WHY IS RING STRAIN ALONE UNABLE TO FULLY EXPLAIN THE RATE ACCELERATIONS OF OXIRANE AND THIIRANE IN NUCLEOPHILIC SUBSTITUTION?

Harold D. Banks U. S. Army Edgewood Chemical Biological Center APG, MD 21010-5424 USA

INTRODUCTION

Nucleophilic substitution has long been recognized as one of the most important reactions in synthetic organic chemistry. Because of their predictable regio- and stereochemistry, reactions proceeding through the $S_N 2$ mechanism have received considerable attention. The ease of displacement of the leaving group plays a significant role in determining the reactivity of a given substrate; however, even compounds that contain extremely poor leaving groups such as ethers, amines or thioethers are reactive and synthetically useful if these functional groups are structured in such a manner that the heteroatom is incorporated into a three- or four-membered ring. Relief of ring strain in the transition state is typically cited as the sole source of the increased reactivity of heterocycles with nucleophiles relative to acyclic analogs.

Over a decade ago, however, it was noted that ring strain alone is insufficient to account entirely for rate increases in $S_N 2$ reactions relative to suitably chosen acyclic model compounds. Lillocci found the rate of the cleavage reaction of an aziridinium triflate with acetonitrile in the presence of N-ethyldiisopropylamine to be at least 10³ times faster than that of the corresponding azetidinium salt in spite of similar ring strain energies.^{1,2} This phenomenon has also been observed in nucleophilic cleavage of these ions by sodium methoxide.³ In a related reaction. Stirling observed that the rate of ring cleavage of cyclopropanols under basic conditions was considerably faster than that of cyclobutanols.⁴ Recently, Hoz recognized that an "additional factor," as yet uncharacterized, must be included to explain the high computed reactivity of anionic nucleophiles with 3-membered relative to 4-membered heterocycles.⁵ Although Houk and coworkers⁶ have recently proposed that orbital interactions through-bonds are responsible for the large rate enhancement in cleavage of three- with respect to four-membered rings, the present investigation was designed to discover an alternative explanation of this rate increase in terms of *disjoined* effects, present for three- but not four-membered rings after strain relief in the transition state has been taken into account.

We have been interested^{7,8} in the studying relative rates of the reactions of small ring heterocycles with amines. These Menschutkin-type reactions are examples of the general type of S_N2 reactions in which an uncharged nucleophile reacts with an uncharged substrate. Charge separation occurs along the reaction coordinate as the nucleophile assumes a partial positive charge and the heteroatom a partial negative charge. Due to extreme endothermicity occasioned by separation of developing opposite charges in the transition state in the absence of stabilizing intereactions with solvent, for example, attempts to gain a fundamental understanding of this reaction in the gas phase have been limited to one experimental study.⁹ This reaction type can be contrasted with the extensively studied¹⁰ gas phase "anionic" S_N2 reaction, exemplified by the

	Report Docume		Form Approved OMB No. 0704-0188		
maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of th a, 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 01 JUL 2003		2. REPORT TYPE N/A		3. DATES COVE	RED
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
	n Alone Unable To I			5b. GRANT NUM	1BER
Accelerations Of U	xirane And Thiiran	ie în Nucleophilic Si	idstitution?	5c. PROGRAM E	LEMENT NUMBER
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUMB	ER
		5f. WORK UNIT	NUMBER		
	ZATION NAME(S) AND AE ood Chemical Biolog	()	/ID 21010-5424	8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited					
13. SUPPLEMENTARY NOTES See also ADM001523.					
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF	18. NUMBER	19a. NAME OF
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 11	RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 attack of bromide ion on methyl chloride. Because Menschutkin-type reactions are of considerable synthetic importance in solution,¹¹ a fundamental understanding of this chemistry in the absence of potentially complex solvent effect is desirable.¹² Computational studies combining an appropriate method and basis set of reasonable size are a cost-effective approach to elucidating the mechanistic parameters.¹³

