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Advanced polymorphic type systems have come to play an important role
in the world of functional programming� But� so far� these type systems
have had little impact upon widely�used imperative programming lan�
guages like C and C��� We show that ML�style polymorphism can be
integrated smoothly into a dialect of C� which we call Polymorphic C� It
has the same pointer operations as C� including the address�of operator
�� the dereferencing operator �� and pointer arithmetic� We give a natural
semantics for Polymorphic C� and prove a type soundness theorem that
gives a rigorous and useful characterization of what can go wrong when a
well�typed Polymorphic C program is executed� For example� a well�typed
Polymorphic C program may fail to terminate� or it may abort due to a
dangling pointer error� Proving such a type soundness theorem requires a
notion of an attempted program execution� we show that a natural seman�
tics gives rise quite naturally to a transition semantics� which we call a
natural transition semantics� that models program execution in terms of
transformations of partial derivation trees� This technique should be gen�
erally useful in proving type soundness theorems for languages de�ned
using natural semantics�

� Introduction

Much attention has been given to developing sound polymorphic type systems
for languages with imperative features� Most notable is the large body of
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work surrounding ML ���������������������	
� However� none of these e�orts
addresses the polymorphic typing of a language that combines variables� arrays
and pointers �rst�class references�� which are key ingredients of traditional
imperative languages� As a result� they cannot be directly applied to get ML�
style polymorphic extensions of widely�used languages like C and C���

This paper presents a provably�sound type system for a polymorphic dialect of
C� called Polymorphic C� It has the same pointer operations as C� including
the address�of operator �� the dereferencing operator �� and pointer arith�
metic� The type system allows these operations without any restrictions on
them so that programmers can enjoy C�s pointer �exibility and yet have type
security and polymorphism as in ML� Also� although we do not address it
here� it is straightforward to do type inference for Polymorphic C� so that
programs need not be written with type annotations ���
� Our type system
thus demonstrates that ML�style polymorphism can be brought cleanly into
the realm of traditional imperative languages�

We establish the soundness of our type system with respect to a natural se�
mantics for Polymorphic C� First we use Harper�s syntactic approach ��
 to
establish the type preservation property �also known as the subject reduction
property�� We then prove a type soundness theorem that gives a rigorous and
useful characterization of what can go wrong when a well�typed Polymorphic
C program is executed� More precisely� we show that the execution of a well�
typed Polymorphic C program either succeeds� fails to terminate� or aborts
due to one of a specic set of errors� such as an attempt to dereference a
dangling pointer� Proving such a type soundness theorem requires a notion of
an attempted program execution� we show that a natural semantics gives rise
quite naturally to a transition semantics� which we call a natural transition
semantics� that models program execution in terms of transformations of par�
tial derivation trees� This technique should be generally useful in proving type
soundness theorems for languages dened using natural semantics�

We begin with an overview of Polymorphic C in the next section� Next� Sec�
tion � formally denes its syntax� type system� and semantics� Then� in Sec�
tions � and �� we prove the soundness of the type system� We conclude with
some discussion�

� An Overview of Polymorphic C

Polymorphic C is intended to be as close to the core of Kernighan and Ritchie
C ���
 as possible� In particular� it is stack�based with variables� pointers� and
arrays� Pointers are dereferenced explicitly using �� while variables are derefer�
enced implicitly� Furthermore� pointers are rst�class values� but variables are
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not� Polymorphic C has the same pointer operations as C� A well�typed Poly�
morphic C program may still su�er from dangling reference and illegal address
errors�our focus has not been on eliminating such pointer insecurities� which
would require weakening C�s expressive power� but rather on adding ML�style
polymorphism to C� so that programmers can write polymorphic functions
naturally and soundly as they would in ML� rather than by parameterizing
functions on data sizes or by casting to pointers of type void ��

��� An Example

In this paper� we adopt a concrete syntax for Polymorphic C that resembles
the syntax of C� � For example� here are three Polymorphic C functions�

swap�x�y�

�

var t � �x�

�x � �y�

�y � t

	

reverse�a�n�

�

var i � 
�

while �i � n��i� �

swap�a�i� a�n��i��

i � i�

	

	

swapsections�a�i�n�

�

reverse�a�i��

reverse�a�i�n�i��

reverse�a�n�

	

Note that� unlike C� Polymorphic C does not include type annotations in dec�
larations� �Also� Polymorphic C di�ers from C in the treatment of semicolons��
Function reverse�a�n� reverses the elements of array a�
�n��� and function
swapsections�a�i�n� uses reverse to swap the array sections a�
�i�� and

� See ��� for a alternative ML�like syntax that is somewhat more �exible�

�



a�i�n��� This illustrates that in Polymorphic C� as in C� one can manipu�
late sections of arrays using pointer arithmetic� The construct var x � e�� e�
binds x to a new cell initialized to the value of e�� the scope of the binding is
e� and the lifetime of the cell ends after e� is evaluated� Variable x is derefer�
enced implicitly� This is achieved via a typing rule that says that if e has type
� var � then it also has type � �

As in C� the call to swap in reverse could equivalently be written as

swap��a�i�� �a�n��i��

and also as in C� array subscripting is syntactic sugar� e��e�� is equivalent
to ��e��e��� Arrays themselves are created by the construct arr x�e��� e��
which binds x to a pointer to an uninitialized array whose size is the value of
e�� the scope of x is e�� and the lifetime of the array ends after e� is evaluated�

The type system of Polymorphic C assigns types of the form � var to vari�
ables� and types of the form � ptr to pointers� � Functions swap� reverse� and
swapsections given above are polymorphic� swap has type

