

AFRL-RY-WP-TR-2008-1228

FUTURE FIELD PROGRAMMABLE GATE ARRAY
(FPGA) DESIGN METHODOLOGIES AND TOOL FLOWS

Dr. Michael Wirthlin, Dr. Brent Nelson, Dr. Brad Hutchings, Dr. Peter Athanas,
and Dr. Shawn Bohner

Brigham Young University

JULY 2008
Final Report

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by the Defense Advanced Research Projects Agency
(DARPA) and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RY-WP-TR-2008-1228 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature// //Signature//

ALFRED J. SCARPELLI BRADLEY J. PAUL, Chief
Project Engineer Chief, Advanced Sensor Components Branch
Advanced Sensor Components Branch Aerospace Components & Subsystems
Aerospace Components & Subsystems Technology Division
 Technology Division Sensors Directorate

//Signature//

WILLIAM J. SISKANINETZ
Chief, Aerospace Components & Subsystems
 Technology Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

i

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

July 2008 Final 31 August 2007 – 31 July 2008
4. TITLE AND SUBTITLE

FUTURE FIELD PROGRAMMABLE GATE ARRAY (FPGA) DESIGN
METHODOLOGIES AND TOOL FLOWS

5a. CONTRACT NUMBER

5b. GRANT NUMBER

FA8650-07-C-7745

5c. PROGRAM ELEMENT NUMBER

69199F
6. AUTHOR(S)

Dr. Michael Wirthlin, Dr. Brent Nelson, and Dr. Brad Hutchings (Brigham Young
University)
Dr. Peter Athanas and Dr. Shawn Bohner (Virginia Polytechnic Institute and State
University)

5d. PROJECT NUMBER

ARPS
5e. TASK NUMBER

ND
5f. WORK UNIT NUMBER

 ARPSNDBR
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Brigham Young University
A-285 ASB
Provo, UT 84602

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
 AGENCY ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command
United States Air Force

Defense Advanced Research Projects Agency/
 Information Processing Techniques Office
 (DARPA/IPTO)
3701 N. Fairfax Drive
Arlington, VA 22203-1714

AFRL/RYDI

11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)

AFRL-RY-WP-TR-2008-1228

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

PAO Case Number: DARPA 12314; Clearance Date: 22 Oct 2008. This report contains color.

14. ABSTRACT

Interest is growing in the use of FPGA devices for high-performance, efficient parallel computation. The large amount of
programmable logic, internal routing, and memory can be used to perform a wide variety of high-performance
computation more efficiently than traditional microprocessor-based computing architectures. The productivity of FPGA
design, however, is very low. FPGA design is very time consuming and requires low-level hardware design skills. This
study investigated this FPGA design productivity problem and identified potential solutions that will provide
revolutionary improvements in design productivity. Three research areas that must be addressed to achieve such
improvements are significant improvement in reuse of FPGA circuits, identification and deployment of higher level
design abstractions, and increasing the number of turns per day to significantly increase the number of design iterations.
The results of this study suggest that with adequate advancement in each of these areas, FPGA design productivity can be
increased by 25X over current practice.

15. SUBJECT TERMS

FPGA, design productivity, computer-aided design

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 60

19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Alfred J. Scarpelli
19b. TELEPHONE NUMBER (Include Area Code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

iii

Table of Contents
List of Figures .. iv
List of Tables ... iv
Acknowledgement .. v
1 Executive Summary .. 1
2 Background ... 3

2.1 FPGA Devices .. 3
2.2 FPGA Use Models ... 3
2.3 Conventional FPGA Design Methodology .. 6

2.3.1 Algorithm Development ... 6
2.3.2 Architecture Exploration ... 6
2.3.3 Register Transfer Level (RTL) Design ... 6
2.3.4 Technology Mapping .. 7
2.3.5 Verification ... 7
2.3.6 Run-Time Support .. 7
2.3.7 Detailed FPGA Design Flow .. 7
2.3.8 Limitations of Existing Tools ... 8

2.4 Historical Perspective ... 9
3 Productivity Model ... 13

3.1.1 Design Time .. 13
3.1.2 Number of Turns Required to Complete a Design 14
3.1.3 Effect of Reuse on Design Time ... 14
3.1.4 A Final Model ... 15

4 Research Approaches .. 16
4.1 Reuse .. 16

4.1.1 Library Reuse Infrastructure ... 18
4.1.2 Architecture Shaping Through Library Standards 20
4.1.3 Dual Layer Compilation ... 22
4.1.4 Interface Synthesis .. 23

4.2 Abstraction ... 25
4.2.1 Parallel Languages and Concurrent Models of Computation 26
4.2.2 Multi-FPGA Synthesis and Compilation .. 27

4.3 Turns Per Day... 28
4.3.1 Standard Platform Services ... 30
4.3.2 Firmware ... 33
4.3.3 High-Level Abstraction Debug ... 34
4.3.4 Summary of Research Approaches ... 36

5 Integrated Research Vision ... 37
6 References ... 40
Appendix ... 42

A.1 Survey of Hardware Metrics ... 42
A.2 List of Commercially Available High-Level FPGA Design Tools....................... 47
A.3 FPGA Architecture Survey ... 48

iv

List of Figures

Figure 1: FPGA Design Flow. .. 6
Figure 2: Detailed FPGA Design Methodology. .. 8
Figure 3: The Fundamental Shift in Software Development Environments. 11
Figure 4: Two Key Benefits of Hardware Reuse: (a) The Ability to Retarget other

Devices, and (b) Mitigation of Obsolescence. .. 18
Figure 5: Library Standard for Reusable FPGA Libraries. ... 19
Figure 6: CORBA-Like Flow for Reconfigurable Computing. .. 19
Figure 7: Catalytic Impact of Architecture Shaping and Leveraging Library Standards. 21
Figure 8: An Outline of the Dual-Layer Compilation Work of the Reservoir Labs R-

Stream Project. .. 23
Figure 9: The Primary Challenge of Integrating Reusable Components is Creating a

Custom Interface. .. 24
Figure 10: An Interface Compiler Would Assume the Task of Creating the Logical

Interface for a Reusable Component, and Integrate it into an Existing Design. 24
Figure 11: Multi-FPGA Design Environment. ... 28
Figure 12: Configurable Computing Development Cycle. ... 29
Figure 13: CAD Tools and Design “What-If Experiments”. .. 29
Figure 14: Sparse Infrastructure for Configurable Computing Systems. 30
Figure 15: Standard System Services Support. ... 31
Figure 16: Hardware-in-the-Loop Hardware Debug. ... 32
Figure 17: Checkpointing of Hardware Computations. .. 32
Figure 18: RC Firmware. .. 34
Figure 19: Multiple Design Databases in Typical FPGA Design Flow............................ 35
Figure 20: Unified Database for Cross Tool Linking. .. 35
Figure 21: Relationship between Research Approaches. .. 36
Figure 22: Integrated Research Vision. .. 38

List of Tables

Table 1: Density and Capability of Future FPGA Technologies .. 3
Table 2: Research Thrusts and Models ... 39

v

Acknowledgement

The authors gratefully acknowledge the support of DARPA/IPTO under contract
FA8650-07-C-7745 and administered by AFRL/RYDI.

1

1 Executive Summary

The importance of Field Programmable Gate Arrays (FPGAs) for Department of
Defense systems is well understood. The Special Technology Area Review (STAR) on
FPGAs, for example, clearly indicates that FPGAs are a crucial electronic component in
many DoD electronic systems (1). The report indicates that FPGAs will be used within
many DoD systems for some time and will likely grow in importance as the performance
and architectures of FPGAs improve. FPGAs are used within DoD for the same reasons
they are used in commercial systems: reduced time to market, lower NRE costs, infield
programmability, lower design and validation costs, and rapid prototyping. FPGAs also
offer significant processing performance – by creating custom circuits optimized for a
specific application, FPGAs can perform computations much more efficiently than other
conventional forms of computing.

Several FPGA architecture trends suggest that FPGAs will become more important
in the future. First, FPGAs are closely following Moore’s law and are benefiting from
the increased logic density available with new process technologies. Second, FPGAs are
continually adding more system level functionality such as advanced I/O standards, bus
interfaces, and memories. Third, FPGAs are integrating a variety of heterogeneous
processing elements such as DSP processors, programmable processors, and computing
elements. Fourth, FPGAs are providing multiple processors (both hard and soft) that can
be organized into chip-level multiprocessing. This growing density, raw computational
throughput, and system functionality suggests that FPGAs will play an increasingly
important role in future DoD systems.

While FPGAs provide many benefits, the effort and skill required to create working
FPGA designs is growing and consumes significant design resources during system
development. The inability to create FPGA designs more productively limits the ability
to exploit the growing density, capability, and performance potential of modern FPGA
architectures. In fact, one of the key recommendations of the STAR report is the need to
address the science and technology gap that includes the advancement of electronic
design automation (EDA) for FPGAs. Unless significant advances in FPGA design
productivity are made, the full benefits of FPGAs cannot be realized.

The objective of this effort was to investigate the full FPGA tool flow and identify
potential solutions at all stages of the tool flow that will provide revolutionary
improvements in design productivity. In the course of this study we have identified
several key challenges limiting design productivity and identified several critical
technical research focus areas to address the FPGA design productivity problem. This
report summarizes our recommendations and proposes a research plan for solving the
most important design productivity challenges. We believe that revolutionary advances
can be made in FPGA design productivity with adequate investment in the research areas
presented in this report.

The following section (Section 2) summarizes the background material and historical
context for both FPGA design and software programming. Section 3 will introduce
several metrics and present our “productivity model”. This model will be used to identify
the most promising approaches for improving design productivity. Section 4 will present
the most promising approaches we have identified during the study that we believe will

2

lead to revolutionary improvements in design productivity. Section 5 will conclude the
report by presenting an integrated research vision that summarizes the vision from this
study and the study conducted by the companion team made up from members of the
National Science Foundation Center for High-Performance Reconfigurable Computing
(CHREC).

3

2 Background

2.1 FPGA Devices
FPGA design productivity is limited by the so called design productivity gap (2).

Silicon density continues to double every 1.5 to 2 years while design capabilities are
growing at a much slower rate. Design productivity must improve at a rate similar to
Moore's Law just to keep from falling behind. While incremental improvements in
design productivity are being made, the rate of growth in design productivity is much
lower than Moore’s law resulting in increasing design times for each new FPGA
generation. Significant effort and investment in design techniques and methods are
necessary for closing this design productivity gap.

Most of the largest FPGA devices available today are built using 65 nm
technology1. These modern FPGAs contain a tremendous amount of logic, computation,
and memory resources and can be used for a variety of high-speed digital systems and
high-performance computing applications. The growth in density and capability of
FPGAs will undoubtedly continue in the future. Table 1 suggests the resources that may
become available on future FPGA devices using newer fabrication technologies. If
FPGA density keeps pace with Moore's law, we expect the largest FPGAs in a 22 nm
technology to contain almost 3 million look-up tables, several thousand dedicated
multiplier/DSP blocks, and up to 100Mb of internal memory.

Technology Year LUTs DSPs Memory

65 nm 2007 340 k 500 10 Mbit
45 nm 2010 700 k 1000 21 MBit
32 nm 2013 1,400 k 2000 42 MBit
22 nm 2016 2,900 k 4300 89 MBit

Table 1 - Density and Capability of Future FPGA Technologies

While the density of future FPGAs will certainly increase, it is likely that the
architecture of future FPGAs will continue to evolve. As more transistors become
available, it is likely that the logic and computing resources will become coarser grain
and more “hard-core” resources (such as PCI express) will be added to keep up with the
latest and highest speed I/O interfaces. We also expect that a variety of new FPGA
device families will be introduced to address the needs of specific markets. As such,
FPGAs will present a moving target to Computer Aided Design (CAD) tools and we
believe it will become increasingly difficult to address the gap between FPGA design
productivity and FPGA circuit density.

2.2 FPGA Use Models
There has been considerable interest by non-traditional circuit designers to use and

“program” FPGAs. These application experts and programmers recognize the benefits of
FPGAs and seek ways to exploit the efficiency, reprogrammability, and computational
density of FPGAs for their application-specific problems. These non-traditional FPGA
programmers come from a variety of backgrounds including signal processing, embedded

1 Altera announced the introduction of the first 40-nm FPGA (Stratix IV) on May 19, 2008.

4

systems, communications, and high-performance computing. These experts, however, do
not have the traditional digital design skills to effectively “program” the FPGA using
existing FPGA design tools.

