SPA Serial 32539

Sensor Performance Optimization Tool (SP @T)

James Richardson, SPA

10 – 12 June 2008 76th MORS Symposium USCG Academy New London, CT

Systems Planning and Analysis, Inc. 2001 North Beauregard Street Alexandria, Virginia 22311

USCG Research and Development Center 1082 Shennecossett Road Groton, Connecticut 06340

	Form Approved OMB No. 0704-0188						
Public reporting burden for the col maintaining the data needed, and c including suggestions for reducing VA 22202-4302. Respondents sho does not display a currently valid (ructions, searching exis or any other aspect of the s, 1215 Jefferson Davis failing to comply with	sting data sources, gathering and his collection of information, Highway, Suite 1204, Arlington a collection of information if it					
1. REPORT DATE 01 JUN 2008		3. DATES COVERED -					
4. TITLE AND SUBTITLE	5a. CONTRACT	NUMBER					
Sensor Performan	ce Optimization Too		5b. GRANT NUN	MBER			
	5c. PROGRAM H	ELEMENT NUMBER					
6. AUTHOR(S)	5d. PROJECT NU	JMBER					
	5e. TASK NUME	BER					
	5f. WORK UNIT NUMBER						
7. PERFORMING ORGANI Systems Planning a Alexandria, Virgin	8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
13. SUPPLEMENTARY NO See also ADM2025 Connecticut on Jun	otes 27. Military Operat ne 10-12, 2008, The	ions Research Socie original document e	ety Symposium (7 contains color ima	6th) Held in ages.	New London,		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 46	RESPONSIBLE PERSON		

Standard	Form 298 (Rev. 8-98)
Pres	scribed by ANSI Std Z39-18

• In accordance with the 76th MORS **Symposium** guidelines the following brief has received approval for distribution by the sponsor.

			and the solution of the solution	MORS PE: (fikroam)					
76 MORSS	Π	BRS							
ANT	CONT	RACTOR	7124	P-026-372					
DATE LINE SOOR	DISCLOS	SURE FORM		DEADLINE: 2 MAY 08 Fex to: 703-833-8066					
Electron Marine				an dan dari seri katan seri ba La santa M≪anta seri s					
Principal Author:		Other Author(s):		1818					
James Smilley	Richardson								
Principal Author's Organiz Systems Planning	ation and complete n and Analysis,	alling address: INC,	Principal Author's Signature:	Date: 4/25/08					
2001 N. Beauregan	d St		Phone: 703-399-7218	FAX: 703-399-7365					
Suite 100 Alexandria VA 223	11		Email: jrichardson@spa.com	m					
Title of Presentation: Sensor Performance	e Optimization To	ol .		MORSS Agenda Manager IDS:					
This oresentation is believe	ed to be: SECI		IAL TOUNCLASSIFIED	nd will be presented in:					
Special Session T	utorial Demo	Postar CG: A-B-C-D-E-	F (Circle cre)	»)#: 5,29,30					
This work was performed in	connection with a gove	arnment contract.		YES (Complete Parts I, II, & III)					
This presentation is based and was NOT done under a	on material developed i government contract.	by the author as part of company	y-approved research e.g. IR&D	YES (Complete Parts I & II)					
This presentation was NOT and is approved for public for	done under a governm stesse.	ent contract, contains no govern	nment information, is my own work	YES (Complete Part only)					
NAME OF BRIDE		and Constants	 Solution of a subdimer part of the left in 	an de anne (), comme se contract Anne - Contractor anne - Contractor					
This work was performed in cor	mection with Contract #: 1	15032-0- D-ROOM	003 lat by (Activity):	Datad:					
Contractor Security Office	rs Title:	baciel 81	Organization:	and Analysis Tor.					
Printed name:	econy y	neoraist	Complete mailing address:	ward 8					
Nakia	Kober	+3	- Suile 100	regard st					
* halin	Roberts	Date: 4/23/08	Alexandria, VA 22311						
Contractor Security Off	cer's Signature: 4	Email: nrober & 6394	(Com Phone: (703)399-7339	FAX: (703)399-7340					
Astriu II.		ilentiji dan societod Janikasi Galak	ા ગામ લેવું છે. તેનું પ્રાપ્ય છે.						
The Releasing Official/Gove atlandees have current secur	mment Contracting Official	car or Study Sponsor, with the u SECRET and that no foreign natio	understanding that MORS Symposia are anals will be present continue that the overs	supervised by the OCNO N81, that all il classification of the presentation is:					
		SSIFIED OTHER:	and aut	horizes disclosure at the meeting.					
Clessified by:	Dec	lassified by:	Downgrade to:	On:					
Distributio	n statement A:		Other distribution statemen	t: (List have or atlach separate sheet)					
This presentation release, Sistributi Sceneing and oth Traffic in Arms Re	(paper is unclassified, ap on unlimited, and is exer or export approvals unde soutations (22 CFR 120 o	proved far public							
Releasing Official/Gov't C	Contracting Officer or S	Study Sponsor's:	Organization: USCG RDC						
THO: Chief And	usis nolder	& Simulation	Complete mailing address:						
Name: Mr. Bert Ma	pesker		USCG Research and Develo 1082 Shennecossett Rd	opment Center					
× LetMA	t-	Date: 4 27/08	Groton, CT 06340						
11111	Emeit bert ma	cesker@usca.mil	Phone: 860-441-2726	FAX: 860-441-2792					

