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AFIT/GAP/ENP/09-M06 

Abstract 

We applied the Wigner Distribution Function, a distribution function of time and 

frequency based on an initial function of either of those variables, to a series of time 

based correlation functions.  These time based correlation functions were the result of a 

1-dimensional free particle wave packet, the reactant wave function, which had 

propagated through a quantum potential well and then had components of the reactant 

wave function that exited the opposite side of the well auto-correlated in time with a 

stationary 1-dimensional free particle wave packet, the product wave function.  This 

process was undertaking in order to generate a 3-dimensional depiction, in time and 

frequency, of the reactant wave functions interaction with the quantum potential well.   

Fortran 77 code was utilized to generated the time propagation of the reactant wave 

function by means of the Split Operator Method, which was given the following initial 

set of conditions; (Bohr radii), (atomic units), and (Bohr radius).  

A series of potential wells with variable depths were implemented into the code.  The 

code then computed the correlation in time of the exiting reactant wave function with a 

stationary wave function before applying the Wigner Distribution Function.  When 

Wigner Distribution Function was applied to the time correlation function many 

recognizable features on the potential well were observed from the 3-deminsional plot 

generated including transmission resonance energy levels.  The classical time of arrival 

was also captured by the Wigner Distribution Function.  As a useful tool the Wigner 

Distribution Function provides more insight into the quantum interactions of chemical 

reactions in terms of time and frequency than traditional spectrographic analysis.  
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A WIGNER DISTRIBUTION ANALYSIS 

OF ONE DIMENSIONAL SCATTERING 

 

I. Introduction 

1.1. Motivation  

 In an overall sense, gaining an appreciation for how elements of a system change 

over time is the fundamental result of most scientific observation.  In chemistry, one 

monitors the populations of reactant species and the resulting product species of 

compounds over the course of a chemical reaction.  In physics, one observes the 

characteristics (mass, velocity, etc) of an element of a system and monitors how those 

characteristics change as the system evolves in time.  Typically, these temporal 

observations are bookended observations of the reaction or interaction being monitored.  

That is to say, we generally obverse things before the event in question and state the 

properties known of the system as the initial conditions.  Once the event is question has 

occurred we again review the properties of the system and state that these are the 

outcomes.  Development of techniques and procedures to aid in an effort to view and 

analysis the continuous evolution of a system would prove invaluable in the furtherance 

of scientific research. 

 Of immediate importance to the Air Force Office of Scientific Research is the 

development of tools and technique that would aid in the development and refinement of 
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Diode Pumped Alkaline Lasers (DPALs).  In such a system, an Alkaline atom has had its 

electrons pumped into the  state and then by means of scattering allowed to decay to 

the  state.  Due to the population inversion created between the  state and the 

ground state, a situation for lasing is generated.  Fully understanding how the scattering 

works in the decaying from the upper state to the lower one may aid in advancing 

techniques for making such Diode Pumped Lasers more efficient and feasible.  As 

mentioned beforehand, the ability to monitor such interaction over time in a useful 

manner would be of great significance, but such techniques are difficult to apply due to 

the complexity of the interactions in question since they can occur in multiple dimensions 

and amongst several dependant variables. 

 One such way to monitor the development of a system in quantum mechanics and 

in physical chemistry is to develop a correlation function in time of two wave functions, 

one the reactant wave function and the other the product wave function.  In this manner, 

the reactant wave function is allowed to react with the system in question over time while 

being correlated with a stationary product wave function which has no interaction with 

the system.  This technique has many benefits as it records the information of the reactant 

wave function over time and eliminates the issues imposed by multidimensional or many 

valued problems as they reduce all the information of the system down to a scalar 

function of time, a signal.  Once a signal of the interaction has been recorded, it is 

possible to apply many signal-processing techniques upon it to regain information about 

the initial interaction. 
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One such signal processing technique is the application of the Wigner 

Distribution Function (WDF). [1]  In 1932, Eugene Wigner, in an attempt to return 

quantum mechanics to the domain of phase space, was able to generate a function of both 

position and momentum in phase space from the wave function in position space of a 

quantum state.  This distribution
1
 function’s integrated projections onto either the 

position or momentum axes returned the probability densities of the wave equations for 

those variables respectively.  The WDF is given by the form: [2] 

  (1-1) 

where x is position, p is momentum, and  is the time independent wave function. This 

phase space picture of quantum mechanics is still very different from the classical phase 

space picture since the WDF can take on negative values and is a surface in a third axis 

rather than a parametric plot in the plane of the position and momentum.  This feature 

predominantly arises from the Heisenberg Uncertainty Principle, which makes it 

impossible to simultaneously know both the position, and the simultaneous momentum, 

of a quantum mechanical system.  Figure 1 shows a WDF of the initial wave function, 

, of a free particle  wave function with an initial position of 0, an initial 

momentum of 1, and an initial spread of 1
2
. 

                                                      
1
 This can easily be confused as meaning a probability distribution function, which the WDF is not due to 

the fact that it can take on negative values.  
2
 The meaning behind these initial conditions and the equations that govern them will be illuminated in 

Section 2.3, but for completeness that are included here. 
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Figure 1. The WDF of the initial wave function, , of a free particle with an initial position of 0, an initial 

momentum of 1, and an initial spread of 1.  We can see the overall Gaussian feature displayed in phase space 

shifted off center from the origin in the momentum axes.  This is due to the wave function having an initial 

momentum of 1 which aligns with where the peak of the Gaussian is located in phase space with respect to the 

momentum axis 

 

The WDF does not provide any new information than what was already 

determined by the individual wave equations.  However, as much as a graph does not tell 

you anything more than the table of data it is representing, the WDF provides a new way 

of viewing the information obtained from the Schrödinger Equation.  A similar 

relationship between time and frequency is present in all wave mechanics, as is displayed 

in position and momentum in quantum mechanics, so it is possible to extend the WDF to 

the time/frequency domain.  Ultimately, the resulting depiction of the time and frequency 
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WDF could provide insightful representations of quantum mechanical events, such as the 

scattering of a wave packet upon potential wells and a means to characterize those events.   

1.2. Problem Statement 

We want to propagate a free particle reactant wave packet through a quantum 

potential well and compute its time correlation function with a stationary product wave 

packet.  Then we want to apply a WDF to the time correlation function and analyze the 

results using known attributes of the quantum square well that the reactant wave packet 

had propagated through.  Ultimately, we want to be able to compare these results with 

other signal processing techniques, such as a spectrogram of the same signal, and 

determine if the WDF is a viable or superior method of analyzing the time based signal 

results of a chemical or quantum reaction.  Additionally, we want to determine whether 

the WDF gives us any further or new insight into the physics within the well past the 

initial scattering of the reactant wave function. 

1.3. Approach 

 Solutions to the equations and procedures described in our problem will be 

difficult to achieve by analytical means alone.  We will instead employ a wide variety of 

numerical techniques in order to simulate our wave packet scattering event in a computer 

model.  By ensuring that we take sufficiently small numerical increments for each step, 

we will be able to provide the best approximation of the true analytical
3
 result. 

                                                      
3
 By stating “true analytical result” it is tempting to believe I am referring to an actual analytical answer to 

our problem which is not the intent, but instead to highlight the analytical result that would have been 

obtained had it been possible to take the considerable amount of time necessary to mathematically construct 

a solution to the Hamiltonians being analyzed here.  A process nature accomplished in considerably less 

time than men. 
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As the framework for our computer model we will define a set of position 

coordinates progressing from a defined  to  in increments of .  Using this 

x-grid we will discretely define a potential, , such that for all values within a and –a 

of the origin the potential is a set negative value and zero for all other locations.  This 

 will serve as out potential well.  In this space we will position two wave packets on 

either side of the potential well ensuring that the wave functions are a sufficient distance 

from the well that the functional values will have sufficiently decreased to zero before 

occupying the same space as the well.  The wave function to the left
4
 of the well will 

serve as the reactant wave function, , for our numerical wave function 

propagator, , while the wave function to the right will serve as our product wave 

function, .  Figure 2 depicts this initial setup.   

 

Figure 2. The initial setup of the reactant wave function and the product wave function positioned opposite each 

other from a square well.  In this depiction the wave functions are simple Gaussian curves centered about 4 

(dashed curve) and -4 (dotted curve) with a square well between them centered about the origin (solid line).  The 

Gaussian to the left of the potential well is the reactant wave function and the Gaussian to the right of the 

potential well is the product wave function. 

