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ABSTRACT 

Employing the autoregressive (AR) technique and the principle of displaced phase 
centre antenna (DPCA) we construct an optimum adaptive DPCA processor for 
moving target detection from airborne phased arrary radar data collected under non-
DPCA conditions. It is fundamentally different from the existing adaptive DPCA 
which is not optimum. The number of range samples it needs to estimate its 
parameters is only approximately twice the number of antenna elements, significantly 
smaller than the number required by the conventional space-time adaptive processing 
(STAP) and other algorithms. Computationally it only requires 5-10% cost of STAP. 
The processor is tested using both the simulated and genuine airborne phased array 
radar data. With ample samples, its performance approaches optimum. In the case of 
reduced samples, it considerably outperforms STAP and others examined.    
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Phased Array Radar Data Processing Using Adaptive 
Displaced Phase Centre Antenna Principle  

EXECUTIVE SUMMARY     

The Australian Defence Force (ADF) is acquiring an Airborne Early Warning and 
Control (AEW&C) capability under Project AIR 5077 (Project Wedgetail). The AEW&C 
aircraft is equipped with an L-band phased array radar system for moving target 
detection. An electronically scanned phased array antenna offers rugged, reliable and 
comprehensive detection potential. However, how to process massive phased array 
radar data in given time frames remains a key issue in phased array radar data 
processing. 

Although space-time adaptive processing (STAP) has attracted a lot of attention in the 
research literature, its computational demands have limited its application in real-time 
airborne radar systems. In this report we investigate a new technique for adaptive 
displaced phase centre antenna (ADPCA) clutter cancellation which yields almost as 
good a performance as STAP at a fraction of the computational cost. In regions of 
limited data samples it is superior to STAP. 

STAP yields the optimum signal-to-interference-and-noise ratio (SINR) for detection of 
moving targets embedded in Gaussian distributed thermal noise, clutter (echoes from 
the Earth’s surface) and broadband noise jamming. However, there are two critical 
issues in real-time implementation of STAP in airborne radar systems. First it needs a 
large number of range samples to estimate the covariance matrix of the undesired 
signals, which may not be met sometimes. The second and the more critical issue is the 
computational requirement. The dominant computation in STAP is the inversion of the 
covariance matrix which is not only computationally expensive, but also a nonlinear 
transform making parallel processing difficult if not impossible. Numerous algorithms, 
aimed at reducing computational cost and sample data requirement have been 
proposed in the past. 

Displaced phase centre antenna (DPCA) processing is a technique for countering the 
platform motion induced clutter spectrum spreading. The basic concept is to make the 
antenna appear stationary even though the platform is moving forward by 
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electronically shifting the receive aperture backwards during the operation. Since its 
origins in the 1950s at General Electric where it was applied to airborne early warning 
(AEW) radars, various DPCA techniques have been developed. For airborne radars a 
typical way to achieve this is to adjust the radar pulse repetition frequency (PRF) 
according to the platform velocity so that the first, second, etc. antenna elements at the 
current pulse effectively move to, respectively, the exact positions of the second, third, 
etc. antenna elements at the previous pulse, and so on. This is often referred to as the 
DPCA condition. In practice, even if the DPCA condition is satisfied, the clutter 
cancellation is still limited, due to various disturbances introduced by the radar (such 
as imbalance among antenna channels and phase errors, etc.), platform (instability of 
velocity and crabbing, etc.), and clutter environment (clutter intrinsic motion). To 
overcome these issues, the so-called ADPCA concept has been introduced. However to 
construct an ADPCA processor for airborne phased array radars is not as easy as it 
seems. The existing version of ADPCA was developed about ten years ago. 
Unfortunately, we prove that this existing ADPCA is not an optimum processor and 
could lead to significant SINR loss.  

Inspired by the DPCA and parametric adaptive matched filtering (PAMF) approaches, 
this report derives another ADPCA algorithm which is fundamentally different from 
its predecessor. Unlike the existing one which is not optimum, the proposed ADPCA 
has its roots in the autoregressive (AR) process and is an optimum processor. It is 
mathematically similar to the PAMF approach, but has some advantages over the 
PAMF processor. The approach does not require the DPCA condition because its 
parameters are adaptively estimated, which automatically takes account of non-DPCA 
conditions as well as various other disturbances. It significantly reduces the size of 
sample data needed to estimate its parameters and the computational cost compared to 
its predecessors and STAP.  

The performance of the algorithm has been assessed using two airborne radar datasets, 
one generated using the high fidelity airborne radar simulation software, RLSTAP, and 
the other collected by the Multi-Channel Airborne Radar Measurements (MCARM) 
system. These two datasets were carefully chosen to cover various issues. First of all, 
the datasets did not satisfy the DPCA condition, so that the adaptability of the 
proposed ADPCA could be examined. Secondly the radar did not look in the broadside 
direction in the RLSTAP dataset. The second dataset was collected from a flight trial of 
MCARM and included the effects of aircraft crabbing motion (the crab angle is as large 
as 7 degrees). Other decorrelation effects, including radar instability, clutter intrinsic 
motion, range foldover and interference caused by the aircraft etc., were automatically 
included in the dataset. Therefore the evaluation of the proposed processor is realistic. 
The results of STAP have served as benchmarks in evaluation. 

It has been found that the proposed ADPCA performs nearly as well as STAP, 
suffering at most a few dB of processing gain loss in the vicinity of the Doppler of the 
mainlobe clutter. However if there are insufficient clutter samples to accurately 
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estimate the covariance matrix, the performance of STAP is severely degraded whereas 
the proposed ADPCA still performs as well as before. Mathematically STAP requires 
an estimation of its covariance matrix whose size is the product of the number of 
antenna elements and the number of pulses in a CPI. On the other hand, the proposed 
ADPCA estimates its parameters by the use of covariance matrices whose size is no 
more than the number of antenna elements. In addition, in estimating parameters, 
STAP uses averaging processing only in the fast-time domain, whereas the proposed 
ADPCA utilises averaging processing in both the fast-time and the low-time domains. 
These two differences make the proposed ADPCA more robust and require much less 
sample data. In general, the parameters of ADPCA can be satisfactorily estimated once 
the number of range samples is equal to or greater than twice of the antenna elements. 
The existing ADPCA, on the other hand, is not an optimum processor and its 
performance usually is poor and suffers significantly especially when the target’s 
Doppler is close to that of the mainlobe clutter. 

The computational cost of the proposed ADPCA has been estimated. In general, it only 
has approximately 5-10% of the computational cost of STAP. Since most of the 
computation in the ADPCA algorithm is linear transforms, parallel processing and/or 
hardware realisation can be easily implemented. In contrast, the dominant calculation 
of the STAP algorithm is the inversion of the covariance matrix which is not a linear 
transform and limits the application of parallel processing. In this sense, the 
computational savings of the ADPCA algorithm is even greater than the simple 
estimation of operational counts presented in the report. 

In conclusion, the proposed ADPCA algorithm has significant advantages in requiring 
far fewer samples and much less computation while achieving robust performance 
with the SINR improvement close to optimal. It therefore has a great potential to be 
implemented in real-time airborne radar systems.     
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1. Introduction 
The Australian Defence Force (ADF) is acquiring an Airborne Early Warning and 
Control (AEW&C) capability under Project AIR 5077 (Project Wedgetail). The AEW&C 
aircraft is equipped with an L-band phased array radar system for moving target 
detection. An electronically scanned phased array antenna offers rugged, reliable and 
comprehensive detection potential. However, how to process massive phased array 
radar data in given time frames remains a key issue in phased array radar data 
processing. 

Although space-time adaptive processing (STAP) has attracted a lot of attention in the 
research literature, its computational demands have limited its application in real-time 
airborne radar systems. In this report we investigate a new technique for adaptive 
displaced phase centre antenna (ADPCA) clutter cancellation which yields almost as 
good a performance as STAP at a fraction of the computational cost. In regions of 
limited data samples it is superior to STAP. 

This Section briefly reviews techniques and problems in this area in connection with 
the technique to be introduced. 