- Tuesday 10 June 2008, 10:30 AM
 - WG 5 Homeland Security and Civil Defense
- Wednesday 11 June 2008, 10:30 AM
 - WG 29 Modeling, Simulation and Wargaming
 - WG 30 Operational Environment Factors, Interactions, and Impacts

Introduction

- Background
 - USCG is in the process of acquiring improved infrared (IR) sensor systems for installation on standard rotary-wing platforms.
 - Historically, IR sensor systems have not been used for primary detection work.

- Question remains

"How can these high-tech sensors be best employed to assist in obtaining initial detections on hard-to-find targets?"

• In 2007, collaboration began between the USCG RDC and SPA to develop a software tool that could help analysts and pilots further understand the factors that drive effective searches

- The Sensor Performance Optimization Tool is a simulation-based tool that:
 - Captures key platform and system performance characteristics
 - Visualizes search effectiveness
 - Can be used to creates a collection of "best searches" from which analysts and pilots can choose the most operationally feasible search

GCAM-CTS Elements

UNCLASSIFIED

• Capitalize on GCAM's native Area Coverage functionality

• Contributes to P(det) for this time step

 \bigcirc No contribution this time step

x No credit possible (outside of AOR)

• Historically, Probability of Detection (POD) is calculated POD = A×Q where,

A = Area Covered – Percentage painted [percentage]

Q = Area Coverage Quality of the Area Covered – Weighted percentage of painted region [percentage]

• POD cannot discriminate between the following two searches:

POD = 50%

• What then?

1

$$(A, Q, T: i, j, k, T_0) = \frac{A^i Q^j}{(T/T_0)^k}$$

- Measured Components (computed by the simulation)
 - A = Area Covered fraction painted [scalar between 0 and 1]
 - Q = Area Coverage Quality Weighted percentage of Area Painted [scalar between 0 and 1]
 - T = Total Time to complete search pattern [minutes]
- Settings (established by user prior to any study)
 - i = relative value (weight) for the Area (A) factor
 - j = relative value (weight) for the Quality (Q) factor
 - k = relative value (weight) for the Time (T) factor
 - T_0 = standard (reference) mission time (usually set to max mission time) Note: 360 minutes is the standard value.

- Analyst use SP[®]T's visualization, platform and sensor representation, and optimization capabilities to determine the best and most operationally feasible search pattern.
 - Scoping Analysis
 - Use the visualization capabilities to get a feel for the relationship between the controllable inputs and potential solutions.
 - Selects input variables for formal parametric exploration.
 - Parametric Analysis
 - Using the automated features of the system to perform planned parametric analysis
 - Operational Analysis
 - Select the most practical solutions from among the optimal and near-optimal search configurations based on operational considerations

- Deadliest Catch on Discovery Channel
 - It is a cold dark night in the middle of the Bering Sea
 - A 20 foot waves are hitting the boat and a crewman is swept overboard
 - The water is 32 degrees and the crewman needs the US Coast Guard
- The Mission
 - We are searching for a small target in an AOR is 5 nm by 5 nm
 - Cold Weather Climates and a ceiling of 1500 feet
- To Prepare for the mission ...
 - How do we select the best flight plan?
 - How should we employ the IR sensor?