                                                      
4
 By left we mean the wave function is centered at a value of x less than the lower bound of the potential 

well.  The inherent symmetry imposed by this setup is not an imposed restriction of our numerical method 

or has any specific benefit, but is purely a matter of preference and the methods applied could be applied to 

any 1 dimensional setup. 
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By taking the correlation of these two functions as time progress as the reactant 

wave function propagates towards the product wave function on the other side of the 

well, we will record the amplitude and frequency of the reactant wave function after it 

leaves its interaction with the well.  This is possible since the product wave function is 

only known zero, within a numerically reasonable degree
5
, in the region just after the 

well in relationship to the reactant wave function so that when it is correlated it only has 

non-zero results when elements of the reactant wave function have passed through the 

potential well and are then propagating through the region where the product wave 

function is located.   

Having setup our initial conditions, we will then develop a computer algorithm to 

replicate the Split Operator Method of propagating the initial wave function, , 

over a region of space with the predefined potential, .  The result of this algorithm 

will serve as the propagated wave function in space and as time elapse scattering of the 

wave function as it passes the potential well, .  We will allow the propagator to 

evolve in time and at each time step, we will generate a time based correlated 

function, , between the reactant wave function and the product wave function, by 

taking the integrated product of the two over position.  Equation (1.2) illustrates this. 

  (1.2) 

                                                      
5
 Technically, the function is never truly non-zero as it is continuous, but for the purposes of the numerical 

approach the value held by the function is sufficiently small in comparison to the noise generated buy 

numerical methods.  In most of our cases the functional value was well below 10^-10 when we say it is 

zero. 
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The correlated function will serve as our time signal of the scattering event.  Then a 

numerical WDF will then be apply to the results from the time correlation in the 

following fashion. 

  (1.3) 

 Prior to generating the WDF of the correlation function, two outcomes will be 

generated to verify the accuracy of the numerical WDF generated.  First, the correlation 

function will be multiplied by its complex conjugate and plotted versus time.  Second, the 

correlation function will have an Inverse Fourier Transform applied to it to generate the 

correlation function in frequency space, , which in turn will be multiplied by its 

complex conjugate and plotted versus frequency.  These plots will later be compared to 

the integrated projections of the WDF of the correlation function in order to verify that 

the WDF generated is accurate for the correlation function provided. 

 The correlation function, , will then be integrated in a computer algorithm to 

generate the WDF, , and in turn this will be the WDF of the scattering event 

between the propagating wave packet and the potential well.  The WDF will then be 

plotted versus time and frequency.  To verify the accuracy of the transform,  will 

then be integrated versus time to produce the WDF projection in frequency space, and 

integrated versus frequency, to produce the projection in the temporal domain.  These 

projections will be plotted and compared to the plots of  and  generated 

previously.  The two plots should appear to over lap for the WDF to be accurate.  Figure 
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3 shows this comparison of  and  for the previously shown example of the 

WDF in figure 1 of the free particle. 

 

Figure 3. The comparison of the probability distribution in both position and momentum of free particle wave 

function at .  The solid red lines represents the solution derived by taking the modulus of the wave 

function and the blue dots represent the solution of the integrate projection of the WDF with the axes of interest. 

With this approach we will first analyze the WDF for a square potential well.  By 

using the square well we can compare the known attributes with the results of the WDF 

and determine if the WDF provides any insight into the physics going on within the 

scattering event.  Additionally, we can compare the WDF result with a spectrogram of the 

correlation function. 

 In Section II, we will discuss giving a broader scope of the mathematical 

techniques used to generate the WDF such as the Fourier Transform, Split Operator 

Method, and the Free Particle Wave Function.  A treatment of the square well will also be 

included for the purpose of comparison to the WDF.  Section III will go over the 

technical aspects of the computer algorithm generated for this research in order to give an 

understanding of how the techniques were used and an explanation of the parameter 

decisions made.  Section IV presents the results of the generated WDF for the various 

wells analyzed, followed by an analysis in Section V.   
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II. Background 

2.1. Fourier Transform 

 A crucial component of research between position and momentum in quantum 

mechanics, as well as time and frequency, is the proper use of Fourier Transformations.  

Fourier Transformation is a process which transforms a complex-valued function of a real 

variable into another variable. [3] [4] A better way to look at this transformation is by 

viewing a function of any variable as vector of some magnitude and direction in an 

infinitely defined space of the variable.  So if  is the value of the function at  then 

in this vector view,  is the projection of  on the  axis.  Extending this logic to a 

continuous function which existed over the entire x domain, we would be able to describe 

a vector f to be in the infinite vector space of x.  If this vector was then transported in a 

new vector space, with each new axis being related to a corresponding x-space axis by a 

phase shift, the f vector would have a new set of projections onto the new infinite vector 

space and would have a new shape in the new domain. 

 This is essentially how the Fourier Transform works between conjugate pairs of 

variables.  For the conjugate pair of position and momentum; its relationship is given by 

the following: [5] 

  (2.1) 

The factor  is used to normalize the functions as you transform between one domain, 

to the other, and back again.  With that in place you can go back and forth between the 

two domains and always return to the original functions. 
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 Another conjugate pair is time and angular frequency which is given by the same 

form as the equation (2.1) with the substitution of t for x and  for k.  By extension, this 

time/angular frequency pairing is also a time/energy pairing due to the DeBroglie 

relationship, . 

 In order to analytically compute the Fourier Transform, the function must 

converge as the domain goes to its infinite limits.  This poses a problem when you look at 

things in a discrete and finite frame of view.  However, as long as the function value 

sufficiently goes to zero well before the end of the finite domain, a discrete form of 

equation will provide the correct transform for the original function. 

2.2. Wigner Distribution Function 

 The development of quantum mechanics and its counter intuitive nature posed 

many problems for physicists in the early part of the 1900s.  Classically, a system would 

be modeled and evaluated based on known characteristic values, such as the precise 

position of a billiard ball at an exact time, and from that information future outcomes 

could be stated with a fair amount of certainty based on the laws of classical dynamics.  If 

you knew the position and momentum of a particle and the system
6
 it occupied then you 

knew not only everything that had happened to the particle, but what would happen to it 

given a universal knowledge of the system it occupied.  Laplace is famously noted as 

having stated that the universe was composed of particles obeying Newton’s laws and 

“once the interaction between these bodies is precisely known and the position and 

velocities of all the bodies at any given instant are known, these coordinates and 

                                                      
6
 This state meant makes the broad assumption that the system is a non-interactive closed system with 

regard to the rest of the universe.  More of a mental exercise then an actual case. 
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velocities are determined (through Newton’s second law) for all time.” [6] This 

comfortable determinism would soon be shaken by DeBroglie’s Wave-particle Duality 

and Heisenberg’s Uncertainty Principle. 

 However, this did not discourage some from approaching the new landscape of 

physics with some traditional notions.  One of these physics was Eugene Paul Wigner
7
 

who tried to tie in the traditional phase-space picture with what was being developed in 

the field of quantum mechanics and its force condition of quantum uncertainty.  In 1932, 

he developed a distribution function as a means to study quantum corrections to classical 

statistical mechanics.  Fundamentally, this quasi-distribution function generates a 2D 

surface in phase-space whose integrated projection on either axis will return the modulus 

of the wave function for that axis.  Today this distribution function is called the Wigner 

Distribution, or the Wigner-Ville Distribution
8
, and is shown as equation (2.2) for the 

conjugate pairs of position and momentum.  

  (2.2) 

Fundamentally, the distribution function is a Fourier Transform of a correlated wave 

function.  An example of such a distribution function is given in figure 1.  In figure 1, all 

the values of the distribution are positive, but it is entirely possible for the WDF to render 

negative values in the plot.  The meaning behind this negative property of the distribution 

                                                      
7
 Pál Jenő Wigner, his native Hungarian name, was born on November 17, 1902 in Budapest.  He 

immigrated to the United States in 1930.  He was a heavy contributor to Quantum Group Theory.  He died 

on January 1, 1995.  His notable relative is Paul Dirac, his brother-in-law by his first marriage. 
8
 After J. Ville who in 1948 rederived it as a quadratic (in signal) representation of the local time-frequency 

energy of a signal.  It is additionally interesting to note that both Heisenberg and Dirac also derived this 

function, but missed its significance. [21] Also in 1949, José Enrique Moyal independently derived it. [20] 
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is unclear and makes it exceedingly difficult for one to interpret the WDF as a probability 

distribution in phase space.  

