
A Sound Polymorphic Type System for a Dialect of C �

Geo�rey Smith

School of Computer Science� Florida International University� Miami� FL ������

USA� email� smithg�cs�	u�edu

Dennis Volpano

Department of Computer Science� Naval Postgraduate School� Monterey� CA

���
�� USA� email� volpano�cs�nps�navy�mil

Advanced polymorphic type systems have come to play an important role
in the world of functional programming� But� so far� these type systems
have had little impact upon widely�used imperative programming lan�
guages like C and C��� We show that ML�style polymorphism can be
integrated smoothly into a dialect of C� which we call Polymorphic C� It
has the same pointer operations as C� including the address�of operator
�� the dereferencing operator �� and pointer arithmetic� We give a natural
semantics for Polymorphic C� and prove a type soundness theorem that
gives a rigorous and useful characterization of what can go wrong when a
well�typed Polymorphic C program is executed� For example� a well�typed
Polymorphic C program may fail to terminate� or it may abort due to a
dangling pointer error� Proving such a type soundness theorem requires a
notion of an attempted program execution� we show that a natural seman�
tics gives rise quite naturally to a transition semantics� which we call a
natural transition semantics� that models program execution in terms of
transformations of partial derivation trees� This technique should be gen�
erally useful in proving type soundness theorems for languages de�ned
using natural semantics�

� Introduction

Much attention has been given to developing sound polymorphic type systems
for languages with imperative features� Most notable is the large body of

� To appear in Science of Computer Programming� �		
� This material is based
upon work supported by the National Science Foundation under Grants No� CCR�
	������ and CCR�	��	��

Preprint submitted to Elsevier Preprint �� March ����

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 MAR 1997

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
A Sound Polymorphic Type System for a Dialect of C

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
School of Computer Science Florida International University Miami, FL
33199

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

28

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

work surrounding ML ���������������������	
� However� none of these e�orts
addresses the polymorphic typing of a language that combines variables� arrays
and pointers �rst�class references�� which are key ingredients of traditional
imperative languages� As a result� they cannot be directly applied to get ML�
style polymorphic extensions of widely�used languages like C and C���

This paper presents a provably�sound type system for a polymorphic dialect of
C� called Polymorphic C� It has the same pointer operations as C� including
the address�of operator �� the dereferencing operator �� and pointer arith�
metic� The type system allows these operations without any restrictions on
them so that programmers can enjoy C�s pointer �exibility and yet have type
security and polymorphism as in ML� Also� although we do not address it
here� it is straightforward to do type inference for Polymorphic C� so that
programs need not be written with type annotations ���
� Our type system
thus demonstrates that ML�style polymorphism can be brought cleanly into
the realm of traditional imperative languages�

We establish the soundness of our type system with respect to a natural se�
mantics for Polymorphic C� First we use Harper�s syntactic approach ��
 to
establish the type preservation property �also known as the subject reduction
property�� We then prove a type soundness theorem that gives a rigorous and
useful characterization of what can go wrong when a well�typed Polymorphic
C program is executed� More precisely� we show that the execution of a well�
typed Polymorphic C program either succeeds� fails to terminate� or aborts
due to one of a specic set of errors� such as an attempt to dereference a
dangling pointer� Proving such a type soundness theorem requires a notion of
an attempted program execution� we show that a natural semantics gives rise
quite naturally to a transition semantics� which we call a natural transition
semantics� that models program execution in terms of transformations of par�
tial derivation trees� This technique should be generally useful in proving type
soundness theorems for languages dened using natural semantics�

We begin with an overview of Polymorphic C in the next section� Next� Sec�
tion � formally denes its syntax� type system� and semantics� Then� in Sec�
tions � and �� we prove the soundness of the type system� We conclude with
some discussion�

� An Overview of Polymorphic C

Polymorphic C is intended to be as close to the core of Kernighan and Ritchie
C ���
 as possible� In particular� it is stack�based with variables� pointers� and
arrays� Pointers are dereferenced explicitly using �� while variables are derefer�
enced implicitly� Furthermore� pointers are rst�class values� but variables are

�

not� Polymorphic C has the same pointer operations as C� A well�typed Poly�
morphic C program may still su�er from dangling reference and illegal address
errors�our focus has not been on eliminating such pointer insecurities� which
would require weakening C�s expressive power� but rather on adding ML�style
polymorphism to C� so that programmers can write polymorphic functions
naturally and soundly as they would in ML� rather than by parameterizing
functions on data sizes or by casting to pointers of type void ��

��� An Example

In this paper� we adopt a concrete syntax for Polymorphic C that resembles
the syntax of C� � For example� here are three Polymorphic C functions�

swap�x�y�

�

var t � �x�

�x � �y�

�y � t

	

reverse�a�n�

�

var i �
�

while �i � n��i� �

swap�a�i� a�n��i��

i � i�

	

	

swapsections�a�i�n�

�

reverse�a�i��

reverse�a�i�n�i��

reverse�a�n�

	

Note that� unlike C� Polymorphic C does not include type annotations in dec�
larations� �Also� Polymorphic C di�ers from C in the treatment of semicolons��
Function reverse�a�n� reverses the elements of array a�
�n��� and function
swapsections�a�i�n� uses reverse to swap the array sections a�
�i�� and

� See ��� for a alternative ML�like syntax that is somewhat more �exible�

�

a�i�n��� This illustrates that in Polymorphic C� as in C� one can manipu�
late sections of arrays using pointer arithmetic� The construct var x � e�� e�
binds x to a new cell initialized to the value of e�� the scope of the binding is
e� and the lifetime of the cell ends after e� is evaluated� Variable x is derefer�
enced implicitly� This is achieved via a typing rule that says that if e has type
� var � then it also has type � �

As in C� the call to swap in reverse could equivalently be written as

swap��a�i�� �a�n��i��

and also as in C� array subscripting is syntactic sugar� e��e�� is equivalent
to ��e��e��� Arrays themselves are created by the construct arr x�e��� e��
which binds x to a pointer to an uninitialized array whose size is the value of
e�� the scope of x is e�� and the lifetime of the array ends after e� is evaluated�

The type system of Polymorphic C assigns types of the form � var to vari�
ables� and types of the form � ptr to pointers� � Functions swap� reverse� and
swapsections given above are polymorphic� swap has type

