

ON GRAPH ISOMORPHISM AND THE PAGERANK ALGORITHM

DISSERTATION

Christopher J. Augeri

AFIT/DCS/ENG/08-08

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this dissertation are those of the author and do not reflect

the official policy or position of the United States Air Force, the Department of Defense,

or the United States Government.

AFIT/DCS/ENG/08-08

ON GRAPH ISOMORPHISM AND THE PAGERANK ALGORITHM

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Christopher J. Augeri, A.A.S., B.G.S., M.S.

September 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/DCS/ENG/08-08

ON GRAPH ISOMORPHISM AND THE PAGERANK ALGORITHM

Christopher 1. Augeri, A.A.S., B.G.S., M.S.

Approved:

13 ~vJkw.
BarryE~S,Ph.D., P.E. (chairman)

Lt Col Leemon C. Baird III, Ph.D. (member)

Accepted:

'Vv'.~l~~

M. U. Thomas
Dean, Graduate School of Engineering and Management
Air Force Institute of Technology

IDI/;lDDg
Date

Date

1'1 A~ 08
Date

AFIT/DCS/ENG/08-08

Abstract

A graph is a key construct for expressing relationships among objects, such as the

radio connectivity between nodes contained in an unmanned vehicle swarm. The study of

such networks may include ranking nodes based on importance, for example, by applying

the PageRank algorithm used in some search engines to order their query responses. The

PageRank values correspond to a unique eigenvector typically computed by applying the

power method, an iterative technique based on matrix multiplication.

The first new result described herein is a lower bound on the execution time of the

PageRank algorithm that is derived by applying standard assumptions to the scaling value

and numerical precision used to determine the PageRank vector. The lower bound on the

PageRank algorithm’s execution time also equals the time needed to compute the coarsest

equitable partition, where that partition is the basis of all other results described herein.

The second result establishes that nodes contained in the same block of a coarsest

equitable partition must yield equal PageRank values. The third result is an algorithm that

eliminates differences in the PageRank values of nodes contained in the same block if the

PageRank values are computed using finite-precision arithmetic. The fourth result is an

algorithm that reduces the time needed to find the PageRank vector by eliminating certain

dot products when any block in the partition contains multiple vertices. The fifth result is

an algorithm that further reduces the time required to obtain the PageRank vector of such

graphs by applying the quotient matrix induced by the coarsest equitable partition. Each

algorithm’s complexity is derived with respect to the number of blocks contained in the

coarsest equitable partition and compared to the PageRank algorithm’s complexity.

iv

These results further existing research in several ways. For instance, the practical

lower bound on the PageRank algorithm’s execution time was previously only suggested

using experimental results. The proof showing vertices contained in the same block of the

coarsest equitable partition have equal PageRank values is based on relating dot products

and Weisfeiler-Lehman stabilization, which is a much different approach than applied in

an existing proof. The existing proof was also extended to show the quotient matrix could

be used to reduce the PageRank algorithm’s execution time. However, its authors did not

develop an algorithm or analyze its execution time bounds. Finally, these results motivate

several avenues of future research related to graph isomorphism and linear algebra.

v

Acknowledgments

A toast, to

my former colleagues in the Department of Computer Science at the United States
Air Force Academy, for affording me the opportunity to pursue doctoral studies.

the Air Force Communications Agency (AFCA), for funding our books, travels,
and resources—I hope I have returned your support in kind.

Dr. Barry Mullins, for your encouragement and feedback as my research advisor,
and most significantly, providing the latitude I needed to complete this research.

Lt Col Leemon Baird, for mentoring me as a computer scientist, and particularly,
the many discussions on complexity theory.

Dr. Dursun Bulutoglu, for showing me the beauty of linear algebra, loaning some
key texts, and for hosting extended discussions on graph isomorphism.

Dr. Rusty Baldwin, for the various suggestions on the doctoral candidacy process
and for catching a key omission during the dissertation review.

Dr. Mike Temple, for being my minor advisor and providing several suggestions
throughout the dissertation process.

Dr. Michael Grimaila, for being the dean’s representative to my committee and his
thought-provoking questions.

Dr. Barry Mullins, Dr. Dursun Bulutoglu, Dr. Mike Temple, Dr. Andrew Terzuoli,
Dr. Ken Hopkinson, Dr. Mark Oxley, and Maj Scott Graham, for being my instructors.

Kevin Morris and Greg Brault, for your continued collaboration, even as you have
moved on to other duties.

Victor Hubenko, Kevin Cousin, Andy Leinart, Kevin Gilbert, Chris Mann, and all
of my fellow graduate students, for your continued encouragement and friendship.

Janice Jones, Charlie Powers, David Doak, and everyone supporting the students
at AFIT, thank you for your time and energy as we pursue our research.

the reader, may you enjoy reading this dissertation as much as I enjoyed preparing
its contents for your consumption.

my family, for your love, patience, and support as I pursued this dream. I love you
and look forward to spending more time with you.

 All the best,

 Chris Augeri

vi

Table of Contents

Abstract .. iv

Acknowledgments.. vi

Table of Contents .. vii

List of Figures .. ix

List of Tables .. xi

List of Theorems .. xiii

List of Symbols .. xiv

I. Introduction ...1

1.1. The PageRank Vector ..1

1.2. Research Motivation ...2

1.3. Problem Statement ..4

1.4. Research Goals ..5

1.5. Assumptions ..7

1.6. Overview ...8

II. Background ..9

2.1. Ordering Nodes in Sensor Networks and Unmanned Vehicle Swarms9

2.2. Deciding Isomorphism: A Classic Graph-Theoretic Problem12

2.2.1. The Relationship to Canonical Vertex Ordering12

2.2.2. Graph Isomorphism Applications ...13

2.2.3. A Formal Definition ...14

2.2.4. Canonical Isomorphs ..17

2.3. Vertex Partitions ..19

2.3.1. The Degree Partition ..22

2.3.2. The Equitable Partitions ...24

2.3.3. The Coarsest Equitable Partition..26

2.3.4. The Orbit Partition..36

2.3.5. Induced Quotient Graphs and Matrices..45

2.4. A Brief Interlude: Eigen Decomposition Applications in Graph Theory51

2.5. The PageRank Algorithm ..52

2.5.1. Computing the PageRank Perturbation ..55

2.5.2. Computing the PageRank Vector ..60

2.5.3. PageRank: An Algorithm for Ranking Vertices ..62

2.6. Observations about Equitable Vertices and PageRank Values68

2.7. Known Results ...70

2.8. Summary ..71

vii

III. Establishing Equitable Equivalency ...72

3.1. Overview ..72

3.2. Lower Bound on the Expected Number of Power Method Iterations73

3.3. Motivating Equitable Dot Products and PageRank Values74

3.3.1. From Weisfeiler-Lehman Stabilization to Iterated Dot Products75

3.3.2. Finding the Coarsest Equitable Partition By Iterated Dot Products80

3.4. Relating Equitable Dot Products and PageRank Values82

3.4.1. Equitable Dot Products ...82

3.4.2. Equitable PageRank Values ...84

3.4.3. Additional Equitable Relationships...85

3.4.4. Complexity Analysis ...86

IV. Reducing Equitable Differences and Dot Products ...88

4.1. Overview ..88

4.2. Eliminating Equitable PageRank Differences ..89

4.2.1. Numerical Differences and Equitable Vertices ..89

4.2.2. AverageRank: An Algorithm for Eliminating Equitable Differences91

4.2.3. Complexity Analysis ...92

4.3. Eliminating Equitable PageRank Dot Products ..93

4.3.1. Excess Dot Products and Equitable Vertices ...93

4.3.2. ProductRank: An Algorithm for Eliminating Equitable Dot Products95

4.3.3. Complexity Analysis ...97

4.3.4. Algorithm Applicability ..100

V. Lifting PageRank Values ..101

5.1. Overview..101

5.2. Quotient Computations ..102

5.3. Lifting the House Graph’s PageRank Vector ...105

5.4. QuotientRank: An Algorithm for Lifting PageRank Vectors108

5.5. Complexity Analysis ..110

5.6. A QuotientRank Example ..114

5.7. QuotientRank Applicability ...117

VI. Conclusions and Future Research ..120

6.1. Conclusions ..120

6.1.1. Complexity Bounds ..120

6.1.2. Obtaining Canonical Vertex Orderings from the PageRank Vector121

6.1.3. Relating the PageRank Vector and the Coarsest Equitable Partition122

6.2. Future Work ..124

6.2.1. Implementation Improvements ...124

6.2.2. Other Linear Algebra Applications ...125

6.2.3. k-D Weisfeiler-Lehman Stabilization ..126

6.2.4. Open Call for Parallel Software that Decides Graph Isomorphism127

6.3. Summary ..129

Bibliography ..130

viii

List of Figures

Figure Page

1. Mansion Graph [CDR07] ...2

2. House Graph [Gol80, Gol04] ...3

3. House Graph’s 3-Block Coarsest Equitable Partition, ⎣{c d, } , { a} , {b e }⎤⎦⎡ ,4

4. House Graph and Its Induced Quotient Graph ...6

5. Non-Connected Graph ..7

6. Two Graph Isomorphs: The Triangle and Twisted Rope ..12

7. Two Chemical Isomers: 2 2 2
C H F ..13

8. Two Isomorphs: The Square and Hourglass ...14

9. Canonical Isomorph’s Permutation Triangle ..18

10. Vertex Partition Tree of an Arbitrary 3-Vertex Graph ..21

11. Two Graphs Yielding Different Degree Sequences ..22

12. Devil’s Pair for the Sorted Degree Sequence ...23

13. Exploring Equitable Partitions ..25

14. Coarsest Equitable Partitions and Canonical Orderings ...26

15. Method 1: Finding the House Graph’s Coarsest Equitable Partition..........................28

16. Method 2: Fast Algorithm for Finding Equitable Partitions [PaT87, KrS98]30

17. Method 2: Finding the House Graph’s Coarsest Equitable Partition..........................31

18. Method 3: 1-D Weisfeiler-Lehman Stabilization..32

19. Method 3: 1-D Weisfeiler-Lehman Stabilization Example...33

20. Method 3: Finding the House Graph’s Coarsest Equitable Partition..........................33

21. Isomorph and Automorph of the Square ...36

22. House Graph’s Coarsest Equitable and Orbit Partition, ⎣{c d, } , { a} , {b e }⎤⎦⎡ ,37

23. Cuneane Graph’s Distinct Coarsest Equitable and Orbit Partitions37

24. House Graph’s Coarsest Equitable Partition, { , } , { } , {b e ⎤⎡ c d a , }⎦⎣ 38

25. Refining to Equitable Partitions after Vertex Individualization39

26. House Graph’s Vertex Partition Tree (Equitable Partitions Boxed)40

27. House Graph ...41

28. Easy, Medium, and Hard: Discrete, Non-Discrete and Unit Partitions44

29. House Graph’s Induced Quotient Graph ...46

30. 3-D Buckyball Drawing Based on Its Signless Laplacian’s Eigenvectors51

31. Mansion Graph ...52

32. House Graph ...53

33. PageRank: An Algorithm for Ordering Vertices [PBM+98]63

34. Paw Graph [Wes01] ..64

35. Applying the PageRank Perturbation to the Paw Graph, α = 0.8564

36. Paw Graph’s PageRank Vector, α = 0.85 ...66

37. Paw Graph’s PageRank Ordering, α = 0.85 ..66

38. Cuneane Graph’s Coarsest Equitable and Orbit Partitions ...67

ix

39. Coarsest Equitable Partitions of the House and Octahedron Graphs68

40. Two Graphs Yielding a Non-Discrete Coarsest Equitable Partition...........................69

41. 1-D Weisfeiler-Lehman Stabilization Using Primes and Dot Products81

42. 1-D Weisfeiler-Lehman Stabilization Using Matrices ..82

43. Graph Yielding Different Coarsest Equitable and Orbit Partitions85

44. 9-Vertex Tree: A Graph Yielding a 4-Block Equitable Partition89

45. AverageRank: An Algorithm for Ensuring Equitable PageRank Values91

46. House Graph and Its 3-Block Coarsest Equitable Partition..94

47. ProductRank: An Algorithm for Eliminating Equitable Dot Products96

48. 4 4 Grid: A Graph Yielding a 3-Block Equitable Partition×99

49. Pseudo-Benzene: A Graph Yielding a 2-Block Equitable Partition [StT99]101

50. House Graph’s 3-Block Coarsest Equitable Partition...105

51. QuotientRank: An Algorithm for Lifting PageRank Vectors109

52. Pseudo-Benzene Graph and Its PageRank-Induced Quotient Graph114

53. 8 3 Grid: A Graph Yielding a Non-Discrete Coarsest Equitable Partition× 119

54. Canonical PageRank Orderings of the Mansion and House Graphs121

x

List of Tables

Table Page

1. Mansion Graph’s PageRank Vector ..2

2. House Graph’s PageRank Vector ..3

3. Two Adjacency Matrix Isomorphs: The Triangle and Twisted Rope12

4. Two Isomorphs: The Adjacency Matrices of the Square and Hourglass15

5. Identity Matrix and Permutation Matrices for φ = [2,1,3,4]15

6. Establishing A = ⋅ ⋅ T A ≅
P A P and A ...15
2 1 1 2

7. Computing the Inverse Permutation ...16

8. Computing Inverse Permutation Matrices ..16

9. Three Isomorphs of the House Graph’s Adjacency Matrix ..17

10. Method 2: Finding the House Graph’s Coarsest Equitable Partition..........................31

11. The House Graph’s Adjacency and Sorted Degree Matrices34

12. Method 3: 1-D Weisfeiler-Lehman Stabilization of the House Graph34

13. Isomorph and Automorph of the Square ...36

14. Partial Permutations of the House Graph’s Adjacency Matrix...................................41

15. House Graph Isomorphs ...42

16. House Graph’s Induced Quotient Matrix..46

17. House Graph’s and Its Induced Quotient Graph’s Eigenvalues47

18. Block Matrix, B, of the House Graph’s Coarsest Equitable Partition48

19. Block Matrix, N, of the House Graph’s Coarsest Equitable Partition48

20. Lifting a Dominant Eigenvector of the House Graph ...49

21. Mansion Graph’s PageRank Vector ..52

22. House Graph’s PageRank Vector ..53

23. House Graph’s Adjacency Matrix, A..55

24. House Graph’s Degree Matrix and Degree Matrix Inverse ..55

25. A Row-Stochastic Matrix, ∑S (i,:) =1 ...56

26. A Column-Stochastic Matrix, ∑S(:, j) =1 ...56

27. House Graph’s PageRank Matrix, S, α = 0.85 ..57

28. Paw Graph’s Adjacency and PageRank Matrices, α = 0.8565

29. Paw Graph’s PageRank Vector, α = 0.85 ...65

30. Iterated Dot Products of the House Graph’s Adjacency Matrix75

31. Iterated Prime Dot Products of the House Graph’s Adjacency Matrix.......................77

32. Constructing the First Prime Diagonal Matrix ...78

33. First Prime Dot Product Iteration ...78

T T34. Two Equal Dot Products, ⋅ = y ⋅z ..79
x z
35. A 9-Vertex Tree’s Adjacency Matrix ..89

36. A 9-Vertex Tree’s PageRank Vector, α = 0.85 ...90

37. House Graph’s Adjacency and Degree Matrix ...94

38. House Graph’s Stochastic PageRank Matrix, S, α = 0.85 ...94

39. Initial PageRank Power Method Iterations of the House Graph94

xi

40. 4 4 Grid Graph’s 3-Block Coarsest Equitable Partition × ..99

41. Characteristic Block Matrix, B ...105

42. Characteristic Block Matrix Products...105

43. House Graph’s Adjacency Matrix, A..106

44. House Graph’s PageRank Matrix, S, α = 0.85 ..106

45. Quotient Matrix, Q, of the House Graph’s PageRank Matrix, S, α = 0.85106

46. Eigenvalues of the PageRank and Quotient Matrices ...107

47. Dominant Eigenvectors of the PageRank and Quotient Matrices107

48. A 2× 2 PageRank-Induced Quotient Matrix, Q ...114

49. Lifting the PageRank Vector from the Dominant Eigenvector.................................115

50. Theoretical Iterations: n = 12, b = 2, τ = 2−52 → t = 222, r = 64116

51. Observed Iterations: n = 12, b = 2, τ = 2−52 → t = 60, r = 62 116

xii

List of Theorems

Theorem Page

1. PageRank: Practical Lower Bound on Power Method Iterations73

2. Equitable Dot Products ...82

3. Equitable PageRank Values ..84

4. Dominant Eigenvalue of Equitable Quotient Matrix of a PageRank Matrix..............103

5. Lifting a PageRank Vector from an Equitable Quotient Matrix104

6. QuotientRank: Practical Lower Bound on Power Method Iterations112

7. QuotientRank: Upper Bound on Power Method Iterations ..112

xiii

List of Symbols

Symbol

G = (,)V E

V

E
vi

ei , e ={v ,v }i j k

deg ()vi

[b b …,b]B = , ,1 2 k

n,1x
,Mn n

A
D
I
P
1, J
0, Z
Mi j, or M ()i j,

MT

M M or1 ⋅ 2 M M1 × 2

()λ Λ
X
A

p

D = diagi ()d

d = diagi
−1 ()D

P
NP
()Ω n

O()n
()Θ n

φ
≅
v → vi j

ω

Meaning

 simple graph, G, with a vertex set, V, and an edge set, E

 vertex set, V ={v , ,…, v , v , 1 ≤ ≤ nv } i1 2 n−1 n

 edge set, 1 e m− ≤ ⋅ − (E ={e , ,2 …, e 1, em}, m n n 1) 2
arbitrary, but specific, vertex of a vertex set, V

arbitrary, but specific, edge of an edge set, E

degree of vertex (number of incident edges)

disjoint vertex partition, V b= 1 � b2 " ∪� k , bi ∩bj =∅∪ ∪ +� b

n ×1 vector (lower-case)
n n× matrix (upper-case)

 adjacency matrix
diagonal matrix, (cf. diag below)

 identity matrix
 permutation matrix

matrix whose entries equal one
matrix whose entries equal zero

j thmatrix element (i th row, column)

 matrix transpose
 matrix multiplication (dot product)

 eigenvalue vector (matrix)
eigenvectors

 vector (matrix) norm, 1 p ∞≤ ≤

i thconstruct matrix with d on diagonal, (n 1) i n− − ≤ ≤

i th extract diagonal, − − ≤ ≤ 1) i n(n
deterministic polynomial complexity

 non-deterministic polynomial complexity
 lower bound
 upper bound
 exact bound

 permutation, e.g., φ [4,3,5, 2,1]→ [, , , ,]= d c e b a
 isomorphism, e.g., G1 ≅ 1 ≅G2 or A A 2

 permutation mapping of an arbitrary vertex
canonical isomorph, e.g., Gω or Aω

xiv

ON GRAPH ISOMORPHISM AND THE PAGERANK ALGORITHM

I. Introduction

1.1. The PageRank Vector
A graph is a useful construct for expressing relationships between a set of objects,

such as the radio connectivity among nodes in an unmanned aerial vehicle (UAV) swarm.

Some analysis tools use a measure of node centrality to rank a graph’s vertices, such as a

UAV swarm’s nodes, by their relative importance. For instance, the PageRank algorithm

is used in certain search engines to rank query responses [PBM+98].

The algorithm produces a unique eigenvector, the PageRank vector, whose entries

equal the probability each node is visited by an object that randomly traverses the graph.

The PageRank algorithm uses the PageRank vector, which is guaranteed to exist, to order

a graph’s vertices, such as a UAV swarm’s nodes, according to their probability of being

randomly visited. The results described in Chapters 3–5 reduce the time needed to obtain

a swarm’s PageRank vector if the swarm contains nodes having equal PageRank values.

In the context of UAV swarms, the PageRank vector can be used to identify where

to inject a message to ensure it is efficiently disseminated among the swarm’s nodes by a

rumor-routing protocol. In social network analysis, a PageRank vector can be used to find

group members that are useful for efficiently spreading (mis)information. The PageRank

vector can also be used to find roadblock locations for capturing fleeing suspects. A more

sedate application determines which road intersections to avoid during a city’s rush hour.

In general, the PageRank vector, which is computed by the PageRank algorithm, is useful

for analyzing the probable behavior of some object traversing a network’s nodes, such as

some (mis)information distributed by a rumor-routing protocol in a UAV swarm.

1

1.2. Research Motivation
The PageRank vector often canonically orders the graph’s vertices. For example,

the mansion graph shown in Figure 1(a) [CDR07] yields the PageRank vector shown in

Table 1(a). Sorting the entries of this vector in descending order yields the vector listed in

Table 1(b). The vertex ordering induced by the sorted vector is illustrated in Figure 1(b).

The PageRank vector is unique up to graph isomorphism, where graphs are said to

be isomorphs if their edges define equivalent relationships on their vertices. Since entries

in the mansion graph’s PageRank vector are distinct, all mansion graph isomorphs induce

the same vertex ordering, i.e., the canonical ordering shown in Table 1(b). For example,

the isomorph shown in Figure 1(c) yields the sorted PageRank vector listed in Table 1(c),

which is equivalent to the ordering listed in Table 1(b) and illustrated in Figure 1(b).

e

c d

b

a

f

e

c d

b

a

f

d

b c

a

e

f

(a) Mansion Graph (b) PageRank Order (c) Another Isomorph

Figure 1. Mansion Graph [CDR07]

Table 1. Mansion Graph’s PageRank Vector

(a) PageRank Vector (b) PageRank Order (c) Isomorph’s Order

a 0.126

b 0.236

c 0.195

d 0.182

e 0.180

f 0.080

0.236 b
0.195 c
0.182 d
0.180 e
0.126 a
0.080 f

0.236 a
0.195 b
0.182 c
0.180 d
0.126 e
0.080 f

2

However, a PageRank vector may contain duplicate entries, which cannot induce

a canonical ordering. The issue can be resolved in some applications, e.g., search engines,

by sorting on other keys, such as the data’s original location. A second method is to order

vertices of a canonical isomorph according to its PageRank vector. For instance, nauty is

often used to determine such a canonical isomorph [McK81, McK04].

For example, the house graph shown in Figure 2(a) [Gol80, Gol04], which yields

the PageRank vector listed in Table 2(a). The house graph’s canonical isomorph produced

by nauty is listed in Figure 2(b) and yields the PageRank vector listed in Table 2(b). The

vertex mapping, i j r s vi , labeled r, is mapped to the vertex v j ,→ ⇔ → denotes vertex

labeled s. The canonical isomorph induces the canonical ordering listed in Table 2(c) and

depicted in Figure 2(c). The tie in PageRank value between vertices b and e, or similarly,

vertices c and d, are broken by their relative order in the canonical isomorph.

e

c d

b

a

e

a b

d

c

e

a b

d

c

(a) House Graph (b) Canonical Isomorph (c) PageRank Order

Figure 2. House Graph [Gol80, Gol04]

Table 2. House Graph’s PageRank Vector

(a) House Graph (b) Canonical Isomorph (c) PageRank Order

a 0.168

b 0.244

c 0.172

d 0.172

e 0.244

1 3 a c→ ⇔ → 0.168

2 4 b d→ ⇔ → 0.244

3 1 c a→ ⇔ → 0.172

4 2 d b→ ⇔ → 0.172

5 5 e e→ ⇔ → 0.244

0.244 d
0.244 e
0.172 a
0.172 b
0.168 c

3

1.3. Problem Statement
The PageRank vector of many graphs, such as the mansion graph, contains unique

entries and induces a canonical vertex ordering. In contrast, the PageRank vector of some

graphs, such as the house graph, contains duplicate entries and cannot induce a canonical

vertex ordering. However, graphs containing vertices that yield the same PageRank value

suggest several methods of improving the PageRank algorithm’s performance.

One avenue to improvement is yielded by the graph’s coarsest equitable partition,

an invariant often used in applications that find canonical isomorphs, e.g., nauty. Vertices

contained in the same block are adjacency-wise equivalent, or equitable, with respect to

the vertices in other blocks and more importantly, appear to yield equal PageRank values.

c d , , }⎤For example, the house graph’s coarsest equitable partition is ⎡{ , } { a} , {b e , which⎣ ⎦

is depicted using distinct shapes in Figure 3. The PageRank values yielded by the vertices

contained in each block are [0.172, 0.168, 0.244 ,] respectively, corresponding to Table 2.

The first task is to show a relationship exists between PageRank values of vertices

contained in the same block. If a relationship exists, an algorithm must be developed that

ensures vertices contained in the same block, e.g., b and e, have equal PageRank values,

within an arbitrary finite precision. The last task is to construct algorithms that reduce the

execution time needed to compute the PageRank vector of such graphs.

e

c d

b

a

Figure 3. House Graph’s 3-Block Coarsest Equitable Partition, ⎡{c d, } , {a} , {b e }⎤,⎣ ⎦

4

1.4. Research Goals
The first goal is to obtain a lower bound on the PageRank algorithm’s complexity

by applying recent work that determined its upper bound [HaK03]. The second goal is to

establish a relationship between the coarsest equitable partition and the PageRank vector.

The key insight is obtained by constructing a modified dot product process that performs

1-D Weisfeiler-Lehman stabilization, which yields the coarsest equitable partition. Since

PageRank values can be obtained by applying the power method, which is an iterated dot

product process, vertices contained in the same block of the coarsest equitable partition

must yield equal PageRank values. Another proof of the relationship between the coarsest

equitable partition and PageRank vectors was developed by Boldi et al. [BLS+06].

The third goal is to exploit the relationship between the PageRank vector and the

coarsest equitable partition to eliminate differences between PageRank values of vertices

contained in the same block of the coarsest equitable partition, where such differences

may occur if PageRank values are computed using finite numerical precision. The fourth,

and most important, goal is to reduce the time needed to obtain the PageRank vector. The

third and fourth goals are achieved by the three algorithms described in Chapters 4 and 5.

The first algorithm described in Chapter 4, AverageRank, sets the PageRank value

of every vertex to the average PageRank value of the vertices in its corresponding block.

The second algorithm, ProductRank, reduces the time needed to find the PageRank vector

by only computing a subset of the dot products defined in each power method iteration

and ensures each block’s vertices have equal PageRank values. Hence, the ProductRank

algorithm supersedes the AverageRank algorithm, since it computes the PageRank vector

more efficiently if the graph’s coarsest equitable partition is non-discrete.

5

The third and most notable algorithm, QuotientRank, is described in Chapter 5.

This algorithm obtains the PageRank vector by obtaining the dominant eigenvector of the

quotient graph induced by the coarsest equitable partition. The quotient graph’s vertices

correspond to a partition’s blocks and the edge weights denote the number of edges from

any source block vertex to each destination block’s vertices [God93, GoR01, McK04].

For example, the house graph depicted in Figure 4(a) yields the coarsest equitable

partition, ⎡{ } {c d } ,{ , ⎤ ,a , , b e } which induces the quotient graph illustrated in Figure 4(b). ⎣ ⎦

Since vertex a is connected to vertices b and e, an edge of weight ‘2’ proceeds from block

{a} b e}to block { , . Similarly, vertices b and e are linked, as are vertices c and d, thus, a

loop of weight ‘1’ is attached to blocks { , } c d} , }b e and { , . Every vertex in block {b e is

connected to a vertex in block {c d} ,, thus, an edge of weight ‘1’ links these blocks. This

quotient graph yields the same PageRank ordering illustrated in Table 2.

Boldi et al. showed a quotient graph can reduce the time required to compute the

PageRank vector, but did not construct or analyze any such method [BLS+06]. Another

proof of that result is developed in Section 5.2. The remainder of Chapter 5 describes and

analyzes the QuotientRank algorithm, which uses a certain quotient matrix to reduce the

time needed to compute the PageRank vector.

e

c d

b

a

{ }a

1

1 { },c d

1

2

1

{ },b e

1

(a) House Graph (b) Induced Quotient Graph

Figure 4. House Graph and Its Induced Quotient Graph

6

1.5. Assumptions
A common assumption, which is applied herein, is that each input graph is simple.

That is, an undirected edge links two distinct vertices, and each vertex pair is linked by at

most a single edge. For example, the house graph shown in Figure 4(a) is a simple graph.

Conversely, the quotient graph induced by the graph’s coarsest equitable partition is often

a weighted directed graph, as shown in Figure 4(b). The simple graph assumption is only

applied for convenience—the results described herein can be generalized to other classes

of graphs, such as directed graphs and weighted graphs.

Another conventional assumption used herein is that an input graphs is connected.

Thus, each vertex can be reached from any other vertex by traversing one or more edges.

For example, the house graph is connected, since non-adjacent vertices can be reached by

simply traversing two or more edges, e.g., a → → d or b → →c de . Conversely, the

graph depicted in Figure 5 is not connected, since it contains two connected components,

a triangle and a square.

f
gb

a
c

d e

Figure 5. Non-Connected Graph

If a graph contains n vertices, any permutation applied to the graph must contain n

distinct elements, e.g., V ={a b c d e , , , , } and φ = [3,2,1,4,5 .] Finally, any phrases such as

“up to a permutation” or “up to isomorphism” means that the particular graph property is

similarly permuted by a vertex permutation. For example, a PageRank vector is one such

property, as reflected by the house graph isomorphs shown in Figure 2 and Table 2.

7

1.6. Overview
The constructs presented in this chapter, such as the coarsest equitable partition

and the quotient graph, are formally defined in Chapter 2, along with concepts such as the

orbit partition. The next few sections describe the PageRank algorithm and its use of the

power method. Chapter 2’s last section describes some related results, such as the work of

Boldi et al., who independently established the relationship between the graph’s coarsest

equitable partition and PageRank vector by constructing an alternate proof [BLS+06].

Chapter 3 begins by deriving a practical lower bound on the execution time of the

PageRank algorithm. The remainder is devoted to establishing a relationship between the

coarsest equitable partition and the PageRank vector. This relationship yields two simple

methods described in Chapter 4 that improve the PageRank algorithm’s performance. The

first, the AverageRank algorithm, eliminates PageRank value differences among vertices

in the same block. The second, the ProductRank algorithm, decreases the time required to

obtain a PageRank vector by computing a single PageRank value for each block. A more

dramatic reduction is yielded by the QuotientRank algorithm described in Chapter 5,

which lifts a PageRank vector from the quotient matrix and further extends [BLS+06].

As summarized in Chapter 6, these algorithms improve the PageRank algorithm’s

performance if a graph’s coarsest equitable partition contains at least one block composed

of multiple vertices. One section in Chapter 6 explores potential future research avenues.

Some of these avenues include generalizing the proof relating a graph’s coarsest equitable

partition and PageRank vector, constructing a graph library based on that generalization,

and developing functions that improve the performance of additional linear algebra tasks

using the techniques described in Chapters 3–5.

8

II. Background

2.1. Ordering Nodes in Sensor Networks and Unmanned Vehicle Swarms
A distributed sensor network (DSN) is a heterogeneous set of nodes for collecting

data in a specified environment. Many proposed DSN applications, such as an earthquake

detection network, may interact with infrastructure systems, e.g., moving elevators to the

first floor [ElE04]. DSNs currently monitor glaciers [Gui05], animal species [SOP+04],

and road traffic conditions [Tra07]. Some military applications include monitoring soldier

health using (small!) ingested sensors or sensors sewn into uniforms [TBH+04], locating

snipers using either fixed or helmet-mounted sensors [LNV+05, DBC+98] and detecting

radiation [BMT+04].

An unmanned aerial vehicle (UAV) swarm is a heterogeneous network of mobile

vehicles whose sensors can collect multi-dimensional data [IyB05, ZhG04]. UAV swarms

may collaborate, e.g., by cooperatively searching a geographic area for objects matching

some search criteria [MMP+06, Mor06, PBO03]. Related efforts include automated aerial

refueling [Spi06], attacking targets using munitions deployed from an unmanned combat

aerial vehicle (UCAV) [Cla00, JAU, OSD05, USA05], and decreasing payload weight by

using more advanced sensors [Rig03].

A natural problem to consider involves ordering nodes based on some measure of

st nd th relative importance. An attacker who knows the 1 , 2 , …, n most critical network node

knows where to expend the most resources. Some related problems include finding nodes

to facilitate spreading malicious data (in social networks, diseases or rumors), computing

an optimal node polling order (traveling salesman), adding network services (upgrading),

or sequencing nodes for transmission (logistics planning).

9

As described in Section 1.2, an ideal node ordering is canonical and independent

of the node input order. Alternatively stated, if the graphs of two networks are isomorphs,

st nd th the networks ideally yield the same 1 , 2 , …, n canonical node ordering. For example,

a simple heuristic orders nodes based on their number of neighbors. The node linked to

the greatest number of nodes is first, then the node linked to the second-most number of

nodes, and so forth. However, since every node may have the same number of neighbors,

such a node ordering is typically not canonical. Similarly, sorting the nodes based on their

relative geographic positions also may not define a canonical ordering. Thus, more robust

methods of ordering nodes are typically needed to obtain a canonical node ordering.

One robust method of ordering a network’s nodes based on relative importance is

the PageRank algorithm used in some search engines to order query responses, e.g., the

web pages matching a user’s search criteria [PBM+98]. The PageRank algorithm perturbs

the adjacency matrix corresponding to the original network such that the resulting matrix

specifies the probability of visiting each node from any other node. The perturbed matrix

satisfies the Perron-Frobenius theorem’s conditions. Therefore, the matrix yields a unique

dominant eigenvector whose entries correspond to the probability of visiting each node.

The PageRank algorithm orders the nodes, e.g., the query responses, based on this

eigenvector’s entries, which correspond to the stationary distribution of the Markov chain

defined by the perturbed adjacency matrix. Thus, the PageRank algorithm finds a unique

vector, the PageRank vector, where a node’s PageRank value also determines its position

in the node ordering. This ordering corresponds to the order nodes are likely to be visited

by an object that randomly selects the next node to visit, e.g., a user who randomly surfs

web pages or message distributed using a rumor-routing protocol.

10

In the context of an unmanned aerial vehicle (UAV) swarm, the PageRank vector

can be used to determine where to inject a message in the swarm to ensure the message is

quickly transmitted to each node by a rumor-routing protocol. For instance, the PageRank

vector can identify which group members are likely to disseminate (mis)information most

efficiently. It similarly can identify good roadblock locations to capture fleeing suspects.

A more sedate application determines intersections to avoid during rush hour. In general,

the PageRank algorithm is applicable to any scenario that requires assessing the probable

behavior of an object traversing the nodes in some network.

Certain networks, however, yield a PageRank vector containing duplicate entries,

which cannot induce a canonical vertex ordering. This occurs most often in networks that

are not randomly constructed, i.e., networks having some pattern of regularity among its

links between nodes. The issue can be resolved in some applications, e.g., search engines,

by sorting on additional keys, such as web page addresses. A second method, described in

Section 1.2, is to apply an application that produces canonical isomorphs, e.g., nauty, and

order the canonical isomorph’s nodes using its PageRank vector [McK81, McK04].

Networks containing nodes that yield equal PageRank values define an interesting

duality. First, such networks motivate using application, such as nauty, to find a canonical

PageRank vector. Second, if a non-canonical PageRank vector suffices, which is often the

case, such graphs also simultaneously suggest methods for decreasing the time needed to

obtain the PageRank vector. These latter methods also eliminate some numerical errors in

the PageRank vector. The three algorithms constructed in Chapters 4 and 5 leverage these

ideas to improve the PageRank algorithm’s performance if a network contains nodes that

must have equal PageRank values.

