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Abstract

We advance the field of research involving modeling opponents in interesting adver-

sarial environments: environments in which equilibrium strategies are intractable to

calculate or undesirable to use. We motivate the need for opponent models in such

environments by showing how successful opponent modeling agents can exploit non-

equilibrium strategies and strategies using equilibrium approximations. We examine

the requirements for a strong opponent modeling agent, including the desiderata of a

good model.

We develop a new, flexible measurement which can be used to quantify how well our

model can predict the opponent’s behavior independently from the performance of

the agent in which it resides. We show how this metric can be used to find areas of

model improvement that would otherwise have remained undiscovered and demon-

strate the technique for evaluating opponent model quality in the poker domain. The

measurement we developed can also be used to detect occasions when an opponent

is not playing an equilibrium strategy, indicating potential opportunities when the

opponent is exploitable.

We introduce the idea of performance bounds for classes of opponent models, present

a method for calculating them, and show how these bounds are a function of only the

environment and thus invariant over the set of all opponents an agent may face. We

calculate the performance bounds for several classes of models in two domains: high

card draw with simultaneous betting and a new simultaneous-move strategy game we

develop. We describe how the performance bounds can be used to guide selection of

appropriate classes of models for a given domain as well as guide the level of effort

that should be applied to developing opponent models in those domains.

We expand the set of opponent modeling methods with new algorithms and study

their performance empirically in several domains, including full scale Texas Hold’em

poker. We explore opponent modeling improvement methods useful when the set

of opponents we may face is unknown or unavailable. Using these techniques, we

develop PokeMinn, a top-performing agent that learns to improve its performance

by observing the opponent, even when the opponent is attempting to approximate

equilibrium play. These methods also pave the way for performance optimization

using genetic algorithms and efficient model queries using metareasoning.
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Chapter 1

Introduction

Anything that takes shape can be countered.

- The Masters of Huainan

Imagine working in an adversarial environment, trying to determine your next course

of action. You know what your goal is, but there are others operating here too.

Others who are not on your side. Others who may know things that you do not.

As you decide on actions to take, the others are simultaneously plotting their next

actions, hoping to make the best of their situation - which may involve hindering your

progress. The environment itself is full of uncertainty: you don’t know whether luck

will be in your favor or not - but you must decide what to do next.

This situation captures the essence of military operations, many economic endeavors,

sporting events, and competitive games. It is the situation we focus on.

Throughout this work we will use several terms to refer to specific elements of the

situation. The reader will find that the majority of these terms are used commonly in

multi-agent literature in computer science. Agents are decision-making actors within

the situation. The environment is where agents exist and interact. Environments

can be described by a collection of rules for interactions between agents and with

non-agent objects . Environments also specify what information may be obtainable

for each agent. Agents may have hidden information that is unavailable to other

agents. Because each agent may have access to different information, each agent may

form a different belief about the current situation. Agents perform actions within the
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environment which can affect other agents or objects, possibly changing the state of

the environment. An agent’s collection of procedures for making decisions is known

as the agent’s policy . An agent’s policy is a mapping from beliefs to decisions. Agents

may incorporate beliefs about another agent’s future behavior in their policies with an

internal model of the target agent. Creating and maintaining such models is known

as agent modeling .

The adversarial environment is one in which the well-being or utility of an agent

increases when the the utility of the other agents is reduced. In a competitive en-

vironment, such as a game of soccer, the goal of an agent (or team of agents) is to

outperform other agents (or teams). Competitive environments reward the agents ac-

cording to their performance. Generally the winner earns points while the loser does

not (or perhaps loses points), and points are the main input for the player’s utility

function. In a direct conflict environment, such as a military battle, the goal of an

agent is to make the other agent’s actions irrelevant or eliminate the other agents. In

direct conflict environments, an agent’s utility is surviving and/or elimination of the

other agents.

From the viewpoint of a specific agent in an adversarial environment, the agent’s

adversaries are known as their opponents . When an agent is trying to make decisions

about which actions to take, they may consider the opponent’s nature and the op-

ponent’s expected response to the action being considered. When an agent considers

an opponent’s reaction separately from post-action the environmental changes that

occur we say they are using an opponent model . The act of creating and maintain-

ing opponent models is known as opponent modeling (which is a subset of the more

general agent modeling endeavor).

In many real-world adversarial environments, the number of available sequences of

actions and interactions between agents and the hidden information inherent in the

environment make searching for an optimal action (or even an action with the highest

expected value) computationally prohibitive. In these interesting environments, op-

ponent models provide an improvement by altering the likelihood of certain sequences

of actions which (hopefully) reduces the size of the search space to be explored to

determine the optimal action. Allowing an agent to prune the search by using an

opponent model can improve the chances to discover a solution which is very good

given the context of the environment and the opponents. In the following sections

we explore both interesting adversarial environments and opponent models in greater

2



detail.

1.1 Interesting Adversarial Environments

An interesting adversarial environment is one in which conditions within the envi-

ronment make finding optimal policies that work well against all possible opponents

impossible. Conditions that make finding an optimal policy hard include the num-

ber of possible states in the environment, the presence of hidden information and

the presence of chance. Perhaps the best way to understand this concept is through

examples of environments that illustrate each of these factors.

In tic-tac-toe, all possible actions can be enumerated, as well as all possible sequences

of actions. There is no hidden information. From any state of the board, a set of

actions which would lead to the best available outcome can always be determined,

and one action can be selected using a search algorithm on the game tree. This

can be done no matter what policy the opponent is using, thus tic-tac-toe is not an

interesting adversarial environment.

Betting on horse races does incorporate chance, and possibly hidden information, but

the betting actions of any given agent do not have effects on other agents within the

same race (the odds don’t change based on who bets for each horse). Betting on horse

races is not an interesting adversarial environment because there is no interaction

between agents in the environment: it is not adversarial.

Chess, while having an intractable search space, has no hidden information or chance

affecting the game (beyond the choice of which sides the players play). Since it is a

perfect information game, each agent knows the full state of the world. Thus there

is no way for an agent to deceive his opponent about his situation within the game.

Without the possibility for deception or the hope of luck, an agent can only rely on the

strength of his play to beat his opponent. Rational play in chess therefore requires

that a player always play the strongest move he is able to determine. The catch

here is the phrase “that he is able to determine”. This is the concept of bounded

rationality [68]. Since agents are bounded by their ability to compute a rational

choice and the environment of chess is too large for any agent to complete a full

search, agents often rely on some approximation of optimality for decision making.

Because all chess-playing agents are at best approximately optimal, they are not

guaranteed to be optimal against all opponents, and are thus subject to exploitation.

Thus, chess is an interesting adversarial environment.

3



Rock-paper-scissors, also known as RoShamBo, is a game where agents choose an

object and the winner is determined by their choice: Rock beats scissors; scissors beat

paper; and paper beats rock. If both players choose the same action, the outcome is

a draw, with neither player changing score; otherwise the winner earns 1 point and

the loser loses 1 point. In the repeated version of this game, agents play against each

other for a specified number of rounds or until one achieves a certain score. There is

no hidden information in the game, nor is it affected by chance. The environment is

certainly adversarial. There is also a known Nash Equilibrium1 (NE) for this game

(to play each choice with 1/3 probability, drawing randomly on each decision [40]).

Because the optimal policy is easy to compute, playing against any single opponent

is not interesting: if either player chooses to play the NE, the average score for

both agents would be zero. A ranked tournament of multiple agents playing in pairs

however can be an interesting adversarial environment. If all of the players choose

the NE policy, they will (on average) each obtain an overall score of zero, causing

their tournament rankings to be simply a stochastic function due to the variance

in the selections made by each player on each iteration of the game. In order to

separate oneself from the competition, it would be necessary to try to predict what

one’s opponent was going to play next (which is only possible if the opponent does

not play a NE policy). Under ranked tournament conditions, there is some incentive

for players to deviate from NE if they believe their opponents might also do it: when

only one player deviates, he risks nothing, as all his adversaries will continue to play

NE and his score would be the same as if he played NE. Yet if at least one other

player also deviates, then between the two deviating players, the one who is better

at predicting his opponent will yield a positive score (and the worse agent will obtain

a negative score), causing ranking separation from the remainder of the agents in

the tournament. Once we begin to consider all of the possible non-NE strategies

that could be used in the play of ranked-tournament iterated rock-paper-scissors,

we realize that the space of policy search for all iterations and opponents given all

observations is too large to compute an optimal policy. Thus, a ranked tournament

of iterated rock-paper-scissors is an interesting adversarial environment.

Poker is a game of chance, hidden information, and skill. While the action space in

many versions of poker is smaller than the space in chess, it is still intractable to

1A Nash Equilibrium is a set of strategies, one for each player in which no player has incentive
to unilaterally change strategy. The strategy can be pure (deterministic) such as always choose to
play rock in rock-paper-scissors or mixed (a distribution over actions) such as play rock 50% of the
time and scissors 50% or the time.
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compute anything other than an approximation of an optimal policy that would work

against all opponents. Furthermore the element of hidden information allows poker

players to practice deception by either over- or under-representing their true card

strength. The approximately optimal policy that outperforms a player that hardly

ever uses deception is vastly different than the policy that outperforms one who is

known to deceive often... and nothing prevents a player from switching between these

archetypes over the course of a match. Thus, it is very hard to develop a one-size-

fits-all policy in poker, making it an interesting adversarial environment.

Soccer is a game that incorporates chance through the physical interactions of the

ball with the imperfect players and the field. Unlike all of the previous examples, a

soccer match is not a discrete environment. The size of the search space over actions

within soccer depends on the number of parameters considered and the granularity

of measurement. Also unlike the other previous examples, soccer is an asymmetric-

action environment. The physical abilities of the players (such as maximum speed

and passing accuracy) are unique to each player. The actions available to each player

are weakly defined. In soccer, rules of the game govern what a player is not allowed to

do, but do not limit what is possible and thus the game (like many sporting events)

may be subject to spectacular “never before” seen events. When the set of actions

available is undefined, the method of computing optimal policy is unclear, thus finding

an optimal policy to play against all possible opposing teams is not possible. One

must tailor one’s team policy for the current opponent team in order to do well. Thus,

soccer is an interesting adversarial environment.

Often real world environments where agents interact exhibit one or more of the prop-

erties described above. Since many real world environments are marked by these

factors, they are also what we would consider interesting adversarial environments.

Both computer science and economics have subfields (Artificial Intelligence and Game

Theory) which focus on the behavior of agents in environments. We present some of

the ways in which these fields approach the problem in Chapter 2. In the next section

we examine a method which is particularly useful in making decisions in interesting

adversarial environments: opponent modeling.

1.2 Opponent Modeling

Opponent modeling is the act of building and maintaining an internal representation

of an opponent. There are certain conditions under which developing and using an
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opponent model would be fruitful.

1.2.1 Preconditions for Opponent Modeling

Developing an opponent model is only possible when either the agent will be exposed

to an opponent multiple times or has access to records of the previous activity of the

opponent. There are two common-sense characteristics of an engagement with an

adversary that could make opponent models fruitful:

1. The environment is symmetric (or nearly so): one side does not have an over-

whelming advantage over the other. If one side did have an overwhelming

advantage, it could win the engagement handily, regardless of the other agent’s

beliefs about its behavior.

2. The opponent (or at least one of the opponents in a multiple-opponent engage-

ment) is expected to not know (or be able to calculate) the equilibrium2 solution

in his reasoning. An equilibrium solution is a policy that guarantees a mini-

mum value for the agent regardless of the behavior of the other agents. If all the

agents in an engagement are using an equilibrium solution for the engagement,

opponent modeling may be unnecessary as it is unable to advise behavior that

would alter the outcome of the engagement.

1.2.2 Using Opponent Models for Exploitation

When the number of actions and number of possible states of the world is relatively

small, and the space of outcomes is definable, an agent can determine the best action

to take given that the opponent is also attempting to take the best action for himself.

This phenomenon often occurs in many simple games, leading to the condition known

in game theory as equilibrium [56]. However, if the agent knew that his opponent may

not necessarily be using a perfect equilibrium strategy (perhaps because interaction

is occurring in an interesting adversarial environment) there are actions the agent

could choose that may increase his score beyond the expected score of the strategy

that he would play to achieve equilibrium. We expect that if he was able to know his

2By equilibrium, we mean the set of strategies (one for each player) where no agent would prefer a
different strategy, given the other agent’s strategies. While we are keeping what type of equilibrium
(e.g Nash Equilibrium or Correlated Equilibrium) purposefully vague in this discussion, as a general
rule, when we refer to equilibrium we are discussing Nash Equilibrium, unless otherwise noted. We
discuss specific types of equilibrium in further detail in Chapter 2.
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opponent better, he could make predictions about our opponent that would facilitate

his exploitation of the opponent.

To illustrate the interaction between equilibrium strategies and exploitative strategies,

let us begin by exploring a concrete example. Consider again the zero-sum two-player

game rock-paper-scissors. The equilibrium strategy in this game is to randomly choose

an action from the set with equal probability (1/3 chance rock, 1/3 chance scissors,

1/3 chance paper). The expected value of this strategy is that each player will win

1/3 of the time, lose 1/3 of the time, and draw 1/3 of the time. Each player will

expect a net score of zero, and this expectation is independent of the opponent’s

action. Thus, if we decide to play the mixed equilibrium strategy and the opponent is

playing the same mixed strategy, we will both achieve a net score of zero in the long

run, and if the opponent is always playing rock and we are playing the equilibrium,

the same outcome occurs.

But what if we realized that our opponent was always playing rock and we thought

we could do better than to break even with our current mixed equilibrium strategy?

We could increase our overall utility if we adopted a strategy of always playing paper.

In fact, if we somehow knew that the opponent would always play rock from now

on, we could win every game. Sometimes deviating from an equilibrium strategy to

exploit our opponent can improve our score when we know that the opponent is not

acting according to the equilibrium strategy.

Another motivating factor for learning an opponent model is that it allows us to

predict how the opponent will respond to an action that we take. Knowing how an

opponent will respond to an action may allow us to choose an action that influences

them to act in a way we desire. For example, consider playing a weak poker hand

against an opponent we know to be risk-averse in betting. By betting high (bluffing),

we may make our opponent feel that the risk is too great to stay in the game and

cause him to fold. By shaping their behavior in this way, we may be able to directly

increase our winnings.

A final motivation for opponent modeling is that there may be times when we either

want to deny the ability for the opponent to gain certain information or deceive our

opponent into believing something other than the truth. In military and intelligence

communities, these activities are referred to as denial and deception [49]. While op-

ponent models are not necessary to perform denial and deception, an opponent model

would help us predict the opponent’s response to the missing or false information,
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and would help insure that their ensuing behavior would not be counterproductive to

our goals.

With this understanding of the value of opponent models, we can begin to look at the

specific capabilities which opponent models might provide. To be useful, an opponent

model must either predict opponent actions or be able to explain an opponent’s past

actions. Predictions could indicate the next action the adversary could take, while

explanations provide hypotheses of the beliefs the adversary might hold when they

take actions in certain contexts.

An opponent model is an internal replication of the decision process (policy) which

an adversary uses: how will he act given his belief about the state of the current

situation. We describe these three targets of prediction and explanation as state,

action, and policy, respectively. An agent can use these targets to help maintain

its internal policy by evaluating “what if” situations and answering “why did the

opponent just do that?” questions.

By linking together a series of proposed actions of an agent and responses by the op-

ponent to form an action trajectory , the agent can evaluate the trajectory’s likelihood

and predict a future utility value for that trajectory. Likelihood and value can be

converted into expected value of the trajectory. Alternately, the agent can examine

the sequence of actions that ends with the most recent opponent action to explain

what the opponent’s current belief about the environment is.

The inputs to the opponent model can be anything observable to the agent using

the opponent model. Observable features include the past states of the world and

the opponent’s past actions in those states. We assume that the opponent policy is

not available for direct observation, although the space of possible policies could be

pruned based on observed states and opponent actions.

1.2.3 A Formal Definition

As mentioned previously, we consider two main uses of opponent models: prediction

and explanation. The two uses differ in the relationship between inputs and outputs.

Our first definition of an opponent model describes the model used for predicting

what the opponent will do in a given circumstance. More formally, this opponent

model is a function that takes the opponent’s belief about the world state (what is

known by the opponent) as input and outputs a predicted action that the opponent

8



will take. In a discrete-time or event-driven environment, we can describe the model

(M) in terms of time steps or turns t according to the state (S) the opponent believes

he is in, and the action (A) we predict he will make:

M : Sopponent
t → Aopponent

t+1 (1.1)

If the model encodes a probability distribution of the state-to-action table, then the

model can compute the distribution P (A|S) for the opponent. This distribution is

useful in environments where agents take actions simultaneously (or in circumstances

when we don’t always get to see what the opponent’s action is). In these conditions we

would like to predict the distribution over next actions of our opponent and use that

prediction to choose a utility-maximizing action, given their action. This distribution

would also be useful in an environment where agents perform actions in sequence. In

that type of environment, we want to know how an opponent is likely to react to an

action we take.

In other circumstances, an explanation (or probability distribution of explanations)

of why the opponent took a particular action may be more useful. Consider environ-

ments where part of the world state is hidden to us. In these environments, it may be

useful for us to discover the hidden information so that we can make a more informed

decision about our next action. If we have an explanatory model of the opponent,

the model may reveal his beliefs (and the hidden information) through his actions.

Formally, this type of model could be described as a function that takes an opponent

action as input and returns the likely state of the world observable by the opponent

as it existed before the opponent’s action was taken:

M : Aopponent
t → Sopponent

t−1 (1.2)

If this second model encodes a probability distribution, then the model can compute

P (S|A) for the opponent. Such a model is revealing the explanation for why the

opponent takes a given action. Since the function returns the state of the world as

seen through the eyes of the opponent, we can determine the nature of the information

that was available only to them. For example, if we know that an opponent poker

player is risk-averse (this is known as a tight player [69, 70]), we posit that this player

is less likely to bluff, and our opponent model of him would predict that if his bet

was high, it is very likely that his cards (the hidden information) were actually good
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cards in that hand.

1.3 Scope of This Work

With a basic definition of opponent models as our foundation, we can describe which

specific areas of opponent modeling this work focuses on. While we have presented the

motivation for opponent modeling in terms of an abstract encounter between actors in

an adversarial environment, for this work, we focus on computational opponent mod-

els that guide the decisions of an intelligent agent behaving in such an environment.

Thus, our work will examine the intelligent agent (which we refer to interchangeably

as the agent, or modeler) and the adversary: one or more other agents (not necessarily

human) which we refer to as the opponent(s) or modellees , interchangeably.

We further restrict our focus to examining opponent modeling systems which attempt

to make predictions about the adversaries based on observations obtainable by the

agent. In Machine Learning terms, we are interested in the online learning setting

where an agent is pre-programmed with domain knowledge but has no prior model of

a specific opponent that it is about to face. The agent must learn about its opponent

during the encounter such that it can make decisions about how to act in the future.

We focus primarily on systems that will learn from observations obtained during

the encounter with the opponent rather than systems which attempt to learn about

opponents via pre- or post-analysis of historical encounter information, although we

do propose using the latter to explore the viability of un-tested opponent modeling

techniques.

In this work we examine opponent modeling in several domains:

Simple Betting Games: These games require the players make bets based on the

results of partially observable stochastic processes. High Card Draw with simul-

taneous betting is in this class of games. These games comprise an asymmetric

information domain that incorporates effects of non-actor stochastic processes.

This domain allows fast computation of probabilities of having a better “hand”

so that agents can focus on learning the strategic action tendencies of their op-

ponents without needing the level of domain knowledge required for traditional

poker. This domain is outlined in Chapter 7.

Full Scale Poker (Texas Hold’em): A well-studied and currently extremely pop-

ular strategically complex asymmetric information domain that incorporates
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effects of non-actor stochastic processes. This domain provides a test-bed for

opponent-modeling agents where the game is complex enough that its exact

equilibrium strategy has not yet been solved3. Furthermore, there are a grow-

ing number of good poker agents which we can use as targets for our model. We

describe the details of this domain and the challenges it presents for opponent

modeling in Chapter 3.

Simultaneous Turn Strategy Games: A new game we created that was inspired

by the computer entertainment genre known as Real-Time Strategy games. This

simultaneous turn-based, perfect-information abstraction, presented in Chap-

ter 5, allows much of the strategic interaction in an environment where approx-

imate solution concepts are computationally tractable. Much like chess, this

class of games allows for different branching factors in each state of the world,

but unlike chess, when an agent is about to select an action, the move the

opponent is about to make is unknown.

1.4 Contributions

We advance the field of modeling of opponents in interesting adversarial environments.

To do this, we push the current knowledge in four key areas:

• We create an opponent model that learns how to improve its ability to play

poker through observing its opponent and updating an opponent model. In

Chapter 4 we describe the agent, recount its performance in the international

computer poker competition and showcase new techniques to measure the effects

of learning in isolation from the other performance characteristics of the agent.

• We define several characteristics of a good opponent model and present a new

domain-independent measurement technique for comparing prediction perfor-

mance between different models. We evaluate the results for two models used

in our poker playing agent in Chapter 6 and show how it can be used to uncover

weaknesses in each model. Such measurements allow agent designers to make

3The state space for the simplest form of Texas Hold’em (2-player Limit) is larger than 1017.
While an exact equilibrium strategy for this game has not been generated, the highest ranking agents
in the AAAI 2007 Computer Poker Competition were agents that pre-calculated approximations to
the equilibrium strategy by using abstractions (of hand strengths and game-tree information sets).
When making decisions, these agents took actions decided stochastically according to probability
distributions stored a very large lookup table which covered every state in the abstraction.
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informed decisions regarding where to put resources into improving their model-

ing systems and can become the building-blocks for automated model-selection

or ensemble-based techniques.

• In Chapter 7 we develop bounds for the possible performance of an agent using

opponent model that are a function of only the domain conditions of the adver-

sarial environment and do not depend on the actual actors in the environment.

We use this method to find the value-improvement bounds in two domains:

simultaneous high-card draw and the simultaneous turn strategy game. This

bounds-finding technique will enable system designers to determine if, and what

type of opponent models would be worth their development costs in a given ad-

versarial environment.

• We present several techniques which allow us to make sound incremental im-

provements to existing opponent modeling systems when the actual opponents

we may face are unknown or unavailable in Chapter 8.

The remainder of this thesis presents these contributions and the domains in which

we have demonstrated their efficacy. Before we delve into the main body of work we

review related research in the next chapter.
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Chapter 2

Related Work

This chapter focuses on two main areas of prior research: the way agents interact in

an adversarial setting, and techniques for measuring the quality of their performance.

We explore these areas to illuminate how models of behavioral interactions can be

represented, populated, used, and measured.

2.1 Interacting Successfully in Adversarial Environments

Developers building agents must have some method for their agent to decide what

to do when trying to thrive in the adversarial environment. We categorize agents’

decision-making into three main classes: Rules-Based, Game-Theoretic, and Oppo-

nent Modeling.

Rule-based decision-making (a more general version of expert systems) are often

marked by hard-coded decisions and parameters [62]. The rules are developed from

the experience of humans with domain knowledge. While rules-based systems often

perform well in specific domains, they are less scalable and portable than the other

decision-making methods and they are often very hard to maintain in rich domains.

They also tend to exhibit biases generated by the knowledge of the experts providing

their rules. For these reasons, we do not discuss prior research on rules-based systems

further in this chapter.

Game Theoretic solution concepts are often used to generate strategies that should

work well in a particular domain regardless of the opponent’s strategy. Often, they

guarantee some minimal outcome. These policies may take a long time to compute,
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but an agent using them can usually make decisions extremely fast once faced with the

actual opponent in the environment. We discuss interesting topics in game-theoretic

decision making in Section 2.1.1.

Artificial Intelligence has provided many techniques for representing environments

and opponent models, populating the models (through value-based search or opponent-

learning methods) and using opponent models for determining optimal policies. We

explore opponent modeling literature in detail in Section 2.1.2

2.1.1 Game Theoretic Considerations For Agent Behavior

When we think about the set of possible opponents we might face, we must consider

a set of agents that may forego exploiting their opponents in order to minimize the

chance of being exploited. Game theory is useful for analyzing such situations. In

game theory, the agents are known as players , the environment they interact in is

known as a game. Outcomes occur as the result of certain actions by the players,

and are associated with payoffs which are the scores or utilities each player earns at

that point in the game. Players create strategies which are a selection (or distribution

over) action(s) for each possible decision they have to make in the game [40, 58]. Since

the same decision might need to be made under several different conditions, strategies

describe the action taken for every possible condition. Given a set of strategies, one

for each player, expected payoffs for each player can be computed [58].

2.1.1.1 Rationality and Equilibrium

One can think of a game-theoretic decision making system as one in which the specific

domain information and an assumption of the opponent’s rationality are used to

compute a best response to every situation that could occur in the environment.

According to Aumann and Brandenburger [6], rationality is the assumption that

an agent is trying to maximize his utility given his beliefs. When playing a game

where there are opponents acting in the environment, rationality requires that a

player is attempting to maximize his own utility given his beliefs about the other

players and the environment. A best response is a response to an opponent’s action

(or the combined actions of all other players) that yields a utility no worse than

any other response to that action. Thus, the search for a best response to rational

opponents’ actions is itself rational. When all agents are playing simultaneous best

responses to each other, they induce the game-theoretical concept of an equilibrium.
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In an arbitrary game there may be multiple equilibrium points (intersections of best

responses for all players) and each point may have unique utilities for each player.

Even the sum of the payoffs for each player under different equilibrium points may

be different) [58]. Since not all equilibrium are equal, it is important to understand

the assumptions and implications of the method used to solve for the equilibrium.

Two important types of equilibrium solution concepts are Nash equilibrium [55, 56]

and correlated equilibrium [5]. Both of these types of equilibrium describe a situation

that is stable in the sense that no player has any incentive to change their own strategy,

and no reason to expect other players to change theirs. The Nash equilibrium solution

concept (which is a subset of correlated equilibrium) makes the assumption that there

is no device that can synchronize the joint actions of the agents, forcing agents to

consider every possible interaction of strategies. The correlated equilibrium solution

concept allows for the existence of some device which enables agents to synchronize on

joint actions, thus eliminating some lower payoff strategies from consideration. Often

correlated equilibrium solutions in general sum games (games where the sum of the

payoffs for all players for each outcome are arbitrary) can achieve a higher average

social welfare (total payoff of all players) while the Nash concept yields equilibrium

points with a lower average social welfare for the group. Unfortunately, it is unclear

how to create or use the synchronization device required by correlated equilibrium in

a real world environment, leaving Nash equilibrium as the more widely used solution

concept.

2.1.1.2 Representing Environments as Games

In order to calculate equilibrium conditions and generate a policy which favors deci-

sions enabling equilibrium, one must first cast the environment into a specific canoni-

cal representation. Researchers have developed many techniques for expressing adver-

sarial domains in canonical formats. Koller and Meggidio present a good explanation

of the mapping methods in [46] which we now summarize. In simple environments

where agents each take a single simultaneous action, and there are no stochastic ele-

ments or hidden information, the set of joint actions can be written using a strategic

form (also known as normal form) of the game. The strategic form of a game is an

n-dimensional matrix where n is the number of players. Each dimension in the matrix

indicates the set of possible strategies of a single player in the game. If action si is

player i’s choice of strategy, then the outcome of the game is represented in the cell

at the intersection of all the strategies (s1...sn) chosen by the players. Within that
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cell is a payoff vector indicating the payoff earned by each player. Figure 2.1 depicts

an example strategic form game for two players. Notice that the number of strategies

for each player may be different.

Row Player

Column Player
L M R

T r1, c1 r2, c2 r3, c3

B r4, c4 r5, c5 r6, c6

Figure 2.1: An example two row, three column strategic game with payoff vectors for
each strategy.

Other more complex environments where sequences of several agent actions occur

before an outcome can be determined may necessitate expression using the extensive

form of the game (which can be reduced to an equivalent, albeit unwieldy, strategic

form game.) The extensive form of a game can be viewed as a tree where each non-

terminal node (including the root node) represents a decision by an agent. Terminal

(leaf) nodes represent outcomes of the agent interaction, and include the resulting

payoff vector describing the payoffs for each of the agents. Extensive form games are

able to also express conditions where certain information is not available to some (or

any) of the players. This is accomplished using an information set. An information

set is a collection of nodes, each one associated with the same decision options and

known information for that player. The nodes in an information set differ only in that

each one exists under a different hidden condition which is unknown to the player

making the decision in the node. For example, in a game where each player draws

a card from a standard 52-card deck, the first player does not know which card his

opponent holds, so his action exists in an information set containing 51 nodes (one

for each of the opponent’s possible cards). The player must make a decision without

knowing which node within the information set he is actually in.

Chance effects not controlled by any agent (such as weather conditions or which cards

are dealt from a shuffled deck) can be expressed as the actions of an external player

in strategic form of a game, and chance nodes in the extensive form of a game.