The wide variety of users interested in using FPGAs suggests that new design
methods and techniques are needed for FPGA design. We introduce the concept of an
FPGA “use model” and define a number of “use models” to clarify the design issues that
face FPGA designers and non-traditional FPGA programmers. Each model has a
different set of design challenges, design constraints, and programming environments.
While we have identified a variety of unique FPGA use models, we will focus on two
FPGA use models for this report: ASIC replacement and Configurable Computing.

ASIC Replacement is the most common FPGA use model. In this use model,
FPGA devices are used to perform general purpose digital functions that might otherwise
be performed in a custom integrated circuit (i.e., the FPGA is used to replace an ASIC).
In this use model, the behavior and timing of the FPGA are specified in great detail
including clock-cycle accuracy of the interfaces and internal logic. The design goal is to
minimize cost (i.e., optimize hardware) and validate circuit functionality (including
meeting timing constraints). The design is optimized in a way that allows the least
expensive FPGA device to be used in the system. ASIC replacement applications
typically involve the design of custom PC boards onto which the FPGA is placed, custom
I/O interfaces, custom clocking requirements, etc. Much of the design activity involves
creating the register transfer level implementation from some detailed system
specification.

Configurable computing is an FPGA use model in which FPGA devices are used
to perform application specific computation. The large amount of logic resources
available in modern FPGAs allows complex calculations and application-specific
computations to be performed more efficiently and often with higher performance than
more traditional CPU-based architectures (3). Standard platforms and boards are most
often used for configurable computing to simplify the design process and facilitate reuse.
When mapping a computation onto a configurable computing machine (CCM) the goal is
often to get the design to fit into the available FPGA(s) as quickly as possible rather than
to optimize the design down to the last gate.

The configurable computing use model has been applied in both high-performance
computing (HPC) environments as well as high-performance embedded computing
(HPEC). In both cases, FPGA designs are created on a standard platform to accelerate an
application-specific computation. Unlike the FPGAs in an ASIC replacement use model,
the FPGAs in configurable computing are reused for multiple computations. Because the
FPGAs are reused and many FPGA designs created for a single design platform, design
productivity is far more important for the configurable computing use model than for
ASIC replacement.

Several emerging FPGA use models are being developed to facilitate the design of
FPGAs in a variety of vertical markets. Many FPGAs are now used for Digital Signal
Processing (DSP) and stream-based processing. A variety of new design methods are
available for simplifying the design of FPGAs by DSP programmers (4). With embedded
processor cores available within FPGAs, complex system-on-chip designs can be created
within an FPGA. Design methods customized for SOC design have also been created for

5

FPGAs (5). Many other use models have been developed for a variety of application-
specific tasks including networking (6), string matching (7) and many others.
 A key reason design productivity for configurable computing is so poor is that
that the design methods used in configurable computing are primarily the low-level
design methods developed for the ASIC replacement use model. The design of
configurable computing “programs” is essentially circuit design – low-level digital design
methods such as RTL design are used to define complex computation and behavior. In
fact, most of the design processes in contemporary configurable computing have direct
counterparts in ASIC design (8). ASIC replacement design methods are insufficient for
configurable computing and new methodologies are needed to improve design
productivity. Development environments are needed for FPGA design that more closely
resemble the development environments of traditional programmers and application
developers.

While the development environments used by traditional programmers are varied,
they possess a number of common traits. First, the languages used are abstract enough
that a developer can create code with limited exposure to the underlying hardware
structures. Second, developers expect a development environment consisting of
compilers, extensive libraries of reusable functions, linkers, loaders, profilers, and
symbolic debugging tools. Third, developers expect to work in an interactive
development environment where the delay from compilation to debug on the target
platform is measured in seconds or minutes, and the creation of what-if scenarios during
the debug process is simple and efficient.

In contrast, development environments for FPGAs remain primitive by these
standards. Developing for FPGAs currently requires detailed knowledge of the target
chip’s structure, capacity, and capabilities. Little in the way of reusable IP is available
and logic analyzers and logic probes remain the key tools for the debug of most FPGA-
based designs. Finally, FPGA development tool chains are batch-oriented rather than
interactive with compile/link/execute timeframes measured in hours or days rather than
seconds or minutes. Future advances in design productivity for FPGAs must
significantly simplify the design/programming process of FPGAs for non-traditional
FPGA users. In later sections of this report, our recommendations divide broadly into the
three categories highlighted in the previous two paragraphs: abstraction, reuse, and
development/debug environments.

We have focused our study on technologies and design methods that improve
design productivity for configurable computing rather than for ASIC replacement or any
of the other emerging use models. We believe that there is great potential for improving
the design productivity for configurable computing and that with sufficient investment in
a number of important technical areas, revolutionary improvements in design
productivity for configurable computing are possible. While the techniques and ideas we
present in this report are targeted towards configurable computing, we believe that many
of these ideas can be successfully applied to the ASIC replacement use model and that
some improvements in ASIC replacement design productivity are also possible.

6

2.3 Conventional FPGA Design Methodology
Before suggesting potential solutions to the FPGA design problem, it is useful to

discuss the various phases of the conventional FPGA design methodology (i.e., design
methodology used in the ASIC replacement use model). Furthermore, it is helpful to
contrast these steps with the conventional software development process to highlight the
added time, skill, and cost associated with FPGA design. Six broad design steps are
highlighted in Figure 1 below and will be described in more detail.

Figure 1: FPGA Design Flow.

2.3.1 Algorithm Development
Algorithm development is the process of creating and defining the behavior of the

algorithm or computation that is intended for the FPGA. This is usually performed in a
conventional programming language and tested using a variety of tools and software test
benches. This step is common when targeting any computing platform including FPGAs,
supercomputers, conventional microprocessors, etc. The focus of this step is to refine the
algorithm rather than address implementation specific design details.

2.3.2 Architecture Exploration
Once an algorithm has been defined and verified, it must be targeted to a specific

computing architecture. This task is broadly called architecture exploration and is unique
for application-specific computing architectures including FPGAs. This step involves the
creation of a unique, specialized computing architecture for the computation of interest.
There is a very large design space for implementing these architectures and the primary
challenge in this step is to identify the lowest cost architecture (size, power, etc.) that
meets the computational constraints in as little time as possible. In most cases, this
architecture exploration is performed manually by experienced design engineers2. This
step is not necessary for software development as the hardware architecture is fixed.

2.3.3 Register Transfer Level (RTL) Design
Once an architecture has been identified for a computation, the architecture must

be described using register transfer level design languages such as VHDL and Verilog.
This process is not straight forward and requires the designer/programmer to explicitly
schedule operations in time, allocate resources for these operations, and interconnect the
resources. Further, the user must specify this architecture using hardware description
languages that are unfamiliar to conventional programmers. While tools have recently
been created that allow the description of these architectures in languages such as C, most
of them require the programmer to be aware of architecture issues such as timing,
parallelization, and resource allocation.

2 Several high-level synthesis tools perform architecture exploration manually but these tools are not yet
widely adopted by the FPGA design community.

Algorithm
Development

Architecture
Exploration

RTL-Level
Design

Technology
Mapping

Verification
Run-Time

Deployment

7

2.3.4 Technology Mapping
After the design has been specified in a standard RTL-design language (or higher-

level C-based language), it must be mapped onto the resources of a specific FPGA. This
step is broadly called technology mapping and involves the mapping of logic to specific
FPGA resources, the placement of these resources to specific locations within the device,
the routing of signals between resources, and the generation of FPGA-specific
programming bitfiles. Technology mapping is very time consuming – complex
optimization algorithms are used to find acceptable logic placement and routing. As the
size of FPGAs grows exponentially, the amount of time required for placement and
routing grows significantly. An important limitation of FPGA design productivity is the
long time required for place and route.

Unlike conventional software development, where compilation occurs in a matter
of minutes, FPGA technology mapping may take many hours or days to complete for a
complex design. As the density of FPGAs continues to grow exponentially, the time
required for this technology mapping will grow to an unacceptable point. Technology
mapping time must be reduced to improve FPGA design productivity for configurable
computing systems.

2.3.5 Verification
After the computation has been mapped to an architecture and translated into an

FPGA circuit, its proper functionality must be verified against the original algorithm
description. Verification and debug is much more complicated on FPGA-based systems
than conventional software because of the limited visibility within FPGAs, lack of
control during execution, and the primitive interfaces and tools available for FPGA-based
verification. If there are design errors within an FPGA-based computing system, it is
significantly more difficult and time consuming to identify and resolve these problems
than with conventional software tools.

2.3.6 Run-Time Support
The final step in the design and “deployment” of FPGA-based systems is

providing appropriate run-time support. Unlike conventional processor-based
architectures, there is limited support for the loading and managing of FPGA-based
computations and interfacing these computations/architectures with conventional
processor-based architectures. In most cases, ad-hoc or proprietary interfaces are used for
each computing system adding significant time and cost to FPGA-based system design.

2.3.7 Detailed FPGA Design Flow
A more detailed diagram of the FPGA design flow is shown below in Figure 2.

While the details of the design methodology are not important for this discussion, there
are several observations that are worth emphasizing. First, there are many different
activities required to create a valid FPGA design. These design steps require a variety of
skills and tools to translate a high-level algorithm into a working FPGA system. FPGA
designers must be skilled in each of these steps and tools to effectively create valid FPGA
designs. Second, there are many feedback loops in the design process that require
iteration, repair, and debugging. Iterations at all levels of the design flow are expected

8

and multiply the amount of time required to create a valid design. Performing these
design iterations significantly increases the overall FPGA design time.

2.3.8 Limitations of Existing Tools
Design tools for FPGAs continue to improve and provide the essential design

support needed to create designs for today's large, complex, and heterogeneous FPGAs.
These tools support the new features found in FPGA architectures and provide the
capability to map complex designs to the largest available FPGAs. In addition, a variety
of new design abstractions have been introduced to support new users of FPGA. These
design abstractions include system on a chip design tools for embedded systems
designers, signal flow graph tools for DSP engineers, and even C-based hardware
compilers for algorithm experts.

Figure 2: Detailed FPGA Design Methodology.

In spite of these improvements, FPGA designers frequently complain about the

design tools. Improvements in FPGA design tools do not seem to keep up with the needs

9

of the designers. The major limitations of the tools for traditional FPGA designers using
FPGAs as an “ASIC replacement” include the following:
 Long place and route times,
 Difficulty meeting timing constraints,
 Difficulty verifying complex designs, and
 Inadequate design abstractions.

The tools for designers using FPGAs primarily for computation (i.e., the configurable

computing use model) are primitive compared to traditional software development
environments. As described earlier, these designers must use “ASIC” design tools to
create computing circuits. There is a large mismatch between the background and skills
of the algorithm expert and the current design entry tools required for FPGA design.

While new tools and abstractions for FPGAs are being introduced, these tools have
not fundamentally changed the difficulty of FPGA design. In some cases, these new
abstractions are not much different from traditional ASIC design and require the
programmer to understand clocks, timing, and other low-level digital design concepts. In
other cases, the abstractions are too restrictive and limit the ability of the synthesis tools
to generate high-quality circuits (i.e., using sequential programming languages to specify
concurrent hardware). In summary, the design of FPGA-based computing systems
requires a variety of steps that each takes a large amount of time. Significant
improvements in design productivity are only possible by addressing each of these steps
and integrating these improvements into a cohesive design flow.

2.4 Historical Perspective
While current design methods for configurable computing closely resemble the

design methods for ASIC replacement, the design goals and constraints of configurable
computing are more closely related to traditional software development. In traditional
software design, the programmer specifies high-level behavior and relies on optimizing
compilers, profilers, debuggers, and other tools to automatically translate the behavioral
description into an efficient implementation. Ideally, FPGA design for the configurable
computing use model should look the same – programmers specify behavior in some
high-level specification and use a variety of tools to translate this behavior into an
efficient implementation onto the FPGA or configurable computing machine.
Programmers should not be required to learn entirely new tool flows or become FPGA
designers to successfully create FPGA circuits on reconfigurable platforms.
 In the course of this study, the investigators regularly used software and the state-
of-the-art in software productivity as the yardstick to measure various aspects of FPGA
productivity. This was done for a few key reasons. First, there are many similarities
between software development and FPGA design for computational problems. Since
software environments are generally considered more mature than reconfigurable
computing environments, this seems to be a good choice for longer-term trend analysis.
Secondly, software productivity has progressed dramatically in nearly a half century. It
would be a tremendous success if improvements in FPGA productivity could be aligned
to the same productivity curves as software.
 After reviewing the history of software productivity, the team noted that there have
been three notable milestones, or inflection points in the course of software evolution that

10

had significantly impacted software productivity. These are:

1. The introduction of standard languages and compilers that promoted platform

independence and code reuse (namely, the wide acceptance of FORTRAN and related
languages).

2. The introduction of the linker, which in turn has lead to the preponderance of reusable
code libraries.

3. Addressing human factors in software development by providing rich debugging
environments and rapid turn-around for “what-if” development.

 Computer programming started as a craft as computers became relevant in society
in the 1960s. Computer programming evolved into a science as more programming
languages were developed for a variety of domain specific purposes. In the 1980s it
evolved into an engineering discipline as quality and scale became dominant issues. With
each successive transition, productivity was improved.
 Software productivity has increased steadily since the 1960s. Early on, micro-
coding was the dominant programming approach. As more convenient machine
(processor) structures emerged, assembly languages provided machine abstraction that
improved productivity by over an order of magnitude. Then as programming domains
such as business and scientific applications were established, third generation languages
(3GL) like Cobol and Fortran with control and data flow abstractions led to another order
of magnitude improvement in programmer productivity.
 In 1970, COBOL was the state of the art, mainframes were in vogue and the
personal computer had not hit the market. By the early 1980s, it was clear that software
productivity was a key bottleneck in many systems development efforts. In 1986, the
Software Productivity Consortium (SPC) and the Software Engineering Institute (SEI)
were formed to address the problem. Key areas like fourth generation languages (4GL)
and fifth generation languages (5GL) were studied and some progress was made in
specific domains where the workflow constructs could be aligned with computing
capabilities. Much of the focus at these and other research organizations was on software
reuse and integrated development environments. The SEI also started a program in
software process that addressed process improvement.
 Software environments also underwent a significant structural change since the
1960s. In the 1960s, software tools focused on a model centered on the individual. Code
entry, compilation and debugging centered on the capabilities and limitations of
individuals, and programming teams were comprised of individualistic effort. Since then,
there has been a major shift in this model to now focus on enterprise-level development
with philosophical changes encompassing, code lifetime, reuse, verification and
deployment (see Figure 3). Routine coding projects undertaken in today’s software
engineering environments could not have been accomplished using coding environments
of the past.

11

Figure 3: The Fundamental Shift in Software Development Environments.

 Because of the close relationship between configurable computing design and
software programming, it is instructive to look at the major innovations in software
productivity over the last fifty years. We believe that the current design tools and
methods for configurable computing are still primitive and resemble the software
practices of the 1960s. Software productivity has progressed dramatically in the past half
century and these improvements hold important insights for the configurable computing
community. Many of the improvements in software productivity can be applied to
configurable computing. The major advances in software productivity can be categorized
into one of four different groups:

1. Increased Abstraction. Major improvements in programmer productivity have been

realized by introducing new languages and design methods that reduce the amount of
detail required by the programmer. The transition from machine code to assembly
language and from assembly language to 3rd generation languages (9) allowed
programmers to create complex programs without understanding low-level details of
the microprocessor architecture.

2. Reusable Artifacts. An important way of improving software productivity is reusing
previously created software artifacts (10). There are many levels of software reuse
including reuse of applications, concepts, libraries, design patterns, and portable
programs. The recent growth in reusable software components for web-based
applications such as web services demonstrates the potential improvements in
productivity through reuse.

3. Software Process. Recognizing that most early software development was done in
an ad-hoc manner, new software processes were developed to improve productivity.
Productivity improvements of 20% - 40% have been demonstrated for small software
projects and up to 500% for large software projects (11) (12).

4. Automation. Automating tedious tasks played an important role in improving
productivity (13). Tools to automate and integrate a variety of tasks have reduced
errors and sped software development by over 30%.

12

As suggested above, configurable computing systems have yet to enjoy even the most
basic productivity benefits demonstrated by software. While there are some encouraging
signs of progress with new languages and compilation tools, contemporary FPGA design
more closely resembles the lowest-level machine code programming of the very earliest
computer systems. Significant advances in each of the four areas above are necessary for
FPGA design in configurable computing systems to enjoy the benefits in productivity that
were demonstrated by traditional software systems.

Using advances in software productivity as a guide, we have identified three broad
technical areas that are most promising for configurable computing design productivity:
reusing artifacts, raising design abstractions, and increasing the interactivity and debug
infrastructure (i.e., “turns per day”). Software productivity has made significant
advances in the last fifty years by making many advances in each of these areas. These
areas of productivity are interrelated and design productivity will significantly increase if
advances are made in each of these areas and applied at all levels of the design
methodology.

13

3 Productivity Model
Before suggesting approaches and techniques for improving design productivity, we

must have a clear definition and measure of design productivity. Closely related to the
idea of design productivity are metrics for measuring design productivity. An appendix
of this report (see Section 0) contains a sampling of papers we identified in the literature
and which illustrate the state of the art in hardware design metrics. In essence, we found
two kinds of hardware productivity metrics in the literature. The first and most common
relates to input lines of source code created per day and is essentially an attempt to
capture the amount of circuitry created per day. A second metric is the ratio of the utility
of the system divided by its cost. While this latter metric is a more powerful metric and
allows us to capture a variety of characteristics of the design process beyond simply
circuitry created per day, we feel that the state-of-the-art in configurable computing
design is such that we are not ready for this more complex metric, but prefer to use a
simpler metric as a way of exposing what we view to be the most pressing problems in
configurable computing design.

During the course of this study we developed a productivity model to guide our
investigation (14). Models have limitations and the model we propose is no exception. It
is not meant to predict the precise design time required for a given application or design.
Rather, it is more qualitative in nature and points out what we believe to be the first-order
contributors to design productivity and their inter-relationships.

Our first measure of design productivity is simply the rate at which hardware is
developed:

DesignTime

CC
uctivityDesignProd . (1)

Here, CC represents the circuit complexity of the final design, as measured in gates,
LUTs, transistors, etc. The output of hardware design is hardware, a physical artifact that
can be measured and that has quantifiable costs in several dimensions (silicon area,
power, etc.). Unlike software, our model does not measure the input of the design
process (i.e., lines of code/day) but rather the physical output of the design process (the
amount of circuitry produced).

3.1.1 Design Time
The majority of the effort required to complete a hardware design is spent in debug

and verification, with values in the 70% range being common. Thus, design time for
configurable computing applications strongly depends on the number of design turns
required to complete the verification of the design, and the ease with which those design
turns can be completed. The design time is proportional to the number of design “turns”
and can be approximated as:

TPD

Turns
Days , (2)

where, Turns is the total number of design iterations required and TPD is “turns per day”
(debug iterations per day).

14

3.1.2 Number of Turns Required to Complete a Design
The number of design turns required to generate a bug-free design (Turns) is

dependent on the size of the input description as well as the frequency of occurrence of
bugs embedded in that input description. We represent Turns as:

Bug

Turns

ILOC

Bugs
ILOCTurns . (3)

In this equation, ILOC stands for “Input Lines of Code” and should be considered as a
proxy for the quantity “complexity of the design source”, and could be measured in lines
of input code, number of nodes in a graphical description of the circuit, etc.

The term Bugs/ILOC in Equation (3) is a measure of how many bugs are present
per ILOC and is based on a simple assumption — that design errors are distributed
uniformly through the design at a certain rate. Thus, the total number of bugs in a design

is ILOC
BugsILOC . The assumption we make is that it takes one debug iteration

(turn) to uncover and fix each bug. Thus, it can be seen that ILOC
Bugs

ILOC
Turns

and that 1Bug
Turns , allowing us to rewrite equation (3) as:

ILOC

Turns
ILOCTurns . (3b)

Combining Equations (1), (2), and (3b) leads to the following design productivity
equation:

ILOC

Turns
ILOC

TPDCC
uctivityDesignProd

 . (4)

3.1.3 Effect of Reuse on Design Time
Equation (4) fails to capture the effect of reuse on design productivity. That is,

design productivity improves when the designer is able to reuse pre-existing design
pieces, requiring less original design. Reuse can be modeled as reducing the number of
lines of code that the designer must write from scratch. ILOC (the code the user must
create) can be modeled by two parts: first, the new portion of the design created from
scratch and second, the interface code required to integrate the reused portions. It is
useful to express this in a form where the amount of reuse is explicitly represented, along
with the overhead associated with that reuse:

)]()1[(0 RORILOCILOC . (5)

In this equation, ILOC0 is the amount of code originally required to describe the circuit
without the benefit of any reuse (the amount of code required to create it entirely from

15

scratch). R is the fraction of the design satisfied by reusing circuitry – the user must only
create)1(0 RILOC lines of new design code.

Reuse is not free, however, and O represents the overhead of that reuse. It is
expressed as a percentage of R and represents lines of new code that the designer must
create to interface the reused circuitry to the rest of the design. As a concrete example,
consider a design where ILOC0=100, R=80%, and O=10%. Without the benefit of reuse,
this would require the designer to write 100 lines of code. With reuse, the user would
have to create: 28]8.01.02.0[100 lines of code. The reuse overhead (O) reduces
the benefit of reuse and if too high will eliminate any of the net advantages of reuse.

3.1.4 A Final Model
Substituting Equation (5) into Equation (4) gives the following final equation for

design productivity:

ILOC

Turns
RORILOC

TPDCC
uctivityDesignProd

)]()1[(0

 . (6)

This productivity model brings together design abstraction, turns per day, and reuse,

and describes how each of these factors individually contributes to programmer
productivity. We believe that orders of magnitude improvements in design productivity
are possible if revolutionary advances are made in each of these three areas. For
example, reuse alone may provide a 4 improvement in productivity as shown above. By
developing and embracing higher levels of abstractions, the design detail required for a
system may be reduced by a factor of 2 (i.e., increase the ratio of CC/ILOC by 2).
Raising the abstraction and reusing FPGA artifacts may ultimately reduce the number of
“turns” required to verify the design by 50% (Turns/ILOC). Finally, creating
infrastructure, tools, and new processes to significantly improve interactivity may
increase the “Turns per day” by 50% or more (i.e., 1.5 improvement). Taken together,
these advances in all three areas would provide almost a 25 improvement in design
productivity.

16

4 Research Approaches
The productivity model defined in the previous section identifies the research areas

we feel are most important to address in order to substantially increase the design
productivity of FPGA-based systems for configurable computing machines. These three
research areas include reuse, raising design abstractions, and increasing the number of
“turns per day”. Each of these areas is interconnected and design productivity will
significantly increase only if advances are made in each of these areas and applied at all
levels of the design methodology

As described in the previous section, we believe that a 25 improvement in design
productivity is possible (4 improvement due to reuse, 2 improvement due to higher
level abstractions, and 3 improvement by increasing the number of turns per day). This
section will describe several specific approaches that may lead to this 25 number. It is
important to emphasize that no single technical advancement or approach will achieve
this 25 productivity improvement. Advances in each of these three areas are necessary
and at all levels of the design methodology. Further, the various advances that are made
must interoperate and be integrated into a single design flow. If advances are not made in
each of these areas or the advances are not mutually supportive, then much lower
improvements in design productivity will be achieved.

This section will summarize each of the three research focus areas and provide
specific approaches that we believe will achieve the 25 design productivity
improvement. We believe these approaches are mutually compatible and necessary for
achieving revolutionary improvements in design productivity. The approaches presented
here are not exhaustive and we believe that there are likely other approaches that are
compatible with this research agenda. We encourage the discussion and inclusion of
other research approaches.

4.1 Reuse
It is well known that reuse of software has been a significant factor in improving

software design productivity (15) (16). Today’s software systems are typically created
by reusing software libraries, integrating reusable components, and dynamically
integrating autonomous executables (COM, CORBA, etc.). Very large and complex
software services can be created by exploiting the many available reusable software
components and service oriented architectures. The successful exploitation of software
reuse has led to significant improvements in productivity, higher quality code, fewer
bugs, and lower software maintenance costs (17).

