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ABSTRACT

In this paper we present an overview of classical resul
about the variance reduction technique of control variate
We emphasize aspects of the theory that are of importance
the practitioner, as well as presenting relevant application

1 INTRODUCTION

The method of control variates is one of the most widel
used variance reduction techniques. Its popularity rests
the ease of implementation, the availability of controls, an
on the straight intuition of the underlying theory.

To keep the presentation simple, we frame the resu
for the case where the parameter to be estimated is
scalar in the setting of terminating simulations, althoug
the theory extends to the multi-response setting and to t
steady-state simulation context. The emphasis is on creat
valid confidence intervals and on understanding the varian
reduction achieved by the estimator.

For the remainder of Section 1 we outline the pape
and discuss the relevant literature. In the second secti
we present the basic formulation of control variates, whic
includes finding the optimal control coefficient and creatin
an asymptotically valid confidence interval. Because th
optimal control coefficient is generally unknown, we discus
the loss of variance reduction caused by its estimation a
introduce the idea of loss factor.

Section 3 presents the relationship between contr
variates and the method of regressions. This relationship
useful to obtain an expression about the limiting varianc
of the control variate estimator that uses an estimate
the optimal control variates coefficient. We also show th
relationship between least squares regression and con
variates.

In Section 4, we discuss the method of batch means a
way to overcome the bias introduced in the control variate
estimator when the optimal control variates coefficient nee
to be estimated. We close that section by presenting
asymptotically valid confidence interval.
.
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Section 5 deals with non-linear control variates. We
show that these type of control schemes are no more efficien
in terms of variance reduction, than linear control variates

In the last section we present some applications o
control variates in the realm of finance. We make use
of the examples to illustrate the more general problem o
finding and selecting control variates.

The literature in the theory and applications of control
variates is quite extensive, and we do not intend to provid
an exhaustive list here. The paper by Nelson (1990) and th
work of Loh (1995) contain a very complete list of relevant
references. We also recommend the paper of Lavenbe
and Welch (1981), which was the first to give a complete
and rigorous exposition of control variates. At a more
introductory level, the books by Bratley et al. (1987) and
Law and Kelton (1991) provide the fundamentals of contro
variates.

2 PROBLEM FORMULATION
AND BASIC RESULTS

We start by considering the problem of estimating by Monte
Carlo simulation a scalar parameterα that can be expressed
as the expectation of a random variableY, that isα = EY.
Let Yi be an output of thei ’th iteration of the simulation,
done in a way so that the replicationsY1, Y2, . . . , Yn obtained
aftern iterations are independent and identically distributed
(i.i.d.) as the random variableY. The natural point estimator
of α is the average,

Ȳn = 1

n

n∑
i=1

Yi .

The method of control variates arises when the simu
lationist has available a random vectorC ∈ R

d (notation
point: vectors are columns and·T denotes transpose) with
known meanµc that is jointly distributed withY as an
additional simulation output. LetC1, C2, . . . , Cn be the
sequence of i.i.d. observed outputs. The idea is to us
the “error" 1/n

∑n
i=1 Ci − µc to control Ȳn. Intuitively,
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when Y and C are positively correlated, we should intro
duce 1/n

∑n
i=1 Ci − µc in a manner so that we adjustȲn

upwards whenC̄n < µc and downwards when̄Cn > µc.
One manner to achieve that is via the linear transformatio

Ȳn(λ) = Ȳn − λT

(
1

n

n∑
i=1

Ci − µc

)
, (1)

where the vectorλ ∈ R
d is chosen to minimize Var̄Yn(λ).

Assume thatE(Y2 + CT C) < ∞, and letσyc be thed-
dimensional vector whose elements are the covariances
Y with each of thed components ofC. Then,λ is chosen
so that,

λ = arg min
{
VarY − 2λTσyc + λT ECCTλ

}
.

If we assume thatECCT is non-singular, then the first
and second order optimality conditions of the minimizatio
problem imply that there exists a unique optimal solutio

λ = (ECCT )−1σyc.

With this choice ofλ the variance reduction achieved
is

Var(Ȳn(λ))

Var(Ȳn)
= 1 − R2

YC, (2)

whereR2
YC = σ T

yc(ECCT )−1σyc/ VarY is the square of the
multiple correlation coefficients betweenY andC.

The following assumption will hold throughout the
paper.