�� � � ptr � � ptr � ��

reverse has type

�� � � ptr � int � unit �

and swapsections has type

�� � � ptr � int � int � unit �

Type unit � which appears in the types of reverse and swapsections� is a
degenerate type containing only the value unit� it serves as the type of con�
structs� like while loops� that do not produce a useful value� Notice that pointer
and array types are unied as in C� Also� variable and pointer types are related
by symmetric typing rules for � and ��

if e � � var � then �e � � ptr �

and

if e � � ptr � then �e � � var �

� We use ptr rather than ref to avoid confusion with C�� and ML references�
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Note that dereferencing in Polymorphic C di�ers from dereferencing in Stan�
dard ML� where if e � � ref � then �e � � �

Polymorphic C�s types are stratied into three levels� There are the ordinary
� �data types� and � �type schemes� type levels of Damas and Milner�s system
��
� and a new level called phrase types�the terminology is due to Reynolds
���
�containing � types and variable types of the form � var � This strati�
cation enforces the �second�class� status of variables� for example� the return
type of a function must be a data type� so that one cannot write a function
that returns a variable� In contrast� pointer types are included among the data
types� making pointers rst�class values�

��� Achieving Type Soundness in Polymorphic C

Much e�ort has been spent trying to develop sound polymorphic type systems
for imperative extensions of core�ML� Especially well�studied is the problem
of typing Standard ML�s rst�class references ��������������
� The problem is
easier in a language with variables but no references� such as Edinburgh LCF
ML� but subtle problems still arise ��
� The key problem is that a variable can
escape its scope via a lambda abstraction as in

letvar stk �� � 
 in �v� stk �� v �� stk

�This evaluates to a push function that pushes values v onto a stack� imple�
mented as a list� here � 
 denotes the empty list and �� denotes cons�� In this
case� the type system must not allow type variables that occur in the type of
stk to be generalized� or else the list would not be kept homogeneous� Di�erent
mechanisms have been proposed for dealing with this problem �������	


In the context of Polymorphic C� however� we can adopt an especially simple
approach� Because Polymorphic C does not have rst�class functions� it is not
possible to compute a polymorphic value in an interesting way� for example�
we cannot write curried functions� For this reason� we su�er essentially no loss
of language expressiveness by limiting polymorphism to function declarations�

Limiting polymorphism to function declarations ensures the soundness of poly�
morphic generalizations� but pointers present new problems for type sound�
ness� If one is not careful in formulating the semantics� then the type preserva�
tion property may not hold� For example� if a program is allowed to dereference
a pointer to a cell that has been deallocated and then reallocated� then the
value obtained may have the wrong type� For this reason� our natural seman�
tics has been designed to catch all pointer errors�
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� A Formal Description of Polymorphic C

The syntax of Polymorphic C is given by the following grammar�

e ��� x j c j � e j � e j e��e� j

e��e�� j e� � e� j e��e� j

if �e�� fe�g else fe�g j

while �e�� fe�g j

var x � e�� e� j

arr x�e��� e� j

x�x��� � ��xn� fe�g e� j

e�e�� � � � �en�

Meta�variable x ranges over identiers� and c over literals �such as integer
literals and unit�� The expression

x�x��� � ��xn� fe�g e�

is a function declaration� it declares a function x whose scope is e�� The �

operator here denotes only pointer arithmetic� In the full language� � would
be overloaded to denote integer addition as well�

Like C� Polymorphic C has been designed to ensure that function calls can
be implemented on a stack without the use of static links or displays� In C�
this property is achieved by the restriction that functions can only be dened
at top level� Since Polymorphic C allows function declarations anywhere� we
instead impose the restriction that the free identi�ers of any function must be
declared at top level� Roughly speaking� a top�level declaration is one whose
scope extends all the way to the end of the program� For example� in the
program

var n � � � ��
arr a�� � ���
f�x� f� � �g
f�� � ��

the identiers declared at top level are n� a� and f� So the only identiers that
can occur free in f are n and a�
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A subtle di�erence between C and Polymorphic C is that the formal param�
eters of a Polymorphic C function are constants rather than local variables�
Hence the C function f�x� �b	 is equivalent to

f�x� fvar x � x� bg

in Polymorphic C� Also� Polymorphic C cannot directly express C�s internal
static variables� For example� the C declaration

f�x� �static int n � 
� b	

must be written in Polymorphic C as

var n � 
� f�x� fbg

where n has been uniquely renamed�

��� The Type System of Polymorphic C

The types of Polymorphic C are stratied as follows�

� ��� � j int j unit j � ptr j �� � � � � � �n � � �data types�

� ��� �� � � j � �type schemes�

� ��� � j � var �phrase types�

Meta�variable � ranges over type variables� Compared to the type system of
Standard ML ���
� all type variables in Polymorphic C are imperative�

The rules of the type system are given in Figures � and �� It is a deductive
proof system used to assign types to expressions� Typing judgments have the
form

	 � e � �

meaning that expression e has type �� assuming that 	 prescribes phrase types
for the free identiers of e� More precisely� metavariable 	 ranges over identi�er
typings� which are nite functions mapping identiers to phrase types� 	�x� is
the phrase type assigned to x by 	 and 	�x � �
 is a modied identier typing
that assigns phrase type � to x and assigns phrase type 	�x�� to any identier
x� other than x�
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�ident� 	 � x � � if 	�x� � �

�var�id� 	 � x � � var if 	�x� � � var

�lit� 	 � c � int if c is an integer literal

	 � unit � unit

�r�val� 	 � e � � var

	 � e � �

�address� 	 � e � � var

	 � �e � � ptr

�l�val� 	 � e � � ptr

	 � �e � � var

�arith� 	 � e� � � ptr � 	 � e� � int

	 � e��e� � � ptr

�subscript� 	 � e� � � ptr � 	 � e� � int

	 � e��e�� � � var

�assign� 	 � e� � � var � 	 � e� � �

	 � e��e� � �

�compose� 	 � e� � ��� 	 � e� � ��

	 � e��e� � ��

�if� 	 � e� � int � 	 � e� � �� 	 � e� � �

	 � if �e�� fe�g else fe�g � �

�while� 	 � e� � int � 	 � e� � �

	 � while �e�� fe�g � unit

�letvar� 	 � e� � ��� 	�x � �� var 
 � e� � ��

	 � var x � e�� e� � ��

Fig� �� Rules of the Type System �Part ��
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�letarr� 	 � e� � int � 	�x � �� ptr 
 � e� � ��

	 � arr x�e��� e� � ��

�fun� 	�x� � ��� � � � � xn � �n
 � e � �

	�x � Close���� � � � � � �n � ��
 � e� � � �

	 � x�x��� � ��xn� feg e� � � �

�funcall� 	 � e � �� � � � � � �n � ��

	 � e� � ���

� � �

	 � en � �n

	 � e�e�� � � � �en� � �

Fig� �� Rules of the Type System �Part ��

The generalization of a data type � relative to 	� written Close����� is the
type scheme ��� � � � where �� is the set of all type variables occurring free in �
but not in 	� Note the use of Close in rule �fun�� this is what allows functions
to be given polymorphic types�

We say that � � is a generic instance of ��� � � � written ��� � � � � �� if there exists
a substitution S with domain �� such that S� � � �� Note that rule �ident�
allows an identier x to be given any type � that is a generic instance of 	�x��
this is what allows a polymorphic function to be called with di�erent types
of arguments� We extend the denition of � to type schemes by saying that
� � �� if � � � whenever �� � � � Finally� we say that 	 � e � � if 	 � e � �
whenever � � � �

��� The Semantics of Polymorphic C

We now give a natural semantics for Polymorphic C� Before we can do this� we
need to extend the language syntax to include some semantic values� these new
values are the runtime representations of variables� pointers� and functions�

e ��� �a� �� j �a� �� j �x�� � � � � xn� e

Metavariable a here ranges over addresses� which are described below� Expres�
sion �a� �� is a variable and expression �a� �� is a pointer� Intuitively� a variable
or pointer is represented by an address together with a tag bit� which tells
whether it should be implicitly dereferenced or not�thus� variables are im�
plicitly dereferenced and pointers are not� Expression �x�� � � � � xn� e is a lambda

	



abstraction that represents a function with formal parameters x�� � � � � xn and
body e�

One might expect that addresses would just be natural numbers� but that
would not allow the semantics to detect invalid pointer arithmetic� So instead
an address is a pair of natural numbers �i� j� where i is the segment number
and j is the o�set � Intuitively� we put each variable or array into its own
segment� Thus a simple variable has address �i� ��� and an n�element array
has addresses �i� ��� �i� ��� � � � � �i� n � ��� Pointer arithmetic involves only the
o�set of an address� and dereferencing nonexistent or dangling pointers is
detected as a �segmentation fault��

Next we identify the set of values v� consisting of literals� pointers� and lambda
abstractions�

v ��� c j �a� �� j �x�� � � � � xn� e

The result of a successful evaluation is always a value�

Finally� we require the notion of a memory� A memory 
 is a nite function
mapping addresses to values� or to the special results dead and uninit� These
results indicate that the cell with that address has been deallocated or is unini�
tialized� respectively� We write 
�a� for the contents of address a � dom�
��
and we write 
�a �� v
 for the memory that assigns value v to address a� and
value 
�a�� to any address a� other than a� Note that 
�a �� v
 is an update of

 if a � dom�
� and an extension of 
 if a 	� dom�
��

We can now dene the evaluation relation


 � e
 v� 
�

which asserts that evaluating closed expression e in memory 
 results in value
v and new memory 
�� The evaluation rules are given in Figures � and ��

We write �e��x
e to denote the capture�avoiding substitution of e� for all
free occurrences of x in e� Note the use of substitution in rules �bindvar��
�bindarr�� �bindfun�� and �apply�� It allows us to avoid environments and
closures in the semantics� so that the result of evaluating a Polymorphic C
expression is just another Polymorphic C expression� This is made possible by
the �exible syntax of the language and the fact that only closed expressions
are ever evaluated during the evaluation of a closed expression�

We remark that rule �apply� species that function arguments are evaluated
left to right� C leaves the evaluation order unspecied� Also� note that if there
were no � operator� there would be no need to specify in rule �bindvar� that

��



�val� 
 � v 
 v� 


�contents� a � dom�
� and 
�a� is a value


 � �a� �� 
 
�a�� 


�deref� 
 � e
 �a� ��� 
�

a � dom�
�� and 
��a� is a value


 � �e
 
��a�� 
�

�ref� 
 � ��a� ��
 �a� ��� 



 � e
 �a� ��� 
�


 � ��e
 �a� ��� 
�

�offset� 
 � e� 
 ��i� j�� ��� 
�


� � e� 
 n� 
� �n an integer�


 � e��e� 
 ��i� j � n�� ��� 
�

�update� 
 � e
 v� 
�

a � dom�
�� and 
��a� 	� dead


 � �a� ���e
 v� 
��a �� v



 � e� 
 �a� ��� 
�


� � e� 
 v� 
�

a � dom�
�� and 
��a� 	� dead


 � �e��e� 
 v� 
��a �� v


�sequence� 
 � e� 
 v�� 
�


� � e� 
 v�� 
�


 � e��e� 
 v�� 
�

�branch� 
 � e� 
 n� 
� �n a nonzero integer�


� � e� 
 v� 
�


 � if �e�� fe�g else fe�g 
 v� 
�


 � e� 
 
� 
�


� � e� 
 v� 
�


 � if �e�� fe�g else fe�g 
 v� 
�

Fig� �� The Evaluation Rules �Part ��
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�loop� 
 � e� 
 
� 
�


 � while �e�� fe�g 
 unit� 
�


 � e� 
 n� 
� �n a nonzero integer�


� � e� 
 v� 
�


� � while �e�� fe�g 
 unit� 
�


 � while �e�� fe�g 
 unit� 
�

�bindvar� 
 � e� 
 v�� 
�

�i� �� 	� dom�
��


���i� �� �� v�
 � ���i� ��� ���x
e� 
 v�� 
�


 � var x � e�� e� 
 v�� 
���i� �� �� dead


�bindarr� 
 � e� 
 n� 
� �n a positive integer�

�i� �� 	� dom�
��


���i� ��� � � � � �i� n� �� �� uninit� � � � �uninit
 �

���i� ��� ���x
e� 
 v�� 
�


 � arr x�e��� e� 


v�� 
���i� ��� � � � � �i� n� �� �� dead� � � � �dead


�bindfun� 
 � ��x�� � � � � xn� e�x
e
� 
 v� 
�


 � x�x��� � ��xn� feg e� 
 v� 
�

�apply� 
 � e
 �x�� � � � � xn� e
�� 
�


� � e� 
 v�� 
�

� � �


n � en 
 vn� 
n��


n�� � �v�� � � � � vn�x�� � � � � xn
e
� 
 v� 
�


 � e�e�� � � � �en�
 v� 
�

Fig� �� The Evaluation Rules �Part ��

a variable dies at the end of its scope� it would simply become unreachable at
that point �and its storage could be reused��

Note that a successful evaluation always produces a value and a memory�

Lemma � If 
 � e
 v� 
�	 then v is a value and 
� is a memory�

PROOF� By induction on the structure of the derivation� �

��



� Type Preservation

We now turn to the question of the soundness of our type system� We begin
in this section by using the framework of Harper ��
 to prove that our type
system satises the type preservation property �sometimes called the subject
reduction property�� This property basically asserts that types are preserved
across evaluations� that is� if an expression of type � evaluates successfully� it
produces a value of type � � But before we can do this� we need to extend our
typing rules so that we can type the semantic values �variables� pointers� and
lambda abstractions� introduced in Section ����

Typing a variable �a� �� or a pointer �a� �� clearly requires information about
the type of value stored at address a� this information is provided by an
address typing �� One might expect an address typing to map addresses to data
types� This turns out not to work� however� because a well�typed program can
produce as its value a nonexistent pointer� and such pointers must therefore
be typable if type preservation is to hold� For example� the program

arr a�
�� a��

is well typed and evaluates to ���� ���� ��� a nonexistent pointer� This leads us
to dene an address typing � to be a nite function mapping segment numbers
to data types� The notational conventions for address typings are like those
for identier typings�

We now modify our typing judgments to include an address typing�

�� 	 � e � �

All of the rules given previously in Figures � and � need to be extended
to include address typings� and we also add the new typing rules given in
Figure �� Furthermore� Figure � includes an updated version of rule �fun�
from Figure �� In addition to including an address typing �� the new rule
replaces Close� with Close��� � which does not generalize type variables that
are free in either � or in 	�

To prove the type preservation theorem� we require a number of lemmas that
establish some useful properties of the type system� We begin with a basic
lemma that shows that our type system types closed values reasonably�it
shows that any closed value of some type has the form that one would expect�
It also shows that a closed expression of type � var can have only two possible
forms� �Note that � here denotes an empty identier typing��

��



�var� �� 	 � ��i� j�� �� � � var if ��i� � �

�ptr� �� 	 � ��i� j�� �� � � ptr if ��i� � �

���intro� �� 	�x� � ��� � � � � xn � �n
 � e � �

�� 	 � �x�� � � � � xn� e � �� � � � � � �n � �

�fun� �� 	�x� � ��� � � � � xn � �n
 � e � �

�� 	�x � Close������ � � � � � �n � ��
 � e� � � �

�� 	 � x�x��� � ��xn� feg e� � � �

Fig� �� New Rules for Typing Semantic Values

Lemma � �Correct Forms� Suppose �� � � v � � � Then


 if � is int	 then v is an integer literal	

 if � is unit 	 then v is unit	

 if � is � � ptr 	 then v is of the form ��i� j�� ��	 and

 if � is �� � � � � � �n � � �	 then v is of the form �x�� � � � � xn�e�

And if �� � � e � � var	 then e is of the form ��i� j�� �� or of the form �e��

PROOF� Immediate from inspection of the typing rules� �Note that the last
part of the lemma assumes that array subscripting is syntactic sugar�� �

A consequence of the last part of this lemma is that if �� � � e � � and e is not
of the form ��i� j�� �� or �e�� then the typing derivation cannot end with rule
�r�val�� So the typing rules� for the most part� remain syntax directed�

The fact that variables can have only two possible forms is also exploited in
our evaluation rules� specically within rules �ref� and �update� of Figure ��
In particular� we are able to dene the semantics of � and � without dening
an auxiliary relation for evaluation in �L�value� contexts� contrast our rules
with those given in ��
�

We continue with some basic lemmas showing that typings are preserved under
substitutions and under extensions to the address and identier typings�

Lemma � �Type Substitution� If �� 	 � e � � 	 then for any substitution
S	 S��S	 � e � S� 	 and the latter typing has a derivation no higher than the
former�

PROOF� By induction on the structure of the derivation of �� 	 � e � � � �

��



Lemma � �Super�uousness� Suppose that �� 	 � e � � � If i 	� dom���	 then
��i � � �
� 	 � e � � 	 and if x 	� dom�	�	 then �� 	�x � �
 � e � � �

PROOF� By induction on the height of the derivation of �� 	 � e � � � The
only way that adding an extra assumption can cause problems is by adding
more free type variables to � or 	� thereby preventing Close from generalizing
such variables in �fun� steps� If this happens� we must rename such variables
in the original derivation before adding the extra assumption� By the Type
Substitution Lemma� we can do this renaming and the height of the derivation
is not increased� �

Lemma 	 �Substitution� If �� 	 � e � � and �� 	�x � �
 � e� � � 	 then
�� 	 � �e�x
e� � � �

PROOF� Assume that the bound identiers of e� are renamed as necessary
to ensure that no identier occurring in e occurs bound in e�� Then at every
use of �ident� or �var�id� on x in the derivation of �� 	�x � �
 � e� � � � we can
splice in the appropriate derivation for e� There may be extra assumptions
around at that point� but by the Super�uousness Lemma� they do not cause
problems� �

Lemma 
 ���intro� If �� 	 � e � � and ��� � � � � �n do not occur free in � or
in 		 then �� 	 � e � ���� � � � � �n � � �

PROOF� This lemma is a simple corollary to the Type Substitution Lemma�
Suppose that ��� � � � � �� Then there exists a substitution S � ������
 such that
S� � � �� By the Type Substitution Lemma� S��S	 � e � S� � Hence� since the
�� are not free in � or in 	� �� 	 � e � � �� �

We now return to type preservation� Roughly speaking� we wish to show that
if closed program e has type � under address typing �� and evaluates under
memory 
 to v� then v also has type � � But since e can allocate addresses
and these can occur in v� we cannot show that v has type � under ��we can
only show that v has type � under some address typing �� that extends �� �We
denote ��� extends �� by � � ���� Also� we need to assume that � is consistent
with 
�for example� if ��i� � int � then 
 needs to store integers in segment
i� Precisely� we dene 
 � � if

�i� dom��� � fi j �i� �� � dom�
�g� and
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�ii� for all �i� j� such that 
��i� j�� is a value� � � 
��i� j�� � ��i��

Note that � must give a type to uninitialized and dead addresses of 
� but the
type can be anything� We can now prove the type preservation theorem�

Theorem � �Type Preservation� If 
 � e 
 v� 
�	 �� � � e � � 	 and 
 � �	
then there exists �� such that � � ��	 
� � ��	 and ��� � � v � � �

PROOF� By induction on the structure of the derivation of 
 � e 
 v� 
��
Here we just show the �bindvar� and �bindfun� cases� the remaining cases
are similar�

�bindvar�� The evaluation must end with


 � e� 
 v�� 
�

�i� �� 	� dom�
��


���i� �� �� v�
 � ���i� ��� ���x
e� 
 v�� 
�


 � var x � e�� e� 
 v�� 
���i� �� �� dead


while the typing must end with �letvar��

�� � � e� � ��
�� �x � �� var 
 � e� � ��

�� � � var x � e�� e� � ��

and 
 � �� By induction� there exists �� such that � � ��� 
� � ��� and
��� � � v� � ��� Since 
� � �� and �i� �� 	� dom�
��� also i 	� dom����� So
�� � ���i � ��
� By rule �var��

���i � ��
� � � ��i� ��� �� � �� var

and by Lemma ��

���i � ��
� �x � �� var 
 � e� � ��

So we can apply Lemma � to get

���i � ��
� � � ���i� ��� ���x
e� � ��

Also� 
���i� �� �� v�
 � ���i � ��
� So by a second use of induction� there exists
�� such that ���i � ��
 � ��� 
� � ��� and ��� � � v� � ���

��



It only remains to show that 
���i� �� �� dead
 � ��� But this follows immedi�
ately from 
� � �

��

Remark  What would go wrong if we simply removed the deallocated ad�
dress �i� �� from the domain of the nal memory� rather than marking it dead 
Well� with the current denition of 
 � �� we would then be forced to remove i
from the nal address typing� But then 
�� i � ��� i would fail� if there were
any dangling pointers ��i� j�� �� in the range of 
� � i� If� instead� we allowed
�� to retain the typing for i� then the next time that �i� �� were allocated we
would have to change the typing for i� rather than extend the address typing�

�bindfun�� The evaluation must end with


 � ��x�� � � � � xn� e�x
e
� 
 v� 
�


 � x�x��� � ��xn� feg e� 
 v� 
�

while the typing must end with �fun��

�� �x� � ��� � � � � xn � �n
 � e � �

�� �x � Close������ � � � � � �n � ��
 � e� � � �

�� � � x�x��� � ��xn� feg e� � � �

and 
 � �� By rule ���intro��

�� � � �x�� � � � � xn� e � �� � � � � � �n � �

and so by Lemma ��

�� � � �x�� � � � � xn� e � Close������ � � � � � �n � ��

Therefore� by Lemma �� �� � � ��x�� � � � � xn� e�x
e
� � � �� So by induction� there

exists �� such that � � ��� 
� � ��� and �� � v � � �� �

	 Type Soundness

The type preservation property does not by itself ensure that a type system
is sensible� For example� a type system that assigns every type to every ex�
pression trivially satises the type preservation property� even though such a
type system is useless� The main limitation of type preservation is that it only
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applies to well�typed expressions that evaluate successfully� Really we would
like to be able to say something about what happens when we attempt to
evaluate an arbitrary well�typed expression�

One approach to strengthening type preservation �used by Gunter ��
 and
Harper �	
� for example� is to augment the natural semantics with rules spec�
ifying that certain expressions evaluate to a special value� TypeError� which
has no type� For example� an attempt to dereference a value other than a
pointer would evaluate to TypeError� Then� by showing that type preser�
vation holds for the augmented evaluation rules� we get that a well�typed
expression cannot evaluate to TypeError� Hence any of the errors that lead
to TypeError cannot occur in the evaluation of a well�typed expression� A
drawback to this approach is the need to augment the natural semantics� But�
more seriously� this approach does not give us as much information as we
would like� It tells us that certain errors will not arise during the evaluation
of well�typed expression� but it leaves open the possibility that there are other
errors that we have neglected to check for in the augmented natural semantics�

Another approach is to use a di�erent form of semantics than natural seman�
tics� This is the approach advocated by Wright and Felleisen ���
� who use
a small�step structured operational semantics to prove type soundness for a
number of extensions of ML� However� we nd natural semantics to be much
more natural and appealing than small�step structured operational semantics�
particularly for languages with variables that have bounded lifetimes� �For
example� in Ozgen�s proposed small�step semantics for Polymorphic C ���
�
quite subtle mechanisms are employed to deallocate cells at the correct time��
Gunter and Remy ��
 also propose an alternative to natural semantics� which
they call partial proof semantics�

What we propose here is di�erent� We argue that one can show a good type
soundness theorem for a language� like Polymorphic C� dened using natural
semantics� The trouble with natural semantics is that it denes only complete
program executions� which are represented by derivation trees� But for a good
type soundness theorem� we need a notion of an attempted execution of a
program� which may of course fail in various ways� We argue� however� that a
natural semantics gives rise in a natural way to a transition semantics� which
we call a natural transition semantics� that provides the needed notion of an
attempted program execution� �

The basic idea is that a program execution is a sequence of partial derivation
trees� that may or may not eventually reach a complete derivation tree� In a
partial derivation tree� some of the nodes may be labeled with pending judg�
ments� which represent expressions that need to be evaluated in the program

� See ���� for a slightly di�erent formulation of natural transition semantics� there�
natural transition semantics is applied to a problem of computer security�
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execution� A pending judgment is of the form 
 � e
 � �In contrast� we refer
to ordinary judgments 
 � e
 v� 
� as complete judgments��

Before we dene partial derivation trees precisely� we need to make a few
comments about the evaluation rules in a natural semantics� First� note that
natural semantics rules are actually rule schemas� whose metavariables are
instantiated in any use of the rule� Second� note that the hypotheses of each
rule are either evaluation judgments 
 � e
 v� 
� or boolean conditions� such
as the condition a � dom�
� in rule �contents�� �Such boolean conditions
are regarded as complete judgements�� Finally� note that in some hypotheses
an evaluation judgment includes an implicit boolean condition� For example�
the rst hypothesis of rule �deref� is


 � e
 �a� ��� 
�

This hypothesis is really an abbreviation for two hypotheses�


 � e
 v� 
�

and

v is of the form �a� ��

Assume henceforth that we use the unabbreviated forms in derivation trees�

We want partial derivation trees to be limited to the trees that can arise in
a systematic attempt to build a complete derivation tree� this constrains the
form that such a tree can have� Precisely�

De�nition � A tree T whose nodes are labeled with �partial or complete�
judgments is a partial derivation tree if it satis�es the following two conditions

�i� If a node in T is labeled with a complete judgment J	 then the subtree
rooted at that node is a complete derivation tree for J�

�ii� If a node in T is labeled with a pending judgment 
 � e
 and the node
has k children	 where k � �	 then there is an instance of an evaluation
rule that has the form

J� J� � � � Jn


 � e
 v� 
�

where n � k	 and the labels on the children are J�� J�� � � � � Jk	 respectively	
with possibly one exception if Jk is 
k � ek 
 vk� 


�
k	 then the kth child

may alternatively be labeled with the pending judgment 
k � ek 
 �

�	



One may readily see that a partial derivation tree can have at most one pending
judgment on each level� which must be the rightmost node of the level� and
whose parent must also be a pending judgment�

Next we dene transitions� based on the rules of the natural semantics� that
describe how one partial derivation tree can be transformed into another�
Suppose that there is an instance of an evaluation rule that has the form

J� J� � � � Jn


 � e
 v� 
�

where each hypothesis Ji is either an evaluation judgment 
i � ei 
 vi� 

�
i or

else a boolean condition Bi�

The transformations resulting from this rule are dened as follows�

Suppose that a partial derivation tree T contains a node N labeled with the
pending judgment 
 � e 
 and that the children of N are labeled with
the complete judgments J�� J�� � � � � Jk where �  k�
! Suppose k  n� Then if Jk�� is of the form 
k�� � ek�� 
 vk��� 


�
k��� we

can transform T by adding another child to N � labeled with the pending
judgment 
k�� � ek�� 
 � And if Jk�� is a boolean condition Bk�� that
is true� we can transform T by adding another child to N � labeled with
Bk���

! Now suppose k � n� Then we can transform T by replacing the label on
N with the complete judgement 
 � e
 v� 
��

We write T �� T � if partial derivation tree T can be transformed in one step
to T �� As usual� ��� denotes the re�exive� transitive closure of ���

Remark �� We remark that� in the case of Polymorphic C� the transforma�
tion relation thus dened is almost deterministic� In particular� although there
are two evaluation rules for if �e�� fe�g else fe�g and while �e�� fe�g�
there is no ambiguity� since we need not choose which rule is being applied
until after the guard e� has been evaluated� The only nondeterminism in the
transformation relation is in rules �bindvar� and �bindarr�� The second hy�
pothesis of both rules is �i� �� 	� dom�
��� and here metavariable i is not bound
deterministically� But� of course� this nondeterministic choice of an address for
a newly�allocated variable or array is of no importance� �

A key property of �� is that it always transforms a partial derivation tree
into another partial derivation tree�

Lemma �� If T is a partial derivation tree and T �� T �	 then T � is also a
partial derivation tree�

��



PROOF� Straightforward� �

The transformation rules give us the desired notion of program execution� to
execute e in memory 
� we start with the tree T� which consists of a single
root node labeled with the pending judgment 
 � e 
 � and then we apply
the transformations� generating a sequence of partial derivation trees�

T� �� T� �� T� �� T� �� � � �

More precisely� we dene an execution of program e in memory 
 to be a
possibly innite sequence of partial derivation trees T�� T�� T�� � � � such that

! T� is a one�node tree labeled with 
 � e
 �
! for all i � �� Ti �� Ti�� �unless Ti is the last tree in the sequence�� and
! if the sequence has a last tree Tn� then there is no tree T such that Tn �� T �

Note that there are three possible outcomes to an execution�

�i� The sequence ends with a complete derivation tree� This is a successful
execution�

�ii� The sequence is innite� This is a nonterminating execution�
�iii� The sequence ends with a tree Tn that contains a pending judgment but

has no successor� This is an aborted execution�

Our Type Soundness theorem will show that� for well�typed programs� aborted
execution can arise only from one of a specic set of errors�

But rst� we argue that our notion of execution is correct� Let us write �J 

to denote the one�node tree labeled with J � The soundness of our notion of
execution is given by the following lemma�

Lemma �� If �
 � e 
 
 ��� T 	 where T contains no pending judgments	
then T is a complete derivation tree for a judgment of the form 
 � e
 v� 
��

PROOF� By Lemma ��� T is a partial derivation tree� So� since T contains
no pending judgments� T is a complete derivation tree for the judgment that
labels its root� And this judgment must be of the form 
 � e
 v� 
�� because
the initial tree has a root labeled with 
 � e 
 and �as can be seen by
inspecting the denition of ��� the only transformation that changes the
label on a node changes a label of the form 
 � e 
 to a label of the form

 � e
 v� 
�� �

��



Next we show that our notion of execution is complete�

Lemma �� If 
 � e
 v� 
� and T is a complete derivation tree for 
 � e

v� 
�	 then �
 � e
 
 ��� T �

PROOF� By induction on the structure of the derivation of 
 � e
 v� 
�� �

Remark �� This lemma shows that if 
 � e
 v� 
�� then there is a success�
ful execution of e in 
� But it does not show that every execution of e in 
 is
successful� With an arbitrary natural semantics� this need not be so� For ex�
ample� in a language with a nondeterministic choice operator� some executions
of e in 
 may be successful� others may be nonterminating� and others may
abort� But in Polymorphic C� since �� is essentially deterministic� a stronger
result should hold� �

Now that we have a notion of program execution� we again turn to Poly�
morphic C and consider what we can say about the executions of well�typed
Polymorphic C programs�

De�nition �	 A pending judgment 
 � e
 is well typed i� there exist an
address typing � and a type � such that 
 � � and �� � � e � � � Also	 a partial
derivation tree T is well typed i� every pending judgment in it is well typed�

Roughly speaking� the combination of the Type Preservation theorem and the
Correct Forms lemma �Lemma �� allows us to characterize the forms of expres�
sions that will be encountered during the execution of a well�typed program�
This allows us to characterize what can go wrong during the execution� Here
is the key type soundness result�

Theorem �
 �Progress� Let T be a well�typed partial derivation tree that
contains at least one pending judgment� If T �� T �	 then T � is well typed�
Furthermore	 there exists T � such that T �� T �	 unless T contains one of the
following errors

E�� A read or write to a dead address�
E�� A read or write to an address with an invalid o�set�
E�� A read of an uninitialized address�
E�� A declaration of an array of size � or less�

PROOF� Let N be the uppermost node in T that is labeled with a pending
judgment� say 
 � e 
 � Then any transformation on T must occur at this
node� We just consider all possible forms of expression e� Here we just give
the case e��e�� the other cases are quite similar�
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Since T is well typed� the pending judgment 
 � e��e� 
 is well typed� and
so there exist � and � such that 
 � � and �� � � e��e� � � � The latter typing
must be by �assign��

�� � � e� � � var

�� � � e� � �

�� � � e��e� � �

By the Correct Forms lemma� e� must be of the form ��i� j�� �� or else of the
form �e��� So� simplifying notation a bit� the pending judgment that labels N
has the form 
 � �a� ���e 
 or 
 � �e��e� 
 � We consider these two cases
in turn�

If the label of N is 
 � �a� ���e 
 � where 
 � � and �� � � �a� ���e � � � then
the typing must end with �assign��

�� � � �a� �� � � var

�� � � e � �

�� � � �a� ���e � �

So by �var�� a is of the form �i� j�� where ��i� � � �

Now� if N has no children� then �using rule �update��� we can transform T
by adding to N a new child� labeled with the pending judgment 
 � e 
 �
Furthermore� this is the only possible transformation� and since �� � � e � � �
this new pending judgment is well typed�

If N has exactly one child� then by condition �ii� of the denition of partial
derivation tree and the fact that N is the uppermost node labeled with a
pending judgment� it must be that the child of N is labeled with a judgment
of the form 
 � e
 v� 
�� In this case� we may transform T by adding a new
child to N labeled with the boolean condition

a � dom�
�� and 
��a� 	� dead

provided that this condition is true�

Now� by the Type Preservation theorem� there exists �� such that � � ���

� � ��� and ��� � � v � � � Hence ���i� � � � and so �i� �� � dom�
��� So if
�i� j� 	� dom�
��� then T contains error E�� a write to an address with an
invalid o�set j� And if 
���i� j�� � dead� then T contains error E�� a write to
a dead address� Hence we can transform T unless it contains error E� or E��
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Finally� if N has two children� then they must be labeled with the hypotheses
of rule �update�� and so we can transform T by replacing the label of N with

