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1 Executive Summary 
 

The importance of Field Programmable Gate Arrays (FPGAs) for Department of 
Defense systems is well understood.  The Special Technology Area Review (STAR) on 
FPGAs, for example, clearly indicates that FPGAs are a crucial electronic component in 
many DoD electronic systems (1).  The report indicates that FPGAs will be used within 
many DoD systems for some time and will likely grow in importance as the performance 
and architectures of FPGAs improve.  FPGAs are used within DoD for the same reasons 
they are used in commercial systems: reduced time to market, lower NRE costs, infield 
programmability, lower design and validation costs, and rapid prototyping.  FPGAs also 
offer significant processing performance – by creating custom circuits optimized for a 
specific application, FPGAs can perform computations much more efficiently than other 
conventional forms of computing. 

Several FPGA architecture trends suggest that FPGAs will become more important 
in the future.  First, FPGAs are closely following Moore’s law and are benefiting from 
the increased logic density available with new process technologies.  Second, FPGAs are 
continually adding more system level functionality such as advanced I/O standards, bus 
interfaces, and memories.  Third, FPGAs are integrating a variety of heterogeneous 
processing elements such as DSP processors, programmable processors, and computing 
elements.  Fourth, FPGAs are providing multiple processors (both hard and soft) that can 
be organized into chip-level multiprocessing.  This growing density, raw computational 
throughput, and system functionality suggests that FPGAs will play an increasingly 
important role in future DoD systems. 

While FPGAs provide many benefits, the effort and skill required to create working 
FPGA designs is growing and consumes significant design resources during system 
development.  The inability to create FPGA designs more productively limits the ability 
to exploit the growing density, capability, and performance potential of modern FPGA 
architectures.  In fact, one of the key recommendations of the STAR report is the need to 
address the science and technology gap that includes the advancement of electronic 
design automation (EDA) for FPGAs.  Unless significant advances in FPGA design 
productivity are made, the full benefits of FPGAs cannot be realized. 

The objective of this effort was to investigate the full FPGA tool flow and identify 
potential solutions at all stages of the tool flow that will provide revolutionary 
improvements in design productivity.  In the course of this study we have identified 
several key challenges limiting design productivity and identified several critical 
technical research focus areas to address the FPGA design productivity problem. This 
report summarizes our recommendations and proposes a research plan for solving the 
most important design productivity challenges. We believe that revolutionary advances 
can be made in FPGA design productivity with adequate investment in the research areas 
presented in this report. 

The following section (Section 2) summarizes the background material and historical 
context for both FPGA design and software programming.  Section 3 will introduce 
several metrics and present our “productivity model”. This model will be used to identify 
the most promising approaches for improving design productivity. Section 4 will present 
the most promising approaches we have identified during the study that we believe will 
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lead to revolutionary improvements in design productivity. Section 5 will conclude the 
report by presenting an integrated research vision that summarizes the vision from this 
study and the study conducted by the companion team made up from members of the 
National Science Foundation Center for High-Performance Reconfigurable Computing 
(CHREC). 
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2 Background 

2.1 FPGA Devices 
FPGA design productivity is limited by the so called design productivity gap (2).  

Silicon density continues to double every 1.5 to 2 years while design capabilities are 
growing at a much slower rate.  Design productivity must improve at a rate similar to 
Moore's Law just to keep from falling behind.  While incremental improvements in 
design productivity are being made, the rate of growth in design productivity is much 
lower than Moore’s law resulting in increasing design times for each new FPGA 
generation.  Significant effort and investment in design techniques and methods are 
necessary for closing this design productivity gap. 

Most of the largest FPGA devices available today are built using 65 nm 
technology1.  These modern FPGAs contain a tremendous amount of logic, computation, 
and memory resources and can be used for a variety of high-speed digital systems and 
high-performance computing applications.  The growth in density and capability of 
FPGAs will undoubtedly continue in the future.  Table 1 suggests the resources that may 
become available on future FPGA devices using newer fabrication technologies.  If 
FPGA density keeps pace with Moore's law, we expect the largest FPGAs in a 22 nm 
technology to contain almost 3 million look-up tables, several thousand dedicated 
multiplier/DSP blocks, and up to 100Mb of internal memory.   

 
Technology Year LUTs DSPs Memory

65 nm 2007 340 k 500 10 Mbit 
45 nm 2010 700 k 1000 21 MBit 
32 nm 2013 1,400 k 2000 42 MBit 
22 nm 2016 2,900 k 4300 89 MBit 

Table 1 - Density and Capability of Future FPGA Technologies 
 

While the density of future FPGAs will certainly increase, it is likely that the 
architecture of future FPGAs will continue to evolve.  As more transistors become 
available, it is likely that the logic and computing resources will become coarser grain 
and more “hard-core” resources (such as PCI express) will be added to keep up with the 
latest and highest speed I/O interfaces.  We also expect that a variety of new FPGA 
device families will be introduced to address the needs of specific markets.  As such, 
FPGAs will present a moving target to Computer Aided Design (CAD) tools and we 
believe it will become increasingly difficult to address the gap between FPGA design 
productivity and FPGA circuit density. 

2.2 FPGA Use Models 
There has been considerable interest by non-traditional circuit designers to use and 

“program” FPGAs.  These application experts and programmers recognize the benefits of 
FPGAs and seek ways to exploit the efficiency, reprogrammability, and computational 
density of FPGAs for their application-specific problems.  These non-traditional FPGA 
programmers come from a variety of backgrounds including signal processing, embedded 

                                                 
1 Altera announced the introduction of the first 40-nm FPGA (Stratix IV) on May 19, 2008. 
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systems, communications, and high-performance computing.  These experts, however, do 
not have the traditional digital design skills to effectively “program” the FPGA using 
existing FPGA design tools.  

The wide variety of users interested in using FPGAs suggests that new design 
methods and techniques are needed for FPGA design.  We introduce the concept of an 
FPGA “use model” and define a number of “use models” to clarify the design issues that 
face FPGA designers and non-traditional FPGA programmers.  Each model has a 
different set of design challenges, design constraints, and programming environments.  
While we have identified a variety of unique FPGA use models, we will focus on two 
FPGA use models for this report: ASIC replacement and Configurable Computing. 

ASIC Replacement is the most common FPGA use model.  In this use model, 
FPGA devices are used to perform general purpose digital functions that might otherwise 
be performed in a custom integrated circuit (i.e., the FPGA is used to replace an ASIC).  
In this use model, the behavior and timing of the FPGA are specified in great detail 
including clock-cycle accuracy of the interfaces and internal logic.  The design goal is to 
minimize cost (i.e., optimize hardware) and validate circuit functionality (including 
meeting timing constraints).  The design is optimized in a way that allows the least 
expensive FPGA device to be used in the system.  ASIC replacement applications 
typically involve the design of custom PC boards onto which the FPGA is placed, custom 
I/O interfaces, custom clocking requirements, etc.  Much of the design activity involves 
creating the register transfer level implementation from some detailed system 
specification. 

Configurable computing is an FPGA use model in which FPGA devices are used 
to perform application specific computation.  The large amount of logic resources 
available in modern FPGAs allows complex calculations and application-specific 
computations to be performed more efficiently and often with higher performance than 
more traditional CPU-based architectures (3).  Standard platforms and boards are most 
often used for configurable computing to simplify the design process and facilitate reuse.  
When mapping a computation onto a configurable computing machine (CCM) the goal is 
often to get the design to fit into the available FPGA(s) as quickly as possible rather than 
to optimize the design down to the last gate.  

The configurable computing use model has been applied in both high-performance 
computing (HPC) environments as well as high-performance embedded computing 
(HPEC).  In both cases, FPGA designs are created on a standard platform to accelerate an 
application-specific computation.  Unlike the FPGAs in an ASIC replacement use model, 
the FPGAs in configurable computing are reused for multiple computations. Because the 
FPGAs are reused and many FPGA designs created for a single design platform, design 
productivity is far more important for the configurable computing use model than for 
ASIC replacement. 

Several emerging FPGA use models are being developed to facilitate the design of 
FPGAs in a variety of vertical markets.  Many FPGAs are now used for Digital Signal 
Processing (DSP) and stream-based processing. A variety of new design methods are 
available for simplifying the design of FPGAs by DSP programmers (4).  With embedded 
processor cores available within FPGAs, complex system-on-chip designs can be created 
within an FPGA.  Design methods customized for SOC design have also been created for 
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FPGAs (5).  Many other use models have been developed for a variety of application-
specific tasks including networking (6), string matching (7) and many others. 
 A key reason design productivity for configurable computing is so poor is that 
that the design methods used in configurable computing are primarily the low-level 
design methods developed for the ASIC replacement use model.  The design of 
configurable computing “programs” is essentially circuit design – low-level digital design 
methods such as RTL design are used to define complex computation and behavior.  In 
fact, most of the design processes in contemporary configurable computing have direct 
counterparts in ASIC design (8).  ASIC replacement design methods are insufficient for 
configurable computing and new methodologies are needed to improve design 
productivity.  Development environments are needed for FPGA design that more closely 
resemble the development environments of traditional programmers and application 
developers. 

While the development environments used by traditional programmers are varied, 
they possess a number of common traits.  First, the languages used are abstract enough 
that a developer can create code with limited exposure to the underlying hardware 
structures.  Second, developers expect a development environment consisting of 
compilers, extensive libraries of reusable functions, linkers, loaders, profilers, and 
symbolic debugging tools.  Third, developers expect to work in an interactive 
development environment where the delay from compilation to debug on the target 
platform is measured in seconds or minutes, and the creation of what-if scenarios during 
the debug process is simple and efficient. 

In contrast, development environments for FPGAs remain primitive by these 
standards.  Developing for FPGAs currently requires detailed knowledge of the target 
chip’s structure, capacity, and capabilities.  Little in the way of reusable IP is available 
and logic analyzers and logic probes remain the key tools for the debug of most FPGA-
based designs.  Finally, FPGA development tool chains are batch-oriented rather than 
interactive with compile/link/execute timeframes measured in hours or days rather than 
seconds or minutes.  Future advances in design productivity for FPGAs must 
significantly simplify the design/programming process of FPGAs for non-traditional 
FPGA users. In later sections of this report, our recommendations divide broadly into the 
three categories highlighted in the previous two paragraphs: abstraction, reuse, and 
development/debug environments. 

We have focused our study on technologies and design methods that improve 
design productivity for configurable computing rather than for ASIC replacement or any 
of the other emerging use models.  We believe that there is great potential for improving 
the design productivity for configurable computing and that with sufficient investment in 
a number of important technical areas, revolutionary improvements in design 
productivity for configurable computing are possible.  While the techniques and ideas we 
present in this report are targeted towards configurable computing, we believe that many 
of these ideas can be successfully applied to the ASIC replacement use model and that 
some improvements in ASIC replacement design productivity are also possible.   
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2.3 Conventional FPGA Design Methodology 
Before suggesting potential solutions to the FPGA design problem, it is useful to 

discuss the various phases of the conventional FPGA design methodology (i.e., design 
methodology used in the ASIC replacement use model). Furthermore, it is helpful to 
contrast these steps with the conventional software development process to highlight the 
added time, skill, and cost associated with FPGA design. Six broad design steps are 
highlighted in Figure 1 below and will be described in more detail. 