Assumption 1. (Functional Central Limit Theorem)
Assume that the stochastic processesY = (Y(t) ∈ R :
t ≥ 0) and C = (C(t) ∈ R

d : t ≥ 0) are outputs of the
simulation, and defineX = (X(t) = (Y(t), C(t)) : t ≥ 0).
Let,

X̄n(t) = 1

n

∫ nt

0
X(s)ds.

We assume that there exists a constantµx ∈ R
d+1 and

a positive-definite matrix6 ∈ R
(d+1)×(d+1) such that the

following limit holds:

n1/2(X̄n(t) − µxt) ⇒ 61/2B(t), for 0 ≤ t ≤ 1,

as n → ∞, whereB(·) is a standard Brownian motion in
R

d+1, and the convergence is weak in the spaceD[0, 1]
(a good reference on this topic is Billingsley 1999). I
this paper we study the processY(t) = Ybtc along with the
vector valued control processC(t) = Cbtc.

One of the key issues of every simulation is to assess
accuracy of the final estimator via confidence intervals. T
distribution of(Ȳn(λ)−α)/ Var(Ȳn(λ))1/2 is approximately
,

f

Student’s-t withn − 1 degrees of freedom, and we ca
construct the confidence interval,

P(Ȳn(λ) − tn−1(1 − γ /2) Var(Ȳn(λ))1/2 ≤ α

≤ Ȳn(λ) + tn−1(1 − γ /2) Var(Ȳn(λ))1/2) ≈ 1 − γ,

where tn−1(1 − γ /2) is the 1− γ /2 quantile of the t-
distribution withn − 1 degrees of freedom for 0< γ < 1.
When the random vector(Y, C) is multivariate normal the
last approximation is exact.

In general, however, the covariance structure of t
random vector(Y, C) is not fully known prior to the simu-
lation. An efficient approach to overcome this difficulty is t
estimate these moments from the already available sam
(Yi , Ci ), i = 1, . . . , n. The relevant unbiased statistics fo
the second moments are

Sc(n) = 1

n − 1

n∑
i=1

(Ci − C̄n)(Ci − C̄n)T ,

Sy(n) = 1

n − 1

n∑
i=1

(Yi − Ȳn)
2,

and,

Syc(n) = 1

n − 1

n∑
i=1

(Yi − Ȳn)(Ci − C̄n).

In terms of these statistics, the optimal control parame
λn is

λn = Sc(n)−1Syc(n).

The modified point estimator forα now becomes

Ȳn(λn) = Ȳn − λT
n (C̄n − µc).

One problem with this approach is that we cann
use the t-statistic to generate confidence intervals beca
the controlled output replicates[Yi − λT

n (Ci − µc)], i =
1, . . . , n, are, in general, dependent of each other. Un
the additional assumption that(Y, C) has a multivariate
normal distribution inRd+1, however, it can be shown (se
Lavenberg and Welch 1981 and Lavenberg et al. 19
that Ȳn(λn) is unbiased and an expression for Var(Ȳn(λn))

can be obtained by standard regression techniques. It
can be shown that(Ȳn(λn) − α)/ Var(Ȳn(λn))1/2 has a t-
distribution withn−d−1 degrees of freedom, which permit
the creation of an exact(1 − γ )100% confidence interval,

P(Ȳn(λn) − tn−d−1(1 − γ /2) Var(Ȳn(λn))1/2 ≤ α

≤ Ȳn(λn) + tn−d−1(1 − γ /2) Var(Ȳn(λn))1/2) = 1 − γ.
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The variance reduction reduction achieved in this setting
is (more details in Lavenberg and Welch 1981 and Lavenber
et al. 1982)

Var(Ȳn(λn))

Var(Ȳn)
= n − 2

n − d − 2
(1 − R2

YC).

The factor (n − 2)/(n − d − 2) > 1 determines the
variance increase due to the estimation of the covarianc
structure of(Y, C) (compare with equation (2)), and for this
reason it is called theloss factor. We say that a sequence of
random vectors(χn : n ≥ 1) is op(n−1/2) if n1/2χn ⇒ 0 as
n → ∞, and that(χn : n ≥ 1) is o(an) a.s. if χn/an → 0
a.s. asn → ∞.

The following expansion of the loss factor,

Var(Ȳn(λn))

Var(Ȳn(λ))
= 1 + d

n
+ o(n−1),

asserts that the variance reduction loss caused by estimati
λ converges to zero at a rated/n. In addition, for any con-
sistent estimator̂λn of λ, under further uniform integrability
assumptions (see Loh 1995, p. 22) and Assumption 1, th
following result holds:

lim
n→∞

Var(Ȳn(λ̂n))

Var(Ȳn(λ))
= 1. (3)

Equation (3) asserts that as long as the estimator ofλ

is consistent, we will obtain the 1− R2
YC variance reduction

guaranteed bȳYn(λ).
The results of this section can be extended to the

multiresponse setting, in which caseY andα are vectors in
R

q, q > 1; see Rubinstein and Marcus (1985) for details.