11

2.2. Deciding Isomorphism: A Classic Graph-Theoretic Problem

2.2.1. The Relationship to Canonical Vertex Ordering
The results described herein are obtained by applying tools used in algorithms that

decide graph isomorphism by finding a canonical vertex order, which induces a canonical

isomorph. Deciding graph isomorphism involves deciding if the edge sets, E1 and E2 , of

two graphs, G1 and G2 , define equivalent links on their respective vertex sets, V1 and V2.

For example, Figure 6 depicts two isomorphs of the triangle graph. Since the triangle is a

complete graph, where each pair of vertices is connected, every off-diagonal entry in the

corresponding adjacency matrices equals ‘1’, as shown in Table 3.

A naive method of deciding graph isomorphism is to compare each permutation of

G1 with G2. For example, a triangle has = n V , and the six n! 3! permutations, where =

vertex permutations are Φ = {[abc] ,[acb] ,[bac] ,[bca] ,[cab] ,[cba]} . All permutations of

G1 equal G2 , since triangles have one unique isomorph. The number of permutations,

Φ , grows exponentially in proportion to V , thus, this approach is generally intractable.

b c

a

b

c
a

(a) G1, The Triangle (b) G2, Twisted Rope

Figure 6. Two Graph Isomorphs: The Triangle and Twisted Rope

Table 3. Two Adjacency Matrix Isomorphs: The Triangle and Twisted Rope

(a) A1, The Triangle (b) A2, Twisted Rope

a b c
a 0 1 1
b 1 0 1
c 1 1 0

a b c
a 0 1 1
b 1 0 1
c 1 1 0

12

2.2.2. Graph Isomorphism Applications
Exposure to the graph isomorphism problem, denoted GI, may infect researchers

with the isomorphism “disease” [ReC77, Gat79]. The problem is important, since it is not

known if GI is decidable in deterministic polynomial time on arbitrary graphs. However,

GI is decidable in polynomial time for some graphs, e.g., trees [KrS98]. If GI defines a

new complexity class, it would imply deterministic polynomial time problems, denoted P,

are a proper subset of non-deterministic polynomial time problems, denoted NP. Hence,

if GI defines a new complexity class, it also implies ≠ ,P NP a significant result currently

worth $1,000,000 to its discoverer(s) [CMI00].

A classic application of algorithms that decide GI is identifying chemical isomers,

or compounds sharing the same formula but having different atomic structures [Fau98].

For example, two isomers of C H F are shown in Figure 7, which contain two atoms of 2 2 2

carbon (C), fluorine (F), and hydrogen (H), and the edges denote chemical bonds [NIS].

Isomers are often stored in some canonical representation to simplify their comparison.

Another application finds a subgraph within some larger graph, e.g., finding small

circuits in large circuits [OEG+93]. Algorithms capable of deciding isomorphism can be

used in optical character recognition (OCR) [WaG04], to compare files [Car03, BeC06],

or to analyze social networks patterns, such as enemy communication routes [GCM06]. A

novel application involves guiding a UAV to replace sensor network nodes [CHP+04].

H F F F
C C C C

H F H H
(a) 1,1-Difluoroethene (b) 1,2-Difluoroethene

Figure 7. Two Chemical Isomers: C H F 2 2 2

13

2.2.3. A Formal Definition
A pair of graphs, G1 and G2 , are isomorphs if and only if a permutation, φ, exists

satisfying (1), where for each edge in E1, an equivalent edge exists in E2. For example,

applying the permutation, φ = [2,1,3, 4 ,] to the square’s vertices illustrated in Figure 8(a)

confirms the square is an isomorph of the hourglass shown in Figure 8(b). In other words,

each graph contains four vertices, where each vertex is adjacent with two other vertices,

such that the edges define a cycle graph of length four, denoted C4.

∃φ (V1) =V2 s.t.

G1 ≅ G2 ↔ ei {vr ,vs }∈E1 ∧ vr ∈V1 ∧ vs ∈V1, (1)∀ =

{φ () φ ()} φ () φ ()∃ =e v , v ∈E ∧ v ∈V ∧ v ∈Vj r s 2 r 2 s 2

b

da

c d c

a b

(a) G1, The Square (b) G2 , The Hourglass

Figure 8. Two Isomorphs: The Square and Hourglass

Equivalently, two adjacency matrices, A1 and A2 , are isomorphs if and only if a

permutation matrix, P, exists satisfying (2), where PT denotes the matrix transpose, and

‘ ⋅ ’ denotes matrix multiplication. A permutation matrix, P, is a row permutation, φ, of the

identity matrix, I, a square matrix whose diagonal entries equal one that otherwise equals

zero. Thus, the row permutation orders I’s rows based on the given permutation vector, φ.

The transpose of the permutation matrix, P, denoted PT , is equivalent to applying φ as a

column permutation to I, i.e., ordering I’s columns with respect to φ.

A ≅ A ↔ ∃ P s.t. A = ⋅ ⋅ PTP A (2)1 2 2 1

14

For example, the adjacency matrices of the square and hourglass graphs depicted

in Figure 8 are listed in Table 4, where A1 ≠ A2. The identity matrix, denoted I4 , is

listed in Table 5(a). The permutation matrix, P, and its associated transpose, PT , listed in

Tables 5(b) and (c), are obtained by permuting rows and columns of I4 with respect to

the permutation, φ = [2,1,3, 4 .] Multiplying A1 by P yields the matrix listed in Table 6(a)

and multiplying the result by PT yields the matrix listed in Table 6(b). Since the matrices

shown in Tables 4(b) and 6(b) are equal, i.e., since A = ⋅ ⋅ T ,P A P A ≅ A2.2 1 1

Table 4. Two Isomorphs: The Adjacency Matrices of the Square and Hourglass

(a) A1, The Square (b) A2 , The Hourglass

a b c d
a 0 1 0 1
b 1 0 1 0
c 0 1 0 1
d 1 0 1 0

a b c d
a 0 1 1 0
b 1 0 0 1
c 1 0 0 1
d 0 1 1 0

Table 5. Identity Matrix and Permutation Matrices for φ = [2,1,3,4]
4 T 4(a) I4 , Identity Matrix (b) Rows, = [] (c) Columns, P = I:, 2,1,3,4 [P I 2,1,3,4 ,:]

1 2 3 4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

a b c d
b 0 1 0 0
a 1 0 0 0
c 0 0 1 0
d 0 0 0 1

b a c d
a 0 1 0 0
b 1 0 0 0
c 0 0 1 0
d 0 0 0 1

Table 6. Establishing A = ⋅ ⋅ T A ≅ AP A P and2 1 1 2

(a) ⋅ (b) A = ⋅ ⋅ TP A P A P 1 2 1

a b c d
b 1 0 1 0
a 0 1 0 1
c 0 1 0 1
d 1 0 1 0

b a c d
b 0 1 1 0
a 1 0 0 1
c 1 0 0 1
d 0 1 1 0

15

−1 −1A permutation, φ, has a unique inverse, denoted φ , where φi = j if and only if

φ j = i, i.e., φi
−1, equals the position, j, of element i in φ. For example, for φ = [3, 4, 2,1,5 ,]

−1 −1 −‘1’ is in position four, thus, φ1 = 4 and φ = [4,3,1, 2,5 .] The composition of φ and φ 1

−1 −1is commutative and yields the identity permutation, hence, φ φ =φ () = [1, 2, …, n .() φ]

One method of obtaining φ−1 is to augment φ with the identity permutation, [1, 2, …, n],

and sort entries in φ, yielding φ, as shown in Table 7, in Θ ⋅(n log n) time [Knu97].

Table 7. Computing the Inverse Permutation

(a) M = [φ, φi] (b) T = lex_sort_columns (M) (c) φ−1 = T:, 2

2 1 5 3 4
1 2 3 4 5

1 2 3 4 5
2 1 4 5 3 2 1 4 5 3

Similarly, Pr and Pc are pair-wise inverses: finding Pr
T and Pc

T is equivalent to

swapping φ’s entries and positions to obtain φ−1. Thus, permuting the rows of In by φ is

equivalent to permuting columns by φ−1, and vice versa. Thus, Iφ , : = I
:, φ−1 and I:, φ = I

φ−1 , :
.

5 5 T −For example, in Table 8, Pr = I = I [= P . Thus, φ 1 can be determined by [5,2,1,3,4 , :] :, 3,2,4,5,1] c

enumerating the column or row heading of each ‘1’ contained in Pr or Pc. Finally, since

−1 T T TP 2 , = ⋅ 2.= P , if A ≅ A then A P A ⋅P = P ⋅A ⋅P = A1 1 2 1

Table 8. Computing Inverse Permutation Matrices
5 5 T 5 5 T(a) P = I = I = P (b) P = I = I = P5,2,1,3,4 , : [[3,2,4,5,1 , : r [] :, 3,2,4,5,1] c c :, 5,2,1,3,4] [] r

1 2 3 4 5
5 0 0 0 0 1
2 0 1 0 0 0
1 1 0 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0

5 2 1 3 4
1 0 0 1 0 0
2 0 1 0 0 0
3 0 0 0 1 0
4 0 0 0 0 1
5 1 0 0 0 0

16

2.2.4. Canonical Isomorphs
A useful method of deciding graph isomorphism involves computing a canonical

isomorph of each graph, since isomorphs yield identical canonical isomorphs [McK81].

For example, one method of assessing if the words, logarithm and algorithm, are relative

permutations is to search for letters of logarithm in algorithm by searching for an ‘l’ in

algorithm, then an ‘o’, a ‘g’, and so forth, in Θ(n2) time. A faster method compares the

sorted letters in each word in Θ ⋅(n log n) time. In fact, logarithm and algorithm yield the

same canonical isomorph, aghilmort.

Similarly, concatenating entries by column in the upper-right triangle of a graph’s

adjacency matrix, A, yields a binary value, denoted num (A) [KrS98]. For example, the

adjacency matrices listed in Tables 9(a) and (b) are from distinct house graph isomorphs.

The shaded upper-right triangle in each matrix necessarily also must yield distinct values,

num () =1010011101 = 669 num (A2) =1100110101 = 821 ,A and respectively. The 1 2 10 2 10

minimum canonical isomorph (MCI), denoted Aω , is the isomorph yielding the smallest

binary number with respect to all isomorphs. The house graph’s MCI, given its 60 unique

isomorphs, is listed in Table 9(c), where num (Aω) = 00110111012 = 22110 .

Table 9. Three Isomorphs of the House Graph’s Adjacency Matrix

(a) A1 (b) A2 (c) Aω , MCI

a b c d e
a 0 1 0 0 1
b 1 0 1 0 1
c 0 1 0 1 0
d 0 0 1 0 1
e 1 1 0 1 0

a b c d e
a 0 1 1 0 0
b 1 0 0 1 1
c 1 0 0 1 0
d 0 1 1 0 1
e 0 1 0 1 0

 a b c d e
a 0 0 0 1 1
b 0 0 1 0 1
c 0 1 0 1 0
d 1 0 1 0 1
e 1 1 0 1 0

17

The canonical isomorph, Aω , of two graphs can be obtained separately, and then

compared in Θ n2 time, e.g., in a chemical isomer database. If the graphs are large, a ()

hash value of the canonical isomorphs, e.g., MD5, can be used to determine if two graphs

could be isomorphs [GHK+03]. Synonyms for the graph’s canonical isomorph include its

certificate, lexicographic leader, or signature [Rea72, BaL83].

Formally, two isomorphs, (A1) and (A2) , and their respective permutations,
ω ω

P and ()P , to some canonical isomorph, , share the relationships illustrated by ()1 ω 2 ω
Aω

the permutation triangle shown in Figure 9. The solid lines denote explicit relationships,

() ≅ A and () ≅ A , P P , respectively. The dashed line A A yielded by (1) and (2)1 ω 2 ωω ω ω ω

denotes the implicit relationship, (A1) ≅ (A2) , yielded by (A1) ≅ Aω ≅ A2 .() ω ω ω ω

There are other canonical isomorphs exist, like the maximum canonical isomorph,

but the canonical isomorph of choice is the MCI, if only for standardization [KrS98]. The

MCI has many other useful properties. For example, the graph’s MCI also identifies the

graph’s maximum independent set (MIS), or equivalently, the maximum clique (MC) of

the graph’s complement [BaL83, KrS98].

ω

ωA

1A 2A

A1
T = 2 ⋅ P TP ⋅ ⋅ P 2A = ()1 ()P1 Aω () ⋅A2 ()ω ω ω ω

T def T
= A ⋅ 1 ω 6 () () P2 ω

⋅
ω

2 = P ⋅ P
ω

A ()P ⋅ ()P T A () ⋅A ()1 1 ω ω P1 2 = P1 2 ω ω 2

P
def

P
ω

T

ω
= () () ⋅ P2 16 1 2

TA1 = P261 ⋅A2 ⋅P261

= P ⋅ ⋅ PTA A2 162 1 162

Figure 9. Canonical Isomorph’s Permutation Triangle

18

2.3. Vertex Partitions
A common method for finding a graph’s canonical isomorph is based on pruning a

search tree using the process described in Section 2.3.4. However, it is first necessary to

define tools used in that search process, namely, certain specific disjoint vertex partitions.

Vertex partitions can be constructed in many ways, where such partitions are used

to prune the solution space of various problems, e.g., determining a canonical isomorph.

For instance, a readily obtained vertex partition is the degree partition, in which vertices

are grouped based on their number of immediate neighbors. For some graphs, the degree

partition is an equitable partition, where vertices contained in each block have the same

number of neighbors with respect to each of the partition’s blocks. Although the degree

partition is often not equitable, it is often used as the seed partition to initialize the search

for more refined vertex partitions, such as the coarsest equitable partition.

If vertices are initially placed in the same block, the coarsest equitable partition is

the most refined partition that can be obtained if the neighbors of every vertex are known.

The coarsest equitable partition of some graphs corresponds to their orbit partition, which

can be obtained using a pruning process similar to that used to find canonical isomorphs.

However, the coarsest equitable partition can be computed in deterministic polynomial

time whereas finding the orbit partition may require exponential time.

Significant attention is devoted to how a coarsest equitable partition is obtained to

facilitate relating that partition to the dot product and PageRank vector. The relationships

are established in Chapter 3 by relating the process of multiplying entries in a matrix row

to sorting a row’s entries. The coarsest equitable partition and its induced quotient graph

are leveraged in Chapters 4 and 5 to improve the PageRank algorithm’s performance.

19

Given an arbitrary graph, G (, , a partition, B, is a set of blocks containing= V E)

1 v2 , n } thenvertices in V such that the union of the blocks equals V. Thus, if V = {v , ,… v ,

= {b b2 …, k }, where b ⊆V and m
i = . A partition is proper if block pairs areB 1, , b i ∪ b V

i=1

disjoint, i.e., bi ∩ =∅ bj , i ≠ j, where a disjoint union is denoted = 1 � b2 � "∪� =V b ∪ ∪ bk B .

A unit partition contains one that equals V, where B = {V}. Given a partition, Bi ,

a refinement is an operation yielding some partition, Bi+1, where each block contained in

a partition, B + is a subset of some block in Bi . For example, if B ={{ , ,} {c d , }},a b theni 1 i

{a b} { } , {d}} is a refinement of B However, B = {{ , , , dB = { , , c i . a b c} { }} cannot bei+1 i+1

a refinement of Bi , since block { , , } is not a subset of block { , } or block {c d, }.a b c a b

An ordered partition, denoted B = [, ,…,b , induces a block order such thatb b]1 2 k

the relative order of each block’s vertices is maintained in any future partition refinement.

For example, if B = ⎡ a b, , , ⎤ , B = ⎡ , , d , c ⎦⎤ maintains the relative block i ⎣{ } {c d }⎦ i+1 ⎣{a b} { } { }

order with respect to block Bi . However, Bi+1 = ⎡⎣{d} , {c} , { , }⎤a b ⎦ does not maintain the

block order with respect to block Bi , since block {a b} c d}, is located before block { , in

block Bi . Each partition is assumed to be proper, i.e., disjoint, and ordered.

A discrete partition is maximally refined, where every block contains one vertex,

e.g., B = ⎡{d} , {c} , {a} , {b}⎦⎤ . A discrete partition induces a vertex permutation that also i ⎣

induces isomorph of the input graph. Finding canonical discrete partitions is a key goal in

many applications that produce canonical graph isomorphs, e.g., nauty [McK81].

20

The maximal set of ordered vertex partitions yields a partition tree. The root node

is the coarsest possible partition, the unit partition, where each descendant is a refinement

of its ancestor partition. Partitions along a path in this search tree retain vertices in their

block-relative order. Every leaf node is an ordered discrete partition, where the number of

leaf partitions corresponds to the number of vertex permutations, V !.

For example, the unit partition of a 3-vertex graph is ⎡{a b c, , }⎤ , the root node of⎣ ⎦

the corresponding partition tree shown in Figure 10. The root node’s descendants are the

smallest possible refinements of the graph’s unit partition, where the blocks are ordered

by the number of vertices contained in each block. The leaves are the discrete partitions

corresponding to the six possible vertex permutations of a 3-vertex graph. For instance,

⎡{a} , {b} , {c}⎦⎤ and ⎡{c} , {b} , {a}⎤⎦ correspond to the permutations, [1, 2,3] and [3, 2,1 ,]⎣ ⎣

respectively. The performance yielded by nauty, and most methods, that find a canonical

isomorph, is obtained by dramatically pruning the number of nodes in the vertex partition

tree using information yielded by the graph’s edges.

{ }, ,a b c⎡ ⎤⎣ ⎦

⎡ a , ,b c ⎤ ⎡ b , , ⎤ ⎡ c , , ⎤⎣{ } { }⎦ ⎣{ } { a c }⎦ ⎣{ } {a b }⎦

⎡ b , a , c ⎤ ⎡ b , c , a ⎤⎣{ } { } { }⎦ ⎣{ } { } { }⎦

⎡ a , b , c ⎤ ⎡ a , c , b ⎤ ⎡ c , a , b ⎤ ⎡ c , b , a ⎤⎣{ } { } { }⎦ ⎣{ } { } { }⎦ ⎣{ } { } { }⎦ ⎣{ } { } { }⎦
Figure 10. Vertex Partition Tree of an Arbitrary 3-Vertex Graph

21

2.3.1. The Degree Partition
There are many methods exist for pruning an arbitrary graph’s partition tree. One

method is to group vertices by their degrees, or number of neighbors, denoted deg (vr) ,

. The degree sequence is anwhere v V , e = v ,v }∈E, and deg (v = vr ∩ ei , i ≤ Er ∈ i { r s r)

example of a graph invariant, i.e., isomorphs have the same degree sequence. Similarly,

isomorphs contain an equal number of vertices and edges, i.e., V1 = V2 and = .E1 E2

Thus, one method of checking if two graphs may be isomorphs is to compare the

number of vertices and edges each graph contains and their degree sequences. Formally,

an invariant is a property, ψ , isomorphs must share, for instance, V1 = V2 and =E1 E2

if G1 ≅ G2. Conversely, a complete, or sufficient, invariant is an invariant that completely

decides graph isomorphism, such as a canonical isomorph.

The degree sequence is often used to determine two graphs cannot be isomorphs.

For example, the house graph and the complete graph, K5 , shown in Figure 11 cannot be

isomorphs, since they yield two different degree sequences, [2,2,2,3,3] and [4,4,4,4,4 ,]

respectively. The house graph and K5 similarly have distinct degree partitions, which are

{ , , } , {b e , ⎤ ⎡{a b c d e , , , , ⎤ , respectively. ⎡ a c d }⎦ and }⎣ ⎣ ⎦

eb

a

e

c d

b

a

c d

(a) G1, House Graph (b) G2 = K5

Figure 11. Two Graphs Yielding Different Degree Sequences

22

However, certain non-isomorphic graphs yield identical sorted degree sequences.

For example, the house graph and the complete bipartite graph, K2,3 , shown in Figure 12

yield the same sorted degree sequence, [2,2,2,3,3 ,] which yield the degree partitions,

a c d }⎦ and ⎡ c d e a b , respectively. However, simple visual inspection ⎡{ , , } , {b e , ⎤ { , , } , { , }⎤⎣ ⎣ ⎦

reveals these two graphs are not isomorphs. Two non-isomorphic graphs having the same

value with respect to an arbitrary invariant are said to be a devil’s pair [Ros00]. Thus, the

house graph and K2,3 are a devil’s pair with respect to the sorted degree sequence.

Degree sequences have a more elementary shortcoming. Ideally, a graph invariant

uniquely labels each vertex and induces a canonical vertex ordering. However, if V ≥ 2,

it is impossible to uniquely label the vertices using the degree sequence, since at least two

vertices have equal degrees. First, a connected graph on n ≥ 2 vertices has a degree range

of [1, n −1 .] By the pigeonhole principle, at least two vertices must have the same degree,

since the range only contains n −1 distinct values, whereas the graph contains n vertices.

Therefore, at least one block in the degree partition contains two or more vertices, which

precludes obtaining a discrete partition that induces a canonical vertex ordering. A similar

approach generalizes this proof to disconnected graphs.

e

c d

b

a

e

c d

b

a

(a) G1, House Graph (b) G2 = K2,3

Figure 12. Devil’s Pair for the Sorted Degree Sequence

23

2.3.2. The Equitable Partitions
An equitable partition is an extension of the degree partition, since every vertex

contained in the same block of an equitable partition yields the same degree. However, an

equitable partition adds the criterion that vertices in the same block have an equal number

of neighbors with respect to any block in the partition, including their own block. Thus,

an equitable partition extends the concept of vertex degrees to block degrees, where given

an equitable partition, B, and an arbitrary pair of blocks, b b, ∈S, each vertex contained i j

in bi has an equal number of neighbors contained in bj , and vice versa.

Given an arbitrary graph, G (,) , a partition, B, is determined to be equitable = V E

by applying the vertex neighborhood, denoted N v , ∈() where v V and N v = deg (v).

The neighborhood of an arbitrary vertex, v, is its set of adjacent vertices, where [KrS98]

{ V : , . (3)

()

N v() = u ∈ {u v }∈E}

b b2 b] ≤ ≤ =Therefore, an arbitrary partition, B = [1, ,…, k , 1 k n, where n V , is equitable

with respect to G, if for all i and j, 1 ≤ i j, ≤ k, and for all , ∈bi ,u v

N u ∩b = N (v)∩bj . (4)

Given two vertices, u and v, contained in an arbitrary block, bi , u and v have the

same number of neighbors in any block, bj , including the case, i = j. However, vertices

u and v do not have to share the same neighbors in each block, only the same number of

neighbors. The number of neighbors may differ across blocks, i.e., it is not required that

N u()∩bj

() j

= N ()∩ ku b , j ≠ k or N v()∩bj = N v()∩bk , j ≠ k. Thus, it is acceptable

if N u ∩b ≠ N u ∩b and N v ∩b ≠ N v ∩b .() j () k () j () k

24

For example, the house graph shown in Figure 13(a) yields the ordered partition,

⎡{a c d , , } , { , ⎤ . This partition is not equitable, since vertices c and d are each adjacentb e }⎣ ⎦

to one vertex in block { , , whereas vertex a is a neighbor of both vertices contained in b e}

block {b e} A second reason this partition is not equitable is that block { , , }, . a c d contains

two adjacent vertices, c and d, whereas vertex a is not adjacent to any vertex contained in

block { , , } Thus, the vertices contained in the block, {a c d } , do not share an equala c d . , ,

number of neighbors with respect to any of the blocks contained in this partition.

Conversely, the graph, K2,3 , depicted in Figure 13(b) yields the degree partition,

, a b }⎡{c d e , , } { , ⎤ . This partition is equitable, since the vertices in each block are adjacent ⎣ ⎦

to all vertices in the other block, but none of the vertices in their own block. The graph,

K5 , shown in Figure 13(c) similarly yields the equitable degree partition, { , , , , }⎡ a b c d e ⎤ .⎣ ⎦

The graph, K5 , is 4-regular, where vertices in a k-regular graph have k neighbors.

Thus, the degree partition of an arbitrary k-regular graph is also equitable. Moreover, the

degree partition of an arbitrary k-regular graph equals its unit partition. However, the unit

and degree partition of most graphs are not equitable, e.g., the house graph.

e

c d

b

a b

c e

a

d

e

c d

b

a

(a) G1, House Graph (b) G2 = K2,3 (c) G3 = K5

Figure 13. Exploring Equitable Partitions

25

2.3.3. The Coarsest Equitable Partition
Fortunately, given an arbitrary graph and an arbitrary initial partition, a specific

equitable partition is always guaranteed to exist. The coarsest equitable partition is the

most refined partition that can be obtained using only the information that is derived from

the neighbors of each vertex. The coarsest equitable partition is a key tool used to prune

the partition tree while finding a canonical isomorph. For instance, on nearly all random

graphs, the coarsest equitable partition is a discrete partition. Thus, the coarsest equitable

partition of most random graphs prunes the partition tree to a single leaf, which induces a

canonical vertex ordering. The results described in Chapters 3–5 establish the PageRank

vector can be obtained more efficiently if the coarsest equitable partition is non-discrete,

i.e., contains blocks composed of multiple vertices.

For example, the mansion graph shown in Figure 14(a) yields the discrete coarsest

equitable partition, ⎡{b} , { f } , {c} , {e} , {d} , {a}⎤ , and induces the canonical vertex order⎣ ⎦

illustrated in Figure 14(b). Conversely, the house graph shown in Figure 14(c) yields the

⎡ , } { } { , which cannot induce a canonical order. coarsest equitable partition, {c d , a , b e , }⎤⎣ ⎦

The results described in Chapters 4 and 5 improve the PageRank algorithm’s performance

on graphs whose coarsest equitable partition is non-discrete, such as the house graph.

e

c d

b

a

f

e

c d

b

a

f

e

c d

b

a

(a) G1, Mansion Graph (b) Canonical Ordering of G1 (c) G2 , House Graph

Figure 14. Coarsest Equitable Partitions and Canonical Orderings

26

2.3.3.1. A Formal Method
The method described in this section for finding the coarsest equitable partition is

derived from the definition of an equitable partition (4) and restated here for convenience.

Given some partition, B = [1, ,2 …,bk],1 k n, a partition is equitable with respect to b b ≤ ≤

an arbitrary graph, G (,) , if for all i and j, 1 ≤ i j, ≤ k, and for all u v, ∈b= V E i , [KrS98]

N u b = N v b , (5)()∩ j ()∩ j

and () .N u denotes a set containing the neighbors of vertex uwhere n V=

A simple method of satisfying this definition and computing the coarsest equitable

partition is to proceed as follows. Given an arbitrary partition, such as the unit partition,

select an arbitrary block in the partition containing two or more vertices. Then, select the

first vertex in the block and identify the number of neighbors of that vertex relative to all

blocks in the partition. Repeat this process for all vertices contained in the block. Vertices

yielding the same number of neighbors with respect to every block, or identical sorted

block degree sequences, are split into unique blocks. If the selected block cannot be split,

repeat the process for all blocks containing multiple vertices until some block splits. A

split block is ordered with respect to the vertex degree and block size in either ascending

or descending order. If none of the blocks split after some iteration of this process, the

vertex partition has stabilized to the coarsest equitable partition (5).

This naive partition refinement algorithm’s execution time has an upper bound of

3 =Ο()n , where n V [KaS83, PaT87]. If a graph is stored as a set of adjacency lists, the

algorithm’s upper bound is Ο(m n , where m = E . This algorithm’s key contribution is ⋅)

as an easily described method of finding the graph’s coarsest equitable partition.

27

For example, the unit partition yielded by the house graph shown in Figure 15(a)

is ⎡{a b c d e, , , , }⎤ . Thus, the first block containing more than one vertex is the unit block, ⎣ ⎦

{a b c d e , , } . Three vertices, { , , } are adjacent to two vertices in block { , , , , }, , a c d , a b c d e ,

whereas two vertices, {b e} are adjacent to two vertices in block { , , , , }, , a b c d e . Thus, the

refined partition yielded by this step, after ordering by the vertex degree and the number

of elements contained in the resulting blocks, is ⎡⎣{a c d , , } { , }⎤⎦ The degree partition is, b e .

illustrated using unique shapes in the graph shown in Figure 15(b).

Another iteration must be performed to assess if the current partition is stable. The

first block, { , , }a c d , contains multiple vertices where vertex a contains zero neighbors in

block { , , , . Conversely, vertices c and d each have a c d} and two neighbors in block {b e}

one neighbor in block { , , } and one neighbor in block {b e}a c d ,	 , . Thus, a new partition is

obtained, ⎡ a , ,c d , b e , ⎤ , as shown using unique shapes in Figure 15(c). Performing ⎣{ } { } { }⎦

a third iteration confirms the partition is stable, i.e., no more block refinement will occur.

⎣ a } { , }⎦⎤Hence, the house graph’s coarsest equitable partition is ⎡{ } , ,{c d , b e .

e

c d

b

a

e

c d

b

a

e

c d

b

a

(a) House Graph	 (b) Degree Partition (c) Coarsest Equitable Partition

⎣{ }⎦ ⎣{ , , } { , }⎦ ⎣{ } {c d } {b e }⎤⎦⎡ a b c d e, , , , ⎤ ⎡ a c d , b e ⎤ ⎡ a , , , ,

Figure 15. Method 1: Finding the House Graph’s Coarsest Equitable Partition

28

2.3.3.2. A Fast Method
More efficient methods exist for computing the coarsest equitable partition, e.g.,

the algorithm described by Cardon and Crochemore [CaC82]. Paige and Tarjan suggested

a simpler algorithm [PaT87] described more extensively by Kreher and Stinson [KrS98].

2The method’s upper bound is Ο(n ⋅ log n and reduces to Ο(m n) ⋅ log n) if a graph is) (+

stored in sparse form, where n V= and m = E [BLS+06]. The key data structures are:

• the current vertex partition, B,
• a test vertex set, U,
• a test block set, S, and
• a block set, Z,

where Z is ordered on the number of vertices in a test block, s S , that are neighbors ofi ∈

⊆ , is said to

be equitable after the potential test block set, S, has been emptied.

The algorithm listed in Figure 16 is a commented variant of Kreher and Stinson’s

method [KrS98]. The unit partitions for B and S are created on lines 2–4. The main loop

is entered on line 5 and iterates until the test block set, S, is empty. A test block, s S, is

vertices contained in blocks of the partition, B, where s U . The partition, B

∈

selected on line 7 and its vertices are checked for validity on line 9 by assessing if s U .⊆

If all vertices in s are valid, they are compared to each non-discrete block, b B, bii ∈ > 1.

The number of vertices in s adjacent to the vertices in block bi are stored in the

block set, Z, as shown on lines 14–21. If Z contains two or more disjoint sub-blocks of

block b , i.e., if {z ∈ Z : z ≠ ∅ } ≥ 2, block bi is subsequently replaced by those i j=1,2, …n−1 j

sub-blocks, z j=1,2, …n−1 ∈ Z : z j ≠ ∅ , on lines 24 and 25. The sets of potential test blocks, S,

and valid test vertices, U, are updated on lines 7–10 and lines 26–29.

29

1. findCoarsestPartition (G n),
2. # create initial unit partitions
3. B ←{1, 2, …, n}
4. S ← ⎡{1, 2, …, n}⎤⎣ ⎦
5. while S ≠ ∅
6. # remove arbitrary unprocessed test block, s
7. s ← S1

8. S ← − sS
9. if s U⊆

10. U ← − sU
11. # initialize tracking sets for number of neighbors in block
12. Z = [z , ,…, z ,z] z =∅1 2 n−1 j

13. # iterate over blocks in current partition
14. foreach block b i ∈B, bi, >1
15. # iterate over each vertex in current block, bi ∈B
16. foreach vertex v ∈bi , bi, >1
17. # compute number of neighbors of v in test block, s

getNeighborhood (v)∩ s18. d =

19. # assign v to vertex set, zd , with same number of neighbors
20. zd = ∪ d vz
21. end foreach
22. # if block list, Z , contains multiple non-empty blocks, update

23. if {z ∈Z : z ≠ ∅} >1j=1,2, …,n−1 j

24. # replace old block, bi , with neighbor-degree ordered blocks in Z
⎡b b i− 1 b ,…,25. B = 1, ,2 …,b 1, z1, z2 ,…, zn− , i+1,bi+2 bk B

⎤ , z ≠ ∅j=⎣ ⎦
26. # append blocks in neighbor lists, Z , to potential block list, S
27. S S= ∪ Z
28. # append vertices in neighbor lists, Z , to valid vertex list, U
29. 1,2, , 1 ,i n jU U z Z z= −= ∪ ∈ … ≠ ∅

30. end if
31. end for
32. end if
33. end while
34. return B
35. end findCoarsestPartition

Figure 16. Method 2: Fast Algorithm for Finding Equitable Partitions [PaT87, KrS98]

30

Applying the algorithm to the house graph illustrated in Figure 17 yields the data

structures listed in Table 10, where the vertex set, U, is not listed, since each block placed

in S is valid. The final refinement occurs when bi = b e and s = , ,{ , } {a c d } , which again

shows the house graph’s coarsest equitable partition is ⎡⎣{a} { } { , }⎤⎦, ,c d , b e .

e

c d

b

a

e

c d

b

a

e

c d

b

a

(a) House Graph	 (b) Iteration 1 (c) Coarsest Equitable Partition

⎣{ }⎦ ⎣{ , , } { , }⎤⎦ ⎣{ } {c d } {b e }⎤⎦⎡ a b c d e, , , , ⎤ ⎡ a c d , b e ⎡ a , , , ,

Figure 17. Method 2: Finding the House Graph’s Coarsest Equitable Partition

Table 10. Method 2: Finding the House Graph’s Coarsest Equitable Partition

i ib B s S Z

1 { }, , , ,a b c d e { }, , , ,⎡ a b c d e ⎤⎣ ⎦
{ }, , , ,a b c d e { }, , , ,⎡ a b c d e ⎤⎣ ⎦

{ }
{ }

2 , ,

3 ,

a c d

b e

=⎡ ⎤
⎢ ⎥

=⎢ ⎥⎣ ⎦

2 { }, ,a c d { } { }, , , ,a c d b e ⎡ ⎤⎣ ⎦
{ }, ,a c d

{ } { }, , , ,a c d b e ⎡ ⎤⎣ ⎦
{ }
{ }

0

2 ,

a

c d

=⎡ ⎤
⎢ ⎥

=⎢ ⎥⎣ ⎦

3 { , }b e { } { } { }, , , ,a c d b e ⎡ ⎤⎣ ⎦ { } { } { }, , , ,b e a c d ⎡ ⎤⎣ ⎦ { }2 ,b e=⎡ ⎤⎣ ⎦

4 { },c d
{ , }b e { } { }c d ⎡ ⎤a , ,

{ }1 ,c d=⎡ ⎤⎣ ⎦

5 { , }b e
⎣ ⎦

{ }0 ,b e=⎡ ⎤⎣ ⎦

6 { },c d
{ } { } { }c d b e ⎡ ⎤a { }a { }⎡ c d ⎤

{ }0 ,c d=⎡ ⎤⎣ ⎦

7 { , }b e
, , , ,⎣ ⎦ ,⎣ ⎦

{ }2 ,b e=⎡ ⎤⎣ ⎦

8 { },c d
{ }c d []

{ }1 ,c d=⎡ ⎤⎣ ⎦

9 { , }b e
,

{ }1 ,b e=⎡ ⎤⎣ ⎦

31

2.3.3.3. A Facile Method
The third and final algorithm for computing a graph’s coarsest equitable partition,

1-dimensional (1-D) Weisfeiler-Lehman stabilization, has been repeatedly discovered and

is described most extensively by Weisfeiler and Lehman [Wei76, ReC77, CFI92, Bas02].