Terms of Reference

Scoping Analysis

Sensor Visualization Optimization Tool 76th MORS Symposium 10-12 June 2008 Page 14

UNCLASSIFIED

Enter Scenario Data

Scenario MSPP Sensor Helo Movem	ent Target Search and Rigging Optimization	
Size of AOR in NMs	5	
AOR Resolution	500 About AOR Resolution	
AOR Orientation [degrees]	About AOR Orientation	
Helo Specifications Helo Fuel Capacity [gallon Fuel Consumption [gallons] Helo Fuel Bingo [gallons] Max Search Time [hours] Done Size of Time Launch Game	is] 30 is/hour] 30 6 6 e Step in Seconds 0.2	

Select Input Data Corresponding to Mission Parameters

- MSPP Data Pa	rameters	Sensor Footprint	
Environment	ColdNorthernClimate		
Target	SmallTarget 💌		
Platform	ExampleHelo 💌		
Sensor	GenericIRZoom		
Mode	GFOV		
Altitude	500	22.739 NM	
Output Type	Radials		
GMT Time	0500		
Set Sensor	Parameters Reset Parameters Detection Footprint Test Heading 90	22.739 NM Can't find the data you need? Run MSPP and then Parse the data	

Input Sensor Characteristics and Trial Sensor Utilization Tactics

SCG Sensor Visualization Tool				X	
Scenario MSPP Sensor Helo Movement Target Search and Rigging Optimization Altitude [feet] Base Declination Angle (vertical pointing) [degrees] Base Azimuth Angle (horizontal pointing) [degrees] FOV Angular Height [degrees] FOV Angular Width [degrees] Horizontal Sweep Limit [degrees]* Horizontal Sweep Limit [degrees]	500 Pixe 12 Pixe 0 FOV 17 Base 22 FOV 0 0 0 0	els Horizontal els Vertical GRD Avg ed on the chose G Min G Max P Min P Max	640 480 19.174 en settings : 4011.932 24524.783 1634.537 9376.588	[feet] [feet] [feet] [feet]	
Vertical Sweep Rate [degrees/second] Done Launch Game * - for a continuous sp	in set to 360 □ □	ake base azimu	ith angle abs	olute	
•	G _{min}	P	min		Pn

Input Search Pattern Characteristics

Scenario MSPP Sensor Helo Movement Tar	get Search and Rigging Optimization		
	What type of search pattern would you like to use?		
	Ladder Search		
	Expanding Square Search		
	Sector Search		
	Circular Search		
	Rounded Box Search		
The cu	rrent search pattern is Circular Search	Ladder Search Inputs Search Speed [kts] Max Turn Rate [degrees/second]	30 6
	Done Launch Game	CSP X [nm]	2.7
		CSP Y [nm]	2.4
		Track Spacing [nm]	5.5
		Creep Length [nm]	6
		Create Pattern Cancel	

An Ineffective Search

An Ineffective Search

A Better Search

A Better Search

Sensor Visualization Optimization Tool 76th MORS Symposium 10-12 June 2008 Page 22

UNCLASSIFIED

Good Search (Fixed Forward)

Good Search (Fixed Forward)

Good Search (Fixed South)

Good Search (Fixed Direction)

Parametric Analysis

Sensor Visualization Optimization Tool 76th MORS Symposium 10-12 June 2008 Page 27

UNCLASSIFIED

Variable Selection

	Optimization Characteristics
Sensor Variables	Optimization Variables
	Base Declination Angle (vertical pointing) [degrees] 10 20 1 20 Currently the total number of configurations is
Base Declination Angle (vertical pointing) [degrees] 🗵	Base Azimuth Angle (horizontal pointing) [degrees] 0 0 0 0 0
Rase Azimuth Angle (harizantal pointing) [degrace]	Horizontal Sweep Limit [degrees] 0 0 22 0
Base Azimuti Angle (nonzontal pointing) [degrees]	Horizontal Sweep Rate [degrees/second] 0 0 22 0
Horizontal Sweep Limit [degrees]	Vertical Sweep Limit (degrees)
Horizontal Sweep Rate [degrees/second]	vertical sweep kate [degrees/second] 0 0 0 0 0
Vertical Sweep Limit [degrees]	CSP X (m) 0 0 0025 0
Vertical Sween Data [degrees /second]	CSPY (m) 0 0 0.05 0
	Max Turn Rate [degrees/second] 6 6 0 6
Search Pattern Selection Ladder Search	Track Spacing [nm] 0.1 0.5 0.1
	Sector Radius (nm) 3 0.1 3
Ladder Search Variables	Track Length (nm) 3 0.1 3
Search Speed [kts] 🗹 🛛 Track Length [nm] 🗖	Number of Repeats 0 0 0 0
Max Turn Rate [degrees/second] 🗖 Track Spacing [nm] 🗵	Creep Length (nm) 0 0 0
CSP X [nm] 🔽 Creep Length [nm] 🗖	
	Done
Done	