Additionally, figure 2 depicts the comparison of the integration of the WDF along 

the momentum axis with the modulus wave function in its coordinate representation.  

This demonstrates that the WDF contains the information about the wave function in both 

coordinate space and momentum space. 

 So far we have examined the position-momentum WDF, but the WDF is not 

limited to that singular case.  Any conjugate pair can have this technique applied to it and 

it is often used in the pairing of time and frequency such as shown in equation (2.3). 

  (2.3) 

This is the form of the WDF we will use when examining the correlation of out scattered 

wave function over time.  Except in our case  in equation (2.3) will be replaced by 

the calculated time correlation of the reactant and product wave function, , discussed 

later in Section 2.6.  

2.3. Propagating Wave packet 

 Foremost in our analysis of the WDF as a signal processing tool is ability to 

accurately propagate our reactant wave function.  As this function will serve as our 

propagating element in our initial setup and will be the wave function that will scatter 

with the quantum potential well in order to later produce the time signal by means of 

correlation with our product wave function.  The uniqueness in the expression of the free 

particle wave packet is that as a wave function the function needs to be continuous over 
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all space, but still maintain its relative localization as it propagates in time much like a 

particle.  Many authors discuss the development of this expression. [7] [6] 

Schrödinger’s Equation tells us that the time evolution of a wave function is the 

product of the initial wave function, an eigenfunction of the Hamiltonian, with the 

exponential of the Hamiltonian over time. 

  

(2.4) 

 

Recall from our discussion on Fourier Transforms that a function of position can be 

defined as the integration of a function in momentum space, as shown in equation (2.1), 

and then equation (2.4) can be rewritten as 

  

(2.5) 

 

Since the free particle assumes that the potential component of the Hamiltonian is zero 

over all space, only the kinetic part remains which is also a function of momentum, 

.  Equation (2.5) then consolidates into the following 

  

(2.6) 

 

However, , is time independent and by the same Fourier relationship can be given by 

the following 

  (2.7) 
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Substituting equation (2.7) into equation (2.6) we reach the following expression 

  

(2.8) 

 

 Since we want our initial wave function to have a relatively localized position we 

will use the time independent Gaussian wave function 

  
(2.9) 

 

as our initial wave function in equation (2.8) and reach the following form 

 

 

(2.10) 

 

where .  We now integrate equation (2.10) over all space and all momentum to 

arrive at out final form of the free particle wave function 

 

 
 

(2.11) 

 

where  is the initial center position of the wave packet,  is the initial kinetic energy, 

 is the initial spread of the wave packet in coordinate space, and  is the mass of the 

particle.  Figure 4 depicts the time evolution of the real and imaginary component of the 

wave function. 
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Figure 4. The time evolution of the real and imaginary components of a free particle with initial values of x = -

20, k = 3, and a spread of 1. 

As you can see, the wave function starts with a distinct position
9
 and spreads out 

over all space as time progresses.  This is the expected outcome of the time evolution of 

the free particle.  Initially, the probability of finding the particle in a set region is high, 

but as time progress the probability of location of the particle gets spread over an ever 

larger location.
10

   When we set  equation (2.11) simplifies down into, 

 
 

(2.12) 

                                                      
9
 Saying, “distinct position,” may be to strong of a statement.  The particle location is as distinct as 

Heisenberg’s Uncertainty principle allows, but in terms of the entirety of space, the location is very 

localized. 
10

 Actually, the particle has a probability of being located at any point in the continuum of position space, 

but the beauty of the free particle wave function is that the overall Gaussian shape restricts the region of 

highest probability over a smaller region which only broadens with time. 
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Equation (2.12) is exactly equation (2.9) which you may recall was the time independent 

Gaussian wave function.  This is not surprising as when you take the time dependent 

expression of the wave function and set  you should return to the time independent 

form of the expression.  This form will serve as our initial wave function, but the time-

dependent form will not function as our time propagator  because it’s Hamiltonian does 

not contain the elements of the potential well we wish to have the particle scatter upon as 

explored above. 

2.4. Split Operator Method 

 Previously we demonstrated the form of the propagating wave packet wave-

function when the Hamiltonian has no potential energy component.  However, in our case 

we will be looking at examples where the potential is not zero everywhere.  This would 

force us to re-exam our previous derivation for each Hamiltonian we wish to look at in 

order to derive the appropriate eigenfunction that showed the correct time based 

propagation.  As we wish to exam a wide variety of wells, this would become a very 

laborious process and with possibility of finding no analytic solution. 

 Instead of developing a correct function for each Hamiltonian, we will be using 

the Split Operator Method to develop a time based wave function based on an input 

potential.  The Split Operator Method [8] [9] is an outcrop of the Schrödinger Equation as 

show in equation (2.5).  Split Operator Method takes the time dependent form of the 

Schrödinger Equation and rewrites the Hamiltonian Operator in terms of its component 

operators, H = T + V.  In this new form we can rewrite the argument of the exponential 

and a new form of the Schrödinger Equation appears as: [10] 
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(2.13) 

The factor of  arises from the fact that T and V do not commute and the third term 

in equation (2.14) is not 1 as it is when applied to scalars. [11] 

  (2.14) 

In order to avoid issues with this  term, we will ensure that we make  

sufficiently small in comparison to the total energy of the system we want to examine and 

we will assume that the last term is small enough, by the third power, to be considered 

zero.  With the Schrödinger Equation now in the form given by equation (2.13), we can 

capitalize on the Fourier Transform to avoid further complexities of the T and V 

operators.  By this I mean in coordinate space, the V operator is merely,  or 

diagonalized in coordinate space, which makes the operation of  

 
 

(2.15) 

a product of two functions.  However, in coordinate space T becomes harder to manage 

as shown in equation (2.16) 

 

 

(2.16) 

To avoid expanding the exponential into a Taylor Series and then applying the operator to 

the function, we can simply Inverse Fourier Transform, , into momentum space 

and make the result a simple product of two functions as before.  As T in momentum 

space is simply,  
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(2.17) 

which is to say T is diagonalized in momentum space and then equation (2.16) can be 

rewritten as: 

 
 

(2.18) 

From that point we simply Fourier Transform back to the coordinate representation and 

compute the last product to arrive at .  In repeating this process by using the 

resultant  as the new , the time evolution of the wave function can be 

generated in steps of .  Equation (2.19) shows the overall process: 

 
 

(2.19) 

2.5. Square Well Scattering 

 Understanding of the quantum square well is crucial to our analysis of the WDF 

of a scattered wave packet incident upon the well.  Fortunately, the finite square well is a 

well know problem with multiple examples to pull from. [12] [6] [13] [7]  By 

understanding its known attributes we will be better able to identify features of our 

resultant WDFs and make knowledgeable observations. 

If we examine the scenario where we have a propagating wave which travels in 

the direction of x and experiences zero potential until a region of space, from –a to a, 

where the potential is a negative constant value, we then have the case of a quantum 

square well.  If we accept that a portion of the propagating wave will reflect off the first 
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boundary well and that some will pass through, we can then define the equation of the 

wave in the region before the well as: 

  (2.20) 

 
 

(2.21) 

where A is the incident amplitude and B is the reflected amplitude.  Within the well we 

can define the wave function as: 

  (2.22) 

 
 

(2.23) 

On the far side of the well we can define the wave function as: 

  (2.24) 

In this case, k is the same as equation (2.21) and there is no reflected amplitude as we 

assume the wave is travelling from left to right.  With these equations we impose two 

boundary conditions on the wave function.  First that  is continuous and that  also 

is continuous at the boundaries. 

 From that we can set up a system of equations that allows us to set the transmitted 

amplitude, F, in terms of the incident amplitude, A. 

 
 

(2.25) 
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We can then define the transmission coefficient of the well by using equation (2.25) in 

equation (2.26). 

 
 

(2.26) 

2.5.1. Transmission 

 The transmission coefficient is a function of energy; when equation (2.25) is 

applied to equation (2.26) what is left is an expression in terms of k and l, which they 

themselves, as show in equation (2.21) and (2.23), are functions of energy.  Equation 

(2.27) demonstrates this. 

