January 6–10, 2008 (invited). 

2.3 Intellectual Property  
 
The information in Sec. 7.0 is Raytheon proprietary information and should not be distributed outside of 
the US Government. 
2.4 Discussion of Proposer’s Previous Accomplishments  
 
Previous Accomplishments, Theory Base (LSU, MSA, Raytheon):  
 
The LSU activity has spearheaded the use of squeezed and entangled states of both light and atoms in 
the use of quantum sensors. In particular the PI (Dowling) has investigated the use of squeezed and en-
tangled sources in sensors for over 15 years (while at LSU, NASA JPL, and US Army Aviation & Mis-
sile Command) including work on the phase sensitivity of atom gyros [Scully1993, Dowling1998], 
quantum-optical states of ultimate phase resolution [Schleich1991, Dowling1991], quantum imaging and 
lithography [Boto2000, Strekalov2002], and quantum sensors [Kapale2005]. In fact, in the paper of Bo-
to, et al., our team first pointed out the sub-Rayleigh diffraction effect of entangled photons for quantum 
imaging. Consequently, our team has led the way in the study and efficient generation of N00N and re-
lated states for quantum imaging and metrology [Lee2002a, Lee2002b, Kok2002, Kok2004, Dur-
kin2006, Wildfeuer2006, VanMeter2006]. In addition, LSU and MSA have collaborated over the past 
seven years on quantum sensor projects under the auspices of the National Reconnaissance Office 
(NRO) Director’s Innovation Initiative (DII). These projects have included quantum-entangled gravity 
gradiometers and gyroscopes [Dowling1998, Yurtsever2003], magnetometers, and clock-
synchronization protocols [Jozsa2000, Yurtsever2002]. Dowling (LSU) and Yurtsever (MSA) have also 
collaborated on a previous DARPA project on entangled gravity gradiometers. Dowling is currently 
working on Department of Defense (DoD)-funded projects in optical quantum information processing 
and quantum imaging. Raytheon is a defense contractor that is well familiar with the requirements of a 
DoD remote-sensing system, and Wilkinson (Raytheon) has many years experience in optical remote 
sensing, as well as quantum optics theory and experiment, having done his PhD work with Prof. Marlan 
Scully. 
 
2.5 Description of the Facilities 
 
Dowling and H. Lee mentor a large number of postdocs (3), graduate (8), and undergraduate students (3) 
in the Quantum Science and Technologies (QST) group of the Hearne Institute for Theoretical Physics 
(HITP) and the Physics & Astronomy (P&A) department, working on projects related to quantum-
optical information processing. These projects include quantum imaging, optical quantum computing, 
quantum sensing, and the theory and modeling of photonic crystals. The QST group has four, net-
worked, Dell workstations for computational modeling and design theory. Tae-Woo Lee holds a staff 
position at the Center for Computation and Technology (CCT), and in particular has access to the super-
computing facilities there. T.W. Lee has world-class expertise in the numerical modeling of linear and 
nonlinear optical devices. LSU also has access to very good library resources and Dowling has access to 
the NASA Jet Propulsion Laboratory (JPL) online library system as well. Drs. H. Lee and T.W. Lee, are 
part of a LSU-wide quantum optics and microphotonics strategic hiring initiative that Dowling leads at 
LSU, which is joint with CCT, HITP, Physics & Astronomy (P&A), ECE, and Math Departments — 
encompassing the CCT and the Colleges of Basic Science, Engineering, and Arts & Science. This LSU-
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funded microphotonics initiative forms the core of personnel and facilities for this proposal — leverag-
ing funding from the State of Louisiana. The Hearne Institute is funded by a donation of two endowed 
chairs by Horace Hearne Jr. and the State of Louisiana, as well as additional grants from a variety of na-
tional and international granting agencies. It currently has as co-directors the LSU Flagship Faculty 
members, Profs. Jonathan Dowling and Jorge Pullin. The institute hosts faculty, postdoctoral research-
ers, students — as well as long- and short-term visitors — who conduct research on quantum technolo-
gies and on gravitational physics. The Hearne Institute also sponsors international workshops on quan-
tum information theory, quantum technologies, relativity, and quantum gravity. 
 
The Center for Computation & Technology, or CCT, is an interdisciplinary research center located on 
the campus of LSU in Baton Rouge, Louisiana. The CCT advances the LSU Flagship Agenda and pro-
motes economic development for the state by using computational applications to aid research and de-
velop solutions that benefit academia and industry. CCT is an innovative research environment, advanc-
ing computational sciences, technologies and the disciplines they touch. Researchers at CCT use the ad-
vanced cyber-infrastructure — high-speed networks, high-performance computing, advanced data sto-
rage and analysis and hardware and software development — available on campus to enable research in 
many different fields. By uniting researchers from diverse disciplines, ideas and expertise are dissemi-
nated across LSU departments to foster knowledge and invention. The CCT has an annual budget from 
the state of Louisiana of $9M/year. For example, one of the super computers available for this project is 
a 50.7 TFlops Peak Performance, 680 node, 2 Quad-Core processor Red Hat Enterprise Linux (RHEL) 
v4 cluster from Dell with 2.33 GHz Intel Xeon 64bit processors and 8 GB RAM per node. Another is a 
15.322 TFlops Peak Performance, 360 node, 2 Dual-Core processor Red Hat Enterprise Linux v4 cluster 
from Dell with 2.66 GHz Intel Xeon 64bit processors and 4 GB RAM per node. There are many others 
included those networked to the Louisiana Optical Network Initiative (LONI). These resources were be 
used in addition to the HITP mini-cluster of Dell workstations, to be purchased on this grant. The mini-
cluster was be dedicated to this project.  
 
2.6 Formal Teaming Agreements  
 
2.6.1 Programmatic Relationship of Team Members 
 
Professor Jonathan Dowling of LSU was the team lead, who has coordinated the activities on a weekly 
basis through email, teleconferences, and site visits. Dowling (LSU) has a close working relationship 
with all team members, and historically this team has worked well on quantum sensor and related 
projects in the past. Yurtsever worked closely with the LSU teams by telecom and with Raytheon regu-
larly on site visits due to collocation. The CCT and LSU personnel met weekly and Raytheon and Math-
Sense participated by telecon. 
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Figure 11: Organizational Chart 
 
 
2.6.2 Unique Capabilities of Team Members 
 
Dowling at LSU was lead theorist, whose background in quantum sensors and sub-Rayleigh-diffraction-
limited lithography played a key role in evolving the theory base. H. Lee at LSU provides quantum op-
tics analytical expertise. Yurtsever at MSA has a unique background in analytic and theoretical physics 
techniques in quantum sensors, and brought formidable analytical capabilities to bear on the project. 
T.W. Lee at LSU-CCT has extensive experience in the computational modeling of quantum sensors, and 
formed the information-technology base of the team. Wilkinson at Raytheon has wide-ranging expe-
rience in the theory and experiment of quantum-optical systems, and has a unique ability as a prime de-
fense contractor, well experienced in remote sensing for the DoD, and so brings the systems-engineering 
skills that will become a critical component as our team advances to Phase II and beyond.  
 
2.6.3 Task Responsibilities of Team Members  
 
Dowling (LSU) simultaneously served as team leader (PI) and the theory base leader, jointly in the latter 
role with H. Lee (HITP-LSU) and Yurtsever at (MSA), who coordinated the Los Angeles theory and 
modeling activities. T.W. Lee (CCT-LSU) acted as the point of contact on numerical simulations, while 
Yurtsever and Dowling provided the analytical models to be used in the computer codes. Wilkinson 
(Raytheon) worked on the development of systems engineering and design tools to facilitate the Phase I 
transition into a high-performance DoD system, particularly the atmospheric modeling. The key goal of 
the theory base was to develop realistic models of noise and loss in the proposed quantum-lidar systems, 
and particularly to find a new class of super-resolution and super-sensitivity quantum states that have 
similar performance as N00N states, but are much more robust against loss, which we have done as out-
lined above. 
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2.6.4 Key Personnel & Amount of Effort  
 
Amount of Effort — Theory Base: Prof. Jonathan Dowling (PI) is the Director of the Hearne Institute for 
Theoretical Physics (HITP) at LSU, and devoted one month per summer per year for two years full time 
to the project. He spent a portion of these summer months at MSA and Raytheon, in order to be better 
able to coordinate the theory base activities located in the Los Angeles area. In addition, Prof. Hwang 
Lee, also at LSU, who is the Deputy Director of the HITP, assisted Dowling. Dowling and Lee mentored 
an LSU postdoc, Dr. Wildfeuer, who was devoted full time to this project. Lee first developed the first 
linear-optical approach for N00N-state generation [Lee2002a, Kok2002], and was co-author on our re-
cent paper on quantum sensors [Kapale2005]. Lee also devoted two months of his summer over two 
years to the project, while the postdoc was full time over the 18-month duration. Dr. Ulvi Yurtsever has 
collaborated for years with Dowling, T.W. Lee and H. Lee on the theory of quantum sensors and was the 
primary point of contact for the theory base effort. Yurtsever devoted 33% of his time over the 18-month 
period of effort. T.W. Lee carried out the simulation and modeling tasks at CCT-LSU in coordination 
with the rest of the theory base members and devoted 40% of his time to the task over his 15-month pe-
riod of performance. (T.W. Lee started late due to the JPL contract issues.) 
 
2.6.5 Biographies of Key Personnel 
 
Jonathan P. Dowling (Principal Investigator, LSU): Prof. Dowling is the Horace C. Hearne Jr. Professor 
of Theoretical Physics and Director of the Hearne Institute for Theoretical Physics, Quantum Science 
and Technologies Group, Department of Physics and Astronomy, Louisiana State University, Baton 
Rouge, Louisiana. Prof. Dowling received his BS in physics (with honors) from the University of Texas 
at Austin. He then received his MS in applied mathematics, MS in physics, and PhD in mathematical 
physics, all from the University of Colorado at Boulder. He was a Visiting Research Scientist at the In-
ternational Center for Theoretical Physics in Trieste, Italy; a Postdoctoral Research Scientist at the Max 
Planck Institute for Quantum Optics in Garching, Germany; and a National Research Council postdoc-
toral research associate in the Optical Science & Technology group at Army Aviation and Missile 
Command (AMCOM), Redstone Arsenal, Alabama. In he then joined AMCOM as a Research Physicist, 
where he won the Army Research, Development, & Achievement Award for his development of the 
theory of spontaneous emission in photonic crystals. He then left AMCOM to take a position as Re-
search Scientist at the Senior Level in the Quantum Computing Technologies Group at JPL, where he 
was eventually promoted to Group Supervisor & Principal Scientist, before leaving to take the post in 
Louisiana. Dowling has over 130 published articles, and he holds eight US patents in the fields of nonli-
near and quantum optics. He is a Fellow of the American Physical Society, the Institute of Physics, and 
the Optical Society of America, and has served on the editorial board of Physical Review, for the Jour-
nal of the European Optical Society, and for Concepts of Physics. He was awarded the Willis E. Lamb 
Medal for Laser Science and Quantum Optics (2002), a NASA Space Act Award (2002), and a US Ar-
my Research, Development, and Engineering Achievement Award (1996). 
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Hwang Lee (Co-Investigator, HITP & P&A, LSU): Prof. Hwang Lee is an Assistant Professor of Physics 
at Department of Physics and Astronomy, Louisiana State University. Lee received his PhD in Physics 
from Texas A & M University in 1998. He was a postdoctoral Research Associate in Department of 
Physics at Texas A & M University and also worked as a postdoc at NASA Jet Propulsion Laboratory 
under National Research Council Associateship Program (2000 to 2002). In 2002 he became a Senior-
Level Research Scientist at the Jet Propulsion Laboratory in Exploration Systems Autonomy Section. He 
joined Louisiana State University in 2005. His research interests include high-precision optical interfe-
rometers and spectroscopy, single-photon generation, and optical quantum computing. He received the 
2003 Outstanding Young Researcher Award from the Association of Korean Physicists in America for 
his contributions in quantum optics. He served as a program committee for Quantum Metrology session 
at the SPIE Photonics West Conference, Opto2008.  Relevant Publications: [Wilde2008, Spedalieri2006, 
Florescu2005, LeeH2004b, LeeH2004a]. 
 
