Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds.

CONTROL VARIATES TECHNIQUES FOR MONTE CARLO SIMULATION

Roberto Szechtman

Operations Research Department
Naval Postgraduate School
Monterey, CA 93943, U.S.A.

ABSTRACT Section 5 deals with non-linear control variates. We
show that these type of control schemes are no more efficient,
In this paper we present an overview of classical results in terms of variance reduction, than linear control variates.
about the variance reduction technique of control variates. In the last section we present some applications of
We emphasize aspects of the theory that are of importance to control variates in the realm of finance. We make use
the practitioner, as well as presenting relevant applications. of the examples to illustrate the more general problem of
finding and selecting control variates.
1 INTRODUCTION The literature in the theory and applications of control
variates is quite extensive, and we do not intend to provide
The method of control variates is one of the most widely an exhaustive list here. The paper by Nelson (1990) and the
used variance reduction techniques. Its popularity rests on work of Loh (1995) contain a very complete list of relevant
the ease of implementation, the availability of controls, and references. We also recommend the paper of Lavenberg
on the straight intuition of the underlying theory. and Welch (1981), which was the first to give a complete
To keep the presentation simple, we frame the results and rigorous exposition of control variates. At a more
for the case where the parameter to be estimated is a introductory level, the books by Bratley et al. (1987) and
scalar in the setting of terminating simulations, although Law and Kelton (1991) provide the fundamentals of control
the theory extends to the multi-response setting and to the variates.
steady-state simulation context. The emphasis is on creating
valid confidence intervals and on understanding the variance 2 PROBLEM FORMULATION
reduction achieved by the estimator. AND BASIC RESULTS
For the remainder of Section 1 we outline the paper
and discuss the relevant literature. In the second section We start by considering the problem of estimating by Monte
we present the basic formulation of control variates, which Carlo simulation a scalar parametethat can be expressed
includes finding the optimal control coefficient and creating as the expectation of a random variallethat isae = EY.
an asymptotically valid confidence interval. Because the LetY; be an output of thé'th iteration of the simulation,
optimal control coefficientis generally unknown, we discuss donein away so thatthe replications Yo, ..., Y, obtained
the loss of variance reduction caused by its estimation and aftern iterations are independent and identically distributed
introduce the idea of loss factor. (i.i.d.) astherandomvariab¥ The natural point estimator
Section 3 presents the relationship between control of « is the average,
variates and the method of regressions. This relationship is

useful to obtain an expression about the limiting variance _ 1<

of the control variate estimator that uses an estimate of Yn = n ZYi'
the optimal control variates coefficient. We also show the i=1
relationship between least squares regression and control

The method of control variates arises when the simu-
lationist has available a random vec®re RY (notation
point: vectors are columns anll denotes transpose) with
known meanu. that is jointly distributed withY as an
additional simulation output. Le€1, Co,...,Cp be the
sequence of i.i.d. observed outputs. The idea is to use
the “error" /n>'; Ci — uc to control Y. Intuitively,

variates.

In Section 4, we discuss the method of batch means as a
way to overcome the bias introduced in the control variates
estimator when the optimal control variates coefficient needs
to be estimated. We close that section by presenting an
asymptotically valid confidence interval.
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Szechtman

whenY and C are positively correlated, we should intro-
duce ¥nY L, Ci — uc in @ manner so that we adjug
upwards wherC,, < uc and downwards whe€p > .
One manner to achieve that is via the linear transformation,

} . 1<
Yn(X) = Yh — XT (ﬁ ; Ci - Mc) > (1)

where the vectok € RY is chosen to minimize Var,(1).
Assume thatE(Y? + CTC) < oo, and letoyc be thed-

dimensional vector whose elements are the covariances of

Y with each of thed components o. Then,A is chosen
so that,

A = arg min{VarY — 2oy +AT ECCTx} .

If we assume thaECCT is non-singular, then the first
and second order optimality conditions of the minimization
problem imply that there exists a unique optimal solution,

A= (ECCT) oy
With this choice ofA the variance reduction achieved

var(fa () _ o

Var(Yn) - e @

whereRZ .. = 6,/.(ECCT) loyc/ VarY is the square of the
multiple correlation coefficients betwe&hand C.