 

 
Figure 1: FPGA Design Flow. 

2.3.1 Algorithm Development 
Algorithm development is the process of creating and defining the behavior of the 

algorithm or computation that is intended for the FPGA. This is usually performed in a 
conventional programming language and tested using a variety of tools and software test 
benches. This step is common when targeting any computing platform including FPGAs, 
supercomputers, conventional microprocessors, etc. The focus of this step is to refine the 
algorithm rather than address implementation specific design details. 

2.3.2 Architecture Exploration 
Once an algorithm has been defined and verified, it must be targeted to a specific 

computing architecture. This task is broadly called architecture exploration and is unique 
for application-specific computing architectures including FPGAs. This step involves the 
creation of a unique, specialized computing architecture for the computation of interest. 
There is a very large design space for implementing these architectures and the primary 
challenge in this step is to identify the lowest cost architecture (size, power, etc.) that 
meets the computational constraints in as little time as possible. In most cases, this 
architecture exploration is performed manually by experienced design engineers2. This 
step is not necessary for software development as the hardware architecture is fixed. 

2.3.3 Register Transfer Level (RTL) Design 
Once an architecture has been identified for a computation, the architecture must 

be described using register transfer level design languages such as VHDL and Verilog. 
This process is not straight forward and requires the designer/programmer to explicitly 
schedule operations in time, allocate resources for these operations, and interconnect the 
resources. Further, the user must specify this architecture using hardware description 
languages that are unfamiliar to conventional programmers. While tools have recently 
been created that allow the description of these architectures in languages such as C, most 
of them require the programmer to be aware of architecture issues such as timing, 
parallelization, and resource allocation. 

                                                 
2 Several high-level synthesis tools perform architecture exploration manually but these tools are not yet 
widely adopted by the FPGA design community. 

Algorithm
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Architecture
Exploration

RTL-Level
Design

Technology
Mapping

Verification
Run-Time

Deployment



7 
 

2.3.4 Technology Mapping 
After the design has been specified in a standard RTL-design language (or higher-

level C-based language), it must be mapped onto the resources of a specific FPGA. This 
step is broadly called technology mapping and involves the mapping of logic to specific 
FPGA resources, the placement of these resources to specific locations within the device, 
the routing of signals between resources, and the generation of FPGA-specific 
programming bitfiles.  Technology mapping is very time consuming – complex 
optimization algorithms are used to find acceptable logic placement and routing. As the 
size of FPGAs grows exponentially, the amount of time required for placement and 
routing grows significantly. An important limitation of FPGA design productivity is the 
long time required for place and route. 

Unlike conventional software development, where compilation occurs in a matter 
of minutes, FPGA technology mapping may take many hours or days to complete for a 
complex design. As the density of FPGAs continues to grow exponentially, the time 
required for this technology mapping will grow to an unacceptable point.  Technology 
mapping time must be reduced to improve FPGA design productivity for configurable 
computing systems. 

2.3.5 Verification 
After the computation has been mapped to an architecture and translated into an 

FPGA circuit, its proper functionality must be verified against the original algorithm 
description. Verification and debug is much more complicated on FPGA-based systems 
than conventional software because of the limited visibility within FPGAs, lack of 
control during execution, and the primitive interfaces and tools available for FPGA-based 
verification. If there are design errors within an FPGA-based computing system, it is 
significantly more difficult and time consuming to identify and resolve these problems 
than with conventional software tools. 

2.3.6 Run-Time Support 
The final step in the design and “deployment” of FPGA-based systems is 

providing appropriate run-time support. Unlike conventional processor-based 
architectures, there is limited support for the loading and managing of FPGA-based 
computations and interfacing these computations/architectures with conventional 
processor-based architectures. In most cases, ad-hoc or proprietary interfaces are used for 
each computing system adding significant time and cost to FPGA-based system design. 

2.3.7 Detailed FPGA Design Flow 
A more detailed diagram of the FPGA design flow is shown below in Figure 2. 

While the details of the design methodology are not important for this discussion, there 
are several observations that are worth emphasizing. First, there are many different 
activities required to create a valid FPGA design. These design steps require a variety of 
skills and tools to translate a high-level algorithm into a working FPGA system. FPGA 
designers must be skilled in each of these steps and tools to effectively create valid FPGA 
designs. Second, there are many feedback loops in the design process that require 
iteration, repair, and debugging. Iterations at all levels of the design flow are expected 
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and multiply the amount of time required to create a valid design. Performing these 
design iterations significantly increases the overall FPGA design time. 

2.3.8 Limitations of Existing Tools 
Design tools for FPGAs continue to improve and provide the essential design 

support needed to create designs for today's large, complex, and heterogeneous FPGAs. 
These tools support the new features found in FPGA architectures and provide the 
capability to map complex designs to the largest available FPGAs. In addition, a variety 
of new design abstractions have been introduced to support new users of FPGA. These 
design abstractions include system on a chip design tools for embedded systems 
designers, signal flow graph tools for DSP engineers, and even C-based hardware 
compilers for algorithm experts.  

 

Figure 2: Detailed FPGA Design Methodology. 
 
In spite of these improvements, FPGA designers frequently complain about the 

design tools. Improvements in FPGA design tools do not seem to keep up with the needs 
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of the designers. The major limitations of the tools for traditional FPGA designers using 
FPGAs as an “ASIC replacement” include the following: 
 Long place and route times, 
 Difficulty meeting timing constraints, 
 Difficulty verifying complex designs, and 
 Inadequate design abstractions. 

 
The tools for designers using FPGAs primarily for computation (i.e., the configurable 

computing use model) are primitive compared to traditional software development 
environments. As described earlier, these designers must use “ASIC” design tools to 
create computing circuits. There is a large mismatch between the background and skills 
of the algorithm expert and the current design entry tools required for FPGA design. 

While new tools and abstractions for FPGAs are being introduced, these tools have 
not fundamentally changed the difficulty of FPGA design. In some cases, these new 
abstractions are not much different from traditional ASIC design and require the 
programmer to understand clocks, timing, and other low-level digital design concepts. In 
other cases, the abstractions are too restrictive and limit the ability of the synthesis tools 
to generate high-quality circuits (i.e., using sequential programming languages to specify 
concurrent hardware). In summary, the design of FPGA-based computing systems 
requires a variety of steps that each takes a large amount of time. Significant 
improvements in design productivity are only possible by addressing each of these steps 
and integrating these improvements into a cohesive design flow. 

2.4 Historical Perspective 
While current design methods for configurable computing closely resemble the 

design methods for ASIC replacement, the design goals and constraints of configurable 
computing are more closely related to traditional software development.  In traditional 
software design, the programmer specifies high-level behavior and relies on optimizing 
compilers, profilers, debuggers, and other tools to automatically translate the behavioral 
description into an efficient implementation.  Ideally, FPGA design for the configurable 
computing use model should look the same – programmers specify behavior in some 
high-level specification and use a variety of tools to translate this behavior into an 
efficient implementation onto the FPGA or configurable computing machine.  
Programmers should not be required to learn entirely new tool flows or become FPGA 
designers to successfully create FPGA circuits on reconfigurable platforms. 
 In the course of this study, the investigators regularly used software and the state-
of-the-art in software productivity as the yardstick to measure various aspects of FPGA 
productivity.  This was done for a few key reasons.  First, there are many similarities 
between software development and FPGA design for computational problems.  Since 
software environments are generally considered more mature than reconfigurable 
computing environments, this seems to be a good choice for longer-term trend analysis.  
Secondly, software productivity has progressed dramatically in nearly a half century.  It 
would be a tremendous success if improvements in FPGA productivity could be aligned 
to the same productivity curves as software.    
  After reviewing the history of software productivity, the team noted that there have 
been three notable milestones, or inflection points in the course of software evolution that 
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had significantly impacted software productivity.  These are:  
  
1. The introduction of standard languages and compilers that promoted platform 

independence and code reuse (namely, the wide acceptance of FORTRAN and related 
languages).  

2. The introduction of the linker, which in turn has lead to the preponderance of reusable 
code libraries.  

3. Addressing human factors in software development by providing rich debugging 
environments and rapid turn-around for “what-if” development.  
 

 Computer programming started as a craft as computers became relevant in society 
in the 1960s.  Computer programming evolved into a science as more programming 
languages were developed for a variety of domain specific purposes.  In the 1980s it 
evolved into an engineering discipline as quality and scale became dominant issues. With 
each successive transition, productivity was improved.  
 Software productivity has increased steadily since the 1960s. Early on, micro-
coding was the dominant programming approach. As more convenient machine 
(processor) structures emerged, assembly languages provided machine abstraction that 
improved productivity by over an order of magnitude. Then as programming domains 
such as business and scientific applications were established, third generation languages 
(3GL) like Cobol and Fortran with control and data flow abstractions led to another order 
of magnitude improvement in programmer productivity. 
 In 1970, COBOL was the state of the art, mainframes were in vogue and the 
personal computer had not hit the market.  By the early 1980s, it was clear that software 
productivity was a key bottleneck in many systems development efforts. In 1986, the 
Software Productivity Consortium (SPC) and the Software Engineering Institute (SEI) 
were formed to address the problem. Key areas like fourth generation languages (4GL) 
and fifth generation languages (5GL) were studied and some progress was made in 
specific domains where the workflow constructs could be aligned with computing 
capabilities. Much of the focus at these and other research organizations was on software 
reuse and integrated development environments. The SEI also started a program in 
software process that addressed process improvement.  
 Software environments also underwent a significant structural change since the 
1960s.  In the 1960s, software tools focused on a model centered on the individual.  Code 
entry, compilation and debugging centered on the capabilities and limitations of 
individuals, and programming teams were comprised of individualistic effort.  Since then, 
there has been a major shift in this model to now focus on enterprise-level development 
with philosophical changes encompassing, code lifetime, reuse, verification and 
deployment (see Figure 3).  Routine coding projects undertaken in today’s software 
engineering environments could not have been accomplished using coding environments 
of the past. 
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Figure 3: The Fundamental Shift in Software Development Environments. 

 
 Because of the close relationship between configurable computing design and 
software programming, it is instructive to look at the major innovations in software 
productivity over the last fifty years.  We believe that the current design tools and 
methods for configurable computing are still primitive and resemble the software 
practices of the 1960s.  Software productivity has progressed dramatically in the past half 
century and these improvements hold important insights for the configurable computing 
community.  Many of the improvements in software productivity can be applied to 
configurable computing.  The major advances in software productivity can be categorized 
into one of four different groups: 
 
1.   Increased Abstraction.  Major improvements in programmer productivity have been 

realized by introducing new languages and design methods that reduce the amount of 
detail required by the programmer.  The transition from machine code to assembly 
language and from assembly language to 3rd generation languages (9) allowed 
programmers to create complex programs without understanding low-level details of 
the microprocessor architecture. 

