
A Type Soundness Proof for Variables in LCF ML y

Dennis Volpano

Department of Computer Science

Naval Postgraduate School

Monterey� CA ������ USA

volpano�cs�nps�navy�mil

Geo�rey Smith

School of Computer Science

Florida International University

Miami� FL ��	��� USA

smithg�
u�edu

Abstract

We prove the soundness of a polymorphic type system for a language with

variables� assignments� and �rst�class functions� As a corollary� this proves the

soundness of the Edinburgh LCF ML rules for typing variables and assignments�

thereby settling a long�standing open problem�

Keywords� Type theory� formal semantics� variables and assignment�

� Introduction

A type system is presented for a language with a letvar construct to allocate variables�
which are implicitly dereferenced and whose addresses are not �rst�class values� as in
traditional imperative languages� Edinburgh LCF ML �GMW��	 had such a construct�
which it called letref� We show that the restriction that a variable must have weak
type only if it is assigned to inside a ��abstraction within its scope is sound� As a
corollary then� LCF ML restriction
�i��b� �pg�
� �GMW��	�� which requires a variable
to have a monotype �a type with no type variables� if the variable is assigned to inside
a ��abstraction within its scope� is also sound since every monotype is weak� This
restriction was never proved sound� according to Tofte �Tof��	�

� The Type System

The syntax of the language we consider is core ML with a letvar construct and as�
signment� Following Tofte �Tof��	� we distinguish a subset of the expressions called
Values�

yAppeared in Information Processing Letters� ������ November �		�� pp
�������
 This material
is based upon activities supported by the National Science Foundation under Agreements No
 CCR

	����	� and CCR
	������
 Any opinions� �ndings� and conclusions or recommendations expressed in
this publication are those of the authors and do not necessarily re�ect the views of the National Science
Foundation

�

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 NOV 1995

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
A Type Soundness Proof for Variables in LCF ML

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Computer Science Naval Postgraduate School Monterey,
CA 93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

�Expressions� e ��� v j l j e� e� j e� �� e� j
let x � e� in e� j
letvar x �� e� in e�

�Values� v ��� x j unit j �x� e

Meta�variable x ranges over identi�ers� The letvar construct binds x to a new cell
initialized to the value of e�� The scope of the binding is e� and the lifetime of the cell
is unbounded� Dereferencing of variables created with letvar is implicit� Locations are
denoted by meta�variable l and are not values�

The types of the language are strati�ed as follows�

� ��� � j unit j � � � � �data types�
� ��� �� � � j � �type schemes�
� ��� � j � var �phrase types�

The meta�variable � ranges over type variables� Type variables are partitioned into weak
and strong type variables� written � and � respectively� These variables correspond to
the imperative and applicative type variables respectively of Tofte�s system� We say
that a type scheme � is weak i� � is unquanti�ed and every type variable in � is weak�
Type � var is the type of locations storing values of type � �

The rules of the type system are formulated as they are in Harper�s system �Har�
	
and are given in Figure �� It is a deductive proof system used to assign types to
expressions� Typing judgements have the form

�� � � e � �

meaning that expression e has type � assuming that � prescribes type schemes for
locations in e and � prescribes phrase types for the free identi�ers of e� Meta�variable
� ranges over identi�er typings� An identi�er typing � is a �nite function mapping
identi�ers to phrase types� ��x� is the phrase type assigned to x by � and ��x � �	
assigns phrase type � to x and to variable x� �� x� phrase type ��x���

Meta�variable � ranges over location typings� Unlike other approaches �Tof��� Har�
�
SmVo��	� a location typing here is a �nite function mapping locations to type schemes�
This is the most novel aspect of the type system� The notational conventions for location
typings are similar to those for identi�er typings�

The generalization of a type scheme � relative to � and �� written Close��� ���� is
the type scheme ��� � �� where �� is the set of all type variables occurring free in � but
not in � or in �� We write � � e � � and Close���� when � � �� A restricted form of
generalization� written AppClose������� is de�ned to be the same as Close������ except
that only strong type variables are generalized� any weak ones remain free� As in Tofte
�Tof��	� the generic instance relation ��� of Damas and Milner �DaM�
	 is restricted by
requiring universally quanti�ed weak type variables to be instantiated only with weak
types�

Finally� we write �� � � e � � i� �� � � e � � whenever � � � �

� Semantics and Soundness

In this section� we establish type soundness using the framework of Harper �Har�
	� First
we give a structured operational semantics for the language� An expression is evaluated