 
 

(2.27) 

In figure 5, we see this transmission coefficient plot over energies of the incident wave 

function and we can see that when energy increases, the degree of the transmission is 

increased. 



22 

 

 

Figure 5. The transmission as a function of energy of a square well with depth, Vo = 20, and width, 2a = 20. 

 

You will also notice the sinusoidal shape of the curve as it moves towards 1.  These peaks 

rise up to the value of total transmission before returning to the general arc of the curve.  

Since E is related to angular frequency by ħ, these points represent frequencies of total 

transmission through the square well.  At these frequencies/energies the square well is 

completely transparent to the particle. 

 The overall shape of the transmission coefficient is the same for all square wells, 

but varies in the degree at which the peaks rise up from the general arc of the function to 

1 and in the spacing between these peaks (i.e. the spacing between peaks decreases as the 

well depth increases).  In Merzbacher’s analysis [7] of the square well, he defines a  
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parameter to the square well that determines the degree of resonance given by the 

following: 

 
 

(2.28) 

More resonate wells are seen to have a larger  value and thus has a larger depth or 

width, or the particle has a larger mass, or a combination of all three. 

2.5.2. Energy Levels 

 Additionally, the peaks of the transmission coefficient coincide with energies that 

cause the sine squared term to be a multiple of . 

 
 

(2.29) 

This forces the second term of equation (2.27) to be zero and we have total transmission.  

If we solve for the angular frequency we get a quantized frequency which is the same as 

if the square well, had it been an infinite square well, and we are looking at energy levels 

 above the bottom of the square well.  Equation (2.30) expresses these angular 

frequency levels: 

 
 

(2.30) 

2.6. Time Correlation Function 

 So far we have examined the propagation of a reactant wave function in 

conjunction and its scattering off a potential well, but not a means of recording the result 

of the scattering as a function of time.  For that we must correlate our wave function with 
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a stationary wave function at a given position beyond the well from the starting point of 

our propagating wave function. [14] 

 
 

(2.31) 

The correlation function enables us to see what elements, the amplitudes of the real and 

imaginary components, of the propagating wave function are passing a certain position as 

time evolves.  Additionally, we will also gain information about frequencies that pass 

through the stationary point based on the Fourier relationship between time and 

frequency. 

2.7. Atomic Units 

 As we explore the interactions of the propagating wave function with the imposed 

well we will use the atomic unit system for our numerical values.  This is a common unit 

system for analysis of events at the atomic level and is often used in Chemical Physics 

research.  The main benefit it will serve in this research is in reducing many of our 

constants values to 1 such as mass, the mass of an electron in this case, and Planck’s 

constant.  While the numerical approach is indifferent to the units used, the atomic unit 

system gives us a more intuitive scale upon which to view the results of our 

computational model.  Table 1 shows a comparison of the units in the atomic unit system 

with those in the International System of Units (SI) 
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Table 1. Atomic Units System [15] 

Quantity Name Symbol SI Value 

mass electron rest mass  9.109*10
-31

 kg 

length Bohr radius  5.291*10
-11

 kg 

charge elementary charge  1.602*10
-19

 C 

angular momentum 
Reduced Planck’s 

constant  1.504*10
-34

 J s 

energy Hartree energy  4.359*10
-18

 J 

electrostatic force 

constant 
Coulomb’s constant  8.987*10

9
 N m

2
 

time   2.418*10
-17

 s 

velocity   2.187*10
6
 m s

-1
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III. Numerical Approach 

3.3. Fast Fourier Transform 

 Previously, we discussed the process of Fourier Transforming one continuous 

function in a position (or time) domain into a continuous function in a momentum (or 

frequency/energy) domain.  However, since we are taking a numerical approach to the 

propagation of a free particle scattering off of a square well, we will not have a 

continuous domain to work with, but the inside of a very controlled finite domain.  This 

will force us to perform a Discrete Fourier Transform when we seek to perform the 

operations given by equation (2.19).  All numerical computation where programmed into 

FORTRAN77. 

 It would be possible to take the integral form shown in equation (2.1) and revert it 

into a Riemann Sum expression with a  of our choosing 

 

 

(3.1) 

This would be able to discretely transform  on the range  into .  This 

would be repeated for every  over a pre-determined range and would provide the 

Fourier Transformed function.  Provided that the ranges chosen are sufficiently large 

such that non-zero portions of the functions are not excluded in either domains, then this 

Discrete Fourier Transform will be highly accurate. 

 This approach however has a drawback when it comes to the computational time 

it takes to perform these procedures.  “The interpolation of 2m data points by the direct 
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calculation technique requires approximately (2m)
2
 multiplications and (2m)

2
  additions.” 

[16]  Fortunately, J.W. Cooley and J.W. Tukey developed a numerical process that 

reduced the number of multiplications and additions to , called the Fast 

Fourier Transform.  They only requirement imposed by this technique is that the position 

(time) domain and the momentum (frequency) domain must share the same number of 

grid points, and those grid points have to be on the order of 2
N
. [16] [3] 

 Due to its efficiency there are many available Fast Fourier Transform subroutines 

available in most every computational programming language.  We implemented a 1 

dimensional Fast Fourier Transform into our code in order to perform the transforms 

need in equation (20) and also for additional transforms into momentum space for 

calculating the norm of k at each time step in our program. 

3.4. Aliasing 

 One of the issues encountered with our use of discrete FT and the process 

efficient FFT was one of Aliasing.  Aliasing essentially occurs when a continuous signal 

is sampled and reconstructed on a fixed range allowing for the development of distortions 

or artifacts to be represented.  In a purely mathematical FT, the integration of the input 

signal would be over the entire time domain, i.e. from  to .  However, 

doing such integrations numerically is impossible, so we imposed the restriction that over 

a short window the signal would be zero at the imposed boundaries of the window and 

therefore the integration could be imposed over those limits.  While these imposed 

restrictions do work to transform the function from time to frequency, they have to be 

handled properly or they will create distortions or artifacts. 
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 The reason is that when this windowed regime of the function is generated, it 

actually creates an infinite series of these windows that follow one another in the domain 

of the space being transformed into.  Each of these windows is a replicate of the previous, 

starting where the previous window ended.  If an arbitrary length is chosen over which to 

measure and describe the domain being transferred into, then there is the risk of recording 

more than one of these windows and creating a transform that actually contains multiples 

of the true transform. 

These distortions can be avoided by imposing a range restriction on the domain 

being transformed into.  This restriction is called the Nyquist Frequency and is shown in 

equation (3.2).  [4] [3] [17] 

  (3.2) 

This restriction, while aiding in eliminating distortions and artifacts, forces us to be very 

careful in our choice of t.  We are already forced to choose a t that is small in 

comparison to the energies of the system we are investigating due to the use of the Split 

Operator Method, but now we must be careful not to make our  too large or the  

too big to be a meaningful representation of , but also ensuring  included all 

of the information of .  In a case involving  transforms, we are further 

burdened by the FFTs requirement that both domains be characterized by  number of 

points to function properly.  This adds the further balancing act of ensuring  

includes all the appropriate information of the kinetic energy from the scattering, even in 

addition to wanting both  and  to be small enough to properly characterize the 
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functions in those domains.  Table 2 shows this imposed restriction and its resulting 

values used in the FORTRAN 77 code generated for this research. 

Table 2. Comparison of grid sizes and grid step sizes for Discrete Fourier Transforms 

Conjugate 

Pairs 

 

   11 #points 

 100 .09766 32.16991 .03142 2048 

 99.99 .09 34.90659 .03142 1111 

It should be noted that t was actually .01 in the Split Operator Method portion of 

the code but was down sampled, as explained previously, to .09 to save time in the 

processing of the WDF portion of the code.  This value of .09 served as the value of  

for all transforms of  in the code generated and is why it is displayed as the delta 

term in the table above. 

3.5. Absorbing Boundaries 

 Since we are performing discrete transforms over a fixed regime of space, we run 

a similar risk to the aliasing described previously.  If the wave function is allowed to 

propagate to the point where elements of the function pass the right side of our imposed 

window, we will see the return of those elements at left side which will interact with 

elements still in the window and distort our wave function.  In order to avoid this we need 

to ensure that the wave function goes to zero as it reaches the end of the special regime.  