Optimization Inputs

Put the Computers to Work!

ensor Visualization Optimization Tool 76th MORS Symposium 10-12 June 2008 Page 30

UNCLASSIFIED

Final Results (Unsorted)*

Search	Declination							
Configuration	(Tilt)	Speed	Track Spacing	SP@T Score	Area (A)	Quality (Q)	Time (T)	POD
Index	[degrees]	[knots]	[nm]	[no units]	[no units]	[no units]	[minutes]	[no units]
1	10	60	0.1	0.5096	0.9903	0.3998	12.0033	0.3959
2	10	60	0.2	0.9646	1.0000	0.7420	26.1067	0.7420
3	10	60	0.3	1.1603	1.0000	0.9214	35.9000	0.9214
4	10	60	0.4	1.1947	1.0000	0.9781	48.6800	0.9781
5	10	60	0.5	1.1931	1.0000	0.9945	58.2767	0.9945
6	10	60	0.6	1.1777	1.0000	0.9986	69.1833	0.9986
7	12	60	0.1	1.2617	0.9998	0.9608	23.1367	0.9606
8	12	60	0.2	1.2307	1.0000	0.9994	44.9033	0.9994
9	12	60	0.3	1.1772	1.0000	1.0000	70.4267	1.0000
10	12	60	0.4	1.1413	1.0000	1.0000	95.9767	1.0000
11	12	60	0.5	1.1146	1.0000	1.0000	121.6433	1.0000
12	12	60	0.6	1.0959	1.0000	1.0000	144.0567	1.0000
13	14	60	0.1	0.9577	0.9813	0.9223	37.4333	0.9051
14	14	60	0.2	1.1554	1.0000	0.9945	80.3467	0.9945
15	14	60	0.3	1.1152	1.0000	0.9997	120.5367	0.9997
16	14	60	0.4	1.0817	1.0000	1.0000	164.0600	1.0000
17	14	60	0.5	1.0584	1.0000	1.0000	204.1233	1.0000
18	14	60	0.6	1.0384	1.0000	1.0000	247.0333	1.0000
19	16	60	0.1	0.9229	0.9998	0.7710	58.4467	0.7709
20	16	60	0.2	1.0605	1.0000	0.9502	120.0833	0.9502
21	16	60	0.3	1.0575 1.0000 0.		0.9894	184.9033	0.9894
22	16	60	0.4	1.0365	1.0000	0.9977	245.8467	0.9977
23	16	60	0.5	1.0148	1.0000	0.9996	309.6667	0.9996
24	16	60	0.6	0.9999	1.0000	0.9999	360.0067	0.9999
25	18	60	0.1	0.5572	0.9802	0.5880	83.4033	0.5763
26	18	60	0.2	0.8901	1.0000	0.8258	170.1800	0.8258
27	18	60	0.3	0.9602	1.0000	0.9291	258.8733	0.9291
28	18	60	0.4	0.9751	1.0000	0.9707	344.0733	0.9707
29	18	60	0.5	0.4914	1.0000	0.4373	112.1167	0.4373
30	18	60	0.6	0.7106	1.0000	0.6795	229.9533	0.6795
31	20	60	0.1	0.8196	1.0000	0.8157	343.3267	0.8157
32	20	60	0.2	0.3595	0.9900	0.3628	144.2800	0.3592
33	20	60	0.3	0.6094	1.0000	0.5970	293.1367	0.5970
34	20	60	0.4	0.3633	0.9900	0.3754	183.2767	0.3717
35	20	60	0.5	0.6046	1.0000	0.6046	360.0067	0.6046
36	20	60	0.6	0.3967	0.9900	0.4179	221.9200	0.4137

* Notional Data - For illustrative purposes only

180 total search configurations

Operational Analysis

Sensor Visualization Optimization Tool 76th MORS Symposium 10-12 June 2008 Page 32

UNCLASSIFIED

Potential Operational Considerations

- Maintain high POD
- Wider versus Narrow track spacing
- Pilots' favorite search speed
- Mission time versus survivability estimates
- Opportunity for counter-detection and alert from target (SAR missions only).