This stabilization method can also be used in many contexts, e.g., 1-D Weisfeiler-Lehman

stabilization is used in Chapter 3 to establish vertices contained in the same block of the

graph’s coarsest equitable partition must have equal PageRank values.

All vertices are first labeled by its degree, as shown on line 3 in Figure 18. These

labels are augmented with their sorted neighbor labels and replaced by shorter labels to

conserve memory, as shown on lines 9–11. The labeling process iterates until the labels

are unchanged with respect to consecutive iterations, i.e., if the old partition, S, equals the

new partition, B, on line 7. The stabilized partition, B, is the coarsest equitable partition.

1. findCoarsestPartition (G n),
2. # initialize labels to vertex degrees and partition
3. Zr ← deg (v v V r) , r ∈

4. B ← ⎡ {1, 2, …, n}⎤⎣ ⎦
5. S ←∅

6. # iterate until sorted vertex labels stabilize
7. while S B≠

←8. S B
9. Z ← Zr , sort ({ s : (r ,)∈E})⎤ r

⎡ Z v v s⎣ ⎦
10. Z ← getUniqueLabels (Z)r r

11. Bi { r : r = }← v Z i
12. end while

13. return B
14. end findCoarsestPartition

Figure 18. Method 3: 1-D Weisfeiler-Lehman Stabilization

32

For example, the house graph yields the degree labels and neighbor labels shown

in Figures 19(a) and (b), respectively. Shorter unique identifier labels are assigned to each

vertex, as shown in Figure 19(c). In this example, no more partition refinement occurs if

the vertex labels are augmented with the sorted neighbor labels, as shown in Figure 19(d).

Repeating the process only yields replicates of the graphs shown in Figures 19(c) and (d).

Thus, the house graph’s coarsest equitable partition is ⎡{c d, , a , b e , ⎤ .⎣ } { } { }⎦

3

2 2

3

2

3,2,2,3

2,2,3 2,2,3

3,2,2,3

2,3,3

3

1 1

3

2

3,1,2,3

1,1,3 1,1,3

3,1,2,3

2,3,3

(a) Degree Labels (b) Adjacent Labels (c) Shorter Labels (d) Stable Labels

Figure 19. Method 3: 1-D Weisfeiler-Lehman Stabilization Example

Hence, 1-D Weisfeiler-Lehman stabilization refines the unit partition to the degree

partition, as depicted in Figures 20(a) and (b), respectively. Sorting the adjacent labels of

every vertex and appropriately assigning distinct labels until stabilization occurs produces

the coarsest equitable partition, e.g., ⎡{ , } , { a} , {b e }⎤ ,c d , as illustrated in Figure 20(c). ⎣	 ⎦

e

c d

b

a

e

c d

b

a

e

c d

b

a

(a) House Graph	 (b) Degree Partition (c) Coarsest Equitable Partition

⎡{a b c d e} { } { , } { } { } {b e }, , , , ⎤ ⎡ a c d , , , b e ⎤ ⎡ c d, , a , , ⎤⎣ ⎦ ⎣ ⎦ ⎣	 ⎦

Figure 20. Method 3: Finding the House Graph’s Coarsest Equitable Partition

33

1-D Weisfeiler-Lehman stabilization can also be readily illustrated using matrices.

For example, the adjacency matrix of the house graph is depicted in Table 11(a). Sorting

the entries by row, from left to right, yields the matrix shown in Table 11(b). Assigning a

shorter, but similarly unique, label to each of the sorted rows yields the labels shown in

Table 12(a), where these labels correspond to the degree partition. Repeating the process

using these shorter labels yields the matrices shown in Tables 12(b) and (c), respectively.

Repeating the process yields the matrices listed in Tables 12(d)–(f) and future iterations

c d , , }⎤also yield the same partition, i.e., the coarsest equitable partition, ⎡{ , } {a} , {b e .⎣ ⎦

Table 11. The House Graph’s Adjacency and Sorted Degree Matrices

(b) sort (A)(a) A

a b c d e
a 0 1 0 0 1
b 1 0 1 0 1
c 0 1 0 1 0
d 0 0 1 0 1
e 1 1 0 1 0

sorted left to right
a 0 0 0 1 1
b 0 0 1 1 1
c 0 0 0 1 1
d 0 0 0 1 1
e 0 0 1 1 1

Table 12. Method 3: 1-D Weisfeiler-Lehman Stabilization of the House Graph

(a) Degree Labels (b) Sorted Labels I (c) Shorter Labels I

a 1

b 2

c 1

d 1

e 2

c 1 1 2

d 1 1 2

a 1 2 2

b 2 1 1 2

e 2 1 1 2

c 1

d 1

a 2

b 3

e 3

(d) Unique Labels (e) Sorted Labels II (f) Shorter Labels II

a 2

b 3

c 1

d 1

e 3

c 1 1 3

d 1 1 3

a 2 3 3

b 3 1 2 3

e 3 1 2 3

c 1

d 1

a 2

b 3

e 3

34

The coarsest equitable partition is unique up to a block permutation. For example,

applying the methods described in Sections 2.3.3.1 or 2.3.3.2 to the house graph yields

⎡{ } , ,{c d } ,{ , }⎦ . Blocks { } ,a b e ⎤ a and {c d} exchange positions if 1-D Weisfeiler-Lehman ⎣

stabilization is applied, yielding ⎡{ , } ,{ } ,{ , }⎦ . To avoid this issue, the same method c d a b e ⎤⎣

should be used to compute the coarsest equitable partition throughout an application.

Each iteration of 1-D Weisfeiler-Lehman stabilization requires sorting n vectors of

length n and finding shorter labels for each vector, where each step is Ο(n2 ⋅ log n). Since

up to log 2 n
2 iterations are required to achieve stabilization, e.g., for path graphs [Bas02],

the upper bound is Ο n2 ⋅ log n ⋅ log n2 . This bound reduces to Ο ⋅ ⋅ log n ⋅ log n if a () (d n 2)

graph is stored using adjacency lists, where d = max (deg (vi)) [Bas02].

The method described in Section 2.3.3.2 for finding a coarsest equitable partition

is more efficient, since its upper bound is merely Ο(n2 ⋅ log n). Thus, Weisfeiler-Lehman

2 2 2 22 ⋅ ⋅ n log stabilization is slower by a factor of (n log ⋅ n) (n ⋅ log n) = ⋅2 log n = ⋅4 log n

with respect to the more efficient method. However, 1-D Weisfeiler-Lehman stabilization

is simpler to describe and easier to implement correctly [PaT87].

Moreover, the similarity between performing 1-D Weisfeiler-Lehman stabilization

and performing matrix multiplication yields the proof contained in Chapter 3 establishing

a relationship between the coarsest equitable partition and dot product. Finally, the proof

yields three progressively sophisticated methods of improving the PageRank algorithm’s

performance, as described in Chapters 4 and 5. These methods improve certain numerical

properties of the PageRank vector and the latter two methods reduce execution time.

35

2.3.4. The Orbit Partition
The orbit partition is obtained by separating the graph’s set of permutations into

two disjoint classes: isomorphisms and automorphisms. An isomorphism is a permutation

yielding a distinct isomorph, where one or more edges receive new labels. Conversely, an

automorphism is a permutation yielding the original graph, i.e., edges retain their original

label. If an isomorphism is applied, the associated adjacency matrices are different, but if

an automorphism is applied, the adjacency matrices are identical.

For example, applying the permutation, φ1 = [2,1,3, 4 ,] to the square illustrated in

Figure 21(a) yields the isomorph shown in Figure 21(b), which is also unique, since some

a d ,edges receive different labels, e.g., edges { , } and {b d} , respectively. Conversely, the

automorphism illustrated in Figure 21(b) yields an isomorph with the same edge labels.

The same effect is observed in Table 13, where the square’s and the isomorph’s adjacency

matrices differ, but the square’s and the automorph’s adjacency matrices are identical.

a bd cd b

b ac dc a

(a) The Square, G (b) An Isomorph of G (c) An Automorph of G

φ1 = [2,1,3, 4] φ2 = [3, 4,1, 2]
Figure 21. Isomorph and Automorph of the Square

Table 13. Isomorph and Automorph of the Square

(a) A (b) A1 =φ[2,1,3,4] (A) (c) A2 =φ[3,4,1,2] ()A

 a b c d
a 0 1 0 1
b 1 0 1 0
c 0 1 0 1
d 1 0 1 0

b a c d
b 0 1 1 0
a 1 0 0 1
c 1 0 0 1
d 0 1 1 0

c d a b
c 0 1 0 1
d 1 0 1 0
a 0 1 0 1
b 1 0 1 0

36

All graphs yield the trivial automorphism, or identity permutation, φ = [1, 2, …, n] .

Most automorphisms send some vertices to another, albeit logically equivalent, position.

If an arbitrary vertex, u, is sent to another vertex, v, by some number of automorphisms,

an equal number of automorphisms send v to u, where such vertices are in the same orbit.

The orbit partition is the disjoint equitable vertex partition listing the graph’s orbits.

The orbit partition equals or is more refined than the coarsest equitable partition.

For example, the house graph’s coarsest equitable and orbit partition are equal, as shown

in Figure 22. Conversely, the coarsest equitable partition of the cuneane graph shown in

Figure 23(a) [TiK99, StT99] contains a single block, ⎡{ , , h ⎤ , but its orbit partition a b …,⎣ }⎦

contains three blocks, { , , d e , } , {b c , f g ⎤ , as shown in Figure 23(b). ⎡ a h} { , , }⎣	 ⎦

e

c d

b

a

Figure 22. House Graph’s Coarsest Equitable and Orbit Partition, {c d, } , {a} , {b e }⎤⎡ ,⎣	 ⎦

b
f

e

c

d

b
a

f

g
h

a

h gc

d e

(a) Coarsest Equitable Partition	 (b) Orbit Partition

⎡{a b, ,…, h} ⎡{a h} { , } , { , , , }
⎤	 , , d e b c f g ⎤⎣ ⎦	 ⎣ ⎦

Figure 23. Cuneane Graph’s Distinct Coarsest Equitable and Orbit Partitions

37

2.3.4.1. Vertex Individualization and Arbitrary Partition Stabilization
Finding the orbit partition involves applying many techniques, especially if the

coarsest equitable partition is not discrete, i.e., contains one or more blocks composed of

multiple vertices. The individualization process involves splitting a non-discrete block

and assigning a single vertex to its own block, where one or more blocks are successively

split each possible way. Since the partition induced by applying individualization may not

be equitable, the method used to compute the initial coarsest equitable partition is applied

to the individualized partition, thus yielding a more refined and equitable partition.

For example, applying Weisfeiler-Lehman stabilization to the house graph yields

the coarsest equitable partition, ⎡⎣{ , } , { a} , {b e }⎤⎦ ,c d , shown in Figure 24. Two blocks are

not discrete, thus, one or more block’s vertices are individualized. For example, splitting

block {b e by individualizing vertex b induces the partition shown in Figure 25(a). This , }

partition is not equitable, since block { , }c d contains a vertex, c, adjacent to one vertex in

block {b} , namely, vertex b, whereas vertex d is not also adjacent to vertex b. Applying

1-D Weisfeiler-Lehman stabilization to the partition obtained by individualizing vertex b

yields the discrete and equitable partition shown in Figure 25(b). The other three potential

vertex individualizations are shown in Figures 25(c)–(h).

e

c d

b

a

, a ,Figure 24. House Graph’s Coarsest Equitable Partition, ⎡{c d, } { } , {b e }⎤⎣ ⎦

38

e

c d

b

a

(a) Individualizing b

{ , } , {a} , {b} , {e}⎤⎡ c d⎣ ⎦

a

e

c d

b

(c) Individualizing c

⎡{c} , {d} , {a} , {b e , }⎤⎣ ⎦

a

e

c

b

d

(e) Individualizing d

⎡{d} , {c} , {a} , {b e , }⎤⎣ ⎦

e

c d

b

a

(g) Individualizing e

⎡{ , } , {a} , {e} , { }⎤c d b⎣ ⎦

a

b e

c d

(b) Equitable Partition

⎡{c} , { d} , { a} , {b} , {e}⎤⎣ ⎦

a

b e

dc

(d) Equitable Partition

⎡{c} , { d} , { a} , {b} , {e}⎤⎣ ⎦

a

e

c

b

d

(f) Equitable Partition

⎡{c} , { d} , { a} , {e} , {b}⎤⎣ ⎦

a

b e

dc

(h) Equitable Partition

⎡{d} , {c} , {a} , {e} , {b}⎤⎣ ⎦

Figure 25. Refining to Equitable Partitions after Vertex Individualization

39

2.3.4.2. Computing the Orbit Partition
Many methods have been described for determining graph isomorphism on some

graphs [CoG70, Rea72, BES80, BaL83]. Many algorithms have also been developed that

decide isomorphism for arbitrary graphs [CFS+04, BeE96] and many more are frequently

proposed [KuS07, JuK07]. The traditional application used to decide graph isomorphism,

nauty [McK04], is often used to provide a performance baseline to assess new algorithms

that decide graph isomorphism. The key tools applied in nauty [McK81] are extensively

described by Babai [Bab95], Kocay [Koc96], and Kreher and Stinson [KrS98]. In nauty,

the key goal is to find a canonical isomorph, and in so doing, find the orbit partition.

Applications that are similar to nauty, such as nice [Mil07], perform a depth-first

search of a graph’s vertex partition tree to identify a canonical isomorph. However, many

methods are used to dramatically prune this partition tree. For example, the house graph

contains five vertices, thus, its original partition tree contains 5! =120 leaves. Applying

the coarsest equitable partition and vertex individualization yields the pruned 4-leaf tree

shown in Figure 26, where the equitable partitions are boxed. Since individualizing block

{ , } yields discrete partitions, it is not necessary to individualize block {b e}c d , .

⎡ a b c d e Unit Partition ⎣{ , , , , }⎦⎤

c d , b e }Coarsest Equitable Partition ⎡{ , ,} {a} { , ⎤⎣ ⎦

Individualize Vertices ‘c’ and ‘d’

⎣{ } , {d} , {a} , { , }⎦⎤ (non-equitable) ⎣{d} , {c} , {a} , { , }⎦
⎡ c b e ⎡ b e ⎤

Induced Discrete Partitions

⎣{ } { } { } { } { }⎦ (equitable) ⎣{ } { } { } { } { }⎦
⎡ c , d , a , b , e ⎤ ⎡ d , c , a , e , b ⎤

Figure 26. House Graph’s Vertex Partition Tree (Equitable Partitions Boxed)

40

The next technique prunes the partition tree by comparing partial permutations,

which compares the binary value induced by the partition’s leading discrete blocks. That

method extends the concept of retaining the minimum discovered isomorph described in

Section 2.2.4. For example, the house graph and its corresponding adjacency matrix are

shown in Figure 27 and Table 14(a), respectively.

Individualizing the two vertices, c and d, as shown in Figure 26 yields the two

non-equitable partitions, ⎡⎣{c} , {d} , {a}, {b e }⎤ ⎡⎣{d} , {c}, {a} , { , }, ⎦ and b e ⎦⎤ , respectively.

The leading discrete blocks in each partition is ⎡{c} , {d} , {a}⎦⎤ and ⎡{d} , {c} , {a}⎦⎤ , thus ⎣ ⎣

inducing the partial permutations, [3, 4,1] and [4,3,1 ,] respectively. The resulting partial

isomorphs are shown in Tables 14(b) and (c), respectively. Since the upper-right triangles

in both matrices are identical, neither branch can be eliminated in this example, thus, both

branches of the pruned vertex partition tree must be traversed.

eb

a

c d

Figure 27. House Graph

Table 14. Partial Permutations of the House Graph’s Adjacency Matrix

(a) A
] ()(b) A1 =φ[3,4,1] (A) (c) A2 =φ[4,3,1 A

a b c d e
a 0 1 0 0 1
b 1 0 1 0 1
c 0 1 0 1 0
d 0 0 1 0 1
e 1 1 0 1 0

c d a
c 0 1 0
d 1 0 0
a 0 0 0

d c a
d 0 1 0
c 1 0 0
a 0 0 0

41

Since individualizing vertex c or d does not yield a discrete partition in the vertex

partition tree shown in Figure 26, both leaves are further refined. The first leaf is obtained

by individualizing vertex c and refining to the coarsest equitable partition, which yields

⎡{c}, {d}, {a}, {b}, {e}⎤⎦ and induces the permutation, φ = [3, 4,1, 2,5 .] Similarly, the leaf ⎣

obtained by individualizing vertex d and refining to a coarsest equitable partition yields

⎡{d}, {c}, {a}, {e}, {b}⎦⎤ and induces the permutation, φ = [4,3,1,5, 2 .] Concatenating the⎣

entries contained in the first isomorph’s upper-right triangle’s columns yields the binary

value, 1001010111 = 599 , where the other isomorph also yields 1001010111 = 599 ,2 10 2 10

Since both isomorphs yield the same binary value, these isomorphs are automorphs.

In this example, the leaves that remain in the pruned vertex partition tree induce

permutations that are also automorphisms. Alternatively stated, each leaf, or, permutation,

yields the same isomorph, which is designated as the house graph’s canonical isomorph.

In sum, applying the coarsest equitable partition, individualization, and selection of the

minimum remaining isomorph reduced the search space for canonical isomorph of the

house graph from 5! =120 potential permutations (leaves) to two permutations (leaves).

However, the techniques applied thus far have not addressed computing the orbit partition

while conducting this depth-first search.

Table 15. House Graph Isomorphs

A φ] (A)(a) A1 =φ[3,4,1,2,5] () (b) A2 = [4,3,1,5,2

c d a b e
c 0 1 0 1 0
d 1 0 0 0 1
a 0 0 0 1 1
b 1 0 1 0 1
e 0 1 1 1 0

d c a e b
d 0 1 0 1 0
c 1 0 0 0 1
a 0 0 0 1 1
e 1 0 1 0 1
b 0 1 1 1 0

42

The last technique that is used to prune the partition tree yields the orbit partition.

However, this technique is the most complex method applied, and similarly, it is the most

difficult to implement correctly. Recalling the previous example, it was observed that the

permutations induced by the leaves remaining in the partition tree illustrated in Figure 26

yield the same isomorph of the house graph, i.e., they are relative automorphisms.

The first leaf contains the discrete vertex partition, ⎡⎣{c} , {d} , {a} , {b} , {e}⎤⎦ , thus

inducing the permutation, φ = [3, 4,1, 2,5 .] Similarly, the second leaf contains the discrete

partition, ⎡{d} , {c} , {a} , {e} , {b}⎤ , inducing the permutation, φ = [4,3,1,5, 2 .] Inspection ⎣ ⎦

reveals the fundamental difference between the two permutations is the position exchange

with respect to vertices c and d, or similarly, vertices b and e. Thus, vertices c and d are

located in the same orbit and vertices b and e are located in the same orbit. Conversely,

vertex a is not located in the orbit of any other vertex, thus, it is the only vertex contained

in its block of the house graph’s coarsest equitable partition. Therefore, the house graph’s

orbit partition is ⎡⎣{ , } , {a} , {b e }⎤⎦ .c d ,

The management of such automorphisms may enable pruning several branches in

the partition tree, although that it is not true in this example. The use of such group theory

machinery, e.g., orbits, stabilizers, the automorphism group, the Orbit-Stabilizer theorem,

and the Schreier-Sims algorithm, are applied in methods that use automorphisms to prune

the vertex partition tree [KrS98, Hof82, Mar02, Ser02]. However, even after applying all

three tools of pruning the partition tree: coarsest equitable partitions, partial permutations,

and automorphisms, applications similar in design to nauty still require exponential time

to find the orbit partition or a canonical isomorph of certain graphs [Miy96].

43

2.3.4.3. Easy, Hard, and In-Between Graphs
A rigorous method of classifying an arbitrary graph with respect to the difficulty it

causes algorithms that decide graph isomorphism, such as nauty, is not known to exist.

However, various subjective notions of measuring relative graph difficulty are often used.

For instance, almost every random graph is considered an easy graph, since the coarsest

equitable partition of almost all random graphs is discrete. Alternatively stated, applying

the coarsest equitable partition to an arbitrary random graph prunes its partition tree from

2having n! leaves to a single leaf, yielding a canonical isomorph in Ο(n ⋅ log n) time.

In contrast, the coarsest equitable partition of a non-trivial graph contains at least

one block composed of multiple vertices, i.e., a non-discrete partition. In the extreme, the

coarsest equitable partition may only contain one block, i.e., it is the unit partition. Thus,

an arbitrary graph yields a coarsest equitable partition that is a discrete, non-discrete, or

unit partition, e.g., the graphs illustrated in Figures 28(a)–(c), respectively. The methods

described herein for improving the PageRank algorithm’s performance can be applied to

graphs whose coarsest equitable partition is non-discrete, e.g., the house or cuneane graph

shown in Figures 28(b) and (c), respectively.

e

c d

b

a

z

e

c d

b

a

e

c

d

b
a

f

g
h

(a) Mansion Graph (b) House Graph (c) Cuneane Graph
(discrete partition) (non-discrete partition) (unit partition)

⎣{b} ,{ f } ,{c} ,{e} ,{d} ,{a}⎦⎤ ⎣⎡{c d, } , { a} , {b e }⎦⎤ ⎣⎡{a b …, }⎦⎡ , , , h ⎤

Figure 28. Easy, Medium, and Hard: Discrete, Non-Discrete and Unit Partitions

44

2.3.5. Induced Quotient Graphs and Matrices
An equitable partition, such as the coarsest equitable partition and orbit partition,

are closely related to the eigenvalues and eigenvectors of the graph’s adjacency matrix.

The concept of an equitable partition was first defined by Schwenk in the context of this

relationship [Sch74], and not its usage as a tool for pruning search trees in algorithms that

decide graph isomorphism. Sachs defined the equivalent graph divisors concept, as noted

by Cvetković, Rowlinson and Simić [CRS97]. As its origin suggests, equitable partitions

can be used to explore a graph’s eigensystem. In particular, if some equitable partition is

non-discrete, portions of a graph’s eigensystem can be explored more efficiently using the

quotient graph induced by the equitable partition [Hae95, God93, GoR01].

In simple terms, an equitable partition divides the eigenvalues, or equivalently, the

characteristic polynomial, of the graph’s adjacency matrix. The quotient graph induced by

the equitable partition also defines an adjacency matrix whose eigenvalues are a subset of

the eigenvalues yielded by the graph’s adjacency matrix. This relationship also illustrates

a graph can possess regular structure and that vertices can be mapped to some eigenvalue

or eigenvector entry. This idea has also been used as the basis of algorithms that decide

graph isomorphism [CRS97, HZL05].

The quotient graph induced by an arbitrary equitable partition, e.g., the coarsest

equitable partition or orbit partition of an arbitrary graph, replaces the vertices contained

in a given block of the partition with one vertex in the quotient graph. The edges between

the vertices in the quotient graph correspond to the number of neighbors contained in the

destination block with respect to each source block vertex. Quotient graphs often contain

weighted edges, directed edges, and loops, i.e., they typically are not simple graphs.

45

For example, the house graph shown in Figure 29(a) yields the coarsest equitable

partition, ⎡{ } {c d } ,{ } , which is depicted using unique shapes in Figure 29(b). The a , , b e , ⎤⎣ ⎦

partition contains three blocks, thus, the quotient graph contains three vertices, where one

vertex corresponds to each block contained in the partition, as shown in Figure 29(c) and

reflected in the corresponding adjacency and quotient matrices listed in Table 16.

Vertices c and d are each connected to one vertex in block { , , thus, an edge ofb e}

weight ‘1’, or a 1-edge, links block { , } to block { , } and vice versa. Vertices c and dc d b e

are connected to each other, as are vertices b and e, thus, a 1-loop is attached to blocks

{c d} and { , . Since vertex a is connected to both vertices contained in block {b e}, b e} , ,

a 2-edge links block {a} to block { , . Finally, a 1-edge connects block {b eb e} , } to block

{a} , since vertices b and e each have one neighbor contained in block {a} , namely, a.

e

c d

b

a

e

c d

b

a

{ }a

1

1 { },c d

1

2

1

{ },b e

1

(a) House Graph (b) Coarsest Partition (c) Induced Quotient Graph

Figure 29. House Graph’s Induced Quotient Graph

Table 16. House Graph’s Induced Quotient Matrix

(a) A (b) Q

a b c d e
a 0 1 0 0 1
b 1 0 1 0 1
c 0 1 0 1 0
d 0 0 1 0 1
e 1 1 0 1 0

destination
{a} {b, e} {c, d}

source
{a} 0 1 0

{b, e} 2 1 1

{c, d} 0 1 1

46

2.3.5.1. Interlacing Eigenvalues
Given an arbitrary matrix, M, and similarly arbitrary partition, B, the eigenvalues

of the induced quotient matrix, Q, interlace M’s eigenvalues. That is, given an arbitrary

,Mn nmatrix, , and an arbitrary partition, B, containing m blocks and the induced quotient

Qm m, i th i thmatrix, , Q’s eigenvalue is less than or equal to M’s eigenvalue and greater

than or equal to M’s (n m i)th− − eigenvalue, i.e.,

λ i M ≤ λ Q ≤ λi M , ≤ λ . (6)n m− + () i () () λi i+1

However, if the partition, B, used to construct Q is an equitable partition, e.g., the

coarsest equitable partition, Q’s eigenvalues are a subset of M’s eigenvalues. Thus, given

an arbitrary eigenvalue of Q, denoted λi (Q) , there exists some corresponding value, j,

such that λ Q = λ j M . In certain sources, this restricted version is called interlacing; i () ()

whereas generalized interlacing permits B to be non-equitable.

For example, the eigenvalues of the house graph and the quotient graph induced

by its coarsest equitable partition, ⎡{ } {c d }, { , }⎦ , are listed in Tables 17(a) and (b), a , , b e ⎤⎣

respectively. Since this partition is equitable, the quotient graph’s eigenvalues are a subset

of the house graph’s eigenvalues, as shown in Table 17.

Table 17. House Graph’s and Its Induced Quotient Graph’s Eigenvalues

(a) λ, House Graph (b) λ, Induced Quotient Graph

i iλ

1 2.4812

2 0.6889

3 0.0000

4 -1.1701

5 -2.0000

i iλ

1 2.4812

2 0.6889

3 -1.1701

47

2.3.5.2. Lifting Eigenvectors
Some eigenvectors of M can be lifted from eigenvectors of the quotient matrix, Q.

This relationship is based on the characteristic matrix, B, the incidence matrix derived

from the vertex partition, B, used to induce the quotient matrix, Q. Rows in B correspond

to rows and columns in a source matrix, M, and columns in B correspond to blocks in B.

For example, the house graph’s coarsest equitable partition yields the 5 3 characteristic×

matrix, or block matrix, listed in Table 18.

The characteristic matrix, B, is the basis of several identities with respect to the

original and quotient graphs. The first elementary result is

N B= T ⋅B , (7)

where N is the diagonal matrix reflecting the number of vertices contained in the blocks

of the associated coarsest equitable partition, as shown in Table 19(a). Since N is simply a

N−1diagonal matrix containing non-zero diagonal entries, its matrix inverse, , is obtained

by simply reciprocating N’s diagonal entries, as shown in Table 19(b).

Table 18. Block Matrix, B, of the House Graph’s Coarsest Equitable Partition

{a} {b, e} {c, d}
a 1 0 0
b 0 1 0
c 0 0 1
d 0 0 1
e 0 1 0

Table 19. Block Matrix, N, of the House Graph’s Coarsest Equitable Partition
T −1 −1(a) = ⋅ , i i, =∑Bi i , (b) N Ni i, = 1 Ni i, N B B N ,

{a} {b, e} {c, d}
{a} 1 0 0

{b, e} 0 2 0

{c, d} 0 0 2

{a} {b, e} {c, d}
{a} 1 0 0

{b, e} 0 1/2 0

{c, d} 0 0 1/2

48

More notably, it further can be shown that [God93, GoR01]

⋅ = ⋅A B B Q . (8)

By left-multiplying each side with , TB it can also be shown that † ,= ⋅ ⋅Q B A B since

T T⋅ ⋅ = ⋅ ⋅ B A B B B Q

() ()
()

1

1

T T

T T

−

−

⋅ = ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ =

A B B B B B Q

B B B A B
(9)

† ,⋅ ⋅ = B A B Q

1−† † T Twhere B denotes the pseudo-inverse of B, i.e., B = (B B) ⋅B . Given an eigenvalue,⋅

λi , and an eigenvector, ri ≠ 0, of the quotient graph, Q, yielded by an equitable partition

of A, it can be shown that [Hae95]

A B r B Q r λ B r ,⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ (10)i i i i

where substituting x = ⋅ A B r λ B r yields λ x .B r in ⋅ ⋅ = ⋅ ⋅ A x⋅ = ⋅i i i i i i i i

Thus, this identity lifts the quotient matrix eigenvector, ri , to some eigenvector of

the adjacency matrix, i B ri . Quotient matrices may be smaller than the input matrix, x = ⋅

thus, lifting can accelerate finding eigenvectors. For example, the quotient matrix induced

by the house graph’s coarsest equitable partition yields the dominant eigenvector listed in

Table 20(a). Lifting yields the house graph’s dominant eigenvector listed in Table 20(b).

Table 20. Lifting a Dominant Eigenvector of the House Graph

(a) ri (b) xi = ⋅ iB r

1− ⋅N N ⋅Q

{a} 0.5555

{b, e} 0.6892

{c, d} 0.4653

a 0.5555

b 0.6892

c 0.4653

d 0.4653

e 0.6892

49

2.3.5.3. Interlacing, Lifting, Arbitrary Matrices and Arbitrary Partitions
Thus, an arbitrary matrix, M, and partition, B, of M’s rows and columns yields the

† T Tblock matrix, B, and the quotient matrix, = ⋅ ⋅ = (B ⋅B
−1
⋅ ⋅ ⋅ .Q B M B) B M B Moreover,

Q’s eigenvalues interlace M’s eigenvalues, since Q’s eigenvalues are strictly contained in

the intervals bounded by M’s eigenvalues, i.e.,

λ ()M ≤ λ (Q) ≤ λ (M) , ≤ λ , (11) n m i − + i i λi i+1

where Q is an k k× matrix, M is an n n× matrix, k n b k≤ , and = = B . If an arbitrary

partition, B, is simply an equitable partition, such as M’s coarsest equitable partition, Q’s

eigenvalues are a subset of M’s eigenvalues, i.e., given 1 i k j n,≤ ≤ and 1 ≤ ≤

λi (Q) = λ j (M) . (12)

If B is equitable, given some arbitrary eigenvalue of Q, λi (Q) , and an eigenvalue

of M, λ ()M , such that λ () = λ (M) , an eigenvector, , associated with λ Q ,Q ri () isj i j i

related to eigenvector, x j , associated with λ j (M) by the relationship,

x j = B r ⋅ i . (13)

The quotient matrix, = † M B,Q B ⋅ ⋅ equals M’s corresponding average row sums,

i.e., Qi j =∑M where B = b b, ,…,b u b , v b , , ≤ and k n, u ,v [1 2 k], ∈ i ∈ j i j k ≤ [Hae95]. If

B is equitable, the summation, Q = Mu , simplifies to Qi j = z , ⋅Mu w, such thati j, ∑ ,v , i j ,

u b , w b , u w, ∈E, and z , ∈ ∈ { } = N u b , the number of r’s neighbors contained ()∩ ji j i j

in block bj [Hae95]. Therefore, if B is an equitable partition, a summation of as many as

n values can be reduced to a single multiplication operation.

50

2.4. A Brief Interlude: Eigen Decomposition Applications in Graph Theory
Eigen decomposition is the basis of several fundamental results in graph theory. A

classic example is that the number of components in the graph, denoted () equals the κ G ,

multiplicity of ‘0’ in the eigenvalues of the graph’s Laplacian matrix, denoted L, where

(∑ i Lκ ()G = λ () ≡ 0) [Chu94]. The Laplacian is constructed by subtracting the graph’s

adjacency matrix, A, from its degree matrix, D, where D = deg () thus L D Ai i, vi , = − .

Some recent results are based on applying the signless Laplacian, L D= + A [HaS04].

The eigen decomposition is used to partition graphs, e.g., mapping related parallel

tasks to some pool of processors [HeL93, GuM95, Got03]. Another application provides

solutions to the traveling salesman problem [Moh04]. Eigenvalues are also used to find

the rate at which a graph’s stationary distribution is reached, e.g., to assess data structure

resiliency [AsW05] or determine how quickly the PageRank vector converges [HaK03].

A beautiful application uses eigenvectors as vertex coordinates [Kor05]. For example, the

drawing of the Buckminsterfullerene molecule, C60, or buckyball, illustrated in Figure 30

is based on three eigenvectors of the buckyball’s signless Laplacian.

Figure 30. 3-D Buckyball Drawing Based on Its Signless Laplacian’s Eigenvectors

51

2.5. The PageRank Algorithm
Another significant application of the eigen decomposition to graph theory is the

PageRank algorithm used in certain search engines to order query responses, such as the

web pages matching a user’s search criteria [PBM+98]. For example, the mansion graph

shown in Figure 31(a) yields the PageRank vector listed in Table 21(a), which is a unique

eigenvector that always exists, as described in this section. Sorting the PageRank vector’s

entries yields the vector listed in Table 21(b), which is reflected in Figure 31(b).

The PageRank vector is unique up to isomorphism. Since every entry contained in

the mansion graph’s PageRank vector is distinct, every mansion graph isomorph yields a

vertex ordering equivalent to the vertex ordering shown in Table 21(b). For example, the

isomorph shown in Figure 31(c) yields the sorted PageRank vector shown in Table 21(c),

which is equivalent to the ordering shown in Table 21(b) and reflected in Figure 31(b).

e

c d

b

a

f

e

c d

b

a

f

d

b c

a

e

f

(a) Mansion Graph (b) PageRank Order (c) Another Isomorph

Figure 31. Mansion Graph

Table 21. Mansion Graph’s PageRank Vector

(a) PageRank Vector (b) PageRank Order (c) Isomorph’s Order

a 0.126
b 0.236

c 0.195

d 0.182

e 0.180

f 0.080

0.236 b
0.195 c
0.182 d
0.180 e
0.126 a
0.080 f

0.236 a
0.195 b
0.182 c
0.180 d
0.126 e
0.080 f

52

Conversely, if the PageRank vector contains duplicate entries, it cannot induce a

canonical ordering. That issue can be resolved in some applications, e.g., search engines,

by sorting on more keys, e.g., web page addresses. Alternatively, ties in PageRank value

can be broken by the vertex order in a canonical isomorph produced by applications such

as nauty (cf. Sections 1.2 and 2.3.4.2).

For example, the house graph depicted in Figure 32(a) yields the PageRank vector

listed in Table 22(a). The house graph’s canonical isomorph yielded by nauty is shown in

Figure 32(b) and corresponds to applying the permutation, [3, 4,1, 2,5 ,] where the vertex

→ ⇔ → denotes vertex vi , v j ,mapping, i j r s labeled r, is mapped to vertex labeled s.