STAP yields the optimum signal-to-interference-and-noise ratio (SINR) for detection of 
moving targets embedded in Gaussian distributed thermal noise, clutter (echoes from 
the Earth’s surface) and broadband noise jamming (Ward, 1994, Klemm, 2002). 
However, there are two critical issues in the real-time implementation of STAP in 
airborne radar systems. First for a range cell (or range cells) under test (CUT), data 
from a large number of adjacent range cells are required in order to compute the 
covariance matrix of the undesired signals. The available sample cells are sometimes 
fewer than required for accurate estimation of the covariance matrix. This, however, 
may be partially solved by assuming the structure of the covariance matrix to be 
known (Steiner and Gerlach, 1998, 2000, Gerlach and Picciolo, 2003, Bresler, 1988). The 
second and more critical issue is the computational requirement. The dominant 
computation in STAP is the inversion of the covariance matrix, which is a nonlinear 
transform making parallel processing difficult if not impossible. Numerous algorithms, 
aimed at reducing the requirement of either sample data or computational cost or both 
have been proposed (Klemm, 2004, Guerci, 2003, Wang and Cai, 1994, Ward and 
Kogon, 2004, Wang et al, 2003). Most of these algorithms, however, are based on 
various assumptions, hence they are confined in a sub-space and only partially-
adaptive (Ward, 1994). 

Applying space-time non-adaptive processing techniques is another alternative to 
minimise real-time computational demand. Noticing the natural characteristics of the 
clutter ridge lying across the Doppler-azimuth plane, Farina et al (1998) have 
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constructed a nonlinear, non-adaptive space-time processor which incorporates a set of 
filters with different notch widths corresponding to different space-time correlation 
coefficients. In application, input data are passed through the set of filters and the filter 
with the minimum estimated clutter output power is selected as the best filter for the 
particular input data. Using the displaced phase centre antenna (DPCA) principle, 
Richardson (1994) has shown that the inverse of the covariance matrix (ICM) has an 
asymptotic solution, and consequently constructed an optimum weighting vector for 
an airborne radar system satisfying the DPCA condition. Dong (2005) has proven that 
the ICM is approximately independent of the clutter environment. As a result, a pre-
built space-time non-adaptive processor has been proposed. 

Employing the autoregressive (AR) technique (Marple, Jr, 1987), Roman et al (2000) 
have adapted the parametric filtering concept to processing phased array radar data, 
and consequently proposed an approach, called parametric adaptive matched filtering 
(PAMF) (Roman et al, 2000, Michels et al, 2003, Rangaswamy and Michels, 1997, 
Rangaswamy et al, 1995, Robey et al, 1992, Roman et al, 1997). The key concept in this 
approach is that measurements of pulse  are estimated using previous 
measurements of pulses 

m
pmmm −−− ,,2,1 L  ( p  is also referred to as the order of the 

filter, ). The residue, i.e., the difference between the actual measurement of pulse 
 and the estimated measurement from previous measurements of pulses 

, is then processed. Since the residue is uncorrelated, its 
covariance matrix becomes a block diagonal matrix, which in turn significantly 
simplifies the processing and reduces the requirement of computation. This technique 
has been reviewed in detail and further developed by Dong (2006). 

1≥p
m

pmmm −−− ,,2,1 L

DPCA processing is a technique for countering the platform motion induced clutter 
spectrum spreading. The basic concept is to make the antenna appear stationary even 
though the platform is moving forward by electronically shifting the receive aperture 
backwards during the operation (Morris and Harkness, 1996). Since DPCA had its 
origins in the 1950s at General Electric and was applied to airborne early warning 
(AEW) radars, various DPCA techniques have been developed (Muehe and Labitt, 
2000, Nohara, 1995). A typical way to achieve this is to adjust the radar pulse repetition 
frequency (PRF) according to the platform velocity so that the first, second etc. antenna 
elements at pulse m  effectively move to the respective positions of the second, third 
etc. antenna elements at pulse 1−m , and so on. This is often referred to as the DPCA 
condition. In practice, even if the DPCA condition is satisfied, the clutter cancellation is 
still limited, due to various disturbances introduced by the radar (such as imbalance 
among antenna channels and phase errors, etc.), platform (instability of velocity and 
crabbing, etc.), and clutter environment (clutter intrinsic motion). To overcome these 
issues, the so-called ADPCA algorithm has been introduced in airborne side-looking 
linear array radars (Blum et al, 1996, Klemm 2002, Chapter 7, Guerci, 2003, Chapter 5). 
Unfortunately, we show that it is not an optimum processor in Section 3 and 
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consequently could have significant SINR loss in Section 5. We refer to this ADPCA as 
Blum’s ADPCA in this report. 

Inspired by the DPCA and PAMF approaches, this report proposes another version of 
ADPCA algorithm applicable to airborne side-looking phased array radar data 
processing for moving target detection. Although the name of ADPCA has frequently 
appeared in the literature, the technique developed here is fundamentally different 
from the existing ones. Unlike the Blum ADPCA which is not optimum, the ADPCA to 
be introduced here has its roots in the autoregressive (AR) process (Marple, Jr, 1987), 
and is mathematically similar to the PAMF approaches, but has some advantages over 
the PAMF processor (refer to Section 5 for the comparison). The approach does not 
require the DPCA condition, because its parameters are adaptively estimated, which 
automatically takes account of non-DPCA conditions as well as various other 
disturbances induced. It significantly reduces the size of sample data needed to 
estimate its parameters and the computational cost compared to its predecessors. There 
are no assumptions about the form of the clutter in the algorithm, so it is fully-
adaptive. Most importantly the SINR of the processor approaches the optimum.  

Section 2 briefly reviews STAP. When sufficient samples are available to accurately 
estimate the covariance matrix, STAP yields the optimum SINR, and thus serves as a 
benchmark for evaluating the results of the proposed algorithm. Following the 
introduction of DPCA and Blum’s ADPCA in Section 3, Section 4 formulates the 
proposed ADPCA algorithm. Its advantages including the requirement of much fewer 
samples in estimating its parameters as well as the computational savings are also 
explained and analysed in Section 4. Evaluation of the algorithm is presented in 
Section 5. Two datasets, one generated using the high fidelity airborne radar 
simulation software, RLSTAP, and the other collected by the Multi-Channel Airborne 
Radar Measurements (MCARM) system are used in the assessment, with the results of 
STAP as benchmarks. The results of the Blum ADPCA and traditional DPCA with non-
adaptability are also shown for comparison. Finally Section 6 concludes the report. 

2. Space-Time Adaptive Processing 
This section briefly reviews the STAP principle as this helps understanding the 
proposed ADPCA later. 

The mathematical notation used in this report follows the convention: boldface 
uppercase and lowercase letters represent matrices and vectors, respectively, 
superscripts T , H  and * denote transpose, Hermitian transpose and complex 
conjugate, respectively, and   and  stand for the complex and real number fields, 
respectively. For instance, x  denotes  to be an -element complex-valued 
column vector, and  denotes  to be an 


1×∈MN

A
x MN

MNMN×∈A MNMN × -element complex-
valued matrix. The symbol ⊗  denotes the Kronecker matrix product, and }{⋅E  
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expectation. The ensemble average symbol is an over-hat ^, an indication of an 
estimate of  in calculation using finite samples. Uppercases }{⋅E M  and  are 
reserved for the number of pulses in a coherent processing interval (CPI) and the 
number of antenna elements in azimuth.  