The following assumption will hold throughout the
paper.

Assumption 1. (Functional Central Limit Theorem)
Assume that the stochastic proces¥es= (Y(t) € R :
t>0) andC = (C(t) e RY : t > 0) are outputs of the
simulation, and defin&X = (X(t) = (Y (t), C(t)) : t > 0).
Let,

_ 1 nt
Xn(t)=—/ X(s)ds
nJo

We assume that there exists a constapte R4+1 and
a positive-definite matrixz € ROA+Dx@+D gych that the
following limit holds:

nY2(Xn(t) — puxt) = TY2B(t), for0<t <1,

asn — oo, whereB(.) is a standard Brownian motion in
RI*+1 and the convergence is weak in the sp&yé, 1]

(a good reference on this topic is Billingsley 1999).

this paper we study the proce¥st) = Y|;; along with the
vector valued control proceg3(t) = Cy).

In

One of the key issues of every simulation is to assess the

accuracy of the final estimator via confidence intervals. The
distribution of (Yo (L) — )/ Var(Yn(1))¥/2 is approximately
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Student's-t withn — 1 degrees of freedom, and we can
construct the confidence interval,

P(Ya®h) — tr-1(1 = y/2) Var(YaW)Y2 < @
= ?n()») +th-1(1—y/2) Var(?n(k))l/Z) ~l—y,

where th_1(1 — y/2) is the 1— y/2 quantile of the t-
distribution withn — 1 degrees of freedom forQ y < 1.
When the random vectdl, C) is multivariate normal the
last approximation is exact.

In general, however, the covariance structure of the
random vectorY, C) is not fully known prior to the simu-
lation. An efficient approach to overcome this difficulty is to
estimate these moments from the already available samples
Yi,Cip), i =1,...,n. The relevant unbiased statistics for
the second moments are

1 & _ _
SM=— ;«:i —Cn)(Ci —Cn)T,

1 & :
S = — i;(vi —Yn)?,

and,

1

n
Se(m = — ;m —Ya)(Ci — Cn).

Interms of these statistics, the optimal control parameter
An IS

Ao = S 1Se(n).

The modified point estimator far now becomes
Yo(n) = Yn — A7 (Cn — p0).

One problem with this approach is that we cannot
use the t-statistic to generate confidence intervals because
the controlled output replicatdd; — AI Ci — ne)l, i =
1,...,n, are, in general, dependent of each other. Under
the additional assumption thay, C) has a multivariate
normal distribution inR%+1 however, it can be shown (see
Lavenberg and Welch 1981 and Lavenberg et al. 1982)
that Yn(An) is unbiased and an expression for My(An))
can be obtained by standard regression techniques. It also
can be shown thatYn(An) — o)/ Var(Yn(An))Y/2 has a t-
distribution withn—d — 1 degrees of freedom, which permits
the creation of an exagil — y)100% confidence interval,

P(Ya(kn) — th-d-1(1 — 7/2) Var(Va(An)"/? < @
< Va(kn) +ta-a-1(1— y/2) Var(Ya(n)¥2) = 1 - .
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The variance reduction reduction achieved in this setting where thee/s are i.i.d. normal with mean zero and vari-
is (more details in Lavenberg and Welch 1981 and Lavenberg ance Vary (1 — p$C), and independent ofY;, Cj) for

et al. 1982) i=1...,n.
_ The minimum least squares problem is to find param-
Var(Yn(An))  n-—2 eterse and A that

ML ZA 1-R.).
Var(Yn) n—d— 2 ve)

n

The factor(n — 2)/(n —d — 2) > 1 determines the MINIMIZE&, 5 ZE'Z
variance increase due to the estimation of the covariance =1
structure of(Y, C) (compare with equation (2)), and for this
reason it is called thioss factor We say that a sequence of
random vectorgxy, : n > 1) is 0p(n~Y/2) if n/2x, = 0 as
n — oo, and that(y, : n > 1) is o(ap) a.s. if xn/an — 0
a.s. ash — oo.