The two graphs are isomorphs, thus, their PageRank vectors are also related by the same

vertex permutation, as reflected in Tables 22(a) and (b), where the canonical isomorph

induces the canonical vertex ordering listed in Table 22(c) and shown in Figure 32(c).

e

c d

b

a

e

a b

d

c

e

a b

d

c

(a) House Graph (b) Canonical Isomorph (c) PageRank Order

Figure 32. House Graph

Table 22. House Graph’s PageRank Vector

(a) House Graph (b) Canonical Isomorph (c) PageRank Order

a 0.168

b 0.244

c 0.172

d 0.172

e 0.244

1 3 a c→ ⇔ → 0.168

2 4 b d→ ⇔ → 0.244

3 1 c a→ ⇔ → 0.172

4 2 d b→ ⇔ → 0.172

5 5 e e→ ⇔ → 0.244

0.244 d
0.244 e
0.172 a
0.172 b
0.168 c

53

However, finding a canonical isomorph of certain graphs may require exponential

time [Miy96]. Access to a canonical isomorph also does not reduce any numerical errors

in the PageRank vector if the vector is obtained using standard finite-precision arithmetic,

e.g., as is specified in the IEEE 754 standard [ISB85]. The three algorithms described in

Chapters 4 and 5 eliminate a certain class of numerical errors that may be present in the

PageRank vector. More importantly, two of these algorithms dramatically reduce the time

needed to compute the PageRank vector of certain graphs.

To obtain this vertex order, the PageRank algorithm perturbs the adjacency matrix

and builds a strictly positive stochastic matrix in which each entry reflects the probability

of visiting a vertex from another vertex. Assuming the probabilities are independent, each

entry reflects the probability of transitioning between states in a Markov chain. Applying

the Perron-Frobenius and Perron theorems establishes the matrix must yield the dominant

eigenvalue, one. Normalizing the unique and associated dominant eigenvector yields the

Markov chain’s stationary distribution, where an entry reflects the probability of visiting

some vertex, e.g., nodes in a UAV swarm [PBM+98, LaM03, LaM06, PSC05].

Thus, the eigenvector orders a graph’s vertices based on PageRank values yielded

by its perturbed adjacency matrix. PageRank values are unique up to isomorphism, i.e.,

vertices have the same PageRank value across all input graph isomorphs. Hence, vertices

contained in the same block of the orbit partition also must have equal PageRank values.

In other words, given vertices u and v such that a set of automorphisms maps u → v and

an equal number maps u → v, the vertices, u and v, must have equal PageRank values.

The proof developed in Section 3.4 shows the same result holds for the coarsest equitable

partition, i.e., vertices contained in the same block must have equal PageRank values.

54

2.5.1. Computing the PageRank Perturbation
The first step in obtaining the PageRank vector is to perturb the adjacency matrix,

A, to obtain a positive column-stochastic matrix, S, i.e., Si j, 0, i j and S:, j 1, j.> ∀ , ∑ = ∀

The PageRank perturbation applies the degree matrix, D, used to obtain several stochastic

perturbations [Sin64, SiK67, HZL05], where Di i, , equals the degree of vertex vi , i.e.,

⎧0 i ≠ j
D , = ⎨

⎪ . (14)i j deg () = deg v = A i = j⎪∑Ai,: = vi ()j ∑ :, j⎩

If A is an adjacency matrix of a connected graph, D’s diagonal entries are strictly

non-zero. Hence, its inverse, denoted D−1, is found by reciprocating D’s diagonal entries,

−1i.e., Di i, =1 Di i, , ∀i. For example, the house graph’s adjacency matrix shown in Table 23

yields the degree and inverse matrices listed in Table 24. D’s diagonal entries correspond

⎡ , , ,to the graph’s vertex degree partition, which for the house graph is {a c d }, {b e }⎤ .⎣ ⎦

Table 23. House Graph’s Adjacency Matrix, A

a b c d e
a 0 1 0 0 1

b 1 0 1 0 1

c 0 1 0 1 0

d 0 0 1 0 1

e 1 1 0 1 0

Table 24. House Graph’s Degree Matrix and Degree Matrix Inverse

(a) D (b) D−1

a b c d e
a 2 0 0 0 0

b 0 3 0 0 0

c 0 0 2 0 0

d 0 0 0 2 0

e 0 0 0 0 3

a b c d e
a 1/2 0 0 0 0

b 0 1/3 0 0 0

c 0 0 1/2 0 0

d 0 0 0 1/2 0

e 0 0 0 0 1/3

55

A row-stochastic matrix, S, is a non-negative matrix whose rows each sum to one,

i.e., ∑Si,: = 1. Given an arbitrary adjacency matrix, A, and its degree matrix, D, obtained

by summing A’s rows, a row-stochastic matrix, S, can be obtained by computing

= −1 ⋅ (15)S D A .

A column-stochastic matrix, S, is a non-negative matrix whose columns sum to

one, i.e., ∑S:, j =1. Thus, summing A’s columns to obtain a degree matrix, D enables

constructing a column-stochastic matrix, S, by inverting the multiplication order, where

S A= ⋅ D−1 . (16)

For example, applying the row-stochastic perturbation, (15), to the adjacency and

degree matrices enumerated in Tables 23 and 24, respectively, yields the row-stochastic

matrix listed in Table 25. Conversely, applying the column-stochastic perturbation, (16),

to these same matrices yields the column-stochastic matrix listed in Table 26.

Table 25. A Row-Stochastic Matrix, ∑S (i,:) = 1

0.0 0.5 0.0 0.0 0.5

1
0.3 0.0 0.3 0.0 0.3
0.0 0.5 0.0 0.5 0.0
0.0 0.0 0.5 0.0 0.5

0.3 0.3 0.0 0.3 0.0

0.6 1.3 0.8 0.8 1.3 ∑

Table 26. A Column-Stochastic Matrix, ∑S(:, j) = 1

0.0 0.3 0.0 0.0 0.3 0.6
0.5 0.0 0.5 0.0 0.3 1.3
0.0 0.3 0.0 0.5 0.0 0.8
0.0 0.0 0.5 0.0 0.3 0.8
0.5 0.3 0.0 0.5 0.0 1.3

1 ∑

56

The perturbation applied in the PageRank algorithm modifies the original column-

stochastic perturbation, (16), by applying a scaling factor, α ∈[0.0,1.0 ,] and a shifting

factor, ()1−α n where n V , the number of vertices. The stochastic PageRank matrix , =

perturbation, or scaled and shifted modification of (16), is

S α A D 1 (1 α)= ⋅ ⋅ − + − n , (17)

where A and D denote a graph’s adjacency and degree matrices, respectively [PBM+98]

and 1−α is denoted δ, yielding S = ⋅ ⋅D−1α A +δ n . If α =1, the PageRank perturbation

reduces to the column-stochastic perturbation (16), = ⋅D−1. In essence, decreasing α,S A

and thus increasing δ, causes S’s entries to be less dependent on the value of A’s entries.

In the opposite extreme, if α = 0, δ =1 and S , =1 ,n ∀i j ., The PageRank algorithm’s i j

developers suggest a scaling, or damping factor of α = 0.85, hence δ = 0.15 [PBM+98].

For example, the adjacency matrix of the house graph listed in Table 23 yields the

degree and inverse matrices listed in Table 24. Applying the PageRank perturbation, (17),

to these matrices, where α = 0.85 and δ = 0.15, yields the column-stochastic matrix, i.e.,

the PageRank matrix, listed in Table 27. As this example demonstrates, all of the columns

in the PageRank matrix sum to one, whereas its rows typically do not sum to one.

Table 27. House Graph’s PageRank Matrix, S, α = 0.85

a b c d e
a 0.0300 0.3133 0.0300 0.0300 0.3133 0.7167

b 0.4550 0.0300 0.4550 0.0300 0.4550 1.2833

c 0.0300 0.3133 0.0300 0.4550 0.0300 0.8583

d 0.0300 0.0300 0.4550 0.0300 0.4550 0.8583

e 0.4550 0.3133 0.0300 0.4550 0.0300 1.2833

1 ∑

57

Applying the scaling and shifting modifications, α and δ, to the column-stochastic

perturbation, (16), satisfies two objectives. First, the perturbation satisfies the assumption

that any vertex, or web page, can be randomly visited. This assumption is often called the

random surfer model [LaM03]. Moreover, the column-stochastic PageRank matrix, S, is a

primitive matrix, where a matrix, M, is primitive:

1. if M is irreducible and M contains one or more positive diagonal entries,
2. or equivalently, if and only if Mk > 0 for some k > 0.

The PageRank perturbation, and more specifically, the shifting factor, δ n , forces every

entry in S to be strictly positive, i.e., each entry is strictly positive, where Sk > ∀ > 0.0, k

The PageRank matrix, S, is also irreducible, where an arbitrary matrix, M, is irreducible

if given any permutation matrix, P, the matrix, M, does not yield an isomorph such that

⎡X Y⎤P M⋅ ⋅P = , (18)⎢ ⎥0 Z⎣ ⎦

where X, Y, and Z are square matrices. The PageRank matrix, S, is irreducible since each

entry is strictly positive, i.e., S is constructed such that none of its entries equal zero.

An arbitrary PageRank matrix, S, is irreducible and satisfies the Perron-Frobenius

theorem’s conditions [LaM06]. Moreover, S is also a primitive matrix and satisfies the

conditions of the Perron theorem, which is a more powerful theorem [LaM06]. Applying

either theorem shows that the PageRank matrix, S, yields a positive eigenvalue associated

with an eigenvector unique up to isomorphism and scaling, where eigenvectors are often

not unique. However, applying the Perron theorem establishes it is the unique dominant

eigenvalue, i.e., the eigenvalue having the largest magnitude. Similarly, the eigenvector is

the unique dominant eigenvector defining the graph’s stationary distribution.

58

 ⋅ ⋅ ⋅

A primitive, irreducible, and stochastic PageRank matrix, S, reflects the transition

probabilities between pairs of states in an aperiodic Markov chain, a memoryless random

process where the probability of entering the next state only depends on the current state.

In an aperiodic Markov chain, any state may be entered during any transition, a property

satisfied by S being irreducible and primitive [LaM06]. S is constant after the PageRank

perturbation (16) is applied, i.e., all of S’s transition probabilities remain constant, thus, S

represents a stationary Markov chain. Therefore, S yields a unique stationary probability

distribution, x j , where for all i, x = ⋅ ,S x and there exists some value, j, such that i+1 i

x j = S x⋅ j . (19)

Given that the PageRank matrix, S, is primitive, irreducible, and stochastic, where

S represents the transition probabilities of a stationary aperiodic Markov chain, it can be

shown that its dominant eigenvalue equals one [LaM06]. More importantly, the dominant

eigenvector, x, reflects the stationary distribution of a memoryless random process, or the

unique probability a random surfer visits each vertex. This stationary result is guaranteed

by the delta shift value, δ, which ensures each vertex has a nominal probability of being

visited. Alternatively stated, applying the additive delta shift value, δ, ensures each vertex

can be reached from any other vertex, or in the context of a Markov chain, that any state

can be randomly reached from any other state.

Finally, and most significantly, the unique dominant eigenvector, x, produced by

the PageRank matrix, S, is unique up to graph isomorphism. Thus, an arbitrary vertex, vi ,

has the associated PageRank value, xi , with respect to any permutation matrix, P, where

P A P ⋅ ⋅ T ↔ P S P T ↔ P x . (20)

59

2.5.2. Computing the PageRank Vector
2.5.2.1. Power Method Iteration

There are many ways to find the PageRank vector, e.g., by applying MATLAB’s

‘eig’ function for finding eigen decompositions. Another method is the power method,

where PageRank matrix, S, is multiplied by the current PageRank vector, xi , yielding the

revised estimate of the PageRank vector, xi+1 [LaM06]. The vector, xi+1, is normalized

by applying an arbitrary norm, e.g., xi+1 ← x x = x ∑xi+1 . Thus, each iterationi+1 i+1 i+11

simply requires computing a normalized dot product, where

x ← S x ⋅ , (21)i+1 i

followed by

∑xi+1 . (22)x ← xi+1 i+1

The initial entries in x can equal an arbitrary value, such that x1 ()i ∈[0.0,1.0] and

∑x1 =1, e.g., x1 = 1n,1 n . The power method terminates after some number of iterations

is performed or some numerical tolerance, τ, is obtained, e.g., ∑ x − x <τ τ, ≥ 0. Thei+1 i

i thpower method derives its name from the observation the iteration can be expressed by

i ththe product of the power of S, denoted Si , and the initialization vector, x0 , where

[S x 0] ⎡ S x ⎤x1 ← ⋅ ⎣∑ ⋅ 0 ⎦
x ← ⋅ [] ⎡ S x ⋅ ⎤ = ⋅ ⋅ ⎡S () S x ⎤ ⎡ S () S x 2 S x 1 ⎣∑ 1 ⎦ ⎣ 0 ⎦ ⎣∑ ⋅ ⋅ 0 ⎦⎤ (23)
#

← ⋅ ⎡∑Si ⋅x0 ⎤ .xi ⎣⎡S
i x0 ⎤⎦ ⎣ ⎦

Finally, S’s left eigenvector, y, is obtained by computing y i+1 ← yT
i ⋅S, followed by the

requisite normalization, y i+1 ← y i+1 ∑y i+1 .

60

2.5.2.2. Expected Number of Power Method Iterations
The upper bound on the number of power method iterations required to obtain the

PageRank vector, x, to some precision τ, e.g., τ < 0.001, is based on the convergence rate,

the rate that ct → 0 for some value c. The value, c, is bounded by the magnitude ratio of

. S is a stochastic matrix, therefore, S’s two most dominant eigenvalues, i.e., c ≤ λ2 λ1

λ1 =1, which yields c ≤ λ2 . It has also been shown that the second dominant eigenvalue

≤α [HaK03]. Since ct ≤τ , the upperis bounded by the scaling value, α, thus, c ≤ λ2

bound on the number of power method iterations, t, needed to obtain the PageRank vector

using floating-point arithmetic computed in some base, b, is [GoV88, HaK03, LaM06]

log τ log τ log τb b bt ≤ ≤ ≤ → t ≤ log τ ≤ log α τ . (24)Sλ2 ()log b c logb log bαSλ2 ()

For example, if a PageRank vector is found using binary floating-point arithmetic,

b = 2. Assuming α = 0.85 and τ ≤ 0.001,

τ log 10 0.001 2log b log 0.001 t ≤ log S τ ≤ log τ = = = = 42.5043. (25)λ2 () α log α log 0.85 log 0.85 b 10 2

Therefore, performing 43 power method iterations ensures the PageRank vector is correct

to three decimal digits, or equivalently, approximately ten bits.

For many graphs, log 2 n power method iterations often appears to yield sufficient

precision in the PageRank vector [PBM+98]. However, a formal lower bound has not yet

been established on the number of iterations required to obtain the required precision, τ.

As shown in Section 3.2, assuming τ ≤1 n and α ≥ 0.5, a practical lower bound on the

log n tnumber of necessary power method iterations, t, is log 2 n, i.e., 2 ≤ .

61

2.5.3. PageRank: An Algorithm for Ranking Vertices
The PageRank algorithm consists of two key steps, applying a perturbation to the

graph’s adjacency matrix that yields a strictly positive stochastic matrix and determining

the dominant eigenvector of the stochastic matrix by computing an iterated dot product.

The eigenvector’s entries correspond to the probability the corresponding vertices will be

visited by an object that randomly selects its destination. The entire PageRank algorithm

is listed in Figure 33, where the stochastic PageRank perturbation is applied on lines 2–6.

Since the power method terminates based on the numerical differences with respect to the

last eigenvector estimate, the two vectors, s and x, are initialized on lines 8 and 9, along

with an iteration counter, z, on line 10.

The power method loop is entered on line 12 and the eigenvector estimate, x, is

copied to the vector, s, on line 14. The eigenvector is revised on line 16, where = ⋅ .x S x

Normalizing by the column sum norm on line 16, or 1-norm, x
1
, ensures x sums to one,

i.e., that x is a probability distribution. The norm choice is arbitrary, e.g., the Euclidean,

or spectral norm, x , could be used. The power method terminates after the tolerance, τ,
2

is obtained and the upper bound on the number of power method iterations is t = log α τ .

The PageRank perturbation requires Θ(n2) time, where n V= , since each entry

in A is scaled and shifted. Given a tolerance, τ, and scaling factor, α, the lower and upper

2 2bounds on the power method’s complexity are Ω(n ⋅ log n) , and Ο(n t⋅) , respectively,

where t = log α τ . If the graph is stored using sparse matrices, the lower and upper bounds

can be reduced to Ω ⋅(m log n) and Ο(m t⋅) , respectively, where m = E , the number of

edges contained in the graph.

62

A common modification of the PageRank algorithm uses a personalization vector,

v, containing user-specified probabilities. A potential application is “to decrease the effect

of spamming done by the so-called link farms” [LaM06]. The personalization vector, v, is

used to modify the perturbation on line 6 in Figure 33, which becomes [LaM03, LaM06]

1 1, n= ⋅ ⋅α A D − (1) 1 .S + − ⋅ ⋅ α v

1. getPageRank (A, n, α ,τ)
2. # construct degree matrix

3. d ←∑n Ai :,ii=1

4. D ← diag (d)
5. # apply PageRank perturbation
6. S ← ⋅ ⋅α A D −1 (1 α)+ − n

7. # initialize vectors and counter
n,18. ←x 1 n
n,19. ←s 0

10. z ← 0

11. # iterate power method
12. while (s x >τ)−

2

13. # save PageRank vector
14. s ← x

15. # update PageRank vector
16. ← ⋅xx S

17. # normalize PageRank vector
18. x ← x ∑x

19. # increment loop counter
20. z ← z +1
21. end while

22. return x
23. end PageRank

(26)

Figure 33. PageRank: An Algorithm for Ordering Vertices [PBM+98]

63

The following example applies the PageRank algorithm to the paw graph shown

in Figure 34 [Wes01]. The corresponding adjacency, degree, and inverse degree matrices

are listed in Tables 28(a)–(c), respectively. The perturbation on lines 2–5 yields the graph

shown in Figure 35, where edges created by the perturbation are depicted as dotted lines

and the corresponding perturbed matrix is listed in Table 28(d). The initial PageRank and

history vectors, x0 = 14,1 4 and s0 = 04,1 , are shown in Tables 29(a) and (b), respectively.

The revised vectors produced by executing the first power method iteration are shown in

Tables 29(c) and (d), respectively. The normalization step performed on line 17 does not

change x in this particular example.

d

cb

a

Figure 34. Paw Graph [Wes01]

cb

d

a

0.46

0.04 0.04

0.32

0.04 0.04

0.04

0.04

0.32 0.89

0.46

0.32

0.46

Figure 35. Applying the PageRank Perturbation to the Paw Graph, α = 0.85

64

Table 28. Paw Graph’s Adjacency and PageRank Matrices, α = 0.85

(a) A (b) D (c) D−1

a b c d
a 0 1 1 1

b 1 0 1 0

c 1 1 0 0

d 1 0 0 0

a b c d
a 3 0 0 0

b 0 2 0 0

c 0 0 2 0

d 0 0 0 1

a b c d
a 1/3 0 0 0

b 0 1/2 0 0

c 0 0 1/2 0

d 0 0 0 1

(d) S α A D 1 + − 1= ⋅ ⋅ − (α) n , α = 0.85

source
a b c d

destination

a 0.04 0.46 0.46 0.89 1.85

b 0.32 0.04 0.46 0.04 0.86

c 0.32 0.46 0.04 0.04 0.86

d 0.32 0.04 0.04 0.04 0.43

1 ∑

The next iteration yields the PageRank vectors listed in Tables 29(e) and (f). The

power method does not converge to four decimal places until the 20th iteration, as shown

in the PageRank vector listed in Table 29(h), where ⎡⎢log
2 () 0.0001⎤ = 20.λ S =0.6194 ⎥

Table 29. Paw Graph’s PageRank Vector, α = 0.85

(a) x0 (b) s0 (c) s = x (d) x = ⋅S x 1 0 1 0

a 0.25
b 0.25
c 0.25
d 0.25

a 0.4625
b 0.2146
c 0.2146
d 0.1083

a 0.25
b 0.25
c 0.25
d 0.25

a 0
b 0
c 0
d 0

(e) s = x (f) x = ⋅ (g) s = x (h) x = ⋅S x S x 2 1 2 1 ∞ ∞ ∞ ∞

a 0.4625
b 0.2146
c 0.2146
d 0.1083

a 0.3120
b 0.2597
c 0.2597
d 0.1685

a 0.3667
b 0.2459
c 0.2459
d 0.1414

a 0.3667
b 0.2459
c 0.2459
d 0.1414

65

The PageRank vector yielded by the paw graph for α = 0.85 corresponds to the

weighted graph shown in Figure 36(a). Vertices b and c have the same PageRank value,

0.2459, which is illustrated in Figure 36(b) using a shaded overlay. The PageRank values

of these two vertices preclude obtaining a canonical vertex order, where the most refined

vertex order induced by this PageRank vector is illustrated in Figure 37(a).

The paw graph’s canonical isomorph produced by nauty lists vertex b before c.

Therefore, the tie between their PageRank values, 0.2459, is broken by sorting on their

PageRank values, followed by their order in the canonical isomorph. Thus, the canonical

isomorph induces the canonical vertex order shown in Figure 37(b). However, as noted in

Section 2.3.4.2, determining a graph’s canonical isomorph may require exponential time.

For such graphs, a non-canonical vertex order, e.g., the order illustrated in Figure 37(a),

may be the best that can be obtained.

0.2459 0.2459

0.1414

0.3667

0.2459 0.2459

0.1414

0.3667

0.2459 0.2459

0.1414

0.3667

0.2459 0.2459

0.1414

0.3667

(a) PageRank Values (b) PageRank Partition

Figure 36. Paw Graph’s PageRank Vector, α = 0.85

(a) PageRank Order (b) Canonical Order

Figure 37. Paw Graph’s PageRank Ordering, α = 0.85

66

 ⋅ ⋅ ⋅

As described at the end of Section 2.5.1, the PageRank vector is also unique up to

graph isomorphism. Thus, a vertex, vi , that receives the PageRank value, xi , receives the

same PageRank value after applying an arbitrary permutation matrix, P, i.e.,

P A P ⋅ ⋅ T ↔ P S P T ↔ P x . (27)

Thus, two vertices contained in the same block of the orbit partition must yield

equal PageRank values. For example, the paw graph’s orbit partition is ⎡{d , ,b c , a ⎤ ,⎣ } {	 } { }⎦

where each block’s vertices yield the unique PageRank value, [0.1414, 0.2459, 0.3667 ,]

respectively. The paw graph’s orbit partition is the same as its coarsest equitable partition,

up to a block permutation. For example, applying 1–D Weisfeiler-Lehman stabilization to

the paw graph yields the coarsest equitable partition, ⎡{ } , ,b c ,{a .

The orbit partition does not always coincide with the coarsest equitable partition.

For example, the cuneane graph yields the coarsest equitable partition and orbit partition

illustrated in Figures 38(a) and (b), respectively. Additionally, each vertex yields the same

PageRank value, 0.1250. Thus, in this example, applying the coarsest equitable partition

suffices to identify which vertices must have equal PageRank values.

⎣ d {	 } }⎤⎦

e

c

d

b
a

f

g
h

a

h
f

b

gc

d e

(a) Coarsest Equitable Partition	 (b) Orbit Partition

⎡{a b, ,…, h}⎤ ⎡{a h} { , } , { , , , }, , d e b c f g ⎤⎣ ⎦	 ⎣ ⎦

Figure 38. Cuneane Graph’s Coarsest Equitable and Orbit Partitions

67

2.6. Observations about Equitable Vertices and PageRank Values
Vertices contained in the same block of the orbit and coarsest equitable partitions

yield equal PageRank values. However, finite-precision arithmetic limitations may cause

vertices contained in the same block of these partitions to have unequal PageRank values.

The algorithms described in Chapters 4 and 5 ensure vertices contained in the same block

of these partitions have equal PageRank values. Moreover, two of the methods reduce the

time needed to find the PageRank vector if the coarsest equitable partition is non-discrete.

Conversely, none of the algorithms improve the PageRank algorithm’s performance if the

graph’s coarsest equitable partition is discrete.

⎡ , } { } { ,For example, the house graph’s coarsest equitable partition, {c d , a , b e, }⎤⎣ ⎦

which is non-discrete, is illustrated in Figure 39(a). The PageRank values yielded by the

block’s vertices are [0.172, 0.168, 0.244 ,] respectively. The most non-discrete coarsest

equitable partition occurs if all vertices are contained in one block, i.e., the unit partition.

Such partitions are yielded by all k-regular graphs, in which every vertex has k neighbors.

For example, the coarsest equitable partition of the 4-regular octahedron graph shown in

Figure 39(b) is ⎡{ , , , , , }⎤ and each vertex has the PageRank value, 1 6 = 0.16.a b c d e f ⎦⎣

e

c d

b

a
ef

cb

d

a

cb

d

a

(a) House Graph, {c d, } , {a} , {b e}⎤ ⎡ a b c d e f, , , , , }⎡ , (b) Octahedron Graph, { ⎤⎣ ⎦ ⎣ ⎦

Figure 39. Coarsest Equitable Partitions of the House and Octahedron Graphs

68

Since the coarsest equitable partition of a k-regular graph contains one block, such

graphs yields the maximum performance gain with respect to the algorithms described in

Chapters 4 and 5. Although k-regular graphs are trivial for the PageRank algorithm, since

each vertex has the same PageRank value, they have many important uses. For instance,

k-regular graphs are used to assess applications such as nauty, since finding the canonical

isomorph of some k-regular graphs may cause such applications to need exponential time.

Some more interesting graph families with respect to the PageRank algorithm and

the results described in Chapters 3–5 are trees and grid graphs. For instance, many trees

and grid graphs often yield a coarsest equitable partition containing blocks composed of

multiple vertices. For example, the 9-vertex random tree shown in Figure 40(a) yields the

coarsest equitable partition, {a c g i , , , , b h} , {d , , e ⎤ ×⎡ } { , f } { } . The 3 3 grid graph shown⎣ ⎦

in Figure 40(b) yields a non-discrete coarsest equitable partition containing three blocks,

⎡{a c g i , , , } , { , , f h ,b d , } {e}⎤ .⎣ ⎦

c

d

e

b

a

f

g

h

i

c

d

eb

a

f

g

h

i

(a) 9-Vertex Tree (b) 3 3× Grid Graph

Figure 40. Two Graphs Yielding a Non-Discrete Coarsest Equitable Partition

69

2.7. Known Results
The PageRank algorithm is one of many methods that use eigenvector centrality

to determine relative vertex importance. The HITS algorithm orders responses using the

dominant eigenvector of two matrices [LaM06]. Recent social network research relaxes

an equitable partition’s definition to determine if results similar to those described herein

can be obtained on larger graphs [BrL04, Ler05]. The mansion graph has also been used

to define an “almost equitable partition” and its relationship to the Laplacian eigenvectors

of a graph (cf. Figure 1 and Section 2.4) [CDR07].

The work of Boldi et al. is most directly related to the results described herein,

since they first showed that vertices contained in the same block of the coarsest equitable

partition have equal PageRank values [BLS+06]. The earlier proof uses tools drawn from

category theory, the minimum base and its associated fibrations, which correspond to the

coarsest equitable partition and its associated blocks, respectively. That proof establishes

a Markov chain’s limit distribution is constant within fibrations, i.e., the PageRank vector

is constant within blocks.

Boldi et al. also show, in the proof accompanying their Theorem 9 [BLS+06], that

the PageRank vector can be lifted from the quotient matrix using techniques described in

Section 2.3.5. They suggest applying this theorem would reduce the time required to find

PageRank vectors, but do not define such a method or analyze its performance. However,

they do construct an algorithm for finding the coarsest equitable partition that minimizes

memory usage. Their last result describes graphs based on European web pages that yield

a non-discrete coarsest equitable partition. That result suggests the PageRank algorithm’s

performance can be improved on at least some web graphs.

70

2.8. Summary
Section 2.1 introduced an application of the PageRank algorithm to UAV swarms,

determining which nodes are the most beneficial for injecting misinformation assumed to

be randomly propagated in the network. That section also explored similar applications in

social networks, e.g., finding members that facilitate spreading rumor or diseases.

The remainder of Chapter 2 defines tools applied in Chapters 3–5 to improve the

PageRank algorithm’s performance if two or more nodes yield equal PageRank values.

Section 2.2 explores deciding graph isomorphism, where graphs are said to be isomorphs

if they define equivalent edges up to a vertex permutation. Section 2.3 defines key vertex

partitions commonly used to help decide graph isomorphism, such as equitable partitions.

The coarsest equitable partition is the most refined partition found if every vertex

is placed in one block and the only operations used are the sorting and comparison of any

adjacent vertex labels, e.g., as done in 1-D Weisfeiler-Lehman stabilization. The quotient

graph (matrix) induced by a partition is defined in Section 2.3.5. The eigenvector of a key

quotient matrix is used to obtain the most notable results herein, as shown in Chapter 5.

Section 2.4 describes some notable results that apply a graph’s eigenvalues and its

eigenvectors. Section 2.5 defines the PageRank algorithm that orders vertices by applying

a certain eigenvector. The algorithm ensures the eigenvector exists by first perturbing the

adjacency matrix to obtain a positive stochastic matrix that defines a Markov chain. The

dominant eigenvector of that matrix represents the Markov chain’s stationary distribution.

The eigenvector can be obtained using the power method, an iterated dot product process.

The results described in Chapters 3–5 improve the PageRank algorithm’s performance by

decreasing the number and size of the dot products computed by the power method.

71

III. Establishing Equitable Equivalency

3.1. Overview
A practical lower bound on the PageRank algorithm’s execution time is developed

in Section 3.2. This result is derived by applying two assumptions related to the scaling

value, α, and required precision, τ. Combining these assumptions with recent results that

determined the upper bound on the PageRank algorithm’s complexity [HaK03] yields the

lower bound. The existing upper bound and the new practical lower bound are essentially

derived by applying a known bound on the number of power method iterations [GoV88],

which is based on the two dominant eigenvalues of the PageRank matrix, S.

The material in Section 3.3 highlights the similarity between the dot product and

1-D Weisfeiler-Lehman stabilization. In particular, the coarsest equitable partition yielded

by applying 1-D Weisfeiler-Lehman stabilization is identical to the partition yielded by a

process based on the dot products, as illustrated by the example provided in Section 3.3.1.

This method of finding the coarsest equitable partition is listed in Section 3.3.2 and has

the same complexity bounds as 1-D Weisfeiler-Lehman stabilization. Its key contribution

is to highlight the relationship between the coarsest equitable partition and dot product.

More precisely, the proof constructed in Section 3.4.1 shows vertices contained in

the same block of the coarsest equitable partition must yield equal iterated dot products.

Such vertices also must have equal PageRank values, as established in Section 3.4.2 and

considered further in Section 3.4.3. This relationship between a graph’s coarsest equitable

partition and its PageRank values was previously and independently shown after applying

different techniques [BLS+06]. The relationship’s potential impact on the execution time

needed to compute the dot product and PageRank vectors is explored in Section 3.4.4.

72

3.2. Lower Bound on the Expected Number of Power Method Iterations
Before exploring the relationship between the coarsest equitable partition and the

PageRank vector, it is useful to determine a lower bound on the number of power method

iterations needed to obtain sufficient numerical precision in the PageRank vector, x. The

practical upper bound on the number of iterations, denoted t, is (cf. Section 2.5.2.2)

log b τt ≤ log τ ≤ log α τ = . (28)Sλ2 () log bα

The PageRank algorithm’s developers report log 2 n iterations often suffices, and

this behavior has been reported by other researchers [PBM+98, ANT+02]. However, no

theoretical derivations about t’s lower bound are known. Applying three key assumptions

does yield a practical lower bound on the number of power method iterations.

The key assumption is α ≥ 0.5, where the range, α ∈[0.5,1.0 ,] also includes the

default scaling factor, α = 0.85. The second assumption is b = 2, where the upper bound,

log b τ log bα , is independent of any base, b. The third assumption is τ ≤1 , the largest n

tolerance that can potentially yield n distinct PageRank values.

Theorem 1 Assuming α ≥ 0.5 and b = 2, the practical lower bound on
the number of power method iterations, t, to ensure τ ≤ is log 2 n.

Proof Assuming α ≥ 0.5, b = 2, and τ ≤1 ,n substitution yields

log b τ 2 (n) (n)log 1 log 1
log α τ = = = 2 = − log 2 () 1 = log n t . ∎n 2 ≤

log bα log 2 () −10.5

Thus, combining the existing upper bound and the new practical lower bound, the

number of power method iterations, t, needed to compute the PageRank vector, x, are

log 2 n t log ≤ ≤ τ ≤ log α τ . (29)Sλ2 ()

1 n

73

3.3. Motivating Equitable Dot Products and PageRank Values
The fundamental objective of this section is to motivate the techniques applied in

the proofs constructed in Section 3.4. The proof of Theorem 2 shows vertices contained

in the same block of a graph’s coarsest equitable partition must yield equal dot products.

The proof of Theorem 3 shows vertices contained in the same block of a graph’s coarsest

equitable partition must yield equal PageRank values. Hence, such vertices are equitable

with respect to iterated dot products and PageRank values.

There are several equivalent methods of finding the coarsest equitable partition,

where each method yields the same coarsest equitable partition up to a block permutation.

For instance, three methods of computing the coarsest equitable partition are described in

Section 2.3.3. However, neither the method based on the partition’s formal definition that

is described in Section 2.3.3.1, nor the most efficient method known of determining the

partition described in Section 2.3.3.2 implicitly suggest a matrix dot product equivalency.

Fortunately, 1-D Weisfeiler-Lehman stabilization, as described in Section 2.3.3.3, yields

such an equivalency. Moreover, that method yields a parallel processing implementation

of computing the coarsest equitable partition, since rows can be sorted independently.

The link between the coarsest equitable partition and dot product is predicated on

observing 1-D Weisfeiler-Lehman stabilization sorts each matrix row and the dot product

multiplies each matrix row by a vector. Appropriately substituting prime numbers yields a

method that uses a modified dot product to perform 1-D Weisfeiler-Lehman stabilization.

The method is described by example in Section 3.3.1 and formally listed in Section 3.3.2.

The algorithm’s key contribution is to motivate the proofs given in Section 3.4 that show

vertices in the same block must have equal dot products and PageRank values.

74

3.3.1. From Weisfeiler-Lehman Stabilization to Iterated Dot Products
This section contains an example illustrating how to obtain the coarsest equitable

partition using dot products. For example, the house graph’s coarsest equitable partition is

{ , } , {a} , { , }⎤ , if computed using 1-D Weisfeiler-Lehman stabilization. Iterated dot ⎡ c d b e⎣ ⎦

products can be modified to yield the same partition.

First, multiplying the house graph’s adjacency matrix listed in Table 30(a) with

the ones vector listed in Table 30(b) yields the dot product vector listed in Table 30(c).

Multiplying the house graph’s adjacency matrix with that vector yields the vector listed in

Table 30(d), where the entries associated with vertices b and e equal 7. Closer inspection

reveals the corresponding summed intermediate products, 1 2 0 3 1 2 0 2 1 3 ⋅ + ⋅ + ⋅ + ⋅ + ⋅ and

1 2 1 3 0 2 1 2 0 3,⋅ + ⋅ + ⋅ + ⋅ + ⋅ respectively. Sorting the summed intermediate products yields

the same sorted intermediate products, 0 2 0 3 1 2 1 2 1 3. ⋅ + ⋅ + ⋅ + ⋅ + ⋅

Similarly, multiplying the house graph’s adjacency matrix with the vector listed in

Table 30(d) yields the vector listed in Table 30(e), where vertices b and e yield the same

sorted products, 0 5 0 7 1 5 1 6 1 7 18, ⋅ + ⋅ + ⋅ + ⋅ + ⋅ = i.e., no further vertex refinement occurs.