Oxirane and oxetane have nearly the same ring strain energies: 27.3 and 25.5 kcal/mol, respectively, while for thiirane and thietane these values are 19.8 and 19.6 kcal/mol, respectively.¹⁴ These pairs of compounds offer an opportunity to address the question of whether ring strain relief is largely responsible for their rates of reactions with nucleophiles. It would be expected that if ring strain release in the transition state occurs to equal degrees in each pair of compounds, the rates of reaction would be very similar. In this investigation, we undertook a computational investigation of the rates of reaction of each of these compounds with ammonia in the gas phase. In the absence of solvent effects, the results may be interpreted in terms of the intrinsic properties of the reaction. In order to assess the effect of ring strain, the rate of reactions with acyclic model compounds were also investigated.

COMPUTATIONAL METHODS

The computations were performed in the gas phase using Gaussian 94.¹⁵ Clearly a method that incorporates electron correlation is required for these studies of nucleophilic displacement reactions. The 6-31+G(d) basis set which includes diffuse functions to accommodate the lone pairs and anionic species found in these reactions was chosen. Two methods, B3LYP and MP2(Full), were evaluated in terms of their ability to reproduce the reported strain energies of the heterocycles studied using the method of Dudev and Lim.¹⁶ Zero point correction factors of 0.9804 and 0.9646 were used, respectively.¹⁷ As can be gleaned from Table 1, the MP2(Full) method agreed more closely with the experimental values, and was selected for the subsequent rate calculations.

Table 1. Strain Energies and Vermeation of Computational Wethod (Keal/mor)					
	Experimental ¹⁴	MP2(Full)/6-	B3LYP/6-31+G(d)//		
	_	31+G(d)//MP2(Full)/6-	B3LYP/6-31+G(d)		
		31+G(d)			
Oxirane	27.3	26.1	31.2		
Thiirane	19.8	19.3	20.8		
Oxetane	25.5	26.3	28.8		
Thietane	19.6	23.1	22.1		

Table 1. Strain Energies and Verification of Computational Method (kcal/mol)

Transition states and ground states were identified by the presence of one and zero imaginary frequencies, respectively. Transition states were further corroborated by animation of the imaginary frequency using GaussView 2.03¹⁸ and by means of intrinsic reaction coordinate (IRC) calculations to illustrate that the calculated structure was found on the potential energy surface connecting the reactants and the products.

The strain energy of a cyclic molecule was measured relative to a suitable acyclic analog, methoxyethane or thiomethylethane. The most stable conformation, initially obtained by means of an AM1 semi-empirical conformational search, was used for computations for the acyclic compounds. One of the difficulties inherent in calculating relative rates of cyclic with respect to acyclic compounds is that there are no perfect acyclic models for cyclic compounds. Dimethyl ether and dimethyl thioether were rejected as models even though they possess the correct

number of carbon atoms as oxirane and thiirane because they lack secondary carbons. The reactions of ammonia at the secondary carbons of methoxyethane and thiomethylethane were deemed the best choices to model reactivity for the oxygen and sulfur heterocycles, respectively.

Calculations using atoms in molecules theory (AIM) were performed by means of the AIM 2000 program¹⁹

DISCUSSION AND RESULTS

Relative rates of reaction with ammonia for each series of compounds are provided in Table 2. At this level of theory, IRC calculations identified dipolar complexes for oxirane, thiirane, oxetane and thietane that were 3.2, 2.6, 0.3 and 2.2 kcal/mole, respectively, more stable than the separated reactants; no species other than the separated reactants could be identified for the remaining (acyclic) substrates

(Table S-1.) These small differences in stability may be due to the fact that the heterocycles have their alkyl groups pinned back so as to avoid steric interaction with ammonia when it approaches close enough to produce an effective dipole-dipole interaction. Not unexpectedly, both three-and four-membered heterocycles were very much more reactive than their corresponding model compounds. Moreover, the 3-membered rings were more than 10^6 times more reactive than the 4-membered heterocycles.