2.   Reusable Artifacts.  An important way of improving software productivity is reusing 
previously created software artifacts (10).  There are many levels of software reuse 
including reuse of applications, concepts, libraries, design patterns, and portable 
programs.  The recent growth in reusable software components for web-based 
applications such as web services demonstrates the potential improvements in 
productivity through reuse. 

3.   Software Process.  Recognizing that most early software development was done in 
an ad-hoc manner, new software processes were developed to improve productivity.  
Productivity improvements of 20% - 40% have been demonstrated for small software 
projects and up to 500% for large software projects (11) (12). 

4.   Automation.  Automating tedious tasks played an important role in improving 
productivity (13).  Tools to automate and integrate a variety of tasks have reduced 
errors and sped software development by over 30%.   
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As suggested above, configurable computing systems have yet to enjoy even the most 
basic productivity benefits demonstrated by software.  While there are some encouraging 
signs of progress with new languages and compilation tools, contemporary FPGA design 
more closely resembles the lowest-level machine code programming of the very earliest 
computer systems.  Significant advances in each of the four areas above are necessary for 
FPGA design in configurable computing systems to enjoy the benefits in productivity that 
were demonstrated by traditional software systems. 

Using advances in software productivity as a guide, we have identified three broad 
technical areas that are most promising for configurable computing design productivity: 
reusing artifacts, raising design abstractions, and increasing the interactivity and debug 
infrastructure (i.e., “turns per day”).  Software productivity has made significant 
advances in the last fifty years by making many advances in each of these areas.  These 
areas of productivity are interrelated and design productivity will significantly increase if 
advances are made in each of these areas and applied at all levels of the design 
methodology. 

  



13 
 

3 Productivity Model 
Before suggesting approaches and techniques for improving design productivity, we 

must have a clear definition and measure of design productivity.  Closely related to the 
idea of design productivity are metrics for measuring design productivity.  An appendix 
of this report (see Section 0) contains a sampling of papers we identified in the literature 
and which illustrate the state of the art in hardware design metrics.  In essence, we found 
two kinds of hardware productivity metrics in the literature.  The first and most common 
relates to input lines of source code created per day and is essentially an attempt to 
capture the amount of circuitry created per day.  A second metric is the ratio of the utility 
of the system divided by its cost.  While this latter metric is a more powerful metric and 
allows us to capture a variety of characteristics of the design process beyond simply 
circuitry created per day, we feel that the state-of-the-art in configurable computing 
design is such that we are not ready for this more complex metric, but prefer to use a 
simpler metric as a way of exposing what we view to be the most pressing problems in 
configurable computing design.  

During the course of this study we developed a productivity model to guide our 
investigation (14).  Models have limitations and the model we propose is no exception.  It 
is not meant to predict the precise design time required for a given application or design.  
Rather, it is more qualitative in nature and points out what we believe to be the first-order 
contributors to design productivity and their inter-relationships.   

Our first measure of design productivity is simply the rate at which hardware is 
developed:   

DesignTime

CC
uctivityDesignProd  .      (1) 

Here, CC represents the circuit complexity of the final design, as measured in gates, 
LUTs, transistors, etc.  The output of hardware design is hardware, a physical artifact that 
can be measured and that has quantifiable costs in several dimensions (silicon area, 
power, etc.).  Unlike software, our model does not measure the input of the design 
process (i.e., lines of code/day) but rather the physical output of the design process (the 
amount of circuitry produced). 

3.1.1 Design Time 
The majority of the effort required to complete a hardware design is spent in debug 

and verification, with values in the 70% range being common.  Thus, design time for 
configurable computing applications strongly depends on the number of design turns 
required to complete the verification of the design, and the ease with which those design 
turns can be completed.  The design time is proportional to the number of design “turns” 
and can be approximated as: 

 

TPD

Turns
Days   ,         (2) 

 
where, Turns is the total number of design iterations required and  TPD is “turns per day” 
(debug iterations per day). 
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3.1.2 Number of Turns Required to Complete a Design 
The number of design turns required to generate a bug-free design (Turns) is 

dependent on the size of the input description as well as the frequency of occurrence of 
bugs embedded in that input description.  We represent Turns as: 

Bug

Turns

ILOC

Bugs
ILOCTurns  .                              (3) 

In this equation, ILOC stands for “Input Lines of Code” and should be considered as a 
proxy for the quantity “complexity of the design source”, and could be measured in lines 
of input code, number of nodes in a graphical description of the circuit, etc.   

The term Bugs/ILOC in Equation (3) is a measure of how many bugs are present 
per ILOC and is based on a simple assumption — that design errors are distributed 
uniformly through the design at a certain rate.  Thus, the total number of bugs in a design 

is ILOC
BugsILOC  .  The assumption we make is that it takes one debug iteration 

(turn) to uncover and fix each bug.  Thus, it can be seen that ILOC
Bugs

ILOC
Turns   

and that 1Bug
Turns , allowing us to rewrite equation (3) as: 

 

ILOC

Turns
ILOCTurns  .                                                (3b) 

 
Combining Equations (1), (2), and (3b) leads to the following design productivity 
equation: 

ILOC

Turns
ILOC

TPDCC
uctivityDesignProd




 .                 (4) 

 
 

3.1.3 Effect of Reuse on Design Time 
Equation (4) fails to capture the effect of reuse on design productivity.  That is, 

design productivity improves when the designer is able to reuse pre-existing design 
pieces, requiring less original design.  Reuse can be modeled as reducing the number of 
lines of code that the designer must write from scratch.  ILOC (the code the user must 
create) can be modeled by two parts: first, the new portion of the design created from 
scratch and second, the interface code required to integrate the reused portions.  It is 
useful to express this in a form where the amount of reuse is explicitly represented, along 
with the overhead associated with that reuse: 

 
)]()1[(0 RORILOCILOC  .      (5) 

 
In this equation, ILOC0 is the amount of code originally required to describe the circuit 
without the benefit of any reuse (the amount of code required to create it entirely from 
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scratch).  R is the fraction of the design satisfied by reusing circuitry – the user must only 
create )1(0 RILOC   lines of new design code. 

Reuse is not free, however, and O represents the overhead of that reuse.  It is 
expressed as a percentage of R and represents lines of new code that the designer must 
create to interface the reused circuitry to the rest of the design.  As a concrete example, 
consider a design where ILOC0=100, R=80%, and O=10%.  Without the benefit of reuse, 
this would require the designer to write 100 lines of code.  With reuse, the user would 
have to create: 28]8.01.02.0[100  lines of code.  The reuse overhead (O) reduces 
the benefit of reuse and if too high will eliminate any of the net advantages of reuse. 

3.1.4 A Final Model 
Substituting Equation (5) into Equation (4) gives the following final equation for 

design productivity: 
 

ILOC

Turns
RORILOC

TPDCC
uctivityDesignProd






)]()1[(0

 .   (6) 

 
This productivity model brings together design abstraction, turns per day, and reuse, 

and describes how each of these factors individually contributes to programmer 
productivity.  We believe that orders of magnitude improvements in design productivity 
are possible if revolutionary advances are made in each of these three areas.  For 
example, reuse alone may provide a 4 improvement in productivity as shown above.  By 
developing and embracing higher levels of abstractions, the design detail required for a 
system may be reduced by a factor of 2 (i.e., increase the ratio of CC/ILOC by 2).  
Raising the abstraction and reusing FPGA artifacts may ultimately reduce the number of 
“turns” required to verify the design by 50% (Turns/ILOC).  Finally, creating 
infrastructure, tools, and new processes to significantly improve interactivity may 
increase the “Turns per day” by 50% or more (i.e., 1.5 improvement).  Taken together, 
these advances in all three areas would provide almost a 25 improvement in design 
productivity. 
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4 Research Approaches 
The productivity model defined in the previous section identifies the research areas 

we feel are most important to address in order to substantially increase the design 
productivity of FPGA-based systems for configurable computing machines. These three 
research areas include reuse, raising design abstractions, and increasing the number of 
“turns per day”.  Each of these areas is interconnected and design productivity will 
significantly increase only if advances are made in each of these areas and applied at all 
levels of the design methodology 

As described in the previous section, we believe that a 25 improvement in design 
productivity is possible (4 improvement due to reuse, 2 improvement due to higher 
level abstractions, and 3 improvement by increasing the number of turns per day). This 
section will describe several specific approaches that may lead to this 25 number. It is 
important to emphasize that no single technical advancement or approach will achieve 
this 25 productivity improvement.  Advances in each of these three areas are necessary 
and at all levels of the design methodology.  Further, the various advances that are made 
must interoperate and be integrated into a single design flow.  If advances are not made in 
each of these areas or the advances are not mutually supportive, then much lower 
improvements in design productivity will be achieved. 

This section will summarize each of the three research focus areas and provide 
specific approaches that we believe will achieve the 25 design productivity 
improvement. We believe these approaches are mutually compatible and necessary for 
achieving revolutionary improvements in design productivity.  The approaches presented 
here are not exhaustive and we believe that there are likely other approaches that are 
compatible with this research agenda.  We encourage the discussion and inclusion of 
other research approaches. 

4.1 Reuse 
It is well known that reuse of software has been a significant factor in improving 

software design productivity (15) (16).  Today’s software systems are typically created 
by reusing software libraries, integrating reusable components, and dynamically 
integrating autonomous executables (COM, CORBA, etc.).  Very large and complex 
software services can be created by exploiting the many available reusable software 
components and service oriented architectures.  The successful exploitation of software 
reuse has led to significant improvements in productivity, higher quality code, fewer 
bugs, and lower software maintenance costs (17). 

While these relatively new forms of reuse have provided remarkable 
improvements in productivity, software systems have exploited reuse of system 
infrastructure for many years.  For example, even the simplest “Hello World” program 
involves a tremendous amount of code reuse.  Reusable firmware, operating system calls, 
and run-time libraries are necessary to run this simple program.  For example, consider 
the compilation of a simple hypothetical C program named “netmon.c”: 

 
gcc –o netmon netmon.c –lpthread –lm –lc 
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This program includes a variety of libraries and functions written by others to operate 
correctly. These reuseable libraries include: 
 
 285 functions in the C threads library, 
 400 functions in the C math library, and 
 2080 functions in the Standard C library. 
 

The author of this simple program was not likely bothered with knowing the 
details of each library function or its interface, and could have developed the code on a 
different platform with a different processor.  Despite this, the program likely produced 
the same results, differing possibly in temporal performance.  The end result is that the 
amount of implicit and explicit reuse is immense in contemporary software practice. 

Reuse within hardware systems, however, has significantly lagged behind that of 
software.  While there is great interest in exploiting reuse for hardware design, the risk 
associated with reusing 3rd party circuits and the technical challenges of integrating 
“reusable” hardware circuits has inhibited the widespread adoption of reuse methods. 
One study suggested that if the time required to reuse a component was greater than 30% 
of the time required to design the component from scratch, design reuse would fail 
(designers would choose not to reuse) (18).  The risk and cost of hardware reuse must be 
reduced before hardware reuse is widely used. 