Tae-Woo Lee (Co-Investigator, CCT, LSU): Dr. Lee is an IT-consultant in the Center for Computation & 
Technology (CCT) at Louisiana State University, Baton Rouge, LA. Dr. Lee received his BS and MS 
degrees in physics from Inha University, Incheon, South Korea. During his MS degree in Inha Universi-
ty (1997), Dr. Lee worked on numerical modeling of high-field magnetization processes in rear-earth 
magnetic materials from which he has first gained research experiences in quantum mechanics areas. 
Then, Dr. Lee continued his study in Electrical and Computer Engineering at the University of Wiscon-
sin-Madison, Madison, WI where he received the MS and Ph.D. degrees (2003). Major works during his 
Ph.D. dissertation involves with the development and application of numerical algorithms for modeling 
high-speed digital circuit interconnectors and linear and nonlinear photonic devices. Before Dr. Lee 
moved to Louisiana State University, he stayed at Argonne National Laboratory, Argonne, IL as a post-
doctoral research associate where he focused his research on a nanophotonics area including plasmonic 
devices (2003 – 2007). Currently, Dr. Lee, as an IT-consultant at CCT, participates in various projects in 
collaborations with experimentalists and theoreticians. Dr. Lee’s research areas include novel numerical 
approaches for nonlinear photonic system solvers, plasmonic bio-sensing devices and probes, and large-
scale parallel computations. Relevant Publications: [LeeTW2001, LeeTW2004]. 

Steven R. Wilkinson (Co-Investigator, Raytheon): Dr. Wilkinson received a PhD with M.O. Scully in 
physics that specialized in the interaction of laser radiation with complex atomic systems. His PhD work 
was performed at Sandia National Labs that included both theoretical modeling and experimental verifi-
cation. After a two year Post Doctoral Fellowship at the University of Texas, Dr. Wilkinson joined 
Hughes Aircraft that is now Space and Airborne Systems (SAS) Raytheon. While at Raytheon he has 
developed multidisciplinary system engineering expertise that covers a variety of platforms, air, ground, 
space, and sensors; including Radar, Electro-Optical/Infra-Red (EO/IR), Laser, and Passive RF. Three 
years ago Dr. Wilkinson initiated his current work to demonstrate the military utility of short pulse las-
ers. Previously he was investigating Air-Space integration of unmanned and reconnaissance systems for 
future missions. This investigation entails system-of-system analysis and development of requirements 
for the next generation of integrated systems. In addition to the Raytheon experience, prior to his PhD, 
he served in the Marine Corps with a primary responsibility in communications that involved limited 
Electronic Warfare and Signals Intelligence work. 
 
Ulvi Yurtsever (Theory Base, Co-Investigator, MSA): Dr. Yurtsever brings a wide range of mathematical 
physics expertise to the project, including more than a decade of research experience in statistical phys-
ics, quantum field theory, foundations of quantum mechanics, and theoretical quantum optics. His cur-
rent and recent research is focused on the development of novel information technologies inspired by the 
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interface between physics, information theory, and computation. His recently completed research 
projects involve quantum information theory and its applications to quantum sensors and quantum 
communications, including, as a Principal Research Scientist at NASA’s Jet Propulsion Laboratory, re-
search on the applications of quantum metrology to relativistic clock synchronization. Dr. Yurtsever is 
currently an independent Research Scientist at MathSense Analytics. Yurtsever received his PhD in 
Theoretical Physics in 1989 from the California Institute of Technology, and has authored over 40 ar-
ticles in professional theoretical physics journals and conference proceedings. 
 
 
2.7 Theory Base Statement of Work (SOW) 
 
2.7.1 SOW Sensor Concept I — QuLidar-A 
 
For the QuLidar-A Sensor Concept the Phase-I, Theory-Base Team developed models of noise and loss 
for the monostatic QuLidar system, where the sources to be analyzed and compared were all based on 
bright, Type-I, parametric-downconversion devices, typically from optically pumped nonlinear crystals 
with large χ(2) optical behavior [Bialkowski1996]. The team developed models of such sources operated 
in the spontaneous parametric downconversion (SPDC) mode, the high-gain optical parametric amplifier 
(OPA) mode, the cavity resonant optical parametric oscillator (OPO) mode [Bialkowski1996, Kolo-
bov1999], but not the newer cavity enhanced time-domain entangled photon laser (EPL) mode, which 
we ruled out as a viable approach early on [Lamas-Linares2001, Simon2003]. Each of these modes pro-
vides non-classical light with different brightness, spatio-temporal correlations, degrees of squeezing, 
and degrees of entanglement. Hence it was discovered, as expected that each source configuration had 
its own unique resolution and phase sensitivity characteristics, when operated as an interferometer. Nev-
ertheless, the different sources all share sufficient commonalities to allow them to be analyzed, com-
pared, contrasted, and modeled in a consistent theoretical and computational framework. 
 
The theory team (LSU, MSA) developed noise and loss models to compare and contrast the different 
modes of operation and determine the degradation of the sensor system due to photon absorption and 
scattering between the source, target, and detector. The intent was to provide quantitative loss models 
that characterize the rollover of the non-classical resolution and sensitivity from the quantum into the 
classical domain, when compared with the equivalent coherent source operating at the same flux level. 
The modeling of the entire system was carried out on self-contained, modular computer codes (CCT-
LSU), which will be interfaced as discussed in Sec.7.0, below. The goal was to specify QuLidar systems 
that give 10-fold resolution and 26 dB of signal to noise while operating with 3 dB of noise and photon 
loss. 
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A separate module for each of the different subsystems was designed and the modular format allowed 
different sources, imaging models, noise models, and detector schemes to be substituted without affect-
ing the other modules. In this way the theory team rapidly explored trade-offs between source bright-
ness, resolution enhancement, phase sensitivity, signal to noise, and robustness against noise. Dowling at 
LSU provided the underlying theory of the sources and imaging system. Yurtsever at MSA provided the 
underlying theory of the noise models and the detection schemes, utilizing input from the experimental 
options. T.W. Lee was tasked with developing the computer modules based on the theory and data pro-
vided. Wilkinson at Raytheon worked the rest of the theory team to extract design rules and perform a 
systems analysis of the most promising designs, with the goal integration into future DoD sensor proto-
types, which in our final Type-II scheme simply involved modeling loss and scattering of coherent states 
in the atmosphere. The most promising systems were characterized and detailed and their performance 
metrics provided to DARPA. All of the Theory-Base Members devoted 50% of their time, of this 
project, on Sensor Concept I — QuLidar A. 
 
• Months 1–6: Theory of QuLidar A sources, imaging systems, noise, and detection developed. 
• Months 7–12: Theory integrated into computer modules for each of the four subsystems. 
• Months 13–18: Loss data from experimental options inputted into computer simulations. 
• Months 13–18: Target high performance sensor systems down selected. 
• Months 13–18: Systems integration analysis performed. 
 
2.7.2 SOW Sensor Concept II — QuLidar-B 
 
Given that the Sensor Concept II — QuLidar B — is based on the replacement of Type-I with Type-II 
downconversion sources in the sensor system, the SOW for this concept is identical to that of QuLidar A 
with this replacement and a few modifications in the theory and simulations. (Note that Type-I and 
Type-II here refer to the polarization properties of the source and are not to be confused with Type-I, II, 
and III quantum sensors identification by DARPA based on entangled and non-entangled states.) An ex-
ecutive decision was made to split the concepts in this fashion, due to the different nonlinear optical 
crystals used in the two concepts, the different way these crystals are pumped and phase-matched, and 
the different way the polarization-entangled photons will have to be treated as far as the imaging system, 
the interaction with the target, and sources of noise. However, the research was parallel to the QuLidar 
A SOW and was carried out simultaneously by the Phase-I Theory-Base Researchers, so we have split 
their time between the two sensor concepts equally. 
 
• Months 1–6: Theory of QuLidar-B sources, imaging systems, noise, and detection developed. 
• Months 7–12: Theory integrated into computer modules for each of the four subsystems. 
• Months 13–18: Loss data from experimental options inputted into computer simulations. 
• Months 13–18: Target high performance sensor systems down selected. 
• Months 13–18: Systems integration analysis performed. 
 
For all of these interrelated tasks, a detailed description of the statistical and correlation properties of the 
signal is one of the first questions that need to be explored. Most standard signal-processing techniques 
rely on the known correlation properties of the optical signal and its accompanying noise. It is therefore 
imperative for imaging and ranging applications to develop a solid understanding of the foundations of 
entangled-light optics and the coherence properties of entangled light in optical media. Investigations of 
the behavior of entangled light in the presence of common optical elements (such as lenses, diffraction 
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gratings, beamsplitters, etc.) have barely begun, and so far have focused only on special configurations 
such as the light output by SPDC crystals [Abouraddy02]. We developed a general formalism to de-
scribe the optical behavior of many-photon-entangled light, such as focusing, diffraction, imaging and 
coherence.  
 