Thus, the house graph’s coarsest equitable partition appears to be ⎡{ , } , { }, { , }c d a b e ⎤ .⎣ ⎦

Table 30. Iterated Dot Products of the House Graph’s Adjacency Matrix

(a) A 5,1 (c) x A x (d) x A x (e) x = ⋅(b) x0 = 1 1 = ⋅ 0 2 = ⋅ 1 3 A x 2

a b c d e
a 0 1 0 0 1

b 1 0 1 0 1

c 0 1 0 1 0

d 0 0 1 0 1

e 1 1 0 1 0

a 1

b 1

c 1

d 1

e 1

a 2

b 3

c 2

d 2

e 3

a 6

b 7

c 5

d 5

e 7

a 14

b 18

c 12

d 12

e 18

75

The vector shown in Tables 30(d) and (e) coincide with the house graph’s coarsest

equitable partition, ⎡{ , } , {a}, { , }⎦⎤ . Vertices b and e yield 18, where vertices yieldingc d b e ⎣

the same dot product are contained in the same block of the coarsest equitable partition.

However, it is erroneous to conclude iterated dot products of a graph’s adjacency matrix

must coincide with the coarsest equitable partition. In fact, a counter-example is obtained

in the next step in the example, which is based on prime number substitution.

Before proceeding, it is worth noting the key goal is to show vertices contained in

the same block of the coarsest equitable partition yield equal dot products. The example

motivates this result by suitably modifying the iterated dot product process to show that

the dot product could be used, albeit inefficiently, to find the coarsest equitable partition.

The first change substitutes all dot product entries with prime numbers. This step

eliminates a key problem in finding the coarsest equitable partition using the dot product,

namely, that two sets may yield equal products although each set contains distinct values.

For example, the distinct sets, {6,6} and { } ⋅ = ⋅ = 4 9 4,9 , yield the equal product, 6 6 36.

However, appropriately substituting distinct prime numbers often suffices to distinguish

such sets, e.g., applying the substitution, [4,6,9]→ [2,3,5 ,] ⋅ ≠ ⋅2 5. yields 3 3

For instance, substituting the ‘1’s vector listed in Table 31(a) with a seed vector of

‘2’s yields the seed vector listed in Table 31(b). Multiplying the house graph’s adjacency

matrix with the ‘2’s seed vector yields the vector listed in Table 31(c). Replacing the ‘4’s

with ‘2’s and ‘6’s with ‘3’s yields the vector shown in Table 31(d). Iterating that process

yields the vectors shown in Tables 31(e)–(l), where the stabilization cycle is detected by

comparing Tables 31(f)–(h) with Tables 31(j)–(l).

76

The vector listed in Table 31(f), [3, 5, 2, 2, 5 ,] corresponds with the house graph’s

coarsest equitable partition, ⎡⎣{ , } {a}, { }⎤ .]c d , b e , ⎦ However, the product, [10,10, 7, 7,10 ,

listed in Table 31(g) does not also correspond with the house graph’s coarsest equitable

partition. Thus, applying prime number substitution to each vector fails to yield a process

equivalent to performing 1-D Weisfeiler-Lehman stabilization. More precisely, applying

prime number to each vector resolves equal product issues, e.g., 6 6 4 9 3 3 2 5, ⋅ = ⋅ → ⋅ ≠ ⋅

but does not resolve equal summed prime products, e.g., 2 3 2 7 2 5 2 5⋅ + ⋅ = ⋅ + ⋅ = 20.

Table 31. Iterated Prime Dot Products of the House Graph’s Adjacency Matrix

A x (a) x0 = 15,1 (b) x1 = getPrimes (x0) (c) x2 = ⋅ 1 (d) x3 = getPrimes (x2)

a 1

b 1

c 1

d 1

e 1

a 2

b 3

c 2

d 2

e 3

a 4

b 6

c 4

d 4

e 6

a 2

b 2

c 2

d 2

e 2

A x A x (e) x4 = ⋅ 3 (f) x5 = getPrimes (x4) (g) x6 = ⋅ 5 (h) x7 = getPrimes (x6)

a 6

b 7

c 5

d 5

e 7

a 3

b 3

c 2

d 2

e 3

a 10

b 10

c 7

d 7

e 10

a 3

b 5

c 2

d 2

e 5

A x (k) A x x(i) x8 = ⋅ 7 (j) x9 = getPrimes (x8) x10 = ⋅ 9 (l) x11 = getPrimes () 10

a 6

b 8

c 5

d 5

e 8

a 3

b 5

c 2

d 2

e 5

a 10

b 10

c 7

d 7

e 10

a 3

b 3

c 2

d 2

e 3

77

Entry uniqueness is improved by multiplying rows and columns in the adjacency

matrix with the prime number vector yielded after the most recent iteration. This change

first constructs the temporary matrix, T D A D, where D = diag (xi) ,= ⋅ ⋅ and substitutes

x = ⋅x for x = ⋅x For example, the house graph’s initial iteration is shown in T A .i+1 i i+1 i

Table 32. Subsequently multiplying the house graph’s adjacency matrix with the diagonal

matrix, D, listed in Table 32(d), yields the temporary matrix, T, listed in Table 33(a).

The next iteration yields the vector listed in Table 33(c), where the resulting prime

numbers precisely correspond to the house graph’s coarsest equitable partition yielded by

1-D Weisfeiler-Lehman stabilization, ⎡{c d, } , {a}, {b e , }⎤⎦ . Additional iterations yield the⎣

same prime numbers, hence, the dot product iteration process has stabilized.

Table 32. Constructing the First Prime Diagonal Matrix

(a) x (b) = ⋅x = (x) = ()xx A (c) x getPrimes (d) D diag0 1 0 2 1 2

a 2

b 2

c 2

d 2

e 2

a 4

b 6

c 4

d 4

e 6

a 2

b 3

c 2

d 2

e 3

a b c d e
a 2 0 0 0 0

b 0 3 0 0 0

c 0 0 2 0 0

d 0 0 0 2 0

e 0 0 0 0 3

Table 33. First Prime Dot Product Iteration

T D D x Z ()(a) = ⋅ ⋅A (b) x2 (c) 3 = ⋅x2 (d) x4 = getPrimes x3

a b c d e
a 0 6 0 0 6

b 6 0 6 0 9

c 0 6 0 4 0

d 0 0 4 0 6

e 6 9 0 6 0

a 2

b 3

c 2

d 2

e 3

a 84

b 129

c 62

d 62

e 129

a 3

b 5

c 2

d 2

e 5

78

The last step needed to illustrate vertices contained in the same block yield equal

dot products is motivated by the impact of prime numbers on uniqueness. For example, if

the vectors, x, y, and z, are composed of prime numbers, the intermediate multiplications

contained in the dot products, x ⋅y and x z are distinct, but the summed multiplications, ⋅ ,

i.e., the dot products, may be equal. Various methods can be used to resolve this issue by

appropriately replacing the dot product summation, e.g., by sorting, and not summing, the

intermediate multiplications contained in each dot product.

For example, the vectors listed in Table 34 yield distinct intermediate products,

but happen to have an equal summed value, i.e., ⋅ T =106 5 2 5 3 5 5 3 7 = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ x z 5 7

⋅ T ⋅ + ⋅ + ⋅ + ⋅ + ⋅ and y z =106 = 7 2 7 3 3 5 3 7 5 7. However, comparing sorted product pairs

suffices to distinguish these dot products. For example, the products, ⋅ T ,x z and y ⋅zT

yield [5 2, 5 3, 5 5, 3 7, 5 7⋅ ⋅ ⋅ ⋅] and [⋅ ⋅ ⋅ ⋅ ⋅]⋅ 7 2, 7 3, 3 5, 3 7, 5 7 , respectively, corresponding

to [10,15, 25, 21, 35] and [14, 21,15, 21, 35 .] Finally, sorting the intermediate products in

ascending order yields [10,15, 21, 25, 35] and [14,15, 21, 21, 35 ,] respectively.

Since the sorted intermediate products are distinct, if x and y are assumed to be in

rows of an arbitrary matrix and z is the vector obtained after the last dot product iteration,

x and y cannot be located in the same block of the coarsest equitable partition. Therefore,

the dot product can be modified to obtain the same coarsest equitable partition yielded by

1-D Weisfeiler-Lehman stabilization.

Table 34. Two Equal Dot Products, x z⋅ T = ⋅ Ty z

(c) z(a) x (b) y

5 5 5 3 5 7 7 3 3 5 2 3 5 7 7

79

3.3.2. Finding the Coarsest Equitable Partition By Iterated Dot Products
The algorithm listed in Figure 41 determines a graph’s coarsest equitable partition

by similarly modifying the dot product. Initial values are assigned on lines 1–4, where the

entries in the vector, x, equal the prime number, ‘2’, and the partition archive vector, s, is

set equal to ‘0’. The partition archive vector, s, stores the values contained in x obtained

at the end of the most recent partition stabilization iteration.

The stabilization iteration occurs on lines 6–26, where the loop terminates if the

partition is identical after two consecutive iterations. The current vertex partition is saved

for future comparison on line 9, i.e., = .s x The diagonal prime number matrix based on

the current partition is constructed on line 11 and applied to the rows and columns of the

adjacency matrix, A, on line 13. The nested loops on lines 14–21 implement the last step,

where the dot product, = ⋅ ,x A x is replaced by the sorting of the summed multiplications

defined by each of the n dot products. The n multiplications defined by the n dot products

are computed on lines 16–18 and lexicographically sorted on line 20.

Each set of identical rows of sorted multiplications is assigned a unique identifier

on line 20. These identifiers are matched to a similarly unique prime number on line 21.

The previous and updated partitions are compared on line 6, where if the block identifiers

entries are equal, i.e., if = ,s x the vertex partition has stabilized and the main loop can be

terminated. This alternative method is equivalent to 1-D Weisfeiler-Lehman stabilization

2 2Ο ⋅ and yields the same upper bound on execution time, (n log n ⋅ log n) , or equivalently,

(n log2). Ο ⋅ ⋅ log2)Ο ⋅ n That upper bound can be reduced to (d n n if the graph is stored

using adjacency lists, where d = max deg v , v V ∈ , as described in Section 2.3.3.3. ((i)) i

80

2

1. findCoarsestPartition (A, n)
2. # create prime partition vector

,13. x 2= ⋅1n

4. # create archive partition vector
n,15. =s 0

6. # compute the coarsest equitable partition
7. while (s x≠)
8. # archive most recent partition
9. =s x

10. # construct diagonal matrix
11. D = diag ()x
12. # construct intermediate prime substitution matrix
13. = ⋅ ⋅AT D D

14. for i from 1 to n
15. # compute pair-wise product
16. for j from 1 to n
17. Z = T x ⋅ , , ji j i j

18. end for

19. # sort row of pair-wise products
20. Zi,: = sort (Zi,:)
21. end for

22. # find unique lexicographically sorted rows
23. x = getIdenticalRowIdentifiers (Z)

24. # substitute primes for lexicographically unique rows
25. x = getUniquePrimes (x)
26. end while

27. # return equitable partition

28. return B = ⎡b b ,…b , x = j v, ⎤ → ∈ b⎣ i=1 2 max ()x r r j⎦
29. end findCoarsestPartition

Figure 41. 1-D Weisfeiler-Lehman Stabilization Using Primes and Dot Products

81

3.4. Relating Equitable Dot Products and PageRank Values

3.4.1.	 Equitable Dot Products
Given an arbitrary graph, G, and its associated adjacency matrix, A, the coarsest

equitable partition, B, can be computed by applying Weisfeiler-Lehman stabilization. The

method listed in Figure 42 is a matrix-based algorithm for performing Weisfeiler-Lehman

stabilization (cf. Figure 18 in Section 2.3.3.3).

Theorem 2 Vertices contained in the same block of the coarsest equitable
partition have equal iterated dot products, xt+1 = ⋅ , assuming the initial A xt

vector’s entries are equal, i.e., x0 (i) = x j , ,0 () ∀i j .

Proof Weisfeiler-Lehman stabilization sorts adjacent labels, whereas the
dot product multiplies each row’s values by some vector. Replacing the
adjacent label sorting step on line 6 with = ⋅Z A x facilitates establishing

, ∈ → Z = Z , since a contradiction is obtained if the implication is v v 	 br s	 i r s

false, i.e., if v v, ∈ → Zr = Zs .br s	 i

Z ⋅ +x x ⋅xAssume that the dot products, = A A ⋅ + + " Ar r ,1 1 r ,2 2 r ,n n

and Z = As x1 A ⋅ + + " As ⋅xn are not equal, i.e., that Z ≠ Zss ,1 ⋅ + s ,2 x2 ,n	 r .

⎡x : v v 	 ∈E⎤ ,Then, sorting the adjacent labels, { , }∈E⎤ and ⎡x : v v,⎣ i r i ⎦ j { s j} ⎦⎣
should have showed the vertices are contained in different blocks, i.e., that
vr ∈bi and vs ∈bj , i j. Zr = Zs .≠ Otherwise, it must be the case that ∎

1. findCoarsestPartition (A, n)
,12. =x 1n

,13.	 =s 0n

4.	 while (s x≠)
s x5. =

1,n−deg v	 −1()r0 ⎤6. Zr n = ⎡ x sort (x : Ar =1),1: r s ,s⎣ ⎦
7. x = getUniqueRowIdentifiers (Z)
8. end while

9.	 return B = ⎡b b ,…b , x i v, ⎤ = → ∈ b⎣ i=1 2 max ()x r r i⎦
10. end findCoarsestPartition

Figure 42. 1-D Weisfeiler-Lehman Stabilization Using Matrices

82

More explicitly, during each iteration, each row contained in the label matrix, Z,

corresponds to the sorted labels of every adjacent vertex, i.e.,

1,n−deg () 1v − ⎤rsort (s : r ,s =)x A 1 0 . (30)Z ,1: = ⎣
⎡

rr n x ⎦

Thus, the r th row contains the current label, xr , given to vertex r, followed by the sorted

labels of its adjacent neighbors, min (xs 1) ,…, max (xs n =) , such that {v vr , }∈E. Finally, = s

the row, Zr , : , is padded with n − deg (v) −1 zero entries to ensure Z is a square matrix. r

At the end of this iteration, r = if and only if Zr i = Z ,i ∀x xs , s , .i

 Replacing (30) with the dot product, i.e., = ⋅x,Z A induces the computation of n

dot products, where r = ,1 ⋅ + r ,2 ⋅ + + " ,n ⋅ . However, A is a graph’s {0,1}Z A x A x r 1 2 A x r n

adjacency matrix, thus, Zr =∑x As : r ,s =1, where Ar s, =1 ↔{v v, s}∈E. Therefore, the r

dot product is simply the sum of the vertex labels adjacent to vr , which for some graphs,

suffices to construct the coarsest equitable partition. Thus, vertices contained in the same

block of a graph’s coarsest equitable partition yield equal iterated dot products, assuming

the seed vector’s entries are equal. Thus, if x = cn,1, where c is some constant, iterating

= ⋅x and x = getUniqueRowIdentifiers (Z) yields Z Z if v vs ∈bi .Z A r = s r ,

Vertices contained in different blocks may yield equal dot products, i.e., given two

vertices, vr and vs , such that vr ∈bi ∧ ∈vs bj , it is possible that r = s .Z Z Therefore, the

, ∈b . Applying similar logic shows the inverse is converse is false, i.e., Z Z = → v vr s r s i

also false, i.e., if i j, v i v bj≠ such that r ∈b ∧ ∈ → r ≠Z Zs . Finally, the contrapositive s

Z Z → ∈ ∧ ∈ such that i j.is true, i.e., ≠ v b v b , ≠r s r i s j

83

3.4.2. Equitable PageRank Values
The relationship between the coarsest equitable partition and the dot product can

be exploited to improve the PageRank algorithm’s performance. The PageRank algorithm

perturbs an adjacency matrix to obtain a strictly positive stochastic matrix. The PageRank

algorithm then uses the power method to find the normalized dominant eigenvector of the

that perturbed matrix, where the PageRank vector’s entries are unique up to isomorphism.

This relationship is leveraged in Chapters 4 and 5 to improve the PageRank algorithm’s

performance on graphs yielding a non-discrete coarsest equitable partition, i.e., partitions

containing one or more blocks composed of multiple vertices.

Theorem 3 Vertices contained in the same block of the coarsest equitable
partition must have equal PageRank values, i.e., , ∈b → x =v v x .r s i r s

Proof Assume the initial PageRank vector is the normalized ones vector,
= n,1x 1 n. and the PageRank vector is computed using the power method,

which computes a normalized iterated dot product. Applying Theorem 2
suffices to establish vertices contained in the same block of the coarsest
equitable partition must have equal PageRank values.

Identical results also hold with respect to the converse, inverse, and
contrapositive. For instance, vertices contained in different blocks of the
coarsest equitable partition may have the same PageRank value. However,
vertices having different PageRank values must be in different blocks. ∎

Boldi et al. first showed that vertices contained in the same block of the coarsest

equitable partition must also have equal PageRank values [BLS+06]. Their proof is based

on category theory, namely, the minimum base and its fibrations, which correspond to the

coarsest equitable partition and its blocks, respectively. They show that a Markov chain’s

stationary distribution is constant within each fibration. Similarly, the PageRank value is

constant within each block. Their work and Theorem 3 are only sufficient, i.e., no claims

are made in either proof about the PageRank values of vertices in different blocks.

84

3.4.3. Additional Equitable Relationships
Notably, dot product iteration may yield a less refined partition than the coarsest

equitable partition. Conversely, vertices contained in the same block of a graph’s coarsest

equitable partition yield equal dot products, assuming the first dot product iteration uses a

constant vector, e.g., the all-ones seed vector. Additionally, vertices contained in the same

block of the orbit partition yield equal dot product values, since vertices contained in the

same orbit are necessarily contained in the same block of the coarsest equitable partition.

An orbit partition may be more refined than the coarsest equitable partition, i.e.,

contain more blocks. Since the coarsest equitable partition may be less refined than the

graph’s orbit partition, it may reveal more vertices that have equal PageRank values and

is similarly more useful for improving the PageRank algorithm’s performance. Moreover,

the coarsest equitable partition can be obtained in deterministic polynomial time, whereas

computing the orbit partition may require exponential time (cf. Sections 2.3.3 and 2.3.4).

For example, the 12-vertex graph illustrated in Figure 43 yields an orbit partition

containing three 4-vertex blocks and a coarsest equitable partition containing an 8-vertex

block and a 4-vertex block. Hence, more performance gains can be obtained by applying

the coarsest equitable partition, since it only contains two blocks. In particular, using the

coarsest equitable partition establishes eight vertices have equal PageRank values and the

other four vertices also have equal PageRank values, for any scaling value, α.

Figure 43. Graph Yielding Different Coarsest Equitable and Orbit Partitions

85

3.4.4. Complexity Analysis
A matrix is assumed to be a dense, or non-sparse, matrix, unless otherwise stated.

This approach simplifies the analysis and suffices to demonstrate the utility of applying a

graph’s coarsest equitable partition to improve the PageRank algorithm’s performance.

An arbitrary graph, G, contains n V= vertices and defines an adjacency matrix, A, that

contains n2 entries. G’s coarsest equitable partition, B, contains b k = blocks, where= B

≤ ⎡
1 b k

⎤ kb n, B b b = ⎣ , ,2 …,b = = , and n =∑ = V .biB ⎦ i=1

Given the number of vertices, n, finding the coarsest equitable partition requires

Ο(n2 ⋅ log n) time using the method described in Section 2.3.3.2. Furthermore, given the

PageRank matrix, S, obtained using some arbitrary scaling value, α, the lower bound on

2using the power method to obtain the PageRank vector, x, is Ω(n ⋅ log n) , a new result

derived in Section 3.2. The upper bound on using the power method to obtain an arbitrary

2 τ ≤ log α τ , as wasprecision, τ, in the PageRank vector, x, is Ο(n t⋅) , where t ≤ log Sλ2 ()

described in Section 2.5.2.2. Thus, the PageRank algorithm, which is essentially a power

2 2method variant has a lower and upper bound of Ω(n ⋅ log n) and Ο(n t⋅) , respectively.

The coarsest equitable partition can be determined in Ο(n2 ⋅ log n) time using the

algorithm described in Section 2.3.3.2. Thus, a PageRank algorithm variant that applies

the coarsest equitable partition increases its execution time bounds by a n2 ⋅ log n term.

Thus, such a PageRank algorithm variant yields the lower and upper bounds, 2 ⋅ ⋅ nn2 log

2 2 2 2 2n n t Ω n log ⋅ n n t ⋅ .and n ⋅ log + ⋅ , respectively, which are (⋅ n) and Ο(n log +)

86

Therefore, any algorithm that applies the coarsest equitable partition to reduce the

execution time of the PageRank algorithm must recoup the cost of initially computing the

partition, i.e., the n2 ⋅ log n term. Such efficiencies can be obtained by observing vertices

contained in some arbitrary block, bi , yield equal PageRank values, where −1 of thebi

dot products are being (unnecessarily) computed. For instance, the PageRank algorithm’s

b B= =2 b n log n) , n =∑lower bound, Ω(n ⋅ log n) , can be written as Ω(∑ ⋅ ⋅ i.e., b B
i bii=1 i=1

dot products of length n for log n iterations. Similarly, the PageRank algorithm’s upper

b B=2bound, Ο()n t⋅ , can be equivalently written as Ο(∑ ⋅ ⋅ t).b nii=1

Hence, a PageRank algorithm variant that applies the coarsest equitable partition

b B
⋅ ⋅ log n) , and similarly, the upper bound, nyields the lower bound, Ω(n2 ⋅ log n +∑ i

= bi=1

b B=2Ο(n ⋅ log n +∑ ⋅ ⋅ t). Thus, eliminating n ⋅ log nn 2 or more operations will reduce bii=1

the time required to obtain the PageRank vector. The ProductRank algorithm described in

Section 4.3 eliminates −1 dot products from block bi of a coarsest equitable partition.bi

The QuotientRank algorithm described and analyzed in Chapter 5 uses a quotient matrix

to reduce the time needed to obtain the PageRank vector more dramatically.

Finally, decreasing τ increases precision by increasing the executed number of

power method iterations. However, increasing precision cannot ensure vertices contained

in the same block have equal computed PageRank values. The three algorithms described

in Chapters 4 and 5 guarantee each block’s vertices have the same PageRank values. The

latter two algorithms often compute the PageRank values more efficiently.

87

IV. Reducing Equitable Differences and Dot Products

4.1. Overview
The relationship of the PageRank vector to the coarsest equitable partition shown

in Chapter 3 yields several methods of improving the PageRank algorithm’s performance

if the graph’s coarsest equitable partition is non-discrete, i.e., contains one or more blocks

composed of multiple vertices. For instance, the two algorithms described in this chapter

leverage that vertices contained in the same block of the coarsest equitable partition have

identical iterated dot products up to a permutation of the summed intermediate products.

The first algorithm, AverageRank, replaces the computed PageRank value of each

vertex with the average PageRank value of vertices contained in the corresponding block.

Thus, vertices contained in the same block will receive the same PageRank value, which

eliminates any numerical differences in the computed PageRank values of such vertices.

The second algorithm, ProductRank, computes one dot product for each block contained

in the coarsest equitable partition during each power method iteration. The ProductRank

algorithm guarantees vertices contained in the same block have the same PageRank value

and reduces the execution time needed to compute the PageRank vector.

Both algorithms ensure vertices contained in the same block have equal PageRank

values if the power method used to determine the PageRank vector is terminated after an

arbitrary iteration. The ProductRank algorithm also reduces the time needed to obtain the

PageRank vector by only computing certain dot products and thus is more useful than the

AverageRank algorithm. Both algorithms are superseded by the QuotientRank algorithm

described in Chapter 5, which uses significantly more robust techniques to further reduce

the time needed to compute the PageRank vector.

88

4.2. Eliminating Equitable PageRank Differences

4.2.1. Numerical Differences and Equitable Vertices
Vertices that are contained in the same block of the coarsest equitable partition of

an arbitrary graph must have equal PageRank values. However, the PageRank values may

differ if the values are computed using finite-precision arithmetic, where such differences

induce an invalid vertex ordering. Such differences may occur even after many iterations

of the power method have been performed to obtain the PageRank vector. The following

example is based on the tree shown in Figure 44 that yields the adjacency matrix listed in

Table 35 and the coarsest equitable partition, ⎡⎣{a c g i , , , } , {b h} , { d f , } , { }⎦, e ⎤ .

a

he

d g

b

ifc

Figure 44. 9-Vertex Tree: A Graph Yielding a 4-Block Equitable Partition

Table 35. A 9-Vertex Tree’s Adjacency Matrix

a b c d e f g h i
a 0 1 0 0 0 0 0 0 0

b 1 0 1 0 1 0 0 0 0

c 0 1 0 0 0 0 0 0 0

d 0 0 0 0 1 0 0 0 0
e 0 1 0 1 0 1 0 1 0
f 0 0 0 0 1 0 0 0 0
g 0 0 0 0 0 0 0 1 0

h 0 0 0 0 1 0 1 0 1

i 0 0 0 0 0 0 0 1 0

89

This tree’s PageRank vector for α = 0.85 is listed in Table 36(a), where sorting its

entries in descending order in Table 36(b). Since the tree’s coarsest equitable partition is

{a c g i , , , } ,{b h, } ,{d f , } ,{e}⎤ , vertices { , , , }⎡ a c g i should have the same PageRank value. ⎣ ⎦

The PageRank vector listed in Table 36(a) initially confirms this expected behavior, since

vertices { , , , }a c g i have an equal PageRank value up to the fourth decimal place, 0.0682.

However, close inspection shows the PageRank values of vertices g and i are 1.388 10-17 ⋅

greater than the PageRank values of vertices a and c. The difference occurs in the last bit

of the double-precision format specified by the IEEE 754 standard [ISB85]. The value,

1.388 10⋅ -17 , is small in magnitude and induces a false order on vertices {a c g i , , , } , where

vertices g and i erroneously receive a higher PageRank value than vertices a and c.

In this example, rounding to four decimal places ensures vertices contained in the

same block have equal PageRank values. However, simply rounding the PageRank vector

cannot guarantee such vertices have equal PageRank values. In particular, the computed

PageRank values of vertices contained in each block may be above or below the rounding

point and thus may receive different rounded PageRank values.

Table 36. A 9-Vertex Tree’s PageRank Vector, α = 0.85

(a) PageRank Vector (b) Sorted PageRank Vector

a 0.0682
b 0.1818
c 0.0682
d 0.0659
e 0.2318
f 0.0659
g 0.0682
h 0.1818
i 0.0682

0.2318 e
0.1818 b
0.1818 h
0.0682 g
0.0682 i
0.0682 a
0.0682 c
0.0659 d
0.0659 f

90

4.2.2. AverageRank: An Algorithm for Eliminating Equitable Differences
Fortunately, differences in the computed PageRank values of vertices contained in

the same block of the coarsest equitable partition can be easily eliminated. The algorithm

listed in Figure 45 sets the PageRank value of each block’s vertices to the average of their

computed values without internally modifying the PageRank algorithm (cf. Section 2.5).

First, the PageRank vector is determined on line 3 using the PageRank algorithm.

The coarsest equitable partition on line 5 is obtained using any method described

in Section 2.3.3, e.g., 1-D Weisfeiler-Lehman stabilization. PageRank values differences

among vertices in the same block are eliminated on lines 6–11 by setting their PageRank

values to their corresponding average PageRank value. The median could be used in lieu

of the average, but determining the median PageRank value requires (n log n) time, Θ ⋅

whereas determining the average PageRank value only requires Θ(n) time.

1. findEquitablePageRank (A, n, α ,τ)
2. # compute the PageRank vector
3. x ← getPageRank (A, n, α ,τ)

4. # compute the coarsest equitable partition
5. B ← findCoarsestPartition (A, n)

6. # assign average PageRank value of equitable vertices
7. foreach , i ∈Bblock b
8. foreach vertex v , j ∈bi

9. x () ← x bij ()
10. end foreach
11. end foreach

12. return x
13. end EquitablePageRank

Figure 45. AverageRank: An Algorithm for Ensuring Equitable PageRank Values

91

4.2.3.	 Complexity Analysis
Applying the power method to an arbitrary PageRank matrix, S, requires at least

Ω(n2 ⋅ log n) time, a new result described in Section 3.2. The coarsest equitable partition

2can be found in Ο(n ⋅ log n) time by applying the algorithm described in Section 2.3.3.2.

Thus, the power method’s lower bound equals the upper bound on computing the coarsest

equitable partition. Obtaining the average PageRank value of the vertices contained in the

B 2same block requires Θ(n =∑) time and is dominated by n ⋅ log n. Thus, the lowerbii=1

2	 2⋅ n log + Ω(n log bound on the AverageRank algorithm is 2 ⋅ n n , which is ⋅ n).

2The upper bound on applying the power method to S is Ο(n t⋅) , where t denotes

the number of power method iterations and t ≤ logα τ (cf. Section 2.5.2.1). Therefore, the

power method’s upper bound exceeds the complexity of computing the coarsest equitable

partition, since log α τ ≥ log n for most practical values of n, τ, and α. Thus, by combining

2the upper bounds of applying the power method, Ο(n t⋅) , finding the coarsest equitable

2partition, Ο(n ⋅ log n) , and obtaining mean PageRank values, Θ(n) , the upper bound

2 2	 2 2n n t n + , Ο n log +on the AverageRank algorithm is n ⋅ log + ⋅ which is (⋅ n n t ⋅).

The AverageRank algorithm ensures each block’s vertices receive equal PageRank

values, but costs n2 ⋅ log n more time than the PageRank algorithm. The ProductRank and

QuotientRank algorithms described in Section 4.3 and Chapter 5, respectively, provide

this same assurance and decrease the PageRank algorithm’s execution time if the graph’s

coarsest equitable partition is non-discrete.

92

 ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

4.3. Eliminating Equitable PageRank Dot Products

4.3.1. Excess Dot Products and Equitable Vertices
The AverageRank algorithm described in Section 4.2.2 eliminates differences in

PageRank value between vertices contained in the same block of the coarsest equitable

partition and increases the PageRank algorithm’s execution time. Conversely, the method

described in Section 4.3.2, the ProductRank algorithm ensures vertices in the same block

have equal PageRank values and decreases the PageRank algorithm’s execution time.

For example, the house graph shown in Figure 46(a) yields the coarsest equitable

partition, ⎡{ , } ,{a} ,{ , ⎤ , shown in Figure 46(b). Since vertices b and e are contained c d b e }⎣ ⎦

in the same block, it suffices to obtain one of their associated dot products and assign its

value to their associated PageRank vector entries during each power method iteration.

Multiplying the house graph’s PageRank matrix listed in Table 38 with the initial

PageRank vector, the normalized all-ones vector shown in Table 39(a), yields the updated

PageRank vector shown in Table 39(b). More significantly, the intermediate product sums

yielded by vertices b and e are 0.455 0.2 ⋅ + 0.030 0.2 + ⋅ + 0.030 0.2 0.455 0.2 ⋅ + 0.313 0.2

and 0.455 0.2 + 0.313 0.2 + 0.030 0.2 ⋅ + 0.455 0.2 + 0.030 0.2, respectively.

Inspection reveals ordering the intermediate products yields the same sorted list,

0.030 0.2 + 0.030 0.2 + 0.313 0.2 ⋅ + 0.455 0.2 + 0.455 0.2. Vertices c and d also yield the

same intermediate products up to isomorphism, since vertices c and d are also contained

in the same block of the coarsest equitable partition. Hence, a second dot product can be

eliminated during each power method iteration. The ProductRank algorithm described in

Section 4.3.2 applies this technique to decrease the PageRank algorithm’s execution time.

The potential performance improvement is formally determined in Section 4.3.3.

93

eb

a

c d

e

c d

b

a

(a) House Graph (b) Coarsest Equitable Partition

Figure 46. House Graph and Its 3-Block Coarsest Equitable Partition

Table 37. House Graph’s Adjacency and Degree Matrix

(a) A (b) D

a b c d e
a 0 1 0 0 1

b 1 0 1 0 1

c 0 1 0 1 0

d 0 0 1 0 1

e 1 1 0 1 0

a b c d e
a 2 0 0 0 0

b 0 3 0 0 0

c 0 0 2 0 0

d 0 0 0 2 0

e 0 0 0 0 3

Table 38. House Graph’s Stochastic PageRank Matrix, S, α = 0.85

a b c d e
a 0.030 0.313 0.030 0.030 0.313

b 0.455 0.030 0.455 0.030 0.313

c 0.030 0.313 0.030 0.455 0.030

d 0.030 0.030 0.455 0.030 0.313

e 0.455 0.313 0.030 0.455 0.030

Table 39. Initial PageRank Power Method Iterations of the House Graph
5,1 S x⋅ ⋅ ⋅S x S x1 0 1 2(a) x0 = (b) x1 = (c) x2 = (d) x3 =

S x S x5 ∑(S x⋅ 0) ∑(⋅ 1) ∑(⋅ 2)

a 0.2

b 0.2

c 0.2

d 0.2

e 0.2

a 0.143

b 0.257

c 0.172

d 0.172

e 0.257

a 0.175

b 0.237

c 0.176

d 0.176

e 0.237

a 0.164

b 0.246

c 0.172

d 0.172

e 0.246

94

4.3.2. ProductRank: An Algorithm for Eliminating Equitable Dot Products
In the AverageRank algorithm described in Section 4.2.2, the PageRank value of

each block’s vertices was set to their average PageRank value. That method exploits the

relationship established in Section 3.4.2, that such vertices yield identical dot products up

to a permutation and thus have equal PageRank values. In that algorithm, the average is

obtained after the power method is terminated, i.e., no internal modifications are made to

the PageRank algorithm. The iterated dot product relationship is further exploited in this

section to develop an algorithm that reduces the time needed to compute the PageRank

vector by computing one dot product for each block during each power method iteration.

However, to achieve that result, the PageRank algorithm must be internally modified.

The unaltered PageRank algorithm listed in Figure 33 is repeated in Figure 47(a).

Since lines 1–10 are unchanged in the ProductRank algorithm listed in Figure 47(b), they

are not listed. The first change is to obtain the coarsest equitable partition on line 11 using

the findCoarsestPartition function. That function can implement any of the three methods

described in Section 2.3.3 for computing the graph’s coarsest equitable partition.

The next change is to replace the matrix multiplication step in line 16, x ← ⋅ ,S x

of the original PageRank algorithm with lines 17–24 in the ProductRank algorithm. The

lines are similar to lines 6–11 in Figure 45, which assign the average PageRank value of

each block’s vertices to those same vertices. In this algorithm, the dot product of the first

vertex in every block is computed on lines 19 and 20. The resulting updated PageRank

value is subsequently assigned to each vertex in that block using the loop on lines 21–23.

The ProductRank algorithm’s remaining lines, 25–31, are identical to lines 17–23 in the

original PageRank algorithm listed in Figure 47(a).

