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ABSTRACT

This is an overview report which describes a method for automatic geolo-
cation of video from an airborne sensor. The approach described here uses
positional information from three sources to compute refined coordinates in
three dimensions for any feature in the video sequence. These three sources
are: firstly, sensor-platform metadata describing the likely sensor footprint
based on sensor-platform positional and attitudinal information; secondly, 3D
information of a scene inherent in a video sequence collected from a moving
platform; and thirdly, reference imagery of the region of interest that is geolo-
cated and georectified such as aerial photography. The report describes the
steps involved in this process, which have been successfully applied individu-
ally to two types of imagery (infrared MX-20 data, and high definition data
from project Crystal View). Investigation into the final 2D registration stage
and 3D registration with a CAD model is ongoing.
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An overview of geolocation of airborne video using 3D
models

EXECUTIVE SUMMARY

The information from airborne video sequences cannot be exploited fully from the
imagery alone. The position in which the imagery was observed is also vital. Currently,
this information is obtained from an embedded metadata stream, which provides platform
position and sensor orientation data. This data is generally only sufficient for a crude
estimate of the position of the imaged scene. More accurate information could be achieved
by registering this data to existing well calibrated sources of imagery such as from an aerial
survey.

A hindrance to the automatic registration of the video to the reference imagery is the
difference in pose of the two sensors. In this case, the 3D characteristics of the scene
would alter the observability and relative positions of each point in the image, so that
the video cannot be related to the image by a simple linear transformation. This report
provides an overview of the research conducted by DSTO into a system for automatic
video registration. The following is a list of reports and conference papers related to this
topic, some of which have been summarised in the current report:

e T.Cooke and R.Whatmough, “Detection and tracking of corner points for structure
from motion,” Technical Report, DSTO-TR-~1759, August 2005.

e T.Cooke and R.Whatmough, “Evaluation of corner point detectors for structure
from motion problems,” Proceedings of DICTA, Cairns, December 2005.

e T.Cooke and R.Whatmough, “Using learning algorithms to improve corner detec-
tion,” Proceedings of DICTA, Cairns, December 2005.

e R.Whatmough, “Combining shape from motion output with partial metadata,”
IEEE Conference on Advanced Video and Signal-based Surveillance, Sydney, Novem-
ber 2006.

e T.Cooke, R.Whatmough, N.Redding, G.Ewing and E.El-Mahassni, “On the extrac-
tion of 3D models from airborne video sensors for geolocation,” Presented at DASP
2006, to appear in Digital Signal Processing.

e E.El-Mahassni and T.Cooke, “A survey on the suitability of some recent 3D surface
reconstruction algorithms for airborne sensor imagery,” DSTO-TR-2064, October
2007.

e E.El-Mahassni, “New robust matching cost functions for stereo vision,” Proceedings
of DICTA, Adelaide, December 2007.

e T.Cooke, “An empirical analysis of errors in structure from motion,” Proceedings of
DICTA, Adelaide, December 2007.
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T.Cooke, “Automatic extraction of 3D models from an airborne video sequence,”
DSTO-TR-2095, January 2008.

T.Cooke, R.Whatmough, N.Redding and E.El-Mahassni, “An overview of geoloca-
tion of airborne video using 3D models,” DSTO-TR-2001, January 2008.

R.Whatmough, “Extracting the shape of a target from an image sequence with
incomplete metadata,” DSTO-TR-2101, February 2008.

R.Whatmough, “Error analysis of shape from motion extraction with incomplete
metadata,” DSTO Technical Report in publication, DSTO-TR-2102, February 2008.

R.Whatmough, “Registration of a Shape-From-Motion reconstruction to a geolo-
cated 3-D model,” DSTO Technical Report in publication, DSTO-TR-2103, Febru-
ary 2008.
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1 Introduction

Exploitation of video from airborne sensor systems requires knowledge of the location
of features in the sequence in real-world coordinates. This is particularly the case in
surveillance and reconnaissance applications from airborne platforms such as unmanned
aerial vehicles (UAVs). Typically, these sensor platforms will have some form of positional
awareness of both the sensor, its viewing geometry, and its optical parameters such as
focal length. These are used to compute the expected footprint that any video frame
forms from its view of the ground. This data is usually referred to as the metadata, and
in the better engineered sensor systems it will be incorporated with the video data as a
synchronised private data stream. For many applications, the geolocation accuracy of the
metadata from the sensor system is not sufficient, and determining accurate coordinates for
a visible feature in a video sequence is a manually intensive activity that involves searching
geolocated and georectified reference imagery for the corresponding feature from which to
determine the feature’s location. One answer to this problem is to re-engineer the sensor
system to actively sense the location of the scene features using such things as a laser range
finder or even an integrated LIDAR (LIght Detection And Ranging) which determine more
parameters about the location that are matched with geographic data for more accurate
geolocation. We take a different approach to the problem by automatically exploiting the
3D content inherent in the video sequence, because it has been collected from a moving
platform, in conjunction with the geolocated and georectified reference imagery to compute
more accurate geolocations for features in the imagery.

This report describes a system for accurate geolocation of objects in an airborne video
scene, by automatically registering it to a geolocated reference image. While the registra-
tion of 2D images is a well studied problem, in the current application, registration of the
video frames to an image is made non-trivial due to the real world being three dimensional.
Differences in the pose of the two imaging sensors may result in very different images of
structures with any appreciable 3D structure (such as buildings, which are the focus of
the current report). Although an individual frame from a video contains no explicit depth
information, such data may be inferred from the video sequence by exploiting changes in
the image with a change in viewpoint produced by the movement of the platform. This
may then be used to compensate for the difference in viewpoint between the video and
the reference image, and allow a relatively straightforward 2D registration to geolocate
the video in latitude and longitude. Theoretically, a point could also be located in height
if terrain data for the area is available.