The following expansion of the loss factor,

Solving the problem above we obtain= Yn — A(Cn — j¢)
andi = Sc(n)/&(n), the least squares estimators of
andx respectively. The variance éfcan be found to equal
(see Lavenberg and Welch 1981)

Varg = St + (n— 17 HCn — p0)?/ S (M),
Var(Yn(An)) -1
Var(Yah) 1+ P o(n—), where $(n) = 2=3(S,(n) — (/S (n)). This result
can be extended to the multi-control case to provide an
asserts that the variance reduction loss caused by estimatingexpression for VaiYy(n)).
A converges to zero at a radg¢n. In addition, for any con- Relaxing the normality assumption, getting the best
sistent estimatak,, of A, under further uniform integrability linear fit of the pairs(Y1, C1), (Y2, C2), ..., (Yn, Cn) by
assumptions (see Loh 1995, p. 22) and Assumption 1, the minimizing Y_'_; (Yi —a — A(Ci — 11¢))? in & and yields
following result holds: & =Yn—rCn— we) andi = Syc(n)/&(n) respectively.
o That is, the linex — A(C,, — uc) passes through the points
Var(Yn(An)) 3) (Yn, Cn) and (&, ue), So thatY, is adjusted tax.
n—oo Var(Ya(d))

. . 4 BATCH MEANS
Equation (3) asserts that as long as the estimatar of

is consistent, we will obtain the-1 R§- variance reduction As already mentioned in Section 1, a problem with us-

guaranteed byn(2). _ ing the estimated optimal coefficient, is that the con-
The results of this section can be extended to the . jiied simulation OUtPULEY1 — An(C1 — pic), Y2 — An(Ca —

multiresponse setting, in which ca¥eanda are vectors in

ooy Yn —An(Cp — are no longer independent of
RY, g > 1; see Rubinstein and Marcus (1985) for details. o) " n(Cn = pte)) g P

each other. This precludes the computation of confidence
intervals fore, andYn(An) is no longer unbiased. The same
issue happens in the steady-state simulation context. The
batch means method tackles this problem by splitting the
output into a fixed number ofn batches (withmk = n,

the integerk being the batch size), and forming a batch

3 THE REGRESSION APPROACH
TO CONTROL VARIATES

We mentioned in the last section that an expression for

Var(Yn(An)) can be obtained using regression techniques. \neans sequence with elements that are asymptotically i.i.d.
In this section we make the connection between regression hq-mal asn — co. As in Section 2, our main objective

analysis and control variates in the bivariate normal setting ;5 tq determine a valid confidence interval. and to find the
(with just one control variable) more explicit. variance reduction achieved by this method.

Specifically, assume that__ the p_airs More precisely, letX; = (Y;,Ci), fori = 1,...,n.
(Y1, C1), (¥2,C2), ..., (Yo, Cn) ~ are iid. bi- For the batches = 1, ..., m, define the batch means by,
variate normal. Conditional onC; we have
E(Y;i|Ci) = a+A(Cj —uuc) Wwherer = — Cow(Y, C)/ VarC, ik
and VacYi|Cj) = VarY(l — pZ.), where pyc is the Ri.n) == Z X,
correlation coefficient betweel and C. Then we can =Dkl ’
express,

with Y(i, n) (resp.,C(, n)) being the first (resp., second to

Yi = MG — i, fori=1,...
i =+ MG —pe) +e, fori=1...n, (d + 1)’th) component(s) oK (i, n). We argue by induction
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thatthe element&(i, n) : i = 1, ..., m) are asymptotically
i.i.d. normal. Consider the first batch,

X(1, n) = mXn(1/m).

By Assumption 1,

~ 1 1/2

whereX is the matrix with first ron(Var, a)Tc) and second

row (oyc, ECCT), and | is the d x d identity matrix.
Considering nowX((i + 1), n) we have,

X((i + 1), n) = mXn((i +1)/m) — Xn(i /m)).