2.8 Cost, Schedule, and Milestones: Theory Base  
 
2.8.1 Sensor Concept I — QuLidar A 
 

Month Milestone Approximate Expenditure 
1–6 Theory of Sensor Components $100K 
7–12 Computer Module Development $100K 
13–18 Loss Data Integration $50K 
13–18 Down selection $50K 
13–18 Systems Analysis $75K 

 
2.8.2 Sensor Concept II — QuLidar-B 
 

Month Milestone Approximate Expenditure 
1–6 Theory of Sensor Components $100K 
7–12 Computer Module Development $100K 
13–18 Loss Data Integration $50K 
13–18 Down selection $50K 
13–18 Systems Analysis $75K 
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3.0 QUANTUM THEORY OF LOSS IN QUANTUM LIDAR SENSOR 
 
3.1 Introduction 
 
This section summarizes how we treat quantum states of light propagating through a lossy me-
dium and how we set up a theoretical framework that we used in our numerical codes. First, we 
developed a density-matrix formalism for a generic two-way interferometer, in which the amount 
of photon loss can be arbitrarily high. Then, for an arbitrary input state, each matrix element of 
the desired reduced density matrix was obtained explicitly after the propagation loss.  
 
3.2 Loss Treatment 
 
In quantum optics, the photon loss is typically modeled by a beam splitter [Loudon2000].  In 
doing so, we first need to enlarge the Hilbert space to include the modes that represent the scat-
tered photons and then, after the scattering, trace out those modes.  As a first step we extend the 
beam splitter model for loss to two propagating modes that represent the two paths in the optical 
interferometer. For the two input ports of an interferometer, any arbitrary pure-state input with N 
photons can be written as:  

   
 

∑
=

−=
N

k
k kkN

0
input

,αψ ,     (20) 

 
where the kα  are the probability amplitudes associated with that particular quantum state. The 
two numbers inside the brackets represent the number of photons in the upper path and the lower 
path, respectively. Almost all the input states proposed for the Heisenberg-limited interferome-
try—with a notable exception of the squeezed states—are described by Eq.20.  Such a quantum 
state resides in a Hilbert space of N+1 dimension.  
 
The transformation of the quantum state by any passive lossless optical elements for an interfe-
rometer such as beam splitters, phase shifters, and mirrors can then be described by an (N+1) by 
(N+1) unitary matrix. Analysis of a lossless interferometer with the input state of Eq.20 can be as 
simple as following the rotation of the state vector in the N+1 dimensional Hilbert space. 
 
However, when the propagation channels suffer from photon losses, the state vector description 
of the quantum state of light is no longer possible. First of all, we need to consider the total den-
sity matrix that includes all the modes for the scattered photons. Then, we obtain the reduced 
density matrix for the two interferometer modes by tracing out the modes for those scattered 
photons. The reduced density matrix then necessarily becomes an object that lives in a much 
larger Hilbert space that covers smaller number of photons, (N+1)(N+2)/2, to be precise.  Picto-
rially, we may view this process as depicted in Fig.12.  
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Figure 12: The Initial Density Matrix Before the Loss (Left) and the (Re-
duced) Density Matrix After the Loss (Right) 

 
After passing through the two beam splitters — representing the two lossy channels in the two 
arms of the interferometer — the density matrix for the two main modes now consists of N+1 
different-size blocks. Each of these blocks (the boxes in the right of Fig.12) represents the cor-
responding number of photon lost.  In other words, the quantum state of light ends up in the 
N+1–L dimensional Hilbert space if total of L photons are lost.  
 
Now let us look at the (i, j)th component in the L-th block on the right hand side of Fig.12 (L = 0, 
1,L , N).  It corresponds to the density matrix element associated with the operator 

jjLNiiLN ,, −−−−  in the usual ket-bra notation. Our aim is to find the value of the density 
matrix element, if the input state kα  and the loss parameter are given. The beam splitter is typi-
cally described with a unitary transformation between the input and output modes [Scully1997, 
Loudon2000]: 
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 ,     (21) 

 
where inâ , inb̂  ( outâ , outb̂ ) are the annihilation operators for the input (output) modes of the beam 
splitter, and r and t are the reflection and transmission coefficients, respectively. 
 
The unitary (conservation of probability) condition provides the relations 122 =+ tr  and 

0** =+ rttr . For a 50-50 beam splitter, we follow the reciprocity convention of using 
2/1=r and 2/it = . Using the beam splitter model for loss, the probability for a single pho-

ton loss is given by the reflectivity 2r , which will serve as the loss parameter (the fraction of 
photons reflected into the environment and lost). 
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Let us look back to the density matrix element associated with jjLNiiLN ,, −−−− .  Let us 

first look at the ket part iiLN ,−− . Now suppose the input state was kkN ,− . We are now 
going to construct the probability amplitude corresponding to the transition: 
 
    iiLNkkN ,, −−⇒− .     (22) 
 
If iLNkN −−<− , or ik < , the transition probability is zero, since the number of photons 
cannot be increased by a loss event. Hence, the k values are restricted as 
 

Liki +≤≤ ,      (23) 
 
and the probability amplitude for a given transition can be written as:  
 

iki
ikk

kiLiLN
iLNkNkk rtCFrtCFA −−+−−

−−−= ''21 ,   (24) 
 
where kF1  and kF2  are numerical factors representing the relation between the normalized num-

ber states and the creation operators given by ( ) !/0ˆ nan n+= .  In this case they are given by 
 

)!(/)!()!(1 kNkiLiLNF k −−−−−=      (25a) 
 

!/)!1(!2 kkiF k −=        (25b) 
 
The usual binomial coefficients are denoted as iLNkN C −−− and ik C , meaning that, in the upper 
path, among N–k photons we choose N–L–i photons to transmit through the beam splitter and the 
rest (L+i–k photons) are then reflected.  Therefore, N–L–i and L+i–k appeared as the power to 
the transmission and reflection coefficients, respectively. The same are the factors 

iki
ikk rtCF −''2 for the lower path, where r’ and t’ are the reflection and transmission coeffi-

cients for the lower path. Taking the numerical factors kF1  and kF2  into account the transition 
probability amplitude takes the form: 
 

iki
ik

kiLiLN
iLNkNk rtCrtCA −−+−−

−−−= '' .   (26) 
 
Now let us turn to the bra part of the operator jjLNiiLN ,, −−−− . Similarly, we suppose 

the input state was ',' kkN −  and evaluate the probability amplitude 'kB  for the transition: 
 

jjLNkkN ,',' −−⇒− .     (27) 
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Noting that the only differences between Eq.27 and Eq.22 are 'kk → and ji → , we obtain the 
corresponding transition probability amplitude as  
 

jkj
jk

kjLjLN
jLNkNk rtCrtCB −−+−−

−−−= '
'

'
'' '' .   (28) 

 
Basically, the resulting coefficient for jjLNiiLN ,, −−−−  component of the density matrix 
given the N-photon input state is given by the combination of kA multiplied by *'kB . One cru-
cial point here before we combine kA and *'kB : Since the reduced density matrix (right in 
Fig.12) is obtained by tracing out the modes for the scattered photon, the number of reflected 
photon in the expression 25 and 27 should be the same for the upper path and the lower path, 
separately.  That said, we now have two constrains from the number of photons reflected in the 
expression of kA and 'kB , namely  
 

'kjLkiL −+=−+ ,     (29a) 
 

jkik −=− ' .      (29b) 
 
These turn out to be the same constraint.  Therefore, for fixed parameters L, i, and j, we obtain 
the matching values of k and k’ are: 
 

),(,),1,1(),,()',( LjLijijikk ++++= L .   (30) 
 
 
Taking the input state of Eq.20 into account, the reduced density matrix element is obtained as: 
 

    ∑
=

++++=
L

m
mjmimjmijiLN BA

0
,,, **)( ααρ ,   (31) 

 
where kα , kA , and kB are given by Eqs. 20, 26, 28.  Note that, for the given number of pho-
tons N, the L value determines which block the reduced density matrix element jiLN ,,,ρ  is and the 
value i and j determines which component it is inside that block. It can be numerically checked 
that the sum of all the diagonal elements of the reduced density matrix is unity, i.e., 1)( =ρTr , 
as it should be [Lee2009]. The Eq.31 provides a complete description of the effect of loss for an 
arbitrary two-mode input state with fixed number of photons.  Based on the analysis depicted 
here, we will further investigate an even more general description that can include the case where 
only the average number of photons is fixed. 
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3.3 Beam-Splitter Transformation  
  
Given that the loss description is in hand, it is relatively simple to describe the lossless linear opt-
ical elements in the interferometers.  For a generic Mach-Zehnder interferometer, we have two 
beam splitters, two mirrors, and a phase shifter that may mimic the acquired phase difference 
between the two arms.  The whole description of the interferometer is, of course, well known. 
One only needs to extend the description of the linear optical elements to the density matrix for-
malism — that is not necessary for the lossless situation. Simply put, the transformation of the 
density matrix by a passive lossless linear optical element can be represented by a unitary matrix 
as: 
 

+= UU inout ρρ .     (32) 
 
For the lossless case (as depicted on the left in Fig.12), the density matrix is N+1 by N+1, there 
by the U matrix is N+1 by N+1. The expression of the unitary matrix in this case is well docu-
mented in the literature, and the explicit evaluation of each element may be easier to obtain when 
using the Schwinger representation.  The Schwinger notation is simply to use the angular mo-
mentum eigenstates that correspond to the two-mode number states as follows:    
 
    mjNmjNmj ba −=+== ,, ,    (33) 
 
and the action of the optical elements are described by the rotation of the given angular momen-
tum vector. In short, the unitary matrix representing the beam splitter, for example, not only be-
comes the same size of the reduced density matrix (left in Fig.12), but also has the same block 
diagonal form.  The matrix elements in each block (say Lth block) now correspond to the ones for 
the lossless case with N–L photons. The explicit expression matrix element, (i, j)th component in 
the Lth block, then can be written as 
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where )2(, πj

nmd is the rotation matrix element [Brink1993] and we have used change of va-
riables as 
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3.4 Complete Description of the Interferometer in a Lossy Environment 
 
Finally, with the same variables the unitary matrix for the phase shifter can be written as  
 

ji
mi

jiLNPS eU ,,,,)( δπ−= ,    (35) 
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Hence, the Eqs. 32, 34, and 35 complete the quantum mechanical description of the lossless in-
terferometer.  Now the complete description of the interferometer in lossy environment is to put 
all these three equations together with the loss transformation by the Eq.31.  The output quantum 
state—that contains the information about the acquired phase shift—can now be precisely deter-
mined for any arbitrary input state of light. The remaining task is how to extract that information 
provided by a specific measurement scheme. Although the phase estimation needs to be per-
formed after the output measurements, we may nevertheless be able to extract that information 
by investigating the off-diagonal elements of the final reduced density matrix. After all, the off-
diagonal elements are responsible for the interference.  In general, the detection scheme is 
represented by an observable, say Â , and the measurement outcome is given by the expectation 
value of )ˆ(ˆ ATrA ρ= , where the density matrix ρ  is the one evaluated through Eqs. 31–35. We 
will then be able to test the performance of various input states and further investigate the optim-
al input states with specific measurement schemes as an inverse problem.  
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4.0 COMPUTER OPTIMIZATION OF QUANTUM LIDAR SENSOR 
 
4.1 Introduction 
 
This section reviews how we utilize computational approaches to address answers on theoretical 
performance of proposed quantum LIDAR systems. In particular, our main considerations are to 
provide theoretical guidelines for achieving resolution enhancement beyond classical limit. We 
focus on development and implementation of numerical tools and computationally obtained out-
comes. Critical for the argument presented in Sec.5.0, above, the results indicate that the best 
strategy in the regime of very high loss due to absorption and scattering is to use two-mode cohe-
rent states and then implement a number-resolving detection scheme, which motivates the dis-
cussion in Sec.5.0, above.  
 