N

In signal processing, one often has to estimate unknown parameters. For instance, the 
true covariance matrix  which is in practice unknown, is often estimated from 
range samples by using the maximum likelihood method. The estimated covariance 
matrix is . In consequence the weighting vector of a processor is  corresponding 

to ,  corresponding to , and so on. Mathematically if the true covariance 

matrix  is known, the optimum weighting vector of STAP is  

whereas the estimate is . In order to reduce the number of equations 
and expressions, this report does not generally discriminate between w  and , if 
meanings in the context are clear and often the over-hat (indicating an estimate rather 
than the true value) will be omitted. In general, when we deal with mathematical 
derivations, we assume the true values of parameters are known so symbols are 
without the over-hat. On the other hand, when we come to calculation or realisation, 
any parameters estimated from using finite sample data should have the over-hat to 
indicate the approximation or realisation. However if there is no confusion, we will not 
repeat expressions with the over-hat.  

uR

uR̂ w

uR ŵ uR̂

uR eRw 1−= uSTAP γ

eRw 1ˆˆ −= uSTAP γ
ˆ w

Let the snapshot  with  be the complex 
valued sequence of the output of a linear equispaced N-element array after 
demodulation and pulse compression, corresponding to the return from a single range 
cell over an M-pulse CPI. If undesired signals  are Gaussian distributed, it is well 
known that the optimal (i.e., STAP) weighting vector is (Compton, Jr, 1988, Ward, 
1994), 

TTTT M ])1()1()0([ −= xxxx L 1)( ×∈ Nm x

ux

eRw 1−= uopt γ   (1) 

where γ  is an arbitrary scalar, which, without loss of generality, we will let equal 1 
and hence omit in the following equations.  is the covariance 
matrix of the undesired signals. The undesired signals  may consist of Gaussian 
distributed clutter, thermal noise and possibly point-source wideband noise jamming. 
The covariance matrix is generally unknown and often has to be estimated by the use 
of range samples via the so-called diagonally loaded sample matrix inversion (DL-SMI) 
method (Carlson, 1988, Ward and Kogon, 2004), as, 

MNMNH
uuu E ×∈= }{ xxR

ux
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IxxR δ+∑=
=

K

k

H
kku K 1

1ˆ  (2) 

where the subscript  denotes range bins, k δ  is a small value of the order of the system 
thermal noise level and I  is the identity matrix. The vector is the desired 
signal spatial-temporal steering vector. 

1×∈ MNe

)()( tstd ff eee ⊗=  (3) 

where  and  are the normalised target Doppler and spatial (azimuth) 
frequencies, respectively. Vectors  and  are the desired target temporal 
and spatial steering vectors, respectively, defined as, 

tdf tsf
)( tdfe )( tsfe

[ T
tdtdtd fMjfj

M
f ))1(2exp()2exp(11)( −= ππ Le ]  (4) 

and 

[ T
tststs fNjfj

N
f ))1(2exp()2exp(11)( −= ππ Le ]  (5) 

Using block component notation, (3) may be written as, 

)()2exp(1)( tstd ffmj
M

m ee π=      1,,1,0 −= Mm L  (6) 

The output of the optimum processor is the product of the Hermitian transpose of the 
optimal weighting vector times the data snapshot, 

xwH
opty =  (7) 

The coherent processing gain of the STAP processor approaches the upper limit, 
dB, for deterministic signals whose bearings differ from the jamming 

bearings, and whose Doppler frequencies differ from the Doppler frequency of clutter 
in the radar look direction. 

)(log10 10 MN

Given a target signal eα , where α  is the amplitude of the target signal, the SINR is 
defined as the ratio of the output target power to the output interference and noise 
power, 
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opt

H
optt

optu
H
opt

H
optt

u

t
opt y

ySINR
ξξ

===  (8) 

where . }|{| 2αξ Et =

For an unknown signal amplitude, a detection test statistic (DTS) of STAP has been 
proposed as the ratio of the output power to the power of interference and noise 
(Robey, et al, 1992), 

||
|||| 22

ew
xw

wRw
xw

H
opt

H
opt

optu
H
opt

H
opt

STAP ==Λ  (9) 

Comparing (8) and (9) we can seen that the STAP DTS is actually the SINR of the signal 
. In operations, once  exceeds a threshold, target presence is declared. x STAPΛ

3. Classical Displaced Phase Centre Antenna 

3.1 Displaced Phase Centre Antenna 
DPCA processing is a technique for countering the platform motion induced clutter 
spectrum spreading. The basic concept is to make the antenna appear stationary even 
though the platform is moving forward by electronically shifting the receive aperture 
backwards during the operation (Morris and Harkness, 1996).  

An airborne linear equispaced phased array antenna aligned with the flight direction 
and looking in the broadside direction is the default configuration in this report 
(though the radar is allowed to steer its look direction off the broadside direction, see 
numerical examples in Section 5). In particular, let a platform be moving in the x -
direction, at a speed of , a linear antenna array with  elements be parallel with the 
direction of motion, and looking at the broadside 

av N
y -direction, as shown in Figure 1. 

Symbols H , R , θ  and φ  denote platform height, range, elevation angle and azimuth 
angle, respectively. 



 

 

      
  

 DSTO-RR-0334
 
 

 
 

7 
 
 

 

x

y

o

z

y

x

P

α

θ

RH

φ

av

 

Figure 1: Geometry of a linear airborne antenna array. 

With the common full-array transmit aperture, the clutter return from clutter patch P  
received by antenna element  for pulse  is (Ward, 1994), n m

]coscos)/2(2exp[)exp()( 2/12
, φθ

λ
πϕξσ ddmTvnjjc raPPnm +=  (10) 

where  is the thermal noise level of antenna, 2σ Pξ  is the single-pulse single-element 
clutter-to-noise ratio (CNR) for the clutter patch P , Pϕ  is a phase term induced by 
clutter patch P ,  is the pulse repetition interval (PRI),   and rT d λ  are the antenna 
element space and radar frequency, respectively. 

The DPCA condition for the above configuration requires the so-called clutter slope 

dTv ra /2=β  (11) 

to be an integer. When 1=β , we have from (10), 

nmknkm cc ,, =−+       L,2,1=k  (12) 

It means that the phase centre of antenna element kn −  will move to the phase centre 
of antenna element n  after  pulses as shown in k Figure 2 (a). As a result the clutter 
signal received by element  from pulse m  should be statistically equal to the clutter 
signal received by element  from pulse 

n
1−n 1+m . The clutter cancellation can be 

achieved if we subtract them from each other. Having said so, it is worth noting that 
the nature of radar signals is a random process. The phase term Pϕ  and the intensity 
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term Pξ  are random variables and each obeys its own pdf. Equation (12) therefore 
should be understood as }{}{ ,, nmknkm cEcE =−+ , or )(,,, kcc nmnmknkm δ=−−+  where 

)(, knmδ  is a zero mean random variable. 

 Pulse 0

Pulse 1

Pulse 2

va0 1 ... N-1

0 1 ... N-1

0 1 ... N-1

 

Figure 2: Effective array positions for successive pulses of a CPI with 1=β . 

Equation (11) imposes serious limitations on any implementation of the DPCA 
technique. Once the element spacing and the pulse repetition frequency (PRF) are 
fixed, the platform velocity is also constrained. In practice, even if the condition of (11) 
is satisfied, the clutter cancellation is still limited due to other factors such as irregular 
motion and crabbing of the aircraft, spatial decorrelation among antenna elements and 
temporal decorrelation among pulses, as well as due to the intrinsic motion of clutter.  

3.2 Blum’s Adaptive DPCA 
Adaptive processing can tolerate certain perturbations. It is thus natural to include 
adaptivity into DPCA processing to restore performance under non DPCA conditions. 
Blum et al (1996) first proposed a suboptimum technique (which is optimum if the 
number of pulses in a CPI is two) and called it adaptive DPCA. (Blum et al, 1996, 
Klemm, 2002, Chapter 7, Guerci, 2003, Chapter 5). The algorithm was further discussed 
and expressed in a more general form by Guerci (2003, Chapter 5).  

To derive the Blum ADPCA, let us start from the case of a two-pulse system. 
According to STAP (1), the optimum weighting vector is, 

⎥
⎦

⎤
⎢
⎣

⎡
= −

)1(
)0(1

1:0 e
e

Rw opt  (13) 

where  is the covariance matrix of the undesired signals corresponding 

to pulses 0 and 1. Vectors  and  are sub-spatial-temporal steering 
vectors also corresponding to pulses 0 and 1, respectively, whose explicit expression is 
given in (6). This two-pulse processor formed from the principle of STAP is called two-
pulse ADPCA by Blum et al (1996). It can be seen that the Blum APDCA processor is 
the same as the STAP processor and thus optimum. If the number of pulses is greater 

NN 22
1:0

×∈R
)0(e 1)1( ×∈ Ne



 

 

      
  

 DSTO-RR-0334
 
 

 
 

9 
 
 

than two, each pair of pulses forms a two-pulse canceller; overall the weighting vector 
of the Blum ADPCA is (Blum et al, 1996, Guerci, 2003), 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−
−−

−

−

)1:2(

)2:1(
)1:0(

1
)1(:)2(

1
2:1

1
1:0

MMMM

ADPCA

e

e
e

R000
000
00R0
000R

w
MO

 (14) 

where  is the covariance matrix of the undesired signals and 

 the spatial-temporal steering vector corresponding to pulses 

 and , for . 