�var� �� � � x � � var ��x� � � var

�ident� �� � � x � � ��x� � �

�varloc� �� � � l � � var ��l� � �

�unit� �� � � unit � unit

���intro� �� ��x � ��	 � e � ��
�� � � �x� e � �� � ��

���elim� �� � � e� � �� � ��� �� � � e� � ��
�� � � e� e� � ��

�let�val� �� � � v � ��� �� ��x � Close�������	 � e � ��
�� � � let x � v in e � ��

�let�ord� �� � � e� � ��� �� ��x � AppClose��� ����	 � e� � ��
�� � � let x � e� in e� � ��

�letvar� �� � � e� � ��� �� ��x � �� var 	 � e� � ��
If x is assigned to in a ��abstraction in e� then �� is weak�
�� � � letvar x �� e� in e� � ��

�r�val� �� � � e � � var
�� � � e � �

�assign� �� � � e� � � var � �� � � e� � �
�� � � e� �� e� � unit

Figure �� Rules of the Type System

�

�val� 	 � v � v� 	

�deref� 	 � l � 	�l�� 	

�apply� 	 � e� � �x� e�
�� 	�

	� � e� � v�� 	�

	� � �v�
x	e�� � v� 	�

	 � e� e� � v� 	�

�update� 	 � e� v� 	�

	 � l �� e� unit� 	��l �� v	

�bind� 	 � e� � v�� 	�

	� � �v�
x	e� � v�� 	�

	 � let x � e� in e� � v�� 	�

�bindvar� 	 � e� � v�� 	�

l �	 dom�	��
	��l �� v�	 � �l
x	e� � v�� 	�

	 � letvar x �� e� in e� � v�� 	�

Figure
� The Evaluation Rules

relative to a memory 	� which is a �nite function from locations to values� The contents
of a location l 	 dom�	� is the value 	�l�� and we write 	�l �� v	 for the memory that
assigns value v to location l� and value 	�l�� to a location l� �� l� Note that 	�l �� v	 is
an update of 	 if l 	 dom�	� and an extension of 	 if l �	 dom�	�� The range of 	 is the
set of all values 	�l�� for l 	 dom�	��

Our evaluation rules are given in Figure
� They allow us to derive judgements of
the form

	 � e� v� 	�

which is intended to assert that evaluating closed expression e in memory 	 results in
value v and new memory	�� We write �e�
x	e to denote the capture�avoiding substitution
of e� for all free occurrences of x in e� The use of substitution in the rules allows us to
avoid environments and closures in the semantics� so that the result of evaluating an
expression is just another expression�

The basic idea behind showing soundness is to show that if � e � � and � e� v� 	��
then � v � � � a property called subject reduction� But since e can allocate locations and
since these locations can occur in v� the conclusion must actually be that there exists a
location typing �� such that �� � v � � and such that 	� � ��� The latter condition asserts
that �� is consistent with 	�� More precisely we say that 	 � � i� dom�	� � dom��� and
for every l 	 dom�	�� � � 	�l� � ��l��

It is the location typing �� that makes soundness delicate� As observed by Tofte
�Tof��	� we may generalize a type variable � in typing � e � � � only to �nd that � occurs
free in ��� and therefore cannot be generalized in typing �� � v � � � For example� we can

de�ne list reversal as follows�

letvar r �� �x� x in
r �� �x� if x � � 	 then � 	 else �r �tl x�� � �hd x	�
r

end

This expression has type �� � � list � � list in our type system� But when the expression
is evaluated� a location l of type � list � � list is allocated for r and l appears in the
resulting value as well as in the domain of the resulting location typing ���

The solution proposed here is to use the quanti�ed type �� � � list � � list for l in
��� thereby eliminating the free occurrence of �� Of course� it is not always reasonable to
give a location a quanti�ed type� For example� if ��l� � �� � �� �� then the program
l �� not � l can be given type int � int � yet it evaluates to not of type bool � bool � Our
subject reduction theorem allows only read�only locations to be given quanti�ed types�

We now turn to the soundness proof� First we introduce the relevant lemmas�

Lemma ��� �Super�uousness� Suppose that �� � � e � � � If l �	 dom���� then ��l �
�	� � � e � � and if x �	 dom���� then �� ��x � �	 � e � � �

Lemma ��� �Substitution� If �� � � v � � and �� ��x � �	 � e � � � then �� � � �v
x	e �
� � Also� if �� � � l � � var and �� ��x � � var 	 � e � � �� then �� � � �l
x	e � � ��

The preceding two lemmas are straightforward variants of the lemmas given in �Har�
	�
We also need two new lemmas�

Lemma ��� �Strengthening� If ��l � ��	 � e � � and �� � �� then ��l � ��	 � e � ��

Lemma ��	 ��
intro� If � � e � � and � does not occur free in �� then � � e � �� � ��

Finally� we note that in spite of �r�val� our typing rules are essentially �syntax directed��

Lemma ��� ��r�val�
scope� If the derivation of �� � � e � � ends with �r�val�� then
e is an identi�er or a location�

Proof� If the derivation ends with �r�val�� then there must be a derivation of the hy�
pothesis �� � � e � � var � But to show that an expression has a type of the form � var �
there are only two possible rules that can be used� �var� and �varloc�� �The other
rules all give data types to expressions�� So e must either be an identi�er� in the case of
�var�� or a location� in the case of �varloc��

We now give the soundness theorem�

Theorem ��� �Subject Reduction� Suppose

�a� 	 � e� v� 	��
�b� � � e � � �
�c� 	 � �� and
�d� if a location l is assigned to in e� then ��l� is unquanti�ed� also� if l is assigned to

in the range of 	 or in a ��abstraction in e� then ��l� is weak�

�

Then there exists �� such that

�e� �
 ���
�f� 	� � ���
�g� �� � v � � �
�h� any strong type variable free in �� is free in �� and
�i� if a location l is assigned to in v or in the range of 	�� then ���l� is weak�

Proof� The proof is by induction on the structure of the derivation of 	 � e � v� 	��
Due to space limitations� we present only the most interesting cases� �update� and
�bindvar�� We remark that property �h� above makes the �bind� case routine�

�update�� The evaluation must end with

	 � e� v� 	�

	 � l �� e� unit� 	��l �� v	

and� by Lemma ���� the typing must end with

� � l � � var � � � e � �
� � l �� e � unit

Also� 	 � �� ��l� is unquanti�ed� and if a location l� is assigned to in e� then ��l�� is
unquanti�ed� And if l� is assigned to in the range of 	 or in a ��abstraction in e� then
��l�� is weak� By induction� there exists �� such that

�e� �
 ���
�f� 	� � ���
�g� �� � v � � �
�h� any strong type variable free in �� is free in �� and
�i� if a location l� is assigned to in v or in the range of 	�� then ���l�� is weak�

Now we must show

�f� 	��l �� v	 � ���
�g� �� � unit � unit �
�i� if a location l� is assigned to in unit or in the range of 	��l �� v	�

then ���l�� is weak�

�g� follows immediately from typing rule �unit�� �i� follows by induction� since if a
location l� is assigned to in the range of 	��l �� v	 then it is assigned to in v or in the
range of 	�� Finally� we consider �f�� the most interesting case� For every l� 	 dom�	��
and l� �� l� we have

�� � 	��l �� v	�l�� � ���l��

by induction� Since � � l � � var � ��l� � � � But since ��l� is unquanti�ed� ��l� � � and
therefore ���l� � � since �
 ��� Since� by induction� �� � v � � � we have

�� � 	��l �� v	�l� � ���l�

Thus we have 	��l �� v	 � ��� This completes �update��

�

Notice the role of condition �d� in proving �� � 	��l �� v	�l� � ���l� above� Since l is
assigned to in l �� e� ��l� must be unquanti�ed and consequently has only one generic
instance� namely � � Therefore� �� � 	��l �� v	�l� � ���l� follows directly from �� � v � � of
the induction� If ��l� were quanti�ed� then it would not be possible to show �� � v � ���l��
For example� if ��l� � �� � �� �� then on the program l �� not we would have to show
that not has type �� � �� ��

�bindvar�� The evaluation must end with

	 � e� � v�� 	�

l �	 dom�	��
	��l �� v�	 � �l
x	e� � v�� 	�

	 � letvar x �� e� in e� � v�� 	�

and� by Lemma ���� the typing must end with

� � e� � ��
�� �x � �� var 	 � e� � ��
If x is assigned to in a ��abstraction in e� then �� is weak�
� � letvar x �� e� in e� � ��

Also� 	 � � and if a location l� is assigned to in e� or in e�� then ��l�� is unquanti�ed�
And if l� is assigned to in the range of 	 or in a ��abstraction in e� or in e�� then ��l��
is weak� By induction� there exists �� such that

�e� �
 ���
�f� 	� � ���
�g� �� � v� � ���
�h� any strong type variable free in �� is free in �� and
�i� if a location l� is assigned to in v� or in the range of 	�� then ���l�� is weak�

Since l �	 dom����� ��
 ���l � ��	� Now� since ���l � ��	 � l � �� var and� by Lemma ����
���l � ��	� �x � �� var 	 � e� � ��� we can apply Lemma ��
 to get

�b� ���l � ��	 � �l
x	e� � ��

We also have� by Lemma ����

�c� 	��l �� v�	 � ���l � ��	

Next� if a location l� is assigned to in �l
x	e�� then either l� is assigned to in e� or l� � l�
In the �rst case we have that ��l�� is unquanti�ed by hypothesis� and so ���l � ��	�l�� is
unquanti�ed� In the second case we have ���l � ��	�l� � ��� which is unquanti�ed� Also�
if l� is assigned to in the range of 	��l �� v�	� then l� is assigned to in v� or in the range of
	�� so by induction ���l�� is weak� and hence ���l � ��	�l�� is weak� since ��
 ���l � ��	�
Finally� if l� is assigned to in a ��abstraction in �l
x	e�� then either l� is assigned to in
a ��abstraction in e� or l� � l and x is assigned to in a ��abstraction in e�� In the �rst
case� ��l�� is weak by hypothesis� and so ���l � ��	�l

�� is weak� In the second case� we
have �� is weak by the restriction on the �letvar� rule� and so ���l � ��	�l

�� is weak�
Therefore� we have

�

�d� if a location l� is assigned to in �l
x	e�� then ���l � ��	�l�� is unquanti�ed� also�
if l� is assigned to in the range of 	��l �� v�	 or in a ��abstraction in �l
x	e��
then ���l � ��	�l�� is weak�

So by a second use of induction� there exists �� such that

�e� ���l � ��	
 ���
�f� 	� � ���
�g� �� � v� � ���
�h� any strong type variable free in �� is free in ���l � ��	� and
�i� if a location l� is assigned to in v� or in the range of 	�� then ���l�� is weak�

At this point� �� may contain free strong type variables that are not free in �� namely
those of ��� So we cannot take �� as our �nal location typing� Instead� de�ne �� by

���l�� � AppClose�����l
����

for all l� 	 dom����� Now we must establish

�e� �
 ���
�f� 	� � �

��
�g� �� � v� � ���
�h� any strong type variable free in �� is free in �� and
�i� if a location l� is assigned to in v� or in the range of 	�� then ���l�� is weak�

To show �e�� note that for any l� 	 dom���� ���l�� � ���l
��� by the de�nition of ���

Since �
 ��� it follows that �
 ���
Next we show �f�� Since 	� � ��� we have

�� � 	��l
�� � ���l

��

for any l� 	 dom�	��� Since AppClose���� � � for every �� by applying Lemma ���
repeatedly we get

�� � 	��l
�� � ���l

��

Finally� from Lemma ��
 we get

�� � 	��l
�� � AppClose�����l

����

since any type variables thereby quanti�ed do not occur free in ��� Hence 	� � ���
To get �g�� apply Lemma ��� to �� � v� � ��� And �h� follows immediately from the

de�nition of ��� Finally� for �i� suppose that l� is assigned to in v� or in the range of
	�� By the second use of induction� ���l

�� is weak� Hence ���l�� is weak� since AppClose
quanti�es only strong type variables� This completes �bindvar��

Corollary ��
 Restriction ��i	�b	 of LCF ML
GMW��
� requiring a variable to have
a monotype if the variable is assigned to in a ��abstraction within its scope� is sound�

Proof� A monotype is a type with no type variables� so every such type is weak� So by
Theorem ���� the LCF ML restriction is sound�

�

References

�DaM�
	 Damas� L� and Milner� R�� Principal Type Schemes for Functional Programs�
Proc� �th ACM Symposium on Principles of Programming Languages� pp�

���
�
� ���
�

�GMW��	 Gordon� M�� Milner� A� and Wadsworth� C�� Edinburgh LCF� Lecture Notes
in Computer Science
�� Springer�Verlag� �����

�Har�
	 Harper� R�� A Simpli�ed Account of Polymorphic References� Information
Processing Letters� ��� pp�
���
��� August ���
�

�SmVo��	 Smith� G� and Volpano� D�� Polymorphic Typing of Variables and References�
to appear in ACM Trans on Programming Languages and Systems� �����

�Tof��	 Tofte� M�� Type Inference for Polymorphic References� Information and Com�
putation� ��� pp� ���
� �����

�

