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ABSTRACT This work motivation is formulation of the boundary condition for numerical 
simulation of fluid dynamic with ablative boundaries. In this paper we develop an analytical model 
of the Knudsen layer by considering a kinetic formulation that takes into account the gas 
temperature gradient at a flat gas-wall interface. The main focus of this research is to study the 
effect of the thermal conductivity on the Knudsen layer formed near an ablating surface. This 
analysis is based on the premise that the thermal conductivity (the temperature gradient) in the 
bulk gas can be taken into account in the velocity distribution function at the outer boundary of the 
Knudsen layer. We use such a function obtained by Chapman-Enskog expansion method, based on 
the assumption that the molecular mean-free path is much smaller than the characteristic length 
scale of the temperature gradient. The model uses a bimodal velocity distribution function in the 
Knudsen layer which preserves the laws of conservation of mass, momentum and energy and 
converges to the Chapman-Enskog velocity distribution function at the outer boundary of the layer. 
The model allows obtaining the boundary conditions at the interface between the ablative surface 
and the bulk gas avoiding “micro” modeling of the evaporation process at the mean free path scale. 
Thus, our Knudsen layer model can be used as a “constructor” for boundary conditions between 
the bulk gas and ablative surface that is important for numerical simulation of evaporation 
processes and for fluid dynamics in general.  
 
 
 

I. INTRODUCTION 
 
The physics of the Knudsen layer, formed near the vaporizing (ablative) surface is of great interest 
for a number of applications such as capillary discharges [e.g., Seeger 2006 and Keidar 2006], 
plasma thrusters [e.g., Burton 1998 and Keidar 200], high-pressure discharges [e.g., Boulos 1995], 
vacuum arcs [e.g., Boxman 1995], electroguns [e.g., Raja, 1997]  and laser ablation [e.g., Zhigilei 
1998]. 
 
Anisimov [1968] was the first to consider details of the vaporization process for a case of 
vaporization of a metal exposed to laser radiation. He used a bimodal velocity distribution function 
in the kinetic layer, assuming no absorption of laser radiation in the ablated gas, the gas flow 
velocity at the external boundary of the Knudsen layer is equal to the sound velocity, and the 
temperature of the gas in the bulk region (beyond Knudsen Layer) is constant. The primary result 
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of his work was the calculation of the maximal flux of returned atoms to the evaporating surface, 
which was found to be about 18% of the flux of vaporized atoms. Ytrehus [1976] has used the 
Anisimov and Ansatz bimodal velocity distribution functions in the Knudsen layer to study the 
effect of bulk gas pressure on downstream vapor flow. He has calculated the gas flow velocity at 
the external boundary of the Knudsen layer (in the bulk gas), density and temperature jumps over 
the Knudsen layer, the evaporation mass flux, and other parameters of the Knudsen layer as 
functions of the ratio of the equilibrium vapor pressure to the gas pressure in the bulk region. In 
addition, Ytrehus has demonstrated that his analytical results are in substantial agreement with the 
experimental finding, DMCS and numerical solutions of the Boltzmann equations. He has also 
shown that the differences between the analytical solutions using the Anisimov approximation and 
the Ansats (more sophisticated) velocity distribution function are very small. 
   
Later the Anisimov bimodal velocity distribution function was used in modeling the vaporization 
into dense plasmas. Beilis [1985, and 1995] applied this function to study the case of metal 
vaporization into discharge plasmas in a vacuum arc cathode spot. He demonstrated that the 
parameters at the outer boundary of the Knudsen layer are close to their equilibrium values and 
that the flow velocity at the outer boundary of the kinetic layer is much smaller than the sound 
velocity. Then it was applied for the case of dielectric ablation into the discharge plasma in the 
capillary discharge conditions [e.g., Keidar 2001] and for the case of strong plasma acceleration 
[e.g., Keidar 2004]. All those analytical models neglected the conductive heat flux to the ablative 
surface. This can be significant because the temperature in the plasma core is assumed in the 
models to be much greater than the temperature of the ablative surface. However, it is worth 
noting, that in the case where the external heat flux to the ablating surface is larger than the 
conduction heat flux, the effect of the thermal conduction is small and can be dropped. This is the 
case for the example laser ablation [e.g., Anisimov 1968], where an externally applied laser 
radiation source heats the ablating surface but for which the gas (plasma) is transparent. 
 