NN
mm

22
1:

×
+ ∈R

⎥
⎦

⎤
⎢
⎣

⎡
+

=+
)1(

)(
)1:(

m
m

mm
e
e

e

m 1+m 2,,2,0 −= Mm L

Equation (14) can be expressed as, 

eΓ

R000
000
00R0
000R

w

1

)1(:)2(

2:1

1:0

−

−− ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

MM

ADPCA O
 (15) 

where  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

×−××

×××

×××

NNMNNNN

NNNNNN

NNNNNN

22222

22212

22220

I00

0I0
00I

Γ

L

OM

L

L

 (16) 

where   is a  identity matrix,  a NN 22 ×I NN 22 × NN×20 NN ×2  zero matrix, and 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

=

)1(

)1(
)0(

Me

e
e

e
M

 (17) 

is the original steering vector. 

The corresponding test statistic is, 
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ADPCA
H
ADPCA

H
ADPCA

wRw

xw

Γ

Γ
=Λ

2

 (18) 

where  and . If Γxx =Γ
H

uΓΓRR =Γ Λ  exceeds a threshold, target presence is 

declared. It should be pointed out that because  (  does not exist, 
see below), the denominator of (18) cannot be further simplified as in (9).  

ΓeRw 1−
Γ≠ADPCA

1−
ΓR

The above Blum ADPCA processor (15) can be considered as a linear transform, , of 
the original vector space, i.e., the signal snapshot  becomes  and the spatial-
temporal steering vector  becomes . However, 

Γ
x Γx

e eΓ

{ } { } H
u

HH

MM

EE ΓΓRxxΓxΓx

R000
000
00R0
000R

==≠

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΓΓ

−−

))((

)1(:)2(

2:1

1:0

O
    if 2>M (19) 

Therefore, the Blum ADPCA is not optimal except for 2=M . 

The non-equal sign of (19) is easy to prove. One method is given here. The rank of the 
matrix on the left side of the non-equal sign is )1(2 −MN as each sub-matrix is a full 
rank  matrix. Because  is a positive-definite Hermitian matrix, the rank of 
the matrix product on the right side of the non-equal sign is 

NN 22 × uR

( ) ( ) { } MNrrrrr uu
H

uu
H

u ==== )(),(min)()( 2/12/12/12/1 RΓRΓR)(ΓRΓΓΓR , where )(⋅r  
is the rank function. This proof also shows that there does not exist a general linear 
transform  which lets the equal sign hold except for the case of Γ 2=M . The proof 
also indicates the flaw in some equations given by Guerci (2003, Chapter 5).  

To illustrate the above, we demonstrate here an explicit example of  and . 
The snapshot vector and the transform matrix, respectively, are, 

2=N 3=M
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⎥
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Γ

where  is the echo received by antenna element  for pulse m . The transformed 
covariance matrix is, 

mnx n
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 (21) 

Since the covariance matrix is Hermitian, we omit the elements below the main 
diagonal in (21). Comparing (21) with (15), we can see that the Blum ADPCA assumes 
zero sub-matrices (the unshaded sub-matrices) for all the off-main diagonal block 
matrices. Therefore the Blum ADPCA is not optimal for 2>M . As a consequence, the 
processing could lead to a significant SINR loss if the target’s Doppler is close to that of 
the mainlobe clutter. We leave the performance evaluation to Section 5. 
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4. Proposed Adaptive Displaced Phase Centre 
Antenna 

4.1 Formulation of Proposed ADPCA 
The starting point in the proposed ADPCA is to form the difference between the 
measurements of array elements 1 to 1−N  for pulse  and array elements  to 

 for pulse 
m 0

2−N 1+m , as 

⎥
⎥
⎥
⎥

⎦

⎤
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⎢
⎢
⎢

⎣

⎡

−

⎥
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=
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⎢

⎣

⎡

Δ

Δ
Δ

=Δ

−+

+

+

−− 2,1

1,1

0,1

1,

2,

1,

2,

1,

0,

)(

Nm

m

m

Nm

m

m

Nm

m

m

x

x
x

x

x
x

x

x
x

m
MMM

x  (22) 

which can be written in a compact form as, 

[ ] [ ] )1()()( 11 +−=Δ −− mmm NN x0IxI0x      2,,1,0 −= Mm L  (23) 

where  is a zero vector,  is an identity matrix and 

. 

1)1( ×−∈ N0 )1()1(
1

−×−
− ∈

NN
N I

1)1()( ×−∈Δ Nm x

If the condition 1=β  is satisfied and there are no decorrelation effects, statistically all 
the clutter signals will be suppressed and )(mxΔ  given in (23) will only contain noise 
residue. If 1≠β , which is the condition we are interest in,  and/or there exist 
decorrelation effects, the clutter signal will only be partially cancelled. We modify (23) 
as, 

[ ] [ ] )1()()()( 1 +−=Δ − mmmm N x0AxI0x      2,,1,0 −= Mm L  (24) 

where   is a parameter matrix to be determined. It means that 
instead of using a single measurement  to estimate  as in (23), we now 

using a linear combination of . This is sometimes referred to as an 
autoregressive (AR) process (Marple, Jr, 1987) or PAMF (Roman et al, 2000, Michels et 
al, 2003, Rangaswamy and Michels, 1997).  

)1()1()( −×−∈ NNm A

1,1 −+ nmx nmx ,

2,11,1 ,, −++ Nmm xx L

Our goal is to maximally suppress the clutter, i.e., to minimise the mean residue power 
with respect to the parameter matrix ,  )(mA
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{ })()(min
)(

mmE H

m
xx

A
ΔΔ  (25) 

The optimal parameter matrix  may be found from the least squares method (the 
Lagrange method), 

)(mA

{ }( ) 0
A

xx
=

∂
ΔΔ∂
)(

)()(
m

mmE H
 (26) 

Since in (25) is independent of the expectation operation, the expectation 
operation and the differentiation are interchangeable, and hence (26) can be expressed 
as, 

)(mA

( ) 0
A

xx
=

⎭
⎬
⎫

⎩
⎨
⎧

∂
ΔΔ∂
)(

)()(
m

mmE
H

 (27) 

The derivative of a scalar function  with respect to  is an 11)( ×∈Qf nm×∈Q nm×  
matrix (Van Trees, 2002, p. 1399), 

⎥
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Q

 (28) 

where , , , is the element of . After tedious but 

straightforward algebra, the equation satisfying 

ikq mi ,,1L= nk ,,1L= Q

( ) 0
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  2,,1,0 −= Mm L  (29) 

where  is a block submatrix of the covariance matrix 

. Subscripts  and  indicate the row and column of the block submatrix of , 

)1()1(
2121, ):,:( −×−∈ NN

nm nnmm R

uR m n uR
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and the ranges in the brackets indicate the rows and columns of . The block 

matrix form of  is given by, 
nm,R

uR

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

−−−

−

1,10,1

1,00,0

MMM

M

u

RR

RR
R

L

MOM

L

 (30) 

where  , NN
nm

×∈,R 1,,0, −= Mnm L . 