2.1.1.3 Solving Games

Without loss of generality we discuss finding solutions to normal form games next

(since finite extensive form games can be converted to normal form games prior to

solving, or solved directly through other methods [46, 47]). All finite strategic games
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have at least one mixed strategy Nash equilibrium, and certain types games also

have a pure strategy Nash equilibrium, as discussed in [58]. Some games can be

“solved” by finding the game-theoretic value of the game if all players were playing

the equilibrium strategies. In essence, solving a game determines if any player has an

inherent advantage, and quantifies that advantage if the terminal states of the game

have defined values.

Allis [2] describes three classes of solutions for games: Ultra-weakly solved, in which

only the value of the game is known (for each player), but the actual strategies are

unknown; Weakly solved, which adds to the ultra-weak solution the condition that a

strategy is known for achieving the game-theoretic value from the opening position;

Strongly solved, in which the value and strategy is known for every position (or state)

in the game. Allis states that all of these definitions assume the use of “reasonable

[computational] resources”. The definition of reasonable resources “should typically

allow the use of a state-of-the-art computer and several minutes of computation time

per move”. Allis also points out that when used to play the game, algorithms that

discovered the game was a weakly-solved draw (tie) should be able to guarantee a

draw from the starting position. Such strategies are are not guaranteed to win, even

if the opponent makes a mistake. A strong solution, however, provides a strategy

from every state to achieve the value of that state. Thus, a strong solution player

should be able to find a win in a game originally determined to be a draw if the

opponent makes a mistake that puts the state of the game into one favorable for the

solution-based player.

Many games have been solved to date. The list includes rock-paper-scissors (solvable

analytically), tic-tac-toe (trivially solvable by enumerating the states and solving

analytically), connect four [1] and checkers [64]. Some game positions for certain

board positions of chess, reversi, and go have also been solved, although solutions to

the full forms of these games continue to be intractable.

2.1.1.4 Intractable Solutions

As researchers try to find solutions for more complex games, the computational re-

quirements increase. Since the size of a normal form of a game is exponential in the

size of the extensive form of a game, converting a game from extensive form to normal

form then using standard linear programming techniques to solve it quickly becomes

intractable. While Koller’s team [46, 47] has developed methods for solving extensive
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form games directly in time polynomial in the size of the game tree, most game trees

are still to large to solve with these methods.

The state of the art in solving more complex games requires solving abstractions of the

games. In poker, Shi and Littman have used abstractions [65] of full-scale games and

focused on solving the abstractions, mapping play in the real game to the abstraction,

and mapping the solution of the abstraction back into the real game. The Computer

Poker Research Group at the University of Alberta and the research team at Carnegie

Melon University have both explored various abstraction and solution techniques.

In [10] Billings et. al. developed the first known full scale abstraction-based Limit

Texas Holdem player using a primarily manually-selected set of abstractions of the

state space. The abstractions included reducing the number of bets allowed per round,

separating the game tree into several betting round phases, and bucketing hands

based on a granular measure of card quality. By empirically estimating the transition

probabilities between abstract states the University of Alberta team generated a new

game which was an abstraction of the full version of poker. They then solved the

abstract game using linear programming and created several agents based on slightly

different variations of the abstraction. Zinkevitch et. al. continued improving the

solution techniques and developed the range of skill algorithm which could generate

approximate equilibrium solutions with fewer resources (time and memory) than the

previous methods [84]. This enabled them to use larger (finer) abstractions which

resulted in better performance and enabled finding the approximate solution for an

abstraction of the entire four-betting-round version of Limit Texas Hold’em.

At Carnegie Melon University, Gilpin and Sandholm focused on building a strong

Limit Texas Hold’em player by developing methods of automatically generating the

abstraction prior to computing a solution. In [35] Gilpin automatically generated an

abstract state space (using a parameterized abstraction algorithm gameshrink which

controls how much loss should be allowed in the abstraction: 0 for no abstraction; ∞
for complete abstraction) for the early betting rounds (where the game tree is very

large) and explicitly solves the later rounds (which have a much smaller game tree)

in real time. The early rounds are solved off-line using CPLEX (a linear program

solver). Gilpin continued to improve the automated abstraction technique in [36] by

generating abstract states in which the expected error between the value of a hand

of cards within the abstraction and the value of a hand of cards in the real game is

minimized. The new abstraction generator also had the capability of parameterizing
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the number of desired abstract states instead of the desired amount of loss. By

examining the available resources one can generate the maximum number of abstract

states which would still have a tractable solution, and the new abstraction algorithm

could be given the proper parameter. Gilpin’s team went on to develop an even better

poker playing agent known as GS3 [38] using additional domain information and a

deeper abstraction technique that groups hands by the probability distribution over

their outcomes rather than just their expected outcome. This abstraction was also

able to treat an entire poker hand (all four betting rounds) as a single entity (instead

of multiple phases of interleaved solutions to sub-games).

Gilpin’s team makes the first comparison of abstraction-based techniques for Rhode-

Island Hold’em (poker) in [37]. The author compares two abstraction techniques -

one in which the states in the original game are binned according to their expected

likelihood of winning (such as [35, 84]), and one in which they are grouped according

to their distribution of outcomes, as in [38]. He finds that for coarse abstraction levels,

abstractions which group states based on similarity of expected outcome perform the

best, but as the abstractions become finer (more members in the abstraction), the

abstraction method that incorporates the probability distribution over outcomes when

binning states yields a stronger performance. This finding implies that in the future,

as more computational resources become available, the abstraction trend should lean

towards grouping states based on the distribution-similarity measurement instead of

just their expected value.

The strong solutions described by Allis [2] assume all players will act rationally from

the current state. A solution under the rationality assumption is one in which each

player simultaneously maximizes his own payoff, given the strategies of all other

players also trying to maximize their payoff. Unfortunately, any differences between

rationality in the original game and rationality in the abstraction will lead to potential

differences in behavior when solving the abstraction. Furthermore, the approximate

equilibrium techniques discussed above are inherently lossy in that they ignore ra-

tionality to some level. Combining the lossy abstraction and approximate solution

techniques will most likely exacerbate the problem. It remains to be seen how ir-

rational the abstraction and approximation techniques’ solutions will be, but any

irrational play could lead to exploitation.
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2.1.1.5 Summary of the Game Theoretic Approach

While equilibria-based strategies provide desirable guarantees regarding outcomes

of games, there are some preconditions for these equilibria that are not met in all

instances of all adversarial encounters [6]. In particular, both Nash and correlated

equilibria assume that each player at least believes that all other players will continue

to act based on their equilibrium strategies. By definition the opponents obtain no

benefit by changing so the belief is reasonable, but this belief does require some

assumptions about the knowledge and rationality of other players. Abstracting the

game and approximating the equilibrium solution puts this assumption into question.

Even if the computational resources were available to to fully solve the original game,

there are additional issues with the implementation. For example, correlated equilib-

rium requires either an outside mediator or a communication (perhaps negotiation)

arrangement that reaches its own equilibrium (usually a stronger type of equilibrium

than Nash, such as sequential equilibrium, since bargaining allows threats and de-

mands) [6, 7, 33, 57]. Not all real-world scenarios allow these mechanisms. Clearly,

there are problems with establishing the preconditions for equilibrium in many cir-

cumstances. These issues expose players who attempt equilibrium play to exploitation

in all but the simplest games. Even when the equilibrium conditions are present and

the equilibrium strategy is easily computable, if there are players who don’t choose it,

there are other players who can exploit them, leaving the overall performance of the

equilibrium players in the middle of the pack. This phenomenon was demonstrated

empirically during the first international RoShamBo programming competition [9].

2.1.2 Opponent Modeling

Assuming that we are acting in an environment where we are not sure of the best

policy, what are the steps required to maximize our utility in that environment?

In the literature, there appear to be two approaches to this challenge. Figure 2.2

provides a visual representation of these approaches: In the implicit method, we

learn how to maximize our utility with respect to our observations and actions. In

the second approach, we keep internal representations of our opponents and use them

to maximize our utility by finding a best response to the expected actions of our

opponent(s), given the current conditions of the game we are playing. This dichotomy

is similar to the choice in reinforcement learning algorithm design between model-free

methods (such as Q-learning) and model-based ones [45].
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(a) Implicit Opponent Model Approach (b) Explicit Opponent Model Approach

Figure 2.2: Implicit vs. Explicit Approaches to Opponent Modeling

In effect, the first method aggregates the behavior of our opponent(s) and the world

into a single model. We then “learn” the aggregate model and attempt to maximize

our behavior given the way the world appears to work. While this approach simplifies

our inputs and outputs because we don’t have to consider the underlying process of

the opponent separately from its behavior in the world, it may take more observations

to discern distinct behaviors of the aggregation.

The second approach requires a separate model for the opponent (or opponents).

When planning our next action, we consider the predicted actions from the opponent

models, and determine a best response given the current conditions of the world.

We then take the best-response action. In this section, while we do examine litera-

ture using the first approach, we focus primarily on the research accomplished using

the second opponent-model paradigm. We are also interested in the computational

methods used to learn and use the opponent model, especially the effect of the rela-

tionship between the type of opponent, the learning algorithm, and the world itself

on the process.

2.1.2.1 Representations of Opponent Models

We now explore the different structures that researchers use to represent models of

opponents. Our focus is on two broad categories of models: domain independent

models, and domain-specific models. As we shall see, the choice of structure used

to represent an opponent model is greatly impacted by the assumptions about the

decision process the opponent is using. Furthermore, the choice of model implicitly
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constrains the types of opponent strategies that can be learned and expressed in the

model.

Perhaps one of the simplest types of domain-independent models is a record of the

history of the actions taken by the opponent. In his 2000 champion rock-paper-

scissors playing agent “Iocaine Powder” [28], Dan Egnor describes one of the three

meta-strategy components called frequency analysis: The frequency analyzer looks

at the opponent’s history (of choices for rock, paper, or scissors) and finds the move

they have made most frequently in the past, and predicts they will choose it. The

opponent model used by the frequency analyzer is simply a count of how many times

the opponent selected each choice.

Another slightly more complicated history-dependent model is proposed by Jensen

et al. [44]. Jensen’s model was originally designed for the sequence prediction, but

he also adapted it for use in opponent modeling for games in which the only notion

of state is in terms of the history of opponent actions (such as rock-paper-scissors).

In this model, the opponent behavior is represented as a sequence of actions from an

alphabet. The model uses string-mask-like hypotheses in the form of combinations

of alphabet characters and wild cards to represent plausible explanations for the se-

quences that the opponent has generated so far. For example, in rock-paper-scissors,

the alphabet R, P, S, * can be used to express a hypothesis such as H1=[*,*,R,*,P]

which would predict any two arbitrary actions followed by rock followed by an ar-

bitrary action, followed by paper. Thus, this hypothesis would correctly predict an

opponent who played paper after [RRR] or [RS] or [P], as well as several other se-

quences.

In the two examples above, the environment has no state, so any internal beliefs

an agent has are based only on domain knowledge or the opponent’s past behavior.

If models using only past actions are expanded slightly to capture the frequency or

sequence of actions given the state of the world at the time, then the model would

represent the state-to-action transition probabilities observed from the opponent’s

viewpoint, and it could be used in more complex tasks such as conditional prediction

from Equation 1.1

One type of domain-independent model used to represent state-to-action transitions

in much of the early opponent modeling work [15, 21, 61] was the Deterministic Finite

Automaton (DFA), also known as the Deterministic Finite State Machine. DFAs can

represent the set of regular languages and each instance of a DFA provides an ability
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to determine if a sequence of characters is a member of a specific regular language.

DFAs are composed of an alphabet used for input and output, a set of states, an

initial state, and a function which deterministically produces the next state S ′ if we

receive input string A when in state S.

If we assume that the strategy of an opponent playing a 2-person matrix game could

be represented as a deterministic, finite set of if-then rules that decide what action to

take next using some history of our actions, then we could use a DFA to encode the

opponent model. When using a DFA to describe opponent behavior, we map a string

of input characters to the last n actions observed by the opponent and the states of

the DFA are used to predict the next action the opponent will take.

Consider the well-known two-person matrix game “Prisoner’s Dilemma”. In this

game, the assumption is that two criminals who committed a crime together have

been caught by the authorities. The authorities are trying to make a case against

each of them but they have insufficient evidence so they are interrogating each player

separately, tempting them with plea-bargains. Each player must choose whether

to “cooperate” (admit that they both committed the crime, providing the evidence

the authorities wanted) or “defect” (don’t say anything to help the authorities). If

both players cooperate then they will each serve a short sentence. If one player

cooperates and the other defects, the defecting player will serve a long sentence and

the cooperating player will go free. If both players defect, they each will serve a

medium length sentence. If two agents play this game repeatedly, it is known as

Iterated Prisoners Dilemma (IPD). Now consider an IPD strategy known as “Tit for

Tat”. In this strategy, the player starts by cooperating, then in all future iterations,

plays whatever action the opponent played in the last iteration. Thus, if we defect

and the opponent cooperates in this iteration, then we will cooperate in the next

iteration. A graphical depiction of a DFA that represents this strategy is shown in

Figure 2.3.

While DFAs can model opponents with deterministic strategies, they cannot represent

probabilistic transitions between states. The consequence is that if our opponent is

using a mixed strategy (such as randomly choosing with uniform probability an action

selected from rock, paper, scissors), any algorithm trying to learn a DFA opponent

model will have poor performance. Since many equilibrium strategies in even trivial

games such as rock-paper-scissors require a mixed strategy, the DFA severely limits

what opponents can be modeled. Mor has demonstrated that another drawback with
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Figure 2.3: A DFA model of an opponent’s policy representing “Tit For Tat” Iterated
Prisoner’s Dilemma Strategy, originally presented in [61]. In this DFA, which can
also be viewed of as a state-transition graph, there are nodes (circles) and edges (arcs
between the nodes). The initial node is indicated by a double concentric circle. Each
node in the policy model represents a possible state our opponent could be in during
an iteration (which has a one-to-one correspondence with the action he took in the
iteration). Our action in this iteration indicates which arc our opponent’s policy
should follow to transition to his next state, which predicts his next action. Thus, if
we just cooperated (C) and the opponent just defected (D) we know based on this
model of him that he will Cooperate (C) on his next action.

using DFAs is that learning a DFA can require exponential time in some cases [54].

He does identify a subset of possible DFAs that are learnable in polynomial time, but

no proof is offered that these can form reasonable approximations of DFAs outside

that class if the opponent is not using a DFA of this type.

If the opponent’s strategy is probabilistic in nature, then we need a more general

model to describe it. Freund et al. propose using a probabilistic state automaton

(PSA) to represent the opponent [29]. A PSA is essentially a generalization of a DFA

where instead of generating a deterministic action based on the state the automaton

is in, the automaton selects an action from a set of actions with some probability

distribution over them. These authors also propose another model, the Probabilistic

Transition Automata (PTA), which adds the property of having probabilistic transi-

tions between states. Unfortunately, PTAs turn out to be extremely computationally

expensive to use when building opponent models. In a separate work [15] Bjarnason

and Peterson use Probabilistic Action Automata to represent the strategy of the op-

ponent, although they do not clearly explain how PAAs differ from PSAs and PTAs.

Other probabilistic graphical models such as Bayesian networks can be used to repre-

sent models of processes. An extension of a Bayesian network which includes chance

nodes, decision nodes, and utility nodes known as an Influence Diagram (ID) [42]

can be used to represent the decision processes of a single agent. The multi-agent
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version of the Influence Diagram, (MAID) [48] allows explanations of behaviors of

communities of agents. Gal and Pfeffer use extensions of MAIDs known as Network

Influence Diagrams (NID) [31] to model opponents. A NID is a hierarchical model

which allows representations of opponents who themselves contain (possibly recur-

sive) models of the learning agent (and possibly other agents). Furthermore, a NID

can contain several candidate models that are deemed plausible representations of

opponents, using a probability distribution over these models to represent proximity

to the real opponent. Solving a NID amounts to computing behavior that is rational

with respect to the agent’s beliefs (bounded rationality [68]). One desirable property

of NIDs is that they can be used both to predict an agent’s actions (P (A|S)) or

explain an agent’s actions (P (S|A))

The models used by Altman, Bercovici-Boden, and Tennenholtz are interesting be-

cause they are intended for learning across games [3]. The test domain includes

auctions, one-shot strategic form games, and a game called The Centipede Game.

The learning is unsupervised, and it only seeks to learn similarities between different

decision problems. These measures of similarity are then used with Case Based Rea-

soning (CBR) to predict a player’s decisions based on previous games that are judged

to be similar based on previous players’ choices on those games. The association

rules learned using this method successfully identified players who had general ten-

dencies, such as a tendency to cooperate or to bully other players, or to seek equitable

(symmetric) payouts for both players. Although the CBR rules did no better than

baseline on most players, they did provide a boost of 10% to 15% to the accuracy

of predictions about the players who matched the rules. Moreover, the players who

matched these rules tended to be the players whose choices were otherwise difficult

to predict. The researchers also tested decision trees (ID3), and clustering (K-nearest

neighbors) implementations with less success, and considered a non-linear separator

for pattern recognition (support vector machine) but did not have data to provide

adequate training.

Steffens also explored using CBR for opponent modeling in [72, 73, 74]. His work fo-

cuses on determining how to define the similarity measures used to determine whether

a new scenario is similar to one in the case base. He examines the types of knowledge

that can be encoded in the case base and the impact of encoding imperfect, some-

times conflicting, domain rules into the knowledge base. Among many interesting

findings, he observes that in opponent modeling it is especially important to incor-

porate domain data into the similarity measures, since CBR is not otherwise suitable
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for learning in situations with sparse data.

While we have pointed out several types of domain-independent models that can

be used to represent an opponent, there are many other domain-specific models,

which can be used to represent important information during a decision process. For

example, in the RoboCup1 Soccer Domain, Riley and Veloso discuss using a hand-

coded playbook of Simple Temporal Networks (a structure used to describe plans) to

represent possible opponent models [59, 60]. By comparing the similarity of each of

the plans with the recent activity on the field, the authors can generate a probability

distribution over the set of plans.

In separate work in the Simulated RoboCup Soccer Domain, Stone et al. developed

an opponent model capable of representing an optimal soccer opponent’s maximum

physical capabilities [75]. This model exploits a particular characteristic of the domain

- player agents have hard limits on their maximum movement speeds, turning speeds,

kicking speeds, etc. This model effectively characterizes a prediction of the worst

case scenario of how far a player could move within a certain amount of time. If we

consider that every opponent has an ability to arrive at an arbitrary position within

a larger and larger radius circle as time moves forward, we can think of this model as

encoding the threat radius of the opponent at time t. While at first appearance, this

model may seem limited in its applications, it has several alternate uses, including

military applications. The military often models opponent aircraft in terms of their

maximal threat footprint (accounting for the current speed and turning capabilities

of the aircraft and the weapons envelopes [19] describing where a weapon will have a

high probability of success).

A different type of model is used by Sturtevant and Bowling to represent a opponent’s

desires at a more abstract level [76]. If we have a game where there are multiple pos-

sible outcomes, and the outcomes can be tied to the score that each player receives,

then each player may naturally desire some outcomes over others. To represent this,

Sturtevant and Bowling defined an opponent model as a directed graph where vertices

are possible outcomes of the game and edges are used to encode the preference rela-

tionship (arrow points to non-preferred outcome from preferred outcome). An agent

may have several potential models of his opponent. Each of these opponent models

can be described by its edges (u, v) when u is preferred to v by the player being mod-

eled. Transitivity of preferences holds with these models, as does the ability to build

1See http://www.RoboCup.org/ for more details
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a general model of an opponent from several possible more-specific models. A gener-

alization is an aggregate model built from the intersection of the constituent models.

It is a new graph, which is as specific as possible while still being consistent with all

of the constituent models. By ruling out some of the constituent models based on

observations of opponent behavior, we can create a generalization that captures only

the aggregation of consistent models, and this generalization can be used to describe

a more accurate behavior of the opponent.

One somewhat subtle but important aspect of what a player might include in a model

is whether the opponent is in turn modeling her. This feature is difficult to obtain,

but is very likely to be of increasing importance as basic opponent-modeling methods

improve. A series of very interesting results on this subject have been reported by

Vidal and Durfee [80, 81, 82]. Because the number of computations required to

use nested models is exponential in the number of nested levels, Vidal and Durfee

proposed a method for determining which level of nesting was providing the best

performance, thus allowing other levels to be pruned and results to be provided in

polynomial time for a fixed number of players (for k agents, each with n possible

actions, their algorithm runs in O(nk)).

Table 2.1: Effects of various levels of opponent modeling depth originally used in [82].

Another result from Vidal and Durfee demonstrates how modeling an opponent may

be harmful if a model is inaccurate. This is a case where an incorrect bias in the

hypothesis space hurts the ability of the player to learn the true behavior of the

opponent. Vidal and Durfee created an economy of buyers and sellers in which sellers

offer abstract goods of varying quality to buyers at a price set by the seller. The buyer
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is not able to determine the quality of the good before buying, but can determine its

value afterwards and determine whether it gained or lost on the transaction. In the

context of this economy, Vidal and Durfee describe a 0-level agent as not modeling

other agents, a 1-level agent as modeling other agents as 0-level agents, a 2-level agent

as modeling other agents as 1-level agents, and so on. As shown in Figure 2.1, the

1-level sellers do well at beating the 0-level sellers as long as their model accurately

represents the buyers. However, once 1-level buyers are introduced, the 1-level sellers

suffer because they cannot learn that the buyers are learning to avoid them, and

their performance falls below that of the 0-level sellers. In each round, the agents

with the most accurate models performed best. In general, Vidal and Durfee find

that the only penalty for having a too-deep recursive model is computational - the

higher-level agents seem able to handle predicting any lower-level agent, although we

have not found a theoretical argument that this would always, or even usually, be the

case.

The condition that could potentially occur if agents try to stay one level of modeling

ahead of their opponents is addressed by the Iocaine Powder algorithm mentioned

earlier [28]. The algorithm takes advantage of the circular nature of rock-paper-

scissors interactions to terminate this recursion after three levels. Terminating the

recursive modeling works because an agent playing rock-paper-scissors with a deep

recursive opponent model would end up making the same predictions as an agent

using a much simpler opponent model. This insight does not apply in all domains,

but it is possible that other applications may be found. The Iocaine Powder agent also

carries a safeguard in its model. It uses an ad hoc form of an expert-voting algorithm,

and one of the “experts” on which it maintains weights is a Nash-equilibrium player.

If all of the experts attempting to model the opponents fail, the agent will have a high

confidence in the Nash expert, and play falls back to the unique Nash equilibrium

for the game. We have not discovered any literature describing other designed with

explicit Nash equilibrium safeguards like this, but believe that it is a useful concept

that might be applied in other domains to offset the risks implicit in playing away

from a known (or estimated) equilibrium.

An opponent model is important, but an opponent model that can be learned rather

than specified by a programmer, and that can adapt to changes in opponent behavior,

is really our goal. Although static approaches to opponent modeling are still the state

of the art in some domains [67], we believe that learning opponent models will become

more prominent in future research.

28



2.1.2.2 Learning Models of Opponents

One of the most intuitive classes of techniques used in machine learning are the

gradient-based search methods [27]. In these methods, one tries to maximize or

minimize some multi-parameter objective function. Essentially, in each iteration we

choose the direction we feel likely to maximize our progress and we take a step in that

direction. One of the most difficult aspects of the gradient based approaches is deter-

mining how big of a step to take. The step size is often controlled by a hand-tuned

“learning rate” parameter. Bowling and Veloso address the issue of learning rate

step size with respect to learning a model of an opponent. These researchers devel-

oped the Win or Learn Fast (WoLF) class of algorithms that use a variable learning

rate to control the speed of learning [18]. Since they are exploring only the class of

two-player general-sum matrix games, Bowling and Veloso use a single parameter op-

ponent model that represents the probability P (a) of the opponent choosing action a

or action b, such that P (b) = 1−P (a). They also use one parameter from the learning

agent which describes the probability P (c) of the learning agent choosing action c or

d, such that P (d) = 1 − P (c). To learn the parameters, they take the derivative of

the rewards function (reward earned when we take an action and the opponent does

also) and perform gradient descent (GD). The technique that makes their approach

novel is that they set the GD learning parameter based on whether the best response

to the current opponent model is making them win or lose. Here, winning is defined

as performing better than the equilibrium strategy for the game. If they are losing,

then their opponent model is wrong, and they make the learning parameter higher,

thus moving quickly away from their current model. If they are winning, then the

opponent model is probably close to correct, so they set the learning parameter small

to fine-tune an opponent model that is already very accurate. An interesting effect

of this performance-based learning rate tuning is that if the opponent is pursuing a

non-stationary (adaptive) policy, WoLF will be losing, and the learning rate will be

high enough to alter the model so it quickly follows the movement of the opponent in

strategy space. Bowling and Veloso have shown that because of the variable learning

rate they meet two of the desired conditions for learning opponent models: Rational-

ity and Convergence (discussed further in section 2.2.1). Unfortunately, their method

requires the computation of the equilibrium condition(s) for the game in order to

determine if they are winning or losing. While this is not necessarily costly for simple

games, it may be prohibitive or impossible for games that are more complex.

Another method that attempts to follow the behavior of a moving opponent strat-
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egy was proposed by Jensen et al. The Entropy Learning Pruned Hypothesis Space

(ELPH) algorithm [44] is an adaptation of version space learning [53] that uses an

entropy calculation to cull out high-entropy hypotheses: the ones with poor perfor-

mance of being able to predict just the observations of the last few sequences of

actions in play. While originally designed to handle sequence prediction based on

the observed history of the sequence, Jensen adapted the algorithm to handle policy

learning in simple games that have no state except the prior history of actions taken

by the players (such as rock-paper-scissors). Jensen showed empirically that the al-

gorithm was very quick to learn when an opponent had changed strategies and the

algorithm maximizes its performance against those opponents, while retaining the

ability to converge on equilibrium (optimal) strategy when the opponent moved to

towards equilibrium play. In another experiment, Jensen showed that ELPH could

out-play human opponents in rock-paper-scissors by a large margin.

Many authors have explored probabilistic methods for learning parameters to popu-

late opponent models. When an opponent’s behavior in a game can be expressed in

terms of probability parameters that control decision processes, these algorithms can

be highly effective. One example of an environment suitable for parameterization of

strategies is Kuhn poker. Kuhn poker is perhaps the simplest version of poker that

has both hidden information and strategic betting. The game uses a three card deck

(J, Q, K such that K > Q > J) and there are two actions available to each player (bet

or pass). Since the strategy space is small, the game tree can be fully expanded, and

parameterized. Hoehn et. al. use Maximum A-Posteriori estimates of parameters

based on a Beta prior and in-game observations when building opponent models of

Kuhn Poker-playing agents [41]. In a separate experiment, Hoehn et. al. also em-

ployed an expert-based bounded regret algorithm (Exp3 [4]) to attempt to learn the

opponent’s strategy directly. The authors noted that in general, when attempting

to learn an arbitrary fixed-strategy opponent the parameter learning method out-

performed the strategy learning method. Although the authors did not explain why

parameter learning outperformed strategy learning consistently, our intuition is that

the difference in performance is most likely explained by the fact that the algorithms

were searching hypothesis spaces of different sizes. The parameter-based algorithm

searches a much smaller hypothesis space of fixed-strategy-opponents and that space

actually contains the parameters that correctly represent all the opponent behavior,

but the strategy learner makes a less biased assumption (the opponent strategy could

be non-stationary) and its hypothesis space is much larger. Thus, with the same
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amount of training data/iterations, performance with the strategy learner is much

worse than that of the parameter learner, as seen in the experimental results.

Other teams such as the University of Alberta Computer Poker Research Group have

also explored opponent modeling for poker. In [14], Billings’ team created an opponent

model that keeps track of the likelihood of the opponent playing each of their possible

starting hands in the way it was played. They use a generic model which acts as a

default (prior to any observation of a specific opponent) and a specific model which is

updated by observing their current opponent. They use these “weights” as input to

an expected value calculation which allows them to determine the next action to take.

Davidson examined using a neural-network to learn an opponent’s behavior in [25].

By using 19 parameters about the state of the game as input, Davidson’s agent was

able to learn an opponent’s tendencies within a few hundred hands. In Billing’s team’s

well known poker playing agent Vexbot [12], the opponent model tracks the opponent’s

conditional behavior at each node in the game tree (without considering what cards

have been dealt) and also tracks the probability distribution of the opponent playing

with certain card strengths at certain nodes in the game tree based on observations.

Using this information, the agent attempts to calculate an approximate expected

value for each action (fold, call, raise) it could play next. While this agent performed

very well against fixed policy agents at the time, it has since been outperformed by

several of the newer game-theoretic agents (such as [38, 36]). Vexbot is also the victim

of its greed for data: to populate its opponent model enough to play decently against

a strong opponent requires thousands of hands of observations, often too many to

exploit the opponent in a normal-sized tournament, and determining default data to

populate a generic model has been problematic.