95

1. getPageRank (A, n, α ,τ)
2. # perturb adjacency matrix

n3. di ←∑ i=1
A:,i

4. D ← diag ()d

5. # apply PageRank perturbation

6. S ← ⋅ ⋅α A D −1 () 1 α+ − n

7. # initialize vectors and counter
n,1x 1 n8. ←

n,19. ←s 0

10. z ← 0

11. # iterate power method

12. while (s x
2
>τ)−

13. # save PageRank vector

14. s ← x

15. # update PageRank vector

16. ← ⋅xx S

17. # normalize PageRank vector

18. x ← x ∑x

19. # increment loop counter

z ← +20. z 1

21. end while

22. return x

23. end PageRank

(a) PageRank Algorithm

1. getPageRank (A, n, α ,τ)

11. # get coarsest equitable partition

12. B = findCoarsestPartition ()A, n

13. # iterate power method

14. while (s x >τ)−
2

15. # save PageRank vector

16. s ← x

17. # update PageRank vector

18. foreach block b i ∈, B

19. v ← bi (1)

x ← S x20. :,v ⋅

21. foreach vertex v ∈ i, b

22. xv ← x

23. end foreach

24. end foreach

25. # normalize PageRank vector

26. x ← x ∑x

27. # increment loop counter

28. z ← z +1

29. end while

30. return x

31. end PageRank
(b) ProductRank Algorithm

Figure 47. ProductRank: An Algorithm for Eliminating Equitable Dot Products

96

4.3.3. Complexity Analysis
The AverageRank algorithm described in Section 4.2.2 ensures vertices contained

in the same block have equal PageRank values. The ProductRank algorithm described in

Section 4.3.2 similarly ensures vertices contained in the same block have equal PageRank

values. However, the ProductRank algorithm reduces the number of operations needed to

compute the PageRank vector if a graph’s coarsest equitable partition is non-discrete. The

performance gain is obtained by only computing one dot product for every block during

each power method iteration. This method succeeds since vertices contained in the same

block yield equal dot products up to a permutation of their intermediate multiplications.

Therefore, the ProductRank algorithm reduces the time needed to compute the PageRank

vector if the coarsest equitable partition is non-discrete. Thus, the ProductRank algorithm

listed in Section 4.3.2 supersedes the AverageRank algorithm listed in Section 4.2.2.

For example, it was shown in Section 4.3.1 that applying the PageRank algorithm

to the house graph requires five dot products to be computed during each power method

iteration, which requires a total of 25 multiplications and 20 additions. The house graph’s

coarsest equitable partition contains three blocks, where two blocks contain two vertices,

thus, two dot products can be eliminated from each block in each power method iteration.

Each iteration performed by the AverageRank algorithm computes 5 dot products,

which requires 25 multiplications and 20 additions. Conversely, each iteration performed

in the AverageRank algorithm only computes 3 dot products, requiring 15 multiplications

and 12 additions. Thus, if three iterations are executed, ensuring three bits of precision,

the AverageRank algorithm performs (25 + 20) ⋅3 =135 operations, but the ProductRank

algorithm only performs (15 +12) ⋅3 = 81 operations.

97

If α ≥ 0.5 and τ ≤1 ,n the PageRank algorithm needs at least Ω ⋅n2 log n time, ()
2as shown in Section 3.2. Obtaining the coarsest equitable partition requires Θ ⋅ (n log n)

time, as noted in Section 2.3.3.2. Hence, the ProductRank algorithm obtains the coarsest

2 2equitable partition in Ω ⋅(n log n) time and applies the power method in Θ ⋅ (n log n)

()time, yielding an overall lower bound of Ω ⋅ n2 log n .

2The PageRank algorithm’s upper bound is Ο(n t⋅) , where t ≤ log τ denotes theα

maximum number of required power method iterations, as described in Section 2.5.2. The

2ProductRank algorithm computes the graph’s coarsest equitable partition in Θ ⋅ (n log n)
2time and applies the power method in Ο(n t⋅) time, yielding an overall upper bound of

2 2(n log + ⋅).Ο ⋅ n n t

Sharper bounds can be derived by accounting for the dot products eliminated by

applying the coarsest equitable partition. If a block contains s vertices, s −1 dot products,

or ()− ⋅n multiplications and (s −1) ⋅ − additions are saved in each power method s 1 (n 1)

iteration. If t iterations are performed, (−) ⋅ ⋅ − ⋅n 1) t operations are eliminated. s 1 2(

A coarsest equitable partition, B, contains b = B blocks, where n = bi . Only∑ B

=1i

one dot product is computed for each block, therefore, the algorithm yields a lower bound

2 2Ω ⋅ + ⋅ ⋅)of (n log n b n log n , where n ⋅ log n operations are used to compute the coarsest

equitable partition and b n⋅ ⋅ log n operations are used to obtain b dot products of length n

2 nfor at least log n iterations. Similarly, the upper bound is Ο(n ⋅ log n b+ ⋅ ⋅ t).

98

For example, the 4× 4 grid graph shown in Figure 48 yields the coarsest equitable

partition listed in Table 40. The partition contains 3 blocks, hence, only 3 dot products are

computed during every power method iteration. Eliminating 13 of 16 dot products saves

13 ⋅ (16 +15) = 403 floating-point operations. Computing the remaining three dot products

only requires 3 16 (+15) = 93 floating-point operations. ⋅

Obtaining the coarsest equitable partition requires as many as 162 ⋅ log 16 = 10242

operations. Since ⎡1024 403 ⎤ = 3, at least four power method iterations must be executed ⎢ ⎥

before the PageRank algorithm’s execution time is reduced. However, since log 2 n = 4, at

least that many iterations are performed to obtain the PageRank vector. Thus, if α ≥ 0.5

and τ ≤ 1 n ≤ 1 16 ≤ 0.0625, the Product Rank algorithm shown in Figure 47(b) needs less

time than the PageRank algorithm to compute this grid graph’s PageRank vector.

164 128

3 7 11 15

2 6 10 14

1 1395

Figure 48. 4 4 Grid: A Graph Yielding a 3-Block Equitable Partition ×

Table 40. 4 4 Grid Graph’s 3-Block Coarsest Equitable Partition ×

i Block ib ∈ B

1 {1, 4, 13, 16}

2 {2, 3, 5, 8, 9, 12, 14, 15}

3 {6, 7, 10, 11}

99

4.3.4. Algorithm Applicability
The decision to use the ProductRank algorithm listed in Figure 47(b) or the more

efficient QuotientRank algorithm developed in Chapter 5 to obtain the PageRank vector

hinges on several factors, where this section prefaces the more in-depth analysis provided

in Section 5.7. The key factors are the number of blocks, b, in a graph’s coarsest equitable

partition, B, PageRank scaling value, α, and required precision in the PageRank vector, τ.

To simplify the analysis, it is assumed α ≥ 0.5 and τ ≤1 , where =n n V , the number of

vertices in the input graph, G.

Loosely stated, if b is sufficiently less than n, applying either method dramatically

reduces the time needed to obtain the PageRank vector. However, if b is sufficiently large

with respect to n, where b n,≤ applying the ProductRank or QuotientRank algorithm can

increase the time needed to obtain a PageRank vector by a factor of two, i.e., 2 n2 log .⋅ ⋅ n

The worst case occurs if the coarsest equitable partition is discrete, i.e., if b n,= since the

time needed to obtain the coarsest equitable partition equals the lower bound of obtaining

the PageRank vector, n2 ⋅ log n. However, the PageRank algorithm’s upper bound can be

significantly reduced if the graph’s coarsest equitable partition is discrete, i.e., if b n.<

Unfortunately, it is impossible to assess a priori if the graph yields a non-discrete

coarsest equitable partition containing a sufficiently small number of blocks, b. Assuming

b is sufficiently small with respect to n, the PageRank vector is obtained more efficiently

using either the ProductRank algorithm listed in Section 4.3.2 or QuotientRank algorithm

constructed in Chapter 5. Although both algorithms are more efficient than the PageRank

algorithm, the ProductRank algorithm is easier to implement, whereas the QuotientRank

algorithm more dramatically reduces the time needed to compute the PageRank vector.

100

V. Lifting PageRank Values

5.1. Overview
A more dramatic decrease in the PageRank algorithm’s execution time is obtained

using the quotient matrix induced by the graph’s coarsest equitable partition, as shown in

Section 5.2. An example that applies the quotient matrix to obtain the PageRank vector is

constructed in Section 5.3. The corresponding algorithm is described in Section 5.4 and

its analysis is contained in Section 5.5. The utility of the quotient graph was also obtained

using different tools by Boldi et al. [BLS+06]. However, they did not develop a method

similar to the QuotientRank algorithm described and analyzed in Sections 5.4 and 5.5.

For example, the coarsest equitable partition of the graph shown in Figure 49(a) is

⎡ 2,4,6,8,10,12 , 1,3,5,7,9,11}⎦ and induces the quotient graph shown in Figure 49(b).

Every vertex in each block is linked to two vertices in the other block, hence, the pair of

2-edges, and odd-labeled vertices are linked to one odd-labeled vertex, hence, the 1-loop.

As will be shown in this chapter, the PageRank vector can be obtained more efficiently

by lifting the dominant eigenvector of a 2 2 quotient matrix (cf. Section 2.3.5), instead

⎣{ } { ⎤

×

of computing the dominant eigenvector of the original graph’s 12×12 PageRank matrix.

8

10
911

7
12

2

4

35

1

6

{1,3,5,7,9,11} {2,4,6,8,10,12}

2

2
1

(a) Pseudo-Benzene (b) Quotient Graph

Figure 49. Pseudo-Benzene: A Graph Yielding a 2-Block Equitable Partition [StT99]

101

⋅ ⋅ ⋅

5.2.	 Quotient Computations
As described in Section 2.3.5, given some arbitrary matrix, M, and some similarly

arbitrary partition, B, the entries in the quotient matrix, Q, induced by B correspond to the

average row sums in M with respect to B. Formally, Q is obtained by computing [Hae95]

= (B B)−1
⋅ ⋅ ⋅ Q T ⋅ BT M B

(31)
= † ⋅ ⋅ ,B M B

where B is the characteristic block matrix whose n V rows correspond to the vertices=

contained in V and b = B columns correspond to the blocks contained in B, respectively.

Given an arbitrary graph, G, and its associated adjacency matrix, A, it is critical to

construct the appropriate quotient matrix, Q. For instance, an incorrect approach is to first

compute the quotient matrix based on A, where

Q = (BT ⋅B)−1
BT A B

(32)
= † ⋅ ⋅ ,B A B

and subsequently apply the PageRank perturbation, where

SQ Q D Q
1 (1 α) n . 	(33)= ⋅ ⋅ −α + −

However, applying the PageRank algorithm to SQ yields the correct PageRank

vector if α =1. Given an adjacency matrix, A, the correct approach for any value of α, as

shown in this section, is to apply the traditional PageRank perturbation to A, where

SA A D A
1 (1 α)= ⋅ ⋅ −α + − n . (34)

The correct quotient matrix, Q, subsequently can be obtained by computing

T TQ = (B ⋅)−1
SA	 (35)

B ⋅ ⋅ ⋅ B B

= † ⋅ ⋅ B .B SA

102

To show the PageRank vector, x, associated with a PageRank matrix, S S ,= A can

be lifted from a quotient matrix, Q, using (35), three key results must be obtained. First, it

must be established Q and S yield the same dominant eigenvalue, one. Second, it must be

shown a unique eigenvector, r, is associated with Q’s dominant eigenvalue, one. Finally,

it must be shown that S’s PageRank vector, x, can be lifted from Q’s eigenvector, r.

The quotient matrix, Q, yielded by applying (35) is often not stochastic. However,

Q’s row sums equal one or more of S’s corresponding row sums. Moreover, Q’s diagonal

entries, as well as many of Q’s non-diagonal entries, may equal zero, i.e., Q is often not

primitive or irreducible. Therefore, Q does not satisfy the conditions of the Perron or the

Perron-Frobenius theorems, hence, they cannot be directly applied to ensure that Q yields

a unique eigenvector associated with the dominant eigenvalue, one. Instead, more robust

machinery, namely, the interlacing and lifting properties described in Section 2.3.5 must

be used to establish the eigen decomposition relationships between a PageRank matrix, S,

and the quotient matrix, Q, induced by S’s coarsest equitable partition, B.

Theorem 4 The dominant eigenvalue of an equitable quotient matrix, Q,
of a positive stochastic matrix, S, equals S’s dominant eigenvalue, one.

Proof Given the quotient matrix, Q, induced by an arbitrary partition, B,
of an arbitrary matrix, M, the eigenvalues of M and Q are interlaced, such
that λ − + () () ≤ λi Q ≤ λi (M)n m i M , λi ≤ . If B is equitable, e.g., if B isλi+1

the coarsest equitable partition of = , Q’s eigenvalues are some subset M S
of S’s eigenvalues. If S is the weighted adjacency matrix of some strongly
connected graph, G, Q and S must have the same dominant eigenvalues,
i.e., λ1 () ()Q = λ1 S [God93, CRS97].

A stochastic positive matrix, e.g., a PageRank matrix, S, yields the
dominant eigenvalue, one. Q may not be stochastic. However, applying
the Perron and Perron-Frobenius theorems to the PageRank matrix, S, and
the interlacing property to an equitable quotient matrix, Q, shows that Q
also yields the dominant eigenvalue, one, i.e., λ1 (Q) = λ1 (S) =1. ∎

103

The next step establishes Q has a unique eigenvector, r, whose entries are a subset

of the entries in S’s dominant eigenvector, x, where x can be obtained more efficiently by

simply lifting it from Q’s dominant eigenvector, r.

Theorem 5 The entries contained in the dominant eigenvector, r, yielded
by the quotient matrix, Q, defined by the coarsest equitable partition, B, of
a positive stochastic matrix, S, are a subset of the entries contained in S’s
dominant eigenvector, x. Each entry in x can be obtained by simply lifting
it from Q’s dominant eigenvector, r.

Proof A coarsest equitable partition, B, is equitable, therefore, the lifting
identity, ⋅ = S B r ⋅ ⋅ = ⋅ ⋅ = ⋅ = B r x, ensures that each entry in Q’sS x B Q r
dominant eigenvector, r, also equals some entry in S’s PageRank vector, x.

Applying the Perron-Frobenius theorem ensures elements in x are
positive and unique, thus, r’s elements are positive and unique. The lifting
identity, = ⋅ , maps entries in Q’s eigenvector, r, to S’s eigenvector, x.x B r
Each of B’s n non-zero entries equal one, thus, lifting is simply an exercise

† T Tx B r and r B x B ∎in memory copying, where = ⋅ = ⋅ = (B ⋅B)−1
⋅ ⋅ x .

Thus, given some arbitrary graph, G, and its adjacency matrix, A, the PageRank

vector can be obtained by normalizing the dominant eigenvector of the PageRank matrix,

S = ⋅ ⋅α A D − (1)1 + − α n . G’s PageRank vector, x, can be constructed more efficiently by

lifting it from Q’s PageRank vector, r. The quotient matrix, Q, is yielded by applying the

block matrix, B, defined by the partition, B, to the PageRank matrix, S, where

† T T= ⋅ ⋅ = S B (B ⋅B)−1
⋅ ⋅ ⋅ S B . (36)Q B B

Assuming Q’s dominant eigenvector, r, is available, e.g., by applying the power method,

S’s dominant eigenvector, x, is obtained by simply lifting, or copying, it from r, where

= ⋅ (37)x B r .

Finally, that vector is normalized by its sum, yielding the PageRank vector, x, where

=x x ∑x → ∑x =1. (38)

104

5.3. Lifting the House Graph’s PageRank Vector
The example in this section illustrates how the PageRank vector can be efficiently

lifted from the dominant eigenvector of the quotient matrix. The house graph depicted in

Figure 50(a) yields the coarsest equitable partition, B = ⎡ , , a , , ⎤ , illustrated in ⎣{c d} { } {b e }⎦

Figure 50(b). Its associated block matrix, B, is listed in Table 41, where ‘1’s reflect B’s

vertex block membership. The intermediate product, = T B,N B ⋅ is listed in Table 42(a),

where a diagonal entry equals its corresponding column sum from B. Reciprocating all of

the diagonal entries yields its matrix inverse, N−1, as shown in Table 42(b).

e

c d

b

a

eb

a

c d

(a) House Graph (b) Coarsest Equitable Partition

Figure 50. House Graph’s 3-Block Coarsest Equitable Partition

Table 41. Characteristic Block Matrix, B

{c, d} {a} {b, e}
a 0 1 0
b 0 0 1
c 1 0 0
d 1 0 0
e 0 0 1

Table 42. Characteristic Block Matrix Products
T −1 T −1N B N B(a) = ⋅B, i ,: =∑ i,: (b) N = (B ⋅B)−1

, Ni i, =1 Ni i ,

{c, d} {a} {b, e}
{c, d} 2 0 0

{a} 0 1 0

{b, e} 0 0 2

{c, d} {a} {b, e}
{c, d} 1/2 0 0

{a} 0 1 0

{b, e} 0 0 1/2

105

The house graph’s adjacency matrix is listed in Table 43. Given the scaling factor,

α = 0.85, the house graph yields the PageRank matrix shown in Table 44. Subsequently

applying the quotient matrix identity,

)−1† T T= ⋅ ⋅ = (⋅ ⋅ ⋅ ⋅B , (39)Q B S B B B B S

yields the quotient matrix, Q, listed in Table 45. As this example illustrates, a stochastic

PageRank matrix, S, may yield a non-stochastic quotient matrix, Q, i.e., none of the rows

or columns in Q sum to one, although the row sums remain constant.

Table 43. House Graph’s Adjacency Matrix, A

a b c d e
a 0 1 0 0 1
b 1 0 1 0 1
c 0 1 0 1 0

d 0 0 1 0 1
e 1 1 0 1 0

Table 44. House Graph’s PageRank Matrix, S, α = 0.85

a b c d e
a 0.0300 0.3133 0.0300 0.0300 0.3133 0.7167

b 0.4550 0.0300 0.4550 0.0300 0.3133 1.2833

c 0.0300 0.3133 0.0300 0.4550 0.0300 0.8583

d 0.0300 0.0300 0.4550 0.0300 0.3133 0.8583

e 0.4550 0.3133 0.0300 0.4550 0.0300 1.2833

1 ∑

Table 45. Quotient Matrix, Q, of the House Graph’s PageRank Matrix, S, α = 0.85

{c, d} {a} {b, e}
{c, d} 0.4850 0.0300 0.3433 0.8583

{a} 0.0600 0.0300 0.6267 0.7167

{b, e} 0.4850 0.4550 0.3433 1.2833

1.0300 0.5150 1.3133 ∑

106

As described in Section 2.3.5, the eigenvalues of the quotient matrix, Q, interlace

the eigenvalues of the PageRank matrix, S. Moreover, since a coarsest equitable partition,

B, is equitable, Q’s eigenvalues are a subset of S’s eigenvalues, as reflected in Table 46.

The dominant eigenvectors of the PageRank matrix, S, and quotient matrix, Q, are listed

in Tables 47(a) and (b), respectively. The PageRank vector of S is assumed to be obtained

by multiplying a 5 5 × vector during each power method iteration. The × matrix with a 5 1

PageRank vector of the quotient matrix, Q, is similarly assumed to be obtained by simply

multiplying a 3 3 × vector during each power method iteration. × matrix with a 3 1

However, S’s PageRank vector, x, can be obtained by simply lifting it from Q’s

dominant eigenvector, x. This process multiplies Q’s eigenvector, r, with B, as reflected

in Table 47(c). Normalizing that lifted eigenvector yields the PageRank vector, x, listed in

Table 47(d), which, as required, equals the PageRank vector listed in Table 47(a).

Table 46. Eigenvalues of the PageRank and Quotient Matrices

(a) sort (i ()λ S) (b) sort (λ Qi ())
1.0000
-0.7083
-0.4250
0.2833
0.0000

1.0000
-0.4250
0.2833

Table 47. Dominant Eigenvectors of the PageRank and Quotient Matrices

x x ∑x(a) x (b) r (c) x B= ⋅r (d) =

a 0.1681

b 0.2437

c 0.1723

d 0.1723

e 0.2437

∑ 1.0000

{c, d} 0.2949

{a} 0.2878

{b, e} 0.4173

∑ 1.0000

a 0.2878

b 0.4173

c 0.2949

d 0.2949

e 0.4173

∑ 1.7122

a 0.1681

b 0.2437

c 0.1723

d 0.1723

e 0.2437

∑ 1.0000

107

5.4. QuotientRank: An Algorithm for Lifting PageRank Vectors
The algorithm listed in Figure 51 obtains the dominant eigenvector of the quotient

matrix induced by the coarsest equitable partition and lifts this eigenvector to obtain the

PageRank vector of the input matrix. The standard PageRank matrix, S, is constructed

with respect to the adjacency matrix, A, on lines 1–5. The coarsest equitable partition is

determined on lines 6–7 by applying one of the methods described in Section 2.3.3. The

characteristic block matrix, B, is computed on lines 9–11, and subsequently applied to the

PageRank matrix, S, to obtain the quotient matrix, Q, on line 12. The power method is

applied to Q on lines 13–27 to obtain its dominant eigenvector. Any vector norm could be

applied on line 24, where the sum norm is the most efficient to obtain. The final step is to

lift Q’s dominant eigenvector, r, on line 29, where normalizing the lifted vector, x, with

respect to its sum yields the PageRank vector of the input matrix, A, on line 30.

It is assumed that an arbitrary adjacency matrix, A, is dense. However, the block

matrix, B, should be a sparse matrix. As indicated on lines 10 and 11, B has a lone ‘1’ on

each row that reflects vertex membership in a coarsest equitable partition’s blocks. Thus,

one of the intermediate products, = T B,N B ⋅ computed on line 12 is a diagonal matrix,

such that a diagonal entry of N corresponds to the number of vertices in some block, i.e.,

−1 TN = =∑B:, i , Hence, its inverse, N = (B ⋅B)−1
, is obtained by reciprocating each i i, Bi

← −1 T−1diagonal entry, i.e., Ni i, =1 Ni i, . Therefore, line 12 can be written as Q N ⋅ ⋅ ⋅ B S B ,

where N−1 is obtained by reciprocating B’s column sums. The lifting step performed on

line 29, = ⋅ , is equivalent to simply copying eigenvalues in r to their correspondingx B r

positions in the PageRank vector, x.

108

1. getPageRank (A, n, α ,τ)
2. # perturb adjacency matrix

n3. di ←∑ i
A:,i=1

4. D ← diag (d)
5. S α A D 1 (1 α)← ⋅ ⋅ − + − n

6. # get coarsest equitable partition
7. B ← findCoarsestPartition (A, n)
8. # construct block and quotient matrices
9. b ← B

,B 0 10. ← n b

11. B ←1, ∀ , : ∈Bi j, i j v i j

T T †B B
−1
⋅ ⋅ ⋅ ← ⋅ ⋅ 12. Q ←(⋅) B S B B S B

13. # initialize vectors & iteration counter
b,114. r ← 1 b
b,115. s ← 0

16. z ← 0
17. # iterate power method
18. while (s r >τ)−

2

19. # save eigenvector
20. s ← r
21. # update eigenvector
22. r ←Q ⋅r
23. # normalize eigenvector
24. r ← r ∑r
25. # increment loop counter
26. z ← z +1
27. end while

28. # lift and normalize PageRank vector
29. x ← ⋅B r
30. x ← x ∑x

31. return x
32. end PageRank

Figure 51. QuotientRank: An Algorithm for Lifting PageRank Vectors

109

5.5. Complexity Analysis

Applying the PageRank perturbation on lines 2–5 is Θ(n2) , since all entries must

be scaled and shifted. Computing the coarsest equitable partition, B, on lines 6–7 requires

2Θ(n ⋅ log n) time, as described in Section 2.3.3.2. Constructing the block matrix, B, on

lines 9–11 from the coarsest equitable partition, B, requires Θ(n) time, where n ones are

placed at B’s rows and column corresponding to the vertex block membership in B. Since

the n b non-zero entries, it is stored as a sparse matrix, which × matrix, B, only contains n

only consumes Θ n space.()

T T S BThe quotient matrix construction, Q = (B ⋅B)−1
⋅B ⋅ ⋅ , performed on line 12

−1 −1 T TQ N and S B can be decomposed into two steps, = ⋅Z, where N = (B ⋅B)−1
= .Z B ⋅ ⋅

−1 TThe first step, N = (B ⋅B)−1
, yields a diagonal matrix whose diagonal entries equal the

reciprocal of the number of vertices contained in the corresponding block in B. Thus, the

diagonal entries in N−1 equal B’s reciprocated column sums. Moreover, since = T BN B ⋅

is a diagonal matrix, its inverse, N−1, can be computed in Θ(n) time.

The second step, = T S B, multiplies a b n , by an n nZ B ⋅ ⋅ × matrix, BT × matrix,

S, yielding the b n× product, T ⋅ . × matrix is multiplied by a n bB S This b n × matrix, B,

yielding a b b× matrix, = T S B . These multiplications are Ο(b n⋅ and Ο()b n2 ⋅Z B ⋅ ⋅ 2) ,

respectively, where ≤ . is a discrete partition, which is the worst case, these b n Thus, if B

bounds become () Since B contains nΟ n3 . non-zero entries, storing B as a sparse matrix

reduces the bounds to Ο n2 and Ο b n⋅ , respectively, yielding Ο n if = .() () (2) b n

110

The same bounds can also be derived using the tools described in Section 2.3.5.2.

i j r k ≤ i j b 1 k n r b ,Given an arbitrary vertex partition, B, Q , =∑S , , where 1 , ≤ , ≤ ≤ , v ∈ i

and vk ∈bj . The complexity of this summation is (2 ⋅) ×Ο b n , since each entry in the b b

matrix, Q, may consume as many as n summations. If b n, which is the worst possible =

case, the best upper bound that can be obtained initially appears to be ()Ο n3 .

However, since B is assumed to be the coarsest equitable partition, which is an

equitable partition, the summation can be computed more efficiently. In particular, each

vertex contained in block bi has an equal number of neighbors with respect to block bj ,

where 1 ≤ i j b, ≤ . Therefore, the number of neighbors with respect to block bj must only

N u ()∩bj = N v ()∩bj , wherebe determined for a single vertex in block bi , i.e., z , = i j

1 , ≤ , u v b and N u denotes u’s neighborhood (cf. Sections 2.3.2 and 2.3.3). ≤ i j b , ∈ i , ()

Thus, Qi j, = zi j ⋅S , , for some arbitrary vertex, u bi , and some arbitrary neighbor of u,, u w ∈

w bj . This approach yields the same bound on building Q, Ο n∈ (2) (cf. Section 2.3.5.3).

The most interesting analysis step occurs when assessing the complexity of using

the power method on lines 13–27 to determine the dominant eigenvector of the quotient

matrix, Q. As described in Sections 2.5.2.2 and 3.2, given some precision, τ, and scaling

factor, α > 0.5, using the power method to obtain the PageRank vector of the PageRank

2 2matrix, S, yields the lower and upper bounds of Ω(n ⋅ log n) and Ο(n t⋅) , respectively.

The value of t is bounded by t ≤ log τ ≤ log α τ , where λ2 (S) denotes the eigenvalueλ S2 ()

λ2 (S) ≤α.with the second largest magnitude and

111

The power method is used to obtain the dominant eigenvector, r, of the quotient

matrix, Q, where r is lifted to obtain the PageRank vector, x, of the PageRank matrix, S.

Since S and Q are n n × matrices, respectively, where b n substitution into × and b b ≤ ,

2 2 2 2) ()) (⋅) respectively. the bounds Ω(n ⋅ log n and Ο n t⋅ yields Ω(b ⋅ log b and Ο b t ,

Theorem 6 The practical lower bound on the execution time needed to
,Qb bobtain the dominant eigenvector of is log b.

Proof The practical lower bound on the number of iterations was based
on assuming τ ≤1 .n Since vertices contained in a given block have equal
PageRank value, the maximum precision increases to τ ≤1 .b Substitution
yields the new practical minimum number of iterations, b = log 1 b . ∎2

The upper bound on the number of power method iterations, r, needed to compute

Q’s PageRank vector, r, may be less than the bound on the number of iterations needed to

compute S’s PageRank vector, x, since r ≤ log τ ≤ log τ ≤ log α τ .Q Sλ2 () λ2 ()

Theorem 7 The upper bound on the number of power method iterations,
r, required to obtain the dominant eigenvector, x, of an equitable quotient
matrix, Q, is bounded by the number of iterations, t, needed to obtain the
PageRank vector of the PageRank matrix, S.

Proof The number of iterations, r, required to determine x is bounded by
logλ Q τ [GoV88]. Interlacing ensures λ2 (Q) = λi (S) ≤ λ2 (S) for some i,

2 ()

therefore, r ≤ log
 τ ≤ ≤ log t τ ≤ log α τ . ∎Q Sλ2 () λ2 ()

Q S , the upper bound on the number of power method iterations If λ2 () < λ2 ()

may differ with respect to S and Q, where r = log Q τ , t = log λ2 ()S τ ≤ log τ , and r tα ≤ .λ2 ()

In the worst case, if the coarsest equitable partition, B, is a discrete partition, i.e., if none

of B’s blocks are composed of multiple vertices, b n= →λ2 Q = λ S → = () 2 () r t . The

< λ 2 () thus, r tconverse, is not true, since for certain graphs, b n, yet 2 (Q) = λ S , = .

112

Thus, applying power method iteration to the quotient matrix, Q, of the PageRank

matrix, S, reduces the lower and upper bounds on the complexity of the power method in

Sn n, ,Qb btwo ways. The matrix size reduction, from to , reduced the bounds on the power

2 2 2 2method from Ω(n ⋅ log n) and Ο(n t⋅) to Ω(b ⋅ log b) and Ο(b t⋅) , respectively,

2where the performance scales in proportion to n b2 . The upper bound on the number of

2 ⋅power method iterations, t, is replaced by r, yielding Ο(b r) , where r depends on Q’s,

not S’s, second dominant eigenvalue, i.e., r ≤ log τ ≤ log τ ≤ log α τ . If B is storedQ Sλ2 () λ2 ()

as a sparse matrix, the lifting step is Θ(n) , since B contains n non-zero entries.

Thus, the lower bound of the QuotientRank algorithm described in Section 5.4 is

based on computing the coarsest equitable partition and applying the power method to Q,

2 2which are Ω(n ⋅ log n) and Ω(b ⋅ log b) , respectively. Hence, its overall lower bound is

(n ⋅ log n b ⋅ log b)Ω 2 + 2 . The corresponding upper bound on the QuotientRank algorithm

is Ο(n ⋅ log + ⋅ , where b n r t, rn b r) ≤ , ≤ ≤ log 2 2
Q τ , and t ≤ log τ ≤ log α τ .Sλ2 () λ2 ()

� a QuotientRank algorithm implementation that uses an efficient method

of computing the coarsest equitable partition outperforms the PageRank algorithm, which

If b n,

2 2 2 2is Ω(n ⋅ log n) and Ο(n t). The gains are proportional to (⋅) () ≤ ,⋅ n t b r⋅ , where b n

r ≤ log τ , t ≤ log log α τ , and r t.τ ≤ ≤ The worst case again occurs if the graph’s Q Sλ2 () λ2 ()

=

is doubled by the cost to find B, for a total of 2 ⋅n2 ⋅ log n operations. The QuotientRank

algorithm is more efficient, however, if the coarsest equitable partition is non-discrete.

equitable partition, B, is discrete, where if b n, the PageRank algorithm’s lower bound

113

5.6. A QuotientRank Example
This example illustrates the potential performance gain obtained by applying the

QuotientRank algorithm. The pseudo-benzene graph shown in Figure 52(a) has a coarsest

equitable partition of two blocks, ⎡ 2,4,6,8,10,12 , 1,3,5,7,9,11}⎤ . The graph’s 12×12⎣{ } { ⎦

adjacency and PageRank matrices are not listed. The 2 2 quotient matrix induced by its ×

coarsest equitable partition and PageRank matrix is shown in Table 48 and illustrated in

Figure 52(b). Finding its coarsest equitable partition requires as many as n2 ⋅ log 2 n (517)

operations. Constructing the PageRank matrix, S, which is used in both the QuotientRank

and PageRank algorithms, requires n2 (144) operations. Storing a 12× 2 block matrix, B,

as a sparse matrix only requires n (12) operations. Constructing a 2× 2 quotient matrix,

T T 2Q ()−1
S B requires ⋅= B ⋅B ⋅B ⋅ ⋅ , b n (48) operations.

8

10
911

7
12

2

4

35

1

6
{1,3,5,7,9,11} {2,4,6,8,10,12}

0.6417

0.9250
0.3583 0.0750

(a) Pseudo-Benzene Graph (b) PageRank-Induced Quotient Graph

Figure 52. Pseudo-Benzene Graph and Its PageRank-Induced Quotient Graph

Table 48. A 2× 2 PageRank-Induced Quotient Matrix, Q

destination
{2,4,6,8,10,12} {1,3,5,7,9,11}

source
{2,4,6,8,10,12} 0.0750 0.6417 0.7167

{1,3,5,7,9,11} 0.9250 0.3583 1.2833

1 ∑

114

−52A PageRank vector computed to 52 bits of precision, τ = 2 , or approximately

15 decimal digits, correspond to IEEE 754 double-precision values [ISB85]. Applying the

power method to the PageRank matrix, S, and the induced quotient matrix, Q, requires

2 2 ⋅ τ , time, respectively. The eigenvalues of S and Qn t⋅ , t ≤ log τ and b r, r ≤ log S Qλ2 () λ2 ()

λ S = 0.85 andreveal that = 0.5667, i.e., the largest number of power method 2 () λ2 (Q)

iterations that must be performed with respect to S or Q are t = ⎡log 0.85 2
−52 ⎤ = 222 and⎢ ⎥

r = ⎡⎢log 0.5667 2
−52 ⎤⎥ = 64, respectively. Thus, in the worst case, applying the power method

to S and Q costs 122 ⋅222 = 31,968 and 22 ⋅64 = 256 operations, respectively.

The dominant eigenvector, r, of Q is shown in Table 49(a). Lifting S’s dominant

eigenvector, x, from r, results in the vector shown in Table 49(b). Normalizing the vector

by its sum yields S’s PageRank vector listed in Table 49(c). These lifting and normalizing

steps require 3 ⋅n (36) operations, 12 to compute B r x ∑x.⋅ and 24 to compute

Table 49. Lifting the PageRank Vector from the Dominant Eigenvector

(c) x x ∑x(a) r (b) x B= ⋅r =

1 0.4096
2 0.5904
∑ 1.0000

1 0.5904
2 0.4096
3 0.5904
4 0.4096
5 0.5904
6 0.4096
7 0.5904
8 0.4096
9 0.5904

10 0.4096
11 0.5904
12 0.4096
∑ 6.0000

1 0.0984
2 0.0683
3 0.0984
4 0.0683
5 0.0984
6 0.0683
7 0.0984
8 0.0683
9 0.0984

10 0.0683
11 0.0984
12 0.0683
∑ 1.0000

115

Summing each algorithm’s number of operations yields Table 50, which confirms

using the QuotientRank algorithm is more efficient than using the PageRank algorithm to

obtain the PageRank vector of the graph shown in Figure 52. Although some overhead is

required to build the quotient matrix and lift the PageRank vector, the execution time is

dramatically reduced in proportion to 32112 1109 ≈ 29. Executing each algorithm shows

the number of observed power method iterations for S and Q are 60 and 62, respectively,

as shown in Table 51. Although the PageRank algorithm executes two fewer iterations, it

still needs more execution time than the QuotientRank algorithm, where 8784 1101 ≈ 8.