�� � � ptr � � ptr � ��

reverse has type

�� � � ptr � int � unit �

and swapsections has type

�� � � ptr � int � int � unit �

Type unit � which appears in the types of reverse and swapsections� is a
degenerate type containing only the value unit� it serves as the type of con�
structs� like while loops� that do not produce a useful value� Notice that pointer
and array types are unied as in C� Also� variable and pointer types are related
by symmetric typing rules for � and ��

if e � � var � then �e � � ptr �

and

if e � � ptr � then �e � � var �

� We use ptr rather than ref to avoid confusion with C�� and ML references�

�

Note that dereferencing in Polymorphic C di�ers from dereferencing in Stan�
dard ML� where if e � � ref � then �e � � �

Polymorphic C�s types are stratied into three levels� There are the ordinary
� �data types� and � �type schemes� type levels of Damas and Milner�s system
��
� and a new level called phrase types�the terminology is due to Reynolds
���
�containing � types and variable types of the form � var � This strati�
cation enforces the �second�class� status of variables� for example� the return
type of a function must be a data type� so that one cannot write a function
that returns a variable� In contrast� pointer types are included among the data
types� making pointers rst�class values�

��� Achieving Type Soundness in Polymorphic C

Much e�ort has been spent trying to develop sound polymorphic type systems
for imperative extensions of core�ML� Especially well�studied is the problem
of typing Standard ML�s rst�class references ��������������
� The problem is
easier in a language with variables but no references� such as Edinburgh LCF
ML� but subtle problems still arise ��
� The key problem is that a variable can
escape its scope via a lambda abstraction as in

letvar stk �� �
 in �v� stk �� v �� stk

�This evaluates to a push function that pushes values v onto a stack� imple�
mented as a list� here �
 denotes the empty list and �� denotes cons�� In this
case� the type system must not allow type variables that occur in the type of
stk to be generalized� or else the list would not be kept homogeneous� Di�erent
mechanisms have been proposed for dealing with this problem �������	

In the context of Polymorphic C� however� we can adopt an especially simple
approach� Because Polymorphic C does not have rst�class functions� it is not
possible to compute a polymorphic value in an interesting way� for example�
we cannot write curried functions� For this reason� we su�er essentially no loss
of language expressiveness by limiting polymorphism to function declarations�

Limiting polymorphism to function declarations ensures the soundness of poly�
morphic generalizations� but pointers present new problems for type sound�
ness� If one is not careful in formulating the semantics� then the type preserva�
tion property may not hold� For example� if a program is allowed to dereference
a pointer to a cell that has been deallocated and then reallocated� then the
value obtained may have the wrong type� For this reason� our natural seman�
tics has been designed to catch all pointer errors�

�

� A Formal Description of Polymorphic C

The syntax of Polymorphic C is given by the following grammar�

e ��� x j c j � e j � e j e��e� j

e��e�� j e� � e� j e��e� j

if �e�� fe�g else fe�g j

while �e�� fe�g j

var x � e�� e� j

arr x�e��� e� j

x�x��� � ��xn� fe�g e� j

e�e�� � � � �en�

Meta�variable x ranges over identiers� and c over literals �such as integer
literals and unit�� The expression

x�x��� � ��xn� fe�g e�

is a function declaration� it declares a function x whose scope is e�� The �

operator here denotes only pointer arithmetic� In the full language� � would
be overloaded to denote integer addition as well�

Like C� Polymorphic C has been designed to ensure that function calls can
be implemented on a stack without the use of static links or displays� In C�
this property is achieved by the restriction that functions can only be dened
at top level� Since Polymorphic C allows function declarations anywhere� we
instead impose the restriction that the free identi�ers of any function must be
declared at top level� Roughly speaking� a top�level declaration is one whose
scope extends all the way to the end of the program� For example� in the
program

var n � � � ��
arr a�� � ���
f�x� f� � �g
f�� � ��

the identiers declared at top level are n� a� and f� So the only identiers that
can occur free in f are n and a�

�

A subtle di�erence between C and Polymorphic C is that the formal param�
eters of a Polymorphic C function are constants rather than local variables�
Hence the C function f�x� �b	 is equivalent to

f�x� fvar x � x� bg

in Polymorphic C� Also� Polymorphic C cannot directly express C�s internal
static variables� For example� the C declaration

f�x� �static int n �
� b	

must be written in Polymorphic C as

var n �
� f�x� fbg

where n has been uniquely renamed�

��� The Type System of Polymorphic C

The types of Polymorphic C are stratied as follows�

� ��� � j int j unit j � ptr j �� � � � � � �n � � �data types�

� ��� �� � � j � �type schemes�

� ��� � j � var �phrase types�

Meta�variable � ranges over type variables� Compared to the type system of
Standard ML ���
� all type variables in Polymorphic C are imperative�

The rules of the type system are given in Figures � and �� It is a deductive
proof system used to assign types to expressions� Typing judgments have the
form

	 � e � �

meaning that expression e has type �� assuming that 	 prescribes phrase types
for the free identiers of e� More precisely� metavariable 	 ranges over identi�er
typings� which are nite functions mapping identiers to phrase types� 	�x� is
the phrase type assigned to x by 	 and 	�x � �
 is a modied identier typing
that assigns phrase type � to x and assigns phrase type 	�x�� to any identier
x� other than x�

�

�ident� 	 � x � � if 	�x� � �

�var�id� 	 � x � � var if 	�x� � � var

�lit� 	 � c � int if c is an integer literal

	 � unit � unit

�r�val� 	 � e � � var

	 � e � �

�address� 	 � e � � var

	 � �e � � ptr

�l�val� 	 � e � � ptr

	 � �e � � var

�arith� 	 � e� � � ptr � 	 � e� � int

	 � e��e� � � ptr

�subscript� 	 � e� � � ptr � 	 � e� � int

	 � e��e�� � � var

�assign� 	 � e� � � var � 	 � e� � �

	 � e��e� � �

�compose� 	 � e� � ��� 	 � e� � ��

	 � e��e� � ��

�if� 	 � e� � int � 	 � e� � �� 	 � e� � �

	 � if �e�� fe�g else fe�g � �

�while� 	 � e� � int � 	 � e� � �

	 � while �e�� fe�g � unit

�letvar� 	 � e� � ��� 	�x � �� var
 � e� � ��

	 � var x � e�� e� � ��

Fig� �� Rules of the Type System �Part ��

�

�letarr� 	 � e� � int � 	�x � �� ptr
 � e� � ��

	 � arr x�e��� e� � ��

�fun� 	�x� � ��� � � � � xn � �n
 � e � �

	�x � Close���� � � � � � �n � ��
 � e� � � �

	 � x�x��� � ��xn� feg e� � � �

�funcall� 	 � e � �� � � � � � �n � ��

	 � e� � ���

� � �

	 � en � �n

	 � e�e�� � � � �en� � �

Fig� �� Rules of the Type System �Part ��

The generalization of a data type � relative to 	� written Close����� is the
type scheme ��� � � � where �� is the set of all type variables occurring free in �
but not in 	� Note the use of Close in rule �fun�� this is what allows functions
to be given polymorphic types�

We say that � � is a generic instance of ��� � � � written ��� � � � � �� if there exists
a substitution S with domain �� such that S� � � �� Note that rule �ident�
allows an identier x to be given any type � that is a generic instance of 	�x��
this is what allows a polymorphic function to be called with di�erent types
of arguments� We extend the denition of � to type schemes by saying that
� � �� if � � � whenever �� � � � Finally� we say that 	 � e � � if 	 � e � �
whenever � � � �

��� The Semantics of Polymorphic C

We now give a natural semantics for Polymorphic C� Before we can do this� we
need to extend the language syntax to include some semantic values� these new
values are the runtime representations of variables� pointers� and functions�

e ��� �a� �� j �a� �� j �x�� � � � � xn� e

Metavariable a here ranges over addresses� which are described below� Expres�
sion �a� �� is a variable and expression �a� �� is a pointer� Intuitively� a variable
or pointer is represented by an address together with a tag bit� which tells
whether it should be implicitly dereferenced or not�thus� variables are im�
plicitly dereferenced and pointers are not� Expression �x�� � � � � xn� e is a lambda

	

abstraction that represents a function with formal parameters x�� � � � � xn and
body e�

One might expect that addresses would just be natural numbers� but that
would not allow the semantics to detect invalid pointer arithmetic� So instead
an address is a pair of natural numbers �i� j� where i is the segment number
and j is the o�set � Intuitively� we put each variable or array into its own
segment� Thus a simple variable has address �i� ��� and an n�element array
has addresses �i� ��� �i� ��� � � � � �i� n � ��� Pointer arithmetic involves only the
o�set of an address� and dereferencing nonexistent or dangling pointers is
detected as a �segmentation fault��

Next we identify the set of values v� consisting of literals� pointers� and lambda
abstractions�

v ��� c j �a� �� j �x�� � � � � xn� e

The result of a successful evaluation is always a value�

Finally� we require the notion of a memory� A memory
 is a nite function
mapping addresses to values� or to the special results dead and uninit� These
results indicate that the cell with that address has been deallocated or is unini�
tialized� respectively� We write
�a� for the contents of address a � dom�
��
and we write
�a �� v
 for the memory that assigns value v to address a� and
value
�a�� to any address a� other than a� Note that
�a �� v
 is an update of

 if a � dom�
� and an extension of
 if a 	� dom�
��

We can now dene the evaluation relation

 � e
 v�
�

which asserts that evaluating closed expression e in memory
 results in value
v and new memory
�� The evaluation rules are given in Figures � and ��

We write �e��x
e to denote the capture�avoiding substitution of e� for all
free occurrences of x in e� Note the use of substitution in rules �bindvar��
�bindarr�� �bindfun�� and �apply�� It allows us to avoid environments and
closures in the semantics� so that the result of evaluating a Polymorphic C
expression is just another Polymorphic C expression� This is made possible by
the �exible syntax of the language and the fact that only closed expressions
are ever evaluated during the evaluation of a closed expression�

We remark that rule �apply� species that function arguments are evaluated
left to right� C leaves the evaluation order unspecied� Also� note that if there
were no � operator� there would be no need to specify in rule �bindvar� that

��

�val�
 � v
 v�

�contents� a � dom�
� and
�a� is a value

 � �a� ��

�a��

�deref�
 � e
 �a� ���
�

a � dom�
�� and
��a� is a value

 � �e

��a��
�

�ref�
 � ��a� ��
 �a� ���

 � e
 �a� ���
�

 � ��e
 �a� ���
�

�offset�
 � e�
 ��i� j�� ���
�

� � e�
 n�
� �n an integer�

 � e��e�
 ��i� j � n�� ���
�

�update�
 � e
 v�
�

a � dom�
�� and
��a� 	� dead

 � �a� ���e
 v�
��a �� v

 � e�
 �a� ���
�

� � e�
 v�
�

a � dom�
�� and
��a� 	� dead

 � �e��e�
 v�
��a �� v

�sequence�
 � e�
 v��
�

� � e�
 v��
�

 � e��e�
 v��
�

�branch�
 � e�
 n�
� �n a nonzero integer�

� � e�
 v�
�

 � if �e�� fe�g else fe�g
 v�
�

 � e�

�
�

� � e�
 v�
�

 � if �e�� fe�g else fe�g
 v�
�

Fig� �� The Evaluation Rules �Part ��

��

�loop�
 � e�

�
�

 � while �e�� fe�g
 unit�
�

 � e�
 n�
� �n a nonzero integer�

� � e�
 v�
�

� � while �e�� fe�g
 unit�
�

 � while �e�� fe�g
 unit�
�

�bindvar�
 � e�
 v��
�

�i� �� 	� dom�
��

���i� �� �� v�
 � ���i� ��� ���x
e�
 v��
�

 � var x � e�� e�
 v��
���i� �� �� dead

�bindarr�
 � e�
 n�
� �n a positive integer�

�i� �� 	� dom�
��

���i� ��� � � � � �i� n� �� �� uninit� � � � �uninit
 �

���i� ��� ���x
e�
 v��
�

 � arr x�e��� e�

v��
���i� ��� � � � � �i� n� �� �� dead� � � � �dead

�bindfun�
 � ��x�� � � � � xn� e�x
e
�
 v�
�

 � x�x��� � ��xn� feg e�
 v�
�

�apply�
 � e
 �x�� � � � � xn� e
��
�

� � e�
 v��
�

� � �

n � en
 vn�
n��

n�� � �v�� � � � � vn�x�� � � � � xn
e
�
 v�
�

 � e�e�� � � � �en�
 v�
�

Fig� �� The Evaluation Rules �Part ��

a variable dies at the end of its scope� it would simply become unreachable at
that point �and its storage could be reused��

Note that a successful evaluation always produces a value and a memory�

Lemma � If
 � e
 v�
�	 then v is a value and
� is a memory�

PROOF� By induction on the structure of the derivation� �

��

� Type Preservation

We now turn to the question of the soundness of our type system� We begin
in this section by using the framework of Harper ��
 to prove that our type
system satises the type preservation property �sometimes called the subject
reduction property�� This property basically asserts that types are preserved
across evaluations� that is� if an expression of type � evaluates successfully� it
produces a value of type � � But before we can do this� we need to extend our
typing rules so that we can type the semantic values �variables� pointers� and
lambda abstractions� introduced in Section ����

Typing a variable �a� �� or a pointer �a� �� clearly requires information about
the type of value stored at address a� this information is provided by an
address typing �� One might expect an address typing to map addresses to data
types� This turns out not to work� however� because a well�typed program can
produce as its value a nonexistent pointer� and such pointers must therefore
be typable if type preservation is to hold� For example� the program

arr a�
�� a��

is well typed and evaluates to ���� ���� ��� a nonexistent pointer� This leads us
to dene an address typing � to be a nite function mapping segment numbers
to data types� The notational conventions for address typings are like those
for identier typings�

We now modify our typing judgments to include an address typing�

�� 	 � e � �

All of the rules given previously in Figures � and � need to be extended
to include address typings� and we also add the new typing rules given in
Figure �� Furthermore� Figure � includes an updated version of rule �fun�
from Figure �� In addition to including an address typing �� the new rule
replaces Close� with Close��� � which does not generalize type variables that
are free in either � or in 	�

To prove the type preservation theorem� we require a number of lemmas that
establish some useful properties of the type system� We begin with a basic
lemma that shows that our type system types closed values reasonably�it
shows that any closed value of some type has the form that one would expect�
It also shows that a closed expression of type � var can have only two possible
forms� �Note that � here denotes an empty identier typing��

��

�var� �� 	 � ��i� j�� �� � � var if ��i� � �

�ptr� �� 	 � ��i� j�� �� � � ptr if ��i� � �

���intro� �� 	�x� � ��� � � � � xn � �n
 � e � �

�� 	 � �x�� � � � � xn� e � �� � � � � � �n � �

�fun� �� 	�x� � ��� � � � � xn � �n
 � e � �

�� 	�x � Close������ � � � � � �n � ��
 � e� � � �

�� 	 � x�x��� � ��xn� feg e� � � �

Fig� �� New Rules for Typing Semantic Values

Lemma � �Correct Forms� Suppose �� � � v � � � Then

 if � is int	 then v is an integer literal	

 if � is unit 	 then v is unit	

 if � is � � ptr 	 then v is of the form ��i� j�� ��	 and

 if � is �� � � � � � �n � � �	 then v is of the form �x�� � � � � xn�e�

And if �� � � e � � var	 then e is of the form ��i� j�� �� or of the form �e��

PROOF� Immediate from inspection of the typing rules� �Note that the last
part of the lemma assumes that array subscripting is syntactic sugar�� �

A consequence of the last part of this lemma is that if �� � � e � � and e is not
of the form ��i� j�� �� or �e�� then the typing derivation cannot end with rule
�r�val�� So the typing rules� for the most part� remain syntax directed�

The fact that variables can have only two possible forms is also exploited in
our evaluation rules� specically within rules �ref� and �update� of Figure ��
In particular� we are able to dene the semantics of � and � without dening
an auxiliary relation for evaluation in �L�value� contexts� contrast our rules
with those given in ��
�

We continue with some basic lemmas showing that typings are preserved under
substitutions and under extensions to the address and identier typings�

Lemma � �Type Substitution� If �� 	 � e � � 	 then for any substitution
S	 S��S	 � e � S� 	 and the latter typing has a derivation no higher than the
former�

PROOF� By induction on the structure of the derivation of �� 	 � e � � � �

��

Lemma � �Super�uousness� Suppose that �� 	 � e � � � If i 	� dom���	 then
��i � � �
� 	 � e � � 	 and if x 	� dom�	�	 then �� 	�x � �
 � e � � �

PROOF� By induction on the height of the derivation of �� 	 � e � � � The
only way that adding an extra assumption can cause problems is by adding
more free type variables to � or 	� thereby preventing Close from generalizing
such variables in �fun� steps� If this happens� we must rename such variables
in the original derivation before adding the extra assumption� By the Type
Substitution Lemma� we can do this renaming and the height of the derivation
is not increased� �

Lemma 	 �Substitution� If �� 	 � e � � and �� 	�x � �
 � e� � � 	 then
�� 	 � �e�x
e� � � �

PROOF� Assume that the bound identiers of e� are renamed as necessary
to ensure that no identier occurring in e occurs bound in e�� Then at every
use of �ident� or �var�id� on x in the derivation of �� 	�x � �
 � e� � � � we can
splice in the appropriate derivation for e� There may be extra assumptions
around at that point� but by the Super�uousness Lemma� they do not cause
problems� �

Lemma
 ���intro� If �� 	 � e � � and ��� � � � � �n do not occur free in � or
in 		 then �� 	 � e � ���� � � � � �n � � �

PROOF� This lemma is a simple corollary to the Type Substitution Lemma�
Suppose that ��� � � � � �� Then there exists a substitution S � ������
 such that
S� � � �� By the Type Substitution Lemma� S��S	 � e � S� � Hence� since the
�� are not free in � or in 	� �� 	 � e � � �� �

We now return to type preservation� Roughly speaking� we wish to show that
if closed program e has type � under address typing �� and evaluates under
memory
 to v� then v also has type � � But since e can allocate addresses
and these can occur in v� we cannot show that v has type � under ��we can
only show that v has type � under some address typing �� that extends �� �We
denote ��� extends �� by � � ���� Also� we need to assume that � is consistent
with
�for example� if ��i� � int � then
 needs to store integers in segment
i� Precisely� we dene
 � � if

�i� dom��� � fi j �i� �� � dom�
�g� and

��

�ii� for all �i� j� such that
��i� j�� is a value� � �
��i� j�� � ��i��

Note that � must give a type to uninitialized and dead addresses of
� but the
type can be anything� We can now prove the type preservation theorem�

Theorem � �Type Preservation� If
 � e
 v�
�	 �� � � e � � 	 and
 � �	
then there exists �� such that � � ��	
� � ��	 and ��� � � v � � �

PROOF� By induction on the structure of the derivation of
 � e
 v�
��
Here we just show the �bindvar� and �bindfun� cases� the remaining cases
are similar�

�bindvar�� The evaluation must end with

 � e�
 v��
�

�i� �� 	� dom�
��

���i� �� �� v�
 � ���i� ��� ���x
e�
 v��
�

 � var x � e�� e�
 v��
���i� �� �� dead

while the typing must end with �letvar��

�� � � e� � ��
�� �x � �� var
 � e� � ��

�� � � var x � e�� e� � ��

and
 � �� By induction� there exists �� such that � � ���
� � ��� and
��� � � v� � ��� Since
� � �� and �i� �� 	� dom�
��� also i 	� dom����� So
�� � ���i � ��
� By rule �var��

���i � ��
� � � ��i� ��� �� � �� var

and by Lemma ��

���i � ��
� �x � �� var
 � e� � ��

So we can apply Lemma � to get

���i � ��
� � � ���i� ��� ���x
e� � ��

Also�
���i� �� �� v�
 � ���i � ��
� So by a second use of induction� there exists
�� such that ���i � ��
 � ���
� � ��� and ��� � � v� � ���

��

It only remains to show that
���i� �� �� dead
 � ��� But this follows immedi�
ately from
� � �

��

Remark What would go wrong if we simply removed the deallocated ad�
dress �i� �� from the domain of the nal memory� rather than marking it dead
Well� with the current denition of
 � �� we would then be forced to remove i
from the nal address typing� But then
�� i � ��� i would fail� if there were
any dangling pointers ��i� j�� �� in the range of
� � i� If� instead� we allowed
�� to retain the typing for i� then the next time that �i� �� were allocated we
would have to change the typing for i� rather than extend the address typing�

�bindfun�� The evaluation must end with

 � ��x�� � � � � xn� e�x
e
�
 v�
�

 � x�x��� � ��xn� feg e�
 v�
�

while the typing must end with �fun��

�� �x� � ��� � � � � xn � �n
 � e � �

�� �x � Close������ � � � � � �n � ��
 � e� � � �

�� � � x�x��� � ��xn� feg e� � � �

and
 � �� By rule ���intro��

�� � � �x�� � � � � xn� e � �� � � � � � �n � �

and so by Lemma ��

�� � � �x�� � � � � xn� e � Close������ � � � � � �n � ��

Therefore� by Lemma �� �� � � ��x�� � � � � xn� e�x
e
� � � �� So by induction� there

exists �� such that � � ���
� � ��� and �� � v � � �� �

	 Type Soundness

The type preservation property does not by itself ensure that a type system
is sensible� For example� a type system that assigns every type to every ex�
pression trivially satises the type preservation property� even though such a
type system is useless� The main limitation of type preservation is that it only

��

applies to well�typed expressions that evaluate successfully� Really we would
like to be able to say something about what happens when we attempt to
evaluate an arbitrary well�typed expression�

One approach to strengthening type preservation �used by Gunter ��
 and
Harper �	
� for example� is to augment the natural semantics with rules spec�
ifying that certain expressions evaluate to a special value� TypeError� which
has no type� For example� an attempt to dereference a value other than a
pointer would evaluate to TypeError� Then� by showing that type preser�
vation holds for the augmented evaluation rules� we get that a well�typed
expression cannot evaluate to TypeError� Hence any of the errors that lead
to TypeError cannot occur in the evaluation of a well�typed expression� A
drawback to this approach is the need to augment the natural semantics� But�
more seriously� this approach does not give us as much information as we
would like� It tells us that certain errors will not arise during the evaluation
of well�typed expression� but it leaves open the possibility that there are other
errors that we have neglected to check for in the augmented natural semantics�

Another approach is to use a di�erent form of semantics than natural seman�
tics� This is the approach advocated by Wright and Felleisen ���
� who use
a small�step structured operational semantics to prove type soundness for a
number of extensions of ML� However� we nd natural semantics to be much
more natural and appealing than small�step structured operational semantics�
particularly for languages with variables that have bounded lifetimes� �For
example� in Ozgen�s proposed small�step semantics for Polymorphic C ���
�
quite subtle mechanisms are employed to deallocate cells at the correct time��
Gunter and Remy ��
 also propose an alternative to natural semantics� which
they call partial proof semantics�

What we propose here is di�erent� We argue that one can show a good type
soundness theorem for a language� like Polymorphic C� dened using natural
semantics� The trouble with natural semantics is that it denes only complete
program executions� which are represented by derivation trees� But for a good
type soundness theorem� we need a notion of an attempted execution of a
program� which may of course fail in various ways� We argue� however� that a
natural semantics gives rise in a natural way to a transition semantics� which
we call a natural transition semantics� that provides the needed notion of an
attempted program execution� �

The basic idea is that a program execution is a sequence of partial derivation
trees� that may or may not eventually reach a complete derivation tree� In a
partial derivation tree� some of the nodes may be labeled with pending judg�
ments� which represent expressions that need to be evaluated in the program

� See ���� for a slightly di�erent formulation of natural transition semantics� there�
natural transition semantics is applied to a problem of computer security�

��

execution� A pending judgment is of the form
 � e
 � �In contrast� we refer
to ordinary judgments
 � e
 v�
� as complete judgments��

Before we dene partial derivation trees precisely� we need to make a few
comments about the evaluation rules in a natural semantics� First� note that
natural semantics rules are actually rule schemas� whose metavariables are
instantiated in any use of the rule� Second� note that the hypotheses of each
rule are either evaluation judgments
 � e
 v�
� or boolean conditions� such
as the condition a � dom�
� in rule �contents�� �Such boolean conditions
are regarded as complete judgements�� Finally� note that in some hypotheses
an evaluation judgment includes an implicit boolean condition� For example�
the rst hypothesis of rule �deref� is