While these relatively new forms of reuse have provided remarkable
improvements in productivity, software systems have exploited reuse of system
infrastructure for many years. For example, even the simplest “Hello World” program
involves a tremendous amount of code reuse. Reusable firmware, operating system calls,
and run-time libraries are necessary to run this simple program. For example, consider
the compilation of a simple hypothetical C program named “netmon.c”:

gcc –o netmon netmon.c –lpthread –lm –lc

17

This program includes a variety of libraries and functions written by others to operate
correctly. These reuseable libraries include:

 285 functions in the C threads library,
 400 functions in the C math library, and
 2080 functions in the Standard C library.

The author of this simple program was not likely bothered with knowing the
details of each library function or its interface, and could have developed the code on a
different platform with a different processor. Despite this, the program likely produced
the same results, differing possibly in temporal performance. The end result is that the
amount of implicit and explicit reuse is immense in contemporary software practice.

Reuse within hardware systems, however, has significantly lagged behind that of
software. While there is great interest in exploiting reuse for hardware design, the risk
associated with reusing 3rd party circuits and the technical challenges of integrating
“reusable” hardware circuits has inhibited the widespread adoption of reuse methods.
One study suggested that if the time required to reuse a component was greater than 30%
of the time required to design the component from scratch, design reuse would fail
(designers would choose not to reuse) (18). The risk and cost of hardware reuse must be
reduced before hardware reuse is widely used.

While hardware reuse is difficult, the potential improvements in productivity are
significant (19). For example, if 80% of a hardware design is created by reusing existing
hardware (i.e., R=0.8) and the effort to integrate reusable hardware is 10% (i.e., O=0.1)
then hardware design productivity will increase by a factor of 4 (see Equation (6)).
Achieving this level of reuse today and at such a low cost is difficult. However, the
improvements in software reuse over the last four decades suggests that significant
improvements in hardware reuse can be made with appropriate technology advancement
and community cooperation.

There are other side benefits of increased reuse in a hardware development
environment beyond library elements and core sharing. Attaining a degree of design
mobility is important as new technologies are introduced (Figure 4a), and existing
designs age and become unusable legacy code (Figure 4b). Like software, there are many
different ways to exploit reuse during the design and deployment of a hardware system.
These include the following:

 Library cell reuse - this is what most people think of when reuse is proposed and is

the use of cells from a standard library which perform a specific function (FFT, for
example).

 Retargeting reuse - the porting of designs between devices from different
manufacturers or even between devices from a single manufacturer.

 Design pattern reuse - the reuse of structures such as pipelining or bit-serial
arithmetic in the creation of a design (20).

 Architecture reuse - meta-architectures are architectures layered on top of traditional
reconfigurable fabrics to facilitate reuse.

 Platform reuse - the use of standard CCM-like platforms with FPGAs, memories, and
I/O capabilities.

18

 Interface reuse - the use of standard I/O connections to alleviate the designer creating
custom interconnect for each application.

 Technology mapping reuse – the reuse of place and route information on circuit
components that do not change.

Figure 4: Two Key Benefits of Hardware Reuse: (a) The Ability to Retarget other Devices, and (b)

Mitigation of Obsolescence.

We propose four specific research topics related to reuse that we believe can
significantly improve the benefits of reuse within the FPGA design flow.

4.1.1 Library Reuse Infrastructure
The most common and direct form of hardware reuse is the reuse of hardware

components. Predefined hardware circuits (otherwise known as “intellectual property” or
IP cores) are created and verified and then later inserted in a larger hardware circuit.
While such reuse occurs frequently within an organization, reuse between organizations
and third-party developers is limited. In addition, it is difficult to reuse hardware
components over time – they become obsolete and reusing today’s modules on
tomorrow’s devices is problematic.

One problem is the lack of standards – hardware circuits are developed in a variety
of tools and incompatible languages that inhibit the reuse of the circuit in new
environments and design flows. Developing standards for describing and representing
reusable hardware will enable a variety of high-level tools to take advantage of a variety
of cell libraries developed within different tools (21). Figure 5 demonstrates how a
common standard for libraries can significantly improve reuse. A common standard for
representing circuit libraries and cores will allow any core using this standard to be
seamlessly integrated to any high-level tool.

19

Figure 5: Library Standard for Reusable FPGA Libraries.

The concept of library reuse could go one step further and adopt the library and

sharing models that have demonstrated promise in the software engineering realm. One
example from the software realm is the Common Object Request Broker Architecture
(CORBA), which enables software components written in multiple computer languages
and running on multiple computers to work together. This objective is similar to the
needs of reconfigurable computing, but goes one step further (see Figure 6).

Figure 6: CORBA-Like Flow for Reconfigurable Computing.

In reconfigurable computing, a repository architecture is desired that not only

enables hardware components written using different specification languages to be
maintained in a common repository, but also provides the capability of interface synthesis
(see Section 4.1.4) that promotes IP portability. A use-model of this concept is as
follows:

 A standard is established for describing core interfaces,
 Reusable cores are cataloged within the standard,
 Tools automatically import core using core description,
 Tool or designer requests information about cores, and
 A “push” model can be developed where core capabilities and interfaces are

advertised by the repository.

20

In its most refined form, a compilation tool would be aware of advertised capabilities,
perform the necessary trade-off analysis, select the appropriate core, and synthesize its
interface automatically.

It is important to emphasize that the process of creating a library of reusable
components is only half of the picture. Performing operations on this library and making
it easily accessible is the other half. By reducing the component search time and
promoting integration, library extensions such as this would have an obvious impact in
enhancing reuse in a typical design environment, leading to a doubling in productivity.

Implementing this concept is not simply a software development task – there a
variety of difficult issues and questions that must be resolved before any standard or
library infrastructure could be developed. Difficult questions that must be addressed
include the following:
 What is the essential information necessary to represent a reusable core?
 How do you represent details of a low-level core at multiple levels of abstraction?
 How do you integrate the module generators and other core library infrastructure to

high level tools?
 How do you advertise the capabilities, options, and performance of a core?

We believe that when these questions are properly answered and standards are created

that address these issues, it will be significantly easier to reuse circuit libraries leading to
notable improvements in design productivity.

4.1.2 Architecture Shaping Through Library Standards
Standardized well-characterized libraries, common among all qualified DoD FPGA

vendors, would greatly enhance code reuse and code portability and mitigate early
obsolescence of code bases. In the software world, standardized libraries such as VSIPL
(22) and LinPack have directly affected how compilers are built and even how machines
are made. If such a configurable computing library had a (forcibly) high adoption rate, it
is likely that device vendors would be motivated to optimize their mappings to elements
in the library, or even make architectural enhancements to give them a competitive
advantage over their peers. This seems to be an obvious tactic for the industry to deploy;
however, there is currently little incentive for FPGA vendors to do this. Furthermore,
contemporary FPGA architectures are crafted to suit the needs of their primary customers
who value logic density above all else. It is conceivable that a critical mass of users with
a common use-model (via mandatory library interfaces) could ultimately inspire
competitive forces among device manufactures to optimize their architectures. This
process is referred to here as architecture shaping, and is accomplished through the
following four steps:

STEP-1: Create a consortium for the purpose of defining (domain-specific)
reconfigurable computing libraries and standards. This will likely need to be a grass-
roots endeavor since widespread adoption of the library is important. Unlike traditional
core libraries, this would need to capture non-traditional building-blocks, such as a class
of elements devoted towards connectivity and data movement.

21

STEP-2: Once there is established widespread acceptance of the standard and constituent
libraries (either through perceived convenience, productivity benefits, or even coercion),
there would be natural forces from vendors and users to create efficient mappings to
devices.

STEP-3: Once there is reasonable acceptance of the standard, and that there is a means of
mapping designs to the standard, the DoD could then mandate that all reconfigurable
computing designs be expressed in the standard. This would be similar to the mandate
that arose in the VHSIC program in regards to the usage of VHDL in DoD designs.

STEP-4: At this point, designers will be less driven by particular vendors for their design
implementations, and more driven by libraries and standards. This achieves a degree of
vendor independence for the designer, and all of the other advantages that come with it
including design mobility, second source satisfaction, and economy-in-scale. Vendors in
turn will need to demonstrate a competitive advantage. As vendors compete, they will
develop highly tuned implementations and possibly enhance their architectures. Vendor
A could claim an advantage if they were to produce an enhancement to their device that
more efficiently mapped standard library primitives.

There is historical precedent that suggests that FPGA architecture shaping can

achieve success. Consider the RISC “revolution” of the 1980s. Here, the concept of
highly dense and complex ISAs (analogous to contemporary hardware-centric FPGA
architectures) were abandoned in favor of giving the compiler more control in the
process. If there were an entity that could create a broadly acceptable library, possibly
through a standards process, it is possible that a “critical mass” could be attained.
Compliance to this standard could be mandated by the DoD as a condition of these
requirements and mandates could be phased in over time. Ultimately, vendors could be
required to comply as a condition for DoD participation.

There are potentially secondary rewards from architecture shaping as shown in
Figure 7. Standards will also create the opportunity for 3rd-party tool vendors to
compete in the CAD space that is currently mostly exclusive to the device vendors. This
could potentially impact the TPD factor in the productivity equation.

Figure 7: Catalytic Impact of Architecture Shaping and Leveraging Library Standards.

22

4.1.3 Dual Layer Compilation
Synthesizing computing circuits onto arbitrary hardware is much more difficult

than compiling a program onto a sequential processor. Computing tasks and memory
accesses must be assigned to resources and scheduled in time. A two-level compilation
strategy may assist the compiler and synthesis tools during this process. Standard “meta-
architectures” are defined that represent more coarse grain architectures than FPGAs and
provide a higher level abstraction than low-level LUTs and wires (23). The compilation
and synthesis process can be simplified by compiling to this meta architecture level using
higher level abstraction tools and then using low-level device specific tools to generate
actual computing circuits. Further, a two-level compilation strategy will lead to greater
portability and reusability by more easily allowing computations compiled to a meta-
architecture to be retargeted to other low-level device architectures.
 One notable outcome of the DARPA Polymorphous Computing Architectures
(PCA) program was that concept of dual-layer compilation. Briefly, the PCA dual layer
approach decomposed the compilation process into (1) a stable API layer, responsible for
transforming a variety of standard programming languages into a common intermediate
format, and (2) a stable architecture abstraction layer, that transformed the intermediate
layer into a form amenable to the target hardware (23). While the original motivation
behind this concept is somewhat different than the motivation for FPGA productivity,
both share many of the same properties in that:

 The dual-layer process is open to a wide variety of input specification languages.

 The dual-layer process does not change the familiar coding environment expected by
the designer.

 If designed appropriately, little efficiency is lost when working in an intermediate
architecture abstraction layer.

 Vendor specific back-ends can be developed independently (by the device vendors),
gaining the ability to retarget different devices.

Overall, the impact on productivity by adopting this approach could be large: reuse
is improved by intentionally separating the language problem, and the device-mapping
problem. Much planning would need to go into the design of the architecture abstraction
layer to preserve mapping efficiency. The Reservoir Lab R-Stream project, summarized
in Figure 8, has many of the salient features that could benefit reconfigurable computing.
Here, a problem is described in a high-level language, and compiled into a “Virtual
Machine Abstraction” intermediate form. This can in turn also be a C specification, but
transformed in a way in which the optimization dimensions are exposed. At this point,
device-specific compilers can then be used to create the target image. For example,
Xilinx’s CHIMPS could be use to compile the low-level C (LLC) into an FPGA
bitstream, or a version of NVidia’s CUDA compiler could transform the same LLC into
something suitable for a GPU.

While the multitude of C-to-Gates compiler efforts have incrementally improved
over the past 20 years, they have not come close to closing the productivity gap, and there
is no revolutionary change envisioned that is likely to change this. Furthermore, parallel
programming languages that emphasize letting the user adjust aspects of the mapping

23

process within the language are likely critically flawed. While they may seem to initially
promote productivity, they in effect anchor the design to a particular technology, and
possibly a particular platform. There have been notable attempts in the past, that have
shown that the added constructs distract the programmer from focusing on the problem
space to mixing physical implementation issues in the specification. The result is a set of
tools that are non-portable and non-compatible.

Figure 8: An Outline of the Dual-Layer Compilation Work of the Reservoir Labs R-Stream Project.

4.1.4 Interface Synthesis
FPGA circuits are difficult to reuse for several reasons. First, the designer must

choose a circuit to reuse. There are a wide variety of cores and libraries that vary in many
parameters (speed, area, power, etc.). It can be time consuming to search through the
available cores and select an appropriate reusable circuit. Second, the designer must
understand the low-level details of the reusable circuit interface. This may involve
reading the low level HDL code or reading detailed documentation. Third, the designer
must create custom circuits to talk to the interface, and fourth, the designer must then
verify the system with the reusable core. Much of the time involved in reusing FPGA
circuits is the extra design time required to interface a reusable circuit to a new system
(see Figure 9). Unless this additional “reuse” time is significantly reduced, the
improvements in productivity due to reuse will be limited.

24

Figure 9: The Primary Challenge of Integrating Reusable Components is Creating a Custom

Interface.

As noted in our productivity model, reuse does not come for free, where there is

typically a cost-benefit trade-off associated with it. It has been noted in the literature that
circuit designers are reluctant to reuse circuits unless reuse integration costs are less than
30% of the original design time. Therefore, an essential aspect of reuse is making the
usage of a reusable component easy.

The objective of interface synthesis is to reduce the effort required to reuse a circuit.
This is possible by automatically synthesizing the interface between a reusable circuit and
the new circuit (see Figure 10). Interface synthesis is done by encapsulating the circuit
interface of reusable circuits in meta-data descriptions and automatically synthesizing the
interface between the circuit and the system. If done properly, modules can “seamlessly”
transition from one design with one set of interface requirements and standards to another
design. The use-model for interface synthesis is straightforward. First, it assumed that
the circuit interfaces are created (preferably with a degree of automation), and are
specified by meta-data. This provides sufficient information for the compiler to
synthesize circuit-specific interface logic. In the user’s perspective, reusable circuits are
integrated with little or no effort.

Figure 10: An Interface Compiler Would Assume the Task of Creating the Logical Interface for a

Reusable Component, and Integrate it into an Existing Design.

Creating an interface compiler tool is a non-trivial task and would require solutions to

a number of difficult issues. The following requisite issues must be addressed:
 Ability to formally characterize the interface of circuits in a machine readable form

(i.e., a formal meta description),
 Creation of appropriate standards for describing the interface formally,
 Identification and characterization of a common set of interfaces,
 Development of synthesis and compilation techniques for reasoning about circuit

interfaces and creating circuits to couple disparate interfaces, and

25

 The generation of libraries of cores with interface descriptions that adhere to the
interface standard.

If solutions to these challenges are identified and techniques are created for

automatically synthesizing circuit interfaces then the cost of reusing FPGA circuits will
be significantly reduced. We expect that design productivity can increase by a factor of
two if interface synthesis techniques are developed and reusable cores are made that
exploit these standards.

4.2 Abstraction
Raising the level of abstraction means reducing the amount of detail that must be

specified by the programmer. Since its inception, advances in computer science have
proved that raising the level of abstraction leads to significant productivity gains.
Programming for software systems has undergone a transition between many different
levels of abstraction including machine code, assembly language, procedural
programming languages, etc. Indeed, early gains of 5× in programmer productivity were
reported as programmers moved away from assembly language toward PL/I and other
higher-level languages. These productivity improvements came about for two reasons
(24). First, the statements in higher-level languages are more powerful thereby allowing
programmers to describe their application with fewer lines of code. Second, higher-level
languages eliminate whole classes of bugs by automatically taking care of many low-
level details. The bugs that remain are fewer in number and easier to find because they
tend to be less obscure.

The productivity of digital circuit design has also increased significantly by
exploiting higher level design abstractions. Digital circuit design has experienced a
transition through several abstractions including design with individual transistors, design
using logic gates within schematics, and register transfer level design using hardware
description languages. A variety of new high level hardware design tools and methods
are now emerging that build upon this trend (see Section 0 for a list of representative
tools). These tools include high-level synthesis based on C or other procedural languages,
graphical data flow design methods for DSP, and application-specific design compilers.
Results from early adopters suggest that these tools do indeed improve design
productivity if used appropriately.

While new abstractions are becoming available for digital design (i.e., the ASIC
replacement use model), it is not clear that these abstractions will provide the
revolutionary improvements in productivity needed for configurable computing. One
reason for this is that many of these tools are essentially extensions of existing HDLs.
They may remove some detail required with conventional VHDL or Verilog, but they
still require an understanding of clocking, scheduling, pipelining, and other digital
systems design concepts. Another reason is that these languages, while based on familiar
programming languages such as C, have new concurrent semantics. A familiarity with
the base language such as C may actually be a handicap when trying to learn these new
semantics. Third, many of these abstractions are based on inherently sequential
languages. The sequential nature of these languages limits the ability to specify and to
exploit the massive parallelism available in hardware circuits (25).

26

Although these recent tools and languages are a step in the right direction, we
believe that they are insufficient for moving hardware design to a significantly new level
of design productivity. Additional advances in abstractions, languages, and
compiler/synthesis tools are needed to increase productivity of FPGA based configurable
systems. We propose several approaches that we believe may extend the advantages of
abstractions. We believe that advances in these areas will provide over 2× improvement
in design productivity.

4.2.1 Parallel Languages and Concurrent Models of Computation
It is well known that the incremental performance gains through architectural

improvements of uni-processors is slowing and that microprocessors will not improve
performance at the rate seen in the previous three decades (26). To address this trend,
microprocessor manufacturers are using multiple processor cores within a single device
to improve performance. Multi-core processors have the potential of achieving higher
levels of performance with less power and cost. Multi-core processors, however, are
more difficult to program than traditional uni-processors. Most programmers are taught
to program using sequential languages and compilers struggle to exploit sufficient
parallelism from such sequential descriptions. To address this issue, there is great
interest in parallel programming languages and compiler tools for targeting multi-core
architectures.

We believe that we have a unique opportunity to exploit this growing trend. We
advocate the investigation and adoption of emerging concurrent programming approaches
and models of computation for hardware design (27). The use of concurrent
programming approaches will facilitate the extraction of the natural concurrency found
within hardware circuits. Further, adopting standard concurrent languages will lead to
more platform independent descriptions of algorithms that can be targeted to either
hardware or parallel processor/multi-core systems.

While concurrent programming approaches are appropriate for both multi-core
architectures and FPGA-based reconfigurable systems, the unique architectural features
and constraints of FPGA-based systems may require unique concurrent programming
approaches. To exploit the full advantage of the unique reconfigurable computing
machine model may require custom concurrent programming constructs. Architectural
issues that may impact the programming model include the distributed, non-uniform
nature of the memory space, the availability of custom, non-standard functional units, and
the ability to partially reconfigure the logic resources. Other research questions that
should be addressed when investigating concurrent programming approaches for
reconfigurable computing include the following:

 What unique concurrent programming structures are needed to support reconfigurable

computing?
 Can emerging concurrent programming approaches be co-opted by reconfigurable

computing or are fundamentally new concurrent programming approaches needed?
 How much of the underlying FPGA machine model needs to be exposed to the

programmer?

27

We believe that FPGA design productivity can be increased by 2× by adopting
concurrent programming approaches that facilitate design at higher levels of abstraction
while preserving the underlying concurrency found within reconfigurable systems.

4.2.2 Multi-FPGA Synthesis and Compilation
Many configurable computing systems are designed with multiple-FPGAs to

provide a large amount of computing performance. These systems integrate multiple
FPGAs in a mesh, ring, systolic array or other topology to provide high levels of
performance for computing problems that have a large amount of parallelism. While
multi-FPGA systems provide a large amount of potential computing performance, they
are more difficult to program than single FPGA systems. In addition to logic design,
programmers of these multi-FPGA systems must manually partition the behavior between
the various FPGAs in the system.

New high-level synthesis and compilation methods are needed to automatically
target multi-FPGA systems. Most synthesis and compilation techniques assume a
uniform array of logic and do not consider the impact of partitioning logic and
computation between disparate FPGAs with limited connectivity. Future high-level
synthesis approaches must consider the impact of inter-FPGA communication and
perform coarse level partitioning and resource allocation based on the topology of the
multi-FPGA system. Ideally, compilers for multi-FPGA systems would be able to target
any multi-FPGA platform to facilitate the portability of configurable computing
applications across different vendors and system topologies.

Figure 11 demonstrates how a multi-FPGA synthesis approach would work. The
application-specific behavior is specified using the appropriate design language or
abstraction. This behavior is specified with little or no platform specific annotations or
descriptions (although a concurrent design language would be most effective). Before
compilation, the programmer chooses a target platform which is described in an
architecture description file (this file defines the FPGAs, memories, and other system
resources). The compiler reads both the behavioral description and architecture
description file to generate an executable on the target architecture. Unlike most
traditional hardware compilers, this multi-FPGA compiler must perform logic and
memory partitioning before the synthesis and technology mapping phases.

28

Figure 11: Multi-FPGA Design Environment.

Most multi-FPGA design environments require the user to perform FPGA
partitioning manually. This manual partitioning step forces the programmer to make
design decisions requiring a detailed understanding of the underlying FPGAs as well as
good estimates of the size of the synthesized hardware. We believe that with advances in
behavioral synthesis and partitioning techniques, much of this partitioning can be
automated to simplify the design process and substantially increase design productivity.

4.3 Turns Per Day
There is a big difference between debug productivity for software and debug

productivity for hardware. In a typical FPGA hardware design flow, we achieve one to
two debug iterations in a given day. With a software development tool such as gcc, it is
possible to achieve more than 20 debug iterations per day. In fact the number 20 was
chosen somewhat arbitrarily and likely is much higher, especially if one counts the use of
printf()-based runs as debug iterations.

One of the key issues with regards to hardware debug is that there are actually two
development cycles that the designer must navigate (see Figure 12). On the left is a
debug cycle that approximates software development, consisting of compile, simulate,
modify design, and repeat. Once this has been done to the designer’s satisfaction he/she
moves to the cycle on the right which consists of synthesis/place-and-route/timing-
closure/download followed by hardware execution and often confusion. These are two
very different types of debug cycles. The simulation cycle on the left is very slow to
simulate but provides excellent visibility into the operation of the circuit. The cycle on
the right runs thousands of times faster but provides very little visibility into the operation
of the circuit.

29

Figure 12: Configurable Computing Development Cycle.

One of the chief difficulties with this hardware design cycle is the difficulty of

conducting what-if experiments. Such experiments are an important part of many design
processes, and are exceedingly difficult in hardware design. To perform such an
experiment, the user modifies his/her design code, and then may spend significant
amounts of simulation time to determine whether the experiment will be successful.
Often however, he/she must do the experiment in hardware which requires even more
additional time to synthesize and implement the circuit before the experiment can even be
run. In either case running such an experiment may take multiple hours. In short, most
hardware design environments do not encourage interactive development.

Figure 13: CAD Tools and Design “What-If Experiments”.

The chief reason for this is that current CAD tools simply do not support

interactive development. As shown in Figure 13, current CAD tools have been
developed to produce designs on the extreme right side of the implementation time/circuit
area space. That is, they focus on providing the smallest implementation but at the cost
of long run times. While appropriate for final implementations, this does not support the
idea of rapid prototyping or what-if experiments.

A second difficulty with hardware development environments is a lack of
infrastructure. As shown on the right side of Figure 14, typical software development
environments have mature tools available for use, with many choices available. In
contrast, hardware development environments are missing groups of tools. In addition,

modify design
compile

simulate/verify

synth/PAR/
timingClosure/
download

execute

scratch head

modify design
compile

simulate/verify

synth/PAR/
timingClosure/
download

execute

scratch head

30

the tool choice on the hardware side is often very limited and the tools themselves not of
high quality.

Figure 14: Sparse Infrastructure for Configurable Computing Systems.

It is our belief that the impact of improved debug infrastructure for increasing the
number of debug turns per day cannot be overstated. If we could increase the number of
turns per day by 3 times, one could say that we would experience a 3 times increase in
design productivity. However, the effect may be much greater. Increasing the number of
turns per day in the debug environment has a systemic effect on the entire design process.
Users no longer are forced to multitask while waiting for long implementation runs to
complete. Rather, they can focus on the debug task, rapidly iterating with what-if
scenarios and experiments and greatly multiplying their current capabilities. Thus, we
believe that improving debug infrastructure may provide a nonlinear impact and give a
much greater than 3 times productivity improvement, and mitigates the unproductive
“busy-wait” mode of development characteristic of contemporary practices. Below we
provide a number of approaches which we believe should be investigated to increase the
number of turns per day a hardware designer can achieve.

4.3.1 Standard Platform Services
In comparing standard computing platforms with configurable computing platforms

we see that huge differences exist in the support provided between the two. Computer
systems provide extensive services to the user, often without the users being aware of
this. These services are provided by a combination of hardware support, firmware
support, and software support. These include things such as device interface capabilities
(device drivers), networking stacks, timers and interrupt capabilities, self check and
monitoring capabilities, run levels, linkers and loaders, and debug support. In contrast,
configurable computing support for such services is severely limited. Some platforms
provide few, if any, of these services; even when some support is available is nonstandard
between platforms, and the availability of such services is uneven. As a result, users
cannot depend upon a “standard” set of services.

Computing Components

H/W Platform

Firmware

Operating System

Run-Time Library

Debug Tools

Compilers

Apps

FPGA CPU

FPGAs Microprocessors

Motherboard, and I/OHost, Memories, I/O

BIOS, fixed I/O

Linux, Windows, etc.

libc, math lib, etc.

Logic Analyzer, ChipScope, JTAG gdb, gprof, etc.

gcc, etc.synplicity, etc.

Computing Components

H/W Platform

Firmware

Operating System

Run-Time Library

Debug Tools

Compilers

Apps

Computing Components

H/W Platform

Firmware

Operating System

Run-Time Library

Debug Tools

Compilers

Apps

FPGA CPU

FPGAs Microprocessors

Motherboard, and I/OHost, Memories, I/O

BIOS, fixed I/O

Linux, Windows, etc.

libc, math lib, etc.

Logic Analyzer, ChipScope, JTAG gdb, gprof, etc.

gcc, etc.synplicity, etc.

31

 This lack of services comes with a large opportunity cost. Since every platform is a
custom platform, there is no third-party software development industry being built up for
configurable computing similar to what is available for conventional computing. In
general, the users are at the mercy of individual board vendors to such capabilities. As
previously shown in Figure 14, the result is very sparse support.

Support for standard system services would greatly change how a user used a
configurable computing platform. As shown in Figure 15, in the creation of the user’s
application he would specify the services required either explicitly or implicitly. These
services could include I/O interfaces, memory interfaces, timers, interrupts, etc. The
compiler would determine what services were required and integrate the appropriate
intellectual property to create those services in hardware, linking them to the user’s
design as needed. Importantly, the compiler would automatically create the interfaces.
As a result, user designs would merely specify services required and those would be
automatically integrated to the user design, similar to how software libraries are linked in
with minimal effort on the part of the user.

Figure 15: Standard System Services Support.

Debug is so important that we believe it provides its own set of requirements. For

example, the JHDL system provides an example of hardware-in-the-loop debug
capabilities which greatly simplifies configurable computing debug (28). By providing a
simulation/runtime API, it allows the same suite of tools to be used to debug a design
either in simulation or in hardware execution (see Figure 16). When simulating, all
computation of next state values is done by the built-in JHDL simulator and the
simulation infrastructure used to display circuit state in various GUI windows. In
hardware mode, however, commands to advance execution cause commands to be sent to
the hardware platform (onto which a bitstream was previously configured). The state
values from the executing circuit were then retrieved from the hardware platform using
readback. The state values received through readback are back-annotated into the
simulator data structures for display. This provides a standard platform around which to

32

create debug tools and other aides, which operate in both hardware and simulation
modes.

Figure 16: Hardware-in-the-Loop Hardware Debug.

 This entire facility is based on the creation of an intermediate circuit data structure

which can be used for both simulation and hardware execution. This provides a standard
data structure to which user-created tools can be interfaced. This is in contrast to today’s
CAD tools where intermediate formats are fiercely protected by vendors as proprietary
data, providing no possibility for third-party software development to be done to aid in
the debug process.

Given that such an intermediate format and tool infrastructure exists, however, it
becomes straightforward to create very powerful runtime facilities to provide the system
services described above. For example, Figure 17 illustrates the use of checkpointing a
computation. Checkpointing relies on the ability to extract the complete state of a
running computation and later restore it, something that was demonstrated in JHDL.

Figure 17: Checkpointing of Hardware Computations.

33

Finally, such capabilities can be leveraged to support what-if experiments in debug

where on-the-fly creation of debug circuitry via bitstream manipulation is used to provide
the user with unprecedented access to the internal state of a running computation.

A major problem with today’s CAD tools is that they make little provision for debug,
typically obfuscating their operation and intermediate file formats, and thereby
preventing users from adding such debugging aids on after the fact. Importantly, we
believe support for debugging at runtime such as we have outlined above will not come
for free — a few percentage increase in circuit area should be a good trade off for large
gains in design productivity, something the software world accepted years ago. We
believe that effective debug and run time support infrastructure can be created for
configurable systems but this infrastructure can only succeed if it is built into the design
process and CAD tools from the outset.

4.3.2 Firmware
We propose the use of RC “firmware” to significantly simplify the design and

debug process. This is illustrated in Figure 18, where the I/O interfaces around the
periphery of a chip are standardized. These circuits can even be precompiled onto the
chip itself and may be application-independent. User designs are then compiled and,
using partial configuration or design merging, are configured onto the chip and wired up
to the standardized interfaces. The benefits of such an approach would be much faster
place-and-route, the possibility of the creation of a platform-independent design flow,
enhanced portability, and increased reuse. We understand that such approaches have
been tried by vendors in the past, and it is our belief that these have failed because they
may have included too much circuitry and thus impacted the ability of a designer to place
a significant design in the remaining circuit area. The approach we propose would rely
heavily on synthesis and CAD tools to only insert the standardized I/O interfaces which
were required for a given design, leading to maximum circuit area available for user
designs.

This approach is closely related to the notion of incremental design. Stated another
way, supporting firmware requires the same CAD tool support that supporting
incremental design requires. That is, the CAD tool flow needs to support pre-existing
placed and routed circuitry which can be left intact while additional circuitry is
synthesized and placed and routed around it. The notion of firmware could then be
extended to the idea of performing partial re-place and re-routing of an existing design.
An important observation is that this is currently prohibited by the typical CAD tool
flows found in commercial tools, which flatten the entire design heart hierarchy as the
first step in the synthesis process. We believe that by preserving the design hierarchy
through the entire tool flow it will be possible to create designs which have locality of
placement which matches the design hierarchy better, allowing localized changes to the
design source to be reflected in minimal amounts of replacement and rerouting of the
circuit – the foundation of an incremental design flow.

34

Figure 18: RC Firmware.

4.3.3 High-Level Abstraction Debug
When debugging a configurable computing application, there are two choices

given to a user. The first is to use a “simulator” which executes at a small fraction of the
target operating frequency of the final application. A simulation-based debugging
environment, however, provides essentially perfect visibility of the design and perfect
controllability over the executing application. The user is allowed to use file input and
output as well as other general computing aids to help in the creation of input stimulus
and the analysis of output results. In addition the user is able to change variables to
perform what-if scenarios, etc. The alternative to simulation is to “execute” the circuit at
the application speed. The obvious benefit of this is the speed of execution – the user can
boot operating systems on the platform, or run the app in its entirety in relatively short
amounts of time. The disadvantage of this approach is that the user has little control of
the execution and limited visibility of the circuit. New methods and techniques are
needed to provide the visibility and controllability of a simulator to the run-time
environment of an actual system.

The key problem preventing this is the lack of information shared through the
entire implementation toolchain (see Figure 19). In this figure, vendor of compiler “X”
has its own internal file formats and database to store the information related to the front-
end compilation step. However a second vendor (vendor “Y” in the figure) provides the
synthesis tool with its corresponding proprietary file formats and database. Finally,
FPGA vendor “Z” provides the implementation tools and its corresponding file formats.
These file formats and databases are largely undocumented, proprietary, and unavailable
to the end-user. As a result, it can be very difficult to relate values found in a readback
bitstream (from vendor “Z”) to the original design source (from vendor “X”).

F F

F F

I/O

M

M
M

M
M

M

F F

F F

I/O

M

M
M

M
M

M

F F

F F

I/O

M

M
MM

MM
MM

M

I/O Interface

M
em

or
y

In
te

rf
ac

e

Adjacent FPGA I/F

A
djace

nt F
P

G
A

 I/F

Application
Logic

F F

I/O

M

M

I/O

F F

I/O

MM

MM

I/O

35

Figure 19: Multiple Design Databases in Typical FPGA Design Flow.

The approach we propose here, called “high-level abstraction debug” is to provide a

unified set of files, databases, and APIs for the entire design flow. With such a unified
database, the translation steps from source code to bitstream can be documented and used
by the creator of debug tools to provide information linking bitstream contents to original
divine source. This unified database is shown in Figure 20. These debug tools will allow
the user to debug at the original source code level and provide debug which match the
models of computation embodied in the original high-level abstract design source.

Figure 20: Unified Database for Cross Tool Linking.

In summary, debug and runtime aids can only be successful if they are built into the

design process and CAD tools from the outset. A major problem with today’s CAD tools
is that they make little provision for debug, typically obfuscating their operation and
intermediate file formats, and thereby preventing users from adding such debugging aids
on after the fact. Importantly, we believe support for debugging runtime such as we have
outlined above will not come for free — a modest increase in circuit area should be a
good trade off for large gains in design productivity, something the software world
accepted years ago.

36

4.3.4 Summary of Research Approaches
The approaches described in the previously section define the research areas we feel

are most important to address in order to substantially increase the design productivity of
FPGA-based systems for configurable computing machines. Each of these areas is
interconnected as shown in Figure 21 and design productivity will significantly increase
only if advances are made in each of these areas and applied at all levels of the design
methodology. We believe that advances in each of these areas will provide up to a 25
improvement in design productivity.

Figure 21: Relationship between Research Approaches.

37

5 Integrated Research Vision
During the course of this effort, two study teams3 have been funded by DARPA,

each charged with defining a vision and roadmap for addressing fundamental challenges
in application development tools for FPGA-based systems. The outcomes from these two
studies are described in two reports entitled Strategic Infrastructure for Reconfigurable
Computing Applications (SIRCA) and FPGA Design Productivity (FDP). The purpose of
this section is to describe an integrated research vision that includes the major concepts
and research approaches from these two studies in a unified and integrated manner.

The two study teams met together on June 5th, 2008 in Salt Lake City along with
experts in the field to present the results of their findings and begin the task of integrating
the research vision presented by both teams. Breakout groups at the meeting provided
feedback and suggestions on how to integrate the results from these research studies. We
believe that this unified vision forms the basis of a research vision that will lead to
revolutionary improvements in design productivity for reconfigurable computing
systems.

The two teams worked independently to query the reconfigurable computing
community, gain a solid understanding of contemporary practices, and research past and
current endeavors related to FPGA design productivity. Surprisingly, the two teams
presented findings that shared several common themes. Both teams discussed similar
causes to the problem and presented similar approaches for addressing the challenges in
application development for FPGA-based systems. However, each team approached its
study in a unique manner and emphasized different aspects of the design methodology.
While the emphasis of each study was different, the results of both studies complement
each other well and when taken together present a clear and complete research plan for
significantly improving FPGA design productivity.

The SIRCA team organized its study around the concepts of Formulation, Design,
Translation, and Execution (FDTE). This research model is defined horizontally in terms
of the four fundamental stages in application development. The SIRCA study
emphasizes research challenges in all four of these development stages but especially the
Formulation stage, which features strategic design exploration and tradeoff analyses for
complex systems and is pivotal for design productivity in many fields of engineering, and
yet routinely overlooked in conventional hardware and software engineering.

The FDP team organized its study around three research focus areas: Abstraction,
Reuse, and Turns per day (ART). This research model is defined vertically, where each
research focus area defines a key research thrust that must be addressed in all stages of
application development. The FDP study emphasizes the need to increase abstraction
(reduce design detail), apply reuse, and reduce turns per day at all stages of the design
process to obtain significant improvements in design productivity.

Figure 22 visually demonstrates the relationship between the models presented by
the two study teams. In the center, application development is defined in terms of the
four stages in the FDTE model. The process begins with Formulation, featuring strategic
exploration of candidate algorithms and architectures supported by performance

3 The two teams funded by DARPA include a team from Brigham Young University and Virginia Tech and
a team from University of Florida, George Washington University, and Clemson University.

38

prediction for tradeoff analyses. After strategic decisions are made, the process moves to
code design and implementation in the Design stage, then Translation to produce an
executable form, and finally Execution, where verification and optimization occur and
the application executes supported by a variety of run-time services. The arrows between
stages emphasize the iterative nature of the development process and importance of
exploiting results (templates, libraries, patterns, run-time information, etc.) between
stages.

Each of the three research themes of the ART model are shown as vertical bars that
span all development stages of the FDTE model. Reuse, for example, can be applied
during Formulation, Design, Translation, and Execution to significantly reduce the
amount of new work that must be performed by a programmer or by automated design
tools. The other two focus areas, abstraction and turns per day, also span the four design
stages of the FDTE model – technical approaches for each of these focus areas are
possible at each design stage to improve programmer productivity.

Figure 22: Integrated Research Vision.

Each of the teams identified a set of specific research thrusts that will lead to

major improvements in design productivity. Taken together, 21 research thrusts were
identified. As highlighted in Table 1, each of these research thrusts can be placed within
the integrated research vision of Figure 22. The two study teams believe that
improvements in design productivity of 20× or better are possible if advancements are
made with each of the development stages of the FDTE model and focused in terms of
abstraction, reuse, and turns per day.

39

Table 2: Research Thrusts and Models

Thrusts Abstraction Reuse Turns/day Formulation Design Translation Execution

SIRCA Research Thrusts
1. Strategic exploration X X X X
2. High-level prediction X X X
3. Numerical analysis X X X
4. Bridging design automation X X X X
5. System-level parallel languages X X X X
6. HW/SW codesign methods X X X X
7. Reusable & portable design X X X
8. Translation algorithms X X
9. Translation target architectures X X
10. Runtime debug & verification X X X X
11. Performance analysis X X X X
12. Run-time services X X X

FDP Research Thrusts
1. Architecture shaping X X X
2. Dual-layer compilation X X X
3. Libraries & standards X X X
4. Interface synthesis X X X X
5. Parallel environments X X X X
6. Multi-FPGA synthesis X X X X
7. Platform services X X
8. Firmware X X X
9. High-level debug X X X

ART Model FDTE Model

40

6 References

1. DOD Advisory Group on Electronic Devices. Special Technology Area Review on
Field Programmable Gate Arrays (FPGAs). July 2005. ARL-SR-147.
2. Alan Allan, Don Edenfeld, William H. Joyner, Andrew B. Kahng, Mike Rodgers,
and Yervant Zorian. 2001 Technology Roadmap for Semiconductors. IEEE Computer.
2002. Vol. 35, 1, pp. 45-53.
3. DeHon, Scott Hauck and Andre. Reconfigurable Computing: The Theory and
Practice of FPGA-Based Computing. s.l. : Morgan Kauffman, 2007. Chapter 21.
4. System Level Tools for DSP in FPGAs. James Hwang, Brent Milne, Nabeel Shirazi
and Jeffrey D. Stroomer. s.l. : Springer Berlin, 2001. Field Programmable Logic and
Applications (FPL). pp. 534-543.
5. David Andrews, Douglas Niehaus, and Peter Ashenden. Programming Models for
Hybrid CPU/FPGA Chips. IEEE Computer. January 2004, pp. 118-120.
6. Mapping a Domain Specific Language to a Platform FPGA . Chidamber Kulkarni,
Gordon Brebner, and Graham Schelle. s.l. : ACM, 2004. Design Automation
Conference. pp. 924-927.
7. Attig, M. Dharmapurikar, S. Lockwood, J. . Attig, M. Dharmapurikar, S. Lockwood,
J. s.l. : IEEE, 2004. Field-Programmable Custom Computing Machines (FCCM). pp.
322- 323.
8. Using General-Purpose Programming Languages for FPGA design. Nelson, B.
Hutchings and B. 2000. Proceedings of the 37th Design Automation Conference (DAC).
pp. 561-566.
9. Nierstrasz, S. Moser and O. The Effect of Object-Oriented Frameworks on
Developer Productivity. IEEE Computer. September 1996, Vol. 29, 9, pp. 45-51.
10. Boehm, B. W. Managing Software Productivity and Reuse. IEEE Computer.
September 1999, Vol. 32, 9, pp. 111-113.
11. A general economics model of software reuse. Cruickshank, J. E. Gaffney and R.
D. Melbourne, Australia : ACM, 1992. Proceedings of the 14th International Conference
on Software Engineering. pp. 327-337.
12. Enabling reuse-based software development of large-scale systems. Selby, R. W. 6,
June 2005, IEEE Transactions on Software Engineering, Vol. 31, pp. 495-510.
13. The impact of tools on software productivity. T. Bruckhaus, N.H. Madhavii, I.
Janssen, and J. Henshaw. 5, s.l. : IEEE, September 1996, IEEE Software, Vol. 13, pp.
29-38.
14. Design Productivity for Configurable Computing. B. Nelson, M. Wirthlin, B.
Hutchings, P. Athanas, and S. Bohner. July 2008, Proceedings of the International
Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA).
15. Poulin, Jeffrey S. Measuing Software Reuse: Principles, Practices, and Economic
Models. s.l. : Addison Wesley, 1997.
16. Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software REuse: ARchitecture,
Process and Organization for Business Success. s.l. : ACM Press, 1997.
17. Tracz, Will. Confessions of a Used Program Salesman: Institutionalizing Software
Reuse. s.l. : Addison Wesley, 1995.

41

18. Increasing design quality and engineering productivity through design reuse.
Carlson, Emil Girczyc and Steve. 1993. Proceedings of teh ACM IEEE Design
Automation Conference (DAC).
19. HPC Productivity: An Overarching View. Kepner, Jeremy. 4, 2004, International
Journal of High Perforamnce Computing Applications, Vol. 18, pp. 393-397.
20. Design patterns for reconfigurable computing. Andre DeHon, Josua Adams, Micael
DeLorimier, Nachiket Kapre, Yuki Matsuda, Helia Naeimi, Michael Vanier, and
Michael Wrighton. s.l. : IEEE, 2004. IEEE Symposium on Field Programmable Custom
Computing Machines (FCCM). pp. 13-23.
21. OpenFPGA corelib core library interoperability effort. M. Wirthlin, D. Poznanovic,
P. Sundararajan, A. Coppola, D. Pellerin, W. Najjar, R. Bruce, M. Babst, O.
Prichard, P. Palazzari, and G. Kuzmanov. 2007. Proceedings of the 2007
Reconfigurable Systems Summer Institute (RSSI).
22. VSIPL: An Object-Based Open Standard API for Vector, Signal, and Image
Processing. R. Janka, R. Judd, J. Lebak, M. Richards, and D. Campbell. 2001, IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 2,
pp. 949-952.
23. The Morphware Stable Interface: A Software Framework for Polymorphous
Computing Architectures. D. Campbell, D. Cottel, R. Judd, K. MacKenzie, and M.
Richards. 2003. Seventh Annual Workshop on High Performance Embedded
Computing.
24. Brooks, Fredrick P. The Mythical Man-Month: Essays on Software Engineering.
s.l. : Addison Wesley, 1995.
25. Edwards, Stephen A. The Challenges of synthesizing hardware from C-like
languages. IEEE Design & Test of Computers. 2006, pp. 375-386.
26. K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D.
Patterson, W. Plishker, J. Shalf, S. Williams, K. Yelik. The Landscape of Parallel
Computing Research: A View from Berkeley. EECS Department, University of California
at Berkeley. 2006. UCB/EECS-2006-183.
27. A Framework for Comparing Models of Computation. Sangiovanni-Vincentelli,
Edward A. Lee and Alberto. 12, December 1998, IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, Vol. 17, pp. 1217-1229.
28. Designing and Debugging Custom Computing Applications. Brad Hutchings, Brent
Nelson, and Mike Wirthlin. 1, s.l. : IEEE, January-March 2000, IEEE Design and Test
of Computers, Vol. 17, pp. 20-28.
29. Black River Systems Company. FPGA Tool Taxonomy Final Report. June 2007.
30. High-Quality, Deterministic Parallel PPlacement for FPGAs on nCommodity
Hardware. Adrian nLudwin, Vaughn Betz, and Ketan Padalia. s.l. : ACM, 2008.
ACM International Symposium on Field-Programmable Gate Arrays. pp. 14-23.

42

Appendix

A.1 Survey of Hardware Metrics
This appendix provides a sampling of papers identified in the literature which

illustrate the state of the art in hardware design metrics and descriptions of those papers.
The discussion for each paper is not meant to be a summary but rather identifies relevant
points for FPGA productivity metrics. The papers are listed in alphabetical order of the
primary author.

The High-End Computing Productivity Crisis, The High-End Crusader (anonymous),
HPCWire, April 16, 2004.

This article notes the following trends in HPC: each new parallel machine
requires ever increasing levels of programming skill to successfully program, increasing
time is required to program each new machine, the number of users of the highest-end
machines is decreasing and the number of programs written for those machines is
decreasing. The author argues that architecture, combined with programming language is
the key to increasing productivity. He describes Type-T algorithms (limited
communication and well-balanced workloads) and Type-C algorithms (long-range
communication and poorly-balanced workloads). He also describes Type-T architectures
(weakly-parallel processors and low-BW system interconnect) and Type-C architectures
(strongly-parallel processors and high-BW system interconnect). He then makes the
obvious point that running a Type-C job on a Type-T system is a bad idea. The point is
that productivity can be enhanced if architecture is included. For metrics, he includes
three times: programming time, execution time, and results analysis time.

FPGA Tool Taxonomy Final Report, Black River Systems .

This report suggests a large number of “Measures of Performance” (MOPS) for
evaluating tools. The report is not proposing “productivity” metrics, rather it is proposing
questions that should be asked about a given tool. It is interesting to note that they do not
call them metrics. All of these “MOPs” are of the form, “Does the tool <do such and
such>?”. One example, “Does the tool support parallel computing?” The report lists
many “measures” for evaluating tools (p. 20-26). Many of these are questions to ask
when evaluating a tool and do not lend them selves to quantitative measurement.
Interesting points they make in the report include: 30%-40% of design time is HDL
coding, 60%-70% of the time is spent in verification.

Graphical tools allow users to more easily reuse IP and achieve a quick and dirty
solution more quickly (page 14). High-level languages offer productivity because fewer
lines of code are needed to code the behavior. In addition, there is less detail to manage
with HLL than HDL (page 15), easier to port/maintain (page 16) Abstraction enhances
portability (page 16) HLL’s limit the designer's ability to “tweak” the implementation for
improved area/speed. Abstracting hardware issues limits ability to take advantage of
hardware-specific features (p. 16). A number of these outcomes are not unexpected and
point out the difficulty of reducing design time without reducing circuit performance.

43

Software Metrics Lead the Way to Better HDL Coding Practices, Gregory P. Chapelle
and Michael L. Lewis, EETimes, 1999.

This editorial argues for the use of software metrics as a way of increasing design
productivity. However, the method proposed looks to be more of a management tool to
help understand the current progress and phase of the development effort. It proposes the
automated collection of design statistics regularly as the design progresses (lines of code,
lines of comments, white space lines, …). They argue that by monitoring the time
evolution of these statistics, management can learn whether the design is continuing to
progress in a predictable, healthy way. To the extent that this careful monitoring can
enhance productivity by avoiding common pitfalls or by allowing management to add
more resources when it becomes obvious such resources are needed, this approach has
merit. In many ways, it is similar to the METRICS paper. However, it does not propose
any new method for coding which will increase productivity, rather it simply argues for
close monitoring of progress. Such monitoring will prevent surprises and make the
overall process more predictable.

Comparative Analysis of High Level Programming for Reconfigurable Computers:
Methodology and Empirical Study, El-Araby et al, 3rd Southern Conference on
Programmable Logic (SPL), 2007, pp. 99-106.