The proposed system for georegistration consists of using the sequence of frames from
the video to construct a dense, textured 3D model of the area of interest. This model is
then reprojected to appear as if it were imaged from the same direction as the reference
imagery, therefore removing any 3D projection differences between the models (although
differences in shadowing will still be present). Standard 2D registration techniques can
then be applied to register the reprojected model (and hence the video sequence frames)
to the geolocated reference imagery.



DSTO-TR~-2001

1.1 Process overview

Figure 1 shows a detailed flowchart of the suggested registration algorithm. The ex-
traction of the dense, textured 3D model is accomplished by the first four steps. The first
step is the detection and tracking of feature points throughout the relevant part of the
video sequence. This step effectively reduces the amount of data required to be processed
from 10° pixel values for each frame to a few hundred, which can be processed much more
easily. Although no longer a feature of the current processing, it was originally envisioned
that these corner points could be chosen to encapsulate all of the important information
of the scene, and the rest of the imagery could be effectively discarded. This led to some
significant research into improving and evaluating corner detectors. Section 2 describes
the results of some of this research, as well as a brief description of the corner detector and
tracker proposed for the automatic geolocation system. The output of this first stage is a

[Video;input) [Referenceimagery)

Detect and track
feature points

2D pointsin images
Factorisation
Relative 3D point model vy Relative camera poses
Geolocation«
Metadata

Oriented 3D point model vy Camera poses

»> Dense matching

Textured 3D model
—— Metadata
Reprojection—
Estimated 2D image v ¥
Registratio -
Registered reprojected image

Figure 1: Flowchart of steps required for registering disparate sources of imagery
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set of measurements (z;(t), y;(t)) of pixel locations for a set of corner points 7 throughout
each of the video frames ¢.

The second stage of reconstructing the dense 3D model is referred to here as factorisa-
tion. This is the name of the fast singular value decomposition method used to construct
a sparse 3D model from a complete set of (z,y) measurements of points in all of the image
frames. In practice, this stage will also contain some additional processing to account
for missing and faulty tracker data from the previous stage. A number of methods have
been examined for filling in missing data, removing inconsistent points, and joining bro-
ken tracks. These methods have proven effective on the two test video sequences, and are
described, along with the actual factorisation technique, in Section 3. The output of this
stage is two matrices, P’ of camera poses and Q' of coordinates of sparse model points,
subject to unknown scaling, rotation, and possibly reflection and other distortion that
cannot be found from the video frames alone. The corrected values for these matrices can
be found by applying the equations

P=PT and Q=T7'Q (1)

where T is a small matrix, which is yet to be determined. By utilising metadata associated
with the sensor and its platform, the value of T" required for the equations (1) can be found
by minimising the differences between P and values found from the metadata in a least
squares sense. Then @) gives a correctly oriented and less distorted structure model and
P gives camera poses more reliable than those from factorisation or metadata alone. A
more detailed description of the geolocation process is given in Section 4.

The combination of the factorisation camera pose estimates with the metadata pro-
duces improved estimates for the camera poses in each of the frames. A geolocated estimate
for the position of the scene may then be produced by footprint area calculation from the
refined poses. The resulting estimate is still somewhat crude, which is why registration to
ground-truthed imagery is deemed necessary. To avoid problems with registering a set of
points with an image, the approach taken was to produce a textured model of the scene,
which requires an estimate of the depth of every point within the image scene. Originally,
this was to have been found by collecting groups of corner points into facets, and essen-
tially constructing a wireframe model of the scene, onto which texture from the imagery
could be mapped. This approach was tested, but there were a number of difficulties which
could not be easily overcome, so instead a dense matching algorithm was applied, as de-
scribed in Section 5. The dense matching implementation is based on a stereo image pair
taken from the start and end of the sequence. These are assumed to be the most widely
spaced in terms of camera geometry. Using the camera estimates from the geolocation
step, the images are rotated and scaled so that the optical flow from one to the other,
due to differences in depth, will be aligned in the vertical direction. The optical flow in
the vertical direction is then found for each pixel in the image simultaneously by minimis-
ing the global match cost between the images, with a penalty term for discontinuities to
produce a smoothed solution. A graph-cuts based method is used for this. The camera
pose information then relates the optical flow to the height, so that a dense georectified
3D model of the scene is obtained.
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Once the dense 3D model is obtained, standard techniques are available for adding
texture from one of the images used to construct the model, and to reproject it to any
direction required, including the direction of the reference ground-truth imagery. This
process, referred to in the flowchart as reprojection, is briefly discussed to at the end of
Section 5.

The final step of the process is to accurately determine the location of the scene in
the video sequence by comparing the reprojected model with the geolocated reference
imagery. The 2D image registration problem is considered to be a solved problem, and
there are a number of approaches implemented within the ADSS framework that are likely
to work well with the types of problems that are being dealt with. Section 6 gives a brief
technical overview of one of the registration methods that was successful in registering a
reprojected model calculated using the method outlined in this report, with a separate
source georeferenced imagery. Some further work on registration to an existing 3D CAD
model is expected to appear in a later report [20].

The georegistration that is the result of the complete process will have some degree
of error associated with it. Errors will be introduced, or modified, at each stage of the
process, but need to be quantified in some way so that the user of the system can have
some confidence in the results. Section 7 describes a framework which has been developed
for evaluating the error at each stage of the registration process. The framework has been
shown to provide usable error estimates for a subset of the steps in the complete process.
A more complete evaluation would require further work on registration and more cohesive
integration of the stages within the process. A summary and some conclusions about the
complete system are outlined in Section 8.
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2 Detection and tracking of feature points

Detection and tracking of feature points is the first stage of the process for the auto-
matic video geolocation task described in the introduction. There are two primary reasons
for this step to be included. Firstly, it reduces the amount of data required to be processed
from the billions of pixels in an image stream down to merely hundreds of tracked points
in thousands, or even just tens of images if frame subsampling occurs. This is roughly a
million fold reduction in the amount of data to process, which allows it to be processed
in a reasonable amount of time. The second related reason is that points are easier to
handle than are whole images for later camera and structure estimation modules. This
is not just because of the relative size of the data. In order to determine the 3D posi-
tion of a point in an image, it is necessary to find a correspondence to that point in at
least one other image. A dense 3D model would require this for every point in the image
which could, in theory, be computed using optical flow techniques. Most existing optical
flow algorithms have some difficulty in determining the motion of areas of fairly uniform
intensity, which is frequently a large proportion of the image. The more robust approach
taken here effectively computes the optical flow only at selected points within the imagery,
which can then be used to constrain the solution over the remainder of the image.

Video input ‘ ‘

Replace lost
tracks

Corner detection

Estimate corner position
in next frame.

Search for best
corner match

Consistency check

Y
2D point locations in images

Figure 2: A flow diagram of Stage 1: Detection and tracking of corner points
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Figure 2 shows the detailed structure of the detection and tracking. The recommended
method is the KLT (Kanade, Lucas and Tomasi) method [15], which is one of the more
commonly used video processing algorithms and makes up the first three steps of the
flowchart.

The first step is to detect prominent points (variously referred to as corners or features)
in an image from the video sequence. The KLT tracker has a default method, referred
to as the Shi-Tomasi [12] detector, for doing this. Earlier in the development of this
project, it was thought that using a more judicious choice of tracked features could allow
a dense 3D model to be produced without any further reference to the video frames. This
could be achieved by detecting the corners of building structures, and segmenting these
corners into facets from which a 3D model could be built up. In support of this idea,
algorithms for more accurately detecting corners were required. A DSTO report (DSTO-
TR-1759) [2] was written by Cooke and Whatmough on the research in this area, much
of which was summarised in two conference papers [3],[4]. The report contained technical
information on seven different commonly used corner detectors from the literature, and a
protocol under which the performance of the detectors could be empirically determined.
The corner detectors were then compared and it was found that the Harris detector [9] was
clearly the best of these, although the improvement compared to the Shi-Tomasi detector
was not particularly great. Figure 3 shows some ROC (Receiver Operating Characteristic)
performance curves for the common corner detectors, as well as a set of manually marked
corner points which were used to assess the performance.

Within the corner detection report [2], a number of alternative detection algorithms
were also proposed, all of which outperformed the Harris detector in some circumstances.
Again the amount of improvement was not great (removing at most about 20 percent
more false corners), and came at the expense of greater computational cost. The second
conference paper [4] also suggests an improvement to the Harris detector by modifying
the shape of the smoothing function which is convolved with the image. This modification
was accomplished using a genetic algorithm to optimise performance, and resulted in small

Comparison of some common corner detectors

Manually selected corners from the Parafield fly-over 1

L L L L
2 4 6 8

Number of false alarms

Figure 3: An image of Parafield airport with corners marked, and some ROC curves
showing the performance of some commonly used detectors
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to modest gains depending on the particular performance metric used. The link between
the detection of corner points and tracking algorithms was also examined; some new and
existing detectors were derived under the assumption that corners are in general those
points in an image that are easiest to track.

Although the report on corner detection [2] described some interesting results, none of
the tested detectors performed unambiguously better than the default detector. A later
report (DSTO-TR-2095) [6] used an identical metric to measure the performance of two
previously untested detectors: a phase congruency detector, and the FAST detector [10].
The FAST detector was found to detect corners better than Harris, and is much faster
making it a suitable replacement for the Shi-Tomasi detector in the KLT stage.

After the detection of corners, to obtain consistent points in an image it is required to
track them between frames. The tracking component of the flowchart in Figure 2 consists
of two steps. The first is a position estimator, which estimates a region in which a corner
from one image is likely to appear in the second. In video sequences there is generally not
a lot of movement between frames. For this reason, the KLT tracker explicitly assumes
that the corner will appear in the second frame within a small fixed neighbourhood of its
position in the first frame. For fast motion or low frame rates, more complicated estimation
techniques (such as a Kalman or Probabilistic Multi-Hypothesis Testing (PMHT) tracker)
may be used, but these are unlikely to be needed for the current application.

Having guessed a rough position for the corner in the next frame, a more exact cor-
respondence is then sought based on the image intensity values. The KLT method solves
for translation between successive frames (or optical flow) by minimising the dissimilarity
between small image windows around the detections in the two images. If the two image
frames are given by I; and I3, then the dissimilarity measure is

N N
D(r) = Z Z wey (I (2, y) — Iao(z + 71,y + 72))%. (2)
rz=—N y=—N

A fast iterative algorithm is available to minimise this, which under the assumption that
I is an exact translation of I, involves solving the matrix equation

< / VI(X)VTI(x)w(X)dx> d=e

where I(x) is the image, V is the gradient operator, defined as a column vector, w(x) is
some local weighting function (frequently a Gaussian, or a constant over some rectangular
window), d is the displacement between the images, and e is a measure of the dissimilarity
of the images. The image displacement can be found most accurately when the matrix on
the left has large eigenvalues, which do not differ in scale too much. As a result, if A\; and
Ao are the two eigenvalues, the best points for tracking have the largest values of

min(Ag, A2).

This method for choosing the points defines the Shi-Tomasi detector, and is the default
corner detector for the tracker because, in some sense, it detects the points which are easiest
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to track, which should lead to fewer incorrect tracks. Other detectors (such as FAST) may
be used here instead.

After the points have been detected, and the KLT tracker has estimated where they
have moved to in the next frame, there will often be some mismatches. For instance, a
point might move outside of the image range, or be obscured by other parts of the scene, in
which case the tracker will determine the next best alternative. A consistency check then
follows, which has two mechanisms for detecting a bad match. Firstly, the dissimilarity
given by equation (2) will be relatively large for the poor matches, so good matches are
required to have dissimilarities below some threshold. Secondly, since it is assumed that
the frame rate of the video and motion of the platform are such that there is only a
minimal change in camera position between frames, then the relationship between the
positions of the points in the two frames should be approximately affine. Any points with
high dissimilarity, or inconsistent with an affine model are then marked as bad, and are
no longer tracked. If too many points are lost, then new tracks are initiated by applying
the Shi-Tomasi detector to the new frame.