 � e
 �a� ���
�

This hypothesis is really an abbreviation for two hypotheses�

 � e
 v�
�

and

v is of the form �a� ��

Assume henceforth that we use the unabbreviated forms in derivation trees�

We want partial derivation trees to be limited to the trees that can arise in
a systematic attempt to build a complete derivation tree� this constrains the
form that such a tree can have� Precisely�

De�nition � A tree T whose nodes are labeled with �partial or complete�
judgments is a partial derivation tree if it satis�es the following two conditions

�i� If a node in T is labeled with a complete judgment J	 then the subtree
rooted at that node is a complete derivation tree for J�

�ii� If a node in T is labeled with a pending judgment
 � e
 and the node
has k children	 where k � �	 then there is an instance of an evaluation
rule that has the form

J� J� � � � Jn

 � e
 v�
�

where n � k	 and the labels on the children are J�� J�� � � � � Jk	 respectively	
with possibly one exception if Jk is
k � ek
 vk�

�
k	 then the kth child

may alternatively be labeled with the pending judgment
k � ek
 �

�	

One may readily see that a partial derivation tree can have at most one pending
judgment on each level� which must be the rightmost node of the level� and
whose parent must also be a pending judgment�

Next we dene transitions� based on the rules of the natural semantics� that
describe how one partial derivation tree can be transformed into another�
Suppose that there is an instance of an evaluation rule that has the form

J� J� � � � Jn

 � e
 v�
�

where each hypothesis Ji is either an evaluation judgment
i � ei
 vi�

�
i or

else a boolean condition Bi�

The transformations resulting from this rule are dened as follows�

Suppose that a partial derivation tree T contains a node N labeled with the
pending judgment
 � e
 and that the children of N are labeled with
the complete judgments J�� J�� � � � � Jk where � k�
! Suppose k n� Then if Jk�� is of the form
k�� � ek��
 vk���

�
k��� we

can transform T by adding another child to N � labeled with the pending
judgment
k�� � ek��
 � And if Jk�� is a boolean condition Bk�� that
is true� we can transform T by adding another child to N � labeled with
Bk���

! Now suppose k � n� Then we can transform T by replacing the label on
N with the complete judgement
 � e
 v�
��

We write T �� T � if partial derivation tree T can be transformed in one step
to T �� As usual� ��� denotes the re�exive� transitive closure of ���

Remark �� We remark that� in the case of Polymorphic C� the transforma�
tion relation thus dened is almost deterministic� In particular� although there
are two evaluation rules for if �e�� fe�g else fe�g and while �e�� fe�g�
there is no ambiguity� since we need not choose which rule is being applied
until after the guard e� has been evaluated� The only nondeterminism in the
transformation relation is in rules �bindvar� and �bindarr�� The second hy�
pothesis of both rules is �i� �� 	� dom�
��� and here metavariable i is not bound
deterministically� But� of course� this nondeterministic choice of an address for
a newly�allocated variable or array is of no importance� �

A key property of �� is that it always transforms a partial derivation tree
into another partial derivation tree�

Lemma �� If T is a partial derivation tree and T �� T �	 then T � is also a
partial derivation tree�

��

PROOF� Straightforward� �

The transformation rules give us the desired notion of program execution� to
execute e in memory
� we start with the tree T� which consists of a single
root node labeled with the pending judgment
 � e
 � and then we apply
the transformations� generating a sequence of partial derivation trees�

T� �� T� �� T� �� T� �� � � �

More precisely� we dene an execution of program e in memory
 to be a
possibly innite sequence of partial derivation trees T�� T�� T�� � � � such that

! T� is a one�node tree labeled with
 � e
 �
! for all i � �� Ti �� Ti�� �unless Ti is the last tree in the sequence�� and
! if the sequence has a last tree Tn� then there is no tree T such that Tn �� T �

Note that there are three possible outcomes to an execution�

�i� The sequence ends with a complete derivation tree� This is a successful
execution�

�ii� The sequence is innite� This is a nonterminating execution�
�iii� The sequence ends with a tree Tn that contains a pending judgment but

has no successor� This is an aborted execution�

Our Type Soundness theorem will show that� for well�typed programs� aborted
execution can arise only from one of a specic set of errors�

But rst� we argue that our notion of execution is correct� Let us write �J

to denote the one�node tree labeled with J � The soundness of our notion of
execution is given by the following lemma�

Lemma �� If �
 � e

 ��� T 	 where T contains no pending judgments	
then T is a complete derivation tree for a judgment of the form
 � e
 v�
��

PROOF� By Lemma ��� T is a partial derivation tree� So� since T contains
no pending judgments� T is a complete derivation tree for the judgment that
labels its root� And this judgment must be of the form
 � e
 v�
�� because
the initial tree has a root labeled with
 � e
 and �as can be seen by
inspecting the denition of ��� the only transformation that changes the
label on a node changes a label of the form
 � e
 to a label of the form

 � e
 v�
�� �

��

Next we show that our notion of execution is complete�

Lemma �� If
 � e
 v�
� and T is a complete derivation tree for
 � e

v�
�	 then �
 � e

 ��� T �

PROOF� By induction on the structure of the derivation of
 � e
 v�
�� �

Remark �� This lemma shows that if
 � e
 v�
�� then there is a success�
ful execution of e in
� But it does not show that every execution of e in
 is
successful� With an arbitrary natural semantics� this need not be so� For ex�
ample� in a language with a nondeterministic choice operator� some executions
of e in
 may be successful� others may be nonterminating� and others may
abort� But in Polymorphic C� since �� is essentially deterministic� a stronger
result should hold� �

Now that we have a notion of program execution� we again turn to Poly�
morphic C and consider what we can say about the executions of well�typed
Polymorphic C programs�

De�nition �	 A pending judgment
 � e
 is well typed i� there exist an
address typing � and a type � such that
 � � and �� � � e � � � Also	 a partial
derivation tree T is well typed i� every pending judgment in it is well typed�

Roughly speaking� the combination of the Type Preservation theorem and the
Correct Forms lemma �Lemma �� allows us to characterize the forms of expres�
sions that will be encountered during the execution of a well�typed program�
This allows us to characterize what can go wrong during the execution� Here
is the key type soundness result�

Theorem �
 �Progress� Let T be a well�typed partial derivation tree that
contains at least one pending judgment� If T �� T �	 then T � is well typed�
Furthermore	 there exists T � such that T �� T �	 unless T contains one of the
following errors

E�� A read or write to a dead address�
E�� A read or write to an address with an invalid o�set�
E�� A read of an uninitialized address�
E�� A declaration of an array of size � or less�

PROOF� Let N be the uppermost node in T that is labeled with a pending
judgment� say
 � e
 � Then any transformation on T must occur at this
node� We just consider all possible forms of expression e� Here we just give
the case e��e�� the other cases are quite similar�

��

Since T is well typed� the pending judgment
 � e��e�
 is well typed� and
so there exist � and � such that
 � � and �� � � e��e� � � � The latter typing
must be by �assign��

�� � � e� � � var

�� � � e� � �

�� � � e��e� � �

By the Correct Forms lemma� e� must be of the form ��i� j�� �� or else of the
form �e��� So� simplifying notation a bit� the pending judgment that labels N
has the form
 � �a� ���e
 or
 � �e��e�
 � We consider these two cases
in turn�

If the label of N is
 � �a� ���e
 � where
 � � and �� � � �a� ���e � � � then
the typing must end with �assign��

�� � � �a� �� � � var

�� � � e � �

�� � � �a� ���e � �

So by �var�� a is of the form �i� j�� where ��i� � � �

Now� if N has no children� then �using rule �update��� we can transform T
by adding to N a new child� labeled with the pending judgment
 � e
 �
Furthermore� this is the only possible transformation� and since �� � � e � � �
this new pending judgment is well typed�

If N has exactly one child� then by condition �ii� of the denition of partial
derivation tree and the fact that N is the uppermost node labeled with a
pending judgment� it must be that the child of N is labeled with a judgment
of the form
 � e
 v�
�� In this case� we may transform T by adding a new
child to N labeled with the boolean condition

a � dom�
�� and
��a� 	� dead

provided that this condition is true�

Now� by the Type Preservation theorem� there exists �� such that � � ���

� � ��� and ��� � � v � � � Hence ���i� � � � and so �i� �� � dom�
��� So if
�i� j� 	� dom�
��� then T contains error E�� a write to an address with an
invalid o�set j� And if
���i� j�� � dead� then T contains error E�� a write to
a dead address� Hence we can transform T unless it contains error E� or E��

��

Finally� if N has two children� then they must be labeled with the hypotheses
of rule �update�� and so we can transform T by replacing the label of N with

 � �a� ���e
 v�
��a �� v
�

If the label of N is
 � �e��e�
 � where
 � � and �� � � �e��e� � � � then the
typing must end with �l�val� followed by �assign��

�� � � e� � � ptr

�� � � �e� � � var

�� � � e� � �

�� � � �e��e� � �

Now� if N has no children� then the only applicable transformation �using rule
�update�� is to add to N a new child� labeled with the pending judgment

 � e�
 � Since �� � � e� � � ptr � this new pending judgment is well typed�

If N has exactly one child� then by condition �ii� of the denition of partial
derivation tree and the fact that N is the uppermost node labeled with a
pending judgment� it must be that the child of N is labeled with a judgment
of the form
 � e�
 v��
��

By the Type Preservation theorem� there exists �� such that � � ���
� � ���
and ��� � � v� � � ptr � So by the Correct Form lemma� v� is of the form
��i� j�� ��� Hence� we may transform T by adding a new child to N labeled
with the boolean condition

v� is of the form �a� ���

since this is guaranteed to be true� Also� by �ptr�� ���i� � � �

If N has two children� then we can transform T by adding a new child labeled
with the pending judgment
� � e�
 � By the Super�uousness Lemma�
��� � � e� � � � so this pending judgment is well typed�

If N has three children� then the third child of N must be labeled with a
judgment of the form
� � e�
 v�
�� In this case� we may transform T by
adding a new child to N labeled with the boolean condition

a � dom�
�� and
��a� 	� dead

provided that this condition is true�

As before� by the Type Preservation theorem� there exists �� such that �� � ���

��

� � ��� and ��� � � v � � � Hence ���i� � � � and so �i� �� � dom�
��� So if
�i� j� 	� dom�
��� then T contains error E�� a write to an address with an
invalid o�set j� And if
���i� j�� � dead� then T contains error E�� a write to
a dead address� Hence we can transform T unless it contains error E� or E��

Finally� if N has four children� then they must be labeled with the hypotheses
of rule �update�� and so we can transform T by replacing the label of N with

 � �e��e�
 v�
��a �� v
� �

The Progress theorem gives our Type Soundness result as a simple corollary�

Corollary �� �Type Soundness� If �� � � e � � and
 � �	 then any execu�
tion of e in
 either

�i� succeeds	
�ii� does not terminate	 or
�iii� aborts due to one of the errors E�	 E�	 E�	 or E��

PROOF� Let T� �� T� �� T� �� � � � be an execution of e in
� Then
T� � �
 � e

� which is well typed by assumption� So� by the Progress
theorem� every Ti is well typed� and furthermore� if Ti contains a pending
judgment� then it has a successor unless it contains one of the errors E�� E��
E�� or E�� So� if the execution is nite� it either ends with a complete derivation
tree or with a tree containing one of the errors E�� E�� E�� or E�� �

 Discussion

One of the most desirable properties of a programming language implemen�
tation is that it guarantee the safe execution of programs� This means that a
program�s execution is always faithful to the language�s semantics� even if the
program is erroneous� C is� of course� a notoriously unsafe language� in typical
implementations� pointer errors can cause a running C program to overwrite
its runtime stack� resulting in arbitrarily bizarre behavior� Sometimes this
results in a �Segmentation fault�core dumped� message �though this may
occur far after the original error�� worse� at other times the program appears
to run successfully� even though the results are entirely invalid�

Three techniques can be used to provide safe execution�

�i� The language can be designed so that some errors are impossible� For ex�
ample� a language can dene default initializations for variables� thereby
preventing uninitialized variable errors�

��

�ii� The language can perform compile�time checks� such as type checks� to
guard against other errors�

�iii� Finally� runtime checks can be used to catch other errors�

In the case of Polymorphic C� the Type Soundness theorem �Corollary ���
species exactly what runtime checks are needed to guarantee safe execution�
The trouble is� except for error E� �declaring an array of size � or less�� typical
C implementations do not make these checks� What would we expect� then�
of implementations of Polymorphic C Well� it is actually not too di"cult to
check for error E� �reading or writing an address with an invalid o�set��for
each pointer� we must maintain at runtime the range of permissible o�sets�
And error E� �reading an uninitialized address� can also be checked fairly
e"ciently� by initializing array cells with a special uninit value� That leaves
only error E� �reading or writing a dead address�� This� of course� is very
di"cult to check e"ciently� In our natural semantics� we make this check
possible by never reusing any cells�

Hence we reach a point of trade�o�s� We can directly implement our natural
semantics� getting a safe but ine"cient �debugging� implementation of Poly�
morphic C� Or we can follow usual C practice and build a stack�based imple�
mentation that leaves errors E� �and perhaps E� and E� as well� unchecked�
achieving e"ciency at the expense of safety� � In this case� the Type Soundness
theorem at least tells us what kinds of errors we need to look for in debugging
our programs� As a nal alternative� we can change the semantics of Poly�
morphic C by giving cells unbounded lifetimes �thereby necessitating garbage
collection�� as was done in the design of Java ��
�

� Conclusion

Advanced polymorphic type systems have come to play a central role in the
world of functional programming� but so far have had little impact on tradi�
tional imperative programming� We assert that an ML�style polymorphic type
system can be applied fruitfully to a �real�world� language like C� bringing to
it both the expressiveness of polymorphism as well as a rigorous characteriza�
tion of the behavior of well�typed programs�

Future work on Polymorphic C includes the development of e"cient imple�
mentations of polymorphism �perhaps using the work of ���������
� and the
extension of the language to include other features of C� especially structures�

� More precisely� allocating variables and arrays on a stack in Polymorphic C �or in
any language with � or that uni�es arrays and pointers� causes the type preservation
property to fail�

��

References

��� Ken Arnold and James Gosling� The Java Programming Language� Addison�
Wesley� �		��

��� Luis Damas and Robin Milner� Principal type�schemes for functional programs�
In Proceedings of the �th ACM Symposium on Principles of Programming

Languages� pages ������� New York� �	
�� ACM�

��� Pascal Fradet� Ronan Gaugne� and Daniel Le M�etayer� Static detection of
pointer errors� An axiomatisation and a checking algorithm� In Proceedings of

the �th European Symposium on Programming� volume ��
 of Lecture Notes

in Computer Science� pages ������� Berlin� April �		�� Springer�Verlag�

��� Michael Gordon� Robin Milner� and Christopher Wadsworth� Edinburgh LCF�
volume �
 of Lecture Notes in Computer Science� Springer�Verlag� Berlin� �	�	�

��� John Greiner� Standard ML weak polymorphism can be sound� Technical
Report CMU�CS�	����� School of Computer Science� Carnegie Mellon Univ��
Pittsburgh� Pa�� May �		��

��� Carl Gunter� Semantics of Programming Languages� Structures and Techniques�
MIT Press� �		��

��� Carl Gunter and Didier R�emy� A proof�theoretic assessment of runtime type
errors� Technical Report ������	�������TM� AT�T Bell Laboratories� �		��

�
� Robert Harper� A simpli�ed account of polymorphic references� Information

Processing Letters� ��������� August �		��

�	� Robert Harper� A note on �A simpli�ed account of polymorphic references��
Information Processing Letters� ��������� January �		��

��� Robert Harper and Greg Morrisett� Compiling polymorphism using intensional
type analysis� In Proceedings of the ��nd ACM Symposium on Principles of

Programming Languages� pages ������� New York� �		�� ACM�

���� My Hoang� John Mitchell� and Ramesh Viswanathan� Standard ML�NJ weak
polymorphism and imperative constructs� In Proceedings of the th IEEE

Symposium on Logic in Computer Science� pages ������ New York� �		�� IEEE�

���� Brian Kernighan and Dennis Ritchie� The C Programming Language� Prentice�
Hall� �	�
�

���� Xavier Leroy� Unboxed objects and polymorphic typing� In Proceedings of the

��th ACM Symposium on Principles of Programming Languages� pages ����
�

� New York� �		�� ACM�

���� Xavier Leroy and Pierre Weis� Polymorphic type inference and assignment�
In Proceedings of the �th ACM Symposium on Principles of Programming

Languages� pages �	����� New York� �		�� ACM�

��

���� Robin Milner� Mads Tofte� and Robert Harper� The De	nition of Standard ML�
MIT Press� �		�

���� Mustafa Ozgen� A type inference algorithm and transition semantics for
Polymorphic C� Master�s thesis� Department of Computer Science� Naval
Postgraduate School� Monterey� CA� September �		��

���� John C� Reynolds� The essence of ALGOL� In de Bakker and van Vliet�
editors� Algorithmic Languages� pages �������� IFIP� North�Holland Publishing
Company� �	
��

��
� Zhong Shao and Andrew Appel� A typed�based compiler for Standard ML� In
Proceedings of the ACM SIGPLAN ��� Conference on Programming Language

Design and Implementation� pages ������	� �		��

��	� Geo�rey Smith and Dennis Volpano� Polymorphic typing of variables and
references� ACM Transactions on Programming Languages and Systems�
�
������������ May �		��

��� Geo�rey Smith and Dennis Volpano� Towards an ML�style polymorphic type
system for C� In Proceedings of the �th European Symposium on Programming�
volume ��
 of Lecture Notes in Computer Science� pages �������� Berlin� April
�		�� Springer�Verlag�

���� Mads Tofte� Type inference for polymorphic references� Information and

Computation�
	������ �		�

���� Dennis Volpano and Geo�rey Smith� A type soundness proof for variables in
LCF ML� Information Processing Letters� ����������� �		��

���� Dennis Volpano and Geo�rey Smith� Eliminating covert �ows with minimum
typings� In Proc� ��th IEEE Computer Security Foundations Workshop� pages
������
� IEEE� June �		��

���� Andrew Wright� Simple imperative polymorphism� Lisp and Symbolic

Computation�
������������ December �		��

���� Andrew Wright and Matthias Felleisen� A syntactic approach to type
soundness� Information and Computation� ��������
�	�� November �		��

��

