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After seminal work presented a decade ago, ionic liquids (IL)
have now received a lot of attention as energetic materials for
propellant applications.1–3 In bipropellant rocket engines, it is
desirable to achieve ignition by means of a hypergolic reaction
and therefore to minimize system complexity. Hypergolic
bipropellants are defined as fuel and oxidizer combinations that,
upon contact, chemically react and release enough heat to
spontaneously ignite, eliminating the need for an additional
ignition source. This also makes them highly reliable for
spacecraft and satellites, which need to fire their rocket engines
hundreds or even thousands of times during their lifetime.
Unfortunately, no reliable a priori method for prediction of
hypergolicity for fuel-oxidizer pairs is available today. Here,
we report the first ILs to manifest hypergolic ignition.

The initial “hunting for the hypergol”, as John Clark entitled
one of the chapters in his book, Ignition!, took place mainly
during World War II.4 At that time, such toxic systems as “C-
Stoff” (a mixture of N2H4 ·H2O, methanol, and water) and others
consisting of triethyl amine, aniline, toluidine, xylidine, and
N-methyl aniline were developed. Today, environmental and
health concerns are becoming more and more pressing in the
propellant world. Nevertheless, hydrazine and its methylated
derivatives are still the state-of-the-art fuels for bipropellant
applications. Most of the problems handling hydrazine and its
derivatives are related to their volatility, because they are
carcinogenic vapor toxins. For these reasons, it is exceedingly
attractive to replace hydrazine with ILs, which are regarded as
paragons of environmental friendliness, green chemistry, and
low vapor toxicity.

Most of the focus in energetic ILs research has been on
heterocyclic cations in combination with oxygenated anions,
which frequently have stability and safety problems.5–7 In a

bipropellant system, with ILs used as fuels, it is not necessary
to use an oxygen-balanced IL. Furthermore, one can avoid
oxygen-carrying anions completely, which, other things being
equal, should make handling much safer because fuel and
oxidizer are chemically separated. In a salt system, the positive
charge of the cation makes it much more resistant toward
oxidation. Consequently, electron- and fuel-rich anions are much
easier to oxidize and thus would seem to hold the potential to
promote hypergolic ignition.

Disappointingly, our first ignition tests carried out with ILs
containing fuel-rich azide anions did not reveal any hypergolic
properties.8 However, the violent nature of their reactions was
an encouragement to continue this line of work. In comparison,
the same family of cations paired with the nitrate anion showed
no noticeable reactivity toward inhibited, red-fuming nitric acid
(IRFNA, ∼83% HNO3 plus 14% N2O4 plus ∼2% H2O plus
0.6% HF), white fuming nitric acid (WFNA, ∼100% HNO3),
or N2O4.

Therefore, the aim of this paper is to report on hypergolicity
investigations of other fuel-rich anions, especially the dicyana-
mide anion. Dicyanamide was chosen not only because it is a
fuel-rich anion but also because IL dicyanamides have some of
the lowest viscosities among known ILs.9–11 In bipropellant
systems, pumps transport fuel and oxidizer, and therefore,
excessive viscosity must be avoided.

Imidazolium-based ILs were first considered because they
generally possess greater stability than their triazolium or
tetrazolium analogues. Unsaturated sidechains, such as allyl,
propargyl, and 2-butenyl were selected because it was hoped
that they would initiate or promote hypergolic ignition. It has
been demonstrated in the past that unsaturated, especially
acetylenic, compounds show a tendency to hypergolicity and
can even be used as fuel additives to promote hypergolic
ignition.4

The starting materials, 1-R-3-methylimidazolium bromides
(1-5), were prepared by alkylation of methylimidazole followed
by metathesis with freshly prepared silver dicyanamide (Scheme
1). Because silver dicyanamide is insoluble in methanol, it can
be used in excess, assuring complete conversion (see the
Supporting Information).
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Physical data for known, 1 and 3, and novel, 2-5, com-
pounds, are shown in Table 1 along with the 1-methyl-4-amino-
1,2,4-triazolium analogue, 6, which is discussed later and was
prepared by the same method.

Most substituted imidazolium dicyanamides are true room-
temperature liquids. Compounds 4 and 5 are solid at ambient
conditions, and compound 5 could be recrystallized from
methanol layered with diethylether, giving crystals suitable for
single-crystal X-ray determination. The structure analysis
revealed an extensive hydrogen-bond network involving the
dicyanamide anion (Figure 1). Similar to other ILs, solidification
can be attributed to extensive hydrogen bonding.

As a simple test for hypergolicity similar to those used
historically,4 droplet tests were carried out using a glass cuvette,
which was filled with ca. 1 mL of IRFNA or WFNA. A syringe
generating ca. 10 µL droplets was used to dispense the IL fuel
(Figure 2a). A high-speed camera recording 500 frames/s was
used to determine the ignition delay (ID) times (Table 2) by
counting the frames between the droplet first hitting the surface
of the oxidizer (Figure 2b) and the sign of the first visible
ignition (Figure 2c). After ignition, the hypergolic compounds
undergo self-sustained combustion (Figure 2d).

By this test, compounds 1-3 were shown to be hypergolic.
The solids 4 and 5 were not tested because of their unsuitability
as liquid propellants. One example of an IL based on a triazole,
compound 6, and three commercially available IL dicyanamides,
1-butyl-3-methyl-imidazolium, 1-butyl-1-methylpyrrolidinium,
and n-butyl-3-methyl-pyridinium, were also tested with WFNA
and found to be hypergolic as well (Table 2).

On the basis of these results and somewhat unexpectedly,
unsaturated substituents do not seem to play a determinative
role in the ignition process. Rather, it appears that the key to
hypergolicity in these systems is the dicyanamide anion.13 For
a suitable hydrazine replacement, ID times of less than 5 ms
are preferred. Aerosol-type fuel and oxidizer sprays are being
examined and should lead to shorter ID times as well as better
reflecting real-world engine conditions.

With the discovery of these IL hypergols, a new path for
transitioning these materials into bipropellant applications seems
clear. It is expected that these systems can now be fine-tuned
for energy content, performance, and desireable physical proper-
ties and that they could replace state-of-the-art, highly toxic
hydrazine and its derivatives.
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Scheme 1

Table 1. Thermal and Physical Data of the Dicyanamide Salts
1-6

compound Tg (°C)a Tm (°C)b Td (°C)c η (cP)d (25 °C)

1 -85 +207 42
2 -90 +210 27
3 -61 +17e +144 110
4 +49 +179
5 +59 +184
6 -66 +143 92

a Glass transition. b Melting point. c Decomposition onset. d Viscosity.
e From ref 12.

Figure 1. ORTEP diagram showing connectivity, conformation, and
the atom-numbering scheme for compound 5.

Figure 2. (a-d) Selected frames from the high-speed video of the
hypergolic reaction of compound 3 and WFNA.

Table 2. ID Times for Hypergolic ILs with IRFNA and WFNA

compound
dicyanamide

IRFNA
ID (ms)a

WFNA
ID (ms)

1 625 43
2 670 b
3 170 15
6 b 31
1-butyl-3-methyl-imidazoliumc b 47
1-butyl-1-methyl-pyrrolidiniumc b 44
n-butyl-3-methylpyridiniumc b 37

a Ignition delay time. b Not measured. c Purchased from Merck.
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