To date, detection and tracking algorithms have only been applied to sequences of a
few thousand frames, where the building of interest is always in view. Acceptable results
seem to be achieved using the proposed method, which has been implemented within
the ADSS (Analysts’ Detection Support System) infrastructure. In operational settings
however, there are a number of complications. For instance, in very long sequences, the
appearance of the corners in the images will change, which will tend to increase the drift
in the tracked points. Furthermore, to increase the area surveyed, the sensor is unlikely
to dwell on a target for an extended period, which will prevent the corners from being
tracked successfully. The effect of these problems is not entirely clear, and would need to
be assessed more clearly before operational deployment. It is expected that a user interface
will be required to solicit user input on the subset of a video sequence to be processed as the
simplest solution. However, as the available computing hardware increases in capability,
the video sequence could be segmented regionally, on the basis of the metadata-derived
footprint, and the video segments processed automatically.

3 Sparse 3D models

The proposed second step in automatic geolocation was referred to in the overview
block diagram of Figure 1 as factorisation. This stage takes the tracked corner measure-
ments from the previous step, and determines a set of 3D corner points and a series of
camera positions which could produce these measurements under the assumption of a
particular camera model. Due to limitations inherent in the measurement data from air-
borne imagery, there will usually be a number of parameters of the model which cannot
be determined. This will include ambiguities in overall scale, translation and rotation of
the model, difficulty in distinguishing between a model pointing towards or away from
the camera, and a strong sensitivity to noise of the scaling of the model in depth. Due
to these limitations, the resulting sparse 3D model is referred to as a relative 3D point
model. Extra information in the form of metadata from the imaging platform is required
to overcome these limitations, and this is handled by the subsequent geo-coding stage,
described in Section 4.
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The determination of a set of points in 3D and camera poses which are consistent with
a set of tracked corners requires a model of the process by which a scene is captured as an
image by the sensor. Many such models exist, some of which have been listed here from
least to most complicated:

e Orthographic: The points are projected orthogonally onto a plane parallel to the
target distance
focal length

This model is suitable for views of a target from a large, fixed distance.

image plane. The result is then scaled by an unknown constant,

e Scaled Orthographic or Weak Perspective: This model differs from the ortho-
graphic model in that the target distance or focal length and scale may vary and
the scale is unknown and different in each frame. It is suitable for views of a target
from a large and varying distance.

e Paraperspective: The points are projected parallel to a line from camera to tar-
get centre onto a nearby plane parallel to the image plane, then scaled as in the
Scaled Orthographic case. The model is suitable when the target distance varies
and parallax changes are significant but perspective distortion is not.

e Perspective: The points are projected towards the camera centre onto the image
plane, then scaled by a constant. This model is suitable for close targets but may
lead to numerical difficulties for distant ones.

For airborne video imagery, the scaled perspective model is judged most suitable,
because target distances clearly vary but fields of view are narrow and no convergence of
parallel lines is evident. For wider views of target surroundings, the perspective model
may be more appropriate. A more detailed discussion of camera models is available [18].

Having decided upon an appropriate camera model, Figure 4 now gives an overview
of the process used to produce a sparse relative 3D point model and a set of relative
camera poses from the 2D corner point measurements. There exists a very fast method
for solving this problem, referred to as the factorisation method, which is based on the
singular value decomposition. This is described in Subsection 3.1. In practice, this cannot
be used directly to all of the data because it makes the unrealistic assumption that all of
the features have been successfully tracked to all of the image frames. It can, however,
be used to give an initial estimate which is obtained by finding a subset of features and a
subset of image frames for which this assumption is true. It is beneficial if this core set
of measurements is made as large as possible. A heuristic method for estimating the best
subsets uses a greedy algorithm, which adds a frame or a feature so that the total number
of measurements in this core matrix is increased by the largest amount. This is repeated
until no further additions can increase the number of measurements.

The initialisation with factorisation will, in general, use only a small fraction of the
total data available. As later steps in the processing chain require accurate camera pose
estimates for widely separated frames, further processing is needed using more of the
available data. A number of different methods for incorporating this data into the es-
timation have been considered. One commonly used technique is “hallucination” which
estimates the missing corner measurements so that factorisation can be used on all of the
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Figure 4: A flow diagram of Stage 2: Extracting a relative 3D point model from corner
measurements

data simultaneously. An overview of some hallucination methods is given in two reports
(DSTO-TR-2101 and DSTO-TR-2095) [18], [6]. Although these techniques did not always
work well, one of the methods which was based on extending the core part of the mea-
surement matrix a corner or image frame at a time, was modified to give the proposed
algorithm.

Each time through the loop in Figure 4, a set of measurements of a particular corner
is eligible for addition if it was tracked for a large fraction of the currently selected subset
of image frames. A check is then made to determine whether the track is consistent with
being a fixed point in the scene. This is done by using the current camera pose estimates
to estimate the 3D position of the new point. Then parts of the sequence where the
corner measurements differ from their expected positions may be discarded. The expected
positions, in frames where no measurement information is available, can also be used to
determine whether it is appropriate to join tracks. More information on the consistency
check and track joining is given in Subsection 3.2.
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Having determined that a corner track is to be added, the final step is to update the
camera poses and structure information on the basis of this new information. As only a
relatively small amount of information is added each time a track is added, the resulting
best solution (in a least squares sense) will be fairly close to the best solution without the
new data. In this case, rather than solving the entire problem again using factorisation
step, it is acceptable to improve the solution using a sequential update formula. Two
methods for doing this are described in Subsection 3.3. The first method has been proven
effective on several airborne sequences, where there is not a lot of missing data between
frames. It is basically a single step in a steepest descent method for minimising the least
square error between the measured camera positions and those estimated from the model.
The second method is based on work by Shum et al. [13] and was found to be the most
effective on another data set where occlusions were more significant, so may prove even
more robust to missing data.