While hardware reuse is difficult, the potential improvements in productivity are 
significant (19).  For example, if 80% of a hardware design is created by reusing existing 
hardware (i.e.,  R=0.8) and the effort to integrate reusable hardware is 10% (i.e.,  O=0.1) 
then hardware design productivity will increase by a factor of 4 (see Equation (6)).  
Achieving this level of reuse today and at such a low cost is difficult.  However, the 
improvements in software reuse over the last four decades suggests that significant 
improvements in hardware reuse can be made with appropriate technology advancement 
and community cooperation.   

There are other side benefits of increased reuse in a hardware development 
environment beyond library elements and core sharing.  Attaining a degree of design 
mobility is important as new technologies are introduced (Figure 4a), and existing 
designs age and become unusable legacy code (Figure 4b).  Like software, there are many 
different ways to exploit reuse during the design and deployment of a hardware system.  
These include the following: 

 
 Library cell reuse - this is what most people think of when reuse is proposed and is 

the use of cells from a standard library which perform a specific function (FFT, for 
example). 

 Retargeting reuse - the porting of designs between devices from different 
manufacturers or even between devices from a single manufacturer.   

 Design pattern reuse - the reuse of structures such as pipelining or bit-serial 
arithmetic in the creation of a design (20).   

 Architecture reuse - meta-architectures are architectures layered on top of traditional 
reconfigurable fabrics to facilitate reuse. 

 Platform reuse - the use of standard CCM-like platforms with FPGAs, memories, and 
I/O capabilities. 
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 Interface reuse - the use of standard I/O connections to alleviate the designer creating 
custom interconnect for each application.   

 Technology mapping reuse – the reuse of place and route information on circuit 
components that do not change. 

 

 
Figure 4: Two Key Benefits of Hardware Reuse: (a) The Ability to Retarget other Devices, and (b) 

Mitigation of Obsolescence. 
 

We propose four specific research topics related to reuse that we believe can 
significantly improve the benefits of reuse within the FPGA design flow. 

4.1.1 Library Reuse Infrastructure 
The most common and direct form of hardware reuse is the reuse of hardware 

components.  Predefined hardware circuits (otherwise known as “intellectual property” or 
IP cores) are created and verified and then later inserted in a larger hardware circuit.  
While such reuse occurs frequently within an organization, reuse between organizations 
and third-party developers is limited. In addition, it is difficult to reuse hardware 
components over time – they become obsolete and reusing today’s modules on 
tomorrow’s devices is problematic.   

One problem is the lack of standards – hardware circuits are developed in a variety 
of tools and incompatible languages that inhibit the reuse of the circuit in new 
environments and design flows.  Developing standards for describing and representing 
reusable hardware will enable a variety of high-level tools to take advantage of a variety 
of cell libraries developed within different tools (21). Figure 5 demonstrates how a 
common standard for libraries can significantly improve reuse. A common standard for 
representing circuit libraries and cores will allow any core using this standard to be 
seamlessly integrated to any high-level tool.  
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Figure 5: Library Standard for Reusable FPGA Libraries. 

 
The concept of library reuse could go one step further and adopt the library and 

sharing models that have demonstrated promise in the software engineering realm.  One 
example from the software realm is the Common Object Request Broker Architecture 
(CORBA), which enables software components written in multiple computer languages 
and running on multiple computers to work together.  This objective is similar to the 
needs of reconfigurable computing, but goes one step further (see Figure 6).   

 
Figure 6: CORBA-Like Flow for Reconfigurable Computing. 

 
In reconfigurable computing, a repository architecture is desired that not only 

enables hardware components written using different specification languages to be 
maintained in a common repository, but also provides the capability of interface synthesis 
(see Section 4.1.4) that promotes IP portability.  A use-model of this concept is as 
follows: 

 
 A standard is established for describing core interfaces, 
 Reusable cores are cataloged within the standard, 
 Tools automatically import core using core description, 
 Tool or designer requests information about cores,  and 
 A “push” model can be developed where core capabilities and interfaces are 

advertised by the repository. 
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In its most refined form, a compilation tool would be aware of advertised capabilities, 
perform the necessary trade-off analysis, select the appropriate core, and synthesize its 
interface automatically.   

It is important to emphasize that the process of creating a library of reusable 
components is only half of the picture.  Performing operations on this library and making 
it easily accessible is the other half.  By reducing the component search time and 
promoting integration, library extensions such as this would have an obvious impact in 
enhancing reuse in a typical design environment, leading to a doubling in productivity.  

Implementing this concept is not simply a software development task – there a 
variety of difficult issues and questions that must be resolved before any standard or 
library infrastructure could be developed. Difficult questions that must be addressed 
include the following:  
 What is the essential information necessary to represent a reusable core? 
 How do you represent details of a low-level core at multiple levels of abstraction? 
 How do you integrate the module generators and other core library infrastructure to 

high level tools? 
 How do you advertise the capabilities, options, and performance of a core? 

 
We believe that when these questions are properly answered and standards are created 

that address these issues, it will be significantly easier to reuse circuit libraries leading to 
notable improvements in design productivity. 

4.1.2 Architecture Shaping Through Library Standards 
Standardized well-characterized libraries, common among all qualified DoD FPGA 

vendors, would greatly enhance code reuse and code portability and mitigate early 
obsolescence of code bases.  In the software world, standardized libraries such as VSIPL 
(22) and LinPack have directly affected how compilers are built and even how machines 
are made.  If such a configurable computing library had a (forcibly) high adoption rate, it 
is likely that device vendors would be motivated to optimize their mappings to elements 
in the library, or even make architectural enhancements to give them a competitive 
advantage over their peers.  This seems to be an obvious tactic for the industry to deploy; 
however, there is currently little incentive for FPGA vendors to do this.  Furthermore, 
contemporary FPGA architectures are crafted to suit the needs of their primary customers 
who value logic density above all else.  It is conceivable that a critical mass of users with 
a common use-model (via mandatory library interfaces) could ultimately inspire 
competitive forces among device manufactures to optimize their architectures.  This 
process is referred to here as architecture shaping, and is accomplished through the 
following four steps: 

 
STEP-1: Create a consortium for the purpose of defining (domain-specific) 
reconfigurable computing libraries and standards.  This will likely need to be a grass-
roots endeavor since widespread adoption of the library is important.  Unlike traditional 
core libraries, this would need to capture non-traditional building-blocks, such as a class 
of elements devoted towards connectivity and data movement. 
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STEP-2: Once there is established widespread acceptance of the standard and constituent 
libraries (either through perceived convenience, productivity benefits, or even coercion), 
there would be natural forces from vendors and users to create efficient mappings to 
devices.   
 
STEP-3: Once there is reasonable acceptance of the standard, and that there is a means of 
mapping designs to the standard, the DoD could then mandate that all reconfigurable 
computing designs be expressed in the standard.  This would be similar to the mandate 
that arose in the VHSIC program in regards to the usage of VHDL in DoD designs. 
 
STEP-4: At this point, designers will be less driven by particular vendors for their design 
implementations, and more driven by libraries and standards.  This achieves a degree of 
vendor independence for the designer, and all of the other advantages that come with it 
including design mobility, second source satisfaction, and economy-in-scale.  Vendors in 
turn will need to demonstrate a competitive advantage.  As vendors compete, they will 
develop highly tuned implementations and possibly enhance their architectures. Vendor 
A could claim an advantage if they were to produce an enhancement to their device that 
more efficiently mapped standard library primitives. 

 
 
There is historical precedent that suggests that FPGA architecture shaping can 

achieve success.  Consider the RISC “revolution” of the 1980s.  Here, the concept of 
highly dense and complex ISAs (analogous to contemporary hardware-centric FPGA 
architectures) were abandoned in favor of giving the compiler more control in the 
process.  If there were an entity that could create a broadly acceptable library, possibly 
through a standards process, it is possible that a “critical mass” could be attained.  
Compliance to this standard could be mandated by the DoD as a condition of these 
requirements and mandates could be phased in over time.  Ultimately, vendors could be 
required to comply as a condition for DoD participation.   

There are potentially secondary rewards from architecture shaping as shown in 
Figure 7.  Standards will also create the opportunity for 3rd-party tool vendors to 
compete in the CAD space that is currently mostly exclusive to the device vendors.  This 
could potentially impact the TPD factor in the productivity equation. 

 

 
Figure 7: Catalytic Impact of Architecture Shaping and Leveraging Library Standards. 
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4.1.3 Dual Layer Compilation 
Synthesizing computing circuits onto arbitrary hardware is much more difficult 

than compiling a program onto a sequential processor.  Computing tasks and memory 
accesses must be assigned to resources and scheduled in time.  A two-level compilation 
strategy may assist the compiler and synthesis tools during this process.  Standard “meta-
architectures” are defined that represent more coarse grain architectures than FPGAs and 
provide a higher level abstraction than low-level LUTs and wires (23).  The compilation 
and synthesis process can be simplified by compiling to this meta architecture level using 
higher level abstraction tools and then using low-level device specific tools to generate 
actual computing circuits.  Further, a two-level compilation strategy will lead to greater 
portability and reusability by more easily allowing computations compiled to a meta-
architecture to be retargeted to other low-level device architectures. 
 One notable outcome of the DARPA Polymorphous Computing Architectures 
(PCA) program was that concept of dual-layer compilation.  Briefly, the PCA dual layer 
approach decomposed the compilation process into (1) a stable API layer, responsible for 
transforming a variety of standard programming languages into a common intermediate 
format, and (2) a stable architecture abstraction layer, that transformed the intermediate 
layer into a form amenable to the target hardware (23).  While the original motivation 
behind this concept is somewhat different than the motivation for FPGA productivity, 
both share many of the same properties in that:  
  
 The dual-layer process is open to a wide variety of input specification languages.  

 The dual-layer process does not change the familiar coding environment expected by 
the designer.  

 If designed appropriately, little efficiency is lost when working in an intermediate 
architecture abstraction layer.  

 Vendor specific back-ends can be developed independently (by the device vendors), 
gaining the ability to retarget different devices.  

Overall, the impact on productivity by adopting this approach could be large: reuse 
is improved by intentionally separating the language problem, and the device-mapping 
problem.   Much planning would need to go into the design of the architecture abstraction 
layer to preserve mapping efficiency.   The Reservoir Lab R-Stream project, summarized 
in Figure 8, has many of the salient features that could benefit reconfigurable computing.  
Here, a problem is described in a high-level language, and compiled into a “Virtual 
Machine Abstraction” intermediate form.  This can in turn also be a C specification, but 
transformed in a way in which the optimization dimensions are exposed.  At this point, 
device-specific compilers can then be used to create the target image.  For example, 
Xilinx’s CHIMPS could be use to compile the low-level C (LLC) into an FPGA 
bitstream, or a version of NVidia’s CUDA compiler could transform the same LLC into 
something suitable for a GPU. 