3 THE REGRESSION APPROACH
TO CONTROL VARIATES

We mentioned in the last section that an expression fo
Var(Ȳn(λn)) can be obtained using regression techniques
In this section we make the connection between regressio
analysis and control variates in the bivariate normal settin
(with just one control variable) more explicit.

Specifically, assume that the pairs
(Y1, C1), (Y2, C2), . . . , (Yn, Cn) are i.i.d. bi-
variate normal. Conditional on Ci we have
E(Yi |Ci ) = α+λ(Ci −µc) whereλ = − Cov(Y, C)/ Var C,
and Var(Yi |Ci ) = Var Y(1 − ρ2

Y C), where ρY C is the
correlation coefficient betweenY and C. Then we can
express,

Yi = α + λ(Ci − µc) + εi , for i = 1, . . . , n,
g

n

where theε′
i s are i.i.d. normal with mean zero and vari

ance VarY(1 − ρ2
Y C), and independent of(Yi , Ci ) for

i = 1, . . . , n.
The minimum least squares problem is to find param

etersα̂ and λ̂ that

minimizeα,λ

n∑
i=1

ε2
i .

Solving the problem above we obtainα̂ = Ȳn − λ̂(C̄n −µc)

and λ̂ = Syc(n)/Sc(n), the least squares estimators ofα

andλ respectively. The variance ofα̂ can be found to equal
(see Lavenberg and Welch 1981)

Var α̂ = S2(n)(n−1 + (n − 1)−1(C̄n − µc)
2/Sc(n)),

where S2(n) = n−1
n−2(Sy(n) − S2

yc(n)/Sc(n)). This result
can be extended to the multi-control case to provide a
expression for Var(Ȳn(λn)).

Relaxing the normality assumption, getting the be
linear fit of the pairs(Y1, C1), (Y2, C2), . . . , (Yn, Cn) by
minimizing

∑n
i=1(Yi − α − λ(Ci − µc))

2 in α andλ yields
α̂ = Ȳn − λ̂(C̄n − µc) and λ̂ = Syc(n)/Sc(n) respectively.
That is, the lineα̂ − λ̂(C̄n − µc) passes through the points
(Ȳn, C̄n) and (α̂, µc), so thatȲn is adjusted toα̂.

4 BATCH MEANS

As already mentioned in Section 1, a problem with us
ing the estimated optimal coefficientλn is that the con-
trolled simulation outputs(Y1−λn(C1−µc), Y2−λn(C2−
µc), . . . , Yn − λn(Cn − µc)) are no longer independent of
each other. This precludes the computation of confiden
intervals forα, andȲn(λn) is no longer unbiased. The same
issue happens in the steady-state simulation context. T
batch means method tackles this problem by splitting th
output into a fixed number ofm batches (withmk = n,
the integerk being the batch size), and forming a batc
means sequence with elements that are asymptotically i.
normal asn → ∞. As in Section 2, our main objective
is to determine a valid confidence interval, and to find th
variance reduction achieved by this method.

More precisely, letX i = (Yi , Ci ), for i = 1, . . . , n.
For the batchesi = 1, . . . , m, define the batch means by,

X̄(i , n) = 1

k

ik∑
j =(i−1)k+1

X j ,

with Ȳ(i , n) (resp.,C̄(i , n)) being the first (resp., second to
(d +1)’th) component(s) of̄X(i , n). We argue by induction
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that the elements(X̄(i , n) : i = 1, . . . , m) are asymptotically
i.i.d. normal. Consider the first batch,

X̄(1, n) = mX̄n(1/m).

By Assumption 1,

mX̄n(1/m) ⇒
(

1

m
6

)1/2

N(µx, I ),

where6 is the matrix with first row(Var Y, σ T
yc) and second

row (σyc, ECCT ), and I is the d × d identity matrix.
Considering nowX̄((i + 1), n) we have,

X̄((i + 1), n) = m(X̄n((i + 1)/m) − X̄n(i /m)).

Using Assumption 1,

m(X̄n((i + 1)/m) − X̄n(i /m)) − µx

⇒ 61/2
(

B

(
i + 1

m

)
− B

(
i

m

))

∼
(

1

m
6

)1/2

N(0, I ).