Table 50. Theoretical Iterations: n = 12, b = 2, τ = 2−52 → t = 222, r = 64

(a) PageRank Algorithm (b) QuotientRank Algorithm

Task Time Total
Construct S 2n 144

Power Method 2n t⋅ 31968

∑ 32112

Task Time Total
Compute B 2

2n log n⋅ 517

Construct S 2n 144

Construct B n 12

Construct Q 2n 144

Power Method 2b r⋅ 256

Lift & Normalize x 3 ⋅ n 36
∑ 1109

Table 51. Observed Iterations: n = 12, b = 2, τ = 2−52 → t = 60, r = 62

(a) PageRank Algorithm (b) QuotientRank Algorithm

Task Time Total
Construct S 2n 144

Power Method 2n t⋅ 8640

∑ 8784

Task Time Total
Compute B 2

2n log n⋅ 517

Construct S 2n 144

Construct B n 12

Construct Q 2n 144

Power Method 2b r⋅ 248

Lift & Normalize x 3 ⋅ n 36
∑ 1101

116

5.7. QuotientRank Applicability
Section 4.3.4 informally considered when the algorithm described in Section 4.3.2

or QuotientRank algorithm described in Section 5.4 should be used to compute a graph’s

PageRank vector instead of applying the PageRank algorithm. The material contained in

this section provides a more robust analysis with respect to the QuotientRank algorithm,

which is the most significant new algorithm described herein. If dense matrices are used,

with the notable exception of the block matrix, B, which is stored as a sparse matrix, the

key factors in assessing if the PageRank algorithm or QuotientRank algorithm is the more

efficient method of computing the PageRank vector, x, of an arbitrary graph, G, are:

• n V= , number of vertices contained in G

, number of blocks contained in G’s coarsest equitable partition, B• b = B

• α , α ≥ 0.5, scaling factor used to construct the PageRank matrix, S

• τ ,τ ≤1 n, numerical precision of the PageRank vector, x

• t t, ≤ log τ ≤ log α τ , maximum iterations with respect to SSλ2 ()

• , ≤r r log τ maximum iterations with respect to quotient matrix, QQλ2 ()

The number of blocks, b, contained in the graph’s coarsest equitable partition, B,

is bounded by the number of vertices, n, in G, i.e., b n≤ . Furthermore, as established in

Section 5.5, the maximum number of required power method iterations with respect to S

equals or exceeds the number of maximum iterations needed with respect to Q, i.e., r t,≤

since r ≤ log τ ≤ ≤ t log τ ≤ log α τ . The following bounds, in particular, the lower λ Q λ S2 () 2 ()

bounds are derived by assuming the scaling factor, α, used in the PageRank perturbation

is contained in the range, 0.5 α 1≤ ≤ and the PageRank vector is computed to a precision

that nominally provides for at least n unique PageRank values, i.e., τ ≤1 .n

117

2

The PageRank algorithm’s practical lower bound on its required execution time is

Ω(n ⋅ log n) , a new result derived in Section 3.2. The analysis in Section 5.5 showed the

2 2QuotientRank algorithm’s lower bound is Ω(n ⋅ log n b ⋅ log b . The number of blocks, +)

b, contained in the coarsest equitable partition, B, is bounded by the number of vertices,

2b n ⋅ n)

In the worst case, if G yields a discrete coarsest equitable partition, i.e., if b n

n V ,= where ≤ . The coarsest equitable partition can be found in Θ(n log time.

= ,

the QuotientRank algorithm increases the PageRank algorithm’s lower bound by a factor

2 2 2of two, where n ⋅ log n b ⋅ log b 2 n ⋅ log . The impact of this worst-case scenario is + = ⋅ n

offset by noting two more significant results. First, the QuotientRank algorithm decreases

the execution time required to determine the PageRank vector of those graphs that yield a

non-discrete coarsest equitable partition, i.e., if < .b n For such graphs, the QuotientRank

algorithm also ensures vertices contained in the same block have equal PageRank values.

The PageRank algorithm’s upper bound is Ο(n t⋅) , where t ≤ log 2
S τ ≤ log α τ ,λ2 ()

as shown in Section 2.5.2.2. The analysis in Section 5.5 establishes that the QuotientRank

algorithm’s upper bound is Ο(n2 ⋅ log + 2 ⋅) , where rn b r ≤ log τ ≤ t. This bound also Qλ2 ()

degenerates in the worst-case, i.e., if the coarsest equitable partition is discrete, where

2 2b n yields Ο n ⋅ log n n t)= (+ ⋅ . Thus, in the worst case, the QuotientRank algorithm

may need n2 ⋅ log n more time than the PageRank algorithm. However, the QuotientRank

algorithm outperforms the PageRank algorithm if the graph’s coarsest equitable partition

is non-discrete, i.e., contains sufficiently fewer blocks than the graph contains vertices.

118

The upper bounds on the PageRank and QuotientRank algorithm’s execution time

2 2 2 2 2are ()⋅ and Ο(n ⋅ log + ⋅ , respectively. The ⋅ and ⋅ terms denote the Ο n t n b r) n t b r

time needed to apply the power method to the PageRank and quotient matrices, S and Q,

respectively. Thus, the QuotientRank algorithm outperforms the PageRank algorithm if

2 2 2 2(n t b r) n⋅ − ⋅ ≥ n ⋅ log , where n ⋅ log n denotes the time needed to obtain the coarsest

2 2n t b r

r t≤ and ≤ . Although r

equitable partition. The anticipated reduction in execution time is (⋅) () ⋅ , where

b n ≤ log τ ≤ ≤ t log τ ≤ log α τ , preliminary data suggests λ Q λ S2 () 2 ()

(r t) Q τ ≤ log λ2 ()S α
2≈ ≤ log τ ≤ log τ , reducing the relative performance gain to n b2 .λ2 ()

If b is sufficiently small relative to n, i.e., if a coarsest equitable partition contains

fewer blocks than vertices, the QuotientRank algorithm obtains a PageRank vector in less

time than the PageRank algorithm. However, b’s value can only be known by computing

the coarsest equitable partition, which requires n2 ⋅ log n time. Graphs containing regular

structure yield such gains, e.g., the grid graph depicted in Figure 53.

These relative performance gains increase as the number of blocks decreases with

respect to the number of vertices, i.e., as b decreases with respect to n. For instance, many

trees have a coarsest equitable partition containing fewer blocks than vertices. Finally, at

least certain web graphs yield a coarsest equitable partition containing fewer blocks than

vertices [BLS+06].

Figure 53. 8 3× Grid: A Graph Yielding a Non-Discrete Coarsest Equitable Partition

119

VI. Conclusions and Future Research

6.1. Conclusions

6.1.1. Complexity Bounds
The first new result, which was derived in Section 3.2, is a practical lower bound

on the number of power method iterations that is obtained by applying recent work that

defined an upper bound [HaK03, LaM06]. The lower bound is derived by applying two

assumptions related to the required precision, τ, and PageRank scaling value, α. The first

assumption is τ ≤1 ,n where τ =1 n is the largest precision that can provide n unique

PageRank values, i.e., one value for each of the n vertices. Assuming α ≥ 0.5 includes

the suggested default PageRank scaling value, α = 0.85. Applying these two assumptions

and applying base-2 logarithms yields a practical lower bound on the number of required

power method iterations, t, needed to compute the PageRank vector, where

log 1 n log τ2 = log 2 ≤ ≤ log α τ = 2 .n t (40)
log 0.5 log α2 2

The practical lower bound, log 2 n, matches experimental results reported by the

PageRank algorithm’s creators [PBM+98] and other researchers [ANT+02]. Each power

method iteration performed in the PageRank algorithm multiplies an n n matrix with an ×

n×1 vector. If dense matrices are used, the lower and upper bounds on the time needed to

2 2determine the PageRank vector are Ω(n ⋅ log n) and Ο(n ⋅ log α τ) , respectively, where

log n and logα τ are the minimum and maximum required number of iterations. If sparse

matrices are being used, the lower and upper bounds are Ω(m ⋅ log n) and Ο(m ⋅ log α τ) ,

respectively, where m = E denotes the number of edges contained in the graph.

120

6.1.2. Obtaining Canonical Vertex Orderings from the PageRank Vector
Another result, which is not known to be formally stated elsewhere with respect to

the PageRank algorithm, is related to the concept of finding a canonical vertex ordering.

Assuming sufficient computing resources exist, the two methods described in Section 1.2

can obtain a canonical order, where the first method only uses the PageRank algorithm.

For example, the mansion graph illustrated in Figure 54(a) yields a PageRank vector that

induces a canonical vertex order, as shown in Figure 54(b).

However, graphs relevant to the work described herein yield non-discrete coarsest

equitable partitions. Thus, their PageRank vectors contain at least two equal entries and

cannot induce a canonical ordering. For such graphs, a canonical ordering can be found

using an application that computes a canonical isomorph, e.g., nauty, and applying the

PageRank algorithm to the canonical isomorph. For example, the canonical isomorph that

is yielded by applying nauty to house graph is shown in Figure 54(c), where its PageRank

vector induces the canonical vertex ordering illustrated in Figure 54(d).

However, finding a canonical isomorph may require exponential time, therefore,

the latter approach only succeeds if it is applied to sufficiently small and irregular graphs.

For instance, nearly every random graphs and random trees is sufficiently irregular, even

if their coarsest equitable partition is not discrete.

e

c d

b

a

f

e

c d

b

a

f

e

a b

d

c

e

a b

d

c

(a) Mansion Graph (b) PageRank Order (c) House Graph (d) PageRank Order

Figure 54. Canonical PageRank Orderings of the Mansion and House Graphs

121

6.1.3. Relating the PageRank Vector and the Coarsest Equitable Partition
The most theoretical contribution constructed herein is contained in Section 3.3,

where it is shown that vertices contained in the same block of a graph’s coarsest equitable

partition must have equal iterated dot products. Since a PageRank vector can be obtained

by applying the power method, which simply computes an iterated dot product, vertices

contained in the same block yield equal PageRank values, as described in Section 3.4.

This result mirrors another proof of the relationship between the PageRank vector and the

coarsest equitable partition [BLS+06]. Boldi et al.’s earlier proof uses tools from category

theory, e.g., the graph’s minimum base and its fibrations, which correspond to the graph’s

coarsest equitable partition and its blocks.

Both of the proofs suggest many methods of improving the PageRank algorithm’s

performance. The first improvement is obtained by the AverageRank algorithm listed in

Section 4.2, which uses the average block PageRank values. That method’s lower bound

2is the same as the PageRank algorithm’s, Ω(n ⋅ log n), where n denotes the number of

2 2 2vertices. However, its upper bound is increased from Ο(n t⋅) to Ο(n ⋅ log n + n ⋅ t) ,

where t ≤ log ≤ log α τ and S denotes the PageRank matrix. Sλ2 ()

That method is superseded by the ProductRank algorithm listed in Section 4.3, in

which one PageRank value is computed for each block in the coarsest equitable partition.

The ProductRank algorithm’s lower bound is also the same as the PageRank algorithm’s

2 2lower bound, Ω(n ⋅ log n). More importantly, the upper bound reduces from Ο(n t⋅) to

Ο(n ⋅ log n + ⋅ ⋅) , 2 b n t where b denotes the number of blocks. The ProductRank algorithm

ensures vertices contained in the same block have the same PageRank value.

122

Both algorithms are superseded by the proof provided in Section 5.2 that shows a

certain quotient matrix induced by the coarsest equitable partition can be used to compute

the PageRank vector. That proof is the basis of the QuotientRank algorithm described in

Section 5.4. As shown in Section 5.5, the lower and upper bounds of the QuotientRank

2 2 2algorithm are Ω(n ⋅ log n and Ο n ⋅ log n b r)) (+ ⋅ , respectively, where b denotes the

number of blocks contained in the coarsest equitable partition. The value of r is based on

the second eigenvalue of the quotient matrix, Q, the precision, τ, and scaling factor, α,

such that r ≤ log τ ≤ ≤ t log τ ≤ log α τ .Q Sλ2 () λ2 ()

The QuotientRank algorithm further extends [BLS+06], which also showed that

the quotient matrix can be used to reduce the time needed to obtain the PageRank vector.

However, that proof’s authors did not develop or analyze a method based on the quotient

matrix. As established in Sections 5.5– 5.7, the QuotientRank algorithm’s upper bound is

2 2 2(⋅ log n b r ⋅) , Ο(n t).Ο n + whereas the PageRank algorithm’s upper bound is ⋅ Thus,

2 2 2 2 2if (n t) (b r) n ⋅ log n, the potential performance gain is (n t b r⋅) (⋅) , such that ⋅ − ⋅ ≥

r ≤ log τ ≤ ≤ t log τ ≤ log α τ .λ Q λ S2 () 2 ()

In sum, PageRank vectors of graphs containing at least some regular structure can

be obtained in less time using the ProductRank and QuotientRank algorithms described in

Sections 4.3 and 5.2, respectively. The relative gain is based on the number of blocks in

the coarsest equitable partition and number of vertices, such that the performance gain is

2 ⋅ ≈ ≤ log S
2n t b r . Preliminary data suggests (r t τ , reducing the gain to n b2.(2 ⋅) ()) λ2 ()

Such gains can be obtained on some web graphs [BLS+06], many trees, and grid graphs.

123

6.2. Future Work

6.2.1. Implementation Improvements
Many of the algorithms described herein were implemented in MATLAB to verify

their correctness. A key area of future work is to design robust implementations, e.g., the

methods described in Sections 2.3.3.2 and 5.2. For instance, the current implementation

find the coarsest equitable partition using 1-D Weisfeiler-Lehman stabilization, due to its

relevance to the results described herein. However, the method listed in Section 2.3.3.2 is

more efficient.

The quotient matrix can be constructed more efficiently, as noted in Section 5.5.

The current versions also use dense matrices, but sparse matrices must be used to process

large graphs, e.g., web graphs. Adding sparse matrix support also motivates supporting

personalization vectors, where provided a probability vector, v, the PageRank matrix, S,

yielded by applying the PageRank perturbation is (cf. Section 2.5.3)

1 1, nα + − ⋅ ⋅ .S = ⋅ ⋅A D − (1 α) v 1 (41)

This modification adjusts the PageRank of certain vertices, e.g., to decrease the effect of

“spamming done by the so-called link farms” [LaM06]. Personalization may decrease the

effectiveness of applying the graph’s coarsest equitable partition, since a personalization

vector may increase the number of blocks contained in the coarsest equitable partition.

A robust implementation should also leverage parallel hardware, e.g., multi-core

processors. The power method can be executed in parallel, since PageRank matrix rows

can be independently multiplied by a PageRank vector. Weisfeiler-Lehman stabilization

can be implemented in parallel, but similarly implementing the algorithm for finding the

coarsest equitable partition described in Section 2.3.3.2 in parallel requires more effort.

124

6.2.2. Other Linear Algebra Applications
Throughout this research, it was assumed the PageRank vector is being computed

by applying the power method to the stochastic PageRank matrix, S, or its corresponding

quotient matrix, Q. For instance, given Q, and the normalized all-ones vector, = b,1 b ,r 1

the PageRank vector is obtained by iteratively computing

r ← ⋅S r
(42)

r ← r ∑r

until r converges to the required numerical precision, τ. Given Q’s dominant eigenvector,

r, the PageRank vector, x, is lifted and normalized using the block matrix, B, where

x ← ⋅B r
(43)

x ← x ∑x.

One conjecture is that a similar process reduces the time needed to perform other

linear algebra tasks. For example, given an arbitrary linear system,

A x⋅ = b , (44)

the solution vector, x, preliminary work suggests x can be obtained by solving the system,

Q r⋅ = c , (45)

where Q denotes A’s quotient matrix and c denotes the associated elements in b. Solving

for r and applying the lifting identity and block matrix, B to r, yields the solution vector,

x, where again, x ← ⋅ .B r

A key nuance is that the coarsest equitable partition must be found with respect to

A and each unique vector, b. Loosely stated, b similarly partitions A in the same way the

personalization vector, v, partitions the PageRank matrix (cf. Sections 2.5.3 and 6.2.1).

This approach may decrease the time needed to find x in applications that require solving

structured linear systems, e.g., certain linear regression or finite element systems.

125

6.2.3. k-D Weisfeiler-Lehman Stabilization
The coarsest equitable partition is the most refined partition that can be obtained

by only considering the neighbors of each vertex. Thus, the coarsest equitable partition is

obtained by applying information in the first dimension, which contains the current labels

of all adjacent vertices. This concept gives rise to the method listed in Section 2.3.3.3 for

finding the coarsest equitable partition, 1-D Weisfeiler-Lehman stabilization. The concept

also can be generalized to k dimensions, or k-D Weisfeiler-Lehman stabilization [Bas02].

Although k-D stabilization was thought to decide graph isomorphism in polynomial time,

both parts of that conjecture have been shown to be false [Für87, CFI92, Für01].

The k-D equitable partition is often more refined than the 1-D equitable partition.

Since the k-D partition may contain more blocks than the 1-D partition, it yields fewer

performance gains with respect to the PageRank algorithm or the future work described

in Section 6.2.2. However, graphs that yield finer partitions based on a value of k relative

to smaller values of k are useful for assessing algorithms that decide graph isomorphism.

Although a library of graphs strictly based on k does not exist, the libraries constructed by

Weisfeiler [Wei76], Mathon [Mat78], and Junttila and Kaski [JuK07] are commonly used.

An avenue of future research is to construct a graph library strictly based on values of k.

In addition, the proof developed in Chapter 3 can be extended to show that some

linear algebra methods of determining isomorphism are no more powerful than applying

k-D stabilization. For instance, one avenue of work described elsewhere considered using

the matrix inverse to determine graph isomorphism [AMB+07]. The proof constructed in

Chapter 3 can be extended to show the matrix inverse does not provide more information

than the equitable partition yielded by applying 2-D Weisfeiler-Lehman stabilization.

126

6.2.4. Open Call for Parallel Software that Decides Graph Isomorphism
Many algorithms decide graph isomorphism for either a restricted set of graphs or

two arbitrary graphs (cf. Section 2.3.4.2). Algorithms that decide graph isomorphism can

be classified into two groups, where an algorithm either computes an explicit permutation

between two graphs or computes a canonical certificate of each graph, i.e., two graphs are

isomorphs if some permutation between their vertices exists or their canonical certificates

are identical. Both types of algorithms apply graph invariants, e.g., the coarsest equitable

partition, to prune the search tree. For example, the classic algorithm developed by Babai,

Erdös, and Selkow uses an invariant that can be computed in linear time [BES80]. Their

algorithm yields a canonical isomorph of nearly all random graphs.

More robust algorithms decide graph isomorphism between two arbitrary graphs.

Some readily accessible software tools include Boost [BST], Groups & Graphs [KoK06],

LEDA [LED], Mathematica [MTH], and NetworkX [HSS]. Other algorithms that decide

graph isomorphism include VF2 [CFS+04], Bliss [JuK07], and ScrewBox [KuS07]. The

VF2 algorithm is the most modern algorithm that decides graph isomorphism by finding

a permutation between two input graphs instead of finding their canonical isomorphs.

The standard algorithm used to decide graph isomorphism, nauty, includes many

other isomorphism-related functions [McK81, McK04]. Software tools that require such

functions often interface with nauty, such as GAP’s GRAPE package [GAP, Soi06] and

MAGMA [MAG]. MATLAB’s documentation hints that its bioinformatics package links

with nauty [MAT]. Nauty’s widespread usage can be attributed to many factors, e.g., its

performance and function set, which includes functions for finding canonical isomorphs,

orbit partitions, quotient graphs, and automorphism groups.

127

Unfortunately, nauty does have some shortcomings, prompting this open call for

improvements to nauty or an alternative tool that implements its functions and addresses

its shortcomings. For example, nauty is freely accessible, however, its source code is not

open-source. The only known open-source package that is similar to nauty is the N.I.C.E.

library and that was recently written for the SAGE mathematics package [SAG, Mil07].

The N.I.C.E. library applies techniques used in nauty and summarized in Section 2.3.4.2.

The N.I.C.E. library can be integrated in military applications, whereas nauty’s copyright

statement currently precludes its use in military applications [McK04].

Currently, N.I.C.E. is the only known alternative to nauty that provides a similar

set of functions, such as obtaining canonical isomorphs and orbit partitions. N.I.C.E. also

appears to support non-simple graphs, such as weighted and directed graphs. In contrast,

nauty’s documentation describes how to transform theses graphs for processing [McK04].

However, N.I.C.E.’s stated objectives are to provide an open-source and understandable

alternative to nauty, i.e., N.I.C.E. is not designed to provide the raw speed with respect to

deciding graph isomorphism that is presently yielded by nauty.

Hence, the most ambitious future goal is to construct an open-source software tool

that finds canonical isomorphs and orbit partitions and whose performance is competitive

with nauty’s performance. This application would leverage the multi-core processors and

other parallel tools available in modern computing devices. For instance, this application

could apply the method used to find the coarsest equitable partition to be implemented in

the parallel algorithm for determining the PageRank vector, as described in Section 6.2.1.

A software tool that decides graph isomorphism in parallel can benefit many applications,

to include work related to UAV swarms, as described in Sections 2.1, 2.2.2, and 6.1.2.

128

6.3. Summary
The PageRank algorithm is often used to order query responses, e.g., web pages

matching some search criteria. However, the PageRank algorithm has other applications.

For instance, the results described herein were motivated by exploring how the PageRank

algorithm or tools used to decide graph isomorphism could be applied to sensor networks,

e.g., UAV swarms. One natural problem to consider orders the nodes based on some

st nd th measure of importance. If an attacker knows the 1 , 2 , …, n most critical nodes, the

attacker can determine which nodes to attack first. A similar application is finding nodes

that can facilitate spreading (mis)information, or in social networks, diseases and rumors.

In general, the PageRank algorithm is useful for analyzing scenarios that require knowing

the probable behavior of an object that traverses the underlying graph.

The results described in Chapters 3–5 improve the performance of the PageRank

algorithm in several ways, e.g., if it is being applied to networks such as UAV swarms.

For instance, the practical lower bound derived in Section 3.2 provides the minimum time

needed to obtain the PageRank vector of an arbitrary UAV swarm. The proof described in

Sections 3.3 and 3.4 establishes it is possible to easily identify nodes that must have equal

PageRank values by applying the graph’s coarsest equitable partition.

The AverageRank algorithm listed in Section 4.2 ensures such nodes have equal

PageRank values, even if a PageRank vector is numerically computed. The ProductRank

algorithm listed in Section 4.3 finds the PageRank vector of graphs containing such nodes

more efficiently. Both methods are superseded by the QuotientRank algorithm listed in

Section 5.4, the most efficient algorithm described herein. Finally, these results generated

many promising avenues of future research, as described in Section 6.2.

129

Bibliography

[AMB+07] C. Augeri, B. Mullins, L. Baird III, D. Bulutoglu, and R. Baldwin. “An algo­
rithm for determining isomorphism using lexicographic sorting and the matrix inverse”,
Congressus Numerantium, Utilitas Mathematica Publishing, 184:97–120, 2007.

[ANT+02] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. “PageRank computation and
the structure of the web: experiments and algorithms”, in Proceedings of the 11th World
Wide Web Conference (WWW), 2002.

[AsW05] J. Aspnes and U. Weider. “The expansion and mixing time of skip graphs with
applications”, in Proceedings of the 17th Symposium on Parallelism in Algorithms and
Architectures (SPAA), ACM, 2005.

[Bab95] L. Babai. “Automorphism groups, isomorphism, reconstruction”, Chapter 27 in
Handbook of Combinatorics, R. Graham, M. Grötschel, and L. Lovász, eds., Elsevier and
MIT Press, vol. 2, 1995.

[BaL83] L. Babai and E. Luks. “Canonical labeling of graphs”, in Proceedings of the
Symposium on Theory of Computing (STOC), 1983.

[Bas02] O. Bastert. Stabilization Procedures and Applications, Ph.D. Thesis, Zentrum
Mathematik, Technische Universtät München (TUM, Technical University of Munich),
2002. Online: http://tumb1.biblio.tu-muenchen.de/publ/diss/ma/2002/bastert.pdf

[BeC06] T. Berners-Lee and D. Connolly. “Delta: An ontology for the distribution of dif­
ferences between RDF graphs”, World Wide Web Consortium (W3C), 2006. Online:
http://www.w3.org/DesignIssues/Diff

[BeE96] J. Bennett and J. Edwards. “A graph isomorphism algorithm using pseudo-
inverses”, BIT Numerical Mathematics, 36:41–53, 1996.

[BES80] L. Babai, P. Erdös, and S. Selkow. “Random graph isomorphism”, Journal on
Computing, SIAM, 9(3):628–635, 1980.

[BGM82] L. Babai, D. Grigoryev, and D. Mount. “Isomorphism of graphs with bounded
eigenvalue multiplicity”, in Proc. of the Symposium on the Theory of Computing (STOC),
ACM, 1982.

[BLS+06] P. Boldi, V. Lonati, M. Santini, and S. Vigna. “Graph fibrations, graph isomor­
phism, and PageRank”, RAIRO: Informatique Théorique et Applications, EDP Sciences,
40:227–253, 2006.

[BMT+04] S. Brennan, A. Mielke, D. Torney, and A. Maccabe. “Radiation detection with
distributed sensor networks”, Computer, IEEE, 37(8):57–59, 2004.

130

http://tumb1.biblio.tu-muenchen.de/publ/diss/ma/2002/bastert.pdf
http://www.w3.org/DesignIssues/Diff

[BrL04] U. Brandes and J. Lerner. “Structural similarity in graphs: a relaxation approach
for role assignment”, in Proceeding of the 15th Int’l Sym. on Algorithms and Computa­
tion (ISAAC), Springer, Lecture Notes in Computer Science (LNCS), vol. 3341, 2004.

[BST] Boost C++ Libraries. Online: http://www.boost.org/

[CaC82] A. Cardon and M. Crochemore. “Partitioning a graph in Ο(A log 2 V) ”, Theo­
retical Computer Science, North-Holland, 19:85–98, 1982.

[Car03] J. Carroll. Signing RDF graphs, Tech. Report HPL-2003-142, HP Labs, 2003.
Online: http://www.hpl.hp.com/techreports/2003/HPL-2003-142.html

[CDR07] D. Cardoso, C. Delorme, and P. Rama. “Laplacian eigenvectors and eigenva­
lues and almost equitable partitions”, European Journal of Combinatorics, Elsevier,
28(3):665–673, 2007.

[CFI92] J. Cai, M. Fürer, and N. Immerman. “An optimal lower bound on the number of
variables for graph identification”, Combinatorica, Springer, 12(4):389–410, 1992.

[CFS+04] L. Cordella, P. Foggia, C. Sansone, and M. Vento. “A (sub)graph isomorphism
algorithm for matching large graphs”, Transactions on Pattern Analysis and Machine In­
telligence, IEEE, 26(10):1367–1372, 2004.

[CHP+04] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme. “Au­
tonomous deployment and repair of a sensor network using an unmanned aerial vehicle”,
in Proceedings of the International Conference on Robotics and Automation, IEEE, 2004.

[Chu94] F. Chung. Spectral Graph Theory, Regional Conference Series in Mathematics,
vol. 92, American Mathematical Society, 1994.

[Cla00] R. Clark. Uninhabited Combat Aerial Vehicles, Air University, CADRE Paper,
vol. 8, 2000. Online: http://handle.dtic.mil/100.2/ADA382577

[CMI00] The Millennium Prize Problems, Clay Mathematics Institute, 2000. Online:
http://www.claymath.org/millennium/

[CoG70] D. Corneil and C. Gotlieb. “An efficient algorithm for graph isomorphism”,
Journal of the ACM, ACM, 17(1):51–64, 1970.

[CRS97] D. Cvetković, P. Rowlinson, and S. Simić. Eigenspaces of Graphs, Cambridge
University Press, 1997.

[DBC+98] G. Duckworth, J. Barger, S. Carlson, D. Gilbert, M. Knack, J. Korn, and
R. Mullen. “Fixed and wearable acoustic counter-sniper systems for law enforcement”, in
Proceedings of the International Symposium on Enabling Technologies for Law Enforce­
ment and Security, SPIE, vol. 3577, 1998.

131

http://www.boost.org/
http://www.hpl.hp.com/techreports/2003/HPL-2003-142.html
http://handle.dtic.mil/100.2/ADA382577
http://www.claymath.org/millennium/

[ElE04] J. Elson and D. Estrin. “Sensor networks: a bridge to the physical world”, Chap­
ter 1 in Wireless Sensor Networks, C. Raghavendra, K. Sivalingam, and T. Znati, eds.,
Kluwer, pgs. 3–20, 2004.

[Fau98] J. Faulon. “Isomorphism, automorphism partitioning, and canonical labeling can
be solved in polynomial-time for molecular graphs”, Journal of Chemical Information
and Computer Sciences, 38:432–444, 1998.

[Für01] M. Fürer. “Weisfeiler-Lehman refinement requires at least a linear number of ite­
rations”, in Proceedings of the International Colloquium in Automata, Languages, and
Programming (ICALP), Springer-Verlag, Lecture Notes in Computer Science (LNCS),
2076:322–333, 2001.

[Für87] M. Fürer. A Counterexample in Graph Isomorphism Testing, Technical Report
CS-87-36, Department of Computer Science, Pennsylvania State University, 1987.

[GAP] Groups, Algorithms, Programming (GAP): A System for Computational Discrete
Algebra, ver. 4.4, Computational Algebra Group, School of Mathematics and Statistics,
University of Sydney. Online: http://www.gap-system.org/

[Gat79] G. Gati. “Further annotated bibliography on the isomorphism disease”, Journal of
Graph Theory, John Wiley & Sons, 3(2):95–109, 1979.

[GCM06] S. Greenblatt, T. Coffman, and S. Marcus. “Behavioral network analysis for
terrorist detection”, Chapter 17 in Emergent Information Technologies and Enabling Pol­
icies for Counter-Terrorism, R. Popp and J. Yen, eds., pgs. 331–348, 2006.

[GHK+03] R. Grossman, D. Hamelberg, P. Kasturi, and B. Liu. “Experimental studies of
the universal chemical key (UCK) algorithm on the NCI database of chemical com­
pounds”, in Proceedings of the IEEE Bioinformatics Conference (CSB), 2003.

[God93] C. Godsil. Algebraic Combinatorics, Chapman & Hall, 1993.

[GoV88] G. Golub and C. Van Loan. Matrix Computations, Hopkins Univ. Press, 1988.

[Gol04] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs, 2nd ed., Elsevier,
2004.

[Gol80] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs, 1st ed., Elsevier,
1980.

[GoR01] C. Godsil and G. Royle. Algebraic Graph Theory, Springer-Verlag, 2001.

[Got03] C. Gotsman. “On graph partitioning, spectral analysis, and digital mesh
processing”, in Proceedings of Shape Modeling International (SMI), IEEE, 2003.

[Gui05] E. Guizzo. “Into deep ice”, Spectrum, 42(12):28–35, 2005.

132

http://www.gap-system.org/

[GuM95] S. Guattery and G. Miller. “On the performance of spectral graph partitioning
methods”, in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
1995.

[Hae95] W. Haemers. “Interlacing eigenvalues and graphs”, Linear Algebra and its Ap­
plications, North-Holland, 227–228:593–616, 1995.

[HaK03] T. Haveliwala and S. Kamvar. The Second Eigenvalue of the Google Matrix,
Technical Report, Department of Computer Science, Stanford University, 2003.

[HaS04] W. Haemers and E. Spence. “Enumeration of cospectral graphs”, European
Journal of Combinatorics, 25:199–211, 2004.

[HeL93] B. Hendrickson and R. Leland. “An improved spectral graph partitioning algo­
rithm for mapping parallel computations”, Journal on Scientific Computing, SIAM,
16(2):452–469, 1995.

[Hof82] C. Hoffmann. Group-Theoretic Algorithms and Graph Isomorphism, Springer-
Verlag, Lecture Notes in Computer Science (LNCS), vol. 136, 1982.

[HSS] A. Hagberg, D. Schult, and P. Swart. NetworkX, Dept. of Mathematical Modeling
and Analysis, Los Alamos National Laboratory. Online: https://networkx.lanl.gov/

[HZL05] P. He, W. Zhang, and Q. Li. “Some further development on the eigensystem ap­
proach for graph isomorphism detection”, Journal of the Franklin Institute, Elsevier,
342(6):657–673, 2005.

[ISB85] IEEE Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-1985.
Online: http://grouper.ieee.org/groups/754/

[IyB05] S. Iyengar and R. Brooks, eds. Distributed Sensor Networks, Chapman and Hall,
2005.

[JAU] Joint Architecture for Unmanned Systems (JAUS), JAUS Working Group. Online:
http://www.jauswg.org/

[JuK07] T. Junttila and P. Kaski. “Engineering an efficient canonical labeling tool for
large and sparse graphs”, in Proceedings of the Ninth Workshop on Algorithm Engineer­
ing and Experiments (ALENEX), SIAM, 2007.

[KaS83] P. Kanellakis and S. Smolka. “CCS expressions, finite state processes, and three
problems of equivalence”, in Proceedings of the Second Annual Symposium on Principles
of Distributed Computing (PODC), ACM, 1983.

[Knu97] D. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching,
Addison-Wesley, 1997.

133

https://networkx.lanl.gov/
http://grouper.ieee.org/groups/754/
http://www.jauswg.org/

[Koc96] W. Kocay. “On writing isomorphism programs”, in Computational and Con­
structive Design Theory, W. Wallis, ed., Kluwer Academic Publishers, 1996.

[KoK06] W. Kocay and D. Kreher. Groups & Graphs, University of Manitoba. Online:
http://www.combinatorialmath.ca/G&G/index.html

[Kor05] Y. Koren. “Drawing graphs by eigenvectors: theory and practice”, Computers
and Mathematics with Applications, Elsevier, 49(11–12):1867–1888, 2005.

[KrS98] D. Kreher and D. Stinson. Combinatorial Algorithms, CRC Press, 1998.

[KuS07] M. Kutz and P. Schweitzer. “ScrewBox: a randomized certifying graph-non­
isomorphism algorithm”, in Proceedings of the Ninth Workshop on Algorithm Engineer­
ing and Experiments (ALENEX), SIAM, 2007.

[LaM03] A. Langville and C. Meyer. “Deeper inside PageRank”, Internet Mathematics,
A K Peters, 1(3):335–380, 2003.

[LaM06] A. Langville and C. Meyer. Google’s PageRank and Beyond: The Science of
Search Engine Rankings, Princeton University Press, 2006.

[LED] Library of Efficient Data types and Algorithms (LEDA), Algorithmic Solutions
Software. Online: http://www.algorithmic-solutions.com/leda/index.htm

[Ler05] J. Lerner. “Role assignments”, Chapter 9 in Network Analysis: Methodological
Foundations, U. Brandes and T. Erlebach, eds., Springer, Lecture Notes in Computer
Science (LNCS), 3418:216–251, 2005.

[LNV+05] Á. Lédeczi, A. Nádas, P. Völgyesi, G. Balogh, B. Kusy, J. Sallai, G. Pap, S.
Dóra, K. Molnár, M. Maróti, and G. Simon. “Countersniper system for urban warfare”,
Transactions on Sensor Networks, ACM, 1(2):153–177, 2005.

[MAG] MAGMA Computational Algebra System Home Page, ver. 2.14-11, Computa­
tional Algebra Group, School of Mathematics and Statistics, University of Sydney.
Online: http://magma.maths.usyd.edu.au/magma/

[Mar02] F. Margot. “Pruning by isomorphism in branch-and-cut”, Mathematical Pro­
gramming, Springer, 94(1):71–90, 2002.

[MAT] MATLAB, The MathWorks. Online: http://www.mathworks.com/

[Mat78] R. Mathon. “Sample graphs for isomorphism testing”, Congressus Numeran­
tium, Utilitas Mathematica Publishing, 9:499–517, 1978.