For simplicity, we rewrite (29) as, 

mmmm
H m ,1

1
1,1 ][)( +

−
++ ′′= RRA        2,,0 −= Mm L  (31) 

Since the true covariance matrix is unknown, , )(mA 2,,0 −= Mm L , can only be 
estimated using sample data in practice. Assuming the radar system is well calibrated 
and stable, and the pulse train is uniform, then for fast calculation, we can assume 

 to be independent of pulse number  in a CPI. This assumption allows the 
averaging processing to proceed using the slow-time (pulse) samples after the 
averaging processing using fast-time (range) samples, and has advantages and 
disadvantages. If there are sufficient data samples and each is an identically and 
independently distributed (iid) sample of undesired signal identical to that of CUT, 
then the averaging processing may lead to some processing gain loss as temporal 
correlation effects  as well as differences are being averaged. On the other hand, if the 
data samples are limited, the averaging process should make the estimate of  
more accurate and result in a robust processor. Therefore, the assumption that  is 
independent of  is not only for the reason of reducing calculation, but more 
importantly requires less sample data. The rationale of this assumption is given below. 
If clutter is modelled by the first-order clutter model, i.e., the model does not take 
account of various spatial and temporal decorrelation effects, the covariance matrix has 
a so-called Toeplitz-block-Toeplitz pattern (Ward, 1994), then we can immediately 
deduce all ,  to be identical. Temporal decorrelation effects such 
as range walk and clutter intrinsic motion are often modelled by the covariance matrix 
tapering (CMT) method which is often assumed stationary, i.e., the tapering coefficient 
is only a function of the interval between pulses (Guerci, 2003, Chapter 4, Clemm, 2002, 
Chapter 2). Under the CMT model assumption,  is still independent of the 
pulses. Note also that this assumption does not require any specific spatial correlation 
form as the averaging process is only in the temporal domain, though most models of 
spatial correlation are also assumed stationary (Guerci, 2003, Chapter 4).  

)(mA m

)(mA
)(mA

m

)(mA 2,,0 −= Mm L

)(mA



 

 

      
  

 DSTO-RR-0334
 
 

 
 

15 
 
 

An averaging process in the slow-time domain results in the parameter matrix  
to be independent of pulses, as, 

)(mA
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mm
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MM
RRRRA  (32) 

The averaging process of (32) means that temporal correlations such as the effects of 
range walk and clutter intrinsic movement will be averaged (similar to the CMT 
models). We will give numerical comparisons in the next section to justify such a slow-
time averaging process. 

It is understood that if , then the processor will reduce to the traditional DPCA 
with non-adaptability.  

IA =

The transform from  to  can be expressed in a compact form, as x xΔ

Bxx =Δ  (33) 

where  and has the form, NxMNM )1)(1( −−∈B
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 (34) 

We perform the same transform for the steering vector e , as, 

Beu =  (35) 

Analogous to STAP processing, for snapshot xΔ  and steering vector , the optimal 
weighting vector is, 

u

uRw 1−
Δ= γ  (36) 

where  is the covariance matrix of the residue signal  and can be 
estimated using range samples, by 

}{ HE xxR ΔΔ=Δ xΔ

H
u

K

k

H
kkK

BRBxxR ˆ1ˆ
1

=∑ ΔΔ=
=

Δ  (37) 

Since  is a residue noise vector, its elements should be mutually uncorrelated (the 
process of (33) is also referred to as a whitening process). The covariance matrix  

xΔ
ΔR
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therefore should only be a diagonal matrix, and its inverse is simply the inverse of each 
diagonal element. In reality, the non-diagonal elements of may not be zero, but 
their values will be smaller compared to the diagonal elements, and the inverse can be 
found approximately by letting all non-diagonal elements equal zero, i.e., 

ΔR̂

11 )]ˆ[diag(~ −
Δ

−
Δ ≈ RR  (38) 

The corresponding weighting vector (36) becomes, 

uRw 1~~ −
Δ= γ  (39) 

The weighting vector of (39) may not be optimal but should be close to the optimum. 

The resultant test statistic is, 

wRw
xw
~ˆ~
|~| 2

Δ

Δ
=Λ

H

H

ADPCA  (40) 

Since 1~ −
ΔR  is only an approximation of the inverse of ΔR̂ , the denominator of (40) 

usually cannot be further simplified as has been done in (9). 

4.2 Two Significant Advantages of Proposed ADPCA over STAP 
There are two significant advantages of the proposed ADPCA over STAP, one is 
computational savings and the other is its robustness when reduced samples are used 
in parameter estimation. 

4.2.1 Computational Savings 
The computational savings can be readily estimated. In the estimation, we only count 
complex multiplication/division, and ignore addition/subtraction. For simplicity we 
also assume that no special digital signal processing (DSP) hardware is used, so that all 
calculations are treated with the same weight. Special structures of matrices such as 
complex conjugate symmetry, which often lead to special algorithms to save 
operational counts (ops), are also not considered. For instance, the number of ops for a 
matrix multiplication  is  where ,  and .  XYZ = lmn nm×∈Z lm×∈X nl×∈Y

To estimate the total ops required, we further assume that the fixed-window 
architecture is used in the process. The fixed-window architecture only uses a single 
covariance matrix estimated from a section of K  range samples (secondary data) to 
process a section of  range cells (primary data). In contrast, the sliding-window rgK
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architecture estimates the covariance matrix for each range cell (or a few cells) from its 
surrounding range cells. According to a previous study, the sliding-window 
processing does not show any noticeable SINR improvement compared to the fixed-
window processing, though the former requires a much more considerable amount of 
computation (Dong, 2006).  

Ops required for STAP and the proposed ADPCA algorithms are listed in Table 1 and 
Table 2, respectively. To easy understand, calculations are divided into 5 steps (  to 

) for STAP and 9 steps (  to ) for the proposed ADPCA. Since the Doppler of the 
potential target signals is unknown, a search in Doppler frequency is necessary. In 
general we need at least 

1c

5c 1d 9d

M  Doppler filters. The total ops required for processing  
range samples using the fixed window architecture for STAP is therefore, 

rgK

54321 )( cMKccMccc rgt ++++=  (41) 

Similarly, the total ops required for processing  range samples for the proposed 
ADPCA is, 

rgK

)()( 987654321 dMdKdddMddddd rgt ++++++++=  (42) 

Table 1: Ops required for the STAP process.  

Algorithm Task Reference 
Eqn Ops 

1c  - form  using uR K  range 
samples 

IxxR δ+∑=
=

K

k

H
kku K 1

1ˆ  (2) 2)(MNK  

2c  - compute  1−
uR 1ˆ −

uR  (1) 3)(MN  

3c  - compute  optw eRw 1ˆ −= uopt  (1) 2)(MN  

4c - compute  0STAPΛ
ew

wRw
H
opt

optu
H
optSTAP

=

=Λ 0
 (9) MN  

5c - compute  STAPΛ
0

2|

STAP

H
opt

STAP Λ
=Λ

xw|
 (9) MN  
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Table 2: Ops required for the proposed ADPCA process. 

Algorithm Task Reference 
Eqn Ops 

1d  - form  A ⎥
⎦

⎤
⎢
⎣

⎡ ′⎥
⎦

⎤
⎢
⎣

⎡ ′= ∑∑
−

=
+

−−

=
++

2

0
,1
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0
1,1

M

m
mm

M

m
mm

H RRA  (22) 32 22 AAA NKNM +  

2d  - form K   s'xΔ Bxx =Δ  (23) )( 2
AANMK  

3d  - form  ΔR ∑
=

Δ ΔΔ=
K

k

H
kkK 1

1ˆ xxR  (27) 2)( AANMK  

4d  - compute  1−
ΔR

11 )]ˆ[diag(~ −
Δ

−
Δ ≈ RR  (28) AANM  

5d  - form u  Beu =  (25) 2
AANM  

6d  - compute  w uRw 1~~ −
Δ=  (29) AANM  

7d  -  0ADPCAΛ wRw ~ˆ~
0 Δ=Λ H

ADPCA  (30) AAAA NMNM +2)(  

8d  - form  xΔ Bxx =Δ  (23) 2
AANM  

9d  -  ADPCAΛ
0

2|~|

ADPCA

H

ADPCA Λ

Δ
=Λ

xw
 AANM  (30) 

Note: where 1−= MM A  and . 1−= NN A

Figure 3 shows the ratio of in percentage, as a function of the number of pulses, tt cd /
M , with three given parameters, the number of antenna elements ( ), the 
number of range samples ( ) used for estimating the covariance matrix and the 
number of range cells ( ) to be processed. The dominant part of the STAP 
algorithm lies in the computation of the inverse of the covariance matrix, which 
requires ops equal to the cube of the dimension of the matrix. On the other hand, the 
proposed ADPCA does not require the inversion of the full dimensional covariance 
matrix, so its ops are considerably less. In general, the proposed ADPCA algorithm 
only needs about 5-10% of the calculation required by the STAP algorithm. The larger 
the values of 

50,30,20=N
100=K

500=rgK

M  and , the smaller is the ratio of . N tt cd /

Furthermore, as mentioned, the inversion of the covariance matrix dominates the 
calculation in STAP. The method of the complete Gauss-Jordan elimination is often 
used to numerically compute the inverse of a matrix (Isaacson and Keller, 1966). Since 
this process is not linear, it is difficult to construct dedicated DPS hardware or perform 
parallel computation to implement the Gauss-Jordan elimination. On the other hand, it 
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can be seen that the dominant processes for ADPCA are linear. A linear transform can 
be easily implemented using either general DPS hardware or parallel computation. In 
this sense, the proposed ADPCA processing should have an even bigger computational 
advantage than the simple ops estimation and comparison shown in Figure 3. 
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Figure 3: Ratio in percentage of the proposed ADPCA ops to the STAP ops with the parameters 
of  and 100=K 500=rgK

                                                     

. 

