
Towards an ML�style Polymorphic

Type System for C �

Geo�rey Smith� and Dennis Volpano�

� School of Computer Science� Florida International University� Miami� FL ������
USA� email� smithg��u	edu

� Department of Computer Science� Naval Postgraduate School� Monterey� CA
���
�� USA� email� volpano�cs	nps	navy	mil

Abstract� Advanced polymorphic type systems have come to play an
important role in the world of functional programming	 But� curiously�
these type systems have so far had little impact upon widely�used imper�
ative programming languages like C and C��	 We show that ML�style
polymorphism can be integrated smoothly into a dialect of C� which we
call Polymorphic C	 It has the same pointer operations as C� includ�
ing the address�of operator � the dereferencing operator �� and pointer
arithmetic	 Our type system allows these operations in their full gen�
erality� so that programmers need not give up the �exibility of C to
gain the bene�ts of ML�style polymorphism	 We prove a type soundness
theorem that gives a rigorous and useful characterization of well�typed
Polymorphic C programs in terms of what can go wrong when they are
evaluated	

� Introduction

Much attention has been given to developing sound polymorphic type systems for
languages with imperative features� Most notable is the large body of work sur�
rounding ML �GMW��� Tof�	� LeW�
� SML��� Wri��� VoS��� However� none of
these e�orts addresses the polymorphic typing of variables� arrays and pointers
��rst�class references�� which are essential ingredients of any traditional imper�
ative language� As a result� they cannot be directly applied to get ML�style
polymorphic extensions of widely�used languages like C and C���

This paper presents a provably�sound type system for a polymorphic dialect
of C� called Polymorphic C� It has the same pointer operations as C� including
the address�of operator �� the dereferencing operator �� and pointer arithmetic�
The type system allows these operations without any restrictions on them so
that programmers can enjoy C�s pointer �exibility and yet have type security

� To be presented at the ���� European Symposium on Programming� Link�oping Swe�
den� ����
 April ����	 This material is based upon activities supported by the Na�
tional Science Foundation under Agreements No	 CCR��
�

�� and CCR��
�����	

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 DEC 1996

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Towards an ML-style Polymorphic Type System for C

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
School of Computer Science Florida International University Miami, FL
33199

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

15

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

and polymorphism as in ML� Our type system demonstrates that ML�style poly�
morphism can be brought cleanly and elegantly into the realm of traditional
imperative languages�

We establish a type soundness theorem that gives a rigorous and useful char�
acterization of well�typed Polymorphic C programs in terms of what can go
wrong when they are evaluated� Our approach uses a natural�style semantics
and a formulation of subject reduction based on Harper�s syntactic approach
�Har��� It is simple and does not require a separate type semantics� We ex�
pect it to be useful in proving type soundness for a wide variety of imperative
languages having �rst�class pointers and mutable variables and arrays�

We begin with an overview of Polymorphic C in the next section� Then we
formally describe its syntax� type system� and semantics� Then� in Section � we
establish the soundness of the type system�

� An Overview of Polymorphic C

Polymorphic C is intended to be as close to the core of Kernighan and Ritchie C
�KR�� as possible� In particular� it is stack�based with variables� pointers� and
arrays� Pointers are dereferenced explicitly using �� while variables are derefer�
enced implicitly� Furthermore� pointers are �rst�class values� but variables are
not� Polymorphic C has the same pointer operations as C� A well�typed Poly�
morphic C program in our system may still su�er from dangling reference and
illegal address errors� Our focus has not been on eliminating such pointer in�
securities� which would require weakening C�s expressive power� but rather on
adding ML�style polymorphism to C� so that programmers can write polymor�
phic functions naturally and soundly as they would in Standard ML� rather than
by parameterizing functions on data sizes or by using pointers of type void ��

Syntactically� Polymorphic C uses a �exible syntax similar to that of core�ML
of Damas and Milner �DaM��� For example� here is a Polymorphic C function
that reverses the elements of an array�

let swap � �x� y� letvar t �� �x in �x �� �y� �y �� t
in
let reverse � �a� n� letvar i �� 	 in

while i � n�
� i do
swap�a � i� a � n�
� i��
i �� i �

in � � �

The construct letvar x �� e� in e� binds x to a new cell initialized to the value
of e�� the scope of the binding is e� and the lifetime of the cell ends after e�
is evaluated� Variable x is dereferenced implicitly� This is achieved via a typing
rule that says that if e has type � var � then it also has type � �

As in C� the call to swap in reverse could equivalently be written as

swap��a�i� �a�n�
� i�

and also as in C� array subscripting is syntactic sugar� e��e� is equivalent to
��e��e��� Arrays themselves are introduced by the construct letarr x�e� in e��
which binds x to a pointer to an uninitialized array whose size is the value of
e�� the scope of x is e�� and the lifetime of the array ends after e� is evaluated�

The type system of Polymorphic C assigns types of the form � var to vari�
ables� and types of the form � ptr to pointers�� Functions swap and reverse given
above are polymorphic� swap has type

�� � � ptr � � ptr � �

while reverse has type
�� � � ptr � int � unit

Notice that pointer and array types are uni�ed as in C� Also� variable and pointer
types are related by symmetric typing rules for � and �� if e � � var � then �e �
� ptr � and if e � � ptr � then �e � � var � Note that dereferencing in Polymorphic
C di�ers from dereferencing in Standard ML� where if e � � ref � then �e � � �

Polymorphic C�s types are strati�ed into three levels� There are the ordinary
� �data types� and � �type schemes� type levels of Damas and Milner�s system
�DaM��� and a new level called phrase types containing � types and variable
types of the form � var � This strati�cation enforces the �second�class� status of
variables� for example� the return type of a function must be a data type� so that
one cannot write a function that returns a variable� On the other hand� pointer
types are included among the data types� making pointers �rst�class values�

Polymorphic C has been designed to ensure that function calls can be im�
plemented on a stack without the use of static links or displays� In traditional
imperative languages� this property has been achieved by rigidly �xing the syn�
tactic structure of programs� For example� in C� functions can only be de�ned
at top level� But such syntactic restrictions are often complex and unnecessarily
restrictive� In contrast� Polymorphic C adopts a completely free syntax� as in
core�ML� The ability to implement Polymorphic C on a stack� without static
links or displays� is achieved by imposing one key restriction on lambda abstrac�
tions� the free identi�ers of any lambda abstraction must be declared at top level�
Roughly speaking� a top�level declaration is one whose scope extends all the way
to the end of the program� For example� in the program

let f � � � � in
letvar x �� � � � in
letarr a�� � � in f �� � ��

the identi�ers declared at top level are f � x� and a� Although they are severely
restricted� Polymorphic C�s anonymous lambda abstractions are convenient at
times� For example� we can write map��n� n �
� ��� �� �� without having to
declare a named successor function� Nevertheless� one might prefer a di�erent
syntax for Polymorphic C� it should be noted that there would be no obstacle
to adopting a more C�like syntax�

� We use ptr rather than ref to avoid confusion with C�� and ML references	

��� The Issue of Type Soundness in Polymorphic C

Much e�ort has been spent trying to develop sound polymorphic type systems
for imperative extensions of core�ML� Especially well�studied is the problem
of typing Standard ML�s �rst�class references �Tof�	� LeW�
� SML��� Wri���
The problem is easier in a language with variables but no references� such as
Edinburgh LCF ML� but subtle problems still arise �GMW��� The key problem
is that a variable can escape its scope via a lambda abstraction as in

letvar stk �� � in �v� stk �� v �� stk

In this case� the type system must not allow type variables that occur in the type
of stk to be generalized� Di�erent mechanisms have been proposed for dealing
with this problem �GMW��� VoS��

In the context of Polymorphic C� however� we can adopt an especially simple
approach� Because of the restriction on the free identi�ers of lambda abstrac�
tions� Polymorphic C does not allow a polymorphic value to be computed in an
interesting way� for example� we cannot write curried functions� For this reason�
we su�er essentially no loss of language expressiveness by limiting polymorphism
to syntactic values� that is� identi�ers� literals� and lambda abstractions �Tof�	��

Limiting polymorphism to syntactic values ensures the soundness of poly�
morphic generalizations� but pointers present new problems for type soundness�
If one is not careful in formulating the semantics� then the subject reduction
property may not hold� For example� if a program can dereference a pointer to
a cell that has been deallocated and then reallocated� then the value obtained
may have the wrong type� Our semantics is designed to catch all pointer errors�

� The Polymorphic C Language

The syntax of Polymorphic C is given below� For the sake of describing the type
system� we need to distinguish a subset of the expressions� called Values� which
are the syntactic values �Tof�	� Wri�� of the language�

�Expr � e ��� v j e�e�� � � � � en� j e� �� e� j

� e j � e j e� � e� j e��e� j e�� e� j

while e� do e� j

if e� then e� else e� j

let x � e� in e� j

letvar x �� e� in e� j

letarr x�e� in e� j

�a�
�

�Values� v ��� x j c j �x�� � � � � xn� e j �a� 	�

� In the context of a language with �rst�class functions� limiting polymorphism to
syntactic values does limit the expressiveness of the language	 But Wright argues
that even then the loss of expressiveness is not a problem in practice �Wri���	

Meta�variable x ranges over identi�ers� c over literals �such as integer literals
and unit�� and a over addresses� All free identi�ers of every lambda abstraction
must be declared at top level � this restriction can be precisely de�ned by an
attribute grammar�

The expressions �a�
� and �a� 	� are variables and pointers� respectively�
These will not actually occur in user programs� they are included in the lan�
guage solely for the purpose of simplifying the semantics� as will become clear in
Section ���� Notice that pointers are values� but variables are not� this re�ects
the fact that variables are implicitly dereferenced� while pointers are not�

The � operator here denotes only pointer arithmetic� In the full language� �
would be overloaded to denote integer addition as well�

A subtle di�erence between C and Polymorphic C is that the formal parame�
ters of a Polymorphic C function are constants rather than local variables� Hence
the C function f�x� � b � is equivalent to

let f � �x� letvar x �� x in b in � � �

in Polymorphic C� Also� Polymorphic C cannot directly express C�s internal
static variables� For example� the C declaration

f�x� � static int n � �	 b �

corresponds directly to the Polymorphic C expression

let f � letvar n �� 	 in �x� b in � � �

but this violates the restriction on lambda abstractions if n is free in b� Such
functions must be transformed to eliminate static variables in favor of uniquely�
renamed global variables�

letvar n �� 	 in let f � �x� b in � � �

��� The Type System of Polymorphic C

The types of Polymorphic C are strati�ed as follows�

� ��� � j int j unit j � ptr j �� � � � � � �n � � �data types�
� ��� �� � � j � �type schemes�
	 ��� � j � var �phrase types�

Meta�variable � ranges over type variables� Compared to the type system of
Standard ML� all type variables in Polymorphic C are imperative �Tof�	�

The rules of the type system are formulated as they are in Harper�s system
�Har�� and are given in Figure
�� It is a deductive proof system used to assign
types to expressions� Typing judgements have the form

��
 � e � 	

� For brevity� we have omitted typing rules for sequential composition� if� and while	

�var�id� ��
 � x � � var
�x� � � var

�ident� ��
 � x � �
�x� � �

�ptr� ��
 � ��i� j�� 	� � � ptr ��i� � �

�var� ��
 � ��i� j��
� � � var ��i� � �

�lit� ��
 � c � int c is an integer literal

��
 � unit � unit

���intro� ��
�x� � ��� � � � � xn � �n � e � �
��
 � �x�� � � � � xn� e � �� � � � � � �n � �

���elim� ��
 � e � �� � � � � � �n � ��
��
 � ei � �i�
 	 i 	 n

��
 � e�e�� � � � � en� � �

�let�val� ��
 � v � ��� ��
�x � Close������� � e � ��
��
 � let x � v in e � ��

�let�ord� ��
 � e� � ��� ��
�x � �� � e� � ��
��
 � let x � e� in e� � ��

�letvar� ��
 � e� � ��� ��
�x � �� var � e� � ��
��
 � letvar x �� e� in e� � ��

�letarr� ��
 � e� � int � ��
�x � �� ptr � e� � ��
��
 � letarr x�e� in e� � ��

�r�val� ��
 � e � � var
��
 � e � �

�l�val� ��
 � e � � ptr
��
 � �e � � var

�address� ��
 � e � � var
��
 � �e � � ptr

�assign� ��
 � e� � � var � ��
 � e� � �
��
 � e� �� e� � �

�arith� ��
 � e� � � ptr � ��
 � e� � int
��
 � e� � e� � � ptr

�subscript� ��
 � e� � � ptr � ��
 � e� � int
��
 � e��e� � � var

Fig� �� Rules of the Type System

meaning that expression e has type 	� assuming that
 prescribes phrase types for
the free identi�ers of e and � prescribes data types for the variables and pointers
in e� More precisely� meta�variable
 ranges over identi�er typings� which are
�nite functions mapping identi�ers to phrase types�
�x� is the phrase type
assigned to x by
 and
�x � 	 is a modi�ed identi�er typing that assigns phrase
type 	 to x and assigns phrase type
�x�� to any identi�er x� other than x�

Meta�variable � ranges over address typings� which are needed in typing the
values produced by programs� One might expect that addresses would just be
natural numbers� but that would not allow the semantics to detect invalid pointer
arithmetic� So instead an address is a pair of natural numbers �i� j� where i is
the segment number and j is the o�set � Intuitively� we put each variable or array
into its own segment� Thus a simple variable has address �i� 	�� and an n�element
array has addresses

�i� 	�� �i�
�� � � � � �i� n�
�

Pointer arithmetic involves only the o�set of an address� and dereferencing
nonexistent or dangling pointers is detected as a �segmentation fault�� An ad�
dress typing then is a �nite function mapping segment numbers to data types�
The reason it does not map addresses to data types is that nonexistent pointers
can be produced as values of programs� and such pointers must therefore be
typable if subject reduction is to hold� For example� the program

letarr a�
	 in a �
�

is well typed and evaluates to ��	�
��� 	�� a nonexistent pointer� The notational
conventions for address typings are similar to those for identi�er typings�

The generalization of a data type � relative to � and
� written Close����� ��
is the type scheme ��� � � � where �� is the set of all type variables occurring free
in � but not in � or in
� We write � � e � � and Close��� � when
 �
� We
say that � � is a generic instance of ��� � � � written ��� � � � � �� if there exists a
substitution S with domain �� such that S� � � �� We extend this de�nition to
type schemes by saying that � � �� if � � � whenever �� � � � Finally� we say
that ��
 � e � � if ��
 � e � � whenever � � � �

The type system has the property that the type of a value determines the
form of the value� also� an expression of type � var can have only two possible
forms�

Lemma� �Correct Form�� Suppose � � v � � � Then

� if � is int� then v is an integer literal�
� if � is unit� then v is unit�
� if � is � � ptr� then v is of the form ��i� j�� 	�� and
� if � is �� � � � � � �n � �n��� then v is of the form �x�� � � � � xn�e�

Furthermore� if � � e � � var� then e is of the form ��i� j��
� or of the form �e���

Proof� Immediate from inspection of the typing rules�

� Note that this assumes that array subscripting is syntactic sugar	

A consequence of the last part of this lemma is that if � � e � � and e is not of the
form ��i� j��
� or �e�� then derivation of the typing judgement cannot end with
rule �r�val�� So the typing rules� for the most part� remain syntax directed� The
fact that variables can have only two possible forms is exploited in our structured
operational semantics� speci�cally within rules �ref� and �update��

��� The Semantics of Polymorphic C

We give a structured operational semantics� A closed expression is evaluated
relative to a memory �� which is a �nite function from addresses to values�
It may also map an address to dead or uninit� indicating that the cell with
that address has been deallocated or is uninitialized� The contents of an address
a � dom��� is the value ��a�� and we write ��a �� v for the memory that assigns
value v to address a� and value ��a�� to an address a� �� a� ��a �� v is an update
of � if a � dom��� and an extension of � if a �� dom����

The evaluation rules are given in Figure �� They allow us to derive judgements
of the form

� � e v� ��

which asserts that evaluating closed expression e in memory � results in value v
and new memory ���

We write �e��xe to denote the capture�avoiding substitution of e� for all free
occurrences of x in e� Note the use of substitution in rules �apply�� �bind��
�bindvar�� and �bindarr�� It allows us to avoid environments and closures in
the semantics� so that the result of evaluating a Polymorphic C expression is
just another expression in Polymorphic C� This is made possible by the �exible
syntax of the language and the fact that all expressions are closed� including
lambda abstractions�

� Semantic Soundness

In this section� we establish the soundness of our type system� We begin by
using the framework of Harper �Har�� to show subject reduction� which basically
asserts that if � e � � and � e v� ��� then � v � � � But since e can allocate
addresses and they can occur in v� the conclusion must actually be that there
exists an address typing �� such that �� � v � � and such that �� � ��� The latter
condition asserts that �� is consistent with ��� More precisely� we say � � � if

� dom��� � fi j �i� 	� � dom���g� and
�� for all �i� j�� � � ���i� j�� � ��i� if ���i� j�� is a value�

Note that � must give a type to uninitialized and dead addresses of �� but the
type can be anything�

Before giving the subject reduction theorem� we require a number of lem�
mas that establish some useful properties of the type system� We begin with a
fundamental type substitution lemma�

�val� � � v v� �

�contents� a � dom��� and ��a� � v
� � �a�
� v� �

�deref� � � e �a� 	�� ��

a � dom���� and ���a� � v
� � �e v� ��

�ref� � � ��a�
� �a� 	�� �

� � e �a� 	�� ��

� � � � e �a� 	�� ��

�offset� � � e� ��i� j�� 	�� ��
�� � e� n� �� �n an integer�
� � e� � e� ��i� j � n�� 	�� ��

�apply� � � e �x�� � � � � xn� e
�� ��

�� � e� v�� ��
� � �
�n � en vn� �n��
�n�� � �v�� � � � � vn�x�� � � � � xne� v� ��

� � e�e�� � � � � en� v� ��

�update� � � e v� ��

a � dom���� and ���a� �� dead

� � �a�
� �� e v� ���a �� v

� � e� �a� 	�� ��
�� � e� v� ��
a � dom���� and ���a� �� dead

� � �e� �� e� v� ���a �� v

�bind� � � e� v�� ��
�� � �v��xe� v�� ��
� � let x � e� in e� v�� ��

�bindvar� � � e� v�� ��
�i� 	� �� dom����
����i� 	� �� v� � ���i� 	��
��xe� v�� ��
� � letvar x �� e� in e� v�� ����i� 	� �� dead

�bindarr� � � e� n� �� �n a positive integer�
�i� 	� �� dom����
����i� 	�� � � � � �i� n�
� �� uninit� � � � �uninit �

���i� 	�� 	��xe� v�� ��
� � letarr x�e� in e�

v�� ����i� 	�� � � � � �i� n�
� �� dead� � � � �dead

Fig� �� The Evaluation Rules

Lemma� �Type Substitution�� If ��
 � e � � � then for any substitution S�
S��S
 � e � S� � and the latter typing has a derivation no longer than the former�

Lemma� �Super	uousness�� Suppose that ��
 � e � � � If i �� dom���� then
��i � � ��
 � e � � � and if x �� dom�
�� then ��
�x � 	 � e � � �

Lemma
 �Substitution�� If ��
 � v � � and ��
�x � � � e � � � then ��
 �
�v�xe � � � Also if ��
 � �a�
� � � var and ��
�x � � var � e � � �� then ��
 �
��a�
��xe � � ��

The preceding lemma does not hold for arbitrary expression substitution�

Lemma� ���intro�� If ��
 � e � � and ��� � � � � �n do not occur free in � or in

� then ��
 � e � ���� � � � � �n � � �

We can now give the subject reduction theorem�

Theorem �Subject Reduction�� If � � e v� ��� � � e � � � and � � �� then
there exists �� such that � � ��� �� � ��� and �� � v � � �

Proof� By induction on the structure of the derivation of � � e v� ��� Here we
just show the �bindvar� and �bind� cases�

�bindvar�� The evaluation must end with

� � e� v�� ��
�i� 	� �� dom����
����i� 	� �� v� � ���i� 	��
��xe� v�� ��
� � letvar x �� e� in e� v�� ����i� 	� �� dead

while the typing must end with �letvar��

� � e� � ��
�� �x � �� var � e� � ��
� � letvar x �� e� in e� � ��

and � � �� By induction� there exists �� such that � � ��� �� � ��� and �� � v� �
��� Since �� � �� and �i� 	� �� dom����� also i �� dom����� So �� � ���i � ��� By
rule �var��

���i � �� � ��i� 	��
� � �� var

and by Lemma ��
���i � ��� �x � �� var � e� � ��

So we can apply Lemma � to get

���i � �� � ���i� 	��
��xe� � ��

Also� ����i� 	� �� v� � ���i � ��� So by a second use of induction� there exists ��

such that ���i � �� � ��� �� � ��� and �� � v� � ���
It only remains to show that ����i� 	� �� dead � ��� But this follows imme�

diately from �� � ���

Remark� What would go wrong if we simply removed the deallocated address
�i� 	� from the domain of the �nal memory� rather than marking it dead� Well�
with the current de�nition of � � �� we would then be forced to remove i from
the �nal address typing� But then �� � i � �� � i would fail� if there were any
dangling pointers ��i� j�� 	� in the range of �� � i� If� instead� we allowed �� to
retain the typing for i� then the next time that �i� 	� were allocated we would
have to change the typing for i� rather than extend the address typing�

�bind�� If e� is a value v�� then the evaluation must end with

� � v� v�� �
� � �v��xe� v�� �

�

� � let x � v� in e� v�� �
�

while the typing must end with �let�val��

� � v� � ��
�� �x � Close����� � e� � ��
� � let x � v� in e� � ��

and � � �� By Lemma �� � � v� � Close������ and so by Lemma �� � � �v��xe� �
��� So by induction� there exists �� such that � � ��� �� � ��� and �� � v� � ���

The case when e� is not a value is similar� but Lemma � is not required� and
induction is used twice�

The subject reduction property does not by itself ensure that a type system is
sensible� For example� a type system that assigns every type to every expression
trivially satis�es the subject reduction property� even though such a type system
is useless� The main limitation of subject reduction is that it only applies to well�
typed expressions that evaluate successfully� Really we would like to be able say
something about what happens when we attempt to evaluate an arbitrary well�
typed expression�

One approach to strengthening subject reduction �used by Gunter �Gun���
for example� is to augment the evaluation rules with rules specifying that cer�
tain expressions evaluate to a special value� TypeError� which has no type�
For example� an attempt to dereference a value other than a pointer would
evaluate to TypeError� Then� by showing that subject reduction holds for the
augmented evaluation rules� we get that a well�typed expression cannot evalu�
ate to TypeError� Hence any of the errors that lead to TypeError cannot
occur in the evaluation of a well�typed expression� Aside from the drawback of
requiring us to augment the evaluation rules� this approach does not give us as
much information as we would like� It tells us that certain bad things will not
happen during the evaluation of well�typed expression� but says nothing about
what other bad things can happen�

We now present a di�erent approach leading to a type soundness theorem
that characterizes precisely everything that may go wrong when we attempt
to evaluate a well�typed expression� First� we note that a successful evaluation
always produces a value�

Lemma�� If � � e v� ��� then v is a value and �� is a memory�

Roughly speaking� the combination of the subject reduction theorem and the
correct forms lemma �Lemma
� allows us to characterize the forms of expres�
sions that will be encountered during the evaluation of a well�typed expression�
This will allow us to characterize what can go wrong during the evaluation�

To get a handle on the �progress� of an attempted evaluation� it is helpful to
recast the evaluation rules as a recursive evaluation function� eval � For example�
the �update� rules correspond to the clauses

eval��� �a�
� �� e� �
let �v� ��� � eval ��� e� in
if a � dom���� and ���a� �� dead then

�v� ���a �� v�
else

fail �

eval��� �e� �� e�� �
let ��a� 	�� ��� � eval��� e�� in
let �v� ��� � eval ���� e�� in
if a � dom���� and ���a� �� dead then

�v� ���a �� v�
else

fail �

Introducing eval allows us to talk about type soundness in terms of what happens
when eval is called on a well�typed program�

De�nition�� A call eval��� e� is well typed i� there exist � and � such that
� � � and � � e � � �

De�nition�� An activation of eval aborts directly if the activation itself aborts�
Note that an activation does not abort directly if it makes a recursive call that
aborts or does not terminate�

We can now show the key result for type soundness�

Theorem��� Suppose that an activation eval��� e� is well typed� Then every
recursive call made by the activation is well typed� Furthermore� if the activation
aborts directly� it aborts due to one of the following errors�

E�� An attempt to read or write to a dead address �i� j��

E	� An attempt to read or write to a nonexistent address �i� j�� Address �i� 	�
always will exist� so the problem is that the o�set j is invalid�

E
� An attempt to read an uninitialized address �i� j��

E�� An attempt to declare an array of size less than or equal to ��

Proof� We just consider all possible forms of expression e� Here we just give the
case e� �� e�� the other cases are quite similar�

If eval��� e� �� e�� is well typed� then there exist � and � such that � � � and
� � e� �� e� � � � The latter typing must be by �assign��

� � e� � � var
� � e� � �
� � e� �� e� � �

By Lemma
� e� must be of the form ��i� j��
� or else of the form �e�

�� So�
simplifying notation a bit� we are left with two cases� �a�
� �� e and �e� �� e��
Note that there is a clause of eval that applies to each of these� We consider the
two cases in turn�

If the activation is eval ��� �a�
� �� e�� where � � � and � � �a�
� �� e � � �
then the typing must end with �assign��

� � �a�
� � � var
� � e � �
� � �a�
� �� e � �

So by �var�� ��i� � � � where a � �i� j��
Also� the recursive call eval��� e� is well typed� If this call fails to return�

then the parent activation eval��� �a�
� �� e� doesn�t abort directly� If the call
succeeds� then by Lemma � it returns a value v and a memory ��� so the pattern�
match let �v� ��� � eval��� e�� doesn�t abort�

By the subject reduction theorem� there exists �� such that � � ��� �� � ���
and �� � v � � � Hence ���i� � � � and so �i� 	� � dom�����

So the only way for the activation eval��� �a�
� �� e� to abort directly is if
�i� j� �� dom���� or ����i� j�� � dead� And since �i� 	� � dom����� we know that
if the �rst case holds� the error is in the o�set j�

If the activation is eval��� �e� �� e��� where � � � and � � �e� �� e� � � � then
the typing must end with �l�val� followed by �assign��

� � e� � � ptr
� � �e� � � var
� � e� � �
� � �e� �� e� � �

So the recursive call eval��� e�� is well typed� If this call fails to return� then the
parent activation eval��� �e� �� e�� doesn�t abort directly� If the call succeeds�
then by Lemma � it returns a value v� and a memory ���

By the subject reduction theorem� there exists �� such that � � ��� �� � ���
and �� � v� � � ptr � So by the Correct Form lemma� v� is of the form ��i� j�� 	�
hence the pattern�match let ��a� 	�� ��� � eval ��� e��� doesn�t abort� Also� by
�ptr�� ���i� � � �

By the Super�uousness Lemma� �� � e� � � � so the recursive call eval���� e��
is also well typed� If this call fails to return� then the parent activation doesn�t

get stuck� If it succeeds� then it returns a value v and a memory ��� so the
pattern�match let �v� ��� � eval���� e��� doesn�t abort� By the subject reduction
theorem� there exists �� such that �� � ��� �� � ��� and �� � v � � � Hence ���i� � � �
and so �i� 	� � dom�����

So the only way for the activation eval��� �e� �� e�� to abort directly is if
�i� j� �� dom���� or ����i� j�� � dead� And since �i� 	� � dom����� we know that
if the �rst case holds� the error is in the o�set j�

Corollary �� �Type Soundness�� If � � e � � and � � �� then eval ��� e� either

�� succeeds producing a value of type ��� or
	� fails to halt� or

� aborts due to one of the errors E�� E	� E
� or E��

Proof� Any call must either succeed� fail to halt� or abort�
If the call aborts� then one of its recursive activations must abort directly�

Now this activation must have been reached by a �nite path of recursive calls
from the root call eval ��� e�� Since the root call is well typed� by Theorem
	
all the calls on the path are well typed� So the activation that aborts directly is
well typed� Hence by Theorem
	 it aborts due to one of the errors E��E� �

� Discussion

The semantics speci�es that an implementation is under no obligation to preserve
the contents of variables beyond their scope� which in turn justi�es a stack�based
implementation� Further� there is no need for static links since all functions
in Polymorphic C are closed with respect to top�level declarations� It is also
interesting to note that in light of this closure property� there would be no need
to specify in the semantics that a variable dies at the end of its scope if there
were no � operator� The variable would simply be unreachable in this case�

To maintain subject reduction� the semantics also ensures that any program
with pointer errors does not produce a value� This requires a number of mecha�
nisms� for example� keeping track of cells that have been deallocated� that we do
not expect to see in any realistic implementation of the semantics� We believe
that an implementation� for the sake of e!ciency� should be able to do whatever
it likes on programs that do not yield values� and hence are in error� accord�
ing to the semantics� For example� the semantics does not prescribe a value for
dereferencing a dangling pointer� So it would be acceptable� upon an attempt
to dereference such a pointer� for an implementation to merely return the last
value stored there� as in C� rather than detect an error�

Given that a real implementation would not catch pointer errors� what then is
the practical signi�cance of our type soundness theorem� Two things can be said�
First� the theorem gives a characterization of the source of errors"it tells us that
when a program crashes with a �Segmentation fault"core dumped� message�
what causes the crash is one of the errors E��E� and not� for example� an invalid
polymorphic generalization� Second� by directly implementingour semantics� one
can get a robust �debugging� implementation that �ags all pointer errors�

� Conclusion

Advanced polymorphic type systems have come to play a central role in the
world of functional programming� but so far have had little impact on traditional
imperative programming� We assert that an ML�style polymorphic type system
can be applied fruitfully to a �real�world� language like C� bringing to it both
the expressiveness of polymorphism as well as a rigorous characterization of the
behavior of well�typed programs�

Future work on Polymorphic C includes the development of a type inference
algorithm �preliminary work indicates that this can be done straightforwardly��
the development of an e!cient implementation �perhaps using the work of �Le���
ShA��� HaM���� and extending the language to include other features of C�
especially structures�

References

�DaM��� Damas� L	 and Milner� R	� Principal Type Schemes for Functional Programs�
Proc� �th ACM Symposium on Principles of Programming Languages� pp	
�������� ����	

�GMW��� Gordon� M	� Milner� R	 and Wadsworth� C	� Edinburgh LCF� Lecture Notes
in Computer Science ��� Springer�Verlag� ����	

�Gun��� Gunter� C	� Semantics of Programming Languages� Structures and Tech�

niques� MIT Press� ����	
�Har�
� Harper� R	� A Simpli�ed Account of Polymorphic References� Information

Processing Letters� ��� pp	 �������� August ���
	
�HaM��� Harper� R	 and Morrisett� G	� Compiling Polymorphism Using Intensional

Type Analysis� Proc� ��nd ACM Symposium on Principles of Programming

Languages� pp	 �����
�� ����	
�KR��� Kernighan� B	 and Ritchie� D	�The C Programming Language� Prentice�Hall�

����	
�LeW��� Leroy� X	 and Weis� P	� Polymorphic Type Inference and Assignment� Proc�

��th ACM Symposium on Principles of Programming Languages� pp	 ����
���� ����	

�Le��� Leroy� X	� Unboxed Objects and Polymorphic Typing� Proc� ��th ACM Sym�

posium on Principles of Programming Languages� pp	 �������� ����	
�ShA��� Shao� Z	 and Appel� A	� A Typed�Based Compiler for Standard ML� Proc�

���	 Conf� on Programming Language Design and Implementation� pp	 ����
���� ����	

�SML��� Standard ML of New Jersey� Version �	��� February ��� ����	
�Tof��� Tofte� M	� Type Inference for Polymorphic References� Information and

Computation� ��� pp	 ���
� ����	
�VoS��� Volpano� D	 and Smith� G	� A Type Soundness Proof for Variables in LCF

ML� Information Processing Letters� ��� pp	 �
���
�� November ����	
�Wri��� Wright� A	� Simple Imperative Polymorphism� Lisp and Symbolic Computa�

tion ��
 pp	 �
������ December ����	

This article was processed using the LaTEX macro package with LLNCS style