In order to address disjoined effects, the amount of strain energy remaining at the transition state must be determined. The total strain of a molecule in the gas phase, V, is given by^{20}

$$V = V_{stretch} + V_{bend} + V_{torsion} + V_{VDW}$$

where the sums of bond stretching and bending energies and the sums of torsional and nonbonded interactions are included. Stretching energies and nonbonded interactions are unimportant for these transition state structures. For purposes of this discussion, it will be assumed that the bending energies and torsional interactions involving the atoms of the reaction center are small and approximately equal for the members of each series. Inspection of the transition state geometries establishes that this is a reasonable supposition. Using the usual harmonic potential based on Hooke's Law functions with 0.025 kcal mol⁻¹ deg⁻² as the constant for angle bending, ²¹ and using 3.5 kcal mol⁻¹ and 3.3 kcal mol⁻¹, the torsional barriers for ethanol²² and ethanthiol, respectively, for the torsional barriers in the corresponding transition states, one can estimate of the sum of the angle deformation and torsional energies of the transition states for oxirane, oxetane, thiirane and thietane to be 3.3, 4.6, 2.7 and 1.5 kcal mol⁻¹, respectively. If these estimates are subtracted from the calculated strain energies of the heterocycles, the strain energy released in the transition state for each substrate is obtained. Addition of these values to the enthalpies of activation (Table 2) for each reaction permits one to calculate $G^{\ddagger} = 69.3, 77.6,$ 60.7 and 74.7 kcal mol⁻¹, respectively for oxirane, oxetane, thiirane and thietane if each contribution from strain relief were removed. The calculated values for the 4-membered rings agree quite well with the expected values based solely on relief of ring strain relative to the strainfree acyclic model compounds ($G^{\pm} = 78.2$ and 74.4 kcal mol⁻¹ for MeOEt and MeSEt, respectively.) The 3-membered rings are quite exceptional. Including the correction for strain energy, oxirane is found to react with ammonia at a rate 3.27×10^6 times faster than methyl ethyl ether. Thiirane reacts at a rate of 1.08×10^{10} faster than its acyclic model compound.

The structure of the transition state is critical to understanding the relative rates of these reactions. While the geometry of the transition states is useful, it fails to address directly the distribution of electrons in these species. Bader's²⁴ theory of atoms in molecules (AIM) is ideally suited to studying the electronic distribution of the transition state. This approach has demonstrated that the negative of the Laplacian of the electron density coincides with electronic charge concentration (bonding) in treatments of localized electron density by the Lewis and VSEPR

models. The results of an AIM calculation of $-\overline{V}^2 \rho$ for a typical reaction, attack of ammonia on thiirane, are provided in Figure 1. This relief graph clearly demonstrates the localization of electron density between the bonded atoms, i.e., the carbons and between sulfur and the carbon that is not under attack by ammonia. It is noteworthy that electron density is absent in the region between the reaction center and sulfur, while capture of electron density from nitrogen is only modest. Some years ago, doubt was cast on the classical representation of the transition state in $S_N 2$ reactions that involves essentially equivalent degrees of bond making and bond breaking. Bader, Duke and Messer²⁵ calculated that the $S_N 2$ reactions of fluoride or cyanide ion with fluoromethane proceed through a partially positively charged carbon fragment. The present results indicate that Menschutkin-type reactions also depart from classical $S_N 2$ mechanistic formalism with bond breaking significantly advanced relative to bond making. The virtually complete cleavage of the carbon-heteroatom bond in the transition state prior to formation of the carbon nitrogen bond requires that charge be distributed over the carbon chain. Molecules that are more efficient lowering the energy of this species will react faster.