While the multitude of C-to-Gates compiler efforts have incrementally improved 
over the past 20 years, they have not come close to closing the productivity gap, and there 
is no revolutionary change envisioned that is likely to change this.  Furthermore, parallel 
programming languages that emphasize letting the user adjust aspects of the mapping 
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process within the language are likely critically flawed.  While they may seem to initially 
promote productivity, they in effect anchor the design to a particular technology, and 
possibly a particular platform.  There have been notable attempts in the past, that have 
shown that the added constructs distract the programmer from focusing on the problem 
space to mixing physical implementation issues in the specification.  The result is a set of 
tools that are non-portable and non-compatible. 
 

 
Figure 8: An Outline of the Dual-Layer Compilation Work of the Reservoir Labs R-Stream Project. 

 

4.1.4 Interface Synthesis 
FPGA circuits are difficult to reuse for several reasons. First, the designer must 

choose a circuit to reuse. There are a wide variety of cores and libraries that vary in many 
parameters (speed, area, power, etc.). It can be time consuming to search through the 
available cores and select an appropriate reusable circuit. Second, the designer must 
understand the low-level details of the reusable circuit interface. This may involve 
reading the low level HDL code or reading detailed documentation. Third, the designer 
must create custom circuits to talk to the interface, and fourth, the designer must then 
verify the system with the reusable core.  Much of the time involved in reusing FPGA 
circuits is the extra design time required to interface a reusable circuit to a new system 
(see Figure 9). Unless this additional “reuse” time is significantly reduced, the 
improvements in productivity due to reuse will be limited. 
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Figure 9: The Primary Challenge of Integrating Reusable Components is Creating a Custom 

Interface. 
 
As noted in our productivity model, reuse does not come for free, where there is 

typically a cost-benefit trade-off associated with it.  It has been noted in the literature that 
circuit designers are reluctant to reuse circuits unless reuse integration costs are less than 
30% of the original design time. Therefore, an essential aspect of reuse is making the 
usage of a reusable component easy. 

The objective of interface synthesis is to reduce the effort required to reuse a circuit.  
This is possible by automatically synthesizing the interface between a reusable circuit and 
the new circuit (see Figure 10).  Interface synthesis is done by encapsulating the circuit 
interface of reusable circuits in meta-data descriptions and automatically synthesizing the 
interface between the circuit and the system.  If done properly, modules can “seamlessly” 
transition from one design with one set of interface requirements and standards to another 
design.  The use-model for interface synthesis is straightforward.  First, it assumed that 
the circuit interfaces are created (preferably with a degree of automation), and are 
specified by meta-data.  This provides sufficient information for the compiler to 
synthesize circuit-specific interface logic.  In the user’s perspective, reusable circuits are 
integrated with little or no effort.   

 
Figure 10: An Interface Compiler Would Assume the Task of Creating the Logical Interface for a 

Reusable Component, and Integrate it into an Existing Design. 
 
Creating an interface compiler tool is a non-trivial task and would require solutions to 

a number of difficult issues. The following requisite issues must be addressed: 
 Ability to formally characterize the interface of circuits in a machine readable form 

(i.e., a formal meta description), 
 Creation of appropriate standards for describing the interface formally, 
 Identification and characterization of a common set of interfaces, 
 Development of synthesis and compilation techniques for reasoning about circuit 

interfaces and creating circuits to couple disparate interfaces, and  
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 The generation of libraries of cores with interface descriptions that adhere to the 
interface standard. 
 
If solutions to these challenges are identified and techniques are created for 

automatically synthesizing circuit interfaces then the cost of reusing FPGA circuits will 
be significantly reduced.  We expect that design productivity can increase by a factor of 
two if interface synthesis techniques are developed and reusable cores are made that 
exploit these standards. 

4.2 Abstraction 
Raising the level of abstraction means reducing the amount of detail that must be 

specified by the programmer. Since its inception, advances in computer science have 
proved that raising the level of abstraction leads to significant productivity gains. 
Programming for software systems has undergone a transition between many different 
levels of abstraction including machine code, assembly language, procedural 
programming languages, etc.  Indeed, early gains of 5× in programmer productivity were 
reported as programmers moved away from assembly language toward PL/I and other 
higher-level languages. These productivity improvements came about for two reasons 
(24). First, the statements in higher-level languages are more powerful thereby allowing 
programmers to describe their application with fewer lines of code. Second, higher-level 
languages eliminate whole classes of bugs by automatically taking care of many low-
level details. The bugs that remain are fewer in number and easier to find because they 
tend to be less obscure. 

The productivity of digital circuit design has also increased significantly by 
exploiting higher level design abstractions.  Digital circuit design has experienced a 
transition through several abstractions including design with individual transistors, design 
using logic gates within schematics, and register transfer level design using hardware 
description languages.  A variety of new high level hardware design tools and methods 
are now emerging that build upon this trend (see Section 0 for a list of representative 
tools). These tools include high-level synthesis based on C or other procedural languages, 
graphical data flow design methods for DSP, and application-specific design compilers.  
Results from early adopters suggest that these tools do indeed improve design 
productivity if used appropriately. 

While new abstractions are becoming available for digital design (i.e., the ASIC 
replacement use model), it is not clear that these abstractions will provide the 
revolutionary improvements in productivity needed for configurable computing.  One 
reason for this is that many of these tools are essentially extensions of existing HDLs. 
They may remove some detail required with conventional VHDL or Verilog, but they 
still require an understanding of clocking, scheduling, pipelining, and other digital 
systems design concepts.  Another reason is that these languages, while based on familiar 
programming languages such as C, have new concurrent semantics.  A familiarity with 
the base language such as C may actually be a handicap when trying to learn these new 
semantics.  Third, many of these abstractions are based on inherently sequential 
languages.  The sequential nature of these languages limits the ability to specify and to 
exploit the massive parallelism available in hardware circuits (25). 
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Although these recent tools and languages are a step in the right direction, we 
believe that they are insufficient for moving hardware design to a significantly new level 
of design productivity.  Additional advances in abstractions, languages, and 
compiler/synthesis tools are needed to increase productivity of FPGA based configurable 
systems. We propose several approaches that we believe may extend the advantages of 
abstractions. We believe that advances in these areas will provide over 2× improvement 
in design productivity. 

4.2.1 Parallel Languages and Concurrent Models of Computation 
It is well known that the incremental performance gains through architectural 

improvements of uni-processors is slowing and that microprocessors will not improve 
performance at the rate seen in the previous three decades (26).  To address this trend, 
microprocessor manufacturers are using multiple processor cores within a single device 
to improve performance.  Multi-core processors have the potential of achieving higher 
levels of performance with less power and cost.  Multi-core processors, however, are 
more difficult to program than traditional uni-processors.  Most programmers are taught 
to program using sequential languages and compilers struggle to exploit sufficient 
parallelism from such sequential descriptions.  To address this issue, there is great 
interest in parallel programming languages and compiler tools for targeting multi-core 
architectures. 

We believe that we have a unique opportunity to exploit this growing trend.  We 
advocate the investigation and adoption of emerging concurrent programming approaches 
and models of computation for hardware design (27).  The use of concurrent 
programming approaches will facilitate the extraction of the natural concurrency found 
within hardware circuits.  Further, adopting standard concurrent languages will lead to 
more platform independent descriptions of algorithms that can be targeted to either 
hardware or parallel processor/multi-core systems.   

While concurrent programming approaches are appropriate for both multi-core 
architectures and FPGA-based reconfigurable systems, the unique architectural features 
and constraints of FPGA-based systems may require unique concurrent programming 
approaches. To exploit the full advantage of the unique reconfigurable computing 
machine model may require custom concurrent programming constructs. Architectural 
issues that may impact the programming model include the distributed, non-uniform 
nature of the memory space, the availability of custom, non-standard functional units, and 
the ability to partially reconfigure the logic resources.  Other research questions that 
should be addressed when investigating concurrent programming approaches for 
reconfigurable computing include the following: 

 
 What unique concurrent programming structures are needed to support reconfigurable 

computing? 
 Can emerging concurrent programming approaches be co-opted by reconfigurable 

computing or are fundamentally new concurrent programming approaches needed? 
 How much of the underlying FPGA machine model needs to be exposed to the 

programmer? 
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We believe that FPGA design productivity can be increased by 2× by adopting 
concurrent programming approaches that facilitate design at higher levels of abstraction 
while preserving the underlying concurrency found within reconfigurable systems. 

4.2.2 Multi-FPGA Synthesis and Compilation  
Many configurable computing systems are designed with multiple-FPGAs to 

provide a large amount of computing performance. These systems integrate multiple 
FPGAs in a mesh, ring, systolic array or other topology to provide high levels of 
performance for computing problems that have a large amount of parallelism.  While 
multi-FPGA systems provide a large amount of potential computing performance, they 
are more difficult to program than single FPGA systems. In addition to logic design, 
programmers of these multi-FPGA systems must manually partition the behavior between 
the various FPGAs in the system. 

New high-level synthesis and compilation methods are needed to automatically 
target multi-FPGA systems.  Most synthesis and compilation techniques assume a 
uniform array of logic and do not consider the impact of partitioning logic and 
computation between disparate FPGAs with limited connectivity. Future high-level 
synthesis approaches must consider the impact of inter-FPGA communication and 
perform coarse level partitioning and resource allocation based on the topology of the 
multi-FPGA system.  Ideally, compilers for multi-FPGA systems would be able to target 
any multi-FPGA platform to facilitate the portability of configurable computing 
applications across different vendors and system topologies. 

Figure 11 demonstrates how a multi-FPGA synthesis approach would work. The 
application-specific behavior is specified using the appropriate design language or 
abstraction. This behavior is specified with little or no platform specific annotations or 
descriptions (although a concurrent design language would be most effective). Before 
compilation, the programmer chooses a target platform which is described in an 
architecture description file (this file defines the FPGAs, memories, and other system 
resources). The compiler reads both the behavioral description and architecture 
description file to generate an executable on the target architecture. Unlike most 
traditional hardware compilers, this multi-FPGA compiler must perform logic and 
memory partitioning before the synthesis and technology mapping phases. 
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Figure 11: Multi-FPGA Design Environment. 

Most multi-FPGA design environments require the user to perform FPGA 
partitioning manually.  This manual partitioning step forces the programmer to make 
design decisions requiring a detailed understanding of the underlying FPGAs as well as 
good estimates of the size of the synthesized hardware. We believe that with advances in 
behavioral synthesis and partitioning techniques, much of this partitioning can be 
automated to simplify the design process and substantially increase design productivity. 

4.3 Turns Per Day 
There is a big difference between debug productivity for software and debug 

productivity for hardware.  In a typical FPGA hardware design flow, we achieve one to 
two debug iterations in a given day.  With a software development tool such as gcc, it is 
possible to achieve more than 20 debug iterations per day.  In fact the number 20 was 
chosen somewhat arbitrarily and likely is much higher, especially if one counts the use of 
printf()-based runs as debug iterations. 

One of the key issues with regards to hardware debug is that there are actually two 
development cycles that the designer must navigate (see Figure 12).  On the left is a 
debug cycle that approximates software development, consisting of compile, simulate, 
modify design, and repeat.  Once this has been done to the designer’s satisfaction he/she 
moves to the cycle on the right which consists of synthesis/place-and-route/timing-
closure/download followed by hardware execution and often confusion.  These are two 
very different types of debug cycles.  The simulation cycle on the left is very slow to 
simulate but provides excellent visibility into the operation of the circuit.  The cycle on 
the right runs thousands of times faster but provides very little visibility into the operation 
of the circuit. 
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Figure 12: Configurable Computing Development Cycle. 