While the agents discussed above take into account the entire history of observations

when populating the model, this is not always the ideal situation when the opponent’s

strategy is changing. In some cases, the opponent is acting with a set of rules based

on an observed history of fixed length. For example, our opponent might allow our

agent to take a particular sequence of actions we desire only once every 10 turns

(considering our sequence to have been an accident, or perhaps noise), but if we try

to perform the sequence more often, the opponent will change strategies to punish

us. Unfortunately, when we first encounter the opponent, we have no idea how long

a history the opponent is keeping track of. Freund, et al. provide an approach [29]

for the fast simultaneous exploration and exploitation of an opponent assumed to

be acting according to a set of rules with visibility of an arbitrary length of history.
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In the first phase, the agent ‘floods’ the history of the opponent, filling it with a

“homing sequence” of benign actions that effectively re-sets the opponent (with high

probability). Then in the second stage, the agent takes exploratory actions to try to

determine the maximum frequency in which it can play a dangerous sequence (with

high probability). Once this frequency is determined with high probability the agent

moves into an exploitation phase.

We have reviewed several methods of learning opponent models. While using a model

once it is learned may not seem as difficult as learning the model, it can present a

significant challenge as well, and examining the process provides critical information

about the usefulness of various methods for learning opponent models in a given

domain.

2.1.2.3 Using Opponent Models

We described earlier how DFA have been studied as a domain-independent way of

modeling one’s opponents. However, after learning the DFAs one still has to make

a best response to the predicted action of the opponent. In 1988 Gilboa showed

that if each player implements their strategy for an extensive form game as a DFA,

then if we know each other agent’s DFA, we can calculate a best-response DFA in

polynomial time, unless the number of players is unbounded. If the number of players

is not bounded, the problem is shown to be NP complete [34]. In 1990, Ben-Porath

extended this work by examining the case in which each player implements a mixed

strategy by randomly choosing one of a set of DFAs, each of which implements a

deterministic strategy [8]. He proved that a best-response mixed-DFA strategy can

be calculated in polynomial time, but only if the size of the opponents’ DFAs are

limited to a known finite size and the number of players is a known, fixed finite

number.

A common method of representing the space of actions and states in a game is through

the use of a game tree. In a two-player game, the first player’s actions are branches

from the root node, and the second player’s actions are represented as sub-branches

that hang off the first player’s nodes. Each successive level in the tree is generated

for alternating players in this way until all possible paths of play have been captured

in the tree. In a full game tree, each path from root to a leaf represents a possible

sequence of turns between player one and player two. Ideally, if an agent found itself

at a particular node in the tree, it would attempt to follow a line of play that takes
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it along a path from the current node to the leaf with the highest utility.

Of the many algorithms designed to search for a line of optimal play in a game tree,

minimax was one of the most popular [62]. Minimax is a tool for determining an

optimal line of play because it assumes the opponent will always play the action

that maximizes his or her own reward and minimizes our reward. In fact, minimax’s

optimal value calculation is equivalent to the value of the equilibrium point(s) of the

game [76]. Many methods for playing games are inspired by the original game-tree

search algorithm minimax. We examine one line of work that extends the minimax

algorithm to be compatible with opponent models.

Several research groups have explored extending the minimax algorithm for use with

opponent models, multiple opponents, and multiple opponents with opponent models.

Carmel and Markovitch developed M∗ [20] which generalizes minimax to use arbitrary

opponent models to calculate the utility of the decision at each layer in the tree. While

this structure is impossible to prune using the general alpha-beta pruning mechanism

because of the inherent complexity of the model-based utility calculation, the authors

provide a limited-capability pruning algorithm αβ∗ pruning which returns the M∗

value of the tree while searching only the necessary branches. The potential benefit

of adding an opponent model to minimax is that instead of assuming the opponent

is playing according to minimax, M∗ can take advantage of any opponent expressible

as a model.

Luckhardt and Irani extended the original minimax algorithm to handle an n-player

game without opponent models. In their maxn algorithm [51], instead of propagating

a single value at each node on the tree, the algorithm propagates a tuple of all players

scores back up the tree. In maxn, the chosen subtree is the one that maximizes

the score of the player making the choice. One of the unfortunate problems in n-

player games that does not exist in two-player games is that in n-player game trees,

the choosing player at a node may see that his score in each of the child nodes

is equivalent, but that the scores for the other players differ between the children.

Consider the tree in Figure 2.4. In this tree, the middle player is making a choice of

which leaf node to pick from position (c) on the tree. Each of the leaf nodes have

the same score for the middle player, so without any other information, the choice

is arbitrary. The problem occurs because we also hope to minimize our opponents’

scores, but in an n-player game, without additional information, it is hard to tell

which way of splitting up the other 6 points between our opponents is in our best
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Figure 2.4: N-Player Game Tree with maxn value computation (originally presented
in [51])

interest.

Sturtevant and Bowling handled this dilemma in their development of the Soft−maxn

algorithm [76]. In addition to propagating the scores up the tree, the Soft −maxn

algorithm propagates the information regarding opponent’s preferences (based on the

opponent model discussed in section 1.2.3 ). By allowing the decision maker to see

the opponent preferences when trying to make the decision, we can make a better

decision when the situation would otherwise be tied.

Another method inspired by the minimax algorithm is the “Ideal-Model-Based Be-

havior Outcome Prediction” (IMBBOP) algorithm developed by Stone et al. for

use in Robocup Soccer [75]. This algorithm is particularly useful for quickly assess-

ing the relative quality of a proposed action so that the best action can be chosen

from amongst a set of proposed actions. By assuming the opponents will act opti-

mally (they will instantaneously move to thwart the proposed action), each opponent

agent can be represented by a growing-over-time circular obstacle with respect to

the friendly teammate who currently has the ball. By comparing the time it would

take to achieve the proposed action with the time it would take for the opponent’s

threat circle to intersect the path, we can calculate a quality metric on the action.

For example, when a player is considering kicking the ball at time t, if at time t + i

game cycles into the future the ball will be inside of the threat radius surrounding

an opponent, then the kick is considered as having risk. By comparing reward lev-

els of proposed actions and using thresholds to prune actions with too great a risk,

teammates can quickly decide on the best course of action, assuming the opponent is

behaving optimally.
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2.2 Measuring Quality of Opponent Models

While there is an abundance of literature providing tools and techniques for measuring

the performance of agents, there is a substantially smaller body of work discussing the

performance of opponent models. In this section we examine the literature describing

the desired traits of opponents models as well as existing opponent model measuring

techniques.

2.2.1 Desired Properties of an Opponent Model

Before delving into the existing research on model quality assessment, we first examine

some of the desired attributes (the desiderata) of a good learning algorithm. Michael

Bowling and Manuela Veloso [18] proposed two desirable properties of multi-agent

learning algorithms: Rationality and Convergence.

• Rationality Property : “If the other player’s policies converge to stationary poli-

cies then the learning algorithm will converge to a policy that is a best response

to the other player’s policies”. If the opponent policy happens to be optimal,

then an equilibrium condition will be found, otherwise the learning algorithm

will converge on a best response to a suboptimal opponent policy - which usu-

ally means the learning algorithm will converge on a policy yielding the highest

utility against the opponent.

• Convergence Property : “The learner will necessarily converge to a stationary

policy. This property will usually be conditioned on the other agents using an

algorithm from some class of learning algorithms.”

In addition to these properties, Jensen et al. [44] point out that being able to quickly

learn when a non-stationary opponent strategy has changed is also important. While

rationality and convergence are very desirable in long term game play against station-

ary opponents, if the opponent is non-stationary and an agent cannot quickly track

the opponent policy faster than it changes, performance will diminish.

Rationality, convergence, and the ability to quickly detect, follow, and exploit a non-

stationary strategy are three desired traits of a good learning algorithm. In the next

section, we examine the literature on measuring performance quality of an opponent

model.
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2.2.2 Opponent Model Measurement Techniques

Computer science is rich with research on different techniques for how to represent

an agent in a model, how to obtain the information to populate the model, how to

use the model, and how to evaluate the model based on overall performance in the

domain. While actual performance within the domain is ultimately the goal for agent,

there are many other factors affecting overall agent performance besides how accurate

the agent model is. The structure of the environment, the prior biases in the behavior

of the modeling agent, and the way it uses the information from the model are a few

examples. If we want to determine how well a model works, we need to measure the

prediction accuracy of the opponent models directly.

Opponent modeling is often used in computational analysis of an environment to help

an agent make decisions. Researchers have examined many domains where opponent

modeling can be useful: competitive economics, national security, politics, and, of

course games [49]. While most researchers have provided empirical studies that com-

pare the overall domain performance of their methods with other modeling methods

or different approaches (such as Monte-Carlo simulation, game-theoretic equilibrium

play, or rules-based strategy), few have quantified how well their models predict the

other agents’ behavior directly.

There are several exceptions in which researchers do examine the accuracy of the

model, not just the performance of the overall system. Carmel and Markovitch ex-

amine the model size and average error versus sample size while running their domain

independent modeling US-L* algorithm [21], showing that model size growth slows

with more examples while average error drops. Rogowski expands on this work,

providing an algorithm it-us-l* and presents its domain-independent model quality

measure (average hold-out-set prediction accuracy) in several experiments [61]. In

robot soccer games in RoboCup, Riley and Veloso use the probability of correctly

recognizing which play an agent is about to make to measure their learning algo-

rithm [60] but do not provide any other direct model quality measures. In the plan

recognition field researchers have also employed the measurements of precision and

recall [16, 23] when comparing performance of candidate recognition algorithms.

The majority of the model prediction quality measures in these efforts rely on ex-

tensions to error measurements intended for binary classification (1 point for correct

prediction, 0 points for incorrect prediction). While this information does provide a

basic quality measure, its value diminishes as the number of possible agent actions
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per state grows. In an arbitrary environment, there are no restrictions on uniformity

of the number of actions leading from a state. Some states may have few actions

leading away while others may have many. Under this condition, the results of a

function comprised of binary-based prediction quality measurements from multiple

heterogenous states is unclear. For the function to be meaningful, the underlying

quality measure must be more general.

A more detailed representation of general classification performance (which is ap-

plicable to the performance measurement of a model that predicts which action an

opponent will take) is the confusion matrix. A confusion matrix is an M -by-M ma-

trix which represents a classifier’s distribution of classification labels provided to M

different classes. Column headings hold the model’s predictions and row headings

indicate the true class. Thus, the cells along the diagonal represent correct classi-

fications and the off-diagonal cells represent incorrect classifications. In addition to

providing accuracy or error rate (computed from the main diagonal of the matrix),

the matrix reveals the number (or probability) of each type of mistake (off-diagonal

cells). This additional information can be valuable when different predictive mis-

takes have different costs. Several agent modeling efforts use the confusion matrix

to characterize their model prediction quality. Davidson uses a confusion matrix to

quantify a neural-network agent model’s ability to predict whether the opponent will

fold, call, or raise under many different circumstances in poker [25]. Sukthanar and

Sycara use a confusion matrix to characterize their prediction of which type of breach

and enter maneuver the opposing force is about to perform in a simulated military

tactical engagement [78].

While confusion matrices are a step in the right direction in that they provide qual-

ity assessments beyond basic binary prediction accuracy, they can quickly become

unwieldy if the space of possible options (M) is large (or continuous) or there are

multiple stages of predictions that must be made during the course of an engagement

(such as in chess, poker, and military endeavors). In multiple-stage prediction en-

counters (which can often be characterized as extensive form games and depicted with

game trees) there would need to be a confusion matrix for every possible state where

the opponent is next to act. Sometimes the chance of traversing to a given state is

not certain - the probability depends on which events occurred over the history of

the encounter (the path taken through the game tree). The probabilities might be

co-dependent (depending on the probabilities of all the agents in the environment). In

these circumstances there may be no clear way in which to generate a single confusion
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matrix quantifying the goodness of a model.

2.3 Summary of Related Work

A review of the related work reveals that opponent modeling draws on many different

fields and sub-fields, including game theory, and many parts of machine learning. We

have provided an overview of key concepts involved with selecting opponent model

structures, learning opponent models, using opponent models, and assessing their

performance. We’ve discussed the impact of model structure on what kinds of oppo-

nents can be represented and looked at some of the opponent models used in normal

and extensive form games, poker, RoboCup soccer, and military applications. We’ve

examined the desired characteristics of opponent-model learning approaches (ratio-

nality, convergence, and the ability to quickly adapt to a non-stationary adversary)

and discussed methods for measuring how well opponent models met these goals.

We’ve found that modeling opponents that adapt while playing is an active and fertile

field of research. Problems such as how to model agents who are using opponent

modeling themselves, how to transfer learning methods developed in abstract games

to more concrete games, and how to detect when an opponent is modeling our behavior

are challenging areas that have clear benefit and an intuitive interpretation, but are

far from understood.

Before we can answer these challenges however, we need to answer three even more

fundamental questions which remain open research in the field:

1. Before deciding what kinds of information an opponent model should be pre-

dicting in any given environment, can we determine if there are any bounds on

how valuable each type of prediction would be?

2. Once we’ve built the model, how can we assess the quality of its predictions?

3. When we desire to improve our model (and the overarching agent), how can we

accomplish this in a scientifically structured manner?

The remainder of this work focuses on finding answers to these questions.
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Chapter 3

Texas Hold’em Poker

Texas Hold’em poker is one of the most popular and strategically interesting variants

of poker today. The 2007 World Series of Poker (which featured Texas Hold’em as

its main event) had a total prize pool of over $159 million. In 2007, Polaris, an

agent composed of the best poker playing algorithms developed at the University of

Alberta, competed for the first human-computer poker competition. The computer

poker competition, now in its third year, allows competitors from around the world

to vie for the title of champion in limit, no-limit, and ring versions of this game.

Why is this easy to learn game of such huge interest to professional gamblers, com-

puter scientists, game theory experts and many others? We explore this question

in detail in this chapter, introducing the reader to the game mechanics, showing

how they combine to form an interesting adversarial environment for research, and

outlining some of the challenges that Texas Hold’em presents for opponent modeling.

3.1 Texas Hold’em Domain Characteristics

Texas Hold’em poker is a well known zero-sum imperfect information game. It is

a poker variant in which players attempt to make the best set of cards from their

private (hole) cards and several fully visible community cards which are usable by

every player. Each hand consists of multiple rounds of dealing and betting where

players try to win the pot: the hand ends when either all but one player has folded

(uncontested win) or several players have stayed in the game until all betting is

complete (the showdown). In an uncontested win, the player remaining after all

others fold wins the pot. In the showdown, the player with the highest valued set of
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cards wins the pot.

There are four rounds in which players can bet chips based on the strength of their

cards: the pre-flop, flop, turn, and river. If any player decides to fold before all four

betting rounds have been completed, he forfeits any claim on the pot and must sit out

the remainder of the hand while the other players finish. If all but one of the players

have folded prior to the completion of the river betting round then the remaining

player wins the pot uncontested and the hand is terminated without further betting

rounds.

Each round has a different set of rules regarding the way bets are made. On the pre-

flop, players bet knowing only the two private cards they hold since no community

cards have been dealt yet. After the pre-flop betting is over, the dealer places three

community cards on the table and players make another round of betting during the

flop based on the overall strength of their private cards and the shared community

cards. After the flop betting is complete, the dealer places one more community card

on the table and another round of betting occurs during the turn. Next, the dealer

places a final community card on the table and the players bet during the river.

If more than one player remains after the river betting round is complete then the

showdown occurs.

Texas Hold’em uses blinds to offset the information advantage of players who act later

in the pre-flop. Blinds are compulsory payments from some players to the pot before

any cards are dealt. In general, the player who will act last in the pre-flop pays a fixed

amount of money into the pot and the player who will act just before him pays 1/2

that amount. These amounts are known as the big blind and little blind respectively.

In a heads-up (two player) limit (fixed increment bet) Texas Hold’em match, we can

express each round of betting in terms of an extensive form game with imperfect

information. If we consider that the cards each player holds and the community

cards on the table are fixed, then a game tree for a round could be drawn as shown

in Figure 3.11.

The other betting-round game trees are similar with the exception that there are up

1To be game-theoretically correct, it is important to note that each player decision node in
the extensive-form game tree for a given round is a member of an information set with all other
equivalent-position nodes in the other game trees where the player’s opponent has been given dif-
ferent cards by nature. Each of the game trees represents a different possible state for the hidden
information (the cards held by the node-decision-maker’s opponent). For sake of visual clarity, we
did not show the information sets in Figure 3.1.
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Figure 3.1: Pre-flop Betting Game Tree for Heads-Up Limit Texas Hold’em (3 raise
limit). The tree consists of nodes (decision points and outcomes) and edges (actions
that transition from node to node). ‘N’ depicts “nature nodes” where cards are
dealt from the deck, ‘B’ and ‘L’ mark the actions of the Big Blind Player and Little
Blind Player, respectively. Edges are marked with ‘r’ for raise/bet, ‘c’ for check/call
and ‘f’ for fold. Stop signs and arrows represent terminal nodes for the tree - Stop
signs represent conclusions of the hand while arrows represent a transition to the
next betting round. Cumulative pot sizes (in terms of the small bet value which is
equivalent to one big blind) are marked inside each terminal node.

to four raises allowed per round on the flop, turn, and river (instead of three as in the

pre-flop) and that the river contains showdown nodes instead of continuation nodes2.

In such a tree the terminal (leaf) nodes represent one of the following conditions:

• Fold Leaf Node: One player’s wealth is increased by the amount the other player

has contributed to the pot so far (when the other player folds)

• Showdown Leaf Node: Both players reveal their cards and the player with the

higher-valued cards takes the amount the other player has contributed to the

pot. If the card values for each player are equivalent, the net payoff to each

player is zero. This type of node exists only in the river game tree

2It is also important to note that for the flop, turn, and river game trees, the nature node at
the root of the tree in Figure 3.1 is actually preceded by the continuation node that occurred in the
previous game tree. Thus, the decisions within these trees depend not only on the state given by
nature, but also on the which node from the previous round led to the nature node.
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• Continuation Leaf Node: A new game is played where community cards are

dealt to the table and the next round of betting commences. This type of node

exists only in the pre-flop, flop, and turn game trees.

Given all possible card dealing sequences for two players, and all of the possible

betting sequences they could make over the four betting rounds there are over 1017

possible game states - making even this simplistic variant of Texas Hold’em very rich in

strategic opportunity and yielding it intractable for exact equilibrium calculation [10].

Since exact equilibrium calculation is impossible, and approximations to equilibrium

calculations are exploitable, opponent modeling becomes a viable strategy in Texas

Hold’em play.

Before we discuss the challenges to opponent modeling in this domain, we explore the

conditions of a specific competitive environment in which the strength of agents can

be tested: the Computer Poker Competition.

3.2 Computer Poker Competition

In 2006, The University of Alberta hosted the first computer poker competition con-

current with the AAAI conference in Boston, Massachusetts [50]. Five entries com-

peted. The top three entries were at least partially based on game theoretic principles

and did not adapt to their opponent’s actual play style. In 2007 the second computer

poker competition was held in conjunction with AAAI in Vancouver, B.C. [83]. A

new no-limit format was introduced in this competition. Ten agents competed in the

no-limit format while seventeen competed in the limit competition. The top achievers

from this pack also used game theoretic principles extensively, but there was little

information regarding the algorithms used by the competitors who fared worse. In

the remainder of this section we discuss the competitive environment for the limit

format of the competition to clarify the challenges that an opponent modeling agent

would face.

The 2007 computer poker competition was a heads-up round-robin (each pair of com-

petitors will play a series of matches) limit Texas Hold’em tournament. Winner

rankings were measured in two different ways: The “Equilibrium” winner determina-

tion method which awarded the agent that could win the most matches (a match is

won by having more money than your opponent at the conclusion of the match), and

the “Online Learning” winner determination method which awarded the agent that
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could extract the largest total sum of money from all of their opponents.

Each match paired 2 opponents for 3000 hands in two linked games (known as for-

ward and reverse) where the cards remained the same but the starting position of

each player was swapped. In the reverse match, each player is dealt the cards the

other player had in the forward match. Between the forward and reverse match, all

state information and files are erased so that no agent’s actions or cards could be

‘remembered’ between the two matches. From the agent’s point of view, each time

they played a 3000 hand match, they were unable to recall anything they may have

observed in any other match. Thus, any learning about one’s opponent had to occur

within the scope of a single game of 3000 hands.

Agents were required to be submitted to the competition coordinators, and the agents

were run on the dedicated machines for the competition. No team could alter their

agent once the competition began.

The competition coordinators ran enough matches between every pair of agents that

there was a statistically significant result between each pair of agent’s ranking. Since

the agent’s relative performance was unknown a-priori, the coordinators kept running

matches until significance was achieved and they could provide relative rankings for

the agents. Each agents played at least 60,000 hands versus each competitor, and

some played even more hands in order to achieve a significant result.

Another interesting factor in this competition was that each agent had unlimited

credit. Since the agents could never be forced out of a match by losing too much

money, every hand in a match was equally important. Thus, agents had to be able to

do well over the course of an entire match. This characteristic is interesting because

in most human poker tournaments each player has a limited bankroll and one of

the strategies is to extract the competitor’s money as quickly as possible to remove

them from the match. This human-game strategy is not viable in the computer poker

competition, and each hand must be played independently.

3.3 Challenges for Opponent Modeling in Texas Hold’em

Poker

Billings described some of the overarching research challenges of Texas Hold’em poker

in general [11]. In the poker competition many of the rules induce additional complex-

ity for agents attempting to learn their opponent’s behavior from observations during
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play. We now discuss challenges particular to opponent modeling that are induced

by the domain and exacerbated by the conditions of the computer poker competition

described in the last section.

We discuss the particularly daunting aspects of the environment for the limit com-

petition here3. First, the number of hands (iterations) per match is fixed to 3000. In

each iteration, each player receives two cards drawn from a deck of 52 cards, so the

number of possible unique combinations of starting conditions is:

 52

2

 50

2

 = 1624350 (3.1)

Even when we consider only the 169 possible equivalence classes of opponent card

strengths (also known as a card isomorphism) on the preflop, we only get to see what

cards they opponent held if neither player folds and a showdown occurs. Clearly,

trying to learn the opponent’s preflop behavior for each of those classes would be

difficult in such a short game. For example, if both players went to a showdown in

every hand (which would not normally occur when both players are acting rationally),

it would take an average of about 1700 hands to categorize an opponent’s first action

(probability of call versus probability of raise) in the preflop for each given equivalence

class to within 10%. Even when we know the opponent’s behavior given the card

isomorphism they are in, we won’t know what card isomorphism the opponent is in

while we are trying to explain their actions in the preflop.

If an agent is trying to learn the opponent’s behavior, the agent cannot afford to

spend the first half of the game learning and wait until the second half of the match

to begin exploiting the opponent. Whatever learning method is used must begin to

exploit the opponent immediately, using what it learns along the way.

An opponent model must be able to either predict the probability of the opponent’s

action in a given circumstance, or explain what cards (or card strength) the opponent

holds given his action in a certain context. With the number of possible states and

outcomes in the game, the hidden information, and its lack of revelation when either

player folds, how can a learning agent hope to develop a strong opponent model in

far less than 3000 interactions with its opponent? We explore this topic next as

motivation for the agent we developed for the 2007 Computer Poker Competition.

3The rules for the no-limit competition are similar with the exception that the number of iterations
played is different.
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One piece of information about the opponent (which is only discovered during show-

down) is: given the opponent’s last action, what is the probability distribution over

card strengths they might hold. Another piece of information about the opponent

that is always revealed regardless of whether his cards are seen in showdown is his

action given the previous actions that have occurred so far. For example, given that

an agent has just called as the first action in the preflop, what is the probability

that the opponent will fold, call or raise in response. Since the opponent’s cards are

unknown to the agent in the preflop, any estimate of this probability is helpful for

the agent in helping them produce a profile of the opponent’s behavior in the preflop.

Given the difficulty of opponent modeling in this hidden-information domain, we

would want to learn from information that is always revealed, as opposed to infor-

mation that is revealed only at showdown. Since opponent actions are always visible,

the conditional action probability makes a very reliable target for observation. We

discuss how we learned the conditional probability distribution of our opponent as

well as other important agent-design topics in the next chapter.
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Chapter 4

PokeMinn (2007)

Our first attempt at opponent modeling in a competitive forum was a great suc-

cess. We developed PokeMinn to compete in the AAAI 2007 Computer Poker Com-

petition against an unseen set of opponents submitted by teams from around the

world. Our agent competed in two categories which measured its ability to win

games (the “equilibrium” category) and earn money (the “online learning” category).

We achieved fourth place in a field of fifteen competitors in the equilibrium cate-

gory and seventh place in the online learning category. In the equilibrium category,

the top three competitors in the field: Hyperborean2007LimitEQ1 (University of Al-

berta), IanBotLimit1 and GS3Limit1 (Carnegie Melon University) managed to out-

earn PokeMinn, but our opponent model learned how to reduce losses over the course

of a 3000 hand match. The results are shown in Figure 4.1. We now explore the devel-

opment of PokeMinn and discuss how it was able to learn to improve its performance

so quickly against these strong competitors.

4.1 Goals and Structure of PokeMinn

Unfortunately, we had no access to former competitors’ agents, nor did we have a

good understanding of what types of opponents we might face. To address these

challenges we decided to take a two-phased approach: Build a strong static-policy

agent, and then integrate a learning component that would allow the agent to adapt

its behavior to start exploiting its current opponent as quickly as possible.

To develop the strong static-policy agent in the first phase, our team reviewed some of

the ideas for agents used by other research groups, especially those developed by the
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Figure 4.1: PokeMinn’s Earning Rate versus the top three poker agents in the 2007
Computer Poker Competition at the Association for the Advancement of Artificial
Intelligence Conference. While PokeMinn’s earnings remained negative against these
strong opponents, its loss rate decreased, indicating it was learning how to reduce
its losses from observations of these opponents. Earnings rate is reported in small
bets per hand and is moving-window smoothed (windowsize = 1500 hands) to reduce
effects of the stochastic noise induced by the cards. These results are the average
earnings achieved during 20 matches per opponent.

University of Alberta Computer Poker Research Group [10, 11, 12, 14, 13, 25]. After

the initial review, several of our team members independently developed agents and

we held an internal competition to determine which of the agents was the strongest.

We repeated this process over the course of several months until one of our team

members developed an agent that no one else’s agent could beat. This “best of

breed” agent (Ox) then became our static-policy baseline. The interesting attributes

of the static policy decision are discussed further in Section 4.1.1.

In the second development phase, we explored different aspects of the opponent that

we could learn. Two learnable behaviors we considered were:

1. The relationship between an opponent’s actions (A) and the actual value of his

cards (S): P (S|A).

2. The conditional probability that the opponent would take an action (At+1) given

the sequence of actions that have occurred in this hand (As): P (At+1|As).

47



Each of these learning efforts had drawbacks. For example, since we would only be

likely to know for certain what an opponent’s cards were when neither player folded

and the opponent’s cards were revealed on showdown, only a subset of the hands

would lead to opportunities to learn the opponent’s P (S|A) model. Also, since the

game has over 1017 game states, it would be very hard to map more than a tiny

fraction of the opponent’s behavior with only 3000 hands to use as training data.

We then realized that to be successful we would need to act under two constraints:

ensure that every hand played could be used as an opportunity to learn, and choose

an abstraction of the opponent’s behavior that is simple enough that we could learn

it within a small fraction of the number of hands in the match and still have time to

exploit the opponent over the remainder of the match.

In human vs human play, people often categorize an opponent player’s performance on

two scales: “tight” versus “loose” (how many hands would they fold versus continue

to play) and “aggressive” versus “passive” (how many hands would they bet or raise

on versus how many hands would they check or call on). These categorizations

can often help human players quickly determine a best response to the opponent

archetype [69, 70]. We thought that an adaptation of this categorization that was

rooted in probability would be a useful characterization to learn. We attempted to

develop a model which gathered the information and was able to be easily integrated

with static agent developed in the first phase. We generated a model of opponent

behavior that met all of our requirements and could outperform the static model.

The details of our final learning design are presented in section 4.1.2.

Once we had the learning component integrated with the strong static agent, it was

time to refine and tune the model in preparation for the competition. Since we had no

access to previous competitive agents, and there is no standard method for assessing

an agent’s ability to play poker outside of its relative performance with other agents,

we borrowed a co-evolutionary technique to improve the agent.

In each trial, we compared performance of several candidate versions of our agent

where either a parameter or function was changed. The value of each parameter or

choice of which function implementation to use in a given role can be expressed in a

vector, and each candidate agent’s identity is their corresponding vector. When we ran

a tournament, we could determine which vectors performed better than their peers.

Each vector setting from these candidate agents effectively represented a (possibly

local) maximum performance point within a population of sibling agents. We then
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manually evaluated the results in a way that was roughly equivalent to searching

in the parameter (or component) space so that we could find vectors of settings

which we though might outperform their peers in a successive generation. After

several “generations” of this co-evolutionary process, we gathered a set of the best

performing agents from all of the previous generations. We then ran performance

tests for these best performers to determine the ideal settings for the top two agents.