Figure 1. Laplacian of the Electron Density of the Transition State for Thiirane + NH₃

			Table 2. Re	Table 2. Relative Rates of the	the Reactio	Reactions of Heteocycles and Acyclic Analogs with NH ₃	es and Acycli	c Analogs	with NH ₃				
	E ^a Dipolar	Reactants 2ª TC ^ª Dipolar Complex	ts Ecorr'd ^{a,b}	E ^a	Transition State TC ^a Ecc	itate Ecorr'd ^{a,b}	$\Delta \mathrm{E}^{\ddagger \mathrm{b}}$	$\Delta(\mathrm{nRT})^{\mathrm{b}}$	Sdc ^{‡ ¢} S	Sts ⁺⁺ c	-TΔS ^{‡ b}	$\Delta G^{\ddagger b}$	krel
oxirane oxetane	-209.7020494 -248.8712955	<pre>+ 0.103102 5 0.133750</pre>	-209.6025972 -248.7422803	-209.6322527 -248.7920468	0.102259 0.132922	-209.5336137 -248.6638302	43.2878626 49.2281665	0 0	82.151 97.301	71.408 75.003	3.2030 6.6481	46.4909 55.8763	1.8042E+23 2.3999E+16
thiirane thietane	-532.3292724 -571.4985583	<pre>+ 0.101172 \$ 0.131899</pre>	-532.2316819 -571.3713285	-532.2651867 -571.4205377	0.101747 0.131988	-532.1670415 -571.2932221	40.5624629 49.0125781	0 0	85.553 91.542	73.605 77.997	3.5623 4.0384	44.1248 53.0510	1.6145E+22 4.6595E+15
MeOEt MeSEt	Separated Reactants -193.7044342 0.116356 -516.3205515 0.113358	Separated Reactants 7044342 0.116356 .3205515 0.113358	-249.9219699 -572.5409791	-249.9606366 -572.5832488	0.155107 0.153824	-249.8110204 -572.4348702	69.6219194 66.5843876	-0.59278 -0.59278	S _{sr} ‡ 117.958 121.844	87.084 93.517	9.2051 8.4457	78.2342 74.4373	
NH3	-56.3664352	-56.3664352 0.038008	-56.32977268										
	Note: ^a In har	trees. ^b In k	Note: ^a In hartrees. ^b In kcal/mol ^c In cal/mole- ^o K	l/mole-°K									

Ś

What effect or effects are producing such dramatic rate increases? Since separation of opposite charges occurs along the reaction coordinate, it appeared reasonable to calculate atomic charges in the transition states. Small changes in charge can produce profound changes in energy.²⁶ If, for example, a charge of +0.237, separated at a distance of 2.08 Å from a charge of -1.13, is increased to +0.250, the energy of the system along the reaction coordinate required to maintain separation increases by 11.3 kcal mol⁻¹.

Interpretation of the results of atomic charge calculations, however, must be approached with caution. Atomic charges are not physical observables; they are dependent upon the method by which they are derived. The calculated charges are not necessarily centered on atomic nuclei.²⁷ An excellent discussion that compares various methods for calculating atomic charges is available.²⁸

The approach chosen here was to calculate the attractive energy using the atomic charges obtained from four methods: Mullikan, AIM, CHELPG, and NBO. The results are provided in Table 3 with the charges of the hydrogens summed into the heavy atoms to which they are attached. Using a classical electrostatic model, a dielectric constant of 1.0,²⁹ and neglecting the charges on all atoms other than the reaction center and leaving group,³⁰ the attractive energy difference between oxetane and oxirane is 20 kcal mol⁻¹, and that for thietane and thiirane is 12 kcal mol⁻¹, using AIM atomic charges.³¹ The higher the attractive energy, the greater the energy required to reach the transition state. These estimated energies are more than sufficient to account for rate accelerations of oxirane and thiirane above and beyond that due to relief of ring strain. The same conclusion is reached using the values obtained using the remaining atomic charge methods with the sole exception the NBO method for the sulfur heteocycles.

A reasonable explanation for the charge distributions observed in these transition states for the ethers was suggested by Wiberg³² in his discussion of calculated results for alkoxide ions at the MP3/6-311++G** level. The negatively charged oxygen was postulated to repel electron density of the back lobe of the adjacent atom, resulting in the adjacent atom becoming relatively positive and the atoms attached to it relatively negative with respect to the corresponding alcohol. To ascertain if these results still obtain at our lower level of theory, atomic charge calculations were repeated at the MP2(Full)/ 6-31+G(d) level. The results of these calculations are presented in Tables S-2 and S-3, proving that the same interpretation may also be applied to the present calculations.