Following the addition of as many corner tracks and images as is sensible, the resulting
relative 3D point model and camera pose information will be based on a large fraction
of the data. A lot of the inconsistent data will have been thrown out, and the resulting
estimates should be quite robust.

3.1 The factorisation method

Tomasi and Kanade [14] first noted that the problem of interpreting sets of feature
coordinates in frames as different projections of coordinates in space can be treated as a
matrix factorisation problem. This is done as follows.

Firstly, choose a weighted mean of the feature coordinates (preferably their centroid)
as a reference point and subtract it from each point. Repeat this for each frame and
consider it done for the (yet unknown) spatial positions, assuming for the moment that
all features are found in all frames.

Let the orientation of the i*" image plane be set by specifying vectors

ei1 = (ei11, €12, €i13)
ei2 = (€21, €22, €523)

of length equal to the scaling factor S;. Let the j** feature point have relative target
coordinates (z;,y;, 2;) and coordinates (u;j,v;;) in the i image. The scaled orthographic
projection gives the two inner products

Ujj = €115 + €i12Y; + €i13%;
Vij = €217 + €;22Y; + €232;
and the full set of projections can then be written in the form

11
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(illustrated for the 3-image, 4-feature case). This may be written as O = PQ, where the
observation matrix O is given, and assumed to be complete, and factors P, Q are required.

Since P has three columns and Q has three rows, O must be of rank three or less
(when errors of measurement are absent) and the singular-value decomposition of O can
be used to find well-fitted factors P’ and Q' of the right dimensions. The most general

Figure 5: First and last of 14 frames of an airport control tower.
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Figure 6: Reconstruction of the airport control tower, oriented.

factors are then P'T and T~!Q’ where T is any non-singular 3 x 3 transformation.

In the absence of outside information, T cannot be fully determined. It is constrained
by the requirement that u;; and v;; are orthogonal and of equal (but unknown) length
S; for each frame number i, and by the further condition that S; = 1 (without which
the constraint equations are singular). Under these conditions, T is known to within
an arbitrary orthogonal transformation and the relative scales are known. There remain
ambiguities in absolute scale, orientation of the target and a possible reflection of the
target.

There is an alternative form of the factorisation method in which the reference point
location is not subtracted from the observations, but entered through the projection equa-
tions. In this form, the observation matrix is of rank four, and the transformation T, now
4 x 4, has further indeterminacies to allow for an arbitrary change of origin.

As an example, a 14 frame sequence of an airport control tower at Parafield, South
Australia, is now considered. Each frame has been marked with 53 hand-selected features,
whose coordinates were used to construct the observation matrix O, to which factorisation
was applied. Figure 5 shows the first and last frames of the sequence. Figure 6 shows a
reconstruction of the points, on the ground or the near side of the building, obtained by
the rank-three factorisation method, appropriately oriented and joined by selected lines
to aid visualisation.

3.2 Dealing with poor tracking data

In practice, the observations from the feature detector and tracker of Section 2 are
neither always accurate nor complete. For instance, if a feature appears next to another
of similar appearance, the tracker might be lured by the wrong feature. Alternatively, a

13
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feature might move out of the image frame, or become obscured by parts of the target or
by other nearby objects, in which case the tracker might latch onto the next best match or
track could be lost completely. Either of these cases can cause problems with accurately
determining 3D structure and camera poses, and need to be corrected for.

The problem of inaccuracy in measurements has already been partially compensated
for as a part of the tracker. There, it was assumed that due to the small time between
frames, that a global affine transformation could be used to relate the features from one
frame to the next. A more refined approach is used here to throw out feature points which
do not move as if they belonged to a rigid body (i.e. moving objects or points which
slowly lose track). Two methods have been used successfully for removing inaccurate
measurements. The first is based on RANSAC, as in Section 2, where factorisation is used
to estimate the camera parameters for sets of three randomly selected tracks over three
non-consecutive images which span the entire image sequence. The estimated camera
parameters can then be used to determine the 3D locations of each of the tracked points,
as long as they appear in at least two of the three frames. The expected positions of these
points may then be compared with the observed positions to find the number of consistent
points. The calculated camera poses with the largest number of consistent points is then
the robust estimate, and the inconsistent points may be thrown away. This method was
of particular use for Section 5, which uses stereo methods to perform dense matching, and
so only requires the relative camera poses in two frames.

The second algorithm removes poor data on a sequential basis, and so is the method
currently recommended for use in the steps outlined in Figure 4. From the factorisation
step, an initial estimate of a subset of camera poses is available, and simple linear least
squares can be used to estimate the 3D position of a point given a number of observations
within this subset of frames. The expected positions of this 3D point in the image subset
may then be calculated and compared with the measurements. All of the inconsistent
measurements are discarded, and if there are too few measurements left, the entire track
is thrown away. Otherwise, these points are kept and added to the measurement or
observation matrix. At this stage, the frames for which there is no measurement data for
this feature are compared with all of the frames for which there is data. If there exists
another feature with observations consistent with the predicted positions of this feature,
then it is likely that these observations belong to the same feature, and the measurements
are merged into a single track. The camera positions and structure information are then
updated on the basis of the added observations, as described in the next Subsection.

3.3 Sequential update

The factorisation method from subsection 3.1 obtains estimates for the 3D positions
of features, as well as camera poses, from the 2D positions of all points in all frames. In
practice, a full matrix of data is only available for a small subset of tracks and frames, from
which an initial set of parameter estimates can be obtained. A more accurate result can
be achieved by minimising the reprojection error over additional data, but methods for
doing this must be able to handle missing data. For purposes of computational efficiency,
it is also useful for the method to allow a fast sequential update of the parameter estimates
as additional frame or track information is made available. This subsection describes two
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methods for sequentially updating the 3D location and pose estimates. The first of these
appears to work well on several airborne video sequences and other toy simulations, and
is the method currently recommended. The second approach is based on Shum’s method
[13] which appears to work better for scenarios where occlusion plays a much larger role.