[McK04] B. McKay. NAUTY (no AUTormorphisms, yes?), Dept. of Computer Science,
Australian National University. Online: http://cs.anu.edu.au/~bdm/nauty/

134

http://www.combinatorialmath.ca/G&G/index.html
http://www.algorithmic-solutions.com/leda/index.htm
http://magma.maths.usyd.edu.au/magma/
http://www.mathworks.com/
http://cs.anu.edu.au/~bdm/nauty/

[McK81] B. McKay. “Practical graph isomorphism”, Congressus Numerantium, Utilitas
Mathematica Publishing, 30:45–87, 1981.

[Mil07] R. Miller. Nice (as in open source) Isomorphism Check Engine (N.I.C.E.), 2007.
Online: http://www.sagemath.org/doc/html/ref/module-sage.graphs.graph-isom.html

[Miy96] T. Miyazaki. “The complexity of McKay’s canonical labeling algorithm”, in
Groups and Computation II, DIMACS Series on Discrete Mathematics and Theoretical
Computer Science, AMS, 28:239–256, 1996.

[MMP+06] K. Morris, B. Mullins, D. Pack, G. York, and R. Baldwin. “Impact of limited
communications on a cooperative search algorithm for multiple UAVs”, in Proc. of the
IEEE International Conference On Networking, Sensing and Control (ICNSC), 2006.

[Moh04] B. Mohar. “Graph Laplacians”, Chapter 4 in Topics in Algebraic Graph Theory,
L. Beineke and R. Wilson, eds., in consultation with P. Cameron, Cambridge University
Press, pgs. 113–136, 2004.

[Mor06] K. Morris. Performance Analysis of a Cooperative Search Algorithm for Mul­
tiple Unmanned Aerial Vehicles under Limited Communication Conditions, M.S. Thesis,
Air Force Institute of Technology, 2006. Online: http://handle.dtic.mil/100.2/ADA447093

[MTH] Mathematica, Wolfram Research. Online: http://www.wolfram.com/

[NIS] NIST Chemistry WebBook (Standard Reference Database 69), National Institute of
Science and Technology (NIST). Online: http://webbook.nist.gov/chemistry/

[OEG+93] M. Ohlrich, C. Ebeling, E. Ginting, and L. Sather. “SubGemini: identifying
subcircuits using a fast subgraph isomorphism algorithm”, in Proceedings of the 30th Int'l
Conference on Design Automation (DAC), 1993.

[OSD05] Unmanned Aircraft Systems Roadmap, 2005–2030, Office of the Secretary of
Defense (OSD), 2005. Online: http://www.acq.osd.mil/usd/Roadmap%20Final2.pdf

[PaT87] R. Paige and R. Tarjan. “Three partition refinement algorithms”, Journal on
Computing, SIAM, 16(6):973–989, 1987.

[PBM+98] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Rank­
ing: Bringing Order to the Web, Technical Report 1999-66, The Stanford Digital Library
Technologies Project, 1998. Online: http://dbpubs.stanford.edu/pub/1999-66

[PBO03] H. Parunak, S. Brueckner, and J. Odell. “Swarming coordination of multiple
UAV’s for collaborative sensing”, in Proceedings of the “Unmanned Unlimited” Systems
Technologies and Operations—Aerospace, Land, and Sea Conference, AIAA, 2003.

[PSC05] S. Pillai, T. Suel, and S. Cha. “The Perron-Frobenius theorem: some of its appli­
cations”, Signal Processing Magazine, 22:62–75, 2005.

135

http://www.sagemath.org/doc/html/ref/module-sage.graphs.graph-isom.html
http://handle.dtic.mil/100.2/ADA447093
http://www.wolfram.com/
http://webbook.nist.gov/chemistry/
http://www.acq.osd.mil/usd/Roadmap%20Final2.pdf
http://dbpubs.stanford.edu/pub/1999-66

[Rea72] R. Read. “The coding of various kinds of unlabeled trees”, in Graph Theory and
Computing, R. Read and C. Berge, eds., Academic Press, pgs. 153–182, 1972.

[ReC77] R. Read and D. Corneil. “The graph isomorphism disease”, Journal of Graph
Theory, John Wiley & Sons, 1:339–363, 1977.

[Rig03] B. Rigling. Signal Processing Strategies for Bistatic Synthetic Aperture Radar,
Ph.D. Thesis, Department of Electrical Engineering, Ohio State University, 2003. Online:
http://www.ohiolink.edu/etd/view.cgi?acc_num=osu1052835606

[Ros00] K. Rosen. Handbook of Discrete and Combinatorial Mathematics, CRC, 2000.

[SAG] SAGE: Open Source Mathematics Software, The SAGE Foundation. Online:
http://www.sagemath.org/

[Sch74] A. Schwenk. “Computing the characteristic polynomial of a graph”, in Proceed­
ings of the Capital Conference on Graph Theory and Combinatorics, Springer, Lecture
Notes in Mathematics, 406:153–172, 1974.

[Ser02] Á. Seress. Permutation Group Algorithms, Cambridge University Press, Cam­
bridge Tracts in Mathematics, vol. 152, 2002.

[SiK67] R. Sinkhorn and P. Knopp. “Concerning nonnegative matrices and doubly sto­
chastic matrices”, Pacific Journal of Mathematics, 21:343–348, 1967.

[Sin64] R. Sinkhorn. “A relationship between arbitrary positive matrices and doubly sto­
chastic matrices”, Annals of Mathematical Statistics, Institute of Mathematical Statistics,
35:876–879, 1964.

[Soi06] L. Soicher. GRAPE Package for GAP, ver. 4.3, School of Math. Sciences, Queen
Mary, University of London, 2006. Online: http://www.maths.qmul.ac.uk/~leonard/grape/

[SOP+04] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and
D. Estrin. “Habitat monitoring with sensor networks”, Communications of the ACM,
47(6):34–40, 2004.

[Spi06] C. Spinneli. Development and Testing of a High-Speed Real-Time Kinematic Pre­
cise DGPS Positioning System between Two Aircraft, M.S. Thesis, Air Force Institute of
Technology, 2006. Online: http://handle.dtic.mil/100.2/ADA454831

[StT99] P. Stadler and G. Tinhofer. “Equitable partitions, coherent algebras and random
walks: applications to the correlation structure of landscapes”, MATCH Communications
in Mathematical and in Computer Chemistry, 40:215–261, 1999.

[TBH+04] N. Tatbul, M. Buller, R. Hoyt, S. Mullen, and S. Zdonik. “Confidence-based
data management for personal area sensor networks”, in Proceedings of the Workshop on
Data Management for Sensor Networks, ACM, 2004.

136

http://www.ohiolink.edu/etd/view.cgi?acc_num=osu1052835606
http://www.sagemath.org/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://handle.dtic.mil/100.2/ADA454831

[TiK99] G. Tinhofer and M. Klin. Algebraic Combinatorics in Mathematical Chemistry.
Methods and Algorithms, III. Graph Invariants and Stabilization Methods, Tech. Report
TUM-M9902, Technische Universtät München (TUM, Technical University of Munich),
1999. Online: http://www-lit.ma.tum.de/veroeff/html/990.05005.html

[Tra07] Traffic.com, NavTeq. Online: http://www.traffic.com/

[USA05] The U.S. Air Force Remotely Piloted Aircraft and Unmanned Aerial Vehicle
Strategic Vision, Technical Report, United States Air Force, Headquarters, Directorate of
Strategic Planning, Future Concepts and Transformation Div., HQ USAF/A8XC, 2005.
Online: http://www.af.mil/shared/media/document/AFD-060322-009.pdf

[WaG04] M. Walch and D. Gantz. “Pictographic matching: A graph-based approach to­
wards a language independent document exploitation platform”, in Proceedings of the
ACM Workshop on Hardcopy Document Processing, 2004.

[Wei76] B. Weisfeiler. On Construction and Identification of Graphs, Springer-Verlag,
Lecture Notes in Mathematics, vol. 558, 1976.

[Wes01] D. West. Introduction to Graph Theory, Prentice-Hall, 2001.

[ZhG04] F. Zhao and L. Guibas. Wireless Sensor Networks, Morgan-Kaufmann, 2004.

137

http://www-lit.ma.tum.de/veroeff/html/990.05005.html
http://www.traffic.com/
http://www.af.mil/shared/media/document/AFD-060322-009.pdf

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

11 Sep 2008
2. REPORT TYPE

Doctoral Dissertation
3. DATES COVERED (From – To)

Aug 2004 – Sep 2008
4. TITLE AND SUBTITLE

On Graph Isomorphism and the PageRank Algorithm

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Augeri, Christopher J.

5d. PROJECT NUMBER
ENG 08-314

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFIT/DCS/ENG/08-08

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Communications Agency
Attn: ENSA (Mr. John Resen)
203 West Losey St
Scott AFB, IL 62225
(618) 229-5341
John.Resen@scott.af.mil

10. SPONSOR/MONITOR’S ACRONYM(S)
AFCA

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Graphs express relationships among objects, such as the radio connectivity among nodes in unmanned vehicle swarms. Some applications may rank
a swarm’s nodes by their relative importance, for example, using the PageRank algorithm applied in certain search engines to order query responses.
The PageRank values of the nodes correspond to a unique eigenvector that can be computed using the power method, an iterative technique based on
matrix multiplication. The first result is a practical lower bound on the PageRank algorithm’s execution time that is derived by applying assumptions
to the PageRank perturbation’s scaling value and the PageRank vector’s required numerical precision. The second result establishes nodes contained
in the same block of the graph’s coarsest equitable partition must have equal PageRank values. The third result, the AverageRank algorithm, ensures
such nodes are assigned equal PageRank values. The fourth result, the ProductRank algorithm, reduces the time needed to find the PageRank vector
by eliminating certain dot products in the power method if the graph’s coarsest equitable partition contains blocks composed of multiple vertices.
The fifth result, the QuotientRank algorithm, uses a quotient matrix induced by the coarsest equitable partition to further reduce the time needed to
compute a swarm’s PageRank vector.

15. SUBJECT TERMS

PageRank algorithm, Markov chain, stochastic matrix, stationary probability distribution, dominant eigenvalue, normalized dominant eigenvector
graph isomorphism, canonical isomorph, coarsest equitable partition, orbit partition, automorphism group, Weisfeiler-Lehman stabilization
quotient graph, quotient matrix, characteristic block matrix, eigenvalue interlacing, eigenvector lifting, matrix multiplication, dot product

16. SECURITY CLASSIFICATION: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

153

19a. NAME OF RESPONSIBLE PERSON
Dr. Barry E. Mullins, AFIT/ENG

REPORT

U

ABSTRACT

U

c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, x7979; e-mail: Barry.Mullins@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed byANSI Std.Z39-18

mailto:John.Resen@scott.af.mil
mailto:Barry.Mullins@afit.edu

	Front Matter
	Disclaimer
	Title Page
	Signatures
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Theorems
	List of Symbols

	I. Introduction
	1.1. The PageRank Vector
	1.2. Research Motivation
	Figure 1. Mansion Graph [CDR07]
	Table 1. Mansion Graph’s PageRank Vector
	Figure 2. House Graph [Gol80, Gol04]
	Table 2. House Graph’s PageRank Vector

	1.3. Problem Statement
	Figure 3. House Graph’s 3-Block Coarsest Equitable Partition

	1.4. Research Goals
	Figure 4. House Graph and Its Induced Quotient Graph

	1.5. Assumptions
	Figure 5. Non-Connected Graph

	1.6. Overview

	II. Background
	2.1. Ordering Nodes in Sensor Networks and Unmanned Vehicle Swarms
	2.2. Deciding Isomorphism: A Classic Graph-Theoretic Problem
	2.2.1. The Relationship to Canonical Vertex Ordering
	Figure 6. Two Graph Isomorphs: The Triangle and Twisted Rope
	Table 3. Two Adjacency Matrix Isomorphs: The Triangle and Twisted Rope

	2.2.2. Graph Isomorphism Applications
	Figure 7. Two Chemical Isomers

	2.2.3. A Formal Definition
	Figure 8. Two Isomorphs: The Square and Hourglass
	Table 4. Two Isomorphs: The Adjacency Matrices of the Square and Hourglass
	Table 5. Identity Matrix and Permutation Matrices
	Table 6. Establishing Isomorphism
	Table 7. Computing the Inverse Permutation
	Table 8. Computing Inverse Permutation Matrices

	2.2.4. Canonical Isomorphs
	Table 9. Three Isomorphs of the House Graph’s Adjacency Matrix
	Figure 9. Canonical Isomorph’s Permutation Triangle

	2.3. Vertex Partitions
	Figure 10. Vertex Partition Tree of an Arbitrary 3-Vertex Graph
	2.3.1. The Degree Partition
	Figure 11. Two Graphs Yielding Different Degree Sequences
	Figure 12. Devil’s Pair for the Sorted Degree Sequence

	2.3.2. The Equitable Partitions
	Figure 13. Exploring Equitable Partitions

	2.3.3. The Coarsest Equitable Partition
	Figure 14. Coarsest Equitable Partitions and Canonical Orderings
	2.3.3.1. A Formal Method
	Figure 15. Method 1: Finding the House Graph’s Coarsest Equitable Partition

	2.3.3.2. A Fast Method
	Figure 16. Method 2: Fast Algorithm for Finding Equitable Partitions [PaT87, KrS98]
	Figure 17. Method 2: Finding the House Graph’s Coarsest Equitable Partition
	Table 10. Method 2: Finding the House Graph’s Coarsest Equitable Partition

	2.3.3.3. A Facile Method
	Figure 18. Method 3: 1-D Weisfeiler-Lehman Stabilization
	Figure 19. Method 3: 1-D Weisfeiler-Lehman Stabilization Example
	Figure 20. Method 3: Finding the House Graph’s Coarsest Equitable Partition
	Table 11. The House Graph’s Adjacency and Sorted Degree Matrices
	Table 12. Method 3: 1-D Weisfeiler-Lehman Stabilization of the House Graph

	2.3.4. The Orbit Partition
	Figure 21. Isomorph and Automorph of the Square
	Table 13. Isomorph and Automorph of the Square
	Figure 22. House Graph’s Coarsest Equitable and Orbit Partition
	Figure 23. Cuneane Graph’s Distinct Coarsest Equitable and Orbit Partitions
	2.3.4.1. Vertex Individualization and Arbitrary Partition Stabilization
	Figure 24. House Graph’s Coarsest Equitable Partition,
	Figure 25. Refining to Equitable Partitions after Vertex Individualization

	2.3.4.2. Computing the Orbit Partition
	Figure 26. House Graph’s Vertex Partition Tree (Equitable Partitions Boxed)
	Figure 27. House Graph
	Table 14. Partial Permutations of the House Graph’s Adjacency Matrix
	Table 15. House Graph Isomorphs

	2.3.4.3. Easy, Hard, and In-Between Graphs
	Figure 28. Easy, Medium, and Hard: Discrete, Non-Discrete and Unit Partitions

	2.3.5. Induced Quotient Graphs and Matrices
	Figure 29. House Graph’s Induced Quotient Graph
	 Table 16. House Graph’s Induced Quotient Matrix
	2.3.5.1. Interlacing Eigenvalues
	Table 17. House Graph’s and Its Induced Quotient Graph’s Eigenvalues

	2.3.5.2. Lifting Eigenvectors
	Table 18. Block Matrix, B, of the House Graph’s Coarsest Equitable Partition
	Table 19. Block Matrix, N, of the House Graph’s Coarsest Equitable Partition
	Table 20. Lifting a Dominant Eigenvector of the House Graph

	2.3.5.3. Interlacing, Lifting, Arbitrary Matrices and Arbitrary Partitions

	2.4. A Brief Interlude: Eigen Decomposition Applications in Graph Theory
	Figure 30. 3-D Buckyball Drawing Based on Its Signless Laplacian’s Eigenvectors

	2.5. The PageRank Algorithm
	Figure 31. Mansion Graph
	Table 21. Mansion Graph’s PageRank Vector
	Figure 32. House Graph
	Table 22. House Graph’s PageRank Vector
	2.5.1. Computing the PageRank Perturbation
	Table 23. House Graph’s Adjacency Matrix, A
	Table 24. House Graph’s Degree Matrix and Degree Matrix Inverse
	Table 25. A Row-Stochastic Matrix
	Table 26. A Column-Stochastic Matrix
	Table 27. House Graph’s PageRank Matrix, S

	2.5.2. Computing the PageRank Vector
	2.5.2.1. Power Method Iteration
	2.5.2.2. Expected Number of Power Method Iterations

	2.5.3. PageRank: An Algorithm for Ranking Vertices
	Figure 33. PageRank: An Algorithm for Ordering Vertices [PBM+98]
	Figure 34. Paw Graph [Wes01]
	Figure 35. Applying the PageRank Perturbation to the Paw Graph
	Table 28. Paw Graph’s Adjacency and PageRank Matrices
	Table 29. Paw Graph’s PageRank Vector
	Figure 36. Paw Graph’s PageRank Vector
	Figure 37. Paw Graph’s PageRank Ordering
	Figure 38. Cuneane Graph’s Coarsest Equitable and Orbit Partitions

	2.6. Observations about Equitable Vertices and PageRank Values
	Figure 39. Coarsest Equitable Partitions of the House and Octahedron Graphs
	Figure 40. Two Graphs Yielding a Non-Discrete Coarsest Equitable Partition

	2.7. Known Results
	2.8. Summary

	III. Establishing Equitable Equivalency
	3.1. Overview
	3.2. Lower Bound on the Expected Number of Power Method Iterations
	Theorem 1. PageRank: Practical Lower Bound on Power Method Iterations

	3.3. Motivating Equitable Dot Products and PageRank Values
	3.3.1. From Weisfeiler-Lehman Stabilization to Iterated Dot Products
	Table 30. Iterated Dot Products of the House Graph’s Adjacency Matrix
	Table 31. Iterated Prime Dot Products of the House Graph’s Adjacency Matrix
	Table 32. Constructing the First Prime Diagonal Matrix
	Table 33. First Prime Dot Product Iteration
	Table 34. Two Equal Dot Products

	3.3.2. Finding the Coarsest Equitable Partition By Iterated Dot Products
	Figure 41. 1-D Weisfeiler-Lehman Stabilization Using Primes and Dot Products

	3.4. Relating Equitable Dot Products and PageRank Values
	3.4.1. Equitable Dot Products
	Theorem 2. Equitable Dot Products
	Figure 42. 1-D Weisfeiler-Lehman Stabilization Using Matrices

	3.4.2. Equitable PageRank Values
	Theorem 3. Equitable PageRank Values

	3.4.3. Additional Equitable Relationships
	Figure 43. Graph Yielding Different Coarsest Equitable and Orbit Partitions

	3.4.4. Complexity Analysis

	IV. Reducing Equitable Differences and Dot Products
	4.1. Overview
	4.2. Eliminating Equitable PageRank Differences
	4.2.1. Numerical Differences and Equitable Vertices
	Figure 44. 9-Vertex Tree: A Graph Yielding a 4-Block Equitable Partition
	Table 35. A 9-Vertex Tree’s Adjacency Matrix
	Table 36. A 9-Vertex Tree’s PageRank Vector

	4.2.2. AverageRank: An Algorithm for Eliminating Equitable Differences
	Figure 45. AverageRank: An Algorithm for Ensuring Equitable PageRank Values

	4.2.3. Complexity Analysis

	4.3. Eliminating Equitable PageRank Dot Products
	4.3.1. Excess Dot Products and Equitable Vertices
	Figure 46. House Graph and Its 3-Block Coarsest Equitable Partition
	Table 37. House Graph’s Adjacency and Degree Matrix
	Table 38. House Graph’s Stochastic PageRank Matrix, S
	Table 39. Initial PageRank Power Method Iterations of the House Graph

	4.3.2. ProductRank: An Algorithm for Eliminating Equitable Dot Products
	Figure 47. ProductRank: An Algorithm for Eliminating Equitable Dot Products

	4.3.3. Complexity Analysis
	Figure 48. 4 x 4 Grid: A Graph Yielding a 3-Block Equitable Partition
	Table 40. 4 x 4 Grid Graph’s 3-Block Coarsest Equitable Partition

	4.3.4. Algorithm Applicability

	V. Lifting PageRank Values
	5.1. Overview
	Figure 49. Pseudo-Benzene: A Graph Yielding a 2-Block Equitable Partition [StT99]

	5.2. Quotient Computations
	Theorem 4. Dominant Eigenvalue of Equitable Quotient Matrix of a PageRank Matrix
	Theorem 5. Lifting a PageRank Vector from an Equitable Quotient Matrix

	5.3. Lifting the House Graph’s PageRank Vector
	Figure 50. House Graph’s 3-Block Coarsest Equitable Partition
	Table 41. Characteristic Block Matrix, B
	Table 42. Characteristic Block Matrix Products
	Table 43. House Graph’s Adjacency Matrix, A
	Table 44. House Graph’s PageRank Matrix, S
	Table 45. Quotient Matrix, Q, of the House Graph’s PageRank Matrix, S
	Table 46. Eigenvalues of the PageRank and Quotient Matrices
	Table 47. Dominant Eigenvectors of the PageRank and Quotient Matrices

	5.4. QuotientRank: An Algorithm for Lifting PageRank Vectors
	Figure 51. QuotientRank: An Algorithm for Lifting PageRank Vectors

	5.5. Complexity Analysis
	Theorem 6. QuotientRank: Practical Lower Bound on Power Method Iterations
	Theorem 7. QuotientRank: Upper Bound on Power Method Iterations

	5.6. A QuotientRank Example
	Figure 52. Pseudo-Benzene Graph and Its PageRank-Induced Quotient Graph
	Table 48. A 2 x 2 PageRank-Induced Quotient Matrix, Q
	Table 49. Lifting the PageRank Vector from the Dominant Eigenvector
	Table 50. Theoretical Power Method Iterations
	Table 51. Observed Power Method Iterations

	5.7. QuotientRank Applicability
	Figure 53. 8 x 3 Grid: A Graph Yielding a Non-Discrete Coarsest Equitable Partition

	VI. Conclusions and Future Research
	6.1. Conclusions
	6.1.1. Complexity Bounds
	6.1.2. Obtaining Canonical Vertex Orderings from the PageRank Vector
	Figure 54. Canonical PageRank Orderings of the Mansion and House Graphs

	6.1.3. Relating the PageRank Vector and the Coarsest Equitable Partition

	6.2. Future Work
	6.2.1. Implementation Improvements
	6.2.2. Other Linear Algebra Applications
	6.2.3. k-D Weisfeiler-Lehman Stabilization
	6.2.4. Open Call for Parallel Software that Decides Graph Isomorphism

	6.3. Summary

	Bibliography
	[AMB+07] Augeri et al. “An algorithm for determining isomorphism using lexicographic sorting and the matrix inverse”, Congressus Numerantium, 2007.
	[ANT+02] Arasu et al. “PageRank computation and the structure of the web: experiments and algorithms”, WWW, 2002.
	[AsW05] Aspnes & Weider. “The expansion and mixing time of skip graphs with applications”, SPAA, 2005.
	[Bab95] Babai. “Automorphism groups, isomorphism, reconstruction”, in Handbook of Combinatorics, 1995.
	[BaL83] Babai & Luks. “Canonical labeling of graphs”, STOC, 1983.
	[Bas02] Bastert. Stabilization Procedures and Applications, Ph.D. Thesis, Zentrum Mathematik, Technische Universtät München (TUM), 2002.
	[BeC06] Berners-Lee & Connolly. “Delta: An ontology for the distribution of differences between RDF graphs”, World Wide Web Consortium (W3C), 2006.
	[BeE96] Bennett & Edwards. “A graph isomorphism algorithm using pseudo-inverses”, BIT, 1996.
	[BES80] Babai, Erdös, & Selkow. “Random graph isomorphism”, J. on Computing, 1980.
	[BGM82] Babai, Grigoryev, & Mount. “Isomorphism of graphs with bounded eigenvalue multiplicity”, STOC, 1982.
	[BLS+06] Boldi et al. “Graph fibrations, graph isomorphism, and PageRank”, RAIRO: Informatique Théorique et Applications, 2006.
	[BMT+04] Brennan et al. “Radiation detection with distributed sensor networks”, Computer, 2004.
	[BrL04] Brandes & Lerner. “Structural similarity in graphs: a relaxation approach for role assignment”, ISAAC, 2004.
	[BST] Boost C++ Libraries.
	[CaC82] Cardon & Crochemore. “Partitioning a graph in O(|A|)log2|V|”, Theoretical Computer Science, 1982.
	[Car03] Carroll. Signing RDF graphs, Tech Report, HP Labs, 2003.
	[CDR07] Cardoso, Delorme, & Rama. “Laplacian eigenvectors and eigenvalues and almost equitable partitions”, European J. of Combinatorics, 2007.
	[CFI92] Cai, Fürer, & Immerman. “An optimal lower bound on the number of variables for graph identification”, Combinatorica, 1992.
	[CFS+04] Cordella et al. “A (sub)graph isomorphism algorithm for matching large graphs”, Trans. on Pattern Analysis and Machine Intelligence, 2004.
	[CHP+04] Corke et al. “Autonomous deployment and repair of a sensor network using an unmanned aerial vehicle”, Conf. on Robotics and Automation, 2004.
	[Chu94] Chung. Spectral Graph Theory, Regional Conference Series in Mathematics, 1994.
	[Cla00] Clark. Uninhabited Combat Aerial Vehicles, CADRE Paper, Air University, 2000.
	[CMI00] Millennium Prize Problems, Clay Mathematics Institute, 2000.
	[CoG70] Corneil & Gotlieb. “An efficient algorithm for graph isomorphism”, J. of the ACM, 1970.
	[CRS97] Cvetković, Rowlinson, & Simić. Eigenspaces of Graphs, 1997.
	[DBC+98] Duckworth et al. “Fixed and wearable acoustic counter-sniper systems for law enforcement”, Sym. on Enabling Technologies for Law Enforcement and Security, 1998.
	[ElE04] Elson & Estrin. “Sensor networks: a bridge to the physical world”, in Wireless Sensor Networks, 2004.
	[Fau98] Faulon. “Isomorphism, automorphism partitioning, and canonical labeling can be solved in polynomial-time for molecular graphs”, J. of Chemical Information and Computer Sciences, 1998.
	[Für01] Fürer. “Weisfeiler-Lehman refinement requires at least a linear number of iterations”, ICALP, 2001.
	[Für87] Fürer. A Counterexample in Graph Isomorphism Testing, Tech Report, Dept. of Computer Science, Pennsylvania State Univ., 1987.
	[GAP] GAP, Computational Algebra Group, School of Mathematics & Statistics, Univ. of Sydney.
	[Gat79] Gati. “Further annotated bibliography on the isomorphism disease”, J. of Graph Theory, 1979.
	[GCM06] Greenblatt, Coffman, & Marcus. “Behavioral network analysis for terrorist detection”, in Emergent Information Technologies and Enabling Policies for Counter-Terrorism, 2006.
	[GHK+03] Grossman et al. “Experimental studies of the universal chemical key (UCK) algorithm on the NCI database of chemical compounds”, CSB, 2003.
	[God93] Godsil. Algebraic Combinatorics, 1993.
	[GoV88] Golub & Van Loan. Matrix Computations, 1988.
	[Gol04] Golumbic. Algorithmic Graph Theory and Perfect Graphs, 2nd ed., 2004.
	[Gol80] Golumbic. Algorithmic Graph Theory and Perfect Graphs, 1st ed., 1980.
	[GoR01] Godsil & Royle. Algebraic Graph Theory, 2001.
	[Got03] Gotsman. “On graph partitioning, spectral analysis, and digital mesh processing”, SMI, 2003.
	[Gui05] Guizzo. “Into deep ice”, Spectrum, 2005.
	[GuM95] Guattery & Miller. “On the performance of spectral graph partitioning methods”, SODA, 1995.
	[Hae95] Haemers. “Interlacing eigenvalues and graphs”, Linear Algebra and its Applications, 1995.
	[HaK03] Haveliwala & Kamvar. The Second Eigenvalue of the Google Matrix, Tech Report, Dept. of Computer Science, Stanford Univ., 2003.
	[HaS04] Haemers & Spence. “Enumeration of cospectral graphs”, European J. of Combinatorics, 2004.
	[HeL93] Hendrickson & Leland. “An improved spectral graph partitioning algorithm for mapping parallel computations”, J. on Scientific Computing, 1995.
	[Hof82] Hoffmann. Group-Theoretic Algorithms and Graph Isomorphism, Lecture Notes in Computer Science, 1982.
	[HSS] Hagberg, Schult, & Swart. NetworkX, Dept. of Mathematical Modeling and Analysis, Los Alamos National Laboratory.
	[HZL05] He, Zhang, & Li. “Some further development on the eigensystem approach for graph isomorphism detection”, J. of the Franklin Institute, 2005.
	[ISB85] IEEE Standard for Binary Floating-Point Arithmetic (754-1985), IEEE.
	[IyB05] Iyengar & Brooks, eds. Distributed Sensor Networks, 2005.
	[JAU] Joint Architecture for Unmanned Systems (JAUS), JAUS Working Group.
	[JuK07] Junttila & Kaski. “Engineering an efficient canonical labeling tool for large and sparse graphs”, ALENEX, 2007.
	[KaS83] Kanellakis & Smolka. “CCS expressions, finite state processes, and three problems of equivalence”, PODC, 1983.
	[Knu97] Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching, 1997.
	[Koc96] Kocay. “On writing isomorphism programs”, in Computational and Constructive Design Theory, 1996.
	[KoK06] Kocay & Kreher. Groups & Graphs, Univ. of Manitoba.
	[Kor05] Koren. “Drawing graphs by eigenvectors: theory and practice”, Computers and Mathematics with Applications, 2005.
	[KrS98] Kreher & Stinson. Combinatorial Algorithms, 1998.
	[KuS07] Kutz & Schweitzer. “ScrewBox: a randomized certifying graph-non-isomorphism algorithm”, ALENEX, 2007.
	[LaM03] Langville & Meyer. “Deeper inside PageRank”, Internet Mathematics, 2003.
	[LaM06] Langville & Meyer. Google’s PageRank and Beyond: The Science of Search Engine Rankings, 2006.
	[LED] Library of Efficient Data types and Algorithms (LEDA), Algorithmic Solutions Software.
	[Ler05] Lerner. “Role assignments”, in Network Analysis: Methodological Foundations, Lecture Notes in Computer Science, 2005.
	[LNV+05] Lédeczi et al. “Countersniper system for urban warfare”, Trans. on Sensor Networks, 2005.
	[MAG] MAGMA Computational Algebra System, Computational Algebra Group, Univ. of Sydney.
	[Mar02] Margot. “Pruning by isomorphism in branch-and-cut”, Mathematical Programming, 2002.
	[MAT] MATLAB, The MathWorks.
	[Mat78] Mathon. “Sample graphs for isomorphism testing”, Congressus Numerantium, 1978.
	[McK04] McKay. NAUTY (no AUTormorphisms, yes?), Dept. of Computer Science, Australian National Univ.
	[McK81] McKay. “Practical graph isomorphism”, Congressus Numerantium, 1981.
	[Mil07] Miller. Nice (as in open source) Isomorphism Check Engine (N.I.C.E.), 2007.
	[Miy96] Miyazaki. “The complexity of McKay’s canonical labeling algorithm”, in Groups and Computation II, 1996.
	[MMP+06] Morris et al. “Impact of limited communications on a cooperative search algorithm for multiple UAVs”, ICNSC, 2006.
	[Moh04] Mohar. “Graph Laplacians”, in Topics in Algebraic Graph Theory, 2004.
	[Mor06] Morris. Performance Analysis of a Cooperative Search Algorithm for Multiple Unmanned Aerial Vehicles under Limited Communication Conditions, M.S. Thesis, Air Force Institute of Technology (AFIT), 2006.
	[MTH] Mathematica, Wolfram Research.
	[NIS] NIST Chemistry WebBook, NIST.
	[OEG+93] Ohlrich et al. “SubGemini: identifying subcircuits using a fast subgraph isomorphism algorithm”, DAC, 1993.
	[OSD05] Unmanned Aircraft Systems Roadmap, 2005–2030, OSD, 2005.
	[PaT87] Paige & Tarjan. “Three partition refinement algorithms”, J. on Computing, 1987.
	[PBM+98] Page et al. The PageRank Citation Ranking: Bringing Order to the Web, Tech Report, Stanford Univ., 1998.
	[PBO03] Parunak, Brueckner, & Odell. “Swarming coordination of multiple UAV’s for collaborative sensing”, Aerospace, Land, and Sea Conference, 2003.
	[PSC05] Pillai, Suel, & Cha. “The Perron-Frobenius theorem: some of its applications”, Signal Processing Magazine, 2005.
	[Rea72] Read. “The coding of various kinds of unlabeled trees”, in Graph Theory & Computing, 1972.
	[ReC77] Read & Corneil. “The graph isomorphism disease”, J. of Graph Theory, 1977.
	[Rig03] Rigling. Signal Processing Strategies for Bistatic Synthetic Aperture Radar, Ph.D. Thesis, Ohio State Univ., 2003.
	[Ros00] Rosen. Handbook of Discrete and Combinatorial Mathematics, 2000.
	[SAG] SAGE: Open Source Mathematics Software, SAGE Foundation.
	[Sch74] Schwenk. “Computing the characteristic polynomial of a graph”, Capital Conference on Graph Theory and Combinatorics, 1974.
	[Ser02] Seress. Permutation Group Algorithms, Cambridge Tracts in Mathematics, 2002.
	[SiK67] Sinkhorn & Knopp. “Concerning nonnegative matrices and doubly stochastic matrices”, Pacific J. of Mathematics, 1967.
	[Sin64] Sinkhorn. “A relationship between arbitrary positive matrices and doubly stochastic matrices”, Annals of Mathematical Statistics, 1964.
	[Soi06] Soicher. GRAPE Package for GAP, School of Mathematical Sciences, Queen Mary, Univ. of London, 2006.
	[SOP+04] Szewczyk et al. “Habitat monitoring with sensor networks”, Communications of the ACM, 2004.
	[Spi06] Spinneli. Development and Testing of a High-Speed Real-Time Kinematic Precise DGPS Positioning System between Two Aircraft, M.S. Thesis, Air Force Institute of Technology (AFIT), 2006.
	[StT99] Stadler & Tinhofer. “Equitable partitions, coherent algebras and random walks: applications to the correlation structure of landscapes”, MATCH Communications in Mathematical and in Computer Chemistry, 1999.
	[TBH+04] Tatbul et al. “Confidence-based data management for personal area sensor networks”, Workshop on Data Management for Sensor Networks, 2004.
	[TiK99] Tinhofer & Klin. Algebraic Combinatorics in Mathematical Chemistry, Tech Report, Technische Universtät München (TUM), 1999.
	[Tra07] Traffic.com, NavTeq.
	[USA05] U.S. Air Force Remotely Piloted Aircraft and Unmanned Aerial Vehicle Strategic Vision, Tech Report, U.S. Air Force, 2005.
	[WaG04] Walch & Gantz. “Pictographic matching: A graph-based approach towards a language independent document exploitation platform”, Workshop on Hardcopy Document Processing, 2004.
	[Wei76] B. Weisfeiler. On Construction and Identification of Graphs, Lecture Notes in Mathematics, 1976.
	[Wes01] West. Introduction to Graph Theory, 2001.
	[ZhG04] Zhao & Guibas. Wireless Sensor Networks, 2004.

	SF 298

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