A rationalization similar to that used above for the transition states for the ethers cannot be applied to the transition states for the reactions of the thioethers with ammonia. If the distribution of charges in ethanethiolate ion are calculated at the MP2Full)/6-31+G(d) level, it is found that negative charges reside on both the geminal and vicinal carbons, differing from the results for ethoxide ion where large positive charge is found on the geminal carbon. Using perturbation molecular orbital theory, the destabilizing ethyl π - sulfur 3p interaction was found to be more important that the stabilizing ethyl π * - sulfur 3p interaction. This interaction results in the repulsion of electrons by the negatively charged sulfur and an accumulation of negative charge on the neighboring carbons.³³ Partial negative charge is found at the positions next to sulfur in the transition states using every method (with the exception of CHELPG), mirroring the

NBO	0.2311 0.4212 -0.1772 -0.4751	0.2560 0.3992 -0.0613 -0.1311	0.2601 0.4107 0.0374 -0.5150 -0.1932
CHELPG	0.2473 0.3912 0.0600 -0.6985	0.3924 0.3140 -0.1014 0.1412 -0.7462	0.6503 0.2900 -0.1681 -0.8962 0.1241
AIM	0.1030 0.2974 0.0792 -0.4803	0.2719 0.2836 0.0506 -0.0609 -0.5200	0.3119 0.2860 0.1048 -0.5420 -0.1761
Mullikan	0.1745 0.3273 0.0007 -0.5025	0.3458 0.2575 -0.0439 0.0192 -0.5786	0.2213 0.3061 0.0957 -0.4953 -0.1278
spods	s c2 z c	s s s z s z s	ဒ္ဓသင္လ
Table 3. Atomic Charges ^a Calculated at the MP2(Full)/6-31+G(d) Level by Various MethodsMullikanAIMCHELPGNBO			
.31+G(d) Le NBO	0.2234 0.4202 0.1872 -0.8308	0.3055 0.4276 -0.0987 0.2414 -0.8758	0.2971 0.4680 0.0449 0.1208 -0.9308 tched
MP2(Full)/6- CHELPG	0.1722 0.3499 0.3541 -0.8761	0.5438 0.2792 -0.2651 0.3839 -0.9419	0.6359 0.2740 -0.0630 0.1911 -1.0380 hey are atta
ated at the M AIM C	0.2376 0.2986 0.5996 -1.1357	0.3532 0.2898 -0.0403 0.5605 -1.1640	0.3934 0.3023 0.1113 0.4618 -1.2219 to which tl
harges ^a Calcula Mullikan	0.2714 0.3126 0.2204 -0.8044	0.3822 0.2800 -0.0138 0.1662 -0.8146	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
e 3. Atomic C	0 ° 2 ° 0	0 ° ° ° 5 z °	C1 N C2 C3 C3 Summed into
Tabl			^a Hydrogens

 \sim

results for ethanethiolate ion. It is most interesting that the charge at the position vicinal to sulfur for the thiirane transition state, which is also the reaction center, is the least positive of all reaction centers. When this position is compared to that of the transition state of thietane whose alkyl chain is one carbon longer, it is found that there is slight negative charge at this position. This result parallels that of the thiolate ion, and suggests that negative charge is also released to this position for the thiirane transition state. The net result is that the reaction center for the thiirane transition state is rendered less positive than the other members of this series. In the case of thietane, the reaction center is one carbon further removed along the chain and unable to significantly benefit from this electron release. For thiomethylethane, the chain necessary for this electron repulsion mechanism to reduce the partial positive charge of the reaction center has been ruptured, rendering stabilization of its reaction center by this process impossible. A similar explanation can be readily applied to the ethers.