Both of the proposed methods for sequential update with missing data start with a
large complete submatrix of observations. This submatrix may be chosen in a greedy
manner by adding rows and columns which give the greatest increase in the number of
measurements contained in the complete submatrix. Inaccurate data and merging broken
tracks may then be accomplished using the method of Subsection 3.2, and a solution may
be obtained for the filled sub-matrix using factorisation. The addition of a new track, or
image frame, means that the new matrix will no longer be completely filled. However, since
a good estimate of the solution is already available from factorisation, the best solution
with the addition of a small amount of extra data will be very close to the original solution.

The first method for dealing with the missing data assumes that a single iteration of
a gradient descent update formula gives sufficient improvement for accurate parameter
estimation. The squared error between the observations and the measurements will be
given by

Total error = ZZwij (Oij - Zpikaj - ti) = Z ZEZZJv
i g k i g

where w;; is one when a particular feature is observed in a given frame, and zero otherwise.
E;; is therefore a matrix of errors between the model and the observations, and is zero
when there is no observation available for comparison. Minimising this total error with
respect to the unknown quantities, using a steepest descent method, will then lead to the
update formulae

P’ =P + AEQT, Q = Q+ \P'E, ti=ti+ XY Ej,
J

where the step size A may be chosen to satisfy the Wolfe criteria to guarantee convergence.
Applying the above update formulae each time a new feature or a new image frame is
considered will result in an estimate of the parameters which depends on most of the
available data.

The second method for sequential update of missing data is based on Shum’s method
[13], which is an iterative procedure which fixes the unknown matrix P and solves for
Q. using a simple linear least squares. Then Q is fixed, and P evaluated using the same
method, and these steps are repeated until convergence is achieved. For a sequential
update, the initial solution is expected to be fairly close, and only a few iterations should
be necessary to update the solution. This method was one of those evaluated on the
“dinosaur” data set, which contained a relatively small number of frames with a large
number of occlusions, and no point appearing in more than half of the image frames. A
comparison of methods for this data was presented as part of a technical report [6] and a
conference paper [5], and found that Shum’s method seemed to be the best of the tested
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methods. Although this may be more suitable than the gradient descent based method,
it has not been as well tested on real airborne video sequences.

In both of the above sequential update schemes, the camera pose matrix P is not
constrained in any way, which means that the camera vectors are unlikely to be orthogonal,
as required for the scaled orthographic camera model. The poses can be de-skewed, as
described in the metadata report [18]. Also, the resulting estimates will suffer from the
same limitations inherent in the factorisation process, in that from the image data, it is
only possible to determine the matrices P, Q, and the vector t, accurately up to some
linear transformation, which means that the resulting models only give useful relative
information. The problem described in this report demands geo-referenced information,
and this can only be achieved by incorporating additional information. The next Section
describes how metadata from the image stream may be used to convert the relative 3D
point model into an absolute model with rotation, orientation, translation and scaling of
the camera poses and 3D feature positions in a georeferenced coordinate system.

4 Use of metadata for geolocation

The previous sections have described how a set of image frames from a video sequence
can produce a sparse 3D model of the scene. The suggested method involves: detecting cor-
ner points, tracking them through the image sequence to produce a set of 2D observations,
O, and then finding a set of camera poses P and 3D point locations Q and translations t
which can approximately replicate these observations under a scaled orthographic camera
model. The resulting sets of parameters P, Q,t cannot be determined unambiguously.
This section briefly describes a method for resolving ambiguities, and refining the param-
eter estimates, taking into account extra information that might be associated with the
image stream. A more in depth discussion of this work will be available in a DSTO report
(DSTO-TR-2101) [18].

Some airborne sensors are able to record information about themselves during imaging.
Typically, the information is not available for every frame, and is not accurate enough
for any two frames to allow a straightforward stereo reconstruction of the target. A
method such as factorisation that uses all the available frames is still needed to perform
the reconstruction, but the metadata can help to locate the target on a map and orient it
to local coordinate axes (east, north and vertical).

The metadata is used to define the camera coordinate system (horizontal, vertical,
distance) to the local coordinate system at the target, for at least some of the frames. The
following information is needed to do this:

e The position of the camera (latitude, longitude and altitude of the platform).

e The orientation of the camera. (This could be the orientation of the platform given as
yaw, pitch and roll, and the orientation of the camera relative to the platform given
as pan, tilt and swing. The sensor system may have already done the calculations
needed to combine these into overall yaw, pitch and roll values.)
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e An extra quantity to define the range of the target. (This could be the range from
a laser rangefinder, the elevation of the ground if it is level around the target, or
digital map data if the terrain is more complex.)

e The focal length of the camera. (This may vary, either by lens adjustments or by
switches from one camera to another. If not, it should be known as a sensor property
and not be needed in the metadata.)

e The pixel sizes, horizontal and vertical. (These may be the same. They are a sensor
property and are not needed in the metadata.)

The metadata is used by recognising that if the camera-to-local coordinate transforma-
tion is defined for frame 7, so are the basis vectors e;1 and e;o in the projection equations
in matrix form. Let these vectors be assembled into a matrix Py, like P, in which rows
relating to frames with no metadata are indeterminate. We may now write

P'T = Py,

where the tilde indicates the omission of rows for frames with no metadata. This equation
can be satisfied in the least-squares sense by taking

- ~N\—1 - -
T = (P’TP’) p'p,

so T is fully determined (except in degenerate cases) as far as feature location and metadata
availability and accuracy allow. The resulting feature coordinates in 77'Q will be in the
local coordinate system, defining the target orientation. The target location has already
been determined from the metadata and cannot be improved unless better known objects
are available nearby for comparison. The target size is so far based on relative scaling

target distance
o =222 for one or more

factors (with S; = 1), but can be corrected to match focal Tength

frames.
There is an alternative method for determining 7. The factorisation method must find
tentative values of P and @ while determining the scales S;. Call them P” and Q”. The

correct values are now only a rotation and a possible reflection away, say by T7”. Then
take

T — <P~”TP~") _1P~NT}3M

and take P = P"T" and Q = T”7'Q". Whether this method is better than the direct
method is still a matter for investigation.