To do this we will add an imaginary term to our potential function that will be localized 

to the edges of our special window. [18] 

                                                      
11

 It was not intended for  and  to match, but was the unexpected outcome of the values used. 
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  (3.3) 

When this term is placed into the potential exponential of equation (2.19), we see the 

following result 

 
 

(3.4) 

 
 

(3.5) 

 
 

(3.6) 

 
 

(3.7) 

Provided that  is negative, the second term of equation will serve to 

dampen the wave function multiplied with it.  Additionally, to ensure the absorbing 

boundary potentials do not drastically dampen the wave function to the point of altering it 

within the special window, it is best to use a function that gradually applies the negative 

potential.  We used a simple Gaussian, depicted in equation (3.8), to accomplish this. 

 
 

(3.8) 

 In our research we set  and  for our absorbing boundary conditions.  

Figure 6 depicts the interaction of the propagating free particle with one of the absorbing 

boundary function. 
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Figure 6. A propagating wave function incident on absorbing boundary potential 

 

3.6. Free Particle Propagation 

 As explained in Section 2.4, the need to pick a sufficiently small  in order to 

avoid complications with the additive term in equation (2.13) was paramount.  So in 

order to test the results produced from our numerical propagator we need to compare 

them with known analytic solutions of the same conditions.  Since we have already 

derived the form of the free-particle wave function, we have an expression with which to 

perform one of our first comparisons.  Since the free-particle Hamiltonian has no 

potential contribution, this comparison serves to analyze whether the kinetic component 

of our propagator is functioning accurately.  By checking the application of equation 

(2.19) in our numerical code against a case solely comprising of one part of the 

Hamiltonian we ensure that later verification steps and issues that may be found with 
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those verifications are not attributes of the kinetic part of the Hamiltonian.  Figure 7 

shows the comparison between the numerical result and the analytic answer for a free-

particle propagation derived in Section 2.3 and, as you can see, they are in agreement. 

 

Figure 7. Comparison of the analytical form of a free particle wave function with the results of the split operator 

method.  The blue dots represent the real part of the wave function as generated from the split operator method.  

The lines connecting the dots represent the analytical result of the real part of the wave function.  The reason the 

wave function appears to leave the window and not cycle round again as discussed in this section is that the 

graphical depiction only shows a narrow portion (-20 to 50) of our x domain. 

 

3.7. Coherent State of a Harmonic Oscillator 

 After reviewing the accuracy of our propagator to a Hamiltonian with no potential 

component, we then need to look for an analytic wave function for a Hamiltonian with 

both kinetic and potential contributions to use as a comparison for our propagator.  The 
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wave function we utilized for this comparison was the Coherent State of the Quantum 

Harmonic Oscillator [13] given in the equations below 

 
 

(3.9) 

 

 

(3.10) 

  (3.11) 

 
 

(3.12) 

 
 

(3.13) 

 
 

(3.14) 

The expression is the eigenfunction for the following Hamiltonian 

 
 

(3.15) 

This is clearly a robust and complicated expression for the propagation of a wave 

function bound within a quantum harmonic oscillator potential.  As such, careful 

accounting needs to be applied when generating the analytic result for our comparison. 

3.7.1. Ground State 

 We first look at the simplest case of the Coherent State,  and , 

as a comparison for the propagated wave function given by our code.  This is known as 

the ground state of the quantum harmonic oscillator.  In this state, the wave function 
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looks very similar to the ground state of the infinite square well and its real and 

imaginary components oscillate at a  phase shift from each other.  Figure 8 shows the 

comparison between the numerical result and the analytic answer for the ground state 

coherent function and, as you can see, they are in agreement. 

 

Figure 8. Comparison of the Coherent function ground state with the results from the split operator method.  

The blue dots represent the imaginary part of the wave function and the red dots represent the real part of the 

wave function as generated from the split operator method.  The lines connecting the dots represent the 

analytical result and the colors are the converse for distinction between the lines and dots.  In the analytical case 

the red line represents the imaginary part and the blue represents the real part. 

 

 The comparison of the free-particle propagation and the propagation of the 

ground state coherent function provide a sufficient check to determine whether the 

numerical propagator of equation (2.19) is working accurately.  Future applications of the 

propagator will only need to apply a sufficiently small , in keeping with the total 
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energy of the system being analyzed, to provide an accurate representation of the time 

propagation of the wave function. 

3.8. Discrete Wigner Distribution (DWD) Function 

 Just as we had to modify our approach to Fourier Transforms based on the 

discrete nature of our numerical approach, so to do this we have to revisit the WDF given 

in equation (1.1) and apply it in a discrete fashion.   In order to accomplish this we have 

to review the inner workings of the WDF.  Fundamentally, the WDF is a Fourier 

Transform of a correlated function in time.  If we break the WDF into a process of 

discrete correlation and a process of discrete Fourier Transformation we are half way 

done, given what we have already discussed in Section 3.3 and 3.4. 

 The process of correlation in the DWD essentially shifts the function, one 

function of time from the bottom to the top of a scale in  space, while a conjugate 

function of the same time function is simultaneously shifted from the top to the bottom of 

 space.  With each shift in  the product of the two functions is taken and this builds up 

the correlated function of time.  If these functions of time are localized, that is to say they 

only have relatively non-zero values over a fixed region of time, then the value of the 

correlation will only have none trivial values in the region of  where 

 is the last value of time for which the functional value is none trivial.  This process 

can be discretely accomplished numerically so that the only step left is to combine this 

process with the process of Fourier Transforming the correlated function in  space into 

angular frequency space for all values of t.  
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3.9. Down Sampling 

 Down Sampling became a necessary component of our FORTRAN 77 code for 

several reasons.  In wanting to explore square wells with strong resonant features we 

were forced to modify the square well in one of two ways; first being to increase the 

width and second being to increase the depth.  Increasing the width of the well would 

require constant movement of the starting position of the wave packet further to the left 

of the well to avoid starting the computations with either the reactant or product wave 

function overlapping the location of the well.  This would force us to continually readjust 

the domain range of x to avoid having the initial wave function located in areas that did 

not have zero value for the potential, be it from the well itself or from the absorbing 

boundary conditions, which would disrupt the initial state.  Additionally, this would also 

run the risk of diminishing the k domain, due to the correlation between the x and k 

imposed by the FFT, to the point that it may not include all the kinetic energy values 

produced by the scattering.   

 Altering our well depth also imposed complications as it required that reduction in 

our time step to be able to satisfy the imposed restriction of the Split Operator Method.  

However, every time we decrease the time step of our propagator the length of the 

correlation array is increased over a fixed time interval.  That is to say is we subdivide a 

length of time of 10 by intervals of 1 we end of up with 10 data points, but is we 

subdivide by .1 we end up with 100 data points.  In turn, this input correlation array 

would increase the number of cycles the DWD would have to perform.  Table 3 depicts 
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this relationship between the input array and the number of calculations the DWD would 

have to perform for a non-down sampled array.   

Table 3. Down sampling values 

 C(t) array length # of DWD cycles Fraction of .09 

.5 200 16,040,000 .00585 

.1 1,000 2,001,000,000 .72926 

.09 1,111
12

 2,743,895,583 1 

.05 2,000 16,004,000,000 5.83259 

.01 10,000 2,000,100,000,000 728.92715 

  

The arrays depict a total time of 100 and the inclusion of .09 was done to show the 

attributes for the value later utilized. 

 We decided to forgo altering the well width and instead focused on changing well 

depths, but to avoid the calculation issues of a smaller , the correlation array was down 

sampled by a factor of 9 which, as demonstrated above, made the total time 

approximately  the actual time needed to generate a DWD at that time step.  As a 

means of comparison, a DWD with the .09 step takes about 20 minutes.  The same DWD 

with a .01 time step would take approximately 10 days
13

. 

  

                                                      
12

 In this case the time length is 99.99 as in our code that correlation was computed for t = .09 to t = 100.  

The instance of t = 0 was disregarded as by construction the correlation function would be zero at this 

point. 
13

 The results obtained the from 20 minute trials we sufficient enough in the analysis to retain all susceptive  

information of the WDF that any increase in granularity would add no benefit and cost excessive time. 
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IV. Results 

In this section a large portion of the results obtained from the code and methods 

described in Sections II and III are displayed for the benefit of the reader.  Additional results are 

displayed in Appendix A.  The results are presented in such a way as to give the reader an 

appreciation of the outcomes of the modeling and simulations preformed while saving all 

discussion of analysis and interpretations for Section V.   