Within the assumptions of transition state theory,³⁴ one can calculate that thiirane, thietane and thiomethylethane react 57.4, 608 and 112 times faster than oxirane, oxetane and methoxyethane. The higher reactivity of the thioethers is consistent with the significantly lower atomic charges of the thioether transition states leading to a decrease in the energy required to reach the transition state(Table 3.) The simplest explanation of the larger charges for the ethers is that there is a large difference in electronegativity for carbon and oxygen, while the that of carbon and sulfur is close to zero.³⁵

Supporting this explanation of the accelerated rate of reaction of the three- with respect to four-membered heterocycles in nucleophilic reactions with ammonia is the observation that the calculated carbon-carbon bonds connecting the reaction center to the chain in the transition states for thiirane and oxirane, 1.476 and 1.492 Å, are significantly shorter than the corresponding distances for the other transition states (Table 4). These stronger bonds are occasioned by the higher electron density found in these bonds due to electron repulsion by sulfur and oxygen in the manner described above so as to decrease charge at the reaction center.

It should be borne in mind that it is not possible, given the assumptions in assigning atomic charges (*vide infra*), to quantitate the magnitude of this electrostatic effect. Other factors may contribute to the disjoined effect; however, it is likely that the major, if not sole contributor, is the one having an electrostatic origin.

The results suggest that a significant increase in reaction rate could be observed for any compound that is able to attain a transition state similar to those for the 3-membered heterocycles in this investigation. In general, any substrate that contains a negatively charged substituent at the vicinal position in the transition state should react at an increased rate. In a trivial extension, one would expect nucleophilic cleavage of aziridines to proceed considerably faster than azetidines. Moreover, it should be possible to observe enhanced rates for nucleophilic substitution reactions of *acyclic* compounds.

Before addressing this question it seemed appropriate to address the question of whether the Menshutkin reaction for acyclic substrates proceeded through a transition state featuring significant rupture of the bond between carbon and the leaving group as was found for the anionic reaction studied by Bader.²⁵ This type of transition state would encompass the electrostatic requirements described above. For the reaction of CH₃Cl and NH₃ studied by computationally by Wiberg,^{13a} the Laplacian of the electron density was determined and shown to clearly indicate that the transition state had virtually complete C-Cl bond breaking with incomplete C-N bond making. Future research will be directed toward study of disjoined effects with suitably chosen acylic model compounds.

	Mullikan	AIM	CHELPG	NBO
C ₁	-0.0463	-0.1301	0.1248	-0.1110
C ₂	0.0297	-0.0959	0.0545	0.0331
S	0.0166	-0.0607	-0.1793	0.0779

Table 4. Atomic Charges for Ethanethiol : ${}^{2}CH_{3}{}^{1}CH_{2}SH$

Table 5. Atomic Charges for Ethanethiolate Anion : ²CH₃¹CH₂S⁻

	Mullikan	AIM	CHELPG	NBO
C ₁	-0.0731	-0.1406	0.2245	-0.6174
C_2	-0.0313	-0.1118	-0.1355	-0.0551
S	-0.8956	-0.7450	-1.0889	-0.7321

CONCLUSIONS

The results presented above demonstrate that the accelerated rate of 4-membered heterocycles with ammonia relative to acyclic model compounds was due almost entirely to release of ring strain in the transition state. Three-membered rings were calculated to react more than 10⁶ times faster than 4-membered rings. These acceleration are due to a combination of relief of ring strain and the disjoined effect. The best explanation of this effect appears to be the favorable topography for minimizing the attractive interaction between the partially negatively charged heteroatom and the reaction center that is significant only in the transition states for three-membered rings. Using different mechanisms, electron-rich oxygen and sulfur can release electron density to the reaction center, minimizing its absolute positive charge, and therefore, making separation of the heteroatom easier due to decreased electrostatic attractive interactions.