5 Dense matching

From the previous steps, a set of points in the scene have been detected and tracked
throughout the video sequence. A factorisation approach has then been used to produce a
3D model of the scene at these points, although the resulting model still has an arbitrary

17
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rotation and scaling. Metadata is then used to resolve these model ambiguities to produce
a geolocated 3D point model. In order to reproject the scene to a different viewpoint, it
is necessary to determine the 3D geometry of the entire scene in a procedure called dense
matching.

Figure 7 shows a flowchart of the process of constructing a dense 3D model from two
widely separated frames within the video sequence. From the knowledge of the camera
poses for each of the two images, as obtained from Section 4, epipolar lines may be calcu-
lated. An epipolar line shows the vector normal to one image as it appears in the other
image. This means that a point in one of the images must, if it appears in the other
image, lie on the corresponding epipolar line, with the distance it moves along the line
being related to the depth of that point in the scene. The first stage in the flowchart is

Two images Georectified
from video @ ¢ camera poses

Rotate and scale
images using
epipolar geometry

~

Lowest resolution
y images

Set up graph and
calculate arc weights=
for all disparities

Y

Partition graph using
minimum cut, and
extract disparity.

Update upper and
lower disparity bounds.

Improve
resolution?

» Create VRML file - »

Figure 7: A flow diagram of Stage 4: Construction of a dense 3D model
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to rotate and scale each of the images so that the epipolar lines are vertical and equally
spaced in both images. This means that in a rigid scene, the optical flow from one rotated
image to the next is constrained to be vertical. The apparent motion of each point is
by an amount called the disparity, from which the depth of each point in the scene may
be found. Figure 8 shows two frames from either end of a short video sequence of the
Parafield control tower, which have been appropriately rotated and scaled.

The main component in the construction of a dense 3D model is the estimation of the
disparity at each point in the image. Two DSTO reports describe different methods for
accomplishing this task. The first report (DSTO-TR-2095) [6] contains a description of
some original research on sparse methods, as well as a number of dense matching methods.
In this context, sparse methods are those which find the disparity at a small number of
points within the image and interpolate for the remaining points. Dense matching methods
which explicitly estimate the disparity at each point, usually with some added terms to
enforce smoothness, monotonicity or some other desirable feature of the solution.

The second report (DSTO-TR-2064) [7] evaluates and compares a number of algorithms

100 200 300 400 500 600 700 800

Figure 8: Images from the Parafield airport sequence, rotated so that the epipolar lines
are vertical
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from the literature for dense matching. It also examines the effect of cost functions, which
are terms used by the dense matching methods to measure the similarity of the intensity
distributions between neighbourhoods in two different images. Two new variations of these
cost functions were also examined in more depth in a conference paper [8].

Of the various methods considered in the above reports, the particular method rec-
ommended here is a dense matching scheme, based on graph-cuts. This method relates
the minimisation of a 2D matching cost function to the problem of finding the maximum
flow through an undirected cyclic graph. To understand this fully, an explanation of the
relationship between the maximum flow and the minimum cut of a graph is required, as
described in the next paragraph.

Figure 9 shows an example of an undirected graph. The graph consists of nodes,
represented by circles, and arcs or links which connect two circles together. Each of the
links has a number associated with it called the capacity, which defines the maximum
amount of “flow” which that link can carry. The graph also contains two special nodes, s
the source node, and f the sink node. A commonly considered problem in graph theory
is to find the maximum flow that the graph can support from the source node to the sink
node. A simple way of solving such a problem is to find a path from s to f which is not
at capacity, which is referred to as an augmenting path, and is indicated in bold in the
example figures. The flow along the augmenting path is increased until one of the links
reaches capacity, which is indicated as a dashed line. Then a new augmenting path is
found and the process is repeated until no more flow can be added, as shown in the last
graph of the example. The resulting graph has partitioned the nodes into two sets: those
connected by links with spare capacity to the source, and those connected to the sink.
This partition can be defined by a cut through the graph, and it turns out that if the
cost of a cut is defined to be the sum of the capacities of the links that it cuts, then this
particular cut has the minimum possible cost for this particular graph. A fast method for
solving the maximum flow algorithm is described by Boykov, Veksler and Zabih [1] and
their code, made freely available for research purposes, has been modified for testing the
graph-cuts algorithm.

Returning to disparity estimation, one naive method for determining how far a point
has moved from one image to the next might involve extracting a small square of imagery
about the point in the first image, and then measuring the similarity (given by a match
cost based on the correlation) with similar squares of imagery from columns in the second
image. The match with the smallest match cost would then be assumed to be the correct
match. Such a method is equivalent to finding the minimum cut in the simple graph on
the left hand side of Figure 10, where the link capacities correspond to the match costs
C, 1 is the lower bound on the disparity for that pixel, and u is the corresponding upper
bound. The position of the cut along the graph indicates the best disparity. In fact, all of
the disparities could be found simultaneously by creating a single large graph, consisting
all of the graphs for the individual pixels in parallel. Each of these graphs could also assign
the upper and lower disparity bounds separately for each pixel.

The problem with the above naive method is that due to image noise, there are usually
many feasible matches of a given point along a line in the other image, and so the resulting
disparity map is extremely noisy. One way to reduce this noise is to add penalty terms for
discontinuities. This can be done by adding horizontal links between the graphs for the
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Figure 9: Solving for the maximum flow / minimum-cut in an example undirected graph
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Figure 10: Some examples of graphs for calculating the disparity between two images

individual pixels, as shown on the right hand side of Figure 10. This works because if two
neighbouring pixels have different disparities, then the minimum cut would have to cut
one or more of these horizontal links, therefore increasing the cut cost. Good performance
on several images has been found when the horizontal link capacities are set to be a fixed
constant. It might be possible, however, to choose the capacities to be based on the edge
strength, to make it more likely that a discontinuity occurs at an edge within the image.
This has not been extensively tested though.

