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Abstract� Advanced polymorphic type systems have come to play an
important role in the world of functional programming	 But� curiously�
these type systems have so far had little impact upon widely�used imper�
ative programming languages like C and C��	 We show that ML�style
polymorphism can be integrated smoothly into a dialect of C� which we
call Polymorphic C	 It has the same pointer operations as C� includ�
ing the address�of operator � the dereferencing operator �� and pointer
arithmetic	 Our type system allows these operations in their full gen�
erality� so that programmers need not give up the �exibility of C to
gain the bene�ts of ML�style polymorphism	 We prove a type soundness
theorem that gives a rigorous and useful characterization of well�typed
Polymorphic C programs in terms of what can go wrong when they are
evaluated	

� Introduction

Much attention has been given to developing sound polymorphic type systems for
languages with imperative features� Most notable is the large body of work sur�
rounding ML �GMW��� Tof�	� LeW�
� SML��� Wri��� VoS��� However� none of
these e�orts addresses the polymorphic typing of variables� arrays and pointers
��rst�class references�� which are essential ingredients of any traditional imper�
ative language� As a result� they cannot be directly applied to get ML�style
polymorphic extensions of widely�used languages like C and C���

This paper presents a provably�sound type system for a polymorphic dialect
of C� called Polymorphic C� It has the same pointer operations as C� including
the address�of operator �� the dereferencing operator �� and pointer arithmetic�
The type system allows these operations without any restrictions on them so
that programmers can enjoy C�s pointer �exibility and yet have type security
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den� ����
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and polymorphism as in ML� Our type system demonstrates that ML�style poly�
morphism can be brought cleanly and elegantly into the realm of traditional
imperative languages�

We establish a type soundness theorem that gives a rigorous and useful char�
acterization of well�typed Polymorphic C programs in terms of what can go
wrong when they are evaluated� Our approach uses a natural�style semantics
and a formulation of subject reduction based on Harper�s syntactic approach
�Har��� It is simple and does not require a separate type semantics� We ex�
pect it to be useful in proving type soundness for a wide variety of imperative
languages having �rst�class pointers and mutable variables and arrays�

We begin with an overview of Polymorphic C in the next section� Then we
formally describe its syntax� type system� and semantics� Then� in Section � we
establish the soundness of the type system�

� An Overview of Polymorphic C

Polymorphic C is intended to be as close to the core of Kernighan and Ritchie C
�KR�� as possible� In particular� it is stack�based with variables� pointers� and
arrays� Pointers are dereferenced explicitly using �� while variables are derefer�
enced implicitly� Furthermore� pointers are �rst�class values� but variables are
not� Polymorphic C has the same pointer operations as C� A well�typed Poly�
morphic C program in our system may still su�er from dangling reference and
illegal address errors� Our focus has not been on eliminating such pointer in�
securities� which would require weakening C�s expressive power� but rather on
adding ML�style polymorphism to C� so that programmers can write polymor�
phic functions naturally and soundly as they would in Standard ML� rather than
by parameterizing functions on data sizes or by using pointers of type void ��

Syntactically� Polymorphic C uses a �exible syntax similar to that of core�ML
of Damas and Milner �DaM��� For example� here is a Polymorphic C function
that reverses the elements of an array�

let swap � �x� y� letvar t �� �x in �x �� �y� �y �� t
in
let reverse � �a� n� letvar i �� 	 in

while i � n� 
� i do
swap�a � i� a � n� 
� i��
i �� i � 


in � � �

The construct letvar x �� e� in e� binds x to a new cell initialized to the value
of e�� the scope of the binding is e� and the lifetime of the cell ends after e�
is evaluated� Variable x is dereferenced implicitly� This is achieved via a typing
rule that says that if e has type � var � then it also has type � �

As in C� the call to swap in reverse could equivalently be written as

swap��a�i� �a�n� 
� i�



and also as in C� array subscripting is syntactic sugar� e��e� is equivalent to
��e��e��� Arrays themselves are introduced by the construct letarr x�e� in e��
which binds x to a pointer to an uninitialized array whose size is the value of
e�� the scope of x is e�� and the lifetime of the array ends after e� is evaluated�

The type system of Polymorphic C assigns types of the form � var to vari�
ables� and types of the form � ptr to pointers�� Functions swap and reverse given
above are polymorphic� swap has type

�� � � ptr � � ptr � �

while reverse has type
�� � � ptr � int � unit

Notice that pointer and array types are uni�ed as in C� Also� variable and pointer
types are related by symmetric typing rules for � and �� if e � � var � then �e �
� ptr � and if e � � ptr � then �e � � var � Note that dereferencing in Polymorphic
C di�ers from dereferencing in Standard ML� where if e � � ref � then �e � � �

Polymorphic C�s types are strati�ed into three levels� There are the ordinary
� �data types� and � �type schemes� type levels of Damas and Milner�s system
�DaM��� and a new level called phrase types containing � types and variable
types of the form � var � This strati�cation enforces the �second�class� status of
variables� for example� the return type of a function must be a data type� so that
one cannot write a function that returns a variable� On the other hand� pointer
types are included among the data types� making pointers �rst�class values�

Polymorphic C has been designed to ensure that function calls can be im�
plemented on a stack without the use of static links or displays� In traditional
imperative languages� this property has been achieved by rigidly �xing the syn�
tactic structure of programs� For example� in C� functions can only be de�ned
at top level� But such syntactic restrictions are often complex and unnecessarily
restrictive� In contrast� Polymorphic C adopts a completely free syntax� as in
core�ML� The ability to implement Polymorphic C on a stack� without static
links or displays� is achieved by imposing one key restriction on lambda abstrac�
tions� the free identi�ers of any lambda abstraction must be declared at top level�
Roughly speaking� a top�level declaration is one whose scope extends all the way
to the end of the program� For example� in the program

let f � � � � in
letvar x �� � � � in
letarr a�� � � in f �� � ��

the identi�ers declared at top level are f � x� and a� Although they are severely
restricted� Polymorphic C�s anonymous lambda abstractions are convenient at
times� For example� we can write map��n� n � 
� ��� �� �� without having to
declare a named successor function� Nevertheless� one might prefer a di�erent
syntax for Polymorphic C� it should be noted that there would be no obstacle
to adopting a more C�like syntax�

� We use ptr rather than ref to avoid confusion with C�� and ML references	



��� The Issue of Type Soundness in Polymorphic C

Much e�ort has been spent trying to develop sound polymorphic type systems
for imperative extensions of core�ML� Especially well�studied is the problem
of typing Standard ML�s �rst�class references �Tof�	� LeW�
� SML��� Wri���
The problem is easier in a language with variables but no references� such as
Edinburgh LCF ML� but subtle problems still arise �GMW��� The key problem
is that a variable can escape its scope via a lambda abstraction as in

letvar stk �� �  in �v� stk �� v �� stk

In this case� the type system must not allow type variables that occur in the type
of stk to be generalized� Di�erent mechanisms have been proposed for dealing
with this problem �GMW��� VoS��

In the context of Polymorphic C� however� we can adopt an especially simple
approach� Because of the restriction on the free identi�ers of lambda abstrac�
tions� Polymorphic C does not allow a polymorphic value to be computed in an
interesting way� for example� we cannot write curried functions� For this reason�
we su�er essentially no loss of language expressiveness by limiting polymorphism
to syntactic values� that is� identi�ers� literals� and lambda abstractions �Tof�	��

Limiting polymorphism to syntactic values ensures the soundness of poly�
morphic generalizations� but pointers present new problems for type soundness�
If one is not careful in formulating the semantics� then the subject reduction
property may not hold� For example� if a program can dereference a pointer to
a cell that has been deallocated and then reallocated� then the value obtained
may have the wrong type� Our semantics is designed to catch all pointer errors�

� The Polymorphic C Language

The syntax of Polymorphic C is given below� For the sake of describing the type
system� we need to distinguish a subset of the expressions� called Values� which
are the syntactic values �Tof�	� Wri�� of the language�

�Expr � e ��� v j e�e�� � � � � en� j e� �� e� j

� e j � e j e� � e� j e��e� j e�� e� j

while e� do e� j

if e� then e� else e� j

let x � e� in e� j

letvar x �� e� in e� j

letarr x�e� in e� j

�a� 
�

�Values� v ��� x j c j �x�� � � � � xn� e j �a� 	�

� In the context of a language with �rst�class functions� limiting polymorphism to
syntactic values does limit the expressiveness of the language	 But Wright argues
that even then the loss of expressiveness is not a problem in practice �Wri���	



Meta�variable x ranges over identi�ers� c over literals �such as integer literals
and unit�� and a over addresses� All free identi�ers of every lambda abstraction
must be declared at top level � this restriction can be precisely de�ned by an
attribute grammar�

The expressions �a� 
� and �a� 	� are variables and pointers� respectively�
These will not actually occur in user programs� they are included in the lan�
guage solely for the purpose of simplifying the semantics� as will become clear in
Section ���� Notice that pointers are values� but variables are not� this re�ects
the fact that variables are implicitly dereferenced� while pointers are not�

The � operator here denotes only pointer arithmetic� In the full language� �
would be overloaded to denote integer addition as well�

A subtle di�erence between C and Polymorphic C is that the formal parame�
ters of a Polymorphic C function are constants rather than local variables� Hence
the C function f�x� � b � is equivalent to

let f � �x� letvar x �� x in b in � � �

in Polymorphic C� Also� Polymorphic C cannot directly express C�s internal
static variables� For example� the C declaration

f�x� � static int n � �	 b �

corresponds directly to the Polymorphic C expression

let f � letvar n �� 	 in �x� b in � � �

but this violates the restriction on lambda abstractions if n is free in b� Such
functions must be transformed to eliminate static variables in favor of uniquely�
renamed global variables�

letvar n �� 	 in let f � �x� b in � � �

��� The Type System of Polymorphic C

The types of Polymorphic C are strati�ed as follows�

� ��� � j int j unit j � ptr j �� � � � � � �n � � �data types�
� ��� �� � � j � �type schemes�
	 ��� � j � var �phrase types�

Meta�variable � ranges over type variables� Compared to the type system of
Standard ML� all type variables in Polymorphic C are imperative �Tof�	�

The rules of the type system are formulated as they are in Harper�s system
�Har�� and are given in Figure 
�� It is a deductive proof system used to assign
types to expressions� Typing judgements have the form

�� 
 � e � 	

� For brevity� we have omitted typing rules for sequential composition� if� and while	



�var�id� �� 
 � x � � var 
�x� � � var

�ident� �� 
 � x � � 
�x� � �

�ptr� �� 
 � ��i� j�� 	� � � ptr ��i� � �

�var� �� 
 � ��i� j�� 
� � � var ��i� � �

�lit� �� 
 � c � int c is an integer literal

�� 
 � unit � unit

���intro� �� 
�x� � ��� � � � � xn � �n � e � �
�� 
 � �x�� � � � � xn� e � �� � � � � � �n � �

���elim� �� 
 � e � �� � � � � � �n � ��
�� 
 � ei � �i� 
 	 i 	 n

�� 
 � e�e�� � � � � en� � �

�let�val� �� 
 � v � ��� �� 
�x � Close������� � e � ��
�� 
 � let x � v in e � ��

�let�ord� �� 
 � e� � ��� �� 
�x � �� � e� � ��
�� 
 � let x � e� in e� � ��

�letvar� �� 
 � e� � ��� �� 
�x � �� var  � e� � ��
�� 
 � letvar x �� e� in e� � ��

�letarr� �� 
 � e� � int � �� 
�x � �� ptr  � e� � ��
�� 
 � letarr x�e� in e� � ��

�r�val� �� 
 � e � � var
�� 
 � e � �

�l�val� �� 
 � e � � ptr
�� 
 � �e � � var

�address� �� 
 � e � � var
�� 
 � �e � � ptr

�assign� �� 
 � e� � � var � �� 
 � e� � �
�� 
 � e� �� e� � �

�arith� �� 
 � e� � � ptr � �� 
 � e� � int
�� 
 � e� � e� � � ptr

�subscript� �� 
 � e� � � ptr � �� 
 � e� � int
�� 
 � e��e� � � var

Fig� �� Rules of the Type System



meaning that expression e has type 	� assuming that 
 prescribes phrase types for
the free identi�ers of e and � prescribes data types for the variables and pointers
in e� More precisely� meta�variable 
 ranges over identi�er typings� which are
�nite functions mapping identi�ers to phrase types� 
�x� is the phrase type
assigned to x by 
 and 
�x � 	 is a modi�ed identi�er typing that assigns phrase
type 	 to x and assigns phrase type 
�x�� to any identi�er x� other than x�

Meta�variable � ranges over address typings� which are needed in typing the
values produced by programs� One might expect that addresses would just be
natural numbers� but that would not allow the semantics to detect invalid pointer
arithmetic� So instead an address is a pair of natural numbers �i� j� where i is
the segment number and j is the o�set � Intuitively� we put each variable or array
into its own segment� Thus a simple variable has address �i� 	�� and an n�element
array has addresses

�i� 	�� �i� 
�� � � � � �i� n� 
�

Pointer arithmetic involves only the o�set of an address� and dereferencing
nonexistent or dangling pointers is detected as a �segmentation fault�� An ad�
dress typing then is a �nite function mapping segment numbers to data types�
The reason it does not map addresses to data types is that nonexistent pointers
can be produced as values of programs� and such pointers must therefore be
typable if subject reduction is to hold� For example� the program

letarr a�
	 in a � 
�

is well typed and evaluates to ��	� 
��� 	�� a nonexistent pointer� The notational
conventions for address typings are similar to those for identi�er typings�

The generalization of a data type � relative to � and 
� written Close����� ��
is the type scheme ��� � � � where �� is the set of all type variables occurring free
in � but not in � or in 
� We write � � e � � and Close��� � when 
 � 
� We
say that � � is a generic instance of ��� � � � written ��� � � � � �� if there exists a
substitution S with domain �� such that S� � � �� We extend this de�nition to
type schemes by saying that � � �� if � � � whenever �� � � � Finally� we say
that �� 
 � e � � if �� 
 � e � � whenever � � � �

The type system has the property that the type of a value determines the
form of the value� also� an expression of type � var can have only two possible
forms�

Lemma� �Correct Form�� Suppose � � v � � � Then

� if � is int� then v is an integer literal�
� if � is unit� then v is unit�
� if � is � � ptr� then v is of the form ��i� j�� 	�� and
� if � is �� � � � � � �n � �n��� then v is of the form �x�� � � � � xn�e�

Furthermore� if � � e � � var� then e is of the form ��i� j�� 
� or of the form �e���

Proof� Immediate from inspection of the typing rules�

� Note that this assumes that array subscripting is syntactic sugar	



A consequence of the last part of this lemma is that if � � e � � and e is not of the
form ��i� j�� 
� or �e�� then derivation of the typing judgement cannot end with
rule �r�val�� So the typing rules� for the most part� remain syntax directed� The
fact that variables can have only two possible forms is exploited in our structured
operational semantics� speci�cally within rules �ref� and �update��

��� The Semantics of Polymorphic C

We give a structured operational semantics� A closed expression is evaluated
relative to a memory �� which is a �nite function from addresses to values�
It may also map an address to dead or uninit� indicating that the cell with
that address has been deallocated or is uninitialized� The contents of an address
a � dom��� is the value ��a�� and we write ��a �� v for the memory that assigns
value v to address a� and value ��a�� to an address a� �� a� ��a �� v is an update
of � if a � dom��� and an extension of � if a �� dom����

The evaluation rules are given in Figure �� They allow us to derive judgements
of the form

� � e  v� ��

which asserts that evaluating closed expression e in memory � results in value v
and new memory ���

We write �e��xe to denote the capture�avoiding substitution of e� for all free
occurrences of x in e� Note the use of substitution in rules �apply�� �bind��
�bindvar�� and �bindarr�� It allows us to avoid environments and closures in
the semantics� so that the result of evaluating a Polymorphic C expression is
just another expression in Polymorphic C� This is made possible by the �exible
syntax of the language and the fact that all expressions are closed� including
lambda abstractions�

� Semantic Soundness

In this section� we establish the soundness of our type system� We begin by
using the framework of Harper �Har�� to show subject reduction� which basically
asserts that if � e � � and � e  v� ��� then � v � � � But since e can allocate
addresses and they can occur in v� the conclusion must actually be that there
exists an address typing �� such that �� � v � � and such that �� � ��� The latter
condition asserts that �� is consistent with ��� More precisely� we say � � � if


� dom��� � fi j �i� 	� � dom���g� and
�� for all �i� j�� � � ���i� j�� � ��i� if ���i� j�� is a value�

Note that � must give a type to uninitialized and dead addresses of �� but the
type can be anything�

Before giving the subject reduction theorem� we require a number of lem�
mas that establish some useful properties of the type system� We begin with a
fundamental type substitution lemma�



�val� � � v  v� �

�contents� a � dom��� and ��a� � v
� � �a� 
�  v� �

�deref� � � e  �a� 	�� ��

a � dom���� and ���a� � v
� � �e  v� ��

�ref� � � ��a� 
�  �a� 	�� �

� � e  �a� 	�� ��

� � � � e  �a� 	�� ��

�offset� � � e�  ��i� j�� 	�� ��
�� � e�  n� �� �n an integer�
� � e� � e�  ��i� j � n�� 	�� ��

�apply� � � e  �x�� � � � � xn� e
�� ��

�� � e�  v�� ��
� � �
�n � en  vn� �n��
�n�� � �v�� � � � � vn�x�� � � � � xne�  v� ��

� � e�e�� � � � � en�  v� ��

�update� � � e  v� ��

a � dom���� and ���a� �� dead

� � �a� 
� �� e  v� ���a �� v

� � e�  �a� 	�� ��
�� � e�  v� ��
a � dom���� and ���a� �� dead

� � �e� �� e�  v� ���a �� v

�bind� � � e�  v�� ��
�� � �v��xe�  v�� ��
� � let x � e� in e�  v�� ��

�bindvar� � � e�  v�� ��
�i� 	� �� dom����
����i� 	� �� v� � ���i� 	�� 
��xe�  v�� ��
� � letvar x �� e� in e�  v�� ����i� 	� �� dead

�bindarr� � � e�  n� �� �n a positive integer�
�i� 	� �� dom����
����i� 	�� � � � � �i� n� 
� �� uninit� � � � �uninit �

���i� 	�� 	��xe�  v�� ��
� � letarr x�e� in e� 

v�� ����i� 	�� � � � � �i� n� 
� �� dead� � � � �dead

Fig� �� The Evaluation Rules



Lemma� �Type Substitution�� If �� 
 � e � � � then for any substitution S�
S��S
 � e � S� � and the latter typing has a derivation no longer than the former�

Lemma� �Super	uousness�� Suppose that �� 
 � e � � � If i �� dom���� then
��i � � �� 
 � e � � � and if x �� dom�
�� then �� 
�x � 	 � e � � �

Lemma
 �Substitution�� If �� 
 � v � � and �� 
�x � � � e � � � then �� 
 �
�v�xe � � � Also if �� 
 � �a� 
� � � var and �� 
�x � � var  � e � � �� then �� 
 �
��a� 
��xe � � ��

The preceding lemma does not hold for arbitrary expression substitution�

Lemma� ���intro�� If �� 
 � e � � and ��� � � � � �n do not occur free in � or in

� then �� 
 � e � ���� � � � � �n � � �

We can now give the subject reduction theorem�

Theorem �Subject Reduction�� If � � e v� ��� � � e � � � and � � �� then
there exists �� such that � � ��� �� � ��� and �� � v � � �

Proof� By induction on the structure of the derivation of � � e  v� ��� Here we
just show the �bindvar� and �bind� cases�

�bindvar�� The evaluation must end with

� � e�  v�� ��
�i� 	� �� dom����
����i� 	� �� v� � ���i� 	�� 
��xe�  v�� ��
� � letvar x �� e� in e�  v�� ����i� 	� �� dead

while the typing must end with �letvar��

� � e� � ��
�� �x � �� var  � e� � ��
� � letvar x �� e� in e� � ��

and � � �� By induction� there exists �� such that � � ��� �� � ��� and �� � v� �
��� Since �� � �� and �i� 	� �� dom����� also i �� dom����� So �� � ���i � ��� By
rule �var��

���i � �� � ��i� 	�� 
� � �� var

and by Lemma ��
���i � ��� �x � �� var  � e� � ��

So we can apply Lemma � to get

���i � �� � ���i� 	�� 
��xe� � ��

Also� ����i� 	� �� v� � ���i � ��� So by a second use of induction� there exists ��

such that ���i � �� � ��� �� � ��� and �� � v� � ���
It only remains to show that ����i� 	� �� dead � ��� But this follows imme�

diately from �� � ���



Remark� What would go wrong if we simply removed the deallocated address
�i� 	� from the domain of the �nal memory� rather than marking it dead� Well�
with the current de�nition of � � �� we would then be forced to remove i from
the �nal address typing� But then �� � i � �� � i would fail� if there were any
dangling pointers ��i� j�� 	� in the range of �� � i� If� instead� we allowed �� to
retain the typing for i� then the next time that �i� 	� were allocated we would
have to change the typing for i� rather than extend the address typing�

�bind�� If e� is a value v�� then the evaluation must end with

� � v�  v�� �
� � �v��xe�  v�� �

�

� � let x � v� in e�  v�� �
�

while the typing must end with �let�val��

� � v� � ��
�� �x � Close����� � e� � ��
� � let x � v� in e� � ��

and � � �� By Lemma �� � � v� � Close������ and so by Lemma �� � � �v��xe� �
��� So by induction� there exists �� such that � � ��� �� � ��� and �� � v� � ���

The case when e� is not a value is similar� but Lemma � is not required� and
induction is used twice�

The subject reduction property does not by itself ensure that a type system is
sensible� For example� a type system that assigns every type to every expression
trivially satis�es the subject reduction property� even though such a type system
is useless� The main limitation of subject reduction is that it only applies to well�
typed expressions that evaluate successfully� Really we would like to be able say
something about what happens when we attempt to evaluate an arbitrary well�
typed expression�

One approach to strengthening subject reduction �used by Gunter �Gun���
for example� is to augment the evaluation rules with rules specifying that cer�
tain expressions evaluate to a special value� TypeError� which has no type�
For example� an attempt to dereference a value other than a pointer would
evaluate to TypeError� Then� by showing that subject reduction holds for the
augmented evaluation rules� we get that a well�typed expression cannot evalu�
ate to TypeError� Hence any of the errors that lead to TypeError cannot
occur in the evaluation of a well�typed expression� Aside from the drawback of
requiring us to augment the evaluation rules� this approach does not give us as
much information as we would like� It tells us that certain bad things will not
happen during the evaluation of well�typed expression� but says nothing about
what other bad things can happen�

We now present a di�erent approach leading to a type soundness theorem
that characterizes precisely everything that may go wrong when we attempt
to evaluate a well�typed expression� First� we note that a successful evaluation
always produces a value�



Lemma�� If � � e v� ��� then v is a value and �� is a memory�

Roughly speaking� the combination of the subject reduction theorem and the
correct forms lemma �Lemma 
� allows us to characterize the forms of expres�
sions that will be encountered during the evaluation of a well�typed expression�
This will allow us to characterize what can go wrong during the evaluation�

To get a handle on the �progress� of an attempted evaluation� it is helpful to
recast the evaluation rules as a recursive evaluation function� eval � For example�
the �update� rules correspond to the clauses

eval��� �a� 
� �� e� �
let �v� ��� � eval ��� e� in
if a � dom���� and ���a� �� dead then

�v� ���a �� v�
else

fail �

eval��� �e� �� e�� �
let ��a� 	�� ��� � eval��� e�� in
let �v� ��� � eval ���� e�� in
if a � dom���� and ���a� �� dead then

�v� ���a �� v�
else

fail �

Introducing eval allows us to talk about type soundness in terms of what happens
when eval is called on a well�typed program�

De�nition�� A call eval��� e� is well typed i� there exist � and � such that
� � � and � � e � � �

De�nition�� An activation of eval aborts directly if the activation itself aborts�
Note that an activation does not abort directly if it makes a recursive call that
aborts or does not terminate�

We can now show the key result for type soundness�

Theorem��� Suppose that an activation eval��� e� is well typed� Then every
recursive call made by the activation is well typed� Furthermore� if the activation
aborts directly� it aborts due to one of the following errors�

E�� An attempt to read or write to a dead address �i� j��

E	� An attempt to read or write to a nonexistent address �i� j�� Address �i� 	�
always will exist� so the problem is that the o�set j is invalid�

E
� An attempt to read an uninitialized address �i� j��

E�� An attempt to declare an array of size less than or equal to ��



Proof� We just consider all possible forms of expression e� Here we just give the
case e� �� e�� the other cases are quite similar�

If eval��� e� �� e�� is well typed� then there exist � and � such that � � � and
� � e� �� e� � � � The latter typing must be by �assign��

� � e� � � var
� � e� � �
� � e� �� e� � �

By Lemma 
� e� must be of the form ��i� j�� 
� or else of the form �e�

�� So�
simplifying notation a bit� we are left with two cases� �a� 
� �� e and �e� �� e��
Note that there is a clause of eval that applies to each of these� We consider the
two cases in turn�

If the activation is eval ��� �a� 
� �� e�� where � � � and � � �a� 
� �� e � � �
then the typing must end with �assign��

� � �a� 
� � � var
� � e � �
� � �a� 
� �� e � �

So by �var�� ��i� � � � where a � �i� j��
Also� the recursive call eval��� e� is well typed� If this call fails to return�

then the parent activation eval��� �a� 
� �� e� doesn�t abort directly� If the call
succeeds� then by Lemma � it returns a value v and a memory ��� so the pattern�
match  let �v� ��� � eval��� e�� doesn�t abort�

By the subject reduction theorem� there exists �� such that � � ��� �� � ���
and �� � v � � � Hence ���i� � � � and so �i� 	� � dom�����

So the only way for the activation eval��� �a� 
� �� e� to abort directly is if
�i� j� �� dom���� or ����i� j�� � dead� And since �i� 	� � dom����� we know that
if the �rst case holds� the error is in the o�set j�

If the activation is eval��� �e� �� e��� where � � � and � � �e� �� e� � � � then
the typing must end with �l�val� followed by �assign��

� � e� � � ptr
� � �e� � � var
� � e� � �
� � �e� �� e� � �

So the recursive call eval��� e�� is well typed� If this call fails to return� then the
parent activation eval��� �e� �� e�� doesn�t abort directly� If the call succeeds�
then by Lemma � it returns a value v� and a memory ���

By the subject reduction theorem� there exists �� such that � � ��� �� � ���
and �� � v� � � ptr � So by the Correct Form lemma� v� is of the form ��i� j�� 	�
hence the pattern�match  let ��a� 	�� ��� � eval ��� e��� doesn�t abort� Also� by
�ptr�� ���i� � � �

By the Super�uousness Lemma� �� � e� � � � so the recursive call eval���� e��
is also well typed� If this call fails to return� then the parent activation doesn�t



get stuck� If it succeeds� then it returns a value v and a memory ��� so the
pattern�match  let �v� ��� � eval���� e��� doesn�t abort� By the subject reduction
theorem� there exists �� such that �� � ��� �� � ��� and �� � v � � � Hence ���i� � � �
and so �i� 	� � dom�����

So the only way for the activation eval��� �e� �� e�� to abort directly is if
�i� j� �� dom���� or ����i� j�� � dead� And since �i� 	� � dom����� we know that
if the �rst case holds� the error is in the o�set j�

Corollary �� �Type Soundness�� If � � e � � and � � �� then eval ��� e� either

�� succeeds producing a value of type ��� or
	� fails to halt� or

� aborts due to one of the errors E�� E	� E
� or E��

Proof� Any call must either succeed� fail to halt� or abort�
If the call aborts� then one of its recursive activations must abort directly�

Now this activation must have been reached by a �nite path of recursive calls
from the root call eval ��� e�� Since the root call is well typed� by Theorem 
	
all the calls on the path are well typed� So the activation that aborts directly is
well typed� Hence by Theorem 
	 it aborts due to one of the errors E��E� �

� Discussion

The semantics speci�es that an implementation is under no obligation to preserve
the contents of variables beyond their scope� which in turn justi�es a stack�based
implementation� Further� there is no need for static links since all functions
in Polymorphic C are closed with respect to top�level declarations� It is also
interesting to note that in light of this closure property� there would be no need
to specify in the semantics that a variable dies at the end of its scope if there
were no � operator� The variable would simply be unreachable in this case�

To maintain subject reduction� the semantics also ensures that any program
with pointer errors does not produce a value� This requires a number of mecha�
nisms� for example� keeping track of cells that have been deallocated� that we do
not expect to see in any realistic implementation of the semantics� We believe
that an implementation� for the sake of e!ciency� should be able to do whatever
it likes on programs that do not yield values� and hence are in error� accord�
ing to the semantics� For example� the semantics does not prescribe a value for
dereferencing a dangling pointer� So it would be acceptable� upon an attempt
to dereference such a pointer� for an implementation to merely return the last
value stored there� as in C� rather than detect an error�

Given that a real implementation would not catch pointer errors� what then is
the practical signi�cance of our type soundness theorem� Two things can be said�
First� the theorem gives a characterization of the source of errors"it tells us that
when a program crashes with a �Segmentation fault"core dumped� message�
what causes the crash is one of the errors E��E� and not� for example� an invalid
polymorphic generalization� Second� by directly implementingour semantics� one
can get a robust �debugging� implementation that �ags all pointer errors�



� Conclusion

Advanced polymorphic type systems have come to play a central role in the
world of functional programming� but so far have had little impact on traditional
imperative programming� We assert that an ML�style polymorphic type system
can be applied fruitfully to a �real�world� language like C� bringing to it both
the expressiveness of polymorphism as well as a rigorous characterization of the
behavior of well�typed programs�

Future work on Polymorphic C includes the development of a type inference
algorithm �preliminary work indicates that this can be done straightforwardly��
the development of an e!cient implementation �perhaps using the work of �Le���
ShA��� HaM���� and extending the language to include other features of C�
especially structures�
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