These top two agents became our entries in the 2007 Computer Poker Competition:

PokeMinnLimit1 and PokeMinnLimit2. The only difference between these versions

was the value of a single parameter representing our belief about what all of the

opponents raises during the hand were telling us about the strength of his cards in

comparison to ours.

4.1.1 Static Components

There are two key static components used in PokeMinn. These components were

adapted directly from PokeMinn’s ancestor (Ox) and their parameters were tuned

to improve performance using co-evolutionary techniques described previously. The

static components discussed next provide the ability for the agent to estimate the

likelihood that its cards are better than the opponents cards (relative hand strength)

and the ability for the agent to estimate how much money would be won or lost for

each possible choice of actions given the relative hand strength (conditional expected

value).

4.1.1.1 Estimating Relative Hand Strength

We estimate the relative hand strength in two stages. First, we calculate hand

strength: the probability our cards are better than the average cards the opponent

could have. Then we perturb that probability value via a function that attempts to

account for the opponent’s actions during the hand. The result is a (usually lower)

probability-like estimated chance of winning the hand, which we call relative hand

strength. Relative hand strength looks like a probability value in that it is a real

number on the range from zero to one (inclusive), but because it was a probability

that was ‘perturbed’ using a special function, we are choosing to refer to it as a

strength rather than a probability in this work. In Section 4.1.1.2 we describe how

we use this value as a weighting factor.

To calculate hand strength, we use an approximation technique for estimating the
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cards that might appear in the remainder of the current hand. The technique steps

through each possible pair of hole cards the opponent could be holding (given what

cards our agent is holding and what community cards are visible) and iterates through

all remaining unseen cards in the deck (one at a time) to simulate the next rounds’

community cards being dealt. Then, for each of these possible future circumstances,

we determine whether or not the opponent’s hand is better than our hand. By

counting the number of wins, losses, and ties that occur in all of these possible future

scenarios, we estimate our probability of having the better hand in the next round.

We then use this calculation as an approximation of our probability of having better

cards than the “average” cards that the opponent could have at the end of the hand.

While this technique is fast enough to perform in real time before each decision must

be made (we never have to examine more than
(

50
2

)
49 = 60025 possible outcomes),

this fast approximation is inaccurate in several ways. First, the approximation is

weakest when we transition from the pre-flop to the flop: we should simulate the

drawing of three cards instead of one. Second, since we are only simulating one

future round instead of all of the remaining betting rounds, the calculation is only

completely correct when we are in the turn, simulating the transition to the river.

Thus, our approximation of hand strength is worst in the pre-flop, but gets better at

the flop, and is completely correct on the turn and the river.

Once we have obtained the approximation of the probability that our cards are better

than the average opponent cards we perturb that probability using a function of the

opponent’s observed behavior so far. Essentially, the more the opponent raises during

his turn, the more the function reduces the probability that our cards our better. The

rationale for such a probability reduction (of our likelihood of winning) is that in limit

poker if a player has good cards, the player will (on average) tend to raise more often

than if they do not: to do otherwise would lead to lower potential earnings - a player

who raises too often with weak cards and calls too often with good cards will earn

little when he wins a hand and lose a large sum when he loses. If the opponent raises,

it probably means he has better cards than average - and more raises probably means

even better cards. Thus, the more the opponent raises, the worse our chance of having

better cards is. But we also need to consider the non-linear relationship between the

number of raises the opponent makes and the true quality of his cards: there is much

more of a reduction in our probability of winning between the 1st and 2nd opponent

raises than there is between the 4th and 5th opponent raises.
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Figure 4.2: Effects of PokeMinn’s hand strength estimation function as presented in
Equation 4.1. To interpret the graph, select a probability of having better cards than
the average opponent hand on the y-axis then follow the line until it intersects the
vertical line extending from the number of raises the opponent has made (listed on
the x-axis). The intersection is the calculated relative hand strength.

The perturbation function has several characteristics: it must not perturb the prob-

ability when the opponent has not raised; it should reduce the probability of our

cards being better monotonically with the number of raises the opponent makes; the

reduction should have diminished effects as the number of raises increases; the effects

of the function should have less effect in the extreme regions (it doesn’t alter our

probability much when we have either very good cards or very bad cards, but has a

large effect if we are in the middle). There are many families of functions which would

fit this profile, and an infinite number of members of each family; we arbitrarily chose

a simple tuneable function which addresses the desired characteristics:

plog(e+rf) (4.1)

where p is the probability that our cards are better than the average opponent hand,

e is the natural log base (2.7182), r is the number of raises the opponent has made
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so far, and f is a tuning parameter for controlling how much each raise affects the

function. The behavior of this function for various probabilities of having better cards

than the average opponent hand and various numbers of raises is shown in Figure 4.2.

Our two agents (PokeMinn1 and PokeMinn2) differed only in the setting of the f

parameter: PokeMinn1 (f=2.7) assumes that opponents will tend to be less aggressive

and raise less often than PokeMinn2 (f=1). For PokeMinn1 we used co-evolutionary

exploration to find a parameter setting for f that outperformed the majority of agents

with other parameter settings in self-play. For PokeMinn2 we set f to 1 to preserve

the original perturbation equation as it was in its ancestor (Ox) which had no tuning

ability for the perturbation function.

4.1.1.2 Estimating the Conditional Expected Value of Actions

To optimally decide which action (fold, call or raise) would earn the most money

from the opponent (or best limit our losses) given our cards, we could use a simple

look-ahead procedure to recursively compute the future reward from each possible

future action path to a terminal node in the game tree. Each terminal node in a 2-

player limit poker game has a deterministic pot size, of which our agent has generally

contributed half (unless one of the players has folded as a first move). This makes the

possible earnings or losses easy to compute. Using some estimate of the probability of

winning the hand (such as the relative hand strength discussed in section 4.1.1.1), we

could compute the weighted earnings (or loss) at each terminal node. Using a fixed

approximation of the opponent behavior (fixed opponent model), we could calculate

the weighted gains or losses at each branch and accrue them backwards toward our

current decision node to obtain the total weighted expected value of taking each

action. Then we could select the highest yielding action and execute it (or perhaps

use some stochastic selection process which favors the highest-yielding action - so as

to keep the opponent from always knowing our true situation).

Unfortunately, this optimal process is too computationally intensive for real-time im-

plementation beyond a one-round lookahead. For the PokeMinn agent, we instead

look only one round ahead, treating the terminal nodes of that round as the terminal

nodes for the remainder of the hand. While this implementation is real-time imple-

mentable and interleaves well with the one-round lookahead for estimating relative

hand strength, it does tend to under-estimate the values potentially earned or lost in

extreme behavior (such as a string of raises) which could lead the agent to call when
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a raise would have been more profitable (when we have better cards than our oppo-

nent) or raise or call when a fold would have led to less of a loss (when our cards are

worse than our opponent’s). Also, because the game tree is weighted based on a fixed

model of opponent behavior (likelihood of the opponent raising / calling / folding),

it generates a worse estimate as our opponent deviates from the fixed probability

distribution we use to model his behavior.

Fortunately, learning the real distribution of behavior of the opponent is a relatively

easy endeavor if we make several assumptions. In the next section, we discuss the

learning components of PokeMinn, including its ability to learn a model of the oppo-

nent’s behavior.

4.1.2 Learning Components

The objective of the learning component of PokeMinn was to learn to predict the

behavior of the opponent and then exploit that behavior to extract money from him.

Recall the two overarching constraints described earlier:

1. Ensure that every hand played could be used as an opportunity to learn.

2. Choose an abstraction of the opponent’s behavior that is small enough that we

could learn it within a small fraction of the number of hands in the match and

then still have time to exploit the opponent over the remainder of the match.

We knew that if our opponents used online learning approaches (instead of game

theoretic approaches) they would attempt to adapt to our behavior over the course

of the match. We considered making an agent that paid more attention to the more

recent behavior of the opponent using a sliding window or weighted approach that

emphasized more recent opponent actions. Unfortunately there were several problems

with any windowed or weighted approach:

• Since we did not know anything about our opponents, any window selection or

weighting scheme choice may or may not be appropriate for a particular oppo-

nent, and any attempt to ‘learn’ the proper window size for a given opponent is

a problem with even higher dimensionality (and less likelihood of success) than

the original opponent modeling problem we set out to solve.

• The size of the window or weighting scheme would generate a learning bias that

gave too much emphasis on our opponent’s latest behavior and could lead to a
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potential exploitation if the opponent used a frequency of change that was of

the same period with our window size or weighting scheme.

• These methods would violate constraint 1 because our actions in the later por-

tion of the match would be based on only what we learned in a (possibly

weighted) subset of the hands in the match. With a smaller number of ex-

amples to learn from, if the opponent was not adapting to us (such as a game

theoretic opponent) or if the opponent was changing relatively slowly compared

to our agent, the smaller number of training examples would lead to a larger

error on our model’s representation of the opponent.

For these reasons we decided to avoid a windowed or moving average scheme. Instead,

we used a model that looked at the entire hand history of the match to determine

behavior. While this biased us towards a slower response when the opponent actually

did change, we hoped that we could mitigate the risk by learning a relatively small

representation of the opponent that would hopefully learn faster than the opponent

could adapt to us.

We wanted to learn a model of the opponent that would allow us to predict their

behavior distribution in circumstances which appear to us to be similar to circum-

stances we’ve seen in the past. For example, if we’ve observed that on the flop, when

the opponent raises as the first action, and re-raise, we notice that the opponent folds

20 percent of the time, calls 10 percent of the time, and re-re-raises 70 percent of

the time, we know that attempting to bully them out of the hand by re-raising is

probably not a useful strategy.

In other words we wanted to predict the opponent’s next action (At+1), given a

sequence of betting events so far in the round (As), and all the prior behavior our

opponent has exhibited (OH) over past hands during this same betting round (as

represented strictly by publicly visible actions taken so far). Formally, we define the

distribution of behavior as:

P (At+1|As, OH)

We chose to make a separate model for the opponent’s behavior in each round. While

this effectively encodes an independence assumption between rounds and thus elim-

inates our possibility of transferring an estimation of the opponent’s hand quality
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between rounds, it achieves two other important objectives:

• It reduces the dimensionality of the learning problem. Instead of collecting

data for over 10,000 instances of possible opponent behavior sequences in the

full hand, the 4 independent models simply capture data to populate each of

the 19 possible outcomes in a betting round. This enables us to learn behavior

with far fewer samples.

• It addresses the fact that in most hands (where neither player has cards that are

good enough to make the effect of new community cards irrelevant) each new

round’s community cards may significantly alter the strength of the opponent’s

hand, causing him to behave differently than in the previous round - reinforcing

the notion that independence between rounds is an acceptable assumption.

4.2 PokeMinn’s 2007 Performance

In this section, we explore several features of the PokeMinn-class agent that was used

in the 2007 Computer Poker Competition. In particular, we want to characterize

its ability to learn: how fast can it learn and how much better can it perform than

non-learning agents. To conduct these experiments, we created a second version of

PokeMinn that has no ability to learn a model of opponent other than the original

hand-coded version it has when a match started, as discussed in section 4.1.1.2. We

then examine the differential performance between the learning PokeMinn and the

non-learning PokeMinn as an indication of learning over the course of the match.

In addition to providing a characterization of PokeMinn’s learning profile, these tests

also have the capability to indicate potential undesirable behavior such as a condition

where the learning version of an agent has a worse performance against a certain agent

than the non-learning version.

4.2.1 Performance Visualization

When examining the learning differential (earnings difference between a learning and

non-learning agent against a specific opponent) in terms of performance improvement,

we are faced with evaluating extremely noisy data. In each hand of the version of

Heads-Up Limit Texas Hold’em used in the competition, an agent could win or lose

to its opponent by up to 21 small bets per hand. Since we are subtracting the

performance of one agent from the other agent, the range of this random variable is
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42. In a match, even a fraction of a small bet per hand is significant in differentiating

performance, we must find a way to remove the noise from the learning signal while

simultaneously avoiding losing too much of the trend information. For this work, we

use two methods to reduce the noise in agent performance data: double exponential

smoothing, and summation over a growing window. Each of these techniques has

benefits and drawbacks as we describe in Sections 4.2.1.1 and 4.2.1.2.

4.2.1.1 Double Exponential Smoothing

Double Exponential Smoothing (DES) is often used to smooth noisy time-series data.

DES is preferred over Single Exponential Smoothing when the analysts believe that

there is a trend in the data. In this work, we believe there should a trend in the data:

as the learning agent learns while the non-learning agent does not, the differential

performance should increase, exhibiting a trend (positive slope in the differential

data).

We also chose to use DES because it provides an impression of the variability of

the data that is not biased by where the data is within the time series. Roughly

speaking, if two distinct slopes in two different time regions are equal in shape and

duration, then they indicate approximately the same (de-noised) sequence of events

in the underlying time series data.

While DES does provide a non-time-biased expression of the underlying trends in the

data, the limitation of DES is that the values it generates from a time series are not

directly mappable to real performance within a single hand (or even a specific range

of hands). Thus, while DES is good at expressing comparable relative increases and

decreases in the data, the specific values generated by DES have little meaning in the

context of actual earnings within a poker match.

4.2.1.2 Normalized Cumulative Performance

We also explore normalized cumulative earnings over a growing window because it

adequately provides what DES does not: a direct value of how much better (cumu-

latively) the differential performance is, giving us a notion of how much more could

have been earned by a specific hand in the game if the learning agent was used instead

of the non-learning agent. Formally, we define the normalized cumulative summation

over a growing window for a game of total length h:
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∀n ∈ 1..h, ∆En = (ELearning
n − ENonLearning

n )/n (4.2)

Where, n represents the hand number, Ex
n is the cumulative earnings of agent x as of

hand n (which is computed as
∑n

i=1 Wi, the sum of the winnings of each hand Wi up

to hand n). This calculation yields the performance difference in terms of the number

of small bets per hand won per hand if the match had been stopped at that hand.

We use this value to indicate how much better the learning agent performed than the

non-learning agent at any point in time.

The drawback of summation over a growing window is that as the window grows,

trend changes have a diminishing effect on the values it generates. Thus, this method

tends to be very sensitive to trends in the early portion of a time series, while giving

the impression that there is not much change happening in the latter portion of the

time series.

4.2.1.3 Visualization And Interpretation Of The Earnings Data

In order to get the best of both worlds (non-time-biased trend information and a

meaningful estimate of expected value) at all points in the time series data, we com-

bine these two noise reduction methods on a single graphical visualization which we

call a differential performance graph (DPG). From such a graph, we can answer

the basic question (using the summation over a growing window): When playing

against opponent agent O for a match of length h, by how many small bets per hand

would the learning agent have beat the non-learning agent.

Furthermore, if we know that our target opponent O uses a fixed policy that does

not allow his play to adapt to our agent, we can make certain additional claims

when analyzing the DPG, since the only source of performance variance (other than

noise) is caused by our learning agent. For example, given two versions of a learning

agent (and two corresponding DPGs), the double-exponentially smoothed line can be

compared across the two agents to determine the relative difference in learning rates

between the two agents at various points during the game.

4.2.2 Baseline Learning Performance

We now analyze the performance difference between learning and non-learning ver-

sions of PokeMinn against several static-policy baseline agents: Always Call and
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Always Raise. Neither the Always-Call nor the Always-Raise agents would perform

well in the competition: their lack of logic required to make a decision based on the

probability of winning with the current cards makes their performance worse than

almost any agent that actively decides the course of action based on the current hand.

The reason we focus on these two agents is not to see how much better PokeMinn is

than them, but rather to see how much it can learn from them when its learning is

active.

Ideally, if a human was playing against an opponent who always called or always

raised, the human would quickly realize that the opponent was not paying attention

to his cards or the human’s actions and the human could use a play-for-value [69]

technique to maximize his winnings. In other words, any use of deceptive play such as

bluffing or slow play would be unwarranted because it had no effect on the opponent,

and could only lead to a possible loss of expected value in the game. Given the correct

human response to the Always-Call or Always-Raise player, we would hope that a

learning agent such as PokeMinn could quickly learn at least an approximation of

such a strategy.

We can test to see if what PokeMinn learns is acceptable by using differential perfor-

mance analysis. Since PokeMinn-NonLearning is using a fixed deterministic strategy,

the best performance it could achieve is if it just happens to be a perfect counterplay

to either an Always-Call or Always-Raise player, but we know it cannot be both, and

is more likely that it is neither. Thus, PokeMinn with the learning turned on should

be able to perform at least as well as PokeMinn-NonLearning, and hopefully it could

learn to play better over the course of a match. Ideally, with a fixed deterministic

strategy opponents such as Always-Call and Always-Raise, PokeMinn should never

under-perform PokeMinn-NonLearning. If it did, we have an undesirable behavior

that needs to be fixed.

To perform this experiment, we executed 20 matches between the non-learning and

learning versions of PokeMinn against the Always-Call and Always-Raise players.

Each match ran for 3000 hands. In each of the 20 matches, the cards that each pair

of opponents saw in any given hand was the same. This enables cross-player and

cross-opponent comparisons with the data and eliminates the effects of card-noise

from the differential comparisons.

We first examine the performance of the non-learning version of PokeMinn in 20

matches against a Always-Call and 20 matches against an Always-Raise opponent.
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The results, shown in Figure 4.3 reveal that there is higher variance in cumulative

earnings when PokeMinn plays against the Always-Raise player than when it plays

against the Always-Call player. This can be explained by the higher number of de-

cisions that an agent must make when playing against the Always-Raise opponent:

Only one decision per betting round is required when playing against Always-Call,

but against Always-Raise, a maximal number of actions is possible, and PokeMinn

has a larger number of decisions to make in each hand. Also notice that the non-

learning version of PokeMinn has an overall worse performance against the All-Call

opponent than it does against the Always-Raise opponent. While further analy-

sis is beyond the scope of this work, we believe this performance difference can be

explained by PokeMinn’s treatment of an opponent’s raise as an indicator of hand

strength (as described in section 4.1.1). That component of PokeMinn’s behavior is

static, and was originally tuned to assume that an opponent would raise quite of-

ten, especially if it had good cards. Since the Allways-Call opponent never raises,

PokeMinn-NonLearning tends to under-estimate the true strength of the opponent

cards, perhaps causing PokeMinn to raise or call when it should have only called

or folded. When PokeMinn-NonLearning plays hands it should not have played, or

perhaps bet too much when it should not have, its performance will be worse against

the Always-Call agent. Another possible contributing factor is that the Always-Call

agent limits its pot-exposure by never raising, thus making it harder for a player to

extract money from it like it could from Always-Raise.

Next, we examine the learning version of PokeMinn’s performance against each of the

two fixed-strategy opponents. The first thing we notice in Figure 4.4 is that perfor-

mance between the learning version of PokeMinn and each of the opponents is much

closer to equivalent. Furthermore, we notice that PokeMinn’s performance against

Always-Raise is not substantially different from PokeMinn-NonLearning’s perfor-

mance against Always-Raise, but that PokeMinn’s performance against Always-Call is

significantly better than PokeMinn-NonLearning’s performance against Always-Call.

This finding implies that PokeMinn’s learning capability was able to make up for (at

least partially) its built-in bias to mis-interpret the opponent’s tendency to always

call as having weak cards.

One final aspect of the performance difference between PokeMinn-Learning and PokeMinn-

NonLearning we can examine is the shape, or characteristic of the learning curve. Re-

call that the learning agent was able to improve its performance against the adversary

that always calls. To visualize this curve, we generate the differential performance
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graph, as defined in Section 4.2.1.3.

Notice in Figure 4.5 that we gain the majority of our performance difference within the

first 300-500 hands. After that point the performance difference begins to stabilize,

implying that this learning agent has learned as much as it is going to learn from the

Always-Call agent within the first 500 hands.

4.2.3 Learning Performance Against 2007 competitors

Among the matches against stronger opponents, our most compelling evidence of

learning in the 2007 Computer Poker Competition is when PokeMinn faced the top

competitor: Hyperborean07LimitEq11. Because the non-learning version of PokeMinn

did not compete in the 2007 Computer Poker Competition, we recreated an ex-

tended competition on the official University of Alberta “Benchmark Server” to col-

lect 100 matches of data using PokeMinnLimit1, its non-learning version and Hyper-

borean07LimitEQ12. Figure 4.6 shows the differential performance graph for 20 games

played against this Hyperborean07LimitEQ1. Notice that both the normalized cu-

mulative performance and the double exponential smoothed performance indicate the

learning version of PokeMinn is outperforming the non-learning version of PokeMinn

by a decent margin after a few hundred hands. This observation implies that within

a small fraction (10-20 percent) of the overall game, PokeMinn was able to learn how

to improve its initial hand-coded model of the generic opponent to better predict the

actual opponent.

While we can see evidence of learning by examining the differential performance be-

tween PokeMinn and it’s non-learning sibling, when we restrict ourselves to examining

total agent performance we cannot see how well the portions of the opponent model

1We chose to examine the differential performance between the learning and non-learning versions
of PokeMinn against the Hyperborean07LimitEQ1 target because Hyperborean07LimitEQ1 has a
known behavior each time it is restarted: Since it uses the same seed for its random number gener-
ator, we know that if neither the cardfile or the actions of Hyperborean’s opponent differ between
independent matches, then Hyperborean will take the same action in both matches. This allows us
to determine the first hand for each game at which PokeMinn’s behavior in active learning mode
differs from the actions PokeMinn would take when the learning is turned off.

2The data was collected by playing matches between the learning version of PokeMinn and Hyper-
borean, and then repeating the identical match substituting the non-learning version of PokeMinn
for the learning version. We subtracted the earnings of the non-learning player from the earnings of
the learning player in each match to obtain the difference (which is an approximation for the value of
learning over the course of the match. The benchmark server allows repeated experiments using the
same sequence of cards dealt to a given player. In this way, we ensured that on each successive hand
in the match, the cards PokeMinn-learning was dealt were also dealt to the non-learning version of
PokeMinn.
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are doing, or discover why they may not be achieving their full potential. In order

to understand the subtleties of opponent model learning, we must look deeper into

the agent, at the quality of the predictions the opponent model is making. By com-

paring the “true” behavior of the opponent with the predictions that the model is

making, we can ascertain the quality of learning at a much finer level. In Chapter 6

we showcase a novel technique and present a new measurement for doing so.
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(a) Performance of non-learning agent against Always-Call opponent

(b) Performance of non-learning agent against Always-Raise opponent

Figure 4.3: PokeMinn-NonLearning’s performance against two different fixed strate-
gies: When the opponent always calls, our per-hand winnings variance is lower (Fig-
ure 4.3(a)) than when the opponent always raises (Figure 4.3(b)). Dotted lines rep-
resent the cumulative earnings over each hand in individual matches, while the thick
solid line represents the mean cumulative sum of all matches.
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(a) Performance of learning agent against Always-Call opponent

(b) Performance of learning agent against Always-Raise opponent

Figure 4.4: PokeMinn-Learning’s performance against two different fixed strategies:
When the opponent always calls, our per-hand winnings variance is lower (Fig-
ure 4.3(a)) than when the opponent always raises (Figure 4.3(b)). Dotted lines
represent the cumulative earnings over each hand in individual matches, while the
thick solid line represents the mean cumulative sum of all matches.
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Figure 4.5: Differential Performance between PokeMinn-Learning and PokeMinn-
NonLearning facing the Always-Call opponent.
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Figure 4.6: Differential Performance between PokeMinn-Learning and PokeMinn-
NonLearning facing Hyperborean07LimitEq1.
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Chapter 5

A New Strategy Game

Real Time Strategy (RTS) games provide an interesting environment for analysis of

the techniques discussed in this work. A real time strategy game allows players to

test their ability to out-think their opponents in several ways. These games often

involve exploration of unknown territory, for the purpose of locating viable resources

(which can be used to produce buildings and units) and finding the enemies. When

the enemies are located, the player must defend his buildings and resource gathering

points while simultaneously trying to eliminate the enemy presence.

Unfortunately most commercially available real time strategy games provide no access

to the underlying information available to each player. Furthermore, these games

have a massive state space and action space which would preclude demonstration of

significant empirical results without an extremely large sample of games.

In this chapter we present a two-player simultaneous-move turn-based game which

has a comparatively small state space and action space that provides some of the key

elements of a RTS game. The game we describe has stochastic results of interactions,

and decision sets that have varying size depending on what actions were taken pre-

viously by the players. After presenting the game in section 5.1 and 5.2, we discuss

analysis techniques for finding equilibrium in this game in section 5.3.

5.1 Game Overview

The goal of this game is to eliminate all enemy assets (enemy bases and units). Each

player starts with one unit (a mobile military force) but may build additional units
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if they also own bases (stationary unit production facilities). During a turn a player

may move any or all of his units from their current locations to any other connected

locations or use units to build bases (which can then build more units). When a

player’s units occupy the same location as the enemy’s units or encounter units when

traveling from one location to another, a battle ensues, and at most, only one of the

players will have surviving units. When a player’s units are the only units at the

location of an enemy base they may destroy the base (but may also lose units in the

process). When one side has no remaining bases or units the game is over.

The game is played in a world comprised of several locations where players’ units

or bases could exist. Each location is identical and is fully connected to every other

location. Each player simultaneously makes decisions on what to do with their units

at the beginning of the turn. The players pass their decisions (known as orders) to

the game server which then processes the orders and determines the results. The

results of any interactions between the players units are presented to the players

in the following turn, along with the status of the nodes in which the players have

visibility1.

In a turn a player must decide what to do with each unit he owns. The choices are:

• IDLE: Remain in the current location.

• MOVE(DESTINATION): Attempt to move to a different connected location.

The move order includes the desired destination location identifier.

• BUILD: Attempt to build a base (which can produce more units). In order to

build a base, the unit must remain at the same location and survive any enemy

attacks during the turn. If the unit is still present at the end of the turn, the

base is constructed.

• DESTROY: If a player’s unit is present at an enemy base, the unit may attempt

to destroy that base. If the unit survives any enemy attack for the whole turn

then the base will be destroyed, but there is a chance the unit will also be

destroyed.

1There are two versions of this game we present; they have different levels of visibility, one with
hidden information and one with full information. In the hidden-information version, we employ
what is known in the Real-Time-Strategy community as “fog of war” (no player has visibility what
exists at a location unless he has a unit or base at that location), while in the full-information version
the “fog of war” is removed, and the players can see the locations of each other’s assets.
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At any location where the player owns a base, the game server will produce a new

unit each turn (assuming the player has fewer units than the maximum unit capacity

γ ). Players may wish to build bases and defend them during the course of the game

because they are the only method of generating new units for a player to command.

5.2 Procedural Details

In this section, we use several terms to clarify explanations of game mechanics. Red

and blue are used to describe the two players. A player’s assets are his bases and

units. If a player has assets at a location, the player is said to have presence at the

location. If the player has a base at a location then he is the owner of that location.

If he has unit(s) at that location then he is said to occupy that location. A player

may both own and occupy a location. At any location at the end of the turn, only

one player may own the location, and only one (possibly different) player may occupy

the location.

We developed a computerized version of this game using a client-server approach. A

game server keeps track of the true state of the world, determines what each player

can see, and passes this information to the clients. The clients then make decisions on

what actions to take and pass their desired orders back to the game server2. The game

server processes the orders, handling any interactions between bases and units, and

updates the state of the world prior to starting the next turn. If terminal conditions

are achieved, the winner and loser (or tied players) are declared.

The game starts with each player having one unit. The units are randomly placed at

two unique locations, and neither player knows where the other player’s unit is. Once

the game starts, the server processes the clients orders in the following sequence:

• Move Units

• Generate New Units (at bases)

• Resolve Conflicts

• Destroy Bases

• Build Bases

2Although the clients are queried in order, they only are able to see information they have access
to, and no orders are executed until the server has both player’s desires. Thus the game is effectively
a simultaneous action game.
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When the all of the phases are complete, the server sends the updated state of the

world out to the players and requests their next turn orders. This cycle continues

until at least one player’s assets have been eliminated. We now describe each phase

of the turn in detail.

5.2.1 Move Units Phase

When a player orders one or more units to another location, the game server first

checks to see if there were any intercepts. An intercept occurs between any two

locations (A and B) when red has units at location A orders them to move to location

B in the same turn that blue has units at B and orders them to move to location

A. A battle is resolved (stochastically) between the forces according to the rules of

battle (described later) and any remaining forces from the victor are sent on to their

intended destination location. This simulates having encountered the enemy during

the journey from the origin to the destination.

If there are no interceptions of a given move order, all of the units requested to move

are relocated to their destination.

5.2.2 Generate New Unit Phase

After all move orders from both players have been handled, the server determines

whether a new unit is generated at each base. In random order, a player’s bases are

selected (until all bases have been visited) in turn. The base generates a new unit for

the player if that player’s unit count is below his total unit capacity γ. In the case

where the unit capacity limit has been met, no further units are built.

