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Abstract

We prove the soundness of a polymorphic type system for a language with

variables� assignments� and �rst�class functions� As a corollary� this proves the

soundness of the Edinburgh LCF ML rules for typing variables and assignments�

thereby settling a long�standing open problem�

Keywords� Type theory� formal semantics� variables and assignment�

� Introduction

A type system is presented for a language with a letvar construct to allocate variables�
which are implicitly dereferenced and whose addresses are not �rst�class values� as in
traditional imperative languages� Edinburgh LCF ML �GMW��	 had such a construct�
which it called letref� We show that the restriction that a variable must have weak
type only if it is assigned to inside a ��abstraction within its scope is sound� As a
corollary then� LCF ML restriction 
�i��b� �pg� 
� �GMW��	�� which requires a variable
to have a monotype �a type with no type variables� if the variable is assigned to inside
a ��abstraction within its scope� is also sound since every monotype is weak� This
restriction was never proved sound� according to Tofte �Tof��	�

� The Type System

The syntax of the language we consider is core ML with a letvar construct and as�
signment� Following Tofte �Tof��	� we distinguish a subset of the expressions called
Values�
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�Expressions� e ��� v j l j e� e� j e� �� e� j
let x � e� in e� j
letvar x �� e� in e�

�Values� v ��� x j unit j �x� e

Meta�variable x ranges over identi�ers� The letvar construct binds x to a new cell
initialized to the value of e�� The scope of the binding is e� and the lifetime of the cell
is unbounded� Dereferencing of variables created with letvar is implicit� Locations are
denoted by meta�variable l and are not values�

The types of the language are strati�ed as follows�

� ��� � j unit j � � � � �data types�
� ��� �� � � j � �type schemes�
� ��� � j � var �phrase types�

The meta�variable � ranges over type variables� Type variables are partitioned into weak
and strong type variables� written � and � respectively� These variables correspond to
the imperative and applicative type variables respectively of Tofte�s system� We say
that a type scheme � is weak i� � is unquanti�ed and every type variable in � is weak�
Type � var is the type of locations storing values of type � �

The rules of the type system are formulated as they are in Harper�s system �Har�
	
and are given in Figure �� It is a deductive proof system used to assign types to
expressions� Typing judgements have the form

�� � � e � �

meaning that expression e has type � assuming that � prescribes type schemes for
locations in e and � prescribes phrase types for the free identi�ers of e� Meta�variable
� ranges over identi�er typings� An identi�er typing � is a �nite function mapping
identi�ers to phrase types� ��x� is the phrase type assigned to x by � and ��x � �	
assigns phrase type � to x and to variable x� �� x� phrase type ��x���

Meta�variable � ranges over location typings� Unlike other approaches �Tof��� Har�
�
SmVo��	� a location typing here is a �nite function mapping locations to type schemes�
This is the most novel aspect of the type system� The notational conventions for location
typings are similar to those for identi�er typings�

The generalization of a type scheme � relative to � and �� written Close��� ���� is
the type scheme ��� � �� where �� is the set of all type variables occurring free in � but
not in � or in �� We write � � e � � and Close���� when � � �� A restricted form of
generalization� written AppClose������� is de�ned to be the same as Close������ except
that only strong type variables are generalized� any weak ones remain free� As in Tofte
�Tof��	� the generic instance relation ��� of Damas and Milner �DaM�
	 is restricted by
requiring universally quanti�ed weak type variables to be instantiated only with weak
types�

Finally� we write �� � � e � � i� �� � � e � � whenever � � � �

� Semantics and Soundness

In this section� we establish type soundness using the framework of Harper �Har�
	� First
we give a structured operational semantics for the language� An expression is evaluated






�var� �� � � x � � var ��x� � � var

�ident� �� � � x � � ��x� � �

�varloc� �� � � l � � var ��l� � �

�unit� �� � � unit � unit

���intro� �� ��x � ��	 � e � ��
�� � � �x� e � �� � ��

���elim� �� � � e� � �� � ��� �� � � e� � ��
�� � � e� e� � ��

�let�val� �� � � v � ��� �� ��x � Close�������	 � e � ��
�� � � let x � v in e � ��

�let�ord� �� � � e� � ��� �� ��x � AppClose��� ����	 � e� � ��
�� � � let x � e� in e� � ��

�letvar� �� � � e� � ��� �� ��x � �� var 	 � e� � ��
If x is assigned to in a ��abstraction in e� then �� is weak�
�� � � letvar x �� e� in e� � ��

�r�val� �� � � e � � var
�� � � e � �

�assign� �� � � e� � � var � �� � � e� � �
�� � � e� �� e� � unit

Figure �� Rules of the Type System
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�val� 	 � v � v� 	

�deref� 	 � l � 	�l�� 	

�apply� 	 � e� � �x� e�
�� 	�

	� � e� � v�� 	�

	� � �v�
x	e�� � v� 	�

	 � e� e� � v� 	�

�update� 	 � e� v� 	�

	 � l �� e� unit� 	��l �� v	

�bind� 	 � e� � v�� 	�

	� � �v�
x	e� � v�� 	�

	 � let x � e� in e� � v�� 	�

�bindvar� 	 � e� � v�� 	�

l �	 dom�	��
	��l �� v�	 � �l
x	e� � v�� 	�

	 � letvar x �� e� in e� � v�� 	�

Figure 
� The Evaluation Rules

relative to a memory 	� which is a �nite function from locations to values� The contents
of a location l 	 dom�	� is the value 	�l�� and we write 	�l �� v	 for the memory that
assigns value v to location l� and value 	�l�� to a location l� �� l� Note that 	�l �� v	 is
an update of 	 if l 	 dom�	� and an extension of 	 if l �	 dom�	�� The range of 	 is the
set of all values 	�l�� for l 	 dom�	��

Our evaluation rules are given in Figure 
� They allow us to derive judgements of
the form

	 � e� v� 	�

which is intended to assert that evaluating closed expression e in memory 	 results in
value v and new memory	�� We write �e�
x	e to denote the capture�avoiding substitution
of e� for all free occurrences of x in e� The use of substitution in the rules allows us to
avoid environments and closures in the semantics� so that the result of evaluating an
expression is just another expression�

The basic idea behind showing soundness is to show that if � e � � and � e� v� 	��
then � v � � � a property called subject reduction� But since e can allocate locations and
since these locations can occur in v� the conclusion must actually be that there exists a
location typing �� such that �� � v � � and such that 	� � ��� The latter condition asserts
that �� is consistent with 	�� More precisely we say that 	 � � i� dom�	� � dom��� and
for every l 	 dom�	�� � � 	�l� � ��l��

It is the location typing �� that makes soundness delicate� As observed by Tofte
�Tof��	� we may generalize a type variable � in typing � e � � � only to �nd that � occurs
free in ��� and therefore cannot be generalized in typing �� � v � � � For example� we can






de�ne list reversal as follows�

letvar r �� �x� x in
r �� �x� if x � � 	 then � 	 else �r �tl x�� � �hd x	�
r

end

This expression has type �� � � list � � list in our type system� But when the expression
is evaluated� a location l of type � list � � list is allocated for r and l appears in the
resulting value as well as in the domain of the resulting location typing ���

The solution proposed here is to use the quanti�ed type �� � � list � � list for l in
��� thereby eliminating the free occurrence of �� Of course� it is not always reasonable to
give a location a quanti�ed type� For example� if ��l� � �� � �� �� then the program
l �� not � l can be given type int � int � yet it evaluates to not of type bool � bool � Our
subject reduction theorem allows only read�only locations to be given quanti�ed types�

We now turn to the soundness proof� First we introduce the relevant lemmas�

Lemma ��� �Super�uousness� Suppose that �� � � e � � � If l �	 dom���� then ��l �
�	� � � e � � and if x �	 dom���� then �� ��x � �	 � e � � �

Lemma ��� �Substitution� If �� � � v � � and �� ��x � �	 � e � � � then �� � � �v
x	e �
� � Also� if �� � � l � � var and �� ��x � � var 	 � e � � �� then �� � � �l
x	e � � ��

The preceding two lemmas are straightforward variants of the lemmas given in �Har�
	�
We also need two new lemmas�

Lemma ��� �Strengthening� If ��l � ��	 � e � � and �� � �� then ��l � ��	 � e � ��

Lemma ��	 ��
intro� If � � e � � and � does not occur free in �� then � � e � �� � ��

Finally� we note that in spite of �r�val� our typing rules are essentially �syntax directed��

Lemma ��� ��r�val�
scope� If the derivation of �� � � e � � ends with �r�val�� then
e is an identi�er or a location�

Proof� If the derivation ends with �r�val�� then there must be a derivation of the hy�
pothesis �� � � e � � var � But to show that an expression has a type of the form � var �
there are only two possible rules that can be used� �var� and �varloc�� �The other
rules all give data types to expressions�� So e must either be an identi�er� in the case of
�var�� or a location� in the case of �varloc��

We now give the soundness theorem�

Theorem ��� �Subject Reduction� Suppose

�a� 	 � e� v� 	��
�b� � � e � � �
�c� 	 � �� and
�d� if a location l is assigned to in e� then ��l� is unquanti�ed� also� if l is assigned to

in the range of 	 or in a ��abstraction in e� then ��l� is weak�

�



Then there exists �� such that

�e� � 
 ���
�f� 	� � ���
�g� �� � v � � �
�h� any strong type variable free in �� is free in �� and
�i� if a location l is assigned to in v or in the range of 	�� then ���l� is weak�

Proof� The proof is by induction on the structure of the derivation of 	 � e � v� 	��
Due to space limitations� we present only the most interesting cases� �update� and
�bindvar�� We remark that property �h� above makes the �bind� case routine�

�update�� The evaluation must end with

	 � e� v� 	�

	 � l �� e� unit� 	��l �� v	

and� by Lemma ���� the typing must end with

� � l � � var � � � e � �
� � l �� e � unit

Also� 	 � �� ��l� is unquanti�ed� and if a location l� is assigned to in e� then ��l�� is
unquanti�ed� And if l� is assigned to in the range of 	 or in a ��abstraction in e� then
��l�� is weak� By induction� there exists �� such that

�e� � 
 ���
�f� 	� � ���
�g� �� � v � � �
�h� any strong type variable free in �� is free in �� and
�i� if a location l� is assigned to in v or in the range of 	�� then ���l�� is weak�

Now we must show

�f� 	��l �� v	 � ���
�g� �� � unit � unit �
�i� if a location l� is assigned to in unit or in the range of 	��l �� v	�

then ���l�� is weak�

�g� follows immediately from typing rule �unit�� �i� follows by induction� since if a
location l� is assigned to in the range of 	��l �� v	 then it is assigned to in v or in the
range of 	�� Finally� we consider �f�� the most interesting case� For every l� 	 dom�	��
and l� �� l� we have

�� � 	��l �� v	�l�� � ���l��

by induction� Since � � l � � var � ��l� � � � But since ��l� is unquanti�ed� ��l� � � and
therefore ���l� � � since � 
 ��� Since� by induction� �� � v � � � we have

�� � 	��l �� v	�l� � ���l�

Thus we have 	��l �� v	 � ��� This completes �update��

�



Notice the role of condition �d� in proving �� � 	��l �� v	�l� � ���l� above� Since l is
assigned to in l �� e� ��l� must be unquanti�ed and consequently has only one generic
instance� namely � � Therefore� �� � 	��l �� v	�l� � ���l� follows directly from �� � v � � of
the induction� If ��l� were quanti�ed� then it would not be possible to show �� � v � ���l��
For example� if ��l� � �� � �� �� then on the program l �� not we would have to show
that not has type �� � �� ��

�bindvar�� The evaluation must end with

	 � e� � v�� 	�

l �	 dom�	��
	��l �� v�	 � �l
x	e� � v�� 	�

	 � letvar x �� e� in e� � v�� 	�

and� by Lemma ���� the typing must end with

� � e� � ��
�� �x � �� var 	 � e� � ��
If x is assigned to in a ��abstraction in e� then �� is weak�
� � letvar x �� e� in e� � ��

Also� 	 � � and if a location l� is assigned to in e� or in e�� then ��l�� is unquanti�ed�
And if l� is assigned to in the range of 	 or in a ��abstraction in e� or in e�� then ��l��
is weak� By induction� there exists �� such that

�e� � 
 ���
�f� 	� � ���
�g� �� � v� � ���
�h� any strong type variable free in �� is free in �� and
�i� if a location l� is assigned to in v� or in the range of 	�� then ���l�� is weak�

Since l �	 dom����� �� 
 ���l � ��	� Now� since ���l � ��	 � l � �� var and� by Lemma ����
���l � ��	� �x � �� var 	 � e� � ��� we can apply Lemma ��
 to get

�b� ���l � ��	 � �l
x	e� � ��

We also have� by Lemma ����

�c� 	��l �� v�	 � ���l � ��	

Next� if a location l� is assigned to in �l
x	e�� then either l� is assigned to in e� or l� � l�
In the �rst case we have that ��l�� is unquanti�ed by hypothesis� and so ���l � ��	�l�� is
unquanti�ed� In the second case we have ���l � ��	�l� � ��� which is unquanti�ed� Also�
if l� is assigned to in the range of 	��l �� v�	� then l� is assigned to in v� or in the range of
	�� so by induction ���l�� is weak� and hence ���l � ��	�l�� is weak� since �� 
 ���l � ��	�
Finally� if l� is assigned to in a ��abstraction in �l
x	e�� then either l� is assigned to in
a ��abstraction in e� or l� � l and x is assigned to in a ��abstraction in e�� In the �rst
case� ��l�� is weak by hypothesis� and so ���l � ��	�l

�� is weak� In the second case� we
have �� is weak by the restriction on the �letvar� rule� and so ���l � ��	�l

�� is weak�
Therefore� we have

�



�d� if a location l� is assigned to in �l
x	e�� then ���l � ��	�l�� is unquanti�ed� also�
if l� is assigned to in the range of 	��l �� v�	 or in a ��abstraction in �l
x	e��
then ���l � ��	�l�� is weak�

So by a second use of induction� there exists �� such that

�e� ���l � ��	 
 ���
�f� 	� � ���
�g� �� � v� � ���
�h� any strong type variable free in �� is free in ���l � ��	� and
�i� if a location l� is assigned to in v� or in the range of 	�� then ���l�� is weak�

At this point� �� may contain free strong type variables that are not free in �� namely
those of ��� So we cannot take �� as our �nal location typing� Instead� de�ne �� by

���l�� � AppClose�����l
����

for all l� 	 dom����� Now we must establish

�e� � 
 ���
�f� 	� � �

��
�g� �� � v� � ���
�h� any strong type variable free in �� is free in �� and
�i� if a location l� is assigned to in v� or in the range of 	�� then ���l�� is weak�

To show �e�� note that for any l� 	 dom���� ���l�� � ���l
��� by the de�nition of ���

Since � 
 ��� it follows that � 
 ���
Next we show �f�� Since 	� � ��� we have

�� � 	��l
�� � ���l

��

for any l� 	 dom�	��� Since AppClose���� � � for every �� by applying Lemma ���
repeatedly we get

�� � 	��l
�� � ���l

��

Finally� from Lemma ��
 we get

�� � 	��l
�� � AppClose�����l

����

since any type variables thereby quanti�ed do not occur free in ��� Hence 	� � ���
To get �g�� apply Lemma ��� to �� � v� � ��� And �h� follows immediately from the

de�nition of ��� Finally� for �i� suppose that l� is assigned to in v� or in the range of
	�� By the second use of induction� ���l

�� is weak� Hence ���l�� is weak� since AppClose
quanti�es only strong type variables� This completes �bindvar��

Corollary ��
 Restriction ��i	�b	 of LCF ML 
GMW��
� requiring a variable to have
a monotype if the variable is assigned to in a ��abstraction within its scope� is sound�

Proof� A monotype is a type with no type variables� so every such type is weak� So by
Theorem ���� the LCF ML restriction is sound�
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