Ideally Monte Carlo simulations or numerical solutions of BGK equation describing the kinetic 
layer without any a prior approximation of gas velocity function distribution in that layer should be 
able to self-consistently describe the conductive heat flux to the ablating surface. However, this 
will require extending the analysis beyond the Knudsen layer region, making it computationally 
intensive. As shown in works of Ytrehus [1976], Sibold [1991], Sibold [1993], Morozov [2004], 
and Rose [2000], the models that utilize the Anisimov bimodal velocity distribution function, 
nevertheless, are in good agreement with DSMC simulations and numerical solutions of BGK 
equation. Thus, improving the analytical models by including heat conduction into consideration is 
an important step in developing practical (computationally efficient) solutions for modeling of 
evaporation processes and plasma discharges coupled to ablative processes. 

  
We would also like to point out the paper by Bond [2004] in which the authors have included the 
conduction heat flux in their analytical model of water evaporation. This is a generalized Hertz-
Knudsen model (Hertz [1882] and Knudsen [1915]) of the Knudsen layer. It worth noting that the 
classical Hertz-Knudsen model and all its generations assumes no collisions in the Knudsen layer 
(i.e. does not satisfy conservation of momentum through the Knudsen layer) preventing any 
“relaxation” in the kinetic (Knudsen) layer, where the velocity distribution function at the ablative 
surface has to relax (converge) to the bulk gas distribution function at the outer boundary of the 
Knudsen layer. The analytical models using bimodal velocity distribution functions, such as the 
Anisimov one, take into account the collisions in the Knudsen layer, satisfy the conservation of 
momentum through the Knudsen layer and self-consistently calculate the backflux. 
 
In this paper we develop an analytical model of the Knudsen layer taking into account the gas 
temperature gradient at a flat gas-wall interface. The model is based on the premise that the 
thermal conductivity in the bulk gas can be taken into account in the velocity distribution function 
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at the outer boundary of the Knudsen layer. We use such a function obtained by Chapman-Enskog 
expansion method [e.g., Vincenti 1975] assuming that the molecular mean-free path is much 
smaller than the characteristic length scale of the temperature gradient. The model uses the 
Anisimov bimodal velocity distribution function in the Knudsen layer which converges to the 
Chapman-Enskog velocity distribution function at the outer boundary of the layer. The presented 
model allows obtaining the boundary conditions at the interface between the ablative surface and 
the bulk gas avoiding “micro” modeling of the evaporation process at the mean free path scale. 
Thus, our Knudsen layer model can be used as a “constructor” for boundary conditions between 
the bulk gas and ablative surface that is important for numerical simulation of evaporation 
processes and for fluid dynamics in general. 
  
The model is applied to polyethylene ablation, for which two cases are considered: (a) the ablation 
process is due to pure heat conduction to the surface, with no external heating of the ablated 
surface, and (b) the ablation is due to both the thermal conduction and an external heating of the 
surface. The model formulation is presented in the next section. Numerical results and comparison 
of the presented model with the generalized collisionless Hertz-Knudsen model are presented in 
the Sections III and IV respectively. In Section V we review the results and present conclusions.  
 

II. MODEL 
 
Following Anisimov’s method, the velocity distribution function in the kinetic layer with the 
evaporating surface can be written in the following form, Fig.1 
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Here fb is the gas distribution function at the inner boundary of Knudsen layer (at the ablative 
surface) with Maxwellian vaporization function for Vx > 0 [e.g., Knacke 1956] and a shifted 
“backflux” Maxwellian function distribution describing the particles falling to the surface from the 
gas, Vx < 0, where the x-axis is directed from gas chamber to the wall, Fig. 1; fa is the Chapman-
Enskog velocity distribution function [e.g., Vincenti 1975] at the outer boundary of the Knudsen 
layer that takes into account the temperature gradient and flow velocity above the Knudsen layer, 
in the gas bulk; kT0=VT

2/(2m) is the temperature of the ablated surface, where VT is the thermal 
vapor velocity at thermodynamic equilibrium; nsat is the equilibrium vapor density corresponding 
to the surface temperature T0; ν is the collision frequency depending of the temperature and 
density of the gas; δ(x) is an unknown function that satisfied the conditions δ(0) = 1 and δ(∞) = 0. 
The parameter β is unknown variable that must be obtained in the solution; it represents essentially 
nonequilibrium effects caused by collisions in the Knudsen layer. 
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Figure 1.  Schematic representation of the layer structure near the ablative surface 

 
 
Assuming the laws of conservation of mass, momentum, and energy hold at all times within the 
Knudsen layer, as it has been assumed in all previous models of Anisimov [1968], Ytrehus [1976], 
Beilis [1985 and 1995], and Keidar [2001, 2004], the following integrals are defined: 
 

unVdVfVdVdC axxyz ˆˆˆˆˆˆˆ
1 ⋅=⋅⋅= ∫ ∫∫

+∞

∞−

+∞

∞−

∞

∞−
  ,                 (5)     