Any units built during this phase will be available during the next phase when conflicts

are resolved. Note that since these units are generated after the orders for the turn

have been given, the newly-generated units cannot take any action during the turn,

but they may act defensively during any conflicts occurring later in the turn.

5.2.3 Resolve Conflict Phase

At any location where both players have units present in this phase there is a potential

conflict. If neither player is the owner of the location (but they both have units there)

then a battle occurs and is resolved according to the rules of battle. The outcome of a

battle will be that at most one player has units occupying the location, but possibly
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all units will be destroyed.

If one player is the owner of the location where the other player’s units exist, then

the owner may gain a defensive bonus. Any of the owners units not moved during the

current turn are considered to be defensive and gain a defensive bonus during combat

(δ times their normal strength value).

5.2.3.1 Rules of Battle

At the start of the battle, all participating units from each player are identified. If

one of the players has units with the defensive bonus, they are also identified. The

battle commences and occurs over one or more rounds until at least one player’s units

are completely eliminated. If a player has any remaining units, that player becomes

the occupier of the location where the battle occurred.

At the start of the round, each player’s total strength is calculated as N +(δ)D where

N is the number of units without the defensive bonus and D is the number of units

with the defensive bonus. Then each unit present will be marked for elimination

according to the following probability: E/(F + E) where F is the total strength of

the player’s units and E is the total strength of the enemy’s units. After all units

have been checked, any units marked for elimination are eliminated from the battle.

The process continues with new rounds until at least one player has had all battling

units eliminated.

5.2.4 Destroy Bases Phase

To order one or more units to attempt to destroy an enemy base, all units in the

order must occupy the same location as the enemy base at the start of the turn

(before orders are given). If any of the so-ordered units are still present after the

conflict processing phase then the base is automatically destroyed. Also, each of the

units used in the destruction attempt will be eliminated with probability 1/(A + 1)

where A is the number of units attempting to destroy the base. The more units used

in a destruction attempt, the lower the probability that all units will be destroyed.

If any units remain after the destruction of the base, then the player owning those

units will occupy the location at the end of the turn.
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5.2.5 Build Bases Phase

Any units ordered to build a base must not have moved or been given any other orders

during the turn. If so-ordered units exist at a location where no base existed at the

start of the turn then a new base is automatically built at that location during this

phase.

5.2.6 Parameters

Here we list the current parameters applicable to this game as used for the analysis

in the main body of the game description:

Parameter Description Default Value

l Number of locations in the game 4

γ Maximum number of units owned by single player 3

δ Defensive strength bonus 1.5

5.2.7 Terminal Conditions and Score

The game continues over one or more turns (through all of the phases listed above)

until at least one player has no remaining assets at the end of a turn. If neither player

has any remaining assets then the game terminates with a tie (each player scores zero

points). If one player has assets remaining when the other player has none then the

player with assets receives one point and the other player loses one point. Thus, this

game is a zero sum game.

5.3 Analyzing the Game

While the game appears to be relatively simple, the parameters described above allow

for 2136 unique state isomorphisms in the full-information version of this game3. Of

these, 115 are states with terminal conditions, 57 wins, 57 losses, and 1 tie for each

player. The parameters also allow for 5 action options per unit (Idle, Move to one

of three other locations, and, depending on whether there is or is not an enemy base

3Because of the fully connected nature of the locations in this game, many physical states are
isomorphic. For example, if only two locations have units present, then it doesn’t matter which two
locations those units are at, just which player occupies and how many units are at each location.
State isomorphisms are more applicable to computational complexity than actual states because
each isomorphism represents all of the states comprising it, and once a complex computation is
performed for one member of the isomorphism, all other members can be generated by mapping the
results from one state to the other without repeating the computation.
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or friendly base present, possibly build a base or possibly destroy a base). With a

unit capacity limitation of three units, a worst-case scenario is when each player has

three units to command, yielding a set of (35)2 = 59049 unique joint actions if each

unit is considered as a unique entity. Because of the limitation of only one player

occupying a location at a time, if we consider unit action isomorphisms4 then the

number of joint actions is greatly reduced. The worst case scenario yields 2304 joint

unit action isomorphisms while the average number of joint action isomorphisms

per state is approximately 211. Fortunately, even with this rather large apparent

branching factor, only one of the 2136 unique states will be arrived at from any

state-and-joint-action branch. Unfortunately, the state which it arrives at is non-

deterministic and is often based on the results of one or more stochastic processes

occurring during the game turn.

If we consider the hidden-information version of the game where each player can only

differentiate between states if he can see5 a difference between the states, the game

state is much more complex. For example, if the blue player has two units and a base

at location A and no other assets, he cannot tell the difference between two states 1)

in which the red player has only 1 unit at location B and 2) in which the red player

has one base and one unit at each other node (B,C, and D). Clearly, the action set for

the second condition for the red player is much larger than the action set for the first

condition for the red player. In fact, because the size of the action sets for the red

player are variable in different members of a set of states which appear to be the same

to the blue player, these state sets cannot be considered information sets. As a result,

standard game theoretic techniques for equilibrium solving grow intractable because

the state must be defined as the total history of all moves so far instead of just the

latest unit and base allocations at the four locations. Because our to-be-presented

methods require equilibrium calculations for baselining the performance of any given

opponent modeling system, we choose to focus strictly on the full-information version

of this game. As we shall see, calculating an equilibrium, even in the full information

version of this game is computationally expensive. The remainder of this section

focuses on finding an equilibrium solution for the full-information version of the game

to support computations described in later chapters.

4In a unit action isomorphism, the unique identity of a player’s individual units are removed such
that if a player has two units at a location and unit 1 moves to another location, while unit 2 is idle,
the decision is isomorphic to the condition where unit 2 moves to that location and unit 1 is idle.

5To “see” the enemy presence (units or bases), the player must have either one of his units at
the enemy base, or have a base that is currently occupied by one or more enemy units.
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5.3.1 Evaluating States

In order to decide what course of action a player should take, we would ideally like to

know the value of each of the 2136 states to each player as well as the likelihood that

each joint action would lead from one of those states to another. Armed with these

values and probabilities, we could calculate an equilibrium solution for risk-neutral6

agents.

Clearly the value of a terminal state to a player is equivalent to the score obtained

in that state by that player. But when we try to evaluate non-terminal states, the

actions which might lead to a terminal state are joint actions, and thus, while one

player is desiring a certain joint action with a certain value, the other player may

find it equally undesirable and attempt to avoid their component of the joint action.

Furthermore, many of the joint actions have probabilities of leading to non-terminal

states (or even back to the original state) creating potential non-terminated recursions

in any algorithm attempting to recursively determine the value of a state. Since there

can be sequences of actions by each player that yield cycles in the visited states, the

game is not guaranteed to terminate. In general, this is an undesirable situation for

game-theoretic analysis.

We can, however, estimate the values of the states for each player using game theoretic

techniques and a trick to effectively eliminate potential cycles within the state-action

space. The basic idea is that we iteratively solve the full-information extensive form

game by creating successively longer length games and determining the resulting value

of each state using an equilibrium assumption about the style of the players. Before

we present the algorithm, we provide additional rationale for its soundness.

Consider a one-turn probabilistic-outcome game where there are a number of states,

each with a set of legal actions available to each player. Transition probabilities

describe the likelihood of arriving at a destination state wherever a joint action (one

action chosen from each player’s action set) is executed. In the one-turn game we

define the utility7 of each state based on whether it was a win, loss, or draw. A

definitive outcome (when one player has assets and the other player has none) gives

a utility of 1 to the winner and -1 to the loser. A draw8 is worth 0 points for each

6Risk-neutral agents are ones who regard their game score as their utility function. Thus a risk-
neutral agent in this game desires as a win equally as much as he despises a loss, and is indifferent
when the game is tied.

7In a risk-neutral agent, the utility of a loss is as bad as a win’s utility is good, and the utility of
a tie is exactly halfway between the two.

8In the one turn game, draws consist of both terminal states (where both player’s assets are
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player. In this one-turn game we can compute the equilibrium solution (a probability

distribution over actions for each player, and their resulting expected utilities) for

every state. If we consider the players to have played their risk-neutral equilibrium

strategies in each state then this method would also yield the utility (for each player)

for having that state as the starting state of a one-turn game.

From one of the player’s perspectives, their minimum utility earned by playing their

equilibrium strategy from within a certain state is an indication of how valuable that

state is to them at the beginning of the one-turn game. Certainly some states are

more valuable than others.

Now imagine a two-turn game where instead of setting all non-terminal state’s values

to zero, we use the values computed for the states during to the one-turn game as

described previously. In this game, we are effectively first computing the value of

the leaf nodes of an extensive form game (from the values calculated in the one-turn

game) and backing them up the tree for a computation in the prior turn. This results

(possibly) in a new equilibrium strategy for each player in each state, and also yields

an updated utility to be earned by each player in each state.

Inductively, we continue to add “earlier” turns to create longer and longer n-turn

games, using the values of non-terminal states calculated during previous (n − 1)-

turn games as proxies for the values of the successor states when a joint action is

selected in the first turn of the n-turn game. At some point we will find that adding

additional prior turns does not change the values of the states very much. When we

reach the point at which the change in value for each state is below some tolerance

threshold, then we can declare that we know the values of the game states when

both players are playing the risk-neutral strategies - and thus we know what the

equilibrium strategy and the utility for each player should be for every state in the

game.

The overview of the algorithm is as follows:

• Determine the transition probabilities for each state and joint action to another

state.

• Determine the terminal states (where there is a definitive win, loss or tie for the

players).

eliminated) and non-terminal states (where each player has some assets left).
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• Initialize the appropriate value to every terminal state from the second player’s

perspective (+1, -1, or 0) and value all other states as 0.

• Repeat until convergence or for as many iterations as time allows:

1. Determine which states have a positive probability of transition to a non-

zero-valued state.

2. For each of those states:

(a) Generate a normal-form game zero-sum payoff matrix for that state by

collecting the joint action payoffs (sum of probability-weighted values

of the states transitioned to by each joint action.)

(b) Solve the state’s normal-form game (by calculating the equilibrium

condition) and determine the value associated with the solution (from

player 2’s perspective.)

(c) Set the state’s value for the next iteration to the value calculated in

the last step.

• Report the resulting values for each state.

• Report the equilibrium solution’s recommendation for distribution over joint

actions in each possible state.

To obtain the transition probabilities we play the full-information version of the game

from every state with every possible combination of legal player orders, using Markov

sampling to determine the probability that a joint action in the starting state leads

to a destination state. Since both player’s actions are fully specified in each case, the

resulting transition probabilities are a function of only the rules of the game, not the

strategy of the players. These transition probabilities are effectively a mathematical

representation of the rules of the game.

To form the payoff matrix for each state and joint action, we look up the transition

probabilities associated with each possible joint action, determine all the successor

states and look up their values. For actions chosen by player 1 (i) and player 2 (j) the

set of n associated transition probabilities P1 . . . Pn, the associated states S1 . . . Sn and

their values (from the second player’s perspective) V1 . . . Vn we compute the payoff or

utility u:

uij =
∑

k=1..n

PkVk (5.1)
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To solve the zero-sum normal form game generated when utilities for every possible

joint action have been computed from a given state, we describe the conditions of the

game in terms of a constrained optimization problem and use a linear program solver

such as simlp in MATLAB. The result is a probability distribution over actions for

each player, and a value (from that player’s perspective) for playing that strategy.

In the method above, we described how to strongly solve the simultaneous-move

strategic game to generate an approximation of the strategy of a Nash Equilibrium

player. This type of strategy becomes the basis for optimal play when the agent is

uninformed9. In Chapter 7 we will use the Nash Equilibrium strategy as a reference

point. We will then find the value improvement an agent could earn if he was informed

about some aspect of his opponent with an opponent model.

9By uninformed, we mean a strategy which has no information about the specific opponent’s
characteristics. The uninformed agent assumes his opponent is rational and the equilibrium becomes
desirable for describing strategies that guarantee some minimum value in the environment when all
players are acting rationally.
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Chapter 6

Opponent Model Performance

In this chapter we examine the factors which affect, and measurements which quantify

the performance of an opponent model. In Section 6.1 we examine the conditions

under which opponent modeling can be useful and describe a method for identifying

one of these preconditions. We then discuss the desired traits for an agent and the

models of its opponents in the adversarial setting in Section 6.2. We develop a flexible

opponent model prediction performance measurement in Section 6.3 which becomes a

building block for several additional capabilities. We present other entensions for the

measurement such as detecting policy deviation and the measurement’s applicability

for metareasoning.

6.1 Conditions for Opponent Modeling

One question that is often overlooked, but should be asked prior to any attempt at

modeling the opponent is “What can I hope to gain from this model?” We must ensure

that the information we gain from the model will actually help us in our decision-

making process. If the information to be gained by the model will not improve our

ability to make decisions then there probably is no reason to build the model.

To make this point clear we contrast two different adaptations of the rock-paper-

scissors (RPS) game played for C units of money each round. The two versions of

RPS are the classic version Γ, and an adaptation with noise added to the output

decision of our opponent Γp. In each game, the opponent pays us C if we win a round

and we pay them C if we lose a round. In the Γ, the opponent’s choice is his action.

In Γp, nature adds noise to our opponents choice before it becomes his action such
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that there is a probability p that the choice the opponent makes will be converted

into a randomly chosen action (with equal probability of selecting rock, paper, or

scissors)1.

Suppose that in both Γ and Γp, we have an opportunity to purchase information from

an oracle who knows the opponent very well and can predict exactly what move the

opponent will choose next. In Γ, knowing what the opponent will choose next will give

us the ability to choose the best response each time. As long as we paid this oracle

slightly less than C we would make money every time we played2. In the Γp, however,

there is a p probability chance that the opponent’s choice will have no bearing on the

action he takes. In a turn when nature added noise and perturbed the actual action,

the oracle’s information is worthless to us. The value of the oracle’s information when

the probability of noise is p over a large number of games is (1−p)C. As p approaches

certainty (one) the opponent’s choice is completely overwhelmed by noise, and the

oracle’s information becomes useless.

We reconsider these two adaptations of RPS in the context of the question “What

can I hope to gain from this model?”, and we realize that the game itself can have

a large impact on whether or not an opponent model will be valuable. We make the

observation that in general, the more chance is involved in determining the outcome

of an encounter, the less valuable an opponent model will be.

Let’s take a look at another example of a zero-sum game. This time we explore a

game that is unaffected by chance and see whether opponent modeling is valuable.

In Tic-Tac-Toe, the outcome of the game can be easily computed from a minimax3

search of the game tree. Since the game conditions allow us to make a best response to

the current board conditions, we can always make the best move taken from the set of

best moves for the current board state. If both players take their moves from the set

of best moves the game will always end in a tie. Since the “correct” strategy is easily

computable, and two players always making correct moves leads to a tie, the game

is considered “solved” and strategically uninteresting for computers or people who

know the correct strategy. From this example, we observe that in a zero sum game,

1The savvy reader may recognize that this adaptation essentially adds a chance that our opponent
will sometimes play the mixed-strategy Nash Equilibrium from the Γ game instead of their original
decision.

2Since we could earn C each time we used the oracle’s information, the information is worth C
per turn.

3Recall from the section on related work that minimax computes the equilibrium strategy for the
game tree, assuming that each player will chose the best action from that node forward.
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where both players know and have the ability to play according to the equilibrium

strategy if the opponent is using the equilibrium strategy, an opponent model cannot

provide useful information that could help us improve our performance beyond what

could be achieved when we also adopt an equilibrium strategy.

But let us consider the case that our opponent is known to not always use the

minimax-prescribed strategy and instead occasionally makes a predictable mistake.

Would an opponent model help us in this case? Suppose we could purchase informa-

tion from an oracle which revealed what the opponent would do in response to an

action we were considering4. Using this information, we could play out a simulated

game where we try each possible action and we consult the oracle to determine the

opponent’s response. With this method, we could recursively determine which player

would win for each of our original action choices. If the opponent was not using the

minimax method for every decision, then the oracle-simulation method might reveal

a path for increasing our score in the game. We could discover the conditions under

which the opponent’s decisions would be exploitable, allowing us to win in certain

circumstances. But if we are using the minimax method, it may also reveal a path

for increasing our score since one has now become available due to the opponent’s

mistake. So what good is an opponent model here?

Let us consider a different game similar to tic-tac-toe, but with an larger board.

There are two players, the equilibrium player, E, and his approximate-equilibrium

opponent, A. E has access to an online minimax calculation that can always choose

the optimal move, given that his opponent also chooses the optimal move. A has ac-

cess to some pre-determined strategy ruleset which is mostly based on a pre-computed

minimax solution to the game tree, but is incorrect in several game states which are

not encountered as long as both players stay on the minimax path of the game. Thus,

A has a fairly good abstraction to an equilibrium strategy. Fortunately, for A, if E

is playing minimax, the decisions A makes are optimal, and the game will end in a

tie. If however, A is playing an opponent that is not playing minimax, A may find

itself in nodes of the game tree not covered by its approximation of the equilibrium

strategy. In these circumstances A does not always make the correct decision, and is

thus exploitable.

Suppose another player M had access to an oracle which would predict the opponent’s

actions for any state of the board: this oracle knows the policy of A. Now suppose

4This type of oracle is equivalent to an oracle that reveals the opponents policy : What action
will the opponent choose in a given state of the world
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that instead of using a traditional minimax algorithm, M used some form of opponent

model search where the game tree is recursively searched and M chooses his action

with the highest value, where M ’s belief about A’s move in any state is determined

by consulting the policy oracle. With this method, M can use the recursive game tree

search to discover the flaws in A that would not be encountered when A was playing

E. In fact, if the flaws in A are sufficient, M can use this procedure to discover

a means to beat A, even when E could not. From this example, we observe that

a model of an opponent could be useful when the opponent is known to be using an

approximation of an equilibrium policy.

From these examples we derive the two favorable conditions for valuable opponent

modeling: the opponent’s decisions must have some effect on the outcome of inter-

actions, and the opponent must not be using a perfect equilibrium strategy. When

deciding on whether or not an opponent model would be valuable we must consider

both of these conditions.

Another way to think about the first condition is that any opponent model must be

able to make predictions of the opponent’s behavior. When the opponent’s decisions

have some effect on the outcome of the game, there is an opportunity for the predic-

tions to have meaning. If the balance is shifted towards a game of pure chance, there

is less interaction between the players and the setting devolves to an equivalent set of

games where each player is playing solely against nature. In such a setting opponent

models provide no additional information about the outcome of the game.

Let us focus on the second condition: deviation from a perfect equilibrium strategy.

We examine non-equilibrium play in the context of iterated rock-paper-scissors. Since

the mixed strategy equilibria for the game is to choose equally amongst the possible

actions, if we have an player A that instead chooses to play some other strategy that

is similar but not exactly equilibrium (such as playing rock with probability r where

r > 1/3 and splitting the remaining probability mass 1−r equally amongst paper and

scissors) we can state that the value of knowing the policy of player A increases as r

deviates from 1/3. In the extreme case of r = 1 we can win every game since player

A continues to play rock forever. From this example, we observe that the further our

opponent deviates from the equilibrium strategy, the more we could hope to earn from

him if we have an ideal exploitation strategy.

Clearly, always playing rock in rock-paper-scissors is not rational. Why would a player

act irrationally?
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For this work, we consider three instances in which an opponent may appear to act

irrationally in adversarial settings.

1. When the opponent does not have the capability or time (computational power)

to determine the optimal action within the game.

2. When there is information the opponent wishes to obtain, the opponent may

take sub-optimal exploratory actions to obtain the information.

3. When the opponent is trying to purposefully deceive us, hoping that we behave

in a way that allows him to exploit us at a later point in the engagement.

To understand how these circumstances can affect rationality of decisions, we consider

a game that is much more complex than rock-paper-scissors. Texas Hold’em poker is a

zero-sum game that has far too many states and actions for today’s computers to fully

calculate the equilibrium strategy [14, 41], although approximations of the equilibria

may inform player strategies [66]. In the strategically rich domain of poker, we can

examine three cases which illustrate the apparently irrational behaviors described

previously.

In one of the simplest forms of Texas Hold’em: two-player limit-bet, there are over

1017 states that the game could be in. Even if we had a computer that could cal-

culate a very good approximation of an equilibrium strategy for the game, there is

no guarantee that our opponent has access to the same. Since a player can only act

as rationally as their computations will allow, their actions may in fact be irrational

with respect to the true equilibrium play in the game. This is one example of the

notion of Bounded Rationality [68].

The second form of apparent irrational behavior arises when the agent attempts to

make decisions based on information not available to them. In card games such as

poker where we have a private hand, there is hidden information that our opponent

cannot obtain directly. Under these circumstances, the opponent may take actions

which attempt to interrogate us, (such as calling a bet with very weak cards) in order

to get us to reveal something about the cards we hold5. This exploratory action may

appear to us as irrational if we later find out that the cards the opponent held were

worthless. When we examine the opponent’s action from two different viewpoints,

5Although the action of calling with very weak cards could also be considered a bluff, we are
focusing here on the player who uses this action with the intention of obtaining information.
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the action appears both rational and irrational. From a local viewpoint, the opponent

is apparently spending money just to see what our cards are. Yet, by seeing which

cards we are willing to play with over the course of several hands, the opponent

may be trying to ascertain a more global understanding of our style of play - an

understanding that may well be worth the amount he paid for it when he lost money

on those exploratory actions. For this work, we define this behavior as Contextual

Rationality : The action may be rational under some contexts (the opponent’s desire

to know the value of a hand we are willing to play) but not in other contexts (by

making the bet, he was committing to a negative expected value action).

The third apparently irrational behavior is actually not irrational at all. It is a

method of deceiving us such that we may be exploited. For example, in poker, when

the opponent makes a few very high bets with very weak cards early in the game, he

may win some hands that he would have otherwise lost because we folded thinking

he had good cards. After a few instances of this, we may begin to believe that he

is very loose (willing to stay in the game with even a weak hand) and aggressive

(betting more than the value of the cards). Since we believe that the opponent is

willing to bet on anything we begin to “call his bluffs” (bet more with weaker cards

since the expected value of winning a hand has gone up). At this point our opponent

has achieved his objective: to make us believe he is loose and aggressive. If he then

tightens up his game and bets high only when he has good cards, he can possibly

deceive us again if we still believe he is bluffing. Because we believe he is betting high

frequently, we may call his bet with mediocre cards and end up losing. It may take

us a while to change our belief that he is a loose aggressive player to match his true

play of tight-aggressive. We define this behavior as Exploitative Rationality

While the example of bounded rationality described earlier demonstrates that if we

have an opponent model we might be able to exploit the bounded opponent by de-

viating from an equilibrium strategy, the exploitative rationality example shows us

that by deviating from the equilibrium strategy, we ourselves become open to ex-

ploitation. The contextual rationality example is more subtle: if we try to exploit

the contextual opponent we may gain in the short term, only to lose in the long run

when the opponent’s model of us is better than ours of him.

Another requirement for an instantiated opponent model to be useful is an oppor-

tunity to learn about the opponent. Even if the conditions of non-equilibrium play

described above are met, if we only interact with an opponent once and we have no
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prior observations of his behavior, we do not have an opportunity to exploit him with

the knowledge we gain from the single interaction. Thus, in order for a model to be

useful, we must have either access to prior observations of the opponent’s behavior,

or the promise of repeated interaction with that opponent. Either of these conditions

will allow us to form a more accurate model of the opponent’s behavior, assuming

that the opponent’s behavior is relatively stationary or can be parsed into relatively

stationary regimes.

We know that if we could determine if the opponent was not following an equilibrium

strategy we might be able to exploit him. The next question we address is how do

we determine when the opponent is not following an equilibrium strategy? By using

an observation-based model of the opponent’s behavior, we may be able to detect

non-equilibrium play under certain conditions.

In a two-player zero-sum game, there is always at least one Nash Equilibrium. The

equilibrium describes the actions which each player should take to avoid being ex-

ploited. This equilibrium may be a mixture over pure strategies6. If we are able to

determine the Nash Equilibrium and the associated strategy for our opponent, then

we should be able to detect certain kinds of deviations.

By definition, when they are following an equilibrium policy, the opponent’s distri-

bution over actions for a given state must be fixed. If we can observe a large enough

sample of the actions the opponent takes from a given state, we can determine if the

opponent is not using an equilibrium policy for that state when one of two conditions

occur:

1. The observed distribution is different than the distribution(s) associated with

the equilibrium.

2. The observed distribution is drifting over time (across successive sets of obser-

vations).

When either of these conditions occurs we know that the opponent is exploitable

and that our opponent model, if used properly, may inform us of how to exploit the

opponent. The details for detecting differences in distributions will be presented later

in the chapter.

6In effect, a mixture of pure strategies can be expressed as a probability distribution over actions
such that the agent chooses one action from the action set randomly, according to the distribution.
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While detecting a distribution difference is a powerful method for determining when

the opponent is not using an equilibrium policy, it has a limitation in that it cannot

be used to detect when the opponent is following the Nash Equilibrium. In other

words, while a distribution difference implies that the equilibrium is not being used,

the lack of a difference does not imply that the equilibrium is being used. Consider

playing rock-paper-scissors against these opponent players: N plays the game by

randomly selecting an action (rock, paper, or scissors) with uniform probability. S

plays the game by repeating the sequence rock-paper-scissors-rock-paper-scissors. . .

Both of these players have the same distribution over actions [1/3, 1/3, 1/3] , but

only player N is actually playing the Nash Equilibrium. Player S is clearly not

playing the equilibrium (because it is not randomizing) and is trivially exploitable

by a sequence-following prediction device. If our sole detection of exploitability lied

in the observation of the distribution, we would have missed an easy opportunity to

improve our outcome. Another way of characterizing the detection method is that it

has no false positives (stating the opponent is deviating when he really is not) but

potentially many false negatives (failure to detect some occasions when the opponent

deviates).

In previous paragraphs we have discussed several conditions required for opponent

exploitation to be possible. We have examined some of the reasons that an opponent

may take actions that appear to be suboptimal. We hinted at one method for de-

tecting some occasions when an opponent would be exploitable and we showed that

if we chose to attempt an exploitation of him, we open ourselves to exploitation. In

the next section we shall examine some of the traits that a good agent should have in

order to maximize its ability to exploit the opponent and minimize the opportunities

for the opponent to exploit it.

6.2 Desired Traits of Adversarial Agents and Models

Given that the opponent may be executing a non-equilibrium strategy and that in

order to know how to exploit him, we must first learn what his strategy is through

observations, we would like to find promising existing observation-based learning algo-

rithms. Much of the thinking on desired traits of learning algorithms in computer sci-

ence to date have focused on learning stationary problems. Traditionally, researchers

developed measures of convergence rates, examined error curves of the predictions

and tried to make assessments of algorithms based on these characteristics. These

methods were probably chosen because they were used in many other areas of machine
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learning where researchers needed to know how good an algorithm was in comparison

with its peers. We have been conditioned to look at learning error-rate graphs to

boost our faith that our algorithm is working. While these methods are well suited

for assessing algorithms in static environments, they are fundamentally flawed when

used in the presence of non-stationary learning problems.

Unfortunately, in the adversarial domain, we cannot guarantee a stationary opponent.

In fact we can assume a non-stationary opponent for several reasons. First, any

opponent who is playing a non-learning, non-equilibrium strategy would either:

1. Prefer that we do not discover his policy because if we do we could exploit them.

2. Desire that we discover his current policy in order to trick us into playing a

counter-policy which they can then exploit.

In either of these conditions, if the opponent believes we have knowledge of his policy,

they have incentive to change it (in order to avoid exploitation in the first condition,

or trigger the trap in the second). Even when we don’t know what the opponent’s

policy is, they may have incentive to keep it from being stationary because a stationary

policy is easier to learn (within the same number of samples) than a non-stationary

policy. Finally, if the opponent is using a learning algorithm in an attempt to learn

our policy, his policy will inherently change over time as he learns more about us.

Given these arguments, we can assume that a strong non-equilibrium-playing oppo-

nent will change his policy over time. Concept Drift is the term used to describe a

phenomenon that changes over time. There are several algorithms that have been

formulated to deal with concept drift. For example [43] uses an automatically-sized

windowing scheme to augment fast decision-tree techniques outlined in [26], enabling

it to handle a domain with concept drift. Most of these techniques focus on window-

based or weight-based schemes where more recent observations are believed to be

more important than older observations. While we do not focus on further expanding

these algorithms for use in opponent modeling, the methods we discuss later in this

work are flexible and compatible with a concept-drift paradigm.

Though Bowling and Veloso’s properties of rationality and convergence [18], remain

important when the opponent’s policy is stationary but unknown, we believe that

Jensen’s desire that the modeler have the ability to quickly track non-stationary op-

ponents [44] may be even more important when the opponent policy is non-stationary.
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Ideally, an adversarial agent should be able to quickly determine what policy the op-

ponent is using, and develop a counter-tactic, even while the opponent’s policy is

drifting over the course of the engagement. The fundamental building block for the

opponent model’s contribution to this effort is the quality of its predictions. We

propose a novel measure of prediction quality in the next section.