 
One of the chief difficulties with this hardware design cycle is the difficulty of 

conducting what-if experiments.  Such experiments are an important part of many design 
processes, and are exceedingly difficult in hardware design.  To perform such an 
experiment, the user modifies his/her design code, and then may spend significant 
amounts of simulation time to determine whether the experiment will be successful.  
Often however, he/she must do the experiment in hardware which requires even more 
additional time to synthesize and implement the circuit before the experiment can even be 
run.  In either case running such an experiment may take multiple hours.  In short, most 
hardware design environments do not encourage interactive development.  

 

 
Figure 13: CAD Tools and Design “What-If Experiments”. 

 
The chief reason for this is that current CAD tools simply do not support 

interactive development.  As shown in Figure 13, current CAD tools have been 
developed to produce designs on the extreme right side of the implementation time/circuit 
area space.  That is, they focus on providing the smallest implementation  but at the cost 
of long run times.  While appropriate for final implementations, this does not support the 
idea of rapid prototyping or what-if experiments. 

A second difficulty with hardware development environments is a lack of 
infrastructure.  As shown on the right side of Figure 14, typical software development 
environments have mature tools available for use, with many choices available.  In 
contrast, hardware development environments are missing groups of tools.  In addition, 
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the tool choice on the hardware side is often very limited and the tools themselves not of 
high quality. 
 

 
 

Figure 14: Sparse Infrastructure for Configurable Computing Systems. 
 

It is our belief that the impact of improved debug infrastructure for increasing the 
number of debug turns per day cannot be overstated.  If we could increase the number of 
turns per day by 3 times, one could say that we would experience a 3 times increase in 
design productivity.  However, the effect may be much greater.  Increasing the number of 
turns per day in the debug environment has a systemic effect on the entire design process.  
Users no longer are forced to multitask while waiting for long implementation runs to 
complete.  Rather, they can focus on the debug task, rapidly iterating with what-if 
scenarios and experiments and greatly multiplying their current capabilities.  Thus, we 
believe that improving debug infrastructure may provide a nonlinear impact and give a 
much greater than 3 times productivity improvement, and mitigates the unproductive 
“busy-wait” mode of development characteristic of contemporary practices.  Below we 
provide a number of approaches which we believe should be investigated to increase the 
number of turns per day a hardware designer can achieve. 

4.3.1 Standard Platform Services 
In comparing standard computing platforms with configurable computing platforms 

we see that huge differences exist in the support provided between the two.  Computer 
systems provide extensive services to the user, often without the users being aware of 
this.  These services are provided by a combination of hardware support, firmware 
support, and software support.  These include things such as device interface capabilities 
(device drivers), networking stacks, timers and interrupt capabilities, self check and 
monitoring capabilities, run levels, linkers and loaders, and debug support.  In contrast, 
configurable computing support for such services is severely limited.  Some platforms 
provide few, if any, of these services; even when some support is available is nonstandard 
between platforms, and the availability of such services is uneven.  As a result, users 
cannot depend upon a “standard” set of services. 
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  This lack of services comes with a large opportunity cost.  Since every platform is a 
custom platform, there is no third-party software development industry being built up for 
configurable computing similar to what is available for conventional computing.  In 
general, the users are at the mercy of individual board vendors to such capabilities.  As 
previously shown in Figure 14, the result is very sparse support. 

Support for standard system services would greatly change how a user used a 
configurable computing platform.  As shown in Figure 15, in the creation of the user’s 
application he would specify the services required either explicitly or implicitly.  These 
services could include I/O interfaces, memory interfaces, timers, interrupts, etc.  The 
compiler would determine what services were required and integrate the appropriate 
intellectual property to create those services in hardware, linking them to the user’s 
design as needed.  Importantly, the compiler would automatically create the interfaces.  
As a result, user designs would merely specify services required and those would be 
automatically integrated to the user design, similar to how software libraries are linked in 
with minimal effort on the part of the user. 

 
Figure 15: Standard System Services Support. 

 
Debug is so important that we believe it provides its own set of requirements.  For 

example, the JHDL system provides an example of hardware-in-the-loop debug 
capabilities which greatly simplifies configurable computing debug (28).  By providing a 
simulation/runtime API, it allows the same suite of tools to be used to debug a design 
either in simulation or in hardware execution (see Figure 16).  When simulating, all 
computation of next state values is done by the built-in JHDL simulator and the 
simulation infrastructure used to display circuit state in various GUI windows.  In 
hardware mode, however, commands to advance execution cause commands to be sent to 
the hardware platform (onto which a bitstream was previously configured).  The state 
values from the executing circuit were then retrieved from the hardware platform using 
readback.  The state values received through readback are back-annotated into the 
simulator data structures for display.  This provides a standard platform around which to 
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create debug tools and other aides, which operate in both hardware and simulation 
modes. 

 

 
Figure 16: Hardware-in-the-Loop Hardware Debug. 

 
  This entire facility is based on the creation of an intermediate circuit data structure 

which can be used for both simulation and hardware execution.  This provides a standard 
data structure to which user-created tools can be interfaced.  This is in contrast to today’s 
CAD tools where intermediate formats are fiercely protected by vendors as proprietary 
data, providing no possibility for third-party software development to be done to aid in 
the debug process. 

Given that such an intermediate format and tool infrastructure exists, however, it 
becomes straightforward to create very powerful runtime facilities to provide the system 
services described above.  For example, Figure 17 illustrates the use of checkpointing a 
computation.  Checkpointing relies on the ability to extract the complete state of a 
running computation and later restore it, something that was demonstrated in JHDL.   

 

 
Figure 17: Checkpointing of Hardware Computations. 
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Finally, such capabilities can be leveraged to support what-if experiments in debug 

where on-the-fly creation of debug circuitry via bitstream manipulation is used to provide 
the user with unprecedented access to the internal state of a running computation.   

A major problem with today’s CAD tools is that they make little provision for debug, 
typically obfuscating their operation and intermediate file formats, and thereby 
preventing users from adding such debugging aids on after the fact.  Importantly, we 
believe support for debugging at runtime such as we have outlined above will not come 
for free — a few percentage increase in circuit area should be a good trade off for large 
gains in design productivity, something the software world accepted years ago. We 
believe that effective debug and run time support infrastructure can be created for 
configurable systems but this infrastructure can only succeed if it is built into the design 
process and CAD tools from the outset.   

4.3.2 Firmware 
We propose the use of RC “firmware” to significantly simplify the design and 

debug process.  This is illustrated in Figure 18, where the I/O interfaces around the 
periphery of a chip are standardized.  These circuits can even be precompiled onto the 
chip itself and may be application-independent.  User designs are then compiled and, 
using partial configuration or design merging, are configured onto the chip and wired up 
to the standardized interfaces.  The benefits of such an approach would be much faster 
place-and-route, the possibility of the creation of a platform-independent design flow, 
enhanced portability, and increased reuse.  We understand that such approaches have 
been tried by vendors in the past, and it is our belief that these have failed because they 
may have included too much circuitry and thus impacted the ability of a designer to place 
a significant design in the remaining circuit area.  The approach we propose would rely 
heavily on synthesis and CAD tools to only insert the standardized I/O interfaces which 
were required for a given design, leading to maximum circuit area available for user 
designs.  

This approach is closely related to the notion of incremental design.  Stated another 
way, supporting firmware requires the same CAD tool support that supporting 
incremental design requires.  That is, the CAD tool flow needs to support pre-existing 
placed and routed circuitry which can be left intact while additional circuitry is 
synthesized and placed and routed around it.  The notion of firmware could then be 
extended to the idea of performing partial re-place and re-routing of an existing design.  
An important observation is that this is currently prohibited by the typical CAD tool 
flows found in commercial tools, which flatten the entire design heart hierarchy as the 
first step in the synthesis process.  We believe that by preserving the design hierarchy 
through the entire tool flow it will be possible to create designs which have locality of 
placement which matches the design hierarchy better, allowing localized changes to the 
design source to be reflected in minimal amounts of replacement and rerouting of the 
circuit – the foundation of an incremental design flow. 
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Figure 18: RC Firmware. 

4.3.3 High-Level Abstraction Debug 
When debugging a configurable computing application, there are two choices 

given to a user.  The first is to use a “simulator” which executes at a small fraction of the 
target operating frequency of the final application.  A simulation-based debugging 
environment, however, provides essentially perfect visibility of the design and perfect 
controllability over the executing application.  The user is allowed to use file input and 
output as well as other general computing aids to help in the creation of input stimulus 
and the analysis of output results.  In addition the user is able to change variables to 
perform what-if scenarios, etc.  The alternative to simulation is to “execute” the circuit at 
the application speed.  The obvious benefit of this is the speed of execution – the user can 
boot operating systems on the platform, or run the app in its entirety in relatively short 
amounts of time.  The disadvantage of this approach is that the user has little control of 
the execution and limited visibility of the circuit.  New methods and techniques are 
needed to provide the visibility and controllability of a simulator to the run-time 
environment of an actual system. 

The key problem preventing this is the lack of information shared through the 
entire implementation toolchain (see Figure 19). In this figure, vendor of compiler “X” 
has its own internal file formats and database to store the information related to the front-
end compilation step.  However a second vendor (vendor “Y” in the figure) provides the 
synthesis tool with its corresponding proprietary file formats and database.  Finally, 
FPGA vendor “Z” provides the implementation tools and its corresponding file formats.  
These file formats and databases are largely undocumented, proprietary, and unavailable 
to the end-user.  As a result, it can be very difficult to relate values found in a readback 
bitstream (from vendor “Z”) to the original design source (from vendor “X”).   
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Figure 19: Multiple Design Databases in Typical FPGA Design Flow. 

 
The approach we propose here, called “high-level abstraction debug” is to provide a 

unified set of files, databases, and APIs for the entire design flow. With such a unified 
database, the translation steps from source code to bitstream can be documented and used 
by the creator of debug tools to provide information linking bitstream contents to original 
divine source.  This unified database is shown in Figure 20.  These debug tools will allow 
the user to debug at the original source code level and provide debug which match the 
models of computation embodied in the original high-level abstract design source.   

 
Figure 20: Unified Database for Cross Tool Linking. 

 
In summary, debug and runtime aids can only be successful if they are built into the 

design process and CAD tools from the outset.  A major problem with today’s CAD tools 
is that they make little provision for debug, typically obfuscating their operation and 
intermediate file formats, and thereby preventing users from adding such debugging aids 
on after the fact.  Importantly, we believe support for debugging runtime such as we have 
outlined above will not come for free — a modest increase in circuit area should be a 
good trade off for large gains in design productivity, something the software world 
accepted years ago. 
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4.3.4 Summary of Research Approaches 
The approaches described in the previously section define the research areas we feel 

are most important to address in order to substantially increase the design productivity of 
FPGA-based systems for configurable computing machines. Each of these areas is 
interconnected as shown in Figure 21 and design productivity will significantly increase 
only if advances are made in each of these areas and applied at all levels of the design 
methodology. We believe that advances in each of these areas will provide up to a 25 
improvement in design productivity. 
 