Using Assumption 1,
MXn (i + 1)/m) — Xn(i /m)) — ux
-2 (e (57) -2(5))
m m
1 1/2
~ (EE) N(O, I).

The Brownian motion term above is, by the independent
increments property of Brownian motion, independent of
>1Y2(B(i /m) — B((i — 1)/m)) (which is, by the induction
hypothesis, the asymptotic distribution &f(i, n)). The
asymptotic normality of the batch means ensures that we
can construct confidence intervals that are asymptotically
valid.

The relevant statistics in the batch means context are

1 & - o -
sc<m,n>=mgca,n)—cn)(co,m—cn) :
and,
1 & o -
Se(mm = — ;wa, n) — Yn)(C(i, n) — Cn).

Letting A(m,n) = S(m,n)~1S.c(m,n), the batch
means controlled estimator in termsiofm, n) is

_ 18
Ymn(i(m,m) = =3 V(i n)
i=1
m

1 = .
—Am '3 (Ch.m - o).

i=1
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We want to compare the variance reduction achieved by this
estimator with that of the batch means controlled estimator
in terms ofA, which is

. 1, T1en A,
Yma@) = =3 YA, m —AT= 3 (i, m — po).
i=1 i=1

Since the batch meang(i, n) are asymptotically i.i.d.
normal asn — oo, the number of batchew in the equa-
tion above is the analogous of the number of replications
n of Equation (1). Indeed, under certain uniform inte-
grability conditions on the sequenc@én n(A(m, n))), and
(Ym.n(A))n, and Assumption 1, one can show (see Loh 1995,
p. 37) that form > d + 2,

m-2
m—d-2’

var Ym n(A(m, n))
var Ym.n(1)

asn — oo. Consequently there is a tangible loss of variance
reduction for the batch means estimator that uses an estimate
of the optimal control coefficient.

One of the advantages of the batch means approach is
that it allows the creation of asymptotically exact confidence
intervals. It can be argued (see Nelson 1990 and Loh 1995)
that,

Ym,n()n(m, n) —a
Var(Ym,n(A(m, n)))4/2’

converges in distribution to a Student’s-t random variable
with m — d — 1 degrees of freedom as — oo. So the
batch means method decreases the number of degrees of
freedom. A confidence interval can be generated,

P(Ymn(A(M, n))
—tm-d-1(1 — y/2) Var(¥mn(A(m, m)*? < «
=< Ym,n(k(m, n))
+tm-d-1(1 — y/2) Var(¥Ymn(A(M, M) /%) > 1 -y,
asn — oo.
Our presentation of the method of batch means makes
clear that selecting the appropriate number of batehes

is an important decision for the analyst; this issue is well
explained in Nelson (1990).

5 NON-LINEAR CONTROL VARIATES

In this section we consider the performance of control
variates when they are related Yg in a non-linear way.
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The results presented in this section are contained in Glynn
and Whitt (1989). For example,
Yoh,
Mc
and,
_Cn
nMC X
would be two such schemes whéne R. More generally,
we deal with a scalar functiof with domain inR9+2, The
function f of the last two examplesi§(y, ¢) = yc¢/uc and
f(y,c) = y“#c respectively, and satisfie§(y, uc) = V.
This last property ensures thitYn, Cn) = «if (Ya, Cn) =
(o, uc), so we only will consider such functions in the
discussion that follows.

The variance reduction associated with any given
function f will depend on the limiting variance of
nY2(f(Y,, Cn) — «). Now, when f has continuous first
partial derivatives in a neighborhood aroutd pc), we
can obtain via Taylor’s theorem a first-order linear approx-
imation of f around f («, uc),

f(Yn, Cn) = f(a, pte) + (Yo — &, Cn — o)V f (€n, €n),

where the random variabdg and the random vectep € Rd
lie on a segment with end-point&’,, «) and (Cn, uc)
respectively. SinceYn, Cn) = (a, ic), we also have
(&n, en) = (a, 1e), and we can write

f(Yn,Cn) =a+ (Yn —a,Cn — ,U«C)TV f(a, pe)
+ op(n~/?).