REFERENCES

- (1) Giota, G.; Lillocci, C., J. Phys. Org. Chem. 1993, 6, 187-192.
- (2) Lillocci, C., J Org. Chem., 1988, 53, 1733 1736.
- (3) Di Vona, M.L.; Illuminati, G.; Lillocci, C., J. Chem. Soc., Perkin 2, 1985, 380 381.
- (4) Bury, A.; Earl, H.A.; Stirling, C.J.M., J. Chem. Soc., Chem Commun. 1985, 393 394.
- (5) Wolk, J.L.; Hoz, T.; Basch, H.; Hoz, S., J. Org. Chem. 2001, 66, 915 918.
- (6) Sawicka, D.; Wilsey, S.; Houk, K.N., J. Am. Chem. Soc., 1999, 121, 864-865.
- (7) Banks, H.D.; White, W.E., J. Org. Chem. 2001, 66, 5981 5986.
- (8) Banks, H.D.; White, W.E., Arkivoc (Online Ed.) 2000, 1, 153 158.
- (9) Yen, Y.K.; Cross, R.J., Jr.; Saunders, M., J. Am. Chem. Soc. 1991, 113, 5563 5565.
- (10) For recent reviews, see (a) Chabinyc, M.L.; Craig, S.L.; Regan, C.K.; Brauman, J.I., *Science*, **1998**, *279*, 1882 1886. (b) Gronnert, S., *Chem Rev.* **2001**, *101*, 329- 360.

- (11) (a) March, J., Advanced Organic Chemistry, 4th Ed., John Wiley & Sons, New York, 1992. (b) Mitsunobu, O., in Comprehensive Organic Chemistry, Trost, B.M.; Fleming, I., Eds., Pergamon Press, New York, 1991, Vol. 6., pp 65 101.
- (12) Cramer, C. J.; Truhlar, D. G.; Chem. Rev. 1999; 99, 2161-2200.
- (13) Computational studies of Menshutkin-type reactions have appeared previously:
 (a) Castejon, H.; Wiberg, K.B., *J. Am. Chem. Soc.* 1999, *121*, 2139 2146. (b) Webb, S.P.; Gordon, M.S.; *J. Phys. Chem. A* 1999, *103*, 1265 1273. (c) Berg, U.; Chanon, M.; Gallo, R.; Rajzmann, M., *J. Org. Chem.* 1995, *60*, 1975 1980. (d) Solà, M.; Lledós, A.; Duran, M.; Bertrán, J.; Abboud, J-L.M., *J. Am. Chem. Soc.* 1991, *113*, 2873 2879. (e) Fradera, X.; Amat., Ll.; Torrent, M.; Mestres, P.;. Constans, P.; Besalú, E.; Martí, J.; Simon, S.; Lobato, M.; Oliva, J.M.; Luis, J.M.; Andrés, J.L.; Solá, M; Carbó, R.; Duran, M., *J.Mol.Struc. (Theochem)* 1996, *371*, 171 183. (f) Viers, J.W.; Scug, J.C.; Stovall, M.D.; Seeman., J.L., *J. Comput. Chem.* 1984, *5*, 598 605.
- (14) Stirling, C.J.M., Tetrahedron, 1985, 41, 1613 1666.
- (15) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Gill, P.M.W.; Johnson, B.G.; Robb, M.A.; Cheeseman, J.R.; Keith, T.; Petersson, G.A; Montgomery, J.A.; Raghavachari, K.; Al-Laham, M.A.; Zakrzewski, V.G.; Ortiz, J.V.; Foresman, J.B.; Cioslowski, J.; Stefanov, B.B.; Nanayakkara, A.; Challacombe, M.; Peng, C.Y.; Ayala, P.Y.; Chen, W.; Wong, M.W.; Andres, J.L.; Replogle, E.S.; Gomperts, R.; Martin, R.L.; Fox, D.J.; Binkley, J.S.; Defrees, D.J.; Baker, J.; Stewart, J.P.; Head-Gordon, M.; Gonzalez, C.; Pople, J.A, *Gaussian 94*, Gaussian, Inc., Pittsburgh, PA, 1995. Gaussian, Inc., Carnegie Offic Park, Building 6, Suite 230, Carnegie, PA 15106.
- (16) Dudev, T.; Lim, C., J. Am. Chem. Soc., 1998, 120, 4450 4458.
- (17) Foresman, J.B.; Frisch, Æ., *Exploring Chemistry with Electronic Structure Methods*, Gaussman, Inc., Pittsburgh, PA, 1996.
- (18) This basis set was chosen for a study of the basic Menschutkin reaction of methyl chloride and ammonia.^{13a}
- (19) Biefler-König, F.; Schönbohm, J.; Bayles, D., J. Comput. Chem., 2001, 22, 545 559.
- (20) Burkert, U.; Allinger, N.L., *Molecular Mechanics*, American Chemical Society, Washington, D.C., 1982.
- (21) Eliel, E.L.; Wilen, S.H., Steroechemistry of Organic Compounds, John Wiley & Sons, Inc., New York, 1994, p. 35.
- (22) Sun, H.; Bozzelli, J.W., J Phys. Chem. A, 2001, 105, 9443 9552.
- (23) Nakagawa, J.; Kazunoi, K.; Hagashi, M., Bull. Chem. Soc. Jpn., 1976, 49, 3420 3432.
- (24) (a) Bader, R.F.W.; MacDougall, P.G.; Lau, C.D.H., J. Am. Chem. Soc., 1984, 106, 1594 1605. (b) Bader, R.F.W.; Essen, H., J. Chem. Phys., 1984, 80, 1943 1960. Bader, R.F.W., Acc. Chem. Res., 1985, 18, 9 15 and other introductory papers.
- (25) The disjoined effect is unleashed only when the bond connecting the leaving group to the reaction center in a cyclic molecule is cleaved. It is distinguished from the classical inductive effect whether through-bond or through-space (field) that is present throughout the reaction, typically having the most profound effect on the transition state.
- (26) Bader, R.F.W.; Duke, A.J.; Messer, R.R., J. Am. Chem. Soc. 1973, 95, 7715 7721.
- (27) Okajima, T.; Imafutu, K., *J. Org. Chem.*, **2002**, *67*, 625 632. A theoretical study indicates that the stabilizing Coulombic interaction between a partially negatively charged chlorine and a partially positively charged tropylium ion result in a favored 1,7- thermal chlorine shift as opposed to the symmetry-allowed 1,5-sigmatropic shift.
- (28) Bader, R.F.W.; Larouche, A.; Gatti, C.; Carrol, M.T.; MacDougal, P.J.; Wiberg, K.B., *J. Chem. Phys.*, **1987**, *87*, 1142 – 1152.
- (29) Wiberg, K.B.; Rablen, P.R., J. Comput. Chem., 1993, 14, 1504 1581.