6.3 Measuring Prediction Performance

In order to make good decisions, agents must have strong underlying models of their

opponents. If we cannot successfully predict or explain the adversary then we are

unlikely to intentionally choose a good response. If we are performing well despite

a bad opponent model then either our decisions were accidentally fortunate or the

opponent is sadly unfortunate.

When we endeavor to measure the quality of a model’s ability to predict the behavior

of the opponent we must be careful to isolate the measure of the prediction made

by the model from the measure of the outcome which occurs as the result of the

agents interaction. The outcome depends on not only the model’s prediction, but

also the way the agent uses the prediction, the selection of a particular action, and

the interaction between agent, opponent and environment when the actions are taken.

Clearly, the outcome is only partially dependent on the prediction, so we should avoid

attributing a completely causal relationship and assuming that outcome quality is

indicative of prediction quality.

There are two main classes of measurements for quality of a prediction: accuracy-

based measurements and distribution-similarity measurements. The core of the accuracy-

based measure is how many correct predictions are made compared to the total num-

ber of predictions. When the prediction is composed of a single most-likely action

that the opponent will take, accuracy measurements may be the only reasonable mea-

surement. When the model predicts a probability distribution over actions, however,

distribution-similarity becomes a potential metric. Distribution-similarity is rooted

in information theory, and describes a measure of entropy between two distributions.

One way of thinking about distribution similarity is that it quantifies how much more

information would be required to create one distribution from the other. The smaller

the value, the closer the distributions.

Both accuracy and distribution similarity serve an important role. We do not dis-

cuss the accuracy-measure further because it is well documented in literature (for
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example, [16, 23]). The distribution-similarity measure however is not used widely,

so we provide important additional justifications for using it when accuracy-based

measures are inappropriate. Additional justification for using distribution-similarity

will be revealed later in the chapter as we explore applications for the measurement.

First, if the opponent is truly selecting randomly from a distribution (as in a mixed-

equilibrium strategy), the distribution-similarity measure will be the best measure

of our prediction quality since the accuracy measure cannot quantify performance as

better than h/t and worse than l/t over a large number of observations t where h is the

count of the highest occurring action in the distribution, l is the count of the lowest

occurring action in the distribution. For example, a prediction device attempting to

predict the action of player N in the rock-paper-scissors game can do no better (or

worse) than to achieve a score of 1/3 in the limit. Any claims to the contrary would

be statistically insignificant. When measuring accuracy of any prediction device on

player R (1/2 rock, 1/4 scissors, 1/4 paper), the accuracy will fall somewhere on the

interval [0.25 - 0.5]. This is true no matter what predictions the device makes.

Second, we cannot elegantly apply the accuracy based measurement as a tool to deter-

mine when an agent is not following a mixed Nash equilibrium strategy, whereas the

distribution-similarity measure is perfect for this function. Any statistically signifi-

cant divergence between the observed distribution and the known Nash Equilibrium

distribution signals that the agent is not playing the mixed equilibrium.

6.3.1 Desired properties of a performance measurement

Before we present the measurement, let us first take a moment to formally list the

desiderata of a predictive performance measurement. Given a context (a set of target

agent decisions of interest), an actual behavior distribution (a probability distribution

over a finite number of possible actions7,) and a prediction of the target’s behavior

distribution in the context, we define prediction divergence PD(P, Q) as a scalar mea-

sure of the distance between the actual distribution P and the predicted distribution

Q such that PD(P, Q) has the following properties:

1. ∀P, Q PD(P, Q) = 0 ⇔ P ≡ Q. The function value should be zero if and

only if the predicted behavior distribution is the same as the actual behavior

7While we describe a finite number of actions here, the functions presented later are applicable
to continuous distributions as well.
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distribution. This is a necessary condition for the function to be used to measure

error or loss.

2. ∀P, Q PD(P, Q) > 0 ⇔ P 6= Q. The function value should be greater than

zero if and only if the behavior distribution is different than the predicted

distribution. This is a necessary condition for the function to be used to measure

error or loss.

3. ∀P, Q PD(P, Q) = PD(Q,P ). The function is symmetric. There is no sen-

sitivity to which distribution represents the truth and which is the prediction.

This is a necessary condition for the function to be a metric.

4. ∀P, Q, R PD(P, Q) + PD(Q, R) ≤ PD(P, R). The function obeys the triangle

inequality, enforcing the logical understanding of “distance” in metric space.

When combined with the previous three properties, this property completes the

characterization of the function as a metric. While not essential for the work

presented in this paper, we require this property to facilitate future work in the

area.

5. ∀P, Q, R, S (PD(P, S) > PD(P, R))∧(PD(P, R) > PD(P, Q)) ⇒ (PD(P, S) >

PD(P, Q)). The function values obey the transitive property. Distributions

which are further apart should have a greater function value than those which

are closer together8.

6. Given any extreme9 distribution P and any of its distributional complements10

P−1, PD(P, P−1) = C where C is a positive constant. The function values

should be bounded by a fixed constant such that any two distributions which

are maximilally far apart11 are bounded. This enables the function to be scaled

by dividing by C such that the function values lie on the interval [0, 1].

7. ∀ extreme P, Q, and their respective complements P−1, Q−1 PD(P, P−1) =

PD(Q,Q−1). All function bounds are equal regardless of the width of the

8The notion of “further apart” in distribution terms can be expressed with an example. Consider
a fair coin with distribution P (heads) = 0.5 and P (tails) = 0.5. This coin’s distribution is closer to
a loaded coin with distribution P (heads) = 0.4 and P (tails) = 0.6 than it is to one with distribution
P (heads) = 0.1 and P (tails) = 0.9.

9An extreme distribution is on in which one of the elements contains all of the probability mass
and the other elements all contain no probability mass.

10We define a distributional complement for an extreme distribution as another extreme distribu-
tion where all of the probability mass is located at a different point than in the original distribution.

11A loaded coin with P (heads) = 0, P (tails) = 1 is maximally far from a loaded coin with
P (heads) = 1, P (tails) = 0.
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underlying distributions. This is a minor extension of the previous property

which allows heterogenous nodes to be weighted and summed in mathematically

meaningful ways. If the function yielded differing values for distributions of

different widths, it would be impossible to compare prediction qualities at two

decision nodes where the number of actions to choose from differed.

6.3.2 Prediction Divergence

We now develop the measurement function characterized by the desired properties

described above. Information theory provides tools for comparing distributions. Its

tools are backed by proven theory and have been in use for well over half a cen-

tury. Relative entropy (also known as the Kullback-Leibler Distance) between two

probability mass functions [22] is a very widely used information-theoretic similarity

measure. Given two distributions p and q, relative entropy is defined as:

D(p‖q) =
∑
x∈χ

p(x) log
p(x)

q(x)
(6.1)

While relative entropy is characterized by certain desirable properties such as equality,

non-negativity, and transitivity, unfortunately it is not symmetric (Property 3) or

bounded (Property 6). We instead choose a related, but lesser known similarity

measure which has the additional properties of being both symmetric and bounded

as discussed in [30, 79]. This measure is known as Jensen-Shannon Divergence (JSD)

and is sometimes referred to as Capacitory Discrimination. JSD is calculated between

two distributions p and q as:

JSD(p, q) = D

(
p‖(p + q)

2

)
+ D

(
q‖(p + q)

2

)
(6.2)

One can think of JSD as the average relative entropy from each distribution (p and

q) to the distribution that is midway between them. The further the distributions are

apart, the higher their JSD value. In addition to keeping the desired properties from

relative entropy, the square root of JSD is a metric [79], meaning that it covers the

first four properties above and provides additional validity for its use as a distance

measurement. For the remainder of this work we will use the term Root-JSD to

represent the square root of the value calculated in Equation 6.2. By letting one

of the distributions represent the predictive distribution produced by the model and

letting the other distribution represent the true behavior of the target agent, we can

measure the predictive quality of our model using Root-JSD.

89



6.3.3 Weighted Prediction Divergence

For any given interaction between agents, we may have many pairs of predicted and

actual behavior distributions that need to be compared using Root-JSD. For example,

in extensive form games such as poker, a model might be based on a portion of

the game tree which contains a set of the opponent’s decision nodes (Ω). At each

node (k ∈ Ω) where the opponent has an opportunity to decide his next action

there exists a distribution over his possible actions. Some nodes may be occur more

frequently or may be worth more (in terms of expected value). When developing a

prediction quality measurement we would like to entertain the concept of weighting

the prediction quality at each decision node by its importance in our decision-making

and then combining the weighted prediction quality for all the nodes of interest.

In order to measure the overall similarity between the set of predicted conditional

probability distributions (P ) and the set of true conditional probability distributions

(Q) in an interaction, we define a function that combines all of the individual Root-

JSD measurements at each agent-decision node in the set, using a weighting function

for each node. Given a set of opponent decision nodes (Ω), associated sets of predicted

and true probability distributions ∀k ∈ Ω, Pk, Qk, and a weighting function for each

node ∀k ∈ Ω, W (k), we define Weighted Prediction Divergence (WPD) as:

WPD(Ω) =

∑
k∈Ω W (k)

√
JSD(Pk, Qk)∑

k∈Ω W (k)
(6.3)

6.3.4 Weighting Schemes

Equation 6.3 yields a value in [0, 1] making it very useful for comparing overall pre-

diction quality of models for agent interactions. If the set of decision nodes can be

partitioned into contexts (abstractions which map many nodes into one context), we

can also weight the individual decision nodes within the context group according

to some function of their importance. Some possible weighting functions and their

rationale for use include:

• Uniform Weighting. When there is no justification for weighting prediction

nodes differently they are all given a weight of one.

• Frequency Weighting. When decision nodes have different frequencies of appear-

ing in an interaction, it may make sense to weight the nodes by their frequency
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of occurrence. This makes the quality assessment sensitive to decisions that

have to be made more often.

• Utility Weighting. Some decisions are more valuable than others: the outcome

of a valuable decision leads to more increase or decrease in utility for the mod-

eling agent. In these cases it may be desirable to weight the nodes by a function

of the possible utility outcomes (for example, Umax − Umin).

• Risk (Reward) Weighting. Multiplying the probability of a node occurring with

the utility weight it is characterized by yields its risk. In this weighting scheme,

the higher the risk, the higher the weight.

6.4 PokeMinn 2007 WPD analysis

We now show how WPD can be used to compare performance between two candidate

agent models. We focus on the models’ ability to predict the behavior of the top

performer in the 2007 Computer Poker “Limit Equilibrium” Competition: Hyper-

borean07LimitEq1.

6.4.1 Protocol for the analysis

The modified frequency weighting function W (n) we use in this analysis to compute

WPD weights each node by how relevant it is in the poker game tree. We calculate

this relevance recursively: the root-node of a tree has a relevance of 1. Each child

of the root-node has a relevance of 1
|Cr| where |Cr| is the number of the root-node’s

children. Each child of the root-node’s children Cc is has a relevance of 1
|Cr||Cc| and so

forth.

For this analysis we compare the performance of two black-box models: a fixed strat-

egy opponent model and a learning opponent model. A fixed model is usually based

on either general poker knowledge or an offline-trained program that reviews previ-

ously documented matches and builds a model from them. The fixed model doesn’t

change its function over time during an encounter with an adversary. A learning

model is different from a fixed model in that it can change its strategy over time as

it observes the behavior of its current adversary during an encounter. Each of these

models were part of a larger modeling system in our entry for the 2007 Computer

Poker Competition: PokeMinnLimit1.

The fixed strategy model was based on general poker knowledge for playing limit
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poker. It uses static parameters for a pot-value function that predicts the likelihood of

the opponent folding, calling or raising. In competition, our agent uses the fixed model

to provide predictions of opponent behavior before there are sufficient observations

to use the learning model.

In contrast, the learning model has no pre-defined parameters. Instead, it attempts to

make predictions of the opponent’s behavior based solely on past observations in the

current match. At each point in the game tree where the opponent makes a decision

the learning model records the frequencies of the observed opponent actions. Then

it computes the probability that the opponent will fold, call or raise in the future

based on the accumulated frequencies of each action, conditional on the game tree

node where the opponent made the decision. This particular model makes several

assumptions in order to reduce the number of nodes in the game tree which it must

compute: the model does not consider what cards the opponent may have; each

betting round is considered independent - thus the model is actually carrying four

separate game trees of information - one for each round. There is no windowing

or time-based decay in this model - all data is gathered and weighted equally for

the entire course of the encounter. This particular style of model is biased towards

learning a stationary policy opponent well, at the possible expense of being mislead

by a non-stationary adversary.

6.4.2 Assessing Learning Rate in the Absence of Truth Data

Our first goal is to assess the learning rate of the learning model. If truth data about

the opponent’s behavior is available it would be best to use it for realistically char-

acterizing learning rate. Unfortunately, when truth data is unavailable, as is the case

in many real world situations, we must rely on only our observations to characterize

truth. In our first experiment we demonstrate how to evaluate the learning rate of a

model from only the observations. To obtain the data for training the learning model

we first downloaded poker game log files from the 2007 Computer Poker Competition

[83]. Then, using the results from the 20 matches (3000 hands each) played between

PokeMinnLimit1 and Hyperborean07LimitEq1, we trained our learning model by al-

lowing it to observe each match being played. We forced the model to keep track of its

overall state after each hand was learned. We declared that the resulting model (after

60,000 training hands) represents an approximation of the true behavioral distribu-

tion of our opponent. Next we separated the full poker game tree into four rounds

(pre-flop, flop, turn, river) to build four smaller game trees. These four trees were
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Figure 6.1: Characterizing Learning Rate with Weighted Prediction Divergence. In
this figure we show the aggregate WPD values for four betting rounds gathered from
20 limit poker matches between PokeMinnLimit1 and HyperboreanLimitEQ1 (3000
hands per match).

selected because they mirror what the original learning model is attempting to learn

- the opponent’s behavior conditioned on which node they are in during a particular

betting round. For each opponent action node in a tree we queried the model for

each time step (hand 1 through hand 3000) to obtain prediction distributions of the

opponent’s behavior. Using Equation 6.3 we generated and plotted WPD for each of

the four betting rounds in Figure 6.1.

We can use an analysis such as this to indicate which portions of the learning model

need further improvement. Notice how in the early portion of a match the pre-

flop model learns quickly and then backtracks before it plateaus and then begins to

improve again. The flop and turn model appear to improve slowly and steadily until

the late portion of the game. Improvement in the river model is very sluggish - it

takes nearly twice as long as the other three models to achieve the same level of

relative performance. Given the river model’s struggling learning performance in the

early stages of the match, this analysis reveals the agent could be improved. One

possibility would be to encourage the agent to explore the river game tree more fully

during the earlier portions of the match (perhaps by making more calls and making

fewer folds and raises in the pre-flop, flop, and turn) such that the agent (and his

opponent) see the river more often in the early portion of the match. This alteration
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would make the agent susceptible to exploitation, and the exploration strategy would

have to be subtle in order to prevent the opponent from discovering and exploiting

the activity.

6.4.3 Comparing Model Quality

We compared the performance of the fixed model to the learning model. To compare

the prediction quality of these models we needed data about the true behavior of our

desired opponent. For the test-data set, we retrieved all 660 matches (1.98M hands)

from the 2007 Computer Poker Competition [83] played by Hyperborean07LimitEq1.

We felt this data was representative of the true behavior of Hyperborean07LimitEq1

because it was the largest set of data available to the public and the data documents

Hyperborean07LimitEq1’s behavior against many different opponents. We scanned

all of the test data to determine the frequency counts for each action at each game

tree node in each round. We declared the resulting probability distributions for each

node in the game tree as behavioral truth for Hyperborean07LimitEq1. To deter-

Figure 6.2: Comparing learning versus fixed strategies with WPD for models in each
of the four betting rounds in a 3000-hand limit poker game. The horizontal lines
represent the fixed-strategy model WPD. The darker fluctuating lines represent the
learning model’s WPD values.

mine the learning model’s ability to learn the opponent’s distribution of behavior,

we isolated a training set of 20 matches played between PokeMinnLimit1 and Hy-

perborean07LimitEq1. We trained the learning model using only observations that
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it could have made during these 20 matches. We then gathered predictions from

the trained model on the hands from the test set and calculated the WPD between

the learning model’s predictions of Hyperborean07LimitEq1’s behavior and Hyper-

borean07LimitEq1’s actual behavior. A similar procedure (without a training phase)

was used to obtain the WPD for the fixed-strategy model. The aggregate results for

3000 hands for both models are shown in Figure 6.2.

While the learning model quickly becomes better at predicting behavior than the

fixed-strategy model during the pre-flop and flop, the learning model’s prediction

quality in the turn and river grow worse over the course of the game to the point

where the fixed-strategy model would have better predictive performance after ap-

proximately 380 iterations on the turn (and after approximately 740 iterations on the

river).

Though the learning model appears to be very useful for predicting the true oppo-

nent’s behavior on the pre-flop and possibly the flop (at least when compared to the

fixed model we used), its utility is questionable during the turn and river, where

the fixed model’s predictions might be preferred. Although finding the cause of the

reduced accuracy of the learning model during the turn and the river is beyond

the scope of this work, it is important to note that model-level measures reveal the

flaws in the learning model even when agent-level performance based methods fail

to do so. For example, in a separate experiment with 100 matches (300,000 hands)

we examined relative performance between two agents in terms of number of small

bet increments won per hand (sb/h). We noticed that the learning strategy model

achieves an average 0.04 sb/h greater win rate than the fixed strategy model from

hands 500 through 3000 when each played against Hyperborean07LimitEq1. If we

had relied on just the earnings performance measure as the method of determining

the better model (as much of the other research in the field does), we might not have

realized that subcomponents of the learning model were not performing as well as the

same subcomponents in the fixed model.
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Chapter 7

The Environment-Value of an

Opponent Model

In this chapter, we show how the potential value of an opponent model within a

certain environment can be calculated. We define the environment-value of a model

in terms of the minimum guaranteed expected payoff obtainable if the model was

perfect. We introduce the concept of the opponent-model oracle to represent a perfect

(but most likely unattainable) computational model of some aspect of the opponent.

In a two-agent environment, we show how the minimum guaranteed expected value

can be computed using an environment transformation and computational tools from

game theory. When game-theoretic methods are inappropriate, we describe how

approximations to expected value can be computed by using opponent types drawn

from the expected distribution of opponents. Before we begin the formal discussions

on oracles, environment transformation and game theory, we motivate the concept

that expected value and especially guarantees on the minimum expected value can

be helpful for decision making, and that the guaranteed minimum is a function of the

environment.

Consider for a moment an abstract one person game in which there are random

elements of chance, but there are no other players that affect the outcome, and the

environment (the set of rules for the game) does not change over the course of the

game. In such a game we could compute the expected value of playing the game fairly

easily. To do this we could either traverse every possible path through the game tree

to an outcome and compute a probability-of-occurrence weighted sum of the totals,

or we could estimate the expected value using a sampling of the outcomes or some
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other heuristic method.

Now consider an abstract meta-game where an agent must choose to play one of

several simple games, each with its own calculated (or estimated) expected value.

Along with other information regarding the agent’s risk tolerance and the time each

game might take to play, the expected values of each game could help the agent decide

which (if any) game to play in the meta-game.

Suppose the agent had the opportunity to obtain additional information regarding the

chance elements in a simple game. For example, consider a one-person coin flipping

game where the agent receives a point if it correctly guesses the coin flip, but will lose

a point if it guesses wrong. In this game, the agent has been told that the coin being

used may be biased, but he does not know its probability distribution over outcomes.

Without knowing the probability distribution he cannot calculate the expected value

of the game. It would be very useful for the agent to know the probability distribution

of the coin in order to determine if he should bet (and on which side of the coin he

should bet).

Blue

Red
A B

H 0.9, 0.1 0.1, 0.9
T 0.1, 0.9 0.9, 0.1

Figure 7.1: The two-player game Γ.

Now consider the following two-player repeated game Γ with players red and blue

shown in Figure 7.1. There are two biased coins in this game: Coin A (P (heads) =

0.9); and Coin B (P (heads) = 0.1). Both players are aware of the labels and biases

of the coins. In this game, red first chooses the coin that will be flipped (A or B),

but does not immediately reveal his choice of coin A or B to blue. Blue must then

guess whether the coin will land heads or tails when it is flipped. After both players

have made their choices, the coin is flipped by an unbiased referee. Then blue will be

told which coin red chose and red will be told which side blue guessed. If the guess

(heads or tails) is correct, blue will earn a point, and red will lose a point, otherwise

red will earn a point and blue will lose a point.

Without any information about the opponent, blue agent has no incentive to prefer

guessing heads over tails in this game. Furthermore, he knows that if he shows any

bias between heads and tails, red may notice and start choosing the coin that makes

blue suffer in future games. Therefore blue selects heads or tails randomly with equal
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probability. Knowing that blue will choose randomly, red has no preference over

which coin to select. Furthermore, red realizes, that if he shows any bias, blue might

discover the bias and may use the bias to hurt red. Therefore, red chooses a coin at

random from set, with equal probability. In Γ, the expected score for each player is

zero.

Clearly, if one of the players could know what the other player’s choice was, they could

reap large benefits in this game. For example, if blue knew exactly which coin red

would choose and red did not know what blue would do, blue could earn an expected

score of 0.9 per iteration. Likewise, if red knew which choice blue was going to make,

but blue did not know red’s choice, red could earn 0.9 per iteration. In Γ, the value

of having a perfect prediction about the other player’s next move is 0.9.

Consider playing from blue’s side of the game. One can think of obtaining information

regarding red’s coin choice as if it had been obtained from an oracle. The expected

score 0.9 is a guaranteed minimum bound on the increase in the expected value by

using the oracle. It is a guarantee because no action by red could reduce this value

increase. We define the environment-value of an oracle in this environment as the

expected value the player could earn by using the perfect prediction in the environ-

ment minus the expected value earned if the perfect prediction was unavailable. In

this example, the value of the oracle is 0.9− 0 = 0.9.

Blue

Red
A B C

H 0.9, 0.1 0.1, 0.9 0.5, 0.5
T 0.1, 0.9 0.9, 0.1 0.5, 0.5

Figure 7.2: The two-player game Γ′.

Next we show how a change to the environment can, but does not necessarily alter

value of an oracle in that environment. Consider a slightly different game Γ′, shown

in Figure 7.2 where both players are aware that red has been given a third coin from

which to choose: Coin C (P (head) = 0.5). Without extra information about the

other player, each player’s expected value for the game is still zero. But consider

what happens when blue knows exactly what red will do. In order to understand the

interaction, we must first determine how a rational opponent would behave. If red

always chooses coin C then he will be safe, even in the event that blue is somehow

able to predict red’s choice of coin. Therefore, red, without extra information chooses

coin C every time, and the expected score for each player is still zero, regardless of
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blue’s actions. Assuming red cannot predict what blue will do, red obtains a the

desired expected value by always choosing coin C. Since blue’s actions will have no

effect on the red’s policy, any additional information regarding the red’s coin choice

is irrelevant (because red will always choose coin C). Thus blue’s environment-value

of oracle which predicts red’s choice perfectly is 0− 0 = 0.

To show that the environment value is a minimum guaranteed expected value for the

agent we simply examine what would happen if red altered his policy when blue has

access to the oracle. If red chose coin A or B with any probability greater than zero,

blue’s oracle would immediately alert blue of this and blue could choose heads or tails

appropriately, increasing his expected score to 0.9, each time red chose coin A or B,

just as blue did in game Γ. Thus, 0.0 is the minimum value improvement that blue

could earn by using this oracle.

Now we consider the situation where only red has an oracle. With the addition of

coin C, the situation for red is quite different. If red has perfect information about

whether blue will choose heads or tails next, red can select coin A or B smartly to

maximize his own score, yielding an average of 0.9 for himself. No action blue could

take could change this minimum guarantee because the oracle always tells red whether

blue is about to choose heads or tails. Thus, red’s environment-value of the oracle

that predicts what blue will do is 0.9− 0 = 0.9.

From these simple examples, we’ve informally shown several important points:

• Given a game against nature, we can calculate the expected value of playing

the game when using a certain policy.

• Given multiple options for policies, we can calculate the expected value for each

policy in a game and choose the best policy.

• In a two-player game, we can calculate the expected value for our policy choice,

given the other player’s policy.

• In a two-player game, having an oracle of another agent is equivalent to knowing

perfectly some specific information about that other agent, i.e. their next action.

• The environment-value of an oracle for a given player is equivalent to the min-

imum expected value they would earn when the policies have changed minus

the minimum value they could have earned prior to introduction of the oracle.
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• If neither player’s policy would change after the introduction of a particular

oracle, then the environment-value of that oracle is zero.

In the simple examples above there was only one prediction that could be made about

a player: what would they choose for their next action. In more complicated envi-

ronments there are many different types of predictions that could be made and many

different types of conditional information that are available. Different predictions and

different conditional information supporting that prediction can yield different oracles

with different environment-values because of the relationship between the conditional

information, the oracle, the prediction, and the change in policy which occurs when

the oracle is used.

If an oracle can be thought of as a perfect opponent model then the environment-

value of the best opponent model is the same as the environment-value of the oracle

which makes perfect predictions under the same conditions. Knowing the values of

the different oracles can inform the decision about which types of models might be

useful.

In the remainder of this chapter we show how we can compute a static minimum

bound on the expected value of an oracle (perfect opponent model) in a specific

environment1. We also show that the the environment-value (the amount of score

improvement earned in the game, for example) that could be obtained by using an

opponent model is a function of the environment itself. We do this using a three step

process:

1. Form an oracle which provides the information a perfect model would yield.

2. Transform the environment into a new environment where the oracle’s informa-

tion is part of the environment.

3. Solve for the environment-value of the model using game-theoretic techniques.

Each of the steps will be explained in detail in the following sections. If we perform

this task for each type of opponent model of interest, we can discover the bounds

and use the information to select promising models to develop for any particular

environment.
1The oracle only makes predictions about one player, which we refer to as the exposed player.

Both players know of the oracle’s existence and purpose and which player is being exposed. Both
players can see what information the oracle is revealing. Thus, the exposed player knows what
information the oracle is revealing about him.

100



7.1 Abstract Prediction Models and Oracles

We begin with several definitions for common terms used throughout this chapter.

Abstract Prediction Model: A specification for a mapping between specified in-

puts and specified predictions of a modeled agent.

The abstract prediction model can be thought of as specifications of which inputs

are required by and which predictions are generated by a model. In the language of

software development, the abstract prediction model is the signature of the function

which accomplishes the prediction. For instance, in poker we might identify two

different abstract prediction models: one which takes as input the size of the pot and

predicts whether the opponent will fold or not in their next action, and another which

takes the sequence of actions made so far by both players and predicts whether the

opponent will fold, call, or raise in their next action.

Oracle: A function that maps an abstract prediction model’s inputs to correct pre-

dictions about the modeled agent.

The oracle is a hypothetical perfect model used solely for the purposes of analyzing

agent interaction in a specific environment. Thus it has certain inputs and outputs

but how it works is irrelevant. It is perfect in the sense that it will always predict

some aspect of the modeled agent correctly, given the required inputs.

In order to find performance bounds attainable by a given abstract prediction model

in an environment we transform the environment using a technique that simulates

having an oracle of that type and then we determine a minimum bound on how well

we could have performed in the transformed environment.

For this work, we examine three types of abstract prediction models in a simple

game: the state model, policy model, and action model. One can think of the various

opponent models as devices that predict the state the opponent believes he is in, the

policy he will use to make decisions, or the action he is about to take. A state oracle

is a device which knows what state the opponent thinks he is in, given the inputs.

The policy oracle is equivalent to the opponent’s thinking process, or the software

he is using to make decisions: it is a perfect map from state to action. The action

oracle perfectly predicts what action (or distribution of actions) the opponent will
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take next, given the inputs. In a poker example, the state oracle would give access

to the exact cards the opponent has as if the opponent was playing with his cards

face-up. The policy oracle would indicate what action (or probability distribution

over possible actions) the opponent would take for each possible set of cards they

held. The action oracle would indicate exactly what action the opponent was about

to take.

Before we describe the analytical process for finding opponent model performance

bounds using oracles, we first provide additional intuition for the relationship be-

tween the performance bounds obtainable using an oracle and the structure of the

environment. Once this is made clear, we describe a technique for discovering bounds

that is equivalent to playing the game with access to a perfect opponent model.

In some games, such as rock-paper-scissors, the opponent’s actions, in combination

with our actions completely determine the winner of each game. Since there are no

stochastic processes in the game itself, an oracle that predicts the action the opponent

is about to take just before he does it can allow us to make a perfect best response,

allowing us to win every iteration and obtain the maximal value we could in the game.

Conversely, in an absolute gambling game where each player decides whether to bet

or not on the future flip of a fair coin (if we both bet, we flip the coin: heads, you pay

me one dollar, tails I pay you one dollar), neither the state, action, or policy opponent

model could assist us in extracting any additional expected value from our opponent.