 
Figure 21: Relationship between Research Approaches. 
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5 Integrated Research Vision 
During the course of this effort, two study teams3 have been funded by DARPA, 

each charged with defining a vision and roadmap for addressing fundamental challenges 
in application development tools for FPGA-based systems.  The outcomes from these two 
studies are described in two reports entitled Strategic Infrastructure for Reconfigurable 
Computing Applications (SIRCA) and FPGA Design Productivity (FDP).  The purpose of 
this section is to describe an integrated research vision that includes the major concepts 
and research approaches from these two studies in a unified and integrated manner.   

The two study teams met together on June 5th, 2008 in Salt Lake City along with 
experts in the field to present the results of their findings and begin the task of integrating 
the research vision presented by both teams.  Breakout groups at the meeting provided 
feedback and suggestions on how to integrate the results from these research studies. We 
believe that this unified vision forms the basis of a research vision that will lead to 
revolutionary improvements in design productivity for reconfigurable computing 
systems. 

The two teams worked independently to query the reconfigurable computing 
community, gain a solid understanding of contemporary practices, and research past and 
current endeavors related to FPGA design productivity.  Surprisingly, the two teams 
presented findings that shared several common themes.  Both teams discussed similar 
causes to the problem and presented similar approaches for addressing the challenges in 
application development for FPGA-based systems.  However, each team approached its 
study in a unique manner and emphasized different aspects of the design methodology.  
While the emphasis of each study was different, the results of both studies complement 
each other well and when taken together present a clear and complete research plan for 
significantly improving FPGA design productivity. 

The SIRCA team organized its study around the concepts of Formulation, Design, 
Translation, and Execution (FDTE).  This research model is defined horizontally in terms 
of the four fundamental stages in application development.  The SIRCA study 
emphasizes research challenges in all four of these development stages but especially the 
Formulation stage, which features strategic design exploration and tradeoff analyses for 
complex systems and is pivotal for design productivity in many fields of engineering, and 
yet routinely overlooked in conventional hardware and software engineering. 

The FDP team organized its study around three research focus areas: Abstraction, 
Reuse, and Turns per day (ART). This research model is defined vertically, where each 
research focus area defines a key research thrust that must be addressed in all stages of 
application development. The FDP study emphasizes the need to increase abstraction 
(reduce design detail), apply reuse, and reduce turns per day at all stages of the design 
process to obtain significant improvements in design productivity. 

Figure 22 visually demonstrates the relationship between the models presented by 
the two study teams.  In the center, application development is defined in terms of the 
four stages in the FDTE model.  The process begins with Formulation, featuring strategic 
exploration of candidate algorithms and architectures supported by performance 

                                                 
3 The two teams funded by DARPA include a team from Brigham Young University and Virginia Tech and 
a team from University of Florida, George Washington University, and Clemson University. 
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prediction for tradeoff analyses.  After strategic decisions are made, the process moves to 
code design and implementation in the Design stage, then Translation to produce an 
executable form, and finally Execution, where verification and optimization occur and 
the application executes supported by a variety of run-time services.  The arrows between 
stages emphasize the iterative nature of the development process and importance of 
exploiting results (templates, libraries, patterns, run-time information, etc.) between 
stages. 

Each of the three research themes of the ART model are shown as vertical bars that 
span all development stages of the FDTE model.  Reuse, for example, can be applied 
during Formulation, Design, Translation, and Execution to significantly reduce the 
amount of new work that must be performed by a programmer or by automated design 
tools.  The other two focus areas, abstraction and turns per day, also span the four design 
stages of the FDTE model – technical approaches for each of these focus areas are 
possible at each design stage to improve programmer productivity.  
 

 
Figure 22: Integrated Research Vision. 

 
Each of the teams identified a set of specific research thrusts that will lead to 

major improvements in design productivity. Taken together, 21 research thrusts were 
identified.   As highlighted in Table 1, each of these research thrusts can be placed within 
the integrated research vision of Figure 22.  The two study teams believe that 
improvements in design productivity of 20× or better are possible if advancements are 
made with each of the development stages of the FDTE model and focused in terms of 
abstraction, reuse, and turns per day.  
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Table 2: Research Thrusts and Models 
 
 
 
  

Thrusts Abstraction Reuse Turns/day Formulation Design Translation Execution

SIRCA Research Thrusts
1. Strategic exploration X X X X
2. High-level prediction X X X
3. Numerical analysis X X X
4. Bridging design automation X X X X
5. System-level parallel languages X X X X
6. HW/SW codesign methods X X X X
7. Reusable & portable design X X X
8. Translation algorithms X X
9. Translation target architectures X X
10. Runtime debug & verification X X X X
11. Performance analysis X X X X
12. Run-time services X X X

FDP Research Thrusts
1. Architecture shaping X X X
2. Dual-layer compilation X X X
3. Libraries & standards X X X
4. Interface synthesis X X X X
5. Parallel environments X X X X
6. Multi-FPGA synthesis X X X X
7. Platform services X X
8. Firmware X X X
9. High-level debug X X X

ART Model FDTE Model
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Appendix 

A.1  Survey of Hardware Metrics 
This appendix provides a sampling of papers identified in the literature which 

illustrate the state of the art in hardware design metrics and descriptions of those papers.  
The discussion for each paper is not meant to be a summary but rather identifies relevant 
points for FPGA productivity metrics.  The papers are listed in alphabetical order of the 
primary author.  
 
The High-End Computing Productivity Crisis, The High-End Crusader (anonymous), 
HPCWire, April 16, 2004. 
 

This article notes the following trends in HPC: each new parallel machine 
requires ever increasing levels of programming skill to successfully program, increasing 
time is required to program each new machine, the number of users of the highest-end 
machines is decreasing and the number of programs written for those machines is 
decreasing.  The author argues that architecture, combined with programming language is 
the key to increasing productivity.  He describes Type-T algorithms (limited 
communication and well-balanced workloads) and Type-C algorithms (long-range 
communication and poorly-balanced workloads).  He also describes Type-T architectures 
(weakly-parallel processors and low-BW system interconnect) and Type-C architectures 
(strongly-parallel processors and high-BW system interconnect).  He then makes the 
obvious point that running a Type-C job on a Type-T system is a bad idea.   The point is 
that productivity can be enhanced if architecture is included. For metrics, he includes 
three times: programming time, execution time, and results analysis time. 
 
FPGA Tool Taxonomy Final Report, Black River Systems . 
 

This report suggests a large number of “Measures of Performance” (MOPS) for 
evaluating tools. The report is not proposing “productivity” metrics, rather it is proposing 
questions that should be asked about a given tool. It is interesting to note that they do not 
call them metrics. All of these “MOPs” are of the form, “Does the tool <do such and 
such>?”. One example, “Does the tool support parallel computing?” The report lists 
many “measures” for evaluating tools (p. 20-26). Many of these are questions to ask 
when evaluating a tool and do not lend them selves to quantitative  measurement. 
Interesting points they make in the report include: 30%-40% of design time is HDL 
coding, 60%-70% of the time is spent in verification.  

Graphical tools allow users to more easily reuse IP and achieve a quick and dirty 
solution more quickly (page 14). High-level languages offer productivity because fewer 
lines of code are needed to code the behavior. In addition, there is less detail to manage 
with HLL than HDL (page 15), easier to port/maintain (page 16) Abstraction enhances 
portability (page 16) HLL’s limit the designer's ability to “tweak” the implementation for 
improved area/speed. Abstracting hardware issues limits ability to take advantage of 
hardware-specific features (p. 16). A number of these outcomes are not unexpected and 
point out the difficulty of reducing design time without reducing circuit performance. 
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Software Metrics Lead the Way to Better HDL Coding Practices, Gregory P. Chapelle 
and Michael L. Lewis, EETimes, 1999. 
 

This editorial argues for the use of software metrics as a way of increasing design 
productivity.  However, the method proposed looks to be more of a management tool to 
help understand the current progress and phase of the development effort.  It proposes the 
automated collection of design statistics regularly as the design progresses (lines of code, 
lines of comments, white space lines, …).  They argue that by monitoring the time 
evolution of these statistics, management can learn whether the design is continuing to 
progress in a predictable, healthy way.  To the extent that this careful monitoring can 
enhance productivity by avoiding common pitfalls or by allowing management to add 
more resources when it becomes obvious such resources are needed, this approach has 
merit.  In many ways, it is similar to the METRICS paper.  However, it does not propose 
any new method for coding which will increase productivity, rather it simply argues for 
close monitoring of progress.  Such monitoring will prevent surprises and make the 
overall process more predictable. 
 
Comparative Analysis of High Level Programming for Reconfigurable Computers: 
Methodology and Empirical Study, El-Araby et al, 3rd Southern Conference on 
Programmable Logic (SPL), 2007, pp. 99-106. 
 
This paper from the GWU CHREC Group attempts to balance the trade-off between 
design quality and design productivity. They have an “ease of use metric” based on total 
acquisition time (time to learn tool and gain experience) and total development time. 
They have seven equations they use to get this “ease of use” value. They obtain data by 
having different students with various levels of experience creating designs with the tool.  
It represents a useful and interesting example of a tool evaluation process. 
 
Ideas gleaned from the above  papers include the following: 
 The line between metrics and productivity discussions is often blurred.  Some focus 

on raw metrics while others talk about metrics only in the context of their 
productivity approaches. 

 Skill levels not uniform across all stages of development process. 
 Core reuse, while an important problem to solve, is a difficult problem to solve for 

both technical and  non-technical reasons. 
 Utility/cost was a new metric for us.  It allows for a variety of ways of describing 

productivity. 
 While most papers focus on LOC, there are a few out there which argue against it. 
 Time-to-first-solution is an interesting metric that measures how quickly one can get 

up and experimenting with an implementation. 
 There are different types of workflows (research-oriented  to production-oriented)and 

each has different needs w.r.t. productivity tools. 
 
The METRICS System, Fenstermaker et al, DAC 2000. 
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This paper describes METRICS, the authors’ system to support continuous design 
process optimization (DPO).  METRICS gathers data about the design as it progresses 
and stores it in a way to support analyses and predictions of success for the project.  It 
points out that CAD tools do not typically provide the data required to support DPO, and, 
those tools that provide some of the data required all provide it in different formats.  They 
also argue that at the current time we do not know what data should be collected.   In the 
end, they argue that standard tool metrics will be required if DPO is to become 
commonplace as it is in other areas (semiconductor manufacturing, for example).   
 
A Relative Development Time Productivity Metric for HPC Systems, Funk, Kepner, 
Basili, Hochstein, Lincoln Laboratory and Univ of Maryland. 
 
This was a paper on HPC Productivity Metrics at the HPEC 05 conference.  They 
propose 4 axes of productivity:  
 
1) Performance of the final implementation,  
2) Programmability (time from idea-to-first-solution), 
3) Portability (transparency) of the solution, 
4) Robustness (reliability). 
 