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅=⋅⋅= ∫ ∫∫

∞+

∞−

∞+

∞−

∞

∞− 2

ˆ
ˆˆˆˆˆˆˆ

2
22

2
aT

axxyz
V

unVdVfVdVdC      ,                (6) 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ⋅
⋅⋅

⋅
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
+⋅⋅=⋅⋅⋅= ∫ ∫∫

∞+

∞−

∞+

∞−

∞

∞− 4

ˆ5)(lnˆ

2

ˆ5
ˆˆˆˆˆˆˆˆˆ

32
22

3
aTaTTaT

axxyz
V

dx
TdVVV

uunVdVVfVdVdC
ν

 ,           (7) 

 
where values of C1, C2, and C3 are obtained at the outer boundary of the Knudsen layer (where δ is 
equal to zero), and mass, momentum, and energy fluxes are 
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In Egs. (5) – (7a) all number densities are normalized by the equilibrium vapor density nsat(T0), and 
all velocities by VT, 
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Taking into account that integrals C1, C2, and C3 are preserved through the Knudsen layer and they 
should be independent on δ(x), 
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Equations (5), (6), (10) and (11) are identical to the corresponding mass and momentum 
conservation equations obtained in works of Beilis [1985 and 1995], Keidar [2001 and 2004], 
Sibold [1991 and 1993], and Morozov [2004] while Eqs. (7) and (12) differ from the 
corresponding energy conservation equations obtained in these works by the temperature gradient 
term, which is responsible for conduction heat flux to the ablative surface. Thus, Eqs. (10) – (12) 
are a system of boundary conditions that connects the ablative surface with the bulk gas. 
 
Let us introduce a thermal conduction parameter τT  
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where λmfp is the gas mean-free-path at the outer boundary of the kinetic layer and δxT is the 
characteristic temperature gradient length. Condition (13) is needed for the Chapman-Enskog 
expansion method and Eq. (7) to be valid. Thus, our model is limited to relatively small values of 
the temperature gradients.  
 
Let us illustrate the process of obtaining boundary conditions using as an example the case of 
boiling wall, the case of no heat loss in the bulk of the wall. In this approximation all heat coming 
into the wall is spent on vaporization. Let us also assume that the ablation process is due to only 
the gas thermal conduction (no external heat source is applied to ablative surface); then the 
additional boundary condition to Eqs. (10) – (12) can be written as 
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where Φvap is evaporation heat per unit mass of the wall material, -Ex is the total energy flux 
through the Knudsen layer incoming into the ablative wall, Eq. (7a), and Mx is the mass ablation 
rate, Eq. (5a); the negative sign in front of Ex is due to the x-axis being directed from the wall into 
the gas chamber. Since τT is assumed to be small and, therefore 1ˆ <<u ,  Egs. (10) – (12) and (14) 
can be reduced to the following dimension form 
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As we can see, for u = 0 (in which case there is no ablation) and for τT > 0, the temperature and 
density at the outer edge of kinetic layer are correspondingly larger and smaller than the wall 
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temperature and the equilibrium vapor density; it is as expected, since the gas bulk region has a 
higher temperature than the wall surface. This temperature jump is 1.136 times larger than the 
temperature jump calculated by using BGK simulation [e.g., Sharipov 2004]. 
 
Now let us obtain the system of equations describing the bulk gas at the ablative surface in the 
parabolic CFD approximation that satisfies Eqs. (15) – (17). Figure 2 shows two sells above the 
ablated surface and one ghost sell underneath the surface, where x1, x2 , x-1, are the coordinates of 
the centers of the sells, T1, n1, u1, and T2, n2, u2 are the temperature, density, and flow velocity, at 
x1 and x2 correspondingly, T is the surface temperature, and T-1, n-1, u-1 are the approximated 
parameters of the bulk gas in the center of the ghost cell used for modeling the ablative surface in 
CFD code.  
 
 
 
 

T 
T-1  n-1   u-1

T1  n1   u1

T2  n2   u2 x2 
 x1
 
 x-1 
 

Figure 2.  Schematic of CFD cells at ablated surface, where cells 1 and 2 are 
    above the wall and the ghost cell -1 is underneath the ablative surface.    