Search	Declination							
Configuration	(Tilt)	Speed	Track Spacing	SP@T Score	Area (A)	Quality (Q)	Time (T)	POD
Index	[degrees]	[knots]	[nm]	[no units]	[no units]	[no units]	[minutes]	[no units]
122	14	90	0.2	1.2719	1.0000	0.9779	25.9867	0.9779
84	12	80	0.6	1.2097	1.000			9895
7	12	60	0.1	1.2617	0.999	Highest S.	POT Score	9606
		70	0.4	1.2564	1.0000	0.9965	35.4667	0.9965
Operation	nally Favora	able 90	0.3	1.2393	1.0000	0.9966	40.7100	0.9966
T T	10.	60	0.2	1.2307	1.0000	0.9994	44.9033	0.9994
Trac	ek Spacing	80	0.1	1.2254	1.0000	0.9989	46.6400	0.9989
45	12	70	0.3	1.2203	0.9972	0.9263	17.2700	0.9237
82	12	80	0.4	1.2093	1.0000	0.9837	45.6767	0.9837
43	12	70	0.1	1.2087	1.0000	0.9827	45.4400	0.9827

Selected Run

Sensor Visualization Optimization Tool 76th MORS Symposium 10-12 June 2008 Page 35

UNCLASSIFIED

- The ability to visualize search effectiveness is a powerful aid to search planners and analysts.
- The project reveals a need for metrics beyond POD and other traditional measures.
- IR-based sensor systems show promise as primary detection devices.

- About the Authors
 - William Lyle is the Program Manager and Principal Analyst for SPA's M&S-Based Analysis Support to the RDC.
 - James Richardson is a Senior Operations Research Analyst with SPA.
 - *Kevin Downer* is a Senior Operations Research Analyst at the USCG RDC.
- Acknowledgments
 - The authors would like to acknowledge the excellent development work performed by staff members at Systems Planning and Analysis, Inc – specifically Zachary Firth and Joel Durgavich.
 - The authors would like to further acknowledge the key contributions of various organizations within the USCG and their staff – whose participation helped put the word "resounding" in the phrase "resounding success" for the project:
 - Staff scientists at the USCG RDC who helped substantially with the validation efforts.
 - The flight mechanics and pilots at AR&SC Elizabeth City, ATC Mobile, and Clearwater Air Station who helped keep the entire team on solid operational footing.

General Backup

Pointing Sensor Basics

osium 10-12 June 2008 Page 39

A VALIDATED SOFTWARE TOOL THAT ASSISTS ANLYSTS IN PREDICTING SENSOR PERFORMANCE FOR CG MISSIONS

Gridded POD Output from MSPP

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	1	7	10	7	3	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	8	45	28	4	7	44	75	77	72	42	7	1	0	0	0	0	0	0	0
0	0	0	0	0	2	15	76	78	71	25	29	92	97	95	90	78	61	6	1	0	0	0	0	0	0
0	0	0	0	1	9	86	93	97	97	85	97	100	100	100	98	90	75	31	2	0	0	0	0	0	0
0	0	0	0	3	31	94	98	100	100	100	100	100	100	100	100	96	84	64	б	0	0	0	0	0	0
0	0	0	1	5	62	97	100	100	100	100	100	100	100	100	100	98	89	69	10	1	0	0	0	0	0
0	0	0	1	б	73	98	100	100	100	100	100	100	100	100	100	98	89	69	11	1	0	0	0	0	0
0	0	0	1	5	63	97	100	100	100	100	100	100	100	100	100	97	85	64	8	0	0	0	0	0	0
0	0	0	0	3	34	95	98	100	100	100	100	100	100	100	99	92	73	51	4	0	0	0	0	0	0
0	0	0	0	1	11	90	95	98	98	94	86	100	100	99	92	75	54	14	1	0	0	0	0	0	0
0	0	0	0	0	3	22	86	89	86	66	26	62	82	78	66	49	35	2	0	0	0	0	0	0	0
0	0	0	0	0	1	3	14	68	58	32	11	6	25	33	32	9	2	0	0	0		0	0	0	0
0	0	0	0	0	0	0	1	3	5	3	0	0	0	1	1	0	0	0	0	0	0	0		0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Rounded Square

More about GCAM

Modeling, Simulation, and Analysis Approach

- Support rapid development and execution of M&S projects
- Provide flexibility to ...
 - Employ PCs
 - Use available data with little reformatting
 - Set resolution to match analysis requirements
 - Mix scripted with stochastic behaviors
 - Match operational tempo to required antecedents
 - E.g. actionable intelligence, weapons/platforms availability, ...
 - Endow objects with critical decision-making functionality
 - Capture entire hierarchy of MOEs/MOPs
- Leverage large, talented user base since 1995
- Integrate cutting-edge M&S with military experience and expertise

The GCAM Core Tool Suite Technical Overview

Sensor Visualization Optimization Tool 76th MORS Symposium 10-12 June 2008 Page 46

UNCLASSIFIED