Note thatV f (a, uc) = 1, so that,
f(Yn, Cn) = Yn+(Cn—po) " Ve f (@, o) +0p(n~2), (4)

where V¢ f is the vector of partial derivatives of with
respect to th€ components. Thus, the limiting distribution
of n¥/2f (Y,, Cp) is the same as that of the linear control
nY2(Y, — AT (Cph — 1c)), with Ve f (e, ie) standing in lieu

of —A. This result implies that non-linear control variates
cannot improve the variance reduction achieved by linear
control variates, in the limit aa — oco. Indeed, equation
(4) results in,

nY2(f (Yn, Cn) — @)
=2y — @)
+nY2(Ch — o) Ve f (e, pe) + op(1).
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Sendingh — oo, Assumption 1 and the converging-together
lemma imply that,

nY2(f (Y, Cn) — @) = N(0,0%),

where,

o% =VarY + 2V f (a, ,uc)Tayc
+ Ve f (@, o) TE(CCT Ve f (@, puc).

Selecting f so that Ve f (e, uc) = —(ECCT) Loy
is, according to the discussion of Section 2, the variance
minimizing function. This selection, in turn, implies that
the optimal control variate function is linear with control
coefficient given by—(ECCT) loyc.

6 APPLICATIONS OF CONTROL VARIATES

In this section we present several applications of control
variates in finance. Our first example uses what are called
“internal" control variables, so called because the control
variables are random variables, or functions of them, used
as an input to the simulation model and are often easy
to parameterize. One of the advantages of using internal
control variables is that the additional computational cost
incurred by adding them is usually small relative to the
overall cost. Normal random variables are often used in
finance to drive pricing models, suggesting the use of their
known mean and variance as control variables.

Another example of internal control variables (bor-
rowed from Szechtman and Glynn 2001) is provided by the
computation of an Asian option via simulation under the
risk-neutral measure (see Duffie 1996 for details). More
specifically, assume that the price process (¢(s) : s > 0)
of the underlying asset is geometric Brownian motion, and
let k denote the strike price. Then, the price of the Asian
option is given by the expectation of the random variable

Y given by,
t +
Y = </ &(s)ds— k) ,
0

where(a)™ = max(a, 0) for a scalara.
In this context, one can analytically find the expectation
of the integrand in the last equation,

t
c— / £(9)ds
0

to be EC = 2(exp(1/2) — 1). ThereforeC can be used as
an internal control fory.

External controls are controls that are jointly distributed
with the replicates of the random variable whose expectation
we wish to estimate, and that are generated in addition (often
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as a separate model driven by the same random input asLavenberg, S. S., and P. D. Welch. 1981. A perspective on

the main model) to the main model.

From Glasserman (2003), we show an example of ex-
ternal control variables. We want to price an option with
expiration timeT with strike pricek and whose underlying
asset priceS(t) has dynamics driven by,

dS(t)

S0 rdt + o (t)d B(t),

where the volatilityo (t) may be random or a function of
S(t). In order to simulate the price dynamics, we simulate
S at discrete times$y, ..., tn = T via the recursion,

S(ti)
S(ti—1)

= exp(r — 1/20 (t—1)?1(t — ti—1)
+ o)t —t-1)Y?%Z),

where theZi’s are i.i.d. standard normal random variables
ando (tj) is driven by its own recursion. The idea is to run
another simulation alongside with constant volatiityand
initial condition $(0) = S(0),

St)
Sti-1)
=exp(r — 1/2621(t —ti—1) + 6 (t —ti_1)Y?2Zy),

where theZ;’s are the same (common random numbers)
as in the model foiS. If the price of the underlying asset
follows a geometric Brownian motion, then we can use the
Black-Scholes formula to findE(é(tn) — k)* analytically.
With these assumptions, generate controlled replications,

(Sttn) — 0+ =1 ((Sttn) — 0¥ — EGitn) ~ 07,

to form the usual control variates estimator.
The efficiency of this approach will depend, among other
factors, on judiciously choosing the constant volatiity
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