 
 
In parabolic approximation the temperature, density and flow velocity in vicinity of the cells can 
be written as 
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and following Eqs. (15) – (17) the following conditions at x = 0 
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Thus, the system of Eqs (19) – (23) is complete, all θ-parameters can be calculated and, 
consequently T-1, n-1, u-1 are determined. A similar method can be used for other physical 
situations and approximations. 
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III. NUMERICAL RESULTS 
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Figure 3.  , , aT̂ an̂ aTVu /=α , and backflux at the polyethylene ablative surface vs. Tτ  
 
 
Figure 3 shows the calculated parameters of the Knudsen layer vs. τT for the case of thermal 
conduction heating of the ablative polyethylene wall with the polyethylene surface temperatures of 
650 and 800 K, Eqs. (10) – (12) and (16); the evaporation heat has been taken as 3.6·106 [J/kg] and 
equilibrium vapor pressure equal as P = 105·exp(5565.22·[1/453 -1/T]) [e.g., Keidar 2006], where 
the pressure is in Pascal and temperature is in Kelvin. One can see that , , backflux, and  
are weak functions of temperatures in this temperature region, although their equilibrium vapor 
pressures differ almost in five times. As it has been mentioned above, we cannot extend the 
obtained results of Figure 3 for higher τ

û aT̂ an̂

T, because the Chapman-Enskog expansion method is valid 
only for τT << 1. In this limit, the normalized backflux at the ablative wall given by  
 

π⋅⋅⋅−=− 2ˆˆ1ˆ
afluxb nuF                  (24) 

 
reduces to 
 

π⋅⋅−=− 2ˆ1ˆ uF fluxb                       (25) 
 

yielding the explicit relationships between , , , and τan̂ aT̂ û fluxbF −
ˆ T. Comparison of this 

approximate solution and the “exact” solution obtained from the solution of Eqs. (10)-(12) is 
shown in Fig. 4, leading to the conclusion that approximate solution gives satisfactory results for 
τT < 0.05. 
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Figure 4.  Comparison of exact and approximate solutions. 
                      Polyethylene with the surface temperature of 800 K. 

 
 
In the case where the ablating surface is heated by an additional (external) heat source, for example 
by laser radiation [e.g., Anisimov 1968], Eq. (14) can be rewritten as  
 

vapxextx MEE Φ⋅=−−   ,               (26) 
 

where Eext is an external heat flux to the ablative surface. It is worth noting that in the case where 
thermal conduction in the wall is not equal to zero, see Eq. (26), the Eext is the net external heat 
flux at the wall equal to the external heat flux to the wall “above” the surface minus conduction 
heat into the wall “behind” the surface.  With an increase in Eext the ablation rate increases and, if 
Eext becomes much larger than conduction heat flux, we may drop the conduction heat term from 
the velocity distribution function (Eq. (3)), recovering the previous models [9-15].    

 

01.0=Tτ  1.0=Tτ  3.0=Tτ  

          û
-------V  aT̂

)/( thermextext EEE +

 
Figure 5.  Parameters of the Knudsen layer as functions of ratio of external 

                  heat flux to the total heat flux at the ablating polyethylene surface 
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Figure 5 shows  and  as functions of the ratio of an external heat flux to the total heat flux, q 
= E

aTV̂ û

ext /(Eext + Ethermal) for the ablative polyethylene wall with the polyethylene surface temperatures 
of 800 K and for τΤ = 0.01, 0.1, and 0.3; the calculations have been performed up to sonic 
conditions with γ = 5/3. As one can see with a decrease in τT and an increase in q, the distributions 
of  and u  are converging to the case of τ  = 0. aTV̂ ˆ
 

IV. COMPARISON WITH HERTZ-KNUDSEN THEORY 
 
One commonly used analytical model of the Knudsen layer is the classical Hertz-Knudsen model, 
Hertz [1882] and Knudsen [1915], which assumes no collisions in the gas kinetic layer at the wall, 
no thermal conductivity in the bulk gas. Bond and Struchtrup [2004] have shown that in the case of 
non-zero thermal conduction to the wall, as long as the vapor is not too rarefied, the thermal 
conduction parameter 1<<Tτ , and the Mach number is small, aTVu << , the Chapmen-Enskog 
theory gives the same equations for mass and energy fluxes through the discontinuity region as 
does the classical Hertz-Knudsen theory, 
  

ππ
aTaTsat

x
VnmVnmM

⋅⋅
−

⋅⋅
=  ,               (27) 

ππ

2/32/3
aTaTsat

x
VnmVnmE

⋅⋅
−

⋅⋅
=  ,               (28) 

 
However, their model, as well as the classical Knudsen layer model, ignores collisions in the 
Knudsen layer and, therefore, the law of conservation of momentum does not hold through the 
Knudsen layer. As mentioned in the Introduction, the Hertz-Knudsen assumption of no collisions 
in the Knudsen layer is inconsistent because it assumes no “relaxation” in the kinetic (Knudsen) 
layer, where the velocity distribution function at the ablative surface has to relax (converge) to the 
bulk gas distribution function at the outer boundary of the Knudsen given, in our case, by Eq. (1). 
That is why a comparison between a Hertz-Knudsen model and our model is important. Since our 
model as well as all others, including the Bond-Schruchtrup-Hertz-Knudsen model, give the right 
asymptotical solution at thermodynamic equilibrium, where the mass and energy fluxes are equal 
to zero, we can expect differences in the Knudsen layer models in the region far from the 
equilibrium. 
 