- (30) Wiberg, K.B., *J. Org. Chem.*, **2002**, *67*, 1613 1617. In calculating substituent effects on bicyclo[2.2.2]octaneacarboxylic acids, use of an effective dielectric constant of 1 produced reasonable results.
- (31) Since the atomic charge on nitrogen in the transition state was similar within each method, and nitrogen was about twice as distant from the heteroatom as the reaction center, it was assumed to have a minor overall influence.
- (32) The absolute values of the atomic charges were used as opposed to changes in atomic charge at each position from ground state to transition state since the rate comparisons are made with respect to the same model compound in each series.
- (33) Wiberg, K.B., J. Am. Chem. Soc., 1990, 112, 3379 3385.
- (34) Janousek, B.K.; Reed, K.J.; Brauman, J.I., *J. Am. Chem. Soc.*, 1980, 102, 3125 3129.
 (b) DeFrees, D.J.; Bartmess, J.E.; Kim, J.H.; McIver, Jr., R.T.; Hehre, W.J., *J. Am. Chem. Soc.*, 1977, 99, 6451 –6452. Perturbation molecular orbital theory can also be used to explain the electron distribution in the oxygen transition states. In this instance, the importance of the interacting orbitals is the reverse of that for sulfur, with the stabilizing interaction closely related to the polarizability of the alkyl group.
- (35) See Hirsch, J.A., *Concepts in Theoretical Organic Chemistry*, Allyn and Bacon, Boston, MA, 1974, pp 120 124 and references cited therein.