One of unique features of the quantum LIDAR project under consideration can be found in the 
novelty of the system. The concept of using quantum states of light for LIDAR systems is new. 
Therefore, there should be many unknown factors and challenges we will encounter during 
progress of quantum LIDAR computer optimization development. Sometimes, it could signifi-
cantly affect fundamentals of the problem that forces us to discard initial ideas or setup and adapt 
radically different new ideas. Normally, we expect that those changes will come in the middle of 
research progress. Having those facts in mind, we choose a modular based approach for develop-
ing numerical tools. Rather than handling a whole problem at once, we segmentize the problem. 
Each section of the problem is designed as a module such that it can be treated as independent 
problem. By combing those sections, or modules, a whole system can be constructed. Once a 
need for modification come up, one only focuses on specific modules under consideration to 
make changes. Those changes are supposed to have minimal influences to the other modules that 
have no relation to these changes. This approach allows us to quickly modify systems and elimi-
nates need for rewriting an entire numerical code every time to change just one thing. 
 
4.2 Computer Modules  
 
An entire LIDAR system is schematically segmented as the following. To the left, a source com-
ponent generates possibly entangled photons from spontaneous parametric down-conversion or 
even ordinary laser light. After that, the quantum photons are processed in a filtering stage to in-
ject only a pure photon state into the next system. The pure photon state interacts with environ-
ments where photons are experiencing phase shifts and photon loss. Then, the photons are passed 
to photo-detectors. The final detection provides phase information and resolution. It is obvious 
that most critical events occur in a stage containing photon interactions with environment. The 
phase shift we are trying to measure comes in here. The troublesome photon losses also happen 
in that stage. Thus, we set a first dividing line at a point where pure state photons start interacting 
with environment. Figure 13 describes this segmentation of the problem. With this configuration, 
a big picture can be drawn in terms of how the numerical computations need to be set up, i.e., 
generate entangled photons, produce a pure state, and measure the phase sensitivity. In a real sys-
tem, these series of events occur in the forward direction. However, we have a certain goal to 
achieve high phase sensitivities. Therefore, numerically, the system progresses in inverse direc-
tion, i.e., set a desired sensitivity (a minimum constraint), seek a pure state that produces such an 
outcome, and find a condition of the photon source generation and operation that produce that 
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pure state. Eventually, numerical tools we are developing become an inverse problem solver 
where the target physical qualities are given as an input. As we know now, it is maximum phase 
sensitivity. Then, optimum pure states are computed as an output for inversely arranged “Opera-
tion module”. The optimum pure states become an input to inverse “Source module”. To this 
end, first, a forward problem solver is developed for each main module. Next, an inverse prob-
lem solver is made using a forward problem solver. 

 

 
 

Figure 13: Workflow from Source Module into Operation Module 
 
 
At the current stage, we are focusing on “Operation module” in Fig.13. In other words, we as-
sume that a pure photon state has been produced. Numerical computation starts from having pure 
photon states. In the given system, photons are supposed to select two paths of propagation. One 
path is dedicated to detection of scattering objects where phase shifts occur, along with photon 
losses due to environmental factors and finite scattering cross-sections of the object. The other 
path is assigned for reference beam that will interfere at the detector site with photons passing 
through the detection path. Since the reference path is not to be disturbed by outside environ-
ment, we have full control of phase shift and losses occurring during photon propagation. What 
eventually we measure at the detector is the phase shift and the phase fluctuation associated with 
the conditions in outside environment. We measure differences in phase between photons pass-
ing through detection path and reference path. Therefore, overall phase shift can be represented 
by 
 

ϕ = ϕA −ϕB ,      (36) 
 
where ϕA  and ϕB  denote phase shifts in detection and reference paths, respectively. Since ϕB  is 
tunable, ϕ  is also a tunable quantity. One can tune this to achieve maximum phase sensitivities. 

Source module 

source 
generation 

photon 
processing 

prepared 
pure photon 

state 

Operation module 

Detection Ψin
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At the detector, we also estimate phase uncertainty, δϕ , which is inversely proportional to phase 
sensitivity. 
 
This overall process is numerically implemented as a main module starting from pure photon 
states to detection. This main module consists of four submodules. The first submodule is for 
constructing density matrix of an input pure photon state. Here, the numerical code simply per-
forms the following calculations from probability amplitudes given in the form of superposition 
of eigenstates, Ψin = cii= 0

N∑ N − i,i . We choose the eigenstate to be a correlated Fock state. 
 

ˆ ρ in( )m,n = cmcn
*      (37) 

 
The resulting input density matrix is passed to a phase-shift module that shifts the phase depend-
ing on state number differences. 
 

ˆ ρ ϕ( )m,n
= ei(m−n )ϕ ˆ ρ in( )m,n     (38) 

 
When pure states experience photon loss, the number of photons lost spans from zero to the total 
number of initial photons. The input pure state hence changes to a mixed state. To take that 
change into account, a density matrix after the loss contains all possible cases of pure density 
matrices with different number of photons, as discussed in Sec.6.0. It turns out that the lossy 
density matrix forms a block diagonal matrix where each diagonal block represents a pure densi-
ty matrix with reduced total photon numbers. A generalized formulation is set up for this proto-
col based on photon losses by partial reflection and transmission in a beam splitter at each pho-
ton path. The resulting equation is as follows. 
 

ˆ ρ loss( )N ,L ,i, j = (ci+mc j +m
* )Ai+mB j +m

*

m= 0

L

∑     (39) 

 
Ak = N − k CN − L − i t N − L − i r L + i− k

k Ci t 'i r 'k− i    (40) 
 

Bk = N − k ' CN − L − j t N − L− j r L + j− k
k ' Ci t ' j r 'k− j    (41) 

 
Here, N and L denote the number of photon at input and Lth block, also number of photon losses 
(L = 0,…,N), respectively. Here, the indices i and j are the (i , j)th component of the Lth block. 
The (t, r) and (t’, r’) represent complex valued transmission and reflection coefficient of beam 
splitters in detection and reference path. 
 
For the detection scheme, we calculate the Fisher information, F, from probabilities of coincident 
detection, P [Uys2007].  The Fisher information carries both super-resolution and super-
sensitivity information about the state. The larger the Fisher information, the more likely the 
state is to be super-resolving and super-sensitive. The phase sensitivity becomes: 
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The overall procedure of the operation module serves as forward problem solver from which 
phase uncertainties are calculated by given input pure photon states. This forward problem solver 
is summarized in Fig.14.  
 
 

 
 

Figure 14: Schematic of Forward Problem Solver for Operation Module 
 
 
For verification, the forward problem solver is implanted to obtain phase sensitivities for M&M 
and N00N input states [Huver2008]. Analytically calculated results are compared with the solu-
tions of the forward problem solver. Figure 15 shows good agreements, indicating the code re-
covers known analytic results in the limit of low loss. 
 

 
 

Figure 15: Minimum Phase Sensitivity for M&M State with 40% and 50% 
Loss 

 

Ψin =

ci N − i, i
i=0

N

∑
ˆ ρ in

ϕ

ˆ ρ ϕ ˆ ρ loss
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The resulting phase sensitivities depend on the configurations of the input pure state. In other 
words, input states need to be optimized to produce the possible minimum phase uncertainty. For 
this purpose, the forward problem solver needs to be converted to an inverse problem solver. 
There are several standardized computer routines that minimize or maximize any parameterized 
arbitrary functions. In our case, the forward problem solver is the function that has input state 
coefficients as parameters. We implement a genetic algorithm and a simulated annealing algo-
rithm. The forward problem solver developed above is directly applied to this optimization rou-
tine; completing the inverse problem solver. A workflow chart is shown in Fig.16.  In the inverse 
problem solver, we direct the computer program to find minimum δϕ  for given phase shift and 
input state as parameters which are to be determined. Losses on both paths are treated as fixed 
parameters. The inverse problem solver determines optimum states for each photon loss in the 
following procedure: An optimization routine generates input states. The forward solver produc-
es output. Then, the output is sent to feedback procedures where new improved input states are 
generated. These procedures are repeated until no further improvement in phase sensitivity is 
seen. After that, inverse solver returns final results that include an optimum input state and phase 
as well as a maximized phase sensitivity value. This optimization processes are shown in Fig.16. 
Eventually, the code will provide trends and characteristics of required input states for given loss 
values and total number of photons. Ultimate limits in phase sensitivities are obtained simulta-
neously. 
 
 

 
 

Figure 16: Schematic Workflow of Inverse Problem Solver 
 
 

min(δφ) ; Ψin
(OPT ) = ci

(OPT ) N − i, i , φOPT
i= 0

N

∑

Ψin =

ci N − i, i
i=0

N

∑
δφ = f ( Ψin , φ ; loss A, loss B) δϕ

δφ
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4.3 Optimization 
 
We have a completed and verified forward problem solver. A genetic algorithm module is also 
completed and tested with lossless cases that have known solutions. The optimization code pro-
duced the results that agree well with theoretical expectation, i.e., maximum phase sensitivity at 
N00N state with phase fluctuations following 1/N, i.e., Heisenberg limit. Then, the optimization 
code of loss cases is developed. Although robustness of the genetic algorithm is well known, we 
also developed another optimization program based on a simulated annealing algorithm. Then, 
we use those two methods in order to test the validity of optimization results obtained from both 
methods. For a given identical configuration, such as the same loss and photon numbers, two me-
thods independently optimize the system. The optimization results are crosschecked with each 
other to see if they produce consistent results. As shown in Fig.17, minimum phase fluctuations 
are essentially same indicating accuracy for both methods. 
 

 
Figure 17: Comparison of Simulated Annealing and Genetic Algorithm 

 
Next, we estimate phase sensitivities as a function of losses and compare for different input pho-
ton numbers. Figure 18 (a) and (b) show log scale plots of phase sensitivity as a function of loss 
in a dB scale. We choose input photon numbers N = 1, 3, 4, and 6.  
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Figure 18: Minimum Phase Fluctuation for N=1,3,4,6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(a) (b) 

(c) 
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Two loss configurations are considered, one for loss in one photon path (Loss B = 0), Fig.18(a), 
and the other for the same losses in both paths (Loss A = Loss B), Fig.18(b). As expected, adding 
more photons improves phase sensitivity. In order to quantitatively estimate the improvements 
on phase sensitivity by adding more photons into the system, differences in minimum phase fluc-

tuation between single photon and six photon 
cases (= δϕN=1 – δϕN=6 ) are computed and pre-
sented in Fig.18(c). One can clearly observe that 
phase sensitivity improvements are more evident 
at a large amount of losses. It is also found that 
having loss in only one path produces better 
phase sensitivities for all N then losses in both 
paths.  
 