This paper from the GWU CHREC Group attempts to balance the trade-off between
design quality and design productivity. They have an “ease of use metric” based on total
acquisition time (time to learn tool and gain experience) and total development time.
They have seven equations they use to get this “ease of use” value. They obtain data by
having different students with various levels of experience creating designs with the tool.
It represents a useful and interesting example of a tool evaluation process.

Ideas gleaned from the above papers include the following:
 The line between metrics and productivity discussions is often blurred. Some focus

on raw metrics while others talk about metrics only in the context of their
productivity approaches.

 Skill levels not uniform across all stages of development process.
 Core reuse, while an important problem to solve, is a difficult problem to solve for

both technical and non-technical reasons.
 Utility/cost was a new metric for us. It allows for a variety of ways of describing

productivity.
 While most papers focus on LOC, there are a few out there which argue against it.
 Time-to-first-solution is an interesting metric that measures how quickly one can get

up and experimenting with an implementation.
 There are different types of workflows (research-oriented to production-oriented)and

each has different needs w.r.t. productivity tools.

The METRICS System, Fenstermaker et al, DAC 2000.

44

This paper describes METRICS, the authors’ system to support continuous design
process optimization (DPO). METRICS gathers data about the design as it progresses
and stores it in a way to support analyses and predictions of success for the project. It
points out that CAD tools do not typically provide the data required to support DPO, and,
those tools that provide some of the data required all provide it in different formats. They
also argue that at the current time we do not know what data should be collected. In the
end, they argue that standard tool metrics will be required if DPO is to become
commonplace as it is in other areas (semiconductor manufacturing, for example).

A Relative Development Time Productivity Metric for HPC Systems, Funk, Kepner,
Basili, Hochstein, Lincoln Laboratory and Univ of Maryland.

This was a paper on HPC Productivity Metrics at the HPEC 05 conference. They
propose 4 axes of productivity:

1) Performance of the final implementation,
2) Programmability (time from idea-to-first-solution),
3) Portability (transparency) of the solution,
4) Robustness (reliability).

Point 2) above has been proposed by others. It places an emphasis on getting to an initial
solution quickly. They propose a productivity formula on slide 6 that is:
PRODUCTIVITY = UTILITY/COST. In this formula, UTILITY is the value a user
places on getting a result at time T. UTILITY is thus a time-varying function that reflects
that solutions arrived at different times have different value to the user. The COST term
includes machine cost + operating costs + software development cost.
They point out that for small codes, productivity is simply the final application
performance divided by the cost of writing the code. The results they show include such
statements as these: “… OpenMP is more productive than other approaches for small
numbers of CPUs in a shared memory architecture.”, “… for larger systems MPI and Co-
Array Fortran (CAF) scale well”, and “Performance of C+MPI and pMatlab is
comparable”.

Measuring Productivity and Quality in Model-Based Design, Arvind Hosagrahara and
Paul Smith, The Mathworks.

This paper is from MathWorks and advertises their approach for measuring
productivity and quality in their control system design tools. They emphasize that LOC
is the basis for all SW productivity measures such as LOC/unit and defects/LOC, but that
such a metric may be misleading with model-based design. For our study, the issue here
is that in Model Based Design (MBD), a model is manipulated and then code is
automatically generated from that model. LOC measurements on this automatically
generated code are not as useful as when all code was hand-written. Thus, new metrics
are needed when high level programs emit code. He argues that the new metrics should
all focus on time spent and defects introduced rather than measurements of the size of the
code. The same metrics can also apply to later design changes (how hard were they to

45

make, did they introduce new defects?). This was the first software paper we found that
didn’t focus on LOC in the end.

Emerging DoD Sensor Processing Requirements, Jeremy Kepner, April 2006.

This is a presentation on Emerging DoD sensor requirements and the need for
higher throughput processing and was presented at the DARPA Workshop in April 2006.
It summarizes the various DARPA programs and their benchmark suites (HPC
Challenge, HPEC Challenge, Compact Apps, …). With regard to FPGA design, it points
out that the skill level required for each step of the FPGA development process is
different (PhD vs. MS vs. BS) and that currently, the FPGA development process is not
portable. Finally, it shows that the FPGA development process typically consists of three
different four-month phases.

HPCS Application Analysis and Assessment, Jeremy Kepner and David Koester.

This work was a presentation to DARPA on HPCS, and examines a number of
useful points about software productivity metrics. They define productivity as the ratio of
utility to cost. The main metric discussed is lines of code (LOC). One plot shows the
LOC required for various implementation options (OpenMP, MPI, etc) for a set of
benchmarks. Another shows the achieved performance for NAS FT as a function of lines
of code – the message is that more complex programming tasks (a FORTRAN
implementation on 16 CPU’s using MPI for example) get correspondingly higher
performance than simpler programming tasks (a Java implementation on 16 CPUs or a
uniprocessor implementation for example).

An interesting metric proposed is a Δx vs. Δy metric where Δx is the code change
and Δy is the benefit achieved. The paper also suggests measuring distance between code
changes to determine if changes are localized (good) or distributed (bad). Slide 24 then
lists a collection of productivity models from the software community. This is a good
jumping-off point to look at a variety of metrics. Slide 25 indicates that code size is the
most important SW productivity parameter, and that HPC can reduce code size in two
ways: by using higher level languages and by reuse. Similar to the need for performance
in FPGA-based systems, the paper indicates that HPC performance requirements limit the
exploitation of these two ideas.

Measures of success proposed include: (a) that the results are accepted by users,
vendors, … and (b) that they can quantitatively explain HPC rules of thumb such as:
“OpenMP is easier than MPI but doesn't scale as well”. Much of these slides directly
mirrors much of what is being talked about with respect to FPGA design productivity.

HPC Productivity: An Overarching View, Jeremy Kepner, International Journal of High
Performance Computing Applications, Vol. 18, No. 4, 393-397 (2004).

In this preface, Kepner argues that there are 3 different kinds of workflows that
must be considered. In the researcher workflow the focus is on knowledge discovery
with rapid design iterations, similar to that founding rapid prototyping. In the enterprise
workflow, an organization is focused on developing and integrating very large codes.

46

New modules are rapidly prototyped and then integrated into the large legacy codes.
Finally, in the production workflow the goal is to create a deployed system and the
development times may take years.

IC design at advanced process nodes: Add flex to your flow, Andrew Potemski,
Synopsys, EDN, 8/16/2007.

This articles argues that carefully considering how your design flow is
constructed greatly increases chances for success and that flexibility in a design flow is
an important consideration as well.

Metrics-Based Behavioral Design, David Pursley, Forte Design Systems.

This paper dates to about 2006 and argues for a return to behavioral design as a
way to improve productivity. It cites a study claiming a 50% productivity improvement
from using behavioral design [Johnson98][Moussa98]. He introduces his idea of metrics-
based behavioral design, and tries to develop a chain of metrics-based predictors to help
his tools evaluate the value of each optimization. But, he only proposes a metric-based
predictor for the original step of behavioral code evaluation (a tool to look at the original
behavioral code and predict size/performance or even just whether the behavioral
compiler could process it). In the end, he showed that there was some correlation
between the CPU run time of his synthesis tool and his CDFG node count.

Metrics Measure IC Design Productivity, Michael Solka, Synopsys Inc.

This work was an EDA DesignLine paper found on the web. The main point was
about how to gather data and what to gather as a project progresses to provide “actionable
analyses of project practices and execution so that productivity improvement
opportunities can be identified”. He suggests that metrics should be divided into 2
categories: “design characteristics” and “resource utilization”. Design characteristics are
what you might expect: FET count, clock rate, lines of code, … Resource utilization has
to do with the level of effort by personnel on the project and by CAD tool usage. He
argues that both are important.

Integrating FPGA IP Cores into a Topological Processing Environment, Michael Vai
and Jeremy Kepner.

This white paper argues for the use of reusable cores. It states that cores could be
a big productivity booster. It then outlines a number of reasons why cores have not
caught on: they are not well characterized enough to avoid repeated design spins and
verification iterating, cores based on bitstreams are not portable, cores based on HDL's
may be portable but if they are, they don't use FPGA-specific features and therefore are
low performance, etc. Finally, the paper indicates that GFLOPS is not a particularly good
metric, it is all about how the cores interface together that is important.

47

A.2 List of Commercially Available High-Level FPGA Design
Tools

We have identified a number of FPGA design tools that can be considered as “high-level”
and listed them in the table below. The number of tools that are being introduced is
growing and we will attempt to keep a current and accurate list during the course of the
study. We will evaluate a number of these tools and summarize the others as part of this
study.

Tool Name Company
DK Design Suite (Handel C), Agility Compiler Celoxica
Pixel Streams, Hyper Streams Celoxica
DSP Builder Altera
System Generator Xilinx
ImpulseC ImpulseC
MitrionC Mitrionics
AccelDSP Xilinx
C2H Altera
SynplifyDSP Synplicity
Reconfigurable Computing Toolbox DSPLogic
Simulink HDL Coder Mathworks
Filter Design HDL Coder Mathworks
Carte SRC
CatapultC Mentor
C2R CebaTech
Cynthesizer Forte
Computational Adrenaline Concurrent EDA
Mobius Codetronix
AutoPilot AutoESL
Cascade CoProcessor Critical Blue
LabView FPGA National Instruments
BinaChip-FPGA BinaChip
Bluespec SystemVerilog, Bluespec SystemC Bluespec
Pico Express Synfora
Dime-C Nallatech
CoreFire Annapolis Microsystems
Viva Starbridge Systems
Stone Ridge Compiler Collection Stone Ridge Technology

48

A.3 FPGA Architecture Survey

Company Niche
3P plus 1 Technology Coarse-grain configurable IP cores
Achronix
Semiconductor Corp

Gigahertz asynchronous FPGA

Ambric Massively parallel processor array with a structural object programming model
Ascenium Corp In stealth mode
Aspex Domain-specific system-on-chip with configurable IP cores
ChipWrights RISC/SIMD/Vector processor architecture
Clearspeed Low-power Floating point
Coherent Logix Multi-core grid with allocatable interconnect
Context Corporation Sweeney, Robertson, Tocher (MSDF/SRT) arithmetic processing algorithm and

coarse-grained dynamic reconfigurability
Element CXI An evolved QuickSilver Technologies with wrapped heterogeneous “elements”
Icera Semiconductor
Ltd

Software-defined radios

Ikoa Corporation Stealth mode - Memory-centric and defect-tolerant signal processing
Intellasys Corporation Scalable Embedded Array Processor
IP Flex Medium-grain reconfigurable fabric SoC closely coupled with RISC cores
M2000 Used to be Meta systems, in stealth mode
MathStar Field Programmable Object Area (FPOA)
Mesh Semiconductor Stealth mode, or out of business
PACT Coarse-grain ALU architecture
Picochip Designs Multi-core processor array for signal processing
Rapport An evolved PipeRench-like architecture
Raytheon MONARCH architecture and development environment
ReCore An array of specialized micro-sequenced processors
Sandbridge Multi-core DSP arrays for comm applications
Spiral Gateway Stealth mode
Stream Processors VLIW-like processing engine
Stretch Tightly integrated GPP with configurable fabric
Systemonic Wireless networking acquired by Philips Semi
Tabula Currently in stealth mode.
Silicon Hive IP locks for comm and video applications
Videantis Specialized video processing engines
Vivace Semiconductor Specialized video processors
Xelerated Configurable network processor
XMOS Semiconductor Stealth mode

49

List of Acronyms, Abbreviations, and Symbols

Acronym Description

3GL Third generation languages
4GL Fourth generation languages
5GL Fifth generation languages
ART Abstraction, Reuse, and Turns per day
CAD Computer Aided Design
CCM Configurable Computing Machine
CORBA Common Object Request Broker Architecture
DSP Digital Signal Processing
EDA Electronic Design Automation
FDP FPGA Design Productivity
FDTE Formulation, Design, Translation, and Execution
FPGAs Field Programmable Gate Arrays
HDLs Hardware description languages
HPC High-performance computing
HPEC High-performance embedded computing
LLC Low-level C
RTL Register transfer level
SEI Software Engineering Institute
SIRCA Strategic Infrastructure for Reconfigurable Computing Applications
SOC System-on-chip
SPC Software Productivity Consortium
STAR Special Technology Area Review