The Brownian motion term above is, by the independe
increments property of Brownian motion, independent o
61/2(B(i /m) − B((i − 1)/m)) (which is, by the induction
hypothesis, the asymptotic distribution ofX̄(i , n)). The
asymptotic normality of the batch means ensures that w
can construct confidence intervals that are asymptotica
valid.

The relevant statistics in the batch means context a

Sc(m, n) = 1

m − 1

m∑
i=1

(C̄(i , n) − C̄n)(C̄(i , n) − C̄n)
T ,

and,

Syc(m, n) = 1

m − 1

m∑
i=1

(Ȳ(i , n) − Ȳn)(C̄(i , n) − C̄n).

Letting λ(m, n) = Sc(m, n)−1Syc(m, n), the batch
means controlled estimator in terms ofλ(m, n) is

Ȳm,n(λ(m, n)) = 1

m

m∑
i=1

Ȳ(i , n)

− λ(m, n)T 1

m

m∑
i=1

(C̄(i , n) − µc).
t
f

e
y

We want to compare the variance reduction achieved by th
estimator with that of the batch means controlled estimat
in terms ofλ, which is

Ȳm,n(λ) = 1

m

m∑
i=1

Ȳ(i , n) − λT 1

m

m∑
i=1

(C̄(i , n) − µc).

Since the batch means̄X(i , n) are asymptotically i.i.d.
normal asn → ∞, the number of batchesm in the equa-
tion above is the analogous of the number of replication
n of Equation (1). Indeed, under certain uniform inte
grability conditions on the sequences(Ȳm,n(λ(m, n)))n and
(Ȳm,n(λ))n, and Assumption 1, one can show (see Loh 199
p. 37) that form > d + 2,

Var Ȳm,n(λ(m, n))

Var Ȳm,n(λ)
→ m − 2

m − d − 2
,

asn → ∞. Consequently there is a tangible loss of varianc
reduction for the batch means estimator that uses an estim
of the optimal control coefficientλ.

One of the advantages of the batch means approach
that it allows the creation of asymptotically exact confidenc
intervals. It can be argued (see Nelson 1990 and Loh 199
that,

Ȳm,n(λ(m, n)) − α

Var(Ȳm,n(λ(m, n)))1/2
,

converges in distribution to a Student’s-t random variab
with m − d − 1 degrees of freedom asn → ∞. So the
batch means method decreases the number of degrees
freedom. A confidence interval can be generated,

P(Ȳm,n(λ(m, n))

− tm−d−1(1 − γ /2) Var(Ȳm,n(λ(m, n)))1/2 ≤ α

≤ Ȳm,n(λ(m, n))

+ tm−d−1(1 − γ /2) Var(Ȳm,n(λ(m, n)))1/2) → 1 − γ,

asn → ∞.
Our presentation of the method of batch means mak

clear that selecting the appropriate number of batchesm
is an important decision for the analyst; this issue is we
explained in Nelson (1990).

5 NON-LINEAR CONTROL VARIATES

In this section we consider the performance of contro
variates when they are related tōYn in a non-linear way.
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The results presented in this section are contained in Gly
and Whitt (1989). For example,

Ȳn
C̄n

µc
,

and,

Ȳ
C̄n
µc

n .

would be two such schemes whenC ∈ R. More generally,
we deal with a scalar functionf with domain inR

d+1. The
function f of the last two examples isf (y, c) = yc/µc and
f (y, c) = yc/µc respectively, and satisfiesf (y, µc) = y.
This last property ensures thatf (Ȳn, C̄n) ⇒ α if (Ȳn, C̄n) ⇒
(α,µc), so we only will consider such functions in the
discussion that follows.

The variance reduction associated with any give
function f will depend on the limiting variance of
n1/2( f (Ȳn, C̄n) − α). Now, when f has continuous first
partial derivatives in a neighborhood around(α,µc), we
can obtain via Taylor’s theorem a first-order linear appro
imation of f around f (α,µc),

f (Ȳn, C̄n) = f (α,µc) + (Ȳn − α, C̄n − µc)
T∇ f (ξn, εn),

where the random variableξn and the random vectorεn ∈ R
d

lie on a segment with end-points(Ȳn, α) and (C̄n, µc)

respectively. Since(Ȳn, C̄n) ⇒ (α,µc), we also have
(ξn, εn) ⇒ (α,µc), and we can write

f (Ȳn, C̄n) = α + (Ȳn − α, C̄n − µc)
T∇ f (α,µc)

+ op(n
−1/2).