The ops required for the Blum ADPCA processor has not been calculated. Qualitatively 
its computational requirement is higher than that of the proposed ADPCA but much 
less than that of STAP. It will be seen later that the processor does not perform well, so 
its detection loss cannot be justified by its savings in computation requirements.  

4.2.2 Robustness of Proposed ADPCA 
The performance of any adaptive processor depends on an accurate estimation of its 
parameters. In STAP in order to accurately estimate the covariance matrix, twice as 
many iid range samples as the size of the covariance matrix itself are required (Reed et 
al, 1974, Ward, 1994), or more correctly, about twice the number of non-zero 
eigenvalues of the matrix1. Since the size of the covariance matrix is MN , a significant 
number of range samples is required in order to guarantee a satisfactory performance 
of STAP. On the other hand, the proposed ADPCA uses a covariance matrix whose 
size is only 1−N . This suggests that the number of range samples required for an 
accurate estimate of the parameter matrix should be significantly smaller than that for 
the estimate of the covariance matrix in STAP. A physical interpretation for the 
different requirement of the range samples is that STAP only utilises averaging 
processing in the fast-time domain (range samples) to estimate its parameters whereas 
the proposed ADPCA employs not only the fast-time but also the slow-time (pulse 

 
1Due to the existence of thermal noise, the non-zero eigenvalue means that the eigenvalue is 
greater than the mean power of the thermal noise.  
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samples) averaging processing to estimate its parameters. Therefore, in the case of 
reduced samples, STAP may not perform due to a poor estimate of the covariance 
matrix while the ADPCA still robustly performs. More detailed analysis is given 
through examples in the next section. 

4.2.3 Inherent SINR Loss of ADPCA 
We need to point out that the proposed ADPCA is a dimensionality-loss process. Both 
the number of effective antenna elements and the number of effective pulses in a CPI 
are reduced by one. Therefore theoretically the maximum coherent processing gain it 
can achieve is )]1)(1[(log10 10 −− MN  dB compared to the gain of )(  dB for 
STAP. 

log10 10 NM

5. Performance Assessment 
A dataset generated using the high fidelity airborne radar simulation software, 
RLSTAP, and a dataset collected by the MCARM system were used to test the 
performance of the proposed ADPCA. The results of the Blum ADPCA were also 
computed, so the significant improvement of the proposed processor can be 
appreciated. The results of STAP serve as test benchmarks as they are optimum.  

5.1 RLSTAP Dataset 
Table 3 and Table 4 list parameters of the radar, platform and targets used in 
generating the simulated dataset. RLSTAP calculates clutter returns based on the 
United States Geological Survey Land Use Land Cover (USGS LULC) data and the 
Digital Terrain Elevation (DTE) data. Figure 4 shows the LULC data superposed onto 
the DTE data for the Washington D.C. area with the radar beam pattern. Details of the 
clutter model used in RLSTAP are unknown.  
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Table 3: Parameters used in RLSTAP for generating the simulated airborne radar dataset. 

Parameter Specification 
Radar 

Phased array Linear 20-by-4 elements, element pattern ( )φ6.0cos , 
azimuth spacing 0.12m, elevation spacing 0.15m 
uniform tapering for transmit 

Carrier frequency 1.2 GHz 
Polarisation VV 
LFM bandwidth 2 MHz 
PRF 2 KHz 
Number of pulses per CPI 32 
Peak power 30kW 
Duty 10% 
Sample interval 0.2 μs 
Look direction 30o from broadside towards nose, horizontal 

Platform 
Height 7 km 
Speed 175 m/s 

Undesired Signals 
Thermal noise Gaussian 
Clutter Washington D. C. area: (38.1oN, -76.9oE) to (39.6oN, --

75.2oE) 
Jamming None 

 

Table 4: Parameters of targets. 

Parameters Target 1 Target 2 Target 3 
Height (km) 3 3 3 
Position off mainlobe direction 1 km north 0.5 km south 0 
Radial velocity (m/s) -100 -20 150 
Doppler frequency (Hz) -500 860* -500 
Range (km)  50 60 70 
Range bin Number 1948 2256 2598 
RCS (sqm) 1 1 1 

*Since the radar looks at 30o from broadside towards the nose, the main lobe clutter has a 
Doppler frequency of 700 Hz. Therefore, target 2 is the most difficult to detect as its Doppler 
frequency is close to that of the mainlobe clutter.  
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Figure 4: The LULC data superposed on the DTE data of the Washington D. C. area. 

Before showing the results, it is worth noting that 

� Due to the effect of the clutter foldover, clutter returns from the first pulse 
statistically differ from those collected from the following pulses. The data collected 
by the first pulse was therefore discarded in the calculation. The number of pulses 
in a CPI and the number of antenna elements in the azimuth actually used in the 
calculation are 31=M  and  20=N , respectively. 

� According to the parameters given in Table 3, 46.1=β  so the simulation was under 
a non-DPCA condition. 

� The range resolution of the system is )2/( Bcr =Δ  where c  is the speed of light and 
B  the bandwidth of the LFM. The corresponding range sampling interval for iid 
samples should be sBt μ5.0/1 ==Δ . The actual range sampling interval used in 
RLSTAP was sμ2.0 . Therefore, the consecutive range samples will not be iid. 
Theoretically every third, or greater, samples  should be iid samples. 

� The DL-SMI method (Carlson, 1988) was used in the STAP analysis. The diagonally 
loaded coefficient was set to be 50dB below the mean value of the diagonal elements 
of the covariance matrix. This diagonal loading means that the single-pulse single-
element CNR is no better than 50dB (the single-pulse single-element CNR for the 
simulation was unknown but could be computed from the data).  

� Hamming windows were used for both the spatial and temporal steering vectors 
 and in the processing.  )( tsfe )( tdfe
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Figure 5 and Figure 6 compare the results of the STAP, DPCA (non-adaptability), 
Blum’s ADPCA and the proposed ADPCA obtained from using 267 non-consecutive 
range samples with an interval of 3 (801:3:1600)2. Figure 5 shows the signal level as a 
function of both the range bin and Doppler bin, whereas Figure 6 is a view of Figure 5 
from the direction perpendicular to the range bin, i.e., the Doppler bins are collapsed 
onto the range. It was found that STAP produced the best result if sufficient range 
samples were used in forming the covariance matrix. It can be seen that there is a few 
dB signal loss for target 2 (the mid range one, that is the most difficult to be detected, 
see the note on Table 4) in the results of both ADPCA processors (the loss of the Blum 
ADPCA is higher though) compared to the result of STAP, which can be clearly 
viewed from Figure 6. This is not a surprise result, as STAP is optimal if the covariance 
matrix is accurately estimated. The DPCA with non-adaptability processor performs 
poorly as expected since the radar was operated under a non-DPCA condition. Further 
numerical examples will not include this DPCA processor. 

  
(a) STAP (b) DPCA 

  
(c) Blum’s ADPCA (d) Proposed ADPCA 

Figure 5: Performance comparison between (a) STAP, (b) DPCA, (c) Blum’s ADPCA and (d) 
proposed ADPCA for the RLSTAP data using 267 range samples in forming the covariance 
matrix.  
                                                      
2The use of 800 (801:1600) consecutive range samples gave a very similar result.  
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(a) STAP (b) DPCA 

  

(c) Blum’s ADPCA (d) Proposed ADPCA 

Figure 6: Performance comparison between (a) STAP, (b) DPCA, (c) Blum’s ADPCA and (d) 
proposed ADPCA for the RLSTAP data using267 range samples in forming the covariance 
matrix. The results are plotted in the signal level versus range with the Doppler bins collapsed 
onto the range. 