Point 2) above has been proposed by others.  It places an emphasis on getting to an initial 
solution quickly.  They propose a productivity formula on slide 6 that is: 
PRODUCTIVITY = UTILITY/COST.  In this formula, UTILITY is the value a user 
places on getting a result at time T.  UTILITY is thus a time-varying function that reflects 
that solutions arrived at different times have different value to the user.  The COST term 
includes machine cost + operating costs + software development cost. 
They point out that for small codes, productivity is simply the final application 
performance divided by the cost of writing the code.  The results they show include such 
statements as these:  “… OpenMP is more productive than other approaches for small 
numbers of CPUs in a shared memory architecture.”, “… for larger systems MPI and Co-
Array Fortran (CAF) scale well”, and “Performance of C+MPI and pMatlab is 
comparable”. 
 
Measuring Productivity and Quality in Model-Based Design, Arvind Hosagrahara and 
Paul Smith, The Mathworks. 
 

This paper is from MathWorks and advertises their approach for  measuring 
productivity and quality in their control system design tools.  They emphasize that LOC 
is the basis for all SW productivity measures such as LOC/unit and defects/LOC, but that 
such a metric may be misleading with model-based design. For our study, the issue here 
is that in Model Based Design (MBD), a model is manipulated and then code is 
automatically generated from that model.  LOC measurements on this automatically 
generated code are not as useful as when all code was hand-written. Thus, new metrics 
are needed when high level programs emit code.  He argues that the new metrics should 
all focus on time spent and defects introduced rather than measurements of the size of the 
code.  The same metrics can also apply to later design changes (how hard were they to 
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make, did they introduce new defects?).  This was the first software paper we found that 
didn’t focus on LOC in the end. 
 
Emerging DoD Sensor Processing Requirements, Jeremy Kepner, April 2006. 
 

This is a presentation on Emerging DoD sensor requirements and the need for 
higher throughput processing and was presented at the DARPA Workshop in April 2006.  
It summarizes the various DARPA programs and their benchmark suites (HPC 
Challenge, HPEC Challenge, Compact Apps, …).  With regard to FPGA design, it points 
out that the skill level required for each step of the FPGA development process is 
different (PhD vs. MS vs. BS) and that currently, the FPGA development process is not 
portable.  Finally, it shows that the FPGA development process typically consists of three 
different four-month phases.   
 
HPCS Application Analysis and Assessment, Jeremy Kepner and David Koester. 
 

This work was a presentation to DARPA on HPCS, and examines a number of 
useful points about software productivity metrics. They define productivity as the ratio of 
utility to cost.  The main metric discussed is lines of code (LOC).  One plot shows the 
LOC required for various implementation options (OpenMP, MPI, etc) for a set of 
benchmarks.  Another shows the achieved performance for NAS FT as a function of lines 
of code – the message is that more complex programming tasks (a FORTRAN 
implementation on 16 CPU’s using MPI for example) get correspondingly higher 
performance than simpler programming tasks (a Java implementation on 16 CPUs or a 
uniprocessor implementation for example).   

An interesting metric proposed is a Δx vs. Δy  metric where Δx is the code change 
and Δy is the benefit achieved.  The paper also suggests measuring distance between code 
changes to determine if changes are localized (good) or distributed (bad). Slide 24 then 
lists a collection of productivity models from the software community. This is a good 
jumping-off point to look at a variety of metrics.  Slide 25 indicates that code size is the 
most important SW productivity parameter, and that HPC can reduce code size in two 
ways: by using higher level languages and by reuse. Similar to the need for performance 
in FPGA-based systems, the paper indicates that HPC performance requirements limit the 
exploitation of these two ideas. 

Measures of success proposed include: (a) that the results are accepted by users, 
vendors, … and (b) that they can quantitatively explain HPC rules of thumb such as: 
“OpenMP is easier than MPI but doesn't scale as well”.   Much of these slides directly 
mirrors much of what is being talked about with respect to FPGA design productivity. 
 
HPC Productivity: An Overarching View, Jeremy Kepner, International Journal of High 
Performance Computing Applications, Vol. 18, No. 4, 393-397 (2004). 
 

In this preface, Kepner argues that there are 3 different kinds of workflows that 
must be considered.  In the researcher workflow the focus is on knowledge discovery 
with rapid design iterations, similar to that founding rapid prototyping.  In the enterprise 
workflow, an organization is focused on developing and integrating very large codes.  
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New modules are rapidly prototyped and then integrated into the large legacy codes.  
Finally, in the production workflow the goal is to create a deployed system and the 
development times may take years. 
 
 
IC design at advanced process nodes: Add flex to your flow, Andrew Potemski, 
Synopsys, EDN, 8/16/2007. 
 

This articles argues that carefully considering how your design flow is 
constructed greatly increases chances for success and that flexibility in a design flow is 
an important consideration as well. 
 
Metrics-Based Behavioral Design, David Pursley, Forte Design Systems. 
 

This paper dates to about 2006 and argues for a return to behavioral design as a 
way to improve productivity.  It cites a study claiming a 50% productivity improvement 
from using behavioral design [Johnson98][Moussa98].  He introduces his idea of metrics-
based behavioral design, and tries to develop a chain of metrics-based predictors to help 
his tools evaluate the value of each optimization. But, he only proposes a metric-based 
predictor for the original step of behavioral code evaluation (a tool to look at the original 
behavioral code and predict size/performance or even just whether the behavioral 
compiler could process it).  In the end, he showed that there was some correlation 
between the CPU run time of his synthesis tool and his CDFG node count. 
 
Metrics Measure IC Design Productivity, Michael Solka, Synopsys Inc. 
 

This work was an EDA DesignLine paper found on the web.  The main point was 
about how to gather data and what to gather as a project progresses to provide “actionable 
analyses of project practices and execution so that productivity improvement 
opportunities can be identified”.  He suggests that metrics should be divided into 2 
categories: “design characteristics” and “resource utilization”. Design characteristics are 
what you might expect: FET count, clock rate, lines of code, … Resource utilization has 
to do with the level of effort by personnel on the project and by CAD tool usage. He 
argues that both are important.  
 
Integrating FPGA IP Cores into a Topological Processing Environment, Michael Vai 
and Jeremy Kepner. 
 

This white paper argues for the use of reusable cores.  It states that cores could be 
a big productivity booster. It then outlines a number of reasons why cores have not 
caught on: they are not well characterized enough to avoid repeated design spins and 
verification iterating, cores based on bitstreams are not portable, cores based on HDL's 
may be portable but if they are, they don't use FPGA-specific features and therefore are 
low performance, etc. Finally, the paper indicates that GFLOPS is not a particularly good 
metric, it is all about how the cores interface together that is important. 
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A.2  List of Commercially Available High-Level FPGA Design 
Tools 

 
We have identified a number of FPGA design tools that can be considered as “high-level” 
and listed them in the table below. The number of tools that are being introduced is 
growing and we will attempt to keep a current and accurate list during the course of the 
study. We will evaluate a number of these tools and summarize the others as part of this 
study. 
 
Tool Name Company 
DK Design Suite (Handel C), Agility Compiler Celoxica 
Pixel Streams, Hyper Streams Celoxica 
DSP Builder Altera 
System Generator Xilinx 
ImpulseC ImpulseC 
MitrionC Mitrionics 
AccelDSP Xilinx 
C2H Altera 
SynplifyDSP Synplicity 
Reconfigurable Computing Toolbox DSPLogic 
Simulink HDL Coder Mathworks 
Filter Design HDL Coder Mathworks 
Carte SRC 
CatapultC Mentor 
C2R CebaTech 
Cynthesizer Forte 
Computational Adrenaline Concurrent EDA 
Mobius Codetronix 
AutoPilot AutoESL 
Cascade CoProcessor Critical Blue 
LabView FPGA National Instruments 
BinaChip-FPGA BinaChip 
Bluespec SystemVerilog, Bluespec SystemC Bluespec 
Pico Express Synfora 
Dime-C Nallatech 
CoreFire Annapolis Microsystems 
Viva Starbridge Systems 
Stone Ridge Compiler Collection Stone Ridge Technology 
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A.3  FPGA Architecture Survey 
 
Company Niche 
3P plus 1 Technology Coarse-grain configurable IP cores 
Achronix 
Semiconductor Corp 

Gigahertz asynchronous FPGA 

Ambric Massively parallel processor array with a structural object programming model 
Ascenium Corp In stealth mode 
Aspex Domain-specific system-on-chip with configurable IP cores 
ChipWrights RISC/SIMD/Vector processor architecture 
Clearspeed Low-power Floating point 
Coherent Logix Multi-core grid with allocatable interconnect 
Context Corporation Sweeney, Robertson, Tocher (MSDF/SRT) arithmetic processing algorithm and 

coarse-grained dynamic reconfigurability 
Element CXI An evolved QuickSilver Technologies with wrapped heterogeneous “elements” 
Icera Semiconductor 
Ltd 

Software-defined radios 

Ikoa Corporation Stealth mode - Memory-centric and defect-tolerant signal processing 
Intellasys Corporation Scalable Embedded Array Processor 
IP Flex Medium-grain reconfigurable fabric SoC closely coupled with RISC cores 
M2000 Used to be Meta systems, in stealth mode 
MathStar Field Programmable Object Area (FPOA) 
Mesh Semiconductor Stealth mode, or out of business 
PACT Coarse-grain ALU architecture 
Picochip Designs Multi-core processor array for signal processing 
Rapport An evolved PipeRench-like architecture 
Raytheon MONARCH architecture and development environment 
ReCore An array of specialized micro-sequenced processors 
Sandbridge Multi-core DSP arrays for comm applications 
Spiral Gateway Stealth mode 
Stream Processors VLIW-like processing engine 
Stretch Tightly integrated GPP with configurable fabric 
Systemonic Wireless networking acquired by Philips Semi 
Tabula Currently in stealth mode. 
Silicon Hive IP locks for comm and video applications 
Videantis Specialized video processing engines 
Vivace Semiconductor Specialized video processors 
Xelerated Configurable network processor 
XMOS Semiconductor Stealth mode 
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List of Acronyms, Abbreviations, and Symbols 
 
Acronym Description 
 
3GL  Third generation languages 
4GL  Fourth generation languages 
5GL  Fifth generation languages 
ART  Abstraction, Reuse, and Turns per day 
CAD  Computer Aided Design 
CCM  Configurable Computing Machine 
CORBA Common Object Request Broker Architecture 
DSP  Digital Signal Processing 
EDA  Electronic Design Automation 
FDP  FPGA Design Productivity 
FDTE  Formulation, Design, Translation, and Execution 
FPGAs  Field Programmable Gate Arrays 
HDLs  Hardware description languages 
HPC  High-performance computing 
HPEC  High-performance embedded computing 
LLC  Low-level C 
RTL  Register transfer level 
SEI  Software Engineering Institute 
SIRCA  Strategic Infrastructure for Reconfigurable Computing Applications 
SOC  System-on-chip 
SPC  Software Productivity Consortium 
STAR  Special Technology Area Review 
 
 