Another feature that the numerical code can pro-
vide is information of how input state photons 
are configured to produce best performance in 
phase measurements. This is critical when one 
tries to realize a quantum LIDAR system. Once 
we have information of the desired photon state 
configurations, efforts should be focused on how 
to generate such photon states. For the demon-
stration, we chose N = 6 and losses near 3 dB, 
10 dB, and 20 dB. Loss is assigned in one path, 
specifically Loss-B = 0. Figure 19 shows a trend 
of optimized photon state configurations for loss 
increments. The squares of absolute values of the 
state coefficient, |cn|2, where cn are from  Eq.37, 
are presented. In the previous study, we have 
confirmed that N00N states are the optimal state 
for lossless case. Starting from N00N state, not 
shown here, population or amplitude distribution 
of eigenstates are moving toward N = 0 that cor-
responds to the eigenstate N, 0  as loss is de-
creased.  
 
 

(a) 

(b) 

(c) 

Figure 19: State Coefficient Distri-
butions of Optimized Input Photon 
Configurations for N = 6 for 3dB, 
10dB, and 20dB. 
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4.4 Further Discussion 
 
In Fig.18, it can be seen that phase uncertainty plots for loss-A become linear in log-log scale for 
high loss region (loss > 10 dB or 90% loss). The slopes of those lines also become parallel to 
each other. For the general comparison, we modified Eq.42 by normalizing F with the total input 
photon number N and then recalculate δϕ , which we define as the normalized phase uncertainty. 
The results presented in Figures 20 and 21 show that the curves for different N overlap each oth-
er for losses greater than 15 dB, while low-loss cases exhibit some level of N dependency — the 
lossless case δϕ  follows the Heisenberg limit, 1/N, and this dependency gradually changes to 
1/ N  as loss is increased. From this, combined with Eq.42, the following equation can be de-
rived for high loss region. 
 

δϕN ≈
δϕN=1

N
 .           (43) 

 
One interesting observation can be noted. The factor δϕN  is inversely proportional to N , which  
is similar behavior seen in coherent state. The apparent difference is the fact that coherent state 
δϕ  follows mean photon number N .  
 

 
 

Figure 20: Log-Log Plot of Phase Sensitivity by Normalized Fisher Informa-
tion 

 
 

Even with its similarity, we note that it is not necessary to conclude that the same phase sensitivi-
ty between coherent state and correlated Fock state in the limit of high loss. The upper most line 
in Figures 20 & 21 is normalized phase uncertainty computed for coherent state. The normalized 
phase uncertainty presented here is based on classical homodyne LIDAR setup. For the quantita-
tive comparison, we applied quantum theory that is correspondingly related to classical LIDAR 
system as follows.  
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In the lossless case, the coherent state exhibits the same phase uncertainty as the N = 1 case. 
Then, as loss increases, it maintains a higher slope compared to N = 1, but a lower slope than N > 
1 correlated Fock states in low loss region. In the middle loss region, 7 dB ~ 10 dB, slopes are 
similar between coherent and N > 1 cases. When losses are increased further to extreme region, 
loss > 10 dB, the slope for coherent state becomes higher than that of correlated Fock states. This 
indicates that improvement in phase sensitivity given by correlated Fock state over coherent 
state becomes much higher in extreme loss scenario, but that dual mode coherent state is compa-
rable in performance.  
 
The Eq.43 is useful for the quick estimation of δϕ  for high loss cases. The potential problem for 
this quick estimation is finding a loss region that can be considered as “high loss” to be safe to 
use with Eq.43. From careful observations of numerical computations, we find that the minimum 
bound of a high loss region increases as N increased. For example, 15 dB for N = 6 changes to 
20 dB for N = 20 with 99% convergence to exact solutions. Depending on desired accuracy, this 
minimum loss bound can be applied more generously. We note that, even for the high loss re-
gion, the rigorous computations are still needed to acquire optimized input state, see Fig.19 for 
example, for use in the source module or input photon preparation. 
 

 
 

Figure 21: Log-Log plot of Phase Sensitivity by Normalized Fisher Informa-
tion (Coherent State: 28% Photodetector Efficiency is Assumed)   

 

44



 

Now, we have a complete numerical code for the operation module. We have chosen a modular 
based coding approach for the numerical code development. Thus, this code is highly mutable 
such that, if any, better systems of ideas can easily be adopted that can occur in future research 
progress. Currently, this numerical tool was successfully applied to analyze phase sensitivities 
under lossy environments in the quantum LIDAR system utilizing correlated Fock states. We 
provided the system performance on the  total input photon number and losses. From the analy-
sis, we found that adding more numbers of photons improves the phase sensitivities dramatically. 
The phase sensitivity of the lossless system shows 1/N  dependency. As loss increased, the de-
pendency deviates from 1/N, and then it slowly changes into 1/ N  for high loss. Additional 
work shows that for high-loss the two mode coherent state performs with the same scaling law as 
the dual Fock state. The numerical code also provides optimized input state configurations. This 
will provide critical information on how photons need to be processed in the source stage. For 
further work, the numerical method for the source module will continue to be developed. Upon 
having a full numerical package, the overall research will be expedited and transformation from 
theory to design and fabrication of real tangible devices will become easier. 
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5.0 MIE SCATTERING AND PHOTON NUMBER RESOLVING DETECTORS 
 
5.1 Introduction 
 
In Sec.2.0, above, we outline a protocol for quantum LIDAR that is super-resolving, shot-noise 
limited, and shows a huge signal-to-noise discrimination for determining a phase shift. This 
scheme relies crucially on the properties of number-resolving detectors. A simple experimental 
proof of principle using such detectors was carried out by our team members and the group of 
Alan Migdall at NIST, Gaithersburg, where such detectors have been in use for some time now. 
 
5.2 Mie-Scattering and Photon-Number Resolving Detection 
 
Based on the Gedanken experiment about Mie scattering presented at the QSP Park City program 
review meeting, we were able to work out the details for quantum Mie scattering and turn the 
original question into a promising quantum sensor. We replaced the classical three-dimensional 
Mie scattering problem by a one-dimensional Fabry-Perot transmission calculation that is carried 
out fully quantum mechanical. From our quantum Mie scattering model we infer, that single-
mode quantum states of light such as Fock states, exhibit the same transmission functions as sin-
gle mode laser light, if an ordinary intensity measurement is carried out. However, if a photon-
number resolving measurement is carried out instead, we observe narrower transmission func-
tions than for the classical case. This feature results in a higher resolution of the Fabry-Perot in-
terferometer. We also show that the sensitivity for measuring a length change, or equivalently an 
unknown phase shift, of the interferometer is improved. The theoretical study has been written up 
in form of a manuscript and has been submitted for publication after DARPA has been approved 
the work for public release. 
 
5.3 Interferometry with a Transition Edge Sensor 
 
In collaboration with the optical technology laboratory of A. Migdall at the National Institute for 
Standards and Technology in Gaithersburg, MD, we have been working on an experimental veri-
fication of our proposed sensor.  At NIST we have access to a Transition Edge Sensor (TES), 
which allows us to implement the photon number resolving detection scheme with a quantum 
efficiency of approximately 95%. In a first step we confirmed our theoretical model for weak 
coherent light incident on a Michelson as well as on a Fabry-Perot interferometer.  We verified 
experimentally the photon-number resolved statistics with a weak coherent laser beam incident 
on a Michelson interferometer (Fig.22), and Fabry-Pérot interferometer (FPI) (Fig.23).  
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Figure 22: Setup for the Michelson Interferometer with TES Detector 

 
 

 
Figure 23: Setup for the Fabry-Pérot Transmission Experiment 

 

A coherent laser beam at λ=850 nm, a repetition rate of 50 kHz, and a pulse duration of 50 ps is 
attenuated to have the average photon number to be ≈4 as detected by our photon-number resolv-
ing TES detector [Lita2008]. As can be seen in Fig.24, our preliminary results agree with the 
theory and also confirm a previous investigation by Khoury et al. who also used coherent light, 
but a polarization Mach-Zehnder interferometer, and a visible light photon counter (VLPC) 
[Khoury2006].   
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Figure 24: Measurement of the photon-number resolved interference fringes 
for a weak coherent state with |α|2≈4  

 
Similar features to the one observed with the MI may be obtained for a weak coherent laser beam 
incident on a Fabry-Pérot interferometer. The number resolved output of the FPI shows narrower 
transmission functions than for the average photon-number detection. (Fig.25.) 

 
Figure 25: Measurement of the Photon-Number Resolved Transmission 
Probabilities pk  for a Weak Coherent State with |α|2≈4  
 

However, the compression of the interference fringes does not improve the sensitivity of the de-
vice since it amounts to just taking the Nth power of the light intensity, which is basically equiva-
lent to a classical post-processing of the data [Giovannetti2008]. To obtain an improved resolu-
tion  and sensitivity of the interferometer, we need to either send nonclassical light through the 
FPI or keep the classical input, but enable a complicated entangling measurement [Resch2007]. 
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We follow the first approach and show that sending N-photon states through the FPI and observ-
ing the N-photon resolved transmitted light, results in beating the standard quantum (shot noise) 
limit. To calculate the transmission functions for quantum states of light, we use a fully quan-
tized approach for the FPI. Loudon first considered a quantum theory of the FPI in the context of 
high-resolution length measurements [Ley1987]. We show that Loudon’s results can be nicely 
related to an effective beam splitter transformation. The two incoming and two outgoing modes 
of the FPI can be quantized as displayed in Figs. 27 and 28.  
    

 
 

Figure 26: Fabry-Pérot Mirrors with Complex Amplitudes i, r, and t, for In-
coming, Reflected and Transmitted Modes, Respectively 

 

 
Figure 27: Effective Beam Splitter for the Fabry-Pérot Cavity with Complex 
Amplitudes I, R, and T, for Incoming, Reflected and Transmitted Modes, Re-
spectively 

 
It is now seen that the modes as described in Figs. 27 and 28 are transformed by an effective 
beam splitter transformation. Figure 29 shows the theoretical results for a weak coherent state 
with average photon number |α|2=2 and a two-photon state |2〉 compared to the classical trans-
mission function.   