4.1 Correlation Function 

 The primary goal of this research was to generate a Wigner Distribution of the time 

correlation function, given by equation (1.2), between a reactant and product wave function.  As 

such it is necessary to demonstrate the resulting calculated correlation function obtained via the 

Split Operator Method, already discussed previously, before moving on to the resulting Wigner 

Distributions obtained.  Figure 9 shows such a correlation function generated after a reactance 

wave function has passed through a quantum square well of depth 20  and width of  

 

Figure 9.  A correlation function, both its real and imaginary components, generated by the Fortran 77 code 

utilizing the Split Operator Method.  Though only displayed from t = 5 to t = 35 the correlation function was 

captured for t = 0.09 to t = 99.99 
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 As you can see from figure 9 the sampling interval, as discussed in the previous section, 

provide more than sufficient date points to accurately depict the function.  Additionally, the 

correlation function it given sufficient amount of time to reduce to zero as show in figure 9 which 

only shows a window of the function from t = 5 to t = 35 in order to show depth of features in the 

graph.  The true length of the correlation function, as mentioned in the previous section goes from 

t = .09 to t = 99.99. 

4.2 Wigner Distribution Plots  

Using the method and code described in Sections II and III respectively, we were 

able to generate Wigner distribution plots for a variety of well depths and well shapes.  

We, of course, first developed WDF plots for a range of square well depths.  First the 

series between well depths was kept small, going from a value of 2 to a value of 8 by 

increments of 2.  After that point, steps of 20 were used in order to reach levels which 

would produce higher levels of resonant features.  After the full range of square well 

DWDs were generated the same series of well depths were applied to wells of differing 

shapes (triangular, circular, and Gaussian).  As means of a baseline for our review of the 

WDF plots generated, figure 10 shows the WDF plot for a propagation free particle with 

no well to scatter upon.  
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Figure 10. The WDF of a free particles correlation function 

 

 The unique features in figure 10 are interesting in and of themselves and provided the 

overall characteristic seen in many of the Wigner Distribution Plots for cases where a quantum 

potential well was present.  In all cases the primary large mountain like feature seen in figure 10 

is present along with the subsequent smaller L-shaped ridges.  These ridge lines represent large 

portions of the reactant wave function correlation with the product wave function.  Since we set 

out initial momentum of reactant wave function relatively large in order to avoid spreading the 

reactant wave in the negative direction we gain the effect of supplying a large amount of initial 

energy into the correlation and thus in all of our Wigner Distributions this very large primary 

peak is present. 

We have included the WDF plots of the square wells and circular wells in this 

section.  Appendix A displays the results of the triangular and Gaussian wells due to their 

lack of structure.  A full analysis of these results is found in Section V. 
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As described in Section 2.5 of the square well scattering, the potential for a square 

well is a set of functions as show in equation (4.1) 

 
 

(4.1) 

This is the form used for the  term of equation (3.3). 

Since the potential is discretely defined, the potential is an approximation of the 

square well.  The smaller we make , the closer we make the approximation to a true 

square well, but ultimately the numerical process can never truly replicate the piecewise 

function described in equation (4.1).  Fortunately the distortion is not large enough to 

cause issue in our data with the  we have selected, . 
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4.2.1. Square Well with depth Vo = 2, 4, 6, & 8  

 
Figure 11. Depiction of a WDF plot generated from 

the time correlation function of a reactant wave 

function scattering through a quantum potential well 

of 2 .  The red lines indicate frequencies of total 

transmission that correspond to a well of that depth. 

 
Figure 12. Depiction of a WDF plot generated from 

the time correlation function of a reactant wave 

function scattering through a quantum potential well 

of 4 .  The red lines indicate frequencies of total 

transmission that correspond to a well of that depth. 

  

 
Figure 13. Depiction of a WDF plot generated from 

the time correlation function of a reactant wave 

function scattering through a quantum potential well 

of 6 .  The red lines indicate frequencies of total 

transmission that correspond to a well of that depth. 

 
Figure 14. Depiction of a WDF plot generated from 

the time correlation function of a reactant wave 

function scattering through a quantum potential well 

of 8 .  The red lines indicate frequencies of total 

transmission that correspond to a well of that depth. 
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4.2.2. Square and Circular Well with depth Vo = 10, 20, 40, 60, & 80  

The FORTRAN 77 code generated was tailored to the well width, 2a, of 20 

(atomic units) for the square well.  When the code was modified to examine the circular 

well the following equation was used 

 

 

(4.2) 

This is the form used for the  term of equation (35).  In this form the circular well 

maintains the same overall spacing in x as the square well did, so that the new potential 

can simple be substituted in the pre-existing FORTRAN 77 code. 

 

Figure 15. Depiction of a WDF plot generated from 

the time correlation function of a reactant wave 

function scattering through a quantum square well of 

10 .  The red lines indicate frequencies of total 

transmission that correspond to a well of that depth. 

 

Figure 16. Depiction of a WDF plot generated from 

the time correlation function of a reactant wave 

function scattering through a quantum circular well of 

10 .   
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Figure 17. Depiction of a WDF plot generated from 

the time correlation function of a reactant wave 

function scattering through a quantum square well of 

20 .  The red lines indicate frequencies of total 

transmission that correspond to a well of that depth. 

 

Figure 18. Depiction of a WDF plot generated from 

the time correlation function of a reactant wave 

function scattering through a quantum circular well of 

20 .   

 

 

 

 

 

 

 

 

Figure 19. Depiction of a WDF plot generated from 

the time correlation function of a reactant wave 

function scattering through a quantum square well of 

40 .  The red lines indicate frequencies of total 

transmission that correspond to a well of that depth. 

 

Figure 20. Depiction of a WDF plot generated from 

the time correlation function of a reactant wave 

function scattering through a quantum circular well of 

40 .   
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Figure 21. Depiction of a WDF plot generated from 

the time correlation function of a reactant wave 

function scattering through a quantum square well of 

60 .  The red lines indicate frequencies of total 

transmission that correspond to a well of that depth. 

 

Figure 22. Depiction of a WDF plot generated from 

the time correlation function of a reactant wave 

function scattering through a quantum circular well of 

60 .   

 

 

 

 

 

 

 

 

Figure 23. Depiction of a WDF plot generated from 

the time correlation function of a reactant wave 

function scattering through a quantum square well of 

80 .  The red lines indicate frequencies of total 

transmission that correspond to a well of that depth. 

 

Figure 24. Depiction of a WDF plot generated from 

the time correlation function of a reactant wave 

function scattering through a quantum circular well of 

80 .   
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V. Analysis 

 In viewing the results of the square well and comparing those results with known 

attributes of that same well, many noteworthy features begin to appear in our WDF plots.  

We will examine these attributes in the case of a square well with a depth of 20  unless 

otherwise noted in the discussion.  This is not to say that these features are not present in 

all cases, but the example gives us a good case where we do not run into extremes of all 

the features, which can obscure the individual attributes.
14

 

5.1. Transmission Coefficients 

 As discussed in Section 2.5.1 a square well allows for certain energy bands to 

pass through as if the well were transparent.  When we take the integrate projection of the 

WDF generated from the scattering event towards the frequency axis, we get the 

probability distribution of the frequency of our correlation function from that scattering 

event.  Figure 25 shows the integrate projection of the WDF for the square well of 

 and . 

                                                      
14

 This also helps us from diluting the results with multiple graphical plots restating the point. 



47 

 

 

Figure 25. The integrated projection of the WDF in frequency is given by the blue dots and the transmission 

function of a square well of width 2a = 10 and Vo = 20 is given by the solid blue line. 