Reducing the number of range samples for estimation of the covariance matrix leads to 
quite different results. Figure 7 and Figure 8 compare the results of STAP and the two 
ADPCA algorithms using 100 non-consecutive range samples (1301:3:1600). It can be 
seen that the clutter level has lifted significantly for the STAP due to insufficient range 
samples used for estimating the covariance matrix. Target 2 becomes hardly detectable 
for the Blum ADPCA. The performance of the proposed ADPCA, however, remains 
almost unchanged.  
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(a) STAP (b) Blum’s ADPCA 

 
(c) Proposed ADPCA 

Figure 7: Performance comparison between (a) STAP, (b) Blum’s ADPCA and (c) proposed 
ADPCA for the RLSTAP data  using 100 range samples in forming the covariance matrix.  
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(a) STAP (b) Blum’s ADPCA 

 
(c) Proposed ADPCA 

Figure 8: Performance comparison between (a) STAP, (b) Blum’s ADPCA and (c) proposed 
ADPCA for the RLSTAP data using 100 range samples in forming the covariance matrix. The 
results are plotted in signal level versus range with the Doppler bins collapsed onto the range. 

An example with a further reduction in range samples is shown in Figure 9 and Figure 
10 in which only 50 (1451:3:1600) non-consecutive range samples were used in 
estimating the covariance matrix. It can be seen that for such a small number of range 
samples both STAP and Blum’s ADPCA stop performing, whereas the proposed 
ADPCA still robustly works with little degradation. 
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(a) STAP (b) Blum’s ADPCA 

 
(c) Proposed ADPCA 

Figure 9: Performance comparison between (a) STAP, (b) Blum’s ADPCA and (c) proposed 
ADPCA for the RLSTAP data using 50 range samples in forming the covariance matrix. 
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(a) STAP (b) Blum’s ADPCA 

 
(c) Proposed ADPCA 

Figure 10: Performance comparison between (a) STAP, (b) Blum’s ADPCA and (c) proposed 
ADPCA for the RLSTAP data using 50 range samples in forming the covariance matrix. The 
results are plotted in the signal level versus range with the Doppler bins collapsed onto the 
range. 

In Section 4 we discussed the advantages and disadvantages of the averaging 
processing in the slow-time domain. In order to see the effect of this process especially 
with a reduced number of range samples, we show in Figure 11 the results of the 
proposed ADPCA without slow-time averaging, i.e., ,  are 
calculated individually using (31). Range samples used are the same as those of 

)(mA 2,,0 −= Mm L

Figure 
5, Figure 7 and Figure 9, respectively. It can be seen that the averaging processing 
helps significantly for the case of reduced range samples.  



 

 

      
  

 DSTO-RR-0334
 
 

 
 

29 
 
 

  
(a) 267 Range samples (b) 100 range samples 

 
(c) 50 range samples 

Figure 11: Results of the proposed ADPCA without using slow-time averaging processing.  

It is known that in order to accurately estimate the covariance matrix, the number of 
samples required is twice the dimension of the covariance matrix itself (Reed et al, 
1974, Ward, 1994), or more correctly, about twice the number of non-zero eigenvalues 
of the matrix (see footnote 1). Figure 12 shows the eigenvalues of the covariance matrix 
in descending order (the matrix itself was formed using 800 consecutive range samples 
(800:1600) with a diagonal loading of 50dB below the mean value of the diagonal 
elements of the covariance matrix). The number of eigenvalues above the noise level is 
about 200. Therefore, theoretically STAP requires about 400 iid range samples in order 
to accurately estimate the covariance matrix, or about 250 iid range samples if we treat 
those eigenvalues that are 60dB below the maximum eigenvalue to be noise.  
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Figure 12: Eigenvalues, in descending order, of the sampled clutter covariance matrix using 
800 range samples.  

The proposed ADPCA, on the other hand, uses matrices whose dimension is  to 
estimate its parameters. As a result, it requires significantly fewer iid range samples. In 
addition, STAP only uses the fast-time (range) averaging processing to estimate its 
parameters, whereas the proposed ADPCA employs not only the fast-time but also the 
slow-time (pulse) averaging processing to estimate its parameters. Therefore, the 
proposed ADPCA is more robust in the case of reduced samples. 

1−N

5.1.1 Comparison with PAMF 
The proposed ADPCA algorithm looks similar to the PAMF algorithm (Roman, et al, 
2000, Michels et al, 2003, Dong, 2006). However, there exist differences. First, the 
proposed ADPCA seems to be equivalent to PAMF with filtering order equal to one. 
PAMF with the filtering order equal to one usually does not perform very well but 
ADPCA does. The key point is that ADPCA utilises the principle of DPCA, whereas 
PAMF usually has to use a higher order of filtering to gain a good performance. 
Typical filtering orders are 3 to 5 (Roman, et al, 2000, Dong, 2006). An increase in the 
filtering order, however, also increases the size of the matrix to be inverted (the size of 
the matrix to be inverted is the filter order times the number of antenna elements), 
which in turn increases both the computational cost and the size of sample data. PAMF 
requires the inversion of diagonal block matrices of size  whereas the ADPCA does 
not have such requirement. 

N
Figure 13 and Figure 14 show the performance of PAMF 

with different filtering orders in which 100 (1301:3:1600) non-consecutive range 
samples were used. It can be seen that when the filtering order reduces to one, which is 
equivalent to the ADPCA algorithm, the processor fails to detect target 2. However, 
there is little SINR loss for target 2 if the filter order increases to 5.  
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(a) filtering order = 5 (b) Filtering order = 3 

  
(c) Filtering order = 2 (d) Filtering order = 1 

Figure 13: Performance of the PAMF processor with different filtering orders. 
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(a) Filtering order = 5 (b) Filtering order = 1 

Figure 14: Performance of the PAMF processor is dependent on the filtering order. The results 
are plotted in the signal level versus range with the Doppler bins collapsed onto the range. 

5.2 MCARM Dataset 
Detailed descriptions of the MCARM system can be found elsewhere (Sloper et al, 
1996, Fenner and Hoover, 1996). Some of the MCARM data analyses are also available 
(MITRE, 1999, RAFDCI, 1999, Sarker et al, 2001). The dataset #5-575 collected by the 
MCARM system was used in this report. The radar and platform parameters of #5-575 
are given in Table 5 and Table 6, respectively.  

Table 5: MCARM radar parameters. 

Frequency/ 
Polarisation PRF CPI Pulse 

Width 
Duty 
Cycle 

Range 
Resolution 

PRI 
 (μs /gates) 

1240 MHz/VV 1984 128 50.4 μs 10% 0.8 μs 504/630 

Table 6: MCARM platform parameters. 

Height Velocity Illumination Crab Angle 
Antenna Tilt Angle 
from Horizontal3  

3488 m 100.1 m/s 7.28o 5.11o Side-looking 

The receiver of the MCARM system consists of 22 receiving channels (modules) 
organised in two azimuthally identical rows. We treated data received by one row as 
                                                      
3 This angle is the sum of the antenna tilt angle relative to the platform plus the recorded 
platform roll angle. 
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secondary data and the data received by the other as primary data. The physical 
position difference between the two rows will in general induce a phase difference 
between signal arrivals at the two rows. This however should impose no effect as far as 
generating the covariance matrix is concerned. We also only used the data collected by 
the first 50 pulses in the process, hence, 11=N  and 50=M  in this MCARM data 
study. 

The antenna element horizontal spacing is 0.1092 m. With the parameters given in 
Table 5 and Table 6, we found 924.0=β , indicating that the data was collected under 
a non-DPCA condition. 

Figure 15 shows the clutter profile in range after the  range effect is compensated. 
The area illuminated by the radar mainlobe is mainly farmland with scattered houses 
(range bins 200-400 and 500-630, for example) and bay water (range bins 400-500, for 
example). The signal in range bin 68 is a replica of the transmitter signal and the useful 
clutter data are from around range bin 200 and beyond. 
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Figure 15: Clutter profile in range after the range effect was compensated. 3/1 R

A moving target in range bin 299 (a range ambiguous target) has been detected and 
reported previously (Dong, 2005). Range cells 289 to 309 were, therefore, excluded in 
the secondary data. An artificial moving target signal was also injected in the primary 
data in range bin 500 with a constant amplitude 30dB below the mean clutter of that 
bin and a Doppler frequency of –200 Hz.  