We can derive a Hertz-Knudsen model of Bond-Struchtrup [2004] in the case of the wall 
absorption coefficient equal to one from our model, Eq. (10) - (12) by dropping the momentum 
conservation law equation, Eq. (11), and taking 1=β , literally using Eq. (2) with 1=β  for 
preserving the mass and energy conservation laws within the Knudsen layer, 
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where C1 and C3 are given by Eqs. (5) and (7). Our generalized Hertz-Knudsen model differs from 
the Bound and Struchtrup model [2004], where they have used first-order Taylor expansion of Eq. 
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(3) about zero in ; thus, the Bond-Struchtrup model cannot be used for relatively large Mach 
numbers.  

aTVu /
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Figure 6.  Comparison of the bimodal-collisional model with a generalized Hertz-Knudsen model. 

 
 
Fig. 6 represents a comparison of our general model, Eqs. (10) – (12) and the generalized 
collisionless Hertz-Knudsen model, Eqs. (29) – (30), for 2.0  ,0=Tτ . This figure shows the 
distributions of  aKHa TTT /, −=  and aKHa nnn /, −=  vs. aTVu /=α , where  and  are 
the temperature and number density at the outer boundary of the Knudsen layer calculated using 
the generalized Hertz-Knudsen model. As one can see, in the case of no conduction heat (

KHaT −, KHan −,

)0=Tτ , 
the ratios T  and n  converge to unity as 0→α ; this is expected since the case of  0== ατT  
corresponds to thermal equilibrium. However, with an increase in α  (non-thermodynamic region) 
the temperature and density distributions calculated by the two models begin to diverge, and T  
and n  for 7.0=α  reach up to -5% and 16%, respectively. In the case of thermal conduction, with 
an increase in Tτ , the differences in the models rise: for 2.0=Tτ  and 0=α , the case of thermal 
heat conduction to the wall with no ablation, T  and n  reach 9% and 8%, respectively, and for 

2.0=Tτ  and 7.0=α , they are -5% and 20% respectively.  Thus, it has been demonstrated that our 
model of the Knudsen layer gives very different results than the Hertz-Knudsen model. 
 

V. CONCLUDING REMARKS 
 
We presented an analytical model of the Knudsen layer near the ablative surface, taking into 
account the thermal conductivity in the adjusted bulk gas. This model employs a bimodal velocity 
distribution function in the Knudsen layer. The gas mean-free-path in the model is assumed to be 
much smaller than the characteristic temperature gradient length in the bulk gas. This condition is 
needed for the Chapmen-Enskog expansion method to solve the Boltzmann equation used in the 
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paper. Thus, this model is limited to relatively small temperature gradients. In the case of a larger 
temperature gradient a more rigorous model is required and only numerical simulation such as 
DSMC would solve the problem. 
 
The model allows obtaining the boundary conditions at the interface between the ablative surface 
and the bulk gas avoiding “micro” modeling of the evaporation process at the mean free path scale. 
Thus, our Knudsen layer model can be used as a “constructor” for boundary conditions between 
the bulk gas and ablative surface that is important for numerical simulation of evaporation 
processes and for fluid dynamics in general. 
 
The widely used Hertz-Knudsen model and its generalizations assume no collisions in the Knudsen 
layer and, therefore, do not preserve the law of conservation of momentum within the Knudsen 
layer; they preserve only the mass and energy conservation laws. In comparison, our model 
preserves all three conservation laws. However, both models give the right asymptotical solution at 
thermodynamic equilibrium (where the mass and energy fluxes are equal to zero). That is why it 
was important to compare these models in cases that are far from thermodynamic equilibrium. Our 
calculations show significant differences between the two models. With an increase in the thermal 
conductive heating of the ablated surface or/and in the flow velocity, the differences between the 
two models dramatically increase; for 2.0=Tτ  and 7.0=α  the differences in temperatures and 
density calculated at the outer boundary of the Knudsen layer reach up to almost 20%. 
 
Finally, the presented analytical model can be verified by comparison with direct Monte Carlo or 
ES-BGK simulations. 
 
The authors wish to thank M. Kapper for helpful discussions and important remarks. 
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