Note that∇ f (α,µc) = 1, so that,

f (Ȳn, C̄n) = Ȳn+(C̄n−µc)
T ∇c f (α,µc)+op(n

−1/2), (4)

where∇c f is the vector of partial derivatives off with
respect to theC components. Thus, the limiting distribution
of n1/2 f (Ȳn, C̄n) is the same as that of the linear contro
n1/2(Ȳn − λT (C̄n − µc)), with ∇c f (α,µc) standing in lieu
of −λ. This result implies that non-linear control variate
cannot improve the variance reduction achieved by line
control variates, in the limit asn → ∞. Indeed, equation
(4) results in,

n1/2( f (Ȳn, C̄n) − α)

= n1/2(Ȳn − α)

+ n1/2(C̄n − µc)
T∇c f (α,µc) + op(1).
ten
n

r

Sendingn → ∞, Assumption 1 and the converging-togethe
lemma imply that,

n1/2( f (Ȳn, C̄n) − α) ⇒ N(0, σ 2
f ),

where,

σ 2
f = Var Y + 2∇c f (α,µc)

T σyc

+ ∇c f (α,µc)
T E(CCT )∇c f (α,µc).

Selecting f so that ∇c f (α,µc) = −(ECCT )−1σyc
is, according to the discussion of Section 2, the varian
minimizing function. This selection, in turn, implies tha
the optimal control variate function is linear with contro
coefficient given by−(ECCT )−1σyc.

6 APPLICATIONS OF CONTROL VARIATES

In this section we present several applications of contr
variates in finance. Our first example uses what are cal
“internal" control variables, so called because the contr
variables are random variables, or functions of them, us
as an input to the simulation model and are often ea
to parameterize. One of the advantages of using inter
control variables is that the additional computational co
incurred by adding them is usually small relative to th
overall cost. Normal random variables are often used
finance to drive pricing models, suggesting the use of th
known mean and variance as control variables.

Another example of internal control variables (bor
rowed from Szechtman and Glynn 2001) is provided by th
computation of an Asian option via simulation under th
risk-neutral measure (see Duffie 1996 for details). Mo
specifically, assume that the price processξ = (ξ(s) : s ≥ 0)

of the underlying asset is geometric Brownian motion, an
let k denote the strike price. Then, the price of the Asia
option is given by the expectation of the random variab
Y given by,

Y =
(∫ t

0
ξ(s)ds− k

)+
,

where(a)+ = max(a, 0) for a scalara.
In this context, one can analytically find the expectatio

of the integrand in the last equation,

C =
∫ t

0
ξ(s)ds,

to be EC = 2(exp(1/2) − 1). ThereforeC can be used as
an internal control forY.

External controls are controls that are jointly distribute
with the replicates of the random variable whose expectat
we wish to estimate, and that are generated in addition (of
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as a separate model driven by the same random input
the main model) to the main model.

From Glasserman (2003), we show an example of e
ternal control variables. We want to price an option wit
expiration timeT with strike pricek and whose underlying
asset priceS(t) has dynamics driven by,

dS(t)

S(t)
= rdt + σ(t)d B(t),

where the volatilityσ(t) may be random or a function of
S(t). In order to simulate the price dynamics, we simulat
S at discrete timest1, . . . , tn = T via the recursion,

S(ti )

S(ti−1)
= exp([r − 1/2σ(ti−1)

2](ti − ti−1)

+ σ(ti−1)(ti − ti−1)
1/2Zi ),

where theZi ’s are i.i.d. standard normal random variable
andσ(ti ) is driven by its own recursion. The idea is to run
another simulation alongside with constant volatilityσ̂ and
initial condition Ŝ(0) = S(0),

Ŝ(ti )

Ŝ(ti−1)

= exp([r − 1/2σ̂ 2](ti − ti−1) + σ̂ (ti − ti−1)
1/2Zi ),

where theZi ’s are the same (common random number
as in the model forS. If the price of the underlying asset
follows a geometric Brownian motion, then we can use th
Black-Scholes formula to findE(Ŝ(tn) − k)+ analytically.
With these assumptions, generate controlled replications

(S(tn) − k)+ − λ
(
(Ŝ(tn) − k)+ − E(Ŝ(tn) − k)+

)
,

to form the usual control variates estimator.
The efficiency of this approach will depend,among othe

factors, on judiciously choosing the constant volatilityσ̂ .
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