 
Figure 28: Transmission Function for a Single-Mode Coherent State and an 
Ordinary Intensity Measurement (Dashes).  
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Figure 29: Comparison of the Sensitivity δL/λ for a Coherent State (Solid 
Line) Versus an N-Photon State with N-Photon Resolving Measurement as a 
Function of the Photon Number 
 

The results for the sensitivity of a coherent state versus an n-photon state incident on the FPI 
(Fig.29) show that a length measurement with n-photon states instead of coherent states provides 
us with a much smaller uncertainty δL in the few photon limit. Hence, the sensitivity of the FPI 
is increased. However, for large photon numbers the coherent state outperforms n-photon states 
with n-photon detection. The experimental verification of this effect is currently in progress.  
 
The proposed Fabry-Perot interferometer with quantum states of light and a photon number re-
solving detection scheme may find applications for high precision length measurements as, e.g., 
at the laser interferometer gravitational wave observatory (LIGO) or on space based platforms, 
where only a limited amount of loss is present. We are also investigating different quantum states 
and adaptive measurement schemes to compensate for larger loss. We determine the possible 
ranges for stand-off applications of this quantum sensor. 
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6.0 THEORY OF QUANTUM STATE PROPAGATION THROUGH ATMOSPHERE 
 
6.1 Overview 
 
Work at MathSense Analytics (MSA) has concentrated on analytical and modeling studies of the 
propagation and target interaction of non-classical photon states, and the mathematical analysis 
of optimization techniques to single out the “best” class of light states for various end-result per-
formance goals. 
 
 

 
 

Figure 30: An Overview of the Various Quantum-State-Engineering Prob-
lems Studied by the LSU Team During Phase I 

 
Specifically, the mathematical analysis of the reflection and scattering of general entangled pure 
states of light by the target has been carried out. We developed models of absorption and reflec-
tion of dual-channel entangled light states by the propagation medium and the target. This effort 
was coordinated with the OPA-driven input-state production work undertaken by the LSU group. 
In particular, realistic N00N-like states produced by OPAs coupled to number-resolving detec-
tors (via projective measurement) are more complicated, and have to be subjected to the same 
loss models developed for the propagation and target interaction of pure N00N states. A suffi-
ciently realistic model of the photon states as well as the target-surface characteristics will ulti-
mately allow an examination of the extent to which non-classical features can be expected to be 
resilient to loss. MSA has also examined the question of which quantum states are optimally ro-
bust against degradation due to loss via target reflection and scattering processes. This optimiza-
tion work was then coupled with the question of optimizing the ultimate sensitivity (or signal-to-
noise) of the quantum sensor at the detector end. Eventually, these techniques will have to be ge-
neralized to treat mixed states, and the mathematical framework has being developed with suffi-
cient generality to handle this extension. In addition, the mathematical techniques which so far in 
Phase I have been restricted to single or dual-mode photon propagation will have to be extended 
to multi-mode propagation to model realistic, finite-sized beams of non-classical light with phys-
ical (e.g. Gaussian) beam characteristics. The groundwork for this extension has also been estab-
lished in Phase I. 
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6.2 Beer-Lambert Law for Lossy Propagation of Non-Classical Light 
 
Starting from first principles, we derived the lossy propagation law (generalization of the Beer-
Lambert law for classical radiation loss through the atmosphere or fiber) for non-classical, dual-
mode entangled states. 
 
We investigated the behavior of loss as a function of propagation distance for various classes of 
entangled states. Focus was on loss of coherence and loss of entanglement during propagation. 
The final results are expressed in terms of classical characteristics of the propagation medium 
such as the Beer-Lambert loss coefficient μ . 
 
The lossy propagation law (generalization of Lambert-Beer's law for classical radiation loss) for 
non-classical, dual-mode entangled states is derived from first principles, using an infinite-series 
of beam splitters to model continuous photon loss, as depicted in Figure 31. This model is gener-
al enough to accommodate stray-photon noise along the propagation, as well as photon loss. An 
explicit analytical expression for the density matrix as a function of propagation distance is ob-
tained, not only for specific input states such as N00N and m-and-m states, but also for a com-
pletely general input where the only restriction is that the maximum photon number in each 
mode is limited to N. 
 
The result is analyzed numerically for various examples of input states. For N00N state input, the 
loss of coherence is super exponential as predicted by a number of previous studies. However, 
for generic input states, where the coefficients are generated randomly, the decay of coherence is 
very different; in fact no worse than the classical Beer-Lambert law. More surprisingly, there is a 
plateau at a mid-range interval in propagation distance where the loss is in fact sub-classical, fol-
lowing which it resumes the classical rate. 
 

 
 

Figure 31: The Infinite-Series-of-Beam-Splitters Model for the Analysis of 
Lossy Propagation of Non-Classical Light States 
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These preliminary results indicate that the super-exponential loss behavior of N00N states is 
highly non-generic, and not likely to be shared by generic entangled states in the larger Hilbert 
space of the dual photon channel. Assuming even part of the coherence of a generic state can be 
utilized to produce super-classical phase sensitivity using an appropriate detection scheme, there 
appear to be many candidate states which are both robust against decoherence and non-classical 
enough to achieve the DARPA criteria for quantum sensors. This is consistent with and a genera-
lization of previous results involving M&M states. 
 
The basic model is described in Figure 31. We assume that the input modes are 

Mddda ,,,, 210 K , and the output modes are MM sssa ,,,, 21 K . Unitarity at each fictitious beam 
splitter k requires: 

 
 
In terms of the creation operators +++

kkk sda ,, , we can write this in the form 

 
 

The in and out modes are then connected by an overall unitary matrix: 
 

 
 

Furthermore, unitarity relations at each beam splitter uniquely determine the form of the large 
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One can check explicitly that 
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from which the final density matrix output should be calculated by tracing out the loss degrees of 
freedom: 
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This calculation gives 
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MsMM kkasas ≡=⇒≡ ++

0
;00 . This result can be manipu-

lated combinatorially to yield the expression 

outout},,{out 1
Tr ψψρ

Mss K=

00

110

0

00

2)1(2
2

0,, 10

||||||
!!!

!
ss

nni
Mn

N

Nn
nn M

nnLTT
nnn

N
M

i
i

M

i
i

M

∑∑

∑

= ==

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
=

∑
α

K K

0
122

=+
=+

LTTL
TL

⎭
⎬
⎫

⇒ IUU =+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

+

+

+

+

+

+

+

M

M

M s

s
s
s

a

U

d

d
d
d
a

MM
3

2

1

3

2

1

0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
−−

−−

−−

−

TL

TLTLT
TLLTLT
TLTLLTLT

LTLTLTLT

U MM

MM

MM

MM

L

MOMMMM

L

L

L

L

000

00
0

423

3222

22221

12

54



 

 
∑∑

∑

−
−

= ==

=

−−

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−=

==
∑∑

M

i
i

M

i
i

M

k
k

M

nni
Mn

nN

nNn

nn M
ss

N

n
LTT

nnn
nNnn

nNn
N

110
0

1
0

1
00

0

2)1(2
2

0,, 21

0
00

0 00
out ||||||

!!!
)!(

)!(!
!

K K
ρ          () 

 
 
The Beer Limit: 
 

 
 

Figure 32: The Beer Limit for the Infinite-Chain-of-Beam-Splitters Model 
 
 
To implement the Beer limit (transition to the continuum limit), we use the following schemes: 
For the modulus (amplitude) as a function of propagation distance 
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The Beer limit turns 
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into the x-dependent output density matrix resulting from an input Fock number state with N 
photons given by 
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This is our final result for the lossy propagation of single-mode number states. 
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6.3 Beer’s Law for the Propagation of Dual-Mode Entangled N00N States 
 
 

      
 

Figure 33: The Infinite-Series-of-Beam-Splitters Model for the Analysis of 
Lossy Propagation of Non-Classical Dual-Mode Entangled Photon States 

 
In the dual mode case, we proceed similarly to the above and notice 
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which means an input N00N state of the form 
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leads to the output state given by 
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and the final output density matrix is given by tracing over all output loss modes 
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Tr ψψρ
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Implementing the Beer limit on both channels of propagation as above, leads to the following 
final result for N00N states: 
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6.4 Beer’s Law for the Propagation of Arbitrary Entangled Dual-Mode Photon States 
 
We now consider the most general dual-mode entangled input state (with at most N photons in 
each mode a and b) given by 
 

 
 
It is cumbersome but straightforward to derive the generalized Beer-Lambert law of propagation 
for these general states from first principles using the same techniques as above. Assuming  aμ  
and bμ  are the loss coefficients, and aη  and bη  are the phase rotation rates along each mode of 
propagation a and b, the final result is 
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6.5 Generic Entangled States are Far More Robust Against Decoherence than N00N 

 
For generic entangled states, we calculated the decay of coherence and entanglement numerically 
using the above formalism. The main result can be summarized by the following four plots (Figs. 
34–37).  For all plots, we assume N = 10, μa = μb = μ = 0.2 km-1, and ηa = ηb = 1 km-1. 
 

 
 

Figure 34: Decay of Coherence for A N00N State (N=10) as a Function of 
Propagation Distance 
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Figure 35: Decay of Coherence for a Random Entangled State (N=10) as a 
Function of Propagation Distance (Up To 10 km) 

 
 

 
 

Figure 36: Decay of Coherence for a N00N State (N=10) as a Function of 
Propagation Distance (Up To 20 km) 
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For the Noon state, in Fig. 34, coherence power decays super exponentially like exp(-2Nμx), as 
expected.  For a random entangled input state, in Fig. 35, coherence decays no faster that the 
classical loss rate exp(-2μx).  Note that there is a mid-range plateau in loss, where decay is sub-
classical, after which the classical decay rate resumes.  This feature is present for generic entan-
gled state inputs. How much of the surviving generic coherence is useful for super-classical reso-
lution is currently under investigation.  
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Figure 37: Decrease of Entanglement for a N00N State and a Random En-
tangled State (N=10) in Terms of Negativity as a Function of Propagation 
Distance 

 
This last plot above (Fig. 37) is a preliminary result from very recent work and should be consi-
dered tentative. 
 
 
6.6 Conclusions 
 
The quantum-state engineering work carried out by MSA in collaboration with the rest of the 
LSU team shows that optimizing entangled input quantum states for a fixed detection scheme 
already yields sufficient super-classical resolution capabilities to satisfy the DARPA Phase I cri-
teria for the QSP program for near to intermediate range applications (less than 10 km). It is also 
apparent that by cleverly redesigning the detection scheme alongside the state optimization (via 
transferring some of the quantum resources to the detection stage), one can alleviate propagation 
losses even further. While this makes the design problem even more “DARPA-hard” than the 
Phase I objectives, it is worth pursuing for the large payoff in potential applications. 
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7.0 SYSTEM ENGINEERING OF ATMOSPHERIC STATE PROPAGATION 
 
7.1 Introduction 
 
As discussed in the overview of Sec.5.0, above, we have finalized on a Type-II sensor proposal, 
which propagates classical coherent states through the atmosphere, and then implements a quan-
tum detection scheme with number resolving detectors. In this protocol the propagation of the 
light through the atmosphere is entirely classical. In this context Raytheon provides well-
developed classical models of LIDAR propagation, including the effects of loss by scattering and 
absorption, and effects of turbulence. 
 