 

By inspection, the distribution has an overall Gaussian shape.  This is due to the fact that 

the reactant and product wave functions were Gaussian by construction
15

.  Within the 

overall Gaussian shape there appears to be protruding peaks at specific values of 

frequency.  These peaks coincide when compared to the known transmission peaks of the 

square well.   Further, the overall Gaussian function is given by the modulus of the 

frequency correlation of the two initial wave functions when no well is present 

  (5.1) 

 

 

                                                      
15

 If we had use Lorentzian function then the overall shape of the correlation would be Lorentzian.   
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Which in our particular case of  and  is the following 

 
 

(5.2) 

The production of equation (5.2)
16

 with the transmission function (2.27) of the square 

well gives us the same result as our integrated projection of the WDF upon the frequency 

axes.  Figure 26 shows a comparison of the results of the WDF integrated projection upon 

the frequency axis and the product of the transmission function with equation (5.2) 

 

Figure 26. The comparison of the product of the transmission function (2.27) and equation (5.2) and the result of 

the integrated projection of the WDF upon the frequency axis.  The red line is the product result and the blue 

dots are the results of the integration.17 

 

                                                      
16

 This result was obtained by taking the Fourier Transform of   for the case where there was no 

potential well involved and finding the modulus of the result in Mathematica 6.0. 
17

 The slight differences in the red line and the blue dotted line potential arise from the discrete nature of 

the potential well and the fact that as mentioned in Section 4.2 the well is actually trapezoidal.  It is the 

opinion of the author however that the difference has more to do with the analytical approximation 

Mathematica 6.0 made to reach the result in equation (5.2). 
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 The integrated projection in time of a WDF generated from the time correlation of 

a wave function scattering off a potential well is the product of the transmission function 

of that potential well and the modulus of the frequency correlation of the wave function 

in free space.  This property can be expanded to wells of unknown transmission functions 

and from it we can derive the transmission functions of those wells.  By this we mean that 

we can take the correlation function of a scatter event off of those wells, generate a 

Wigner Distribution of that scattering, and integrate that distribution in time to get a 

probability density in terms of frequency.  From here we can divide the probability 

density function by the modulus of the correlation function in frequency of a non-

scattering event and from that arrive at out transmission function, which is what we 

should expect. 

5.2. Square Well Energy Levels 

 Previously we saw that the integrated projection of the WDF corresponded to the 

transmission function of the square well we took our time correlation from.  It is no 

surprise then to see that the resonant frequency levels match with the peak values of the 

WDF’s integrated projection in frequency.  However, if we take these frequency lines 

and place them across our 3 dimensional WDF surface, we see that the resonant 

frequency levels connect the positive peaks of every ridge structure in our surface.  This 

is shown in figure 27. 
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Figure 27. WDF plot with total transmission energy level bands of a well width of 40 .  The red lines indicate 

allowed frequencies for a quantum square well of depth 40  and width of 20 . 

 

However, that is not to say that these lines correspond to every positive peak 

position.  If we examine the peak values of the third ridge structure in figure 27, by third 

ridge we mean the third positive structure seen as you progress along the time axis, we 

see that the frequency levels correspond to every other peak structure in that ridge line.  

There appears to be peaks that correspond to half way frequencies of the resonant 

frequencies.  When the frequency levels of a well with double the actual scattered wells 

width are overlaid on top of the WDF surface we see that all the peaks in the third ridge 

line correspond to the new resonant frequencies, but we also notice that the preceding 
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ridge line, or second as you progress along the time axis, contains negative valley 

position along these lines “half” frequencies.  This is shown in figure 28. 

 

Figure 28. WDF plot with total transmission energy level bands of a well width of 40 .  The red lines indicate 

allowed frequencies for a quantum square well of depth 40  and width of 40 . 

 

Clearly the summation of these “half” frequencies is what leads to the positions of 

anti-resonant in the WDF’s integrate projection in frequency, but the meaning behind 

these negative values and corresponding positive features is unclear. 

5.3. Time Arrivals 

 Yet another interesting feature we can observe in the WDF plot is the time arrival 

of a classical particle with an energy defined by  in comparison with what we are 

seeing in the WDF plot.   In the case of a classical particle with initial position equal to 
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the initial position of the wave function and energy equal to , we can determine its 

arrival to the left edge of the square well by the following expression 

 
 

(5.3) 

Where  and  are defined by the following, 

 
 

(5.4) 

 

 

(5.5) 

Since the time it would take to travel to and travel from the well is the same, we have 

denoted equations (5.4) and (5.5) for both region I, the region before the well, and region 

III, the region after the well.  Once the particle enters the well, we assume it moves from 

the left edge to the right at a velocity described by the following expressions 

 
 

(5.6) 

 

 

(5.7) 

Within the well the particle can do many different things.  It can pass through the well.  It 

can bounce off the right edge of the well and exit the well through the left edge.  It can 

bounce off the right edge and then bounce off the left edge and exit the well back through 

the right edge.  As you can see, the particle has an integer, n, number of scenarios of 

travel within the well before it finally exits.  These scenarios can be expressed by 

multiplying the width of the well by the number of time the particle traverses the well 
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before exiting, n.  A summation of all these expressions is given in equation (5.8) where 

the total time it takes the particle to reach the position of the stationary wave function is 

determined. 

 
 

(5.8) 

 If we plot equation (5.8) for each positive integer value of n and set the resulting 

lines over top of our WDF plots, as done in figure 29, we can see that the overall ridge 

structure seen in the WDF plots correspond to this classical analogy. 
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Figure 29. A contour plot of the WDF with yellow lines indicating the arrival times of a classical particle with 

the given frequency/energy while the red line indicate allowed frequencies of the quantum well. 
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While the first line represents the case where the classical particle proceeded 

directly through the square well, the second line represents the case where the particle 

bounced once off of the right wall of the well and exited the left side of the well, which is 

the side the particle entered the well initially.  It is surprising to see that it is this classical 

example which corresponds to the ridge line where the positive peak values only occur at 

the energy levels of a square well of this type, (i.e.  and  ).  Classically, 

that information is leaving the well in left direction, but quantum mechanically that 

information is being recorded in the right region of the well. 

5.4. Spectrogram versus WDF 

 Often in signal processing, the technique of taking a spectrogram is used in order 

to gauge contributions of frequency components within a signal.  This is predominately 

used to weed out ambient noise and bolster desired frequencies.  A spectrogram is the 

product of squaring a Short Time Fourier Transform, depicted in equation (5.9) 

 
 

(5.9) 

  (5.10) 

The windowing function, , can be a multitude of functions from a Hanning 

function, a step function, to a Gaussian. 

 We applied this windowed Fourier Transform to our correlation function, as 

shown in figure 30, in order to see what information it provided of the scattering event in 

comparison to what we have gained from our WDF plots. 
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Figure 30. The windowed FT of our correlation function utilizing various FWHM values for the Gaussian 

window term.  From right to left the value of c in equation (5.11) is as follows; 4.24661, 2.1233, 1.06165, 

0.707768, and 0.530826 respectively. 

 

We used a Gaussian for our windowing function 

 
 

(5.11) 

From a cursory observation of the plots shown in figure 30 we see that most of the 

information returned in the spectrogram is obscured by the sure volume of energy 

recorded in the initial large bulge of the correlation function.  However, by applying a 

logarithmic scale to the spectrogram we were able to bring detailed elements of the 

scattering event back up to a scale where we could compare them with our WDF.  Figure 

31 shows these revised plots of the spectrograms. 
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Figure 31.  A series of spectrogram plots of a correlation function of the scattering event involving a well of 

depth 40  and width of 20 .  The box indicates the size in comparison to the overall time domain that the 

Gaussian window function, equation (5.11), set to when the spectrogram was generated.  A Nth window size 

corresponds to a t given by the overall time of the correlation function divided by N, . 
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 As shown in figure 31, a series of spectrograms were taken for the case of a 

correlation function generated from the scattering through a quantum potential square 

well of depth 40  and width of 20 .  Each new spectrogram had the window size of the 

gaussian window function, equation (5.11), reduced in relation to the overall time of the 

correlation function.  Since the length of time of the correlation function was 99.99(atomic time 

untis) the gaussian window function was set to first be a 20
th
 of that size, 4.9995(atomic time 

units), then a 30
th
, 3.333(atomic time units), and so on until a window size that was a 100

th
 the 

time scale, .999 atomic time units.  As was done with the WDF plots, the allowed frequencies and 

time arrival information was enterposed over top the contour plots of the spectrograms. 

 As you can see the allowed frequency information can be determined in spectrograms 

where a wide window was taken, 20
th
 through about 40

th
.  However, as the windowing function is 

narrowed, or we gain a greater degree of clarity in time, we loose our information in frequency.  

In figure 31, the 40
th
 window spectrogram starts to show that the null regions, the small blue 

circles, between the  allowed frequency bands begin to drift away from the center of those 

frequency bands until, as seen in the 50
th
 window spectrogram, the null is located in regions of 

allowed frequency and in the 60
th
 window spectrogram the null has moved into another spacing 

between energy bands. 