To evaluate the performance of the proposed ADPCA processor, we first formed the 
covariance matrix using nearly all the possible secondary data, range bins 200 to 600 
with the exclusion of bins 289 to 309. The results are shown in Figure 16. It can be seen 
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that all three processors have successfully detected both the genuine target in range bin 
299 and the artificial target in range bin 500. However, the detection of the artificial 
target in the STAP processing as well as the Blum ADPCA suffers a few dB signal loss 
compared to the detection of the ADPCA processing. This can be more clearly viewed 
in Figure 17 where the figures are plotted in the signal level versus range with the 
Doppler bins collapsed into the range. Other evidence readily seen from Figure 16 is 
that there are higher signal levels in the mainlobe clutter Doppler vicinity (note that 
due to the aircraft’s crab angle, the Doppler of the mainlobe clutter is about 150 Hz) in 
the results of both the STAP and Blum’s ADPCA, indicating that the clutter is not 
sufficiently suppressed, possibly due to the insufficient range samples used for 
covariance matrix estimation, although all possible range samples have been used. No 
such evidence however is seen in the result of the proposed ADPCA.  

  
(a) STAP (b) Blum’s ADPCA 

 
(b) Proposed ADPCA 

Figure 16: Detection results of MCARM data by the use of (a) STAP, (b) Blum’s ADPCA and 
(c) proposed ADPCA. The covariance matrix was formed using approximately 400 range 
samples. 



 

 

      
  

 DSTO-RR-0334
 
 

 
 

35 
 
 

  
(a) STAP (b) Blum’s ADPCA 

 
(c) Proposed ADPCA 

Figure 17: Detection results of MCARM data by the use of (a) STAP, (b) Blum’s ADPCA and 
(c) proposed ADPCA. The covariance matrix was formed using approximately 400 range 
samples. The results are plotted in the signal level versus range with the Doppler bins collapsed 
into the range. 

To test the advantages of the proposed ADPCA in the case of reduced samples, we 
greatly reduced the number of samples. The LFM bandwidth of the MCARM system 
was 1 MHz and the actual range sample interval was 0.8 μs. To ensure that samples 
were statistically independent, we used every second range sample as the iid samples. 
Results with the use of 21 (200:2:240) non-consecutive range samples to form the 
covariance matrix are shown in Figure 18. Comparing Figure 18 with Figure 16, we can 
see that the output of STAP has been seriously distorted due to reduced range samples 
which cannot provide an accurate estimate of the covariance matrix and hence 
suppress the mainlobe clutter. The situation of the Blum ADPCA is similar, but the 
distortion is less severe. On the other hand, the differences between results of the 
proposed ADPCA shown in Figure 16 and Figure 18 are minor, indicating that the 
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parameters of ADPCA can be estimated at a reasonably accurate level even using 
reduced samples. The plots of the signal level versus range with the Doppler bins 
collapsed into the range are shown in Figure 19. 

  
(a) STAP (b) Blum’s ADPCA 

 
(c) Proposed ADPCA 

Figure 18: Detection results of MCARM data by the use of (a) STAP, (b) Blum’s ADPCA and 
(c) proposed ADPCA. The covariance matrix was formed using 21 range samples. 
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(a) STAP (b) Blum’s ADPCA 

 
(c) Proposed ADPCA 

Figure 19: Detection results of MCARM data by the use of (a) STAP, (b) Blum’s ADPCA and 
(c) proposed ADPCA. The covariance matrix was formed using 21 range samples. The results 
are plotted in the signal level versus range with the Doppler bins collapsed into the range. 

Like STAP, the proposed ADPCA is fully adaptive to changes in the clutter 
environment and system parameters provided the effects of these changes have been 
included in the sample data used for the parameter estimation. In the above MCARM 
data analysis, we have seen that the proposed ADPCA is able to cope with all effects 
such as the antenna pattern distortion/degradation unavoidably induced by the 
aircraft, the shift of the Doppler frequency of the mainlobe clutter induced by the 
crabbing angle (as large as 7o for the MCARM dataset), the clutter notch widening 
induced by the clutter intrinsic motion and range foldover (see the report of Dong, 
2005, for detailed discussion of the effect of the range foldover) as well as various other 
spatial and temporal decorrelation in the MCARM system. However we should not 
confuse the ability to cope with changes and the degradation of the radar performance 
induced by these changes. The latter is the inherent result of the effects and cannot be 
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recovered by any means. For instance, a crab angle of 7o of the MCARM system causes 
the shift of the mainlobe clutter Doppler to be about 150 Hz. As a result, any moving 
targets whose Doppler frequencies are in the vicinity of 150 Hz and whose echoes are 
not as strong as the mainlobe clutter will become undetectable. The clutter notch 
widening caused by the various decorrelation effects, clutter intrinsic motion and 
range foldover will also reduce the radar’s effective detection region.  

6. Conclusions 
In this report we have proposed an algorithm, the adaptive displaced phase centre 
antenna (ADPCA), to process airborne phased array radar data for moving target 
detection. Its parameters are adaptively calculated by the autoregressive (AR) process. 
Although the name is not new, this proposed ADPCA is fundamentally different from 
the existing ADPCA as the former is an optimum processor whereas the latter is not. 
The proposed algorithm not only significantly reduces the number of samples required 
for estimating its parameters but also demands dramatically less computational effort 
with little sacrifice of the SINR loss in comparison to the conventional space-time 
adaptive processing (STAP). The algorithm does not have any assumptions, so it is 
fully-adaptive. The performance of the algorithm has been assessed using two airborne 
radar datasets, one generated using the high fidelity airborne radar simulation 
software, RLSTAP, and the other collected by the MCARM system. These two datasets 
were carefully chosen to cover various issues. First of all, the datasets did not satisfy 
the DPCA condition, so that the adaptability of the proposed ADPCA could be 
examined. Secondly the radar did not look in the broadside direction in the RLSTAP 
dataset. The second dataset was collected from a flight trial of MCARM and included 
effects of aircraft crabbing motion. Other decorrelation effects including radar 
instability, clutter intrinsic motion, range foldover and interference caused by the 
aircraft etc. were hence automatically included in the dataset. Therefore the evaluation 
of the proposed processor is realistic. The results of STAP have served as benchmarks 
in the evaluation. 

It has been found that the proposed ADPCA performs nearly as well as STAP, 
suffering at most a few dB of processing gain loss in the vicinity of the Doppler of the 
mainlobe clutter. However if there are insufficient clutter samples to accurately 
estimate the covariance matrix, the performance of STAP is severely degraded whereas 
the proposed ADPCA still performs as well as before. Mathematically STAP requires 
estimation of a covariance matrix whose size is the product of the number of antenna 
elements and the number of pulses in a CPI. On the other hand, the proposed ADPCA 
estimates its parameters by the use of a covariance matrix whose size is no more than 
the number of antenna elements. In addition, in estimating parameters, STAP uses 
averaging processing only in the fast-time domain, whereas ADPCA utilises averaging 
processing in both the fast-time and the slow-time domains. These two differences 
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make the proposed ADPCA more robust and require far less sample data. In general, 
the parameters of the ADPCA can be satisfactorily estimated once the number of range 
samples is equal to or greater than twice the antenna elements. The Blum ADPCA, on 
the other hand, is not an optimum processor and its performance usually is poor and 
suffers significantly especially when the target’s Doppler is close to that of the 
mainlobe clutter. 

The operational counts (ops) required for the proposed ADPCA has been estimated. In 
general, it only requires 5-10% of the computation of STAP. Since most of the 
computation for the ADPCA algorithm is linear transforms, parallel processing and/or 
hardware realisation can be easily implemented. In contrast, the dominant calculation 
of the STAP algorithm is the inversion of the covariance matrix which is not a linear 
transform and limits the application of parallel processing. In this sense, computational 
savings of the ADPCA algorithm are even greater than the simple ops estimation and 
comparison presented in the report. 
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