7.2 Gaussian Beam Propagation through Turbulent Atmosphere 
 
Here we consider a LADAR system with an airborne transmitter and sensor located at the same 
position an altitude h above the ground.  The transmitter produces a Gaussian beam which illu-
minates a perfectly reflecting target on the ground a distance R from the transmitter/sensor (Fig. 
38).  The beam propagates though a turbulent atmosphere.  The effect of turbulence is to produce 
random fluctuations in the refractive index of the atmosphere, which in turn produces random 
modulations of the intensity and phase of the optical field.  A Matrix Laboratory (MATLAB) 
program was written to calculate the intensity and phase profiles of the beam returned to the sen-
sor.  Since the turbulent fluctuations are random, the result of the calculation corresponds to one 
statistical realization of a turbulent atmosphere. 
 
 

 
 

Figure 38: Schematic of an Airborne LADAR System and a Target on the 
Ground 

 
 
The geometry of the equivalent problem modeled in MATLAB is shown below (Fig. 39).  A split 
step method was used to propagate the field, where the full path is broken up into several short 
steps of length Δz, and the effects of diffraction and turbulence are calculated separately at each 
step. 

R 

h 
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Figure 39: Geometry of the Equivalent Problem Modeled In MATLAB 
 
 
Given a field distribution E(x1,y1) at the input plane, the Fresnel diffraction integral specifies the 
field E(x2,y2) on the output plane a distance Δz from the input.  The (xi,yi) are Cartesian spatial 
coordinates in the plane transverse to the direction of propagation. 

( ) ( ) ( )[ ]
11

2
1122

2
12

2
12,),( dydxe

zi
eyxEyxE

yyxx
z

ki
zik

−+−
Δ

Δ∞

∞−

∞

∞− Δ
= ∫ ∫ λ  

The Fresnel diffraction integral is a two dimensional convolution.  It is computationally more 
efficient to evaluate the convolution integral using Fast Fourier transforms (FFT).  This tech-
nique is known as the Fresnel angular spectrum propagator. 
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Here fx and fy are spatial frequencies of the plane waves whose superposition give the field distri-
bution.  Because Fourier transforms are used to evaluate the integral, the field E is seen as peri-
odic in space.  A portion of the field that diffracts outward beyond the computational grid edge 
will then enter the computational grid from the opposite edge, so as to conserve energy.  For this 
reason apodization is used to attenuate the field as it diffracts toward the grid edge, which is 
equivalent to a loss of energy as the field diffracts off the grid.  
 
After accounting for the effects of diffraction over the propagation distance Δz, the effects of tur-
bulence over the propagation distance Δz are applied to the field.  Turbulence imposes a random 
phase shift upon the field at each point in the transverse plane. 
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Here Δn(x,y) is the change in refractive index at each point in the transverse plane, and is a ma-
trix of random numbers which is generated by taking the inverse Fourier transform of it’s power 
spectral density function Φn(κ), where κ is a spatial angular frequency vector.  The spectral den-
sity used to model turbulence induced refractive index fluctuations of the atmosphere is called 
the modified atmospheric spectrum [Andrews1998]. 

( )
( )

( ) 61122

67
2

2

254.0802.11033.0
o

nn
eC

κκκ
κ

κ
κκ

κκ

+⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⋅⋅=Φ

− l

ll

 

The Φn is isotropic and only depends on κ, the magnitude of κ. The κl is the inner scale of turbu-
lence, which introduces a roll off at the high frequency end of the spectrum, and is related to the 
shortest distance over which turbulent cells form. The κo is the outer scale of turbulence, which 
limits power in the low frequency end of spectrum and corresponds to longest distance over 
which turbulent cells form.  The Φn has an approximate κ–11/3 dependence on spatial angular fre-
quency between the inner and outer scales (Fig. 40). 
 
 

 
 

Figure 40: Spatial Power Spectral Density of Refractive Index Fluctuations 
 
 

κ-11/3
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The parameter Cn
2 is called the refractive index structure constant and it determines the strength 

of turbulence [Hardy1998].  The Cn
2 is a function of altitude h, is large near the ground (corres-

ponding to strong turbulence), and decreases with altitude (corresponding to progressively weak-
er turbulence).  The Cn

2 profile used in the following calculations is a modified Hufnagel-Valley 
model [Schmitt1996]. 

( ) 100341500161000102562 107.2102.8 hhh
n ehAeehwhC −−−−−− ⋅+⋅+⋅=  

Here w is the rms wind speed between 5 and 20 km above ground and A is the value of Cn
2 one 

meter above ground.  A plot of Cn
2 vs. altitude shows that Cn

2 decreases by two orders of magni-
tude between 1 and 20 meters, decreases by another two orders of magnitude between 20 and 
1000 meters, and quickly becomes negligible above 25 km (Fig. 41). 
 

 
Figure 41: Strength of Turbulence vs. Altitude 

 
 
The initial field launched from the transmitter was a planar wave front Gaussian beam with a 1/e2 
diameter of 1 cm and wavelength of 1.5 μm (shown in Fig. 42).  This corresponds to a Rayleigh 
range of 52 meters.  The equivalent problem modeled in MATLAB propagates the beam a dis-
tance R towards the ground at an angle of 45°, passes through a 1 meter diameter aperture, and 
then propagates towards the sensor at an angle of 45° where it is received by a 30 cm diameter 
aperture (Fig. 43). 
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Figure 42: Intensity Distribution of the Initial Field Launched from Trans-
mitter 

 

 
 

Figure 43: Parameters Used in the MATLAB Program 
 
 
The following plots (Figs. 44–46) show the intensity and phase of the received field for ranges of 
1, 5, and 10 km.  The phase distribution is shown after correcting for field curvature by focusing 
with a lens of focal length 2R.  In the absence of turbulence, this would produce a plane wave 
front.  The two dimensional phase distributions are not unwrapped, therefore pure black and pure 
white on this plot correspond to the same phase.  The phase profiles along the y = 0 coordinate 
have been unwrapped.  Where the field amplitude is zero, the phase is not well defined and can 
take on arbitrary values.  This causes the unwrapped phase to take on large values where the field 
amplitude is negligible.  In all cases the attenuation coefficient for scattering and absorption due 
to the atmosphere was taken to be 0.155 km–1, corresponding to the attenuation of 1.5 μm light at 
sea level on a clear day [RCA1974]. 
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Power along path of propagation 
 

1.0000 launched 
0.8564 reached target 

0.8564 reflected from target 
0.7334 returned to sensor 

0.5318 at receiving aperture 
 

Total loss is 2.74 dB 
 

Figure 44: Intensity Returned to Sensor, R = 1 km  
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Power along path of propagation 
 

1.0000 launched 
0.4368 reached target 

0.4068 reflected from target 
0.1061 returned to sensor 

0.0108 at receiving aperture 
 

Total loss is 19.6 dB 
 

Figure 45: Intensity Returned to Sensor, R = 5 km  
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Power along path of propagation 
 

1.0000 launched 
0.1064 reached target 

0.0876 reflected from target 
0.0062 returned to sensor 

0.0006 at receiving aperture 
 

Total loss is 32.2 dB 
 

Figure 46: Intensity Returned to Sensor, R = 10 km  
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7.3 Atmospheric Attenuation and Background Count Rate as a Function of Altitude 
 
A MODerate resolution atmospheric TRANsmission (MODTRAN) code was used to calculate 
the atmospheric attenuation coefficient and the background count rate of an airborne photodetec-
tor as a function of altitude.  The MODTRAN code is part of a larger software package called 
SAMM (Super Harvard Architecture Single-chip Computer (SHARC) and MODTRAN 
Merged), which is run through a graphical user interface called PLEXUS (Phillips Laboratory 
Expert-assisted User Software) [Berk1999, Ip2003, Sharma1996].  The following calculations 
use atmospheric conditions for a clear day with a meteorological range of 23 km. 
 
MODTRAN was used to calculate the spectral transmission for a vertical path through the at-
mosphere, from ground level to an altitude of 10 km.  The uppermost line in the plot below 
shows the transmission from the ground to an altitude of 100 meters (Fig. 47).  The line below it 
shows the transmission from ground to an altitude of 200 meters, etc.  Taking a vertical cut 
through the above plot gives the atmospheric transmission as a function of altitude for a particu-
lar wavelength, shown below for 1.55 μm (see Fig. 48 below). 

 

 
 

Figure 47: Spectral Transmission Calculated by MODTRAN  
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Figure 48: Atmospheric Transmission vs Altitude  

 
 
We can calculate the atmospheric attenuation coefficient from transmission data in the following 
way.  Assume that the transmission decreases exponentially, with an attenuation coefficient that 
varies with altitude: 
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The atmospheric transmission T(z) is then given by: 
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The attenuation coefficient α(z) is related to the atmospheric transmission by the expression: 

( )[ ])(ln)0()( zT
dz
dz −= αα  

The data points from the transmission plot above were used to generate values for atmospheric 
attenuation coefficient as a function of altitude, shown in Fig. 49 below. 
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Figure 49: Atmospheric Attenuation Coefficient vs Altitude  

 
 
Fig. 49 shows that the attenuation coefficient decreases significantly with altitude and asymptoti-
cally approaches zero.  This dependence is expected since the attenuation is due to absorption 
and scattering by atmospheric gasses, whose density decreases approximately exponentially with 
altitude. 
 
To estimate the background count rate of the sensor, we need to know the area of the sensor’s 
receiving aperture, the sensor’s angular field of view, and the spectral radiance incident upon the 
sensor.  Figure 50 below shows the sensor’s field of view (FOV) filled with sunlight reflected 
from the Earth.  Because sunlight contributes to background radiance, the position of the sun rel-
ative to the sensor/target line of sight is important.  For these calculations the time of day is 8:00 
am. 
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Figure 50: Sensor’s Field of View (FOV) Filled with Reflected Sunlight 
 
 
The sensor’s field of view θ FOV is determined by the receiving lens focal length f and the detec-
tor size d, but cannot be less than the diffraction limit λ /D, where D is the lens diameter (Fig. 
51). 
 

 
Figure 51: Sensor’s Field of View (FOV)  

 
 
The solid angle Ω associated with the sensor’s field of view is the ratio of the ground area 
viewed by the sensor to the square of the sensor range. This gives a solid angle Ω, which is con-
stant over range and only depends on field of view (see Fig. 52 below): 
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Figure 52: Solid Angle Associated with Sensor’s Field of View (FOV)  
 
 
Assuming a 30 cm diameter for the receiving lens, the diffraction limited field of view is 

rad
cm

m μμ 2.5
30
55.1

= .  Assuming a detector diameter of 25 μm and an f/3 lens (90 cm focal length), the 

field of view is rad
cm

m μμ 28
90
25

= .  Going to a f/10 lens (3 m focal length) gives a field of view 

rad
m

m μμ 8
3

25
= , near the diffraction limit.  MODTRAN was also used to calculate the spectral ra-

diance S incident upon an airborne sensor looking downward towards the ground.  Spectral ra-
diance quantifies the amount of light reaching the detector due to sunlight reflected from the 
Earth into the sensor’s field of view, sunlight scattered into the sensor’s field of view, and black-
body radiation from atmospheric gasses.  Spectral radiance has units of Watts / cm2 / sr / μm.  
MODTRAN calculates the radiance per inverse centimeter (wavenumber spectrum).  To convert 
this to radiance per micron (wavelength spectrum), use: 

122 ///2

4

///

10
−⋅= cmsrcmW

m
msrcmW SS

μ
μ λ  

A plot of spectral radiance is shown in Fig. 53 below.  The bottom line shows the spectral ra-
diance for a sensor 100 m above the ground.  The line above it shows spectral radiance at 200 m 
above the ground, etc.  Taking a vertical cut through the above plot gives the radiance as a func-
tion of altitude for a particular wavelength, shown below for 1.55 μm (Fig. 54). 
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Figure 53: Spectral Radiance vs Wavelength  
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Figure 54: Spectral Radiance vs Altitude at λ = 1.55 μm  
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To obtain information on background counts arriving at a detector, we need to specify the laser 
wavelength, target range, optical bandwidth, and detector area.  Then the background power in 
Watts, PBG, Watts, that reaches the sensor is: 

mFOV
cm

msrcmWWattsBG BWDSP μμ
θππ ⋅⎟

⎠
⎞

⎜
⎝
⎛ ⋅⋅⎟

⎠
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⎛⋅= 2

2

///, 42
2  

 

Where S is spectral radiance, Dcm is the diameter of the receiving aperture in centimeters, θFOV is 
the angular field of view in radians, and BWμm is the bandwidth of the optical filter in microns.  
Then, 

mFOVcmmsrcmWWattsBG BWDSP μμ
θπ

⋅⋅⋅⋅= 22
2

///, 16
2  

If the detector is gated so that it only operates for a time interval Tμs microseconds, then the 
number of background photons NBG detected during each gate is: 

 
 
The resulting formula for conversion between spectral radiance and number of background pho-
ton counts is: 

msmFOVcmmsrcmWBG TBWDSN μμμμ
λθ ⋅⋅⋅⋅⋅⋅⋅= 22

///
12

2)101.3(  

The background photon count as a function of altitude is shown in Fig. 55, for a 30.5 cm diame-
ter receiving aperture, 28 μrad field of view, 1 nm optical filter, 1 μs gate length, and 1.55 μm 
wavelength. 
 

 

number of 
background 
photons 

gate time 

photon 
energy eV

JE

s
sT

PN
eV

s

WattsBGBG

)106.1(

10

19

6

,
−

−

⋅⋅

⋅
⋅= μμ

spectral 
radiance 

detector 
area 

optical 
bandwidth 

background 
power 

solid angle 

76



 

 
Figure 55: Background Photon Counts vs Altitude  

 
7.4 Packaging Capability 
 
Raytheon's MTS-A offers state of the art EO/IR and laser sensor capabilities, including seven 
fields of view, color TV, electronic zoom, three modes of automated video tracking, fused im-
agery, designation/range-finding and illumination, and analog and digital video outputs (Fig. 56). 
Multi-capable, the AN/AAS-52 comes fully loaded for multiple mission applications in intelli-
gence, surveillance and Reconnaissance on manned and unmanned aircraft.  
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Figure 56: Schematic of Packaging  
 
 
The MTS-B provides accurate detecting, ranging, and tracking for the U.S. Air Force Predator B 
and for today’s military forces worldwide. Using state-of-the-art digital architecture, this ad-
vanced system provides long-range surveillance, high-altitude target acquisition, tracking, range-
finding, and laser designation for the Heliborne Laser Fire & Forget Missile System 
(HELLFIRE) missile and for all tri-service and North Atlantic Treaty Organization (NATO) la-
ser-guided munitions. The MTS and variants are available to support domestic and international 
user missions for rotary-wing, unmanned airborne vichecle (UAV), and fixed-wing platforms. 
The MTS-B provides detecting, ranging, and tracking for the U.S. Air Force Predator B and for 
today’s military forces worldwide. Using state-of-the-art digital architecture, this advanced sys-
tem provides long-range surveillance, high-altitude target acquisition, tracking, rangefinding, and 
laser designation for the HELLFIRE missile and for all tri-service and NATO laser-guided muni-
tions. 
 
The MTS and variants are available to support domestic and International user missions for rota-
ry-wing, UAV, and fixed-wing platforms. The AN/AAS-52 MTS-A provides superior ranging, 
detecting and tracking capabilities through high performance EO/IR and laser designation/ illu-
mination system attributes.  Additionally, Raytheon's MTS-A gives customer’s configuration 
options without platform modification, and mission system integration remains a cornerstone 
feature of the AN/AAS-52 due to common technology aspects of its turret components and sys-
tem electronics unit. 
 
Raytheon's AN/ZSQ-2(V) turret is based from the Airborne Electro-optical Special Operation 
Payload (AESOP), and is shown in Fig. 57. This turret is mounted on the Blackhawk helicopter, 
the Northrop Grumman Fire Chief, and other platforms. Typical to most of the ball turrets that 
Raytheon makes, it has sensing, ranging and designation capabilities. 
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Figure 57: Schematic of Raytheon’s AN/ZSQ-2   
 
 
The latest turret that Raytheon has made is the Common Sensor Platform (CSP) turret. It is 
named as such because it can be effectively used on a variety of platforms, including helicopters, 
UAV’s and even stationary post-mount applications.  
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9.0 ACRONYMS/GLOSSARY 
 
 

AESOP Airborne Electro-optical Special Operation Payload 
AMCOM Aviation and Missile Command 
CCT  Center for Computation and Technology 
CONOPS Control Operations 
CSP  Common Sensor Platform 
DARPA Defense Advanced Research Projects Agency 
DII  Director’s Innovation Initiative 
DoD   Department of Defense 
ECE  Electrical and Computer Engineering 
EO/IR  Electro-Optical/Infra-Red 
EPL  entangled photon laser 
FFT  fast Fourier transforms 
FOV  field of view 
FPI  Fabry-Pérot interferometer 
HELLFIRE Heliborne Laser Fire & Forget Missile System 
HITP  Hearne Institute for Theoretical Physics 
HL  Heisenberg limit 
JPL  Jet Propulsion Laboratory 
LIDAR Light Detection and Ranging  
LIGO  Laser Interferometer Gravitational wave Observatory 
LONI  Louisiana Optical Network Initiative 
LSU   Louisiana State University  
MATLAB Matrix Laboratory 
MSA  MathSense Analytics 
MODTRAN MODerate resolution atmospheric TRANsmission 
NASA   National Aeronautics and Space Administration 
NATO  North Atlantic Treaty Organization 
NIST  National Institute of Standards and Technology 
NRD  number-resolving detections 
NRO  National Reconnaissance Office 
OPA  optical parametric amplifier 
OPO  optical parametric oscillator 
P&A  Physics and Astronomy 
PLEXUS Phillips Laboratory EXpert-assisted User Software 
QuLidar Quantum Light Detection and Ranging 
QSP  Quantum Sensors Program  
QST  Quantum Science and Technologies  
RAM  random-access memory 
RF  Radio Frequency 
RHEL  Red Hat Enterprise Linux 
SAMM SHARC And MODTRAN Merged 
SAS  Space and Airborne Systems 
SHARC Super Harvard Architecture Single-chip Computer 
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SNL  shot-noise limit 
SNR  Signal to Noise Ratio   
SOW  Statement of Work 
SPDC  spontaneous parametric down conversion 
TES  transition edge sensor 
UAV  Unmanned Airborne Vichecle 
VLPC  visible light photon counter 
 
 
 

 
 
 
 

90



 

APPENDIX: REPRINTS AND PREPRINTS 
 
Following papers produced as deliverables for this grant: 
 
[Cable2009] Cable, H; Vyas, R; Singh, S; Dowling, JP; Theoretical investigation of a non-
degenerate optical parametric oscillator as a high-flux source for quantum lithography, in prepa-
ration (to be submitted to Physical Review).  

[Chiruvell2008] Chiruvelli, A; Lee, H; Parity Measurements in Quantum Optical Metrology; ar-
Xiv:0901.4395 (to be submitted to Physical Review). 

[Chiruvell2009] Chiruvelli, A; Lee, H; Canonical Phase Measurements in the Presence of Photon 
Loss; arXiv:0811.2780 (to be submitted to Physical Review). 

[Dowling2008] Dowling, JP; Quantum optical metrology — the lowdown on high-N00N states; 
CONTEMPORARY PHYSICS, 49 (2): 125-143 2008. 

[Gao2008] Gao, Y; Lee, H; Sub-shot-noise quantum optical interferometry: a comparison of en-
tangled state performance within a unified measurement scheme; JOURNAL OF MODERN 
OPTICS, 55 (19-20): 3319-3327 2008. 

[Gao2009] Gao, Y; Wildfeuer, CF; Lee, H; Dowling, JP; Super-Resolution at the Shot-Noise 
Limit with Coherent States and Photon-Number-Resolving Detectors, in preparation (to be sub-
mitted to Physical Review). 

[Glasser2008] Glasser, RT; Cable, H; Dowling, JP; Entanglement-seeded, dual, optical parame-
tric amplification: Applications to quantum imaging and metrology; PHYSICAL REVIEW A, 78 
(1): Art. No. 012339 JUL 2008. 

[Huver2008] Huver, SD; Wildfeuer, CF; Dowling, JP; Entangled Fock states for robust quantum 
optical metrology, imaging, and sensing; PHYSICAL REVIEW A, 78 (6): Art. No. 063828 Part 
B DEC 2008. 

[LeeTW2009] Lee, TW; Huver, SD; Lee, H; Kaplan, L; McCracken, SB; Min, C; Uskov, D; 
Wildfeuer, CF; Veronis, G; Dowling JP; Optimization of quantum interferometric metrological 
sensors in the presence of photon loss, in preparation (to be submitted to Physical Review). 

[Sciarrino2008] Sciarrino, F; Vitelli, C; De Martini, F; et al., Experimental sub-Rayleigh resolu-
tion by an unseeded high-gain optical parametric amplifier for quantum lithography, PHYSICAL 
REVIEW A, 77 (1): Art. No. 012324 JAN 2008. 

91