The result of the absolute gambling game is entirely determined by nature, and any

effort in building a model to predict the opponent’s state, action or policy is a waste

of resources. In both of these games, the environment-value of the oracle is related

to the structure of the game rather than the type of players playing.

As mentioned in Chapter 1, most interesting adversarial environments often contain

elements of chance, skill, and asymmetric information2 available to the players. Thus,

most environments fall somewhere between the two games described above.

Let us next examine a game that falls in between these two extremes: high card draw

with simultaneous betting3. In this game chance plays a large role, and an oracle

2Asymmetric information is information available to a subset of the players, but hidden from the
other players. An example of the asymmetric information in poker is the collection of private cards
each player holds.

3In high card draw with simultaneous betting, each player places the ante value in the pot. Then
each player draws a card from a standard deck. Players decide to bet or pass using one of two
face-down markers to indicate their choice. The markers are turned face up to reveal the actions of
each player. If both players bet, then the cards are revealed and the higher card wins both bets. If
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that predicts whether the opponent is going to choose to bet or pass doesn’t give us

all the information we need to always make choices without regret4. Even an oracle

that knows just the opponent’s decision policy doesn’t give us everything we want:

to decide without regret we would really need to know what card he had in addition

to whether or not he was going to bet.

Yet knowing something about the opponent’s next action or his policy in high card

draw does help us somewhat: we should be able to make better decisions once armed

with this information. For example, if we observed the opponent over a large history

of hands and noticed that we never saw an opponent’s card at showdown that was

worse than a Nine, we could access the action oracle to see if the opponent was about

to bet in the current hand. If the oracle told us he was going to bet, we could make

a much better decision on whether we ourselves should bet, because we know he

probably has a Nine, Ten, Jack, Queen, King, or Ace. If instead we had a policy

oracle for our opponent that told us he always bets on Nine or better, we could make

a more informed decision on which cards we should bet on than if we did not know

his policy exactly.

We assume that in finding the bounds of performance of an opponent model, we must

consider an oracle will give us only one of the following pieces of information about

the opponent: The possibly hidden state in which the opponent is in, the policy which

the opponent will use to make decisions, or the next action which the opponent is

about to make. The reason that we only consider models of one of these pieces of

information is that if we had two then the third is calculable, and we could perform

optimally without needing it. For example, if we had the opponent’s policy and his

state, we could calculate his action. If we had his policy and action, we could infer

his state. If we had both his state and his action, we have everything we need, and

his policy is irrelevant (but could be approximated as a set of point-by-point if then

rules for all visited states and actions).

With this notion of abstract opponent models and oracles, the next section presents

the second step in the process: environment transformation.

there is a tie, then no bets are exchanged. If one or more players pass, both cards are returned to
the deck and the deck is reshuffled in preparation for the next round.

4We use a very specific meaning of “regret” here. Intuitively, we would regret an action we took if
a different action under the same circumstances would have yielded a better result for us. A decision
without regret in high card draw with simultaneous betting is one in which given the cards we and
our opponent were holding, and knowing what action the opponent was actually going to take, we
would not want to change our decision about what action we took.
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7.2 Oracle Simulation through Environment Transformation

To determine the value of an oracle that reveals our hypothetical opponent’s state,

action, or policy in an environment Γ we derive a new environment Γ′ where we have

access to that information as part of the environment5. In other words, the predictions

made by the oracle are revealed to our agent in the transformed environment, and

the actions our agent takes will be able to use the information. We denote Γ′
state as

the transformed environment that is equivalent to revealing the state the opponent

thinks he is in (such as the card he is holding in high card draw), Γ′
action that is

equivalent to revealing the action the opponent is about to take, and Γ′
policy as the

transformed environment that is equivalent to revealing the opponent’s policy. We

can then calculate how much we could earn in the transformed environment in relation

to the original game.

Since we are planning to do actual calculations in the game Γ′, we will need to access

its game tree: τ ′, and we will need to instantiate some kind of device that represents

the decisions the hypothetical opponent would make. The selection of the device

for solving the environment will depend on whether we are solving the game using

game theory or Bayesian techniques. We then replace the opponent’s decision nodes

with the actual decisions (or probability distributions over decisions) the device would

make. This leaves us with a compression of the original game tree such that the only

remaining nodes are our decision nodes (and possibly chance nodes from nature).

Essentially the transformed environment becomes a one-player game where our goal

is simply to compute the optimal solution and determine the expected value of that

solution.

7.3 Finding the Value Bounds with Game Theory

In this section, we describe how to find the environment-value of the opponent model

in the original environment by finding the agent’s expected value in the transformed

environment and subtracting the agent’s expected value in the original environment.

5One question that arises when using the opponent information in this way is whether we should
consider the information about our opponent public or private, in a game-theoretic sense. In other
words, does our opponent know that we know the information, or is he ignorant of that fact?
Whether the opponent knows does make a difference in his policy and thus affects how the game
tree is traversed during search. This is a factor in the optimal path calculation and the value of the
optimal action sequence. For the analysis in this chapter, we focus on oracles which take otherwise
priveate information about one player and make it public information. We leave the analysis of
oracles that secretly reveal one player’s private information to the other player for future research.
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At the core of this step is the method to be used for finding the expected value

- in essence we need to evaluate the solution from the agent’s perspective in both

environments. In the remainder of the section, we motivate the use of game-theoretic

tools for finding this solution, and discuss the implications of using those tools.

7.3.1 Game-Theoretic Environment-Value Calculation Technique

Let us consider the nature of the opponent for a moment. If our opponent was

rational (he makes decisions to maximize his own utility given his beliefs [6]), then

he would make a choice (or probability distribution over choices) which was in his

own best interest at every point where he had to make a decision, given his beliefs

about the way the decisions would affect his utility. Furthermore, if an agent and

his opponent in a two-player environment are both rational and know the rules of

the game and the available payoffs for all outcomes, then game theory describes the

intersection of their joint choices (their strategies) as a Nash Equilibrium [6, 56, 55].

In an equilibrium, neither player can improve his utility by altering his strategy

(probability distribution over actions) unilaterally, thus the payoff for a player at a

Nash Equilibrium constitutes a lower bound on the score a player could achieve when

they play their strategic element of the equilibrium. They could earn more, but they

could not earn less as long as they do not deviate from their equilibrium strategy.

This is a strong motivation for using solution techniques that yield a Nash Equilibrium

to find strategies which could be evaluated to determine the lower bound of utility in

an environment. To use game-theoretic tools to solve an environment, we must make

the assumption that the Nash Equilibrium of the game can be found, and that all

Nash Equilibrium in the game have equal value. The first assumption depends on the

tractability of the technique for finding the solution and the computational hardware

available. Thus some games such as chess and heads-up limit Texas Hold’em would

not be suitable targets for this form of analysis. The second assumption is true when

the game is a two-player general sum game (the sum of the player’s payoffs at every

outcome in the game is equal). Most games that people play fall into the general-sum

category, but it would be inappropriate to make this assumption in many real world

environments.

One of the simplest and most straightforward implementations of equilibrium calcu-

lation is the minimax algorithm. If we assume that our opponent is a game-theoretic
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equilibrium player then we could assign some form of the minimax6 algorithm to

represent the policy of our hypothetical opponent. Thus we could find an optimal

set of actions in the new environment by providing a function that maximizes the

utility of our decisions in the new environment. By assessing the expected values of

the new environment when playing our optimal strategy against the minimax player

opponent, we can obtain the minimum bound for expected value in the new environ-

ment. Performing the same calculation in the old environment, we could obtain the

minimum expected value in the old environment. Subtracting the original value from

the new value would yield the environment-value of the model:

VΓ(M) = U(M |Γ′)− U(M |Γ)

7.3.2 Experiments: Environment-Value in High Card Draw

As a proof of concept of determining opponent model performance bounds by using

the game transformation technique described in Section 7.3, we studied taking oracle-

based transformations of the repeated high card draw with simultaneous betting

game. The transformations we examined yielded three new games that independently

incorporated the state oracle, policy oracle, and action oracle.

For this set of experiments, we made several assumptions. In the original game there is

a compulsory ante of $1 which both players must pay to play each game. Each player

may decide to bet a fixed $1 amount or fold - these decisions are made simultaneously

to eliminate the incentive for deceptive play. We furthermore make the assumption

that our opponent’s strategy is unknown, but fixed, and characterized by the selection

of a single threshold card: when the opponent is dealt a card is greater than or equal

to this threshold, they will bet; otherwise they will fold7. We also assume that our

goal is to determine a threshold card-based strategy, which may be distinct during

each round of play. Figure 7.3 shows our resulting payout at each pair of intersecting

strategies, and the pure strategy equilibrium that is obtained in this game: neither

player wishes to have a strategy other than EIGHT. As expected in a zero sum game,

our payout at the equilibrium point is $0.

6Recall that minimax can be used to calculate equilibrium play in games with game trees that
have no chance nodes. While traditional minimax is useful for non-stochastic games, there are
derivatives of minimax designed for use in games that incorporate chance nodes.

7Since there is no incentive to bluff in this game, the notion that a player’s policy can be described
by a single bet/fold threshold is valid: Assuming the threshold is equal to the lowest card we would
be willing to bet, folding cards above that threshold would reduce the expected value of the policy.
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Figure 7.3: Here we can see our expected payout in a high card draw game with
simultaneous betting where the ante is $1 and the bet value is fixed at $1. Each
axis is labeled with a player’s pure strategy: it indicates what their threshold card
is. The threshold card is the card which separates the cards they would like to fold
from the cards they would like to bet with. If, for example a player’s threshold card
was SIX, then they would bet with SIX or better while folding all other cards. The
opponent’s strategy is shown on the X axis and our strategy is shown on the Y axis.
The intersection of two strategies reveals the expected payout over an infinite number
of games if each player’s cards are drawn from a standard deck without replacement,
then returned and reshuffled after each game. Notice the pure strategy equilibrium is
indicated at EIGHT-EIGHT, implying that a player following an equilibrium strategy
would fold if they obtain a card lower than EIGHT and bet otherwise.

When we examine the game derived by allowing us to always know our opponent’s

card, with him knowing that we know his card, we know that we should always bet

when his card is lower than ours. Furthermore, since we still do not know his policy,

we must entertain the idea that there may be occasions when we would like to bet,

even when our opponent’s card is clearly higher than ours because there is a chance

he could still fold. We computed the expected payout for the game as a function of

our joint strategy and show the results in Figure 7.4. As we might expect from a
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Figure 7.4: Here we examine our expected payout from a game derived from high
card draw with simultaneous betting where our opponent’s cards are fully revealed to
us (this is public information: our opponent knows we can see his cards) but he is not
allowed to see our card. This game effectively incorporates an example of having a
perfect model of the opponent’s state. At the intersection of each player’s strategies,
we find our expected payout in the game.

casual analysis, this transformed game’s pure strategy equilibrium is ACE, EIGHT

(when our opponent’s card is equal or higher, our strategy is to bet if we have an

ace and our opponent’s strategy is still to bet with an eight or better; when the

opponent’s card is lower, we always bet). At this new equilibrium, we can expect

to earn an average of approximately $0.24 each time we play the game. We make

the claim that knowing the state of the opponent perfectly is worth at least $0.24

per game: if we had an intuition that the opponent was going to play some strategy

other than EIGHT, we could possibly earn even more money, but we are guaranteed

an expected value of $0.24 per game with a fixed, secure strategy. Thus, the value of

knowing the opponent’s threshold card is lower bounded at $0.24 per game. Another

interpretation of this finding is that if we were somehow able to build a device (such

as an opponent model) that would reveal the opponent’s cards to us, we would not
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desire to pay more than n($0.24) for it, where n was the number of games we were

going to play. In this game, building a device that obtains the state the opponent

is in may seem unfeasible without cheating, but in other more complicated games,

it may be easier to obtain this information. Poker, for example, is a game in which

the opponent betting actions over time may reveal a great deal about the strength of

cards he is holding.

We next examine transforming of the original high card draw game into one that

reveals the opponent’s policy to us. We claim that in this game, the policy is probably

the easiest model to develop, especially if the opponent is considered to be a fixed

strategy player. In this simple game we notice that the new game derived from the

original game with the opponent’s policy revealed is actually a much simpler game,

where our goal is to find a best response and our related payout for each possible

policy choice the opponent could make in the original game. Figure 7.5 shows a

Figure 7.5: This graph depicts our expected value of playing the strategy that is the
best response to the opponent’s strategy when the opponent’s strategy is revealed to
us as part the transformed environment.

graph we use for analyzing our policy interaction in this game. The graph shows our

109



expected earnings from the game if we play a best response to the known opponent

policy. As expected, the additional value of knowing the opponent’s policy in this

game when the opponent is an equilibrium player is zero: we cannot hope to earn any

money from our opponent when he plays a strategy of EIGHT. But, if our opponent is

playing other than an equilibrium strategy, this analysis reveals the value of knowing

his policy and playing a best response to it. If we were to know that our opponent’s

policy was ACE, for example, we could expect to earn $0.70 per game by playing a

best response. If we could obtain a-priori a distribution of the types of opponents

we might face, where a player’s type is his strategy, we could use this calculation to

determine our expected value of a perfect opponent model against that set of players.

Knowing this value would enable us to determine a cap on how much we should be

willing to invest in developing an opponent model to play this game against that set

of opponents.

We next examine the value of knowing the opponent’s action before he takes it with

respect to our expected value in the original game. Figure 7.6(a) shows our payout

at the intersection of each player’s strategy when the opponent’s action is revealed to

us before we decide on our action. Another way to think of this transformed game is

that we’ve converted the original simultaneous action game into a turn-based game

where the opponent is at a disadvantage because he must act first and receives no in-

game monetary compensation for doing so8. Notice also that there is no pure strategy

equilibrium in this game. If we make the assumption that the opponent will select

the best pure strategy available to him (the one that earns him the highest expected

value) and we take a best response to a fixed pure strategy opponent, we obtain the

payout shown in Figure 7.6(b). In this figure we can see that knowing the opponents

action before we make our decision of what to do is worth approximately $0.1161

per game when we make the assumption that the opponent is playing a fixed pure

strategy.

But the lack of a single highest-valued pure strategy leads us to believe that the as-

sumption that the opponent will choose a pure strategy is flawed. If the opponent

is not forced to use a fixed pure strategy in our analysis, his selection of a threshold

may change from one iteration to the next. He may possibly alter his strategy dur-

ing the game depending on what his current belief about our strategy is: this may

8In some forms poker, such as of Texas Hold’em, a player who doesn’t have to make his decision
until after the other players have had to make their decisions first has an information advantage and
is assessed a larger ante to partially compensate for his information advantage.
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(a) Our payout for fixed pure strategy play

(b) Our payout for best response to fixed pure strategy op-
ponent

Figure 7.6: Exploring the transformed game where our opponent’s action is revealed:
When we know the opponent’s action as a condition of the derived game, we can
see our actual payout for each intersection of pure strategies in Figure 7.6(a). Fig-
ure 7.6(b) reveals the payout we would receive by playing a best response to the
indicated opponent fixed pure strategy.

induce mixed strategy equilibrium as well as provide value for deceptive play (such

as bluffing) where a player’s policy can no longer be described by a single threshold

parameter. In Figure 7.6(a) We can see the incentive for the opponent to switch

policies the instant he picks a certain policy and realizes that we are going to make
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a best response.

For example, if the opponent was to choose a fixed threshold of EIGHT (the Nash

Equilibrium policy in the original game) our best response is to choose a policy of

TEN. His best play if he knew we were playing TEN is to choose a threshold of

TWO. But if he was going to choose TWO, our best response is to choose FIVE or

SIX. When we do this, the opponent switches to SIX, then we follow with our best

response: EIGHT, and he then has incentive to change to TWO again, restarting the

never-ending cycle.

Clearly, the opponent’s incentive to choose a pure strategy in the transformed game

is minimal. In this game, the opponent may instead attempt to use a mixed strategy

to keep us uncertain of what his real policy is so that we are not able to perfectly

determine his card from his action and the past observations of his threshold (policy).

For this game, we can think of a mixed strategy as a probability distribution over

pure strategies. At each iteration, the opponent selects a strategy (card threshold)

randomly according to the distribution. Thus, his policy is actually parameterized by

the distribution over all possible thresholds. Finding the mixed strategy equilibrium

(the set of mixed strategies, one for each player) is computationally expensive, but

solvable for this simple game. We used the Gambit [52] software to solve for the

mixed strategy equilibrium of this game. At the equilibrium, the value of knowing

the opponent’s next action for us is approximately $0.1124, slightly lower than our

yield in the analysis when we assume our opponent is using a pure strategy. This

lower yield is expected and confirms that the opponent has an incentive to employ a

mixed strategy when we know his action with certainty.

7.3.3 Experiments: Environment-Value in the Simultaneous-Move Strat-

egy Game

We now apply our value-bounds-finding technique to a much richer environment:

the simultaneous-move strategy game described in Chapter 5. In the version of the

game we use for these experiments, there is no hidden information, thus the state

of the game is already known and an oracle which reveals the opponent’s state is

unnecessary. Since by definition, knowing the policy of a Nash Equilibrium player

has no benefit for its opponent, we do not need to assess the value of the policy

oracle either. For these experiments, we focus solely on the value of the action oracle.

Essentially, we are trying to answer the question: If I could purchase information
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about what action my opponent is about to take before he takes that action, how

much is that information worth?

If we label the player who’s actions are being revealed as the Exposed player and the

other player as the Protected player, we can answer this question with a the following

process:

1. Determine the baseline value of each state when each player is playing the

simultaneous-move game and both players policies are the mixed Nash Equilib-

rium policies for the game.

2. Determine the value of the game for the Protected player when he knows what

action the Exposed player is going to take just before the Protected player

decides what action to take.

3. Subtract the Protected-player’s value of the baseline game from the value they

would achieve in the second game. The result is the value of the action-revealing

oracle.

Since this game is a multiple-turn game, there are several ways to determine the

value of opponent-action-revealing information. Perhaps the most intuitive way is to

assume that the oracle would be available in this turn and all turns thereafter. Thus,

from any state in the game, the oracle would reveal the Exposed player’s next action.

We also make the assumption for the purposes of this analysis that the Exposed

player will play a stationary, optimal strategy. Given a state, there is only one best9

action which the opponent would choose and he would choose that action every time

he was in that state, independent of the history of play prior to arrival in that state.

Since the successor state is partially stochastic (often based on the outcome of the

stochastic events which occur during the game phases following the selection of each

player’s actions), we can form a set of outcomes that could occur when the opponent

takes an action and we take an action. Once each player selects an action, the outcome

states depend on the transition probabilities which are solely a function of the rules of

the game. By weighting the likelihood of an outcome with the transition probabilities,

we can determine expected value for a state from the value of the successor states.

We use the same iterative solution method described in Chapter 5 to find the value of

9The best action in a sequential turn game can be determined by the minimax algorithm or one
of its derivatives.
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each state, starting with the terminal states and working backwards to solve for the

value of the predecessor states. When the values of the states converge we know that

we have a solution for the values of the states for a game of indefinite length. The

difference between the algorithm used here and the one used in Chapter 5 is that here

we assume the Exposed player’s choice is derived from a probabilistic minimax over

successor state values (instead of a solution to the linear programming problem for

the purpose of finding the mixed Nash Equilibrium). The Protected player’s response

is the other component of the minimax play: it is the best response to the Exposed

player’s chosen action.

We solved the game in this manner to determine the value of the action-revealing-

oracle from each state, given that the oracle will be available for playing the game

from that state forward until a terminal state is reached. If we were to play a full game

from the default starting state (each player has one unit and no bases) the expected

value of the state (and thus the oracle) is 0.0050. There are 35 fair10 starting states

for this game. In these fair starting states, the average value for the improvement in

the score when the action oracle is used (instead of the Nash Equilibrium policy) is

0.0808. If we collect the value differences earned by the protected player in each state

and then sort them according to their value, we can generate a distribution of the

state values and display the distribution as a histogram. A histogram of the values

for all fair starting states is shown in Figure 7.7(a), and a histogram for the values

for each of the 2021 non-terminal states is depicted in in Figure 7.7(b). The mean

value improvement for all non-terminal states is 0.0692.

Another analysis we can perform with this data is to determine how much expected

value could be earned from the action oracle’s information if it was only available for

a single decision. Essentially we would like to determine the value of a state if we

were allowed to use the oracle once in that state and then we were not allowed to use

it for any portion of the remainder of the game11

We compute this value by first determining the set of successor states and the asso-

ciated probabilities that occur when the action oracle is available (and the minimax

10A fair starting state is one in which both players have the same number of assets and the same
configurations (bases and units) at each location (it is fair). In other words, if the player identities
were switched, a fair state has the property that the ID-reversed state is an isomorphism of the
original state. Starting states must also be non-terminal. Thus a state where all players have no
assets is fair, but not a valid starting state.

11For the remainder of the game we would use the mixed strategy Nash Equilibrium policy de-
scribed in Chapter 5.
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(a) Improvement in score from starting states when the action oracle is available on
every turn

(b) Improvement in score from non-terminal states when the action oracle is available
on every turn

Figure 7.7: When using the action oracle for the entire game, a histogram of our
improvements in value are shown for fair starting states in Figure 7.7(a) and for all
non-terminal states in Figure 7.7(b).

solution method is used). We then lookup the values for just the states that were suc-

cessor states when using the mixed-equilibrium solution method. By weighting these

values according to their transition probabilities and summing, we get the expected
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value of the game if the remainder of the game was played without the action oracle.

If we subtract the expected value of the successor states from the value of the initial

state, the result is the difference in the value of the joint action prescribed by the

action oracle and the joint action described by the mixed Nash Equilibrium: it is the

value of the action oracle’s information for one decision from the current state.

If we use the action oracle only for the first decision from the default starting state,

the value gain from using the oracle is 0. The mean value of the one-decision oracle’s

information over all 35 fair starting states is 0.0041. Figure 7.8(a) shows a histogram

of the values for each of the 35 fair starting states if the action oracle was available for

only the first decision in those games. For all 2021 non-terminal states in the game,

the average value of the one-shot decision made with the help of the action oracle is

0.0129. Figure 7.8(b) shows a histogram of the values for each non-terminal state if

the action oracle was available for only a single decision at that state.

From these results we see that in general, the action-oracle does provide a value

advantage but that the advantage does depend on which state the game starts in. A

secondary interpretation of these results is that the action oracle is more important

in some states than others. In other words, the value of the information about what

the opponent will do next varies depending on which state we are in.

7.4 Approximating Model Value with Bayesian Opponents

While powerful in that it can calculate the minimum bound on the expected value of

a perfect model in an environment, the game-theoretic method used above is limited

by several assumptions:

• The following Nash Equilibrium preconditions must hold for the value to be

meaningful: The game must be two-player; general sum; each player knows the

possible actions the other could take.

• The Nash Equilibrium strategies must be calculable with available resources.

Furthermore, the policy model analysis is limited in that if the opponent is playing a

true Nash Equilibrium strategy, the policy model will necessarily have a value of zero.

When the preconditions listed above do not hold, we may be better off approximating

the environment-value using an estimation of the distribution over likely opponents,

which is the focus of this section.
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(a) Improvement in score from starting states when the action oracle is available for
only the first decision

(b) Improvement in score from all non-terminal states when the action oracle is available
for only the first decision

Figure 7.8: When using the action oracle for only the first decision, a histogram of
our improvements in value are shown for fair starting states in Figure 7.8(a) and for
all non-terminal states in Figure 7.8(b).

We now present an alternate technique for approximating value of a model when game-

theoretical solutions are intractable or inappropriate but the set of opponents is drawn

from a known distribution of known opponent types. The steps for computing the
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value of a model for a probability distribution over known opponent types is actually

a generalization of the game-theoretic method described previously. Essentially, in

the game-theoretic method, we made the assumption that our opponent was rational

in the game-theoretic sense and that they would always play the Nash Equilibrium.

In a more general description of our approach, we assumed that the probability that

our opponent was a Nash Equilibrium player was 1.0, and then we used the Nash

Equilibrium solution to determine the behavior of our opponent without considering

any other possible opponents. In the Bayesian technique we are about to describe,

we instead use a probability distribution over multiple opponent types.

We first collect and instantiate a representative opponent from each type. For each

opponent type, we create an oracle which would reveal the state, action, or policy

of the opponent type in a transformation of the original game where the target in-

formation remained hidden. We then create the two versions of the environment:

the original one in which our agent has no access to the opponent’s information,

and the transformed one in which an oracle will provide one of the missing pieces of

information about the opponent.

To find an approximation of the best response in the original environment, we then

use each of the instantiated opponents within an M∗ [20] search12 to find the optimal

action to take within the game. We generate a static best response policy for each

state for each opponent type. To find an approximation of the best response in

the transformed environment, we simply reveal the missing information to our agent

within the M∗ search similarly to the way the action information was revealed in the

previous section. We then compute the new optimal action to take for each state for

each opponent. Then we can calculate the difference between the value of each state

(in the original and transformed environments) for each opponent. We incorporate

the probability distribution (over opponent types) into the sum of the differences in

order to estimate the improvement of a particular model type for that distribution of

opponent types.

In the previous section, we could make some guarantees about the value earnable

by a perfect model of the opponent. Because a Nash Equilibrium player is going

to play the most secure strategy (when the preconditions for equilibrium have been

12Recall that the M∗ search inserts a model of the opponent into the search algorithm instead
of assuming a perfectly optimal opponent. In this way, an expected-value-based search engine can
compute the best action to take against the given opponent.

118



met) we can assume that for any opponent not using the Nash Equilibrium technique

we can earn at least that much, and possibly more if we had an oracle to consult.

But if our analysis technique does not rely on assuming our opponent will play Nash

Equilibrium, this guarantee no longer holds. Two caveats must be made about the

value of the model derived using the Bayesian technique:

• The value improvement computed is reliable only for the the distribution over

opponent types used in the calculation. If the distribution of actual agents

differs from the distribution used in the computation, then the actual value

improvement could be different as well.

• The value calculated with the Bayesian technique is no longer a function that

depends on solely the environment. In the Bayesian technique, elements of the

weaknesses of the opponents are included in the computation and can contribute

to an increase in the apparent value of the model.

In Chapter 6 we demonstrated techniques for measuring the prediction performance

of an opponent model. This chapter added the ability to determine the value of a

particular class of opponent model for a given environment to our toolbox. In the

next chapter, we explore another set of tools that can be used to improve opponent

models during development and during live engagements.
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Chapter 8

Improving Opponent Models

Much of the effort we have discussed to this point has been focused on how to deter-

mine the performance bounds of a class of opponent models and how to measure the

actual prediction quality of an instantiated model. In this chapter we describe tools

and techniques designed to help the model designer improve their agent when the set

of opponents, and possibly even the distribution over opponent types is unknown.

We begin in Section 8.1 with a description of novel tools we can use facilitate improv-

ing agents and discuss how the measurements presented in Chapter 6 can be applied

to guide and assess the process. In Section 8.2 we present the manual technique we

used to rank order agents by quality. We conclude in Section 8.3 by presenting a sys-

tem for automatically selecting good variable settings and function implementations

for models as well as a framework for metareasoning1 over an ensemble of existing

models during adversarial engagements.

8.1 Tools

When the set of opponents is unknown and observations of histories of their behavior

is unavailable, we must rely on adversarial targets that we create to train and test

our agents. One of the best ways for accomplishing this is through exploration of the

effects of variable settings and function implementations2 on the performance of the

1Metareasoning is “reasoning about reasoning”: it attempts to estimate the cost-value benefit
of first level reasoning in order to determine if computations (such as queries to opponent model
predictions) are worth computing by how much they will improve our current situation.

2For the remainder of this chapter we will use the generic term parameters to represent all of the
variable settings and function implementations in the specified software module.

120



agent. To prepare for the exploration, we must have a set of parameters which can

be adjusted and a performance measurement.

In many software development projects, parameters are constant and hardcoded based

on the developers design decisions. Furthermore, sections of code containing control

flow logic are static so that performance is consistent from run to run. During the de-

velopment phase however, the developers may test different versions of the parameters

in order to find the combination of best performance and speed.

We use a term called advanced parametric control to describe a formal method which

allows us to change the parameters and the switch between various functions while

attempting to develop the highest quality agents. To use advanced parametric control

we take the following steps:

1. Determine all of the parameters and functions of interest (ones in which we

think performance and speed depend the most)

2. For each parameter, define a small set of test values3.

3. Separate the logic which controls the selection of the target parameters from

the remainder of the code so that it can be easily changed4.

Given p parameters, with the number of unique values per parameter φn, n = 1..p

there will be a total of ∏
n=1..p

φn

possible instantiations of code that could be created in order to implement the oppo-

nent model. Clearly this number will grow quickly with additional parameters and

the sizes of their sets of values, hence the need to keep the number of test set values

small. Once the set of possible agents has been defined, we have the collection of

possible members that could exist within the population. The identity of each agent

is the vector of parameter values that are used. Our next step will be to determine

the relative quality of each agent.