 On the converse as we loose this clarity frequency in smaller windowed spectrograms we 

tend to gain, to a small extent, clarity in time.  All the spectrograms have the same general sweep 

as our time arrival lines, but it is not until you reach the 40
th
 window spectrogram and then again 

in the 50
th
 window spectrogram where you see the shape and place meant of these lines in nearest 

agreement.  However, this is precisely the window scales that positioned out null, anti-resonance, 

at a position of resonance. 
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 The spectrogram is a helpful tool in signal processing since the spectrogram is always a 

positive-valued distribution of energy in the signal.  However the spectrogram comes at a cost 

that requires you to make a tradeoff in the precision of your time or frequency information.  If we 

compare the outcomes of the spectrogram with our WDF shown in figure 29 we find that the 

WDF enumerates the same information (as shown in Section 5.2 and Section 5.3), but requires no 

trade-off be made in the time or frequency
18

. 

5.5. Conclusion 

 The application of a correlation function to a scattering event and the production 

of its WDF have yielded a wealth of information about the long term effects a potential 

well has on a wave function.  By analyzing the WDF plots of scattering events we have 

seen that is it possible to locate the allowed frequencies of the potential well.  

Additionally, the WDF tells us something, if only in terms of a classical kinematic 

analogy, of the time arrival of information of the reactant wave function after it has 

passed through the well.  

Furthermore, the process of taking WDF plots of the correlation function of a 

scattered reactant wave function gives us a set of tools to analyze the reaction of quantum 

bodies with almost any potential well.  Some of these tools include the reconstruction of 

the particular potential well’s transmission function as well as the time departure beyond 

the potential frequencies.  While the negative attributes of the WDF remain unintuitive to 

analysis, the WDF provides more insight into the potential scattering event then is gained 

from a Spectrogram of the same event.  In the cases demonstrated here, the WDF can be 

                                                      
18

 Although the ability for the WDF to hold negative values encourages us to avoid looking at it as an 

energy distribution as we were able to in the spectrogram, it is clearly analogous in most respects. 
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used in place of a spectrogram to return the same information the spectrogram could 

provide without the need for scaling window size.  It is in the opinion of the author that 

applications of WDF plots in broader chemical reactions will provide researchers in the 

field of chemical physics a broader interpretation of the reaction as a whole.  

5.6. Further Research 

 Recommendations of further work would be to generate correlation functions of 

the exiting propagating wave function from both sides of the potential well and compare 

their WDF plots.  As well as comparing the WDF plots to other signals processing 

techniques such as the ambiguity function (see Appendix B).  Additionally, expanding 

the application of generating WDF from correlation functions of 2 and 3 dimensions 

potential scattering events as well as coupled potential wells. 
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Appendix A 
 

 The WDF produced by scattering our propagating wave through a series of Gaussian and 

triangular potential well showed remarkably little results.  Since the FORTRAN code was 

designed to have the potential well occupy the region of x = -10 to x = 10 it is possible that as we 

increased the depth of the potential well, the overall shape of our Gaussian function and triangular 

functions became closer approximations of a delta function then occurred in the square or circular 

case.  In the case of a delta function there is no internal well width for the wave to bounce within 

and the propagation become analogous to the free particle example with no well to scatter upon.  

When the wells are shallower then it is also possible that the  term is not large enough for 

resonant feature to become prominent over the initial transfer of frequency as the wave pass 

through the wall once. 

Additionally, it is possible that the angle of the well barrier is what cased this lack of 

feature.  In the Square and Circular well the angle made between the region of space with no well 

and the region of space with a well is .  In the case of the Gaussian and Triangular Wells that 

angle is either gradual or less than .  This is depicted in figure 31. 

 

Figure 32.  The well shapes used as the potential component of the Spilt Operator Method.  From right to left 

they are a square well, a circular well, a triangular well, and a Gaussian well. 
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Gaussian Well 

Provided below are the WDF plot generated for a potential well given by equation 

(A.1) where  is the depth of the well. 

  (A.1) 

Gaussian Vo = 10  

 

Figure 33.  Depiction of a WDF plot generated from the time correlation function of a reactant wave function 

scattering through a quantum Gaussian well of 10 .   

Gaussian Vo = 20  

 

Figure 34. Depiction of a WDF plot generated from the time correlation function of a reactant wave function 

scattering through a quantum Gaussian well of 20 .   
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Gaussian Vo = 40  

 

 

Figure 35. Depiction of a WDF plot generated from the time correlation function of a reactant wave function 

scattering through a quantum Gaussian well of 40 .   

 

 

Gaussian Vo = 60  

 

 

Figure 36. Depiction of a WDF plot generated from the time correlation function of a reactant wave function 

scattering through a quantum Gaussian well of 60 .   
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Gaussian Vo = 80  

 

 

Figure 37. Depiction of a WDF plot generated from the time correlation function of a reactant wave function 

scattering through a quantum Gaussian well of 80 .   

 

 

 

Triangular Well 

Provided below are the WDF plot generated for a potential well given by equation 

(A.2) where  is the depth of the well and  is the width of the well at the base of the 

triangle. 

 

 

(A.2) 
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Triangular Vo = 10  

 

 

Figure 38. Depiction of a WDF plot generated from the time correlation function of a reactant wave function 

scattering through a quantum triangular well of 10 .   

 

 

 

Triangular Vo = 20  

 

 

Figure 39. Depiction of a WDF plot generated from the time correlation function of a reactant wave function 

scattering through a quantum triangular well of 20 .   
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Appendix B 

 

 In addition to rescaling the spectrogram data by use of taking the logarithmic 

value at each point in the time frequency domain we also normalized those same values 

versus the entirety of the spectrogram.  Be taking this approach we were able to bring up 

smaller features that were obscured by the size of the primary peaks in the spectrogram.  

Below (Figure 40 and 41) is the results of these normalized spectrogram displayed in a 

similar manner to the plots shown in figure 31. 

 

Figure 40.  Normalized spectrograms of the generated correlation function of the scattering event involving a 

well of depth 40  and width of 20 .    The red lines indicate the classical time arrival of a particle with energy 

given by  and the yellow lines represent the allowed transmission resonances of the square well.  Window sizes 

of a 10th, 20th, 30th and 40th of the overall time length of the correlation are given shown. 
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Figure 41.  Normalized spectrograms of the generated correlation function of the scattering event involving a 

well of depth 40  and width of 20 .    The red lines indicate the classical time arrival of a particle with energy 

given by  and the yellow lines represent the allowed transmission resonances of the square well.  Window sizes 

of a 50th, 60th, 70th and 80th of the overall time length of the correlation are given shown. 

 

We observed that once the normalized spectrogram was taken it was far easier to 

draw a comparison between the classical time arrival analysis and the information seen in 

the spectrogram.  However, the tradeoff between the accuracy of the frequency 

component to the time component of the spectrogram is still present as well saw in the 

logarithmic version.  As we refine our windowing function in time we can see that the 

null regions between out transmission resonance lines move out of the regions between 

the resonance lines and spread to overlap regions of transmission.  As discussed 

previously, this time/frequency trade-off is absent in the Wigner Distribution Function.  
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Appendix C 

 Another function used in signal processing is the Ambiguity function as shown in 

equation (B.1). [19] 

 
 

(C.1) 

This function is typically used in the radar community to observe the Doppler delay of a radar 

pulse upon a moving target.  Figure 40 depicts the real and imaginary components of the 

Ambiguity function for a complex Gaussian centered about x = 2.5 and all other attributes set to 

unity.  Figure 41 depicts the modulus of the ambiguity function of the same Gaussian already 

described. 

 

 

 

Figure 42.  Ambiguity function (real component on the left and imaginary component on the right) of a complex 

Gaussian centered about x = 2.5 and all other attributes set to unity.  
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Figure 43.  The modulus of a Ambiguity function of a complex Gaussian centered about x = 2.5 and all other 

attributes set to unity. 

 

This function could also be used to analyze the correlation function generated in our methods 

described in Section II.  An example of such an ambiguity function if shown in figure 42 for the 

case of a correlation function generated from scattering through a quantum potential square well 

of depth 40  and width of 20 .   

 

Figure 44. The modulus of an Ambiguity Function of a correlation function generated from scattering through a 

quantum potential square well of depth 40  and width of 20 .  Represented on a lograthmic scale. 
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