 � �a� ���e
 v� 
��a �� v
�

If the label of N is 
 � �e��e� 
 � where 
 � � and �� � � �e��e� � � � then the
typing must end with �l�val� followed by �assign��

�� � � e� � � ptr

�� � � �e� � � var

�� � � e� � �

�� � � �e��e� � �

Now� if N has no children� then the only applicable transformation �using rule
�update�� is to add to N a new child� labeled with the pending judgment

 � e� 
 � Since �� � � e� � � ptr � this new pending judgment is well typed�

If N has exactly one child� then by condition �ii� of the denition of partial
derivation tree and the fact that N is the uppermost node labeled with a
pending judgment� it must be that the child of N is labeled with a judgment
of the form 
 � e� 
 v�� 
��

By the Type Preservation theorem� there exists �� such that � � ��� 
� � ���
and ��� � � v� � � ptr � So by the Correct Form lemma� v� is of the form
��i� j�� ��� Hence� we may transform T by adding a new child to N labeled
with the boolean condition

v� is of the form �a� ���

since this is guaranteed to be true� Also� by �ptr�� ���i� � � �

If N has two children� then we can transform T by adding a new child labeled
with the pending judgment 
� � e� 
 � By the Super�uousness Lemma�
��� � � e� � � � so this pending judgment is well typed�

If N has three children� then the third child of N must be labeled with a
judgment of the form 
� � e� 
 v� 
�� In this case� we may transform T by
adding a new child to N labeled with the boolean condition

a � dom�
�� and 
��a� 	� dead

provided that this condition is true�

As before� by the Type Preservation theorem� there exists �� such that �� � ���
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� � ��� and ��� � � v � � � Hence ���i� � � � and so �i� �� � dom�
��� So if
�i� j� 	� dom�
��� then T contains error E�� a write to an address with an
invalid o�set j� And if 
���i� j�� � dead� then T contains error E�� a write to
a dead address� Hence we can transform T unless it contains error E� or E��

Finally� if N has four children� then they must be labeled with the hypotheses
of rule �update�� and so we can transform T by replacing the label of N with

 � �e��e� 
 v� 
��a �� v
� �

The Progress theorem gives our Type Soundness result as a simple corollary�

Corollary �� �Type Soundness� If �� � � e � � and 
 � �	 then any execu�
tion of e in 
 either

�i� succeeds	
�ii� does not terminate	 or
�iii� aborts due to one of the errors E�	 E�	 E�	 or E��

PROOF� Let T� �� T� �� T� �� � � � be an execution of e in 
� Then
T� � �
 � e 
 
� which is well typed by assumption� So� by the Progress
theorem� every Ti is well typed� and furthermore� if Ti contains a pending
judgment� then it has a successor unless it contains one of the errors E�� E��
E�� or E�� So� if the execution is nite� it either ends with a complete derivation
tree or with a tree containing one of the errors E�� E�� E�� or E�� �


 Discussion

One of the most desirable properties of a programming language implemen�
tation is that it guarantee the safe execution of programs� This means that a
program�s execution is always faithful to the language�s semantics� even if the
program is erroneous� C is� of course� a notoriously unsafe language� in typical
implementations� pointer errors can cause a running C program to overwrite
its runtime stack� resulting in arbitrarily bizarre behavior� Sometimes this
results in a �Segmentation fault�core dumped� message �though this may
occur far after the original error�� worse� at other times the program appears
to run successfully� even though the results are entirely invalid�

Three techniques can be used to provide safe execution�

�i� The language can be designed so that some errors are impossible� For ex�
ample� a language can dene default initializations for variables� thereby
preventing uninitialized variable errors�
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�ii� The language can perform compile�time checks� such as type checks� to
guard against other errors�

�iii� Finally� runtime checks can be used to catch other errors�

In the case of Polymorphic C� the Type Soundness theorem �Corollary ���
species exactly what runtime checks are needed to guarantee safe execution�
The trouble is� except for error E� �declaring an array of size � or less�� typical
C implementations do not make these checks� What would we expect� then�
of implementations of Polymorphic C Well� it is actually not too di"cult to
check for error E� �reading or writing an address with an invalid o�set��for
each pointer� we must maintain at runtime the range of permissible o�sets�
And error E� �reading an uninitialized address� can also be checked fairly
e"ciently� by initializing array cells with a special uninit value� That leaves
only error E� �reading or writing a dead address�� This� of course� is very
di"cult to check e"ciently� In our natural semantics� we make this check
possible by never reusing any cells�

Hence we reach a point of trade�o�s� We can directly implement our natural
semantics� getting a safe but ine"cient �debugging� implementation of Poly�
morphic C� Or we can follow usual C practice and build a stack�based imple�
mentation that leaves errors E� �and perhaps E� and E� as well� unchecked�
achieving e"ciency at the expense of safety� � In this case� the Type Soundness
theorem at least tells us what kinds of errors we need to look for in debugging
our programs� As a nal alternative� we can change the semantics of Poly�
morphic C by giving cells unbounded lifetimes �thereby necessitating garbage
collection�� as was done in the design of Java ��
�

� Conclusion

Advanced polymorphic type systems have come to play a central role in the
world of functional programming� but so far have had little impact on tradi�
tional imperative programming� We assert that an ML�style polymorphic type
system can be applied fruitfully to a �real�world� language like C� bringing to
it both the expressiveness of polymorphism as well as a rigorous characteriza�
tion of the behavior of well�typed programs�

Future work on Polymorphic C includes the development of e"cient imple�
mentations of polymorphism �perhaps using the work of ���������
� and the
extension of the language to include other features of C� especially structures�

� More precisely� allocating variables and arrays on a stack in Polymorphic C �or in
any language with � or that uni�es arrays and pointers� causes the type preservation
property to fail�

��
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