While prototyping systems, researchers often employ instrumentation: measuring

devices which report on various aspects of the system. In software engineering, one

3When a parameter is referring to a function, the test values are various labeled implementations
of that function.

4For function selection, one can use a single parameter to specify which labeled implementation
of the function should be used when the program runs.
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of the most rudimentary methods for debugging is to add “print statements” to

report the values at various points in the running code. We use a similar method to

instrument our opponent models with the exception that the data values are recorded

in a log for processing. Our goal is to examine the model while it is trying to make

predictions about the opponent. In essence, we are trying to ask the model the

question: “Are you thinking what I’m thinking?”.

For example, in PokeMinn, our agent for the 2007 Computer Poker Competition, we

instrumented the opponent model’s prediction of the opponent’s next action. We then

compared the prediction of the opponent’s next action to his actual action to develop

a performance quality measure: c
t

where c was the number of correct predictions and

t was the total number of predictions. This allowed us to separate the performance of

the opponent model from the performance of the entire agent and assess the relative

quality of members in the population of candidate models.

Later, we developed the Weighted Prediction Divergence measurement described in

Chapter 6. This measurement allowed us to assess the similarity between the distri-

bution of predicted actions and the distribution of actual actions of the opponent.

This measurement can be used as an alternate for the performance quality measure

discussed above. By evaluating the quality of the predicted distribution instead of

the accuracy of specific predictions, we obtain a more useful measure of how well the

model will perform when estimating expected value for a branch in the game tree.

For extensive-form environments such as poker and real time strategy games, having

high-quality predictions of expected value is vital.

8.2 Techniques

In the previous section, we described a method for identifying potential candidates

for a population pool and how to assess their relative quality. We now discuss the

methods we can use to find the candidate that is likely to perform the best from the

pool when the pool is large. We begin with a description of the manual methods

which approximate hill climbing in performance-space. We focus on techniques that

will work well when the evaluations between population members are costly in terms

of time and computational resources.

First, we define the fitness test for the adversarial environment: Given a population

of adversarial candidates A and an environment E, select two candidates from the

pool and observe their instrumented performance in the environment. Asses order
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their relative performance.

Formally, we define G, a k-dimensional vector by concatenating the label strings for

the p parameters. We then create all possible vectors of settings in G and pairwise-

compare each instantiation. The score of each vector is determined by average mea-

surement value from all of the pairwise competitions, and the optimal performer is

the one which has the highest average measurement.

This brute-force procedure works when the number of possible vectors in G is small.

We used this procedure successfully in testing PokeMinn for the 2007 competition.

Our settings initially included 5 functions (with two implementation choices each) and

a variable in which we explored 3 values. Normally we would have had (25)3 = 96

possible population members to check which would require
(

96
2

)
= 4560 comparisons.

At approximately 1 hour per test, we did not have the resources available to perform

the full brute-force pairwise comparison necessary to obtain the optimal parameter

settings. Fortunately we were able to eliminate three of the function choices and one of

the parameter settings because they appeared to have little effect on the performance

in some initial pilot tests. As a result, we were able to reduce our number of possible

population members to (22)2 = 8 with a total of
(

8
2

)
= 28 comparisons to make. When

the comparisons were complete, we selected the top candidate from the population.

In general, there are |A| = ∏
n=1..P φn unique agents that could be formed in a popu-

lation pool, and there will be
(
|A|
2

)
combinations of the agents when two are selected

from the pool for ranking. As we saw in the PokeMinn example above, if we are plan-

ning to use a brute force method, it is extremely important to minimize the number

of settings and the number of choices from each setting. We now discuss some heuris-

tic techniques for culling settings and choices from the vector prior to running the

brute-force optimization problem.

If we consider each parameter or each function implementation a unique dimension

in a multi-dimensional vector optimization problem, one way to reduce the number

of dimensions (and the size of each dimension) is with a pilot study of the effects of

the various settings. Our goal is to determine which dimensions (or settings within

a dimension) have little effect on performance so that we may cull those dimensions

from the main optimization problem.

To perform this preprocessing step, we first select random values for all of the pa-

rameters in G and label the population member G0. We select the first element in

123



the vector as the element of interest. We then create several population members

G11..n by selecting all n possible settings for element i. If n is large, we may choose

an arbitrary subset of the n possible settings. We then compare the members (via

pairwise or tournament competition) and record the results. We repeat the process

for each of the other elements in turn. After all elements have been examined, we

rank order the element indices by the level of influence each element had on the

performance outcome. We also look for performance plateaus across choices for an

individual setting: if there are 3 values for a parameter and two of them yield the

same performance, then we assume that we only need to look at 2 of the values if the

setting is actually important for the full optimization problem. We then choose the

highest ranked elements from G as for the optimization problem based on availability

of resources. This preprocessing will take

∑
i=1..k

(
ni

2

)

comparisons to determine results. In general the number of comparisons required

preprocessing step is insignificant when compared to the full-scale optimization prob-

lem and the number of settings and values required can be greatly reduced. For

example, with PokeMinn, the preprocessing step took just 1 + 1 + 1 + 1 + 1 + 3 = 8

comparisons. Our main optimization problem was reduced from 4560 comparisons to

28 comparisons (even with the preprocessing included, less than one percent of the

computational resources of the original problem were required for the new optimiza-

tion.)

Given specified resource constraints this process is a viable heuristic for locating

important dimensions and eliminating suspected less-important ones to generate a

reduced optimization problem. Unfortunately this heuristic procedure is not guaran-

teed to yield a globally optimal performing system, or even a locally optimal solution5.

We may have removed a dimension (or a value within a dimension) that would be

important in the full optimization. One possible method for reducing the likelihood

of eliminating the wrong dimensions or values is to run the preprocessing step sev-

eral times with several different randomized starting vectors used for G0. While

this process still does not guarantee optimality, it reduces the likelihood that single

bad starting G0 leads to incorrect conclusions about which elements and values are

5By locally optimal, we mean that changing the parameter setting for any single dimension
would not improve performance. Since we may have eliminated the dimension of interest in the
preprocessing step, we may miss the opportunity for achieving this condition.
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unimportant.

8.3 Automating the Process

In the previous section we describe a manual procedure used offline to improve an

opponent modeling system (and by extension, an entire adversarial agent) when the

set of opponents is unknown. We detailed the heavy computational requirements of

this procedure and highlighted the core problem with the heuristic adaptation of this

procedure used when computational resources are limited - no guarantee of optimal-

ity. We begin this section with a discussion on automating the offline optimization

problem using a method with more desirable convergence properties. We conclude

the section (and the chapter) with a brief presentation of a metareasoning system

which could potentially achieve strong opponent modeling results in the actual online

adversarial environment.

In the previous section, we purposely chose to describe an agent in terms of a pa-

rameter vector. We can think of this vector as a genome which is used to identify a

particular agent by its settings. Given a definition of the genome which is used to

describe agents, we realize that there exists a class of evolutionary algorithms which

are designed to optimize the performance of a population of such agents: Genetic

Algorithms. We will now describe the framework for this optimization problem, but

the implementation of it is left for future research.

8.3.1 Genetic Algorithms

Several researchers have explored using genetic algorithms to manage software de-

velopment. For example, in [32] Garcia’s team explored using genetic algorithms to

simulate potential effects of software engineering experiments when variables within

the software were perturbed without actually running the experiments. Others have

explored using genetic algorithms to evolve software in successive generations by

directly manipulating the functions in the software. Stanley, et al. developed a ge-

netic algorithm which can modify a population of neural networks [71]. In successive

generations the genetic algorithm can add new nodes and control the existence of

connections between nodes based on the fitness of prior networks. They deployed the

members of the population in an interactive video game (NEROgame). The team

showed that the population could evolve in real time to handle tactical battlefield

tasks such as navigating around obstacles, avoiding changing threats and achieving
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complex goals.

In this section, we propose using genetic algorithms to manage quality assessment of

candidate agents by directly manipulating the software parameters and attempting

to optimize the performance over several evolving generations. A genetic algorithm

requires a method of encoding the members of a population, a fitness function, and

a method of culling the population and generating new members. The encoding

for each member of the population was described previously in terms of the vector

which encodes the settings for an adversarial algorithm. The fitness function is the

prediction performance of the opponent model (or the overall performance of the

agent). We describe each of the remaining genetic algorithm phases in turn:

The initial population of P members is created by randomly instantiating |P | separate

(but not necessarily unique) settings for the genome G. In general, |P | should be a

small fraction of the total number of possible settings for G.

While the size of the population may be large, the number of pairwise comparisons

that can be made between population members is necessarily constrained. We cannot

determine the fitness of every member in the population. Given the computational

availability of
(

n
2

)
comparisons per generation, we randomly select n members from

the population sample for fitness testing. We then rank-order the fitness of the n

members. The remaining members of the population are rank-ordered based on a

function of their similarity to the n ranked members.

We create the offspring of the population by first randomly selecting m members

of the highest ranking members for parenthood. We create m new members of the

population from these parents in the following way: in each child, each element is

copied from a randomly selected parent (randomized crossover).

We eliminate the m lowest ranking individuals from the population and replace them

with the m children just created. Next, we select a small subset of the total population

for mutation. The mutation process occurs by randomly altering one or more of the

elements in the genome for each selected member.

We continue the process until either the population converges or we reach the limits

of our computation allocation. The result from this algorithm should be a set of

strong agents, although no guarantees can be made for global or even local optimality

because of the traits of genetic algorithms. Given that the major computational

effort is expended during the fitness testing (such that the other computations can
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effectively be ignored), this algorithm will require c
(

n
2

)
comparisons where c is the

number of iterations the algorithm runs. The exact settings for P , n, m and a limit

on the maximum number of iterations for c would need to be tuned for each problem

in order to encourage convergence while keeping c
(

n
2

)
feasible given computational

resources.

8.3.2 Metareasoning

While the previous discussion in this chapter has been focused on metric-guided de-

velopment of opponent models and agents in the offline setting prior to an actual

adversarial encounter, we now explore another important question in opponent mod-

eling: how do we decide which opponent models will be most cost effective (calculation

wise) during an actual encounter?

Given a set of available opponent models, we would like to know which model of

our current opponent would yield the best predictions in each possible world state

of the domain. However, when we have limited resources and each prediction query

has a cost we may need to decide which queries to pursue using only estimates of

their benefit and cost: metareasoning. To estimate the benefit of the computation, a

metareasoner needs a robust measurement of performance quality. In the remainder

of this section we introduce a metareasoning framework that relies on a prediction per-

formance measurement, and we show how the performance measurement introduced

in Chapter 6 fulfils this need.

When computational cost is an issue, we must answer several questions in order to

build a computationally efficient system:

• How do we automatically generate a contextual abstraction6 of the world state

space?

• How can we estimate a model’s general prediction quality in a specific context

without measuring quality at every possible world state within that context?

• How do we compare the relative performance of several heterogenous models’

predictive capabilities in a specific context?

6For this work, we define a context to be a collection of world states. Forming a set of contexts
from the domain’s world states requires a method of abstraction.
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We propose a metareasoning system that could be coupled with a robust measurement

of model prediction performance (such as the one presented in Chapter 6) to yield a

powerful new method of model selection for an agent. We then introduce one target

domain for our empirical testing of this prediction performance measurement. We

discuss empirical results using this method and conclude with a description of future

work required to realize the overall metareasoning system.

Consider an agent trying to find high-value actions to take in some world where the

value of the action is partially dependent on the behavior of the other agents in

the world. We describe the behaviors of the agents (and the way those behaviors

affect and are affected by the world) using an extensive-form game tree where nodes

describe world states and edges describe actions taken by specific agents. The value

of a world state can be estimated by summing the values of its branches, weighted

by the likelihood of the branch (action) being chosen. This process can be used

at each sub-branch to find the value of the sub-branches recursively. The recursion

bottoms-out when a branch is terminated at a leaf node that contains a real-world

value. Each node in the tree may also have an intrinsic value which can be included

in the calculation.

The well-known minimax algorithm discussed in [62] describes this process when

there are two agents and the game is zero-sum (in every outcome one player gains

exactly the value the other player loses) and the agents are assumed to have perfect

(not bounded) rationality. Many extensions to minimax such as [20, 51, 75, 77] have

been developed which allow the assumption of perfect rationality to be relaxed. By

replacing the minimizer with an algorithm that predicts the opponent’s behavior

at a given node as in [20] we obtain an algorithm which selects actions with the

highest value when playing against a specific modeled opponent. When the model is

estimating the other agent’s probability distribution over actions, the quality of the

value calculation is dependent upon how similar the predicted behavior distribution

is to the actual behavior distribution.

If we want to have a metareasoner that makes decisions about which calculations to

carry out using the utility of a calculation as a criteria, we need to know the cost of

the calculation and the value of the calculation [63]. In the setting described above,

the relative value of several candidate calculations (queries of different predictive

models) can be estimated by the quality of their predictions at the specified world

state. Unfortunately, measuring the predictive quality of every model at every possible
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world state in a branch of the game tree is at least as expensive as obtaining all the

predictions in the first place - thus computing prediction quality for every node in

a branch would not yield any resource savings. In order for our metareasoner to be

useful, it must be able to estimate the prediction quality for each node without fully

calculating prediction quality.

The metareasoner uses an abstraction7 of the world states such that every world state

belongs to one of a comparatively smaller number of the contexts in the abstraction.

As the agent makes decisions within the environment, the behavioral predictions

made by a model and the resource usage (CPU load and total time, for example) are

monitored by the metareasoner, and accumulated in the abstract context associated

with the prediction’s real world state. The metareasoner also monitors the target

agent’s observed behavior and accumulates the probability distribution in the abstract

context representing the world state the observation was made in. Whenever the agent

needs to determine the value of a proposed action, the metareasoner first updates the

relative prediction utility of each model in each abstract context using the collected

data from past predictions and observations. The matrix of estimated prediction

utilities (utility for each model in each context) is then passed to the object-level

action value calculator. The object-level can then choose the highest-utility models for

each prediction node visited during the recursive value calculation over sub-branches

from the current world state in the game tree.

We now define the architecture of a metareasoning agent designed to act within the

multi-agent environment described previously. At the highest level, the system is

one in which the meta-level device is monitoring the performance of the object-level

reasoner and computing the utility of reasoning methods, as depicted in Figure 8.1.

Figure 8.1: Overview of a Metareasoning-controlled agent. This diagram originally
used in [24]

7While the method of generating the abstraction is beyond the scope of this work, there is much
existing work on automated abstraction techniques. For example, see [36, 35, 37, 38, 39]
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Figure 8.2: Object Level. The object’s candidate models observe the action of other
agents and provide predictions to a prediction engine. The prediction engine is con-
trolled by metareasoning, based on the meta-level monitoring of the performance of
the candidate models. This diagram originally used in [17]

We look inside the reasoning object in Figure 8.2. There are a number of candidate

models which receive input from the environment (and observe the actions of the

other agent8). We assume that each candidate model is a black-box: it is opaque to

us and it takes inputs and produces outputs in the form of a probability distribution

over the possible actions the modeled agent could take. Furthermore, we assume that

the models are input-heterogenous but output-homogenous: each model is trying

to predict a distribution of what the modeled agent will do next, but each may be

considering different information from which to make their predictions.

At the object level, the Strategy Action Generator is attempting to discover fruitful

strategies for future behavior of the agent. In order for the Strategy Action Generator

to choose a high-expected-value future strategy (sequence of actions and responses by

other agents) it may need to consider many “what if” predictions about various events

that could occur in the future in order to evaluate different possible strategies. These

predictions vary, depending on the abstract context (collection of world states) they

occur in. Depending on the context of the desired prediction, some models may have

better prediction performance than others. Thus, the selection of a predictive model

(or weighted distribution over models) should be context-aware for each prediction.

8For the sake of linguistic clarity, we will refer to only one agent being modeled to avoid confusion
between the agent and the multiple candidate models used to predict the actions of that agent. While
not discussed further in this work, the metareasoning arrangement proposed here can be used to
model multiple target agents.
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For each prediction-in-context that must be made, it is the Prediction Engine’s job

to generate the overall prediction using the set of available candidate models.

The Prediction Engine’s selection of model(s) is influenced by the metareasoning level.

The metalevel shown in Figure 8.3 is composed of several modules.

Figure 8.3: Meta-Level. The metareasoner reviews past predictions, prediction costs,
and observations to yield a utility measurement for each context. The utility calcu-
lation advises the prediction engine by providing a utility profile for each model in
each context. This diagram originally used in [17]

The first module, the Context Abstraction is a device which determines the appropri-

ate abstract context from a given world state. It provides this context as a tag for the

Activity Repository for every prediction and observation event. Whenever a model is

queried for a prediction in the object level, it generates a prediction event. Prediction

events contain the predicted distribution over modeled agent actions and the cost

incurred by that model to generate the prediction. Observation events include the

observed behavior of the modeled agent. The Utility Calculation first computes the

distribution of agent behavior in each tagged context. Then it calculates a prediction

quality measurement from the predictions and observations seen within the context.

Finally it computes the utility for each model in each context from the prediction

quality and the prediction cost. The latest utility profile matrix is then passed to the

Prediction Engine prior to each prediction.

In the previous paragraph we mentioned that the Utility Calculation requires a pre-

diction quality measurement which can compare the distribution of predicted actions

to the distribution of observed actions within each context. The Weighted Predic-

tion Divergence metric we presented in Chapter 6 provides exactly this calculation.

Thus, we invoke it here in order to complete the requirements for the metareasoning
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framework.

In Chapter 6 we showed how prediction quality assessments can be used to point

out strengths and weaknesses in opponent models that remain hidden under domain-

based performance measurements. We identified the desiderata of a strong measure

of model quality, which are also necessary for metalevel reasoning in the multi-model

agent prediction setting. In that chapter we demonstrated empirically how Weighted

Prediction Divergence values for several models could be used to select the best model

for the current context. By extension, we can invoke the WPD for use when the

contexts are automatically generated.

There is at least one additional effort that must be completed before the metareasoner

described in this section can be realized. We must choose a state abstraction method

which can automatically cluster world states into contexts such that the prediction

quality estimation system described in this work can assess models with fewer compu-

tational resources. While we have shown a meaningful context for poker in Chapter 6,

the contexts for the collection of nodes we used were generated manually. Automating

this process would enable multi-domain applicability for the metareasoning technique

described here.
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Chapter 9

Conclusions & Future Work

Throughout this work we have explored various aspects of opponent modeling in inter-

esting adversarial environments. Our main contributions have focused on answering

several important open questions in the field:

1. How does one measure the quality of opponent model predictions separately

from an agent’s overall performance?

2. How does the environment and the type of opponent model chosen impact the

value of the information it provides?

3. How can we improve opponent models when the set of opponents is unknown?

4. Given a set of candidate models, how can we use them efficiently and effectively

in when faced with a live opponent?

We used tools from game theory, machine learning and information theory to provide

initial answers for these questions. We empirically tested our concepts in several

domains, including simultaneous high card draw, full scale Texas Hold’em poker,

and a new simultaneous-move strategy game we developed as a testbed. We now

outline the contributions of this work, describing the research question they answered,

the techniques used, the rationale, and the domain where we showed how well they

worked.
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9.1 Major Contributions

9.1.1 Separating model performance from agent performance

This contribution demonstrates the importance of assessing performance quality at a

deeper level.

To isolate the prediction performance of a opponent model from the overall perfor-

mance of an agent, we developed and implemented a novel metric which we call

Weighted Prediction Divergence. This metric measures the similarity between the

distribution of predictions and the true distribution of behavior of the opponent. It

can evaluate predictions from multiple prediction nodes and generates a single scalar

quality measure. It can be weighted using various schemes to incorporate a domain-

specific importance function so that the quality measure reflects key aspects of the

domain.

We adapted Weighted Prediction Divergence to evaluate the performance of our

PokeMinn agent in the 2007 Texas Hold’em Computer Poker Competition in Chap-

ter 6. Using the measurement, we demonstrated how to find the weaknesses of the

Bayesian-update learning opponent model by revealing in what contexts it was outper-

formed by a non-learning opponent model. It was interesting to find this performance

problem when the agent-level performance of the learning model appeared to be con-

sistently better than the agent-level performance of the non-learning version. This

finding reenforces the importance of directly measuring model performance, and in

this case, showed us of the need for additional improvements in the learning version

in certain circumstances.

9.1.2 Discovering Environment-invariant Model Performance Bounds

This contribution shows that the potential performance of an opponent model is

constrained by the domain where it operates.

We defined the concept of an opponent model value performance bound which is a

function of the environment alone in the first part of Chapter 7. We first transform

the original environment into a new environment where the information provided by

the model is provided as part of the environment. Then by solving the environments

to determine perfect play (and value of perfect play) in each, we can determine the

value difference between the environments. This difference is the value of the model

when the model is perfect. In other words the value is a guaranteed minimum bound
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on the performance of a perfect model.

We implemented algorithms for determining the performance bounds of an opponent

model and we tested these algorithms in two domains:

• High card draw with simultaneous betting. A two-player zero-sum hidden in-

formation game with a simultaneous actions.

• A simultaneous-move strategy game. An new indefinite-length perfect-information

simultaneous-action strategy game we created in which the set of actions avail-

able for each player depends on the history of play so far.

In both of these environments we showed how to calculate the guaranteed value

bounds for a class of opponent models. A class of opponent models is one in which

the prediction type for all models in the class is identical. We found that for each

class of opponent model (action, state, or policy), there is one guaranteed value

improvement bound that is independent of which opponent we face and depends only

on the nature of the environment.

In high card draw we examined three classes of models: the action-prediction model;

the state-prediction model; and the policy-prediction model. We discovered that in

this game, the values for a class of models that predicts the next state had the highest

potential, while the class of models that predict the action was valuable, but somewhat

less than the state-predictors. The policy-prediction model was found to have a

guaranteed improvement of zero because if the opponent was playing an uninformed1

equilibrium policy, then his policy doesn’t matter to us: both players will have an

expected value of zero for the game. We showed how manipulating the amounts

required for bets and antes in the game (the nature of the environment) directly

affected the guaranteed value improvement bounds. This finding has implications

for mechanism design of new games when some aspect of the opponents may be

predictable.

We developed a new simultaneous-move strategy game which is a simple instantiation

of the well-known “Real Time Strategy” genre of human-player computer games. This

game is a simultaneous-action, perfect information game, and the only valuable type

1By uninformed, we mean a strategy which has no information about the specific opponent’s
characteristics. The uninformed agent assumes his opponent is rational and the equilibrium becomes
desirable for describing strategies that guarantee some minimum value in the environment when all
players are acting rationally.
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of opponent prediction for this game is the prediction of the opponent’s next action

(since the state is known and knowing the opponent’s policy cannot guarantee a value

improvement.) We found that the game was certainly easier when the opponent’s

next action was known perfectly on every move, but that the improvement guarantee

was marginal. We also discovered that the value improvement for having a perfect

opponent model varied widely depending on which state the game started in.

9.1.3 Optimal Preparation for Unknown Opponents

This contribution presents methods for tuning opponent models and agents to prepare

for interactions with unknown opponent.

In Chapter 8 we presented new tools and techniques for improving opponent models

when the set of opponents is unknown and observations of their history is unavailable.

The methods we explored focused on software engineering concepts for isolating im-

portant parameters and functions likely to affect opponent model performance during

self-play. We revealed that while brute force comparison of all possible combinations

of settings of the parameters and functions is the only guaranteed way to find the

best-of-breed performer, the computational requirements of this process grow expo-

nentially with the number of parameter and function settings.

We then presented some heuristic-based methods for searching through parameter

space in an effort to find good performance. While these techniques moved us towards

computationally tractable optimization, the unknown relation between parameter set-

tings and performance presents a significant challenge for optimization. Furthermore,

because some parameters and settings are culled when using the heuristic, this method

cannot guarantee a locally optimal solution.

Nonetheless, we used these techniques to tune our PokeMinn agent prior to the 2007

Computer Poker Competition with great success. Our full scale Heads-up Limit Texas

Hold’em Poker-playing used an opponent model with a Bayesian update method for

learning the opponent’s distribution over actions in an abstraction of the state space.

We tuned the agent using techniques described above. This agent performed well

in the competition, taking fourth place out of a field of fifteen entries in the Limit

Equilibrium category, despite having no observations of the competitors prior to the

contest.
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9.1.4 Efficient and Effective Modeling Against Live Opponents

This contribution provided techniques for assessing and improving the efficiency and

effectiveness of opponent modeling in live situations.

The method we used to update PokeMinn’s opponent model was efficient and effec-

tive because it attempted to learn only a fraction of the most important information

in the opponent’s behavior. As a result we were able to start improving our perfor-

mance against previously unseen opponents within a few hundred hands (as opposed

to thousands of hands required in other learning agents). To characterize the learn-

ing profile we developed a non-learning version of our PokeMinn agent and used a

differential performance measurement to isolate the value contribution of the learn-

ing component from the value contribution provided by the remainder of the agent.

We showed in Chapter 4 that PokeMinn is able to improve its performance through

observation of live play, even when the opponent is playing a near Nash-Equilibrium

strategy. This finding confirmed that there is merit in learning a small subset of the

opponent’s characteristics, even if the opponent is presumed to be near optimal.

9.2 Future Work

Interestingly, the Weighted Prediction Divergence metric we developed in Chapter 6

has a secondary use: under certain conditions, it can be used to detect when the

opponent is not playing a Nash Equilibrium. In particular, if we know what the Nash

Equilibrium distribution over actions should be at an opponent’s decision point, we

can use the unweighted version of this measurement to detect a deviation between

the expected Nash Equilibrium distribution and the observed distribution. If the

prediction divergence is statistically significant (for the number of observations) we

can be confident (to the significance level) that the opponent is not playing the Nash

Equilibrium at that decision point. This finding may be important when deciding

whether or not to attempt opponent exploitation. Implementing an agent that uses

this equilibrium-deviation detector remains future work.

In the early portion of Chapter 8 we presented some manual methods for tuning

agents. We later showed how one might automate the search by mapping the software

design problem to a genetic algorithm-based search problem. A genetic algorithm

provides the hope of a more efficient and higher quality optimization of parameters

than could be provided by the manual methods we described. The implementation

and testing of a genetic algorithm-based method is yet to be accomplished.
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We concluded Chapter 8 with a framework for metareasoning using the Weighted

Prediction Divergence measure we developed in Chapter 6 and an abstraction2 of

the state space. The metareasoner we envision in [17] uses an ensemble of black-box

opponent models and keeps track of their performance quality and computational

expenditures for each context in the abstraction. It then computes the cost-benefit

tradeoff for each model in each context such that when a prediction is required,

the most cost-effective and efficient set of models can be determined and queried.

This framework has the power to harness the strengths of multiple models in an

online setting when computational resources (including time) are constrained. The

implementation of this framework remains a future task.

The guaranteed value improvement bounds we developed in the first part of Chapter 7

are a function of the environment alone: they are independent of the policy of the

opponent and depend upon the assumption of opponent rationality implemented via

simulating an opponent using an uninformed equilibrium strategy. In our experiments

we assumed that the opponent would be aware of the fact that his information was

exposed. One venue for future work would be to determine what the effects are on the

bounds calculation if we transformed the environment into one in which the opponent

was unaware that there was an oracle providing his information to the other player.

In the second part of the Chapter 7, we relaxed the assumption that the opponent

was using an uninformed equilibrium strategy and we postulated that we could de-

velop a tighter guaranteed bound when we considered a distribution over opponent

policies instead of the single uninformed equilibrium policy. The limitations of this

technique are two-fold: it violates the condition that the value improvement bounds

are a function of the environment alone; the bounds are no longer guaranteed if the

actual distribution over opponent policies is different from the distribution used in

the calculation of the bound. Even with these limitations, the method has the poten-

tial for much more accurate model performance bounds when the distribution over

possible opponents can be accurately predicted. The implementation of this method

remains for future work

All of the environments we explored were two-player zero-sum (strictly adversarial)

settings. We chose these environments for the relative “ease” of calculating the un-

informed equilibrium solution such that we could compare performance of the equi-

librium strategy to the strategy that incorporates predictions of the opponent. In

2An abstraction is a partitioning of the state space such that each state in the original environment
maps to exactly one abstract state and each abstract state may contain several of the original states.
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addition to the future work previously identified in this chapter, one direction for

this research is to explore the impact of non-zero sum environments and multi-player

environments on the contributions made previously.

While optimal in an uninformed sense, the equilibrium strategy is necessarily sta-

tionary, and as we mentioned in the early portion of the dissertation, is not always

the strategy of choice in interesting adversarial environments. In future work, we

would like to address the impact of non-stationary strategies on our techniques. We

would also like to develop measurements which characterize how well (speed, accu-

racy) an opponent model can adapt to a non-stationary opponent policy and explore

the differences between a non-stationary policy that is non-adversarial and one that

is. Finally, we would like to determine if it is possible to anticipate the direction that

the adversarial non-stationary policy will take and discover methods of doing so.
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