The above graph-cuts algorithm is able to be applied directly to the two rotated images
at their original resolution. A difficulty is that because the disparities are completely
unknown, the graph to be processed will be extremely large. For an M x N image, this
means there are N possible disparities to consider at each point, so M N? nodes and about
5MN? arcs. Fast maximum flow methods for generalised graphs would therefore require
O(M3N®) operations to produce a solution, which is prohibitive even for modest size
images. A way to reduce this cost is to solve the problem in a hierarchical framework, as
indicated by the loop in the flowchart in Figure 7. Here, graph-cuts is applied at the worst
resolution to obtain a low resolution estimate for the disparity. This means that at the
next best resolution, each pixel will have a smaller range of possible disparities, and so the
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graph required to be processed will be much smaller. The complexity of the algorithm in
this framework for an M x N image will be at worst O(M?3N3log N) which is much more
easily achievable.

The final step is to turn the dense map of disparities into a format for reprojection.
A standard file format for displaying 3D models is VRML (Virtual Reality Markup Lan-
guage). Each world consists of a number of shapes, which may be collections of geometric
primitives. Each shape can have its own position and orientation, and may be given its
own texture, and material type (which affects how it reflects, refracts or emits light). The
models generated in this section are based on only two camera views and can, in general,
be adequately represented by an elevation model where each (x,y) position in the image
can be associated with a single depth coordinate. In this case, the scene can be represented
by a single primitive “ElevationGrid” which is defined in the following way

#VRML V2.0 utf8
Shape {
appearance Appearance {

material Material {
ambientIntensity O
diffuseColor 1.0 1.0 1.0
emissiveColor 1.0 1.0 1.0

}
texture ImageTexture {
url "im. jpg"
}
}

geometry ElevationGrid {
xDimension 163
zDimension 214
xSpacing 1.0
zSpacing 1.0
height [

The above file specifies a single shape according to the VRML 2.0 specification. The
appearance has been chosen so there is no ambient light because small variations in the
surface texture were found to cause large shadows giving an unpleasant crinkly effect.
Instead, the shadows (at least those generated by the VRML) are eliminated by assuming
that the surface of the shape is emitting white light. The shape is also textured using the
file “im.jpg” which is one of the frames used to construct the 3D model. The surface itself
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is of type "ElevationGrid’ with the specified dimensions, and the height profile (represented
by dots in the above example) will be an array of numbers describing the height at each
pixel location. The resulting VRML file can be examined on any VRML2.0 compatible
viewer such as “Blaxxun Contract”, which will allow the scene to be tilted, panned and
zoomed to achieve the required view of the model. Such a viewer will also allow the image
to be reprojected to any other view, such as that seen from a set of reference imagery.
Figure 11 shows two such reprojections of a dense 3D model of the Parafield control tower
which was obtained using the graph-cuts algorithm. The smearing behind the tower seen
in the top view is because this area is obscured in the first image. The reprojected model
is used in the final step of the process, where the estimated location of the object on the
earth is further refined by registering the reprojected model against the reference imagery.
This is described in Section 6.

Figure 11: A novel view of an automatically extracted VRML model of Parafield control
tower.

6 Registration

Despite the fact that metadata may be available concerning the position of the sensor
and the pose of the camera, the location of an object in that imagery may still only be
accurate to a few hundred metres. To obtain this position more precisely, it is necessary
to register the data with higher quality information such as that available in some well
georeferenced imagery. Omne great difficulty in directly comparing images from the two
sensors is that they were taken from different looking angles, and so due to the 3D structure
of the scene, the images differ by more than just a simple affine transformation. The
previous four sections have described a way by which a dense 3D model of the scene may
be generated, and a new image produced which appears to have been taken from the
same position as the sensor from the reference model. If all of the previous steps are
performed successfully, then the reprojected image from Section 5 should now differ only
in a translation from the reference imagery.

The process of 2D registration is a well studied area, with many of the standard algo-
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rithms likely to produce accurate estimates for the required 2D translation. A proper eval-
uation of registration techniques for this application would likely require better integration
of all of the previous steps, which are currently implemented to be only semi-automatic.
This section does describe a method which has been used to successfully register a 3D
model, produced from a video sequence, to a separate reference image. This method has
not been tested on a large number of images, so while it provides a proof of concept, it
can’t be guaranteed to perform robustly.

There are two main categories of methods for registering two images: area based
and feature based. The area based methods compare the pixel intensities over areas of the
image to produce a cost function which is maximised with respect to the warping function.
Feature based methods, however, extract notable features from the image to form a sparse
model, and then attempt to find the correspondences between features using techniques
such as RANSAC. The method demonstrated here is line feature based.

The first step in line based registration is the detection stage. In this example, the
statistical hypothesis Hough transform detector, described in [6], was used. Lines were
detected in both the reference and reprojected images, and then were clustered. Assuming
that the two images differ mostly by a translation, corresponding lines should be roughly
parallel, limiting the potential matches. RANSAC is then used to select three potential
matches, from which a linear warp function is computed. If the calculated translation

Companison of dominant lines fiom ratersncs and spinjcled images.

100 200 300 400 500 600 700 100 200 300 400 500 600 700

Figure 12: Example of automatic registration between a reference image and a reprojec-
tion of a 3D model.
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has sufficiently small rotation, scaling and skew, then the transformation is plausible. A
symmetric measure for the degree of overlap between the line models is then calculated.
After many runs, the plausible measure with the highest overlap is considered the correct
registration.

Figure 12 illustrates the registration process. The diagrams in the left column show
the reference image and a reprojection of the 3D model in Figure 11 onto the horizontal
plane. The line diagram shows the matching clusters of lines following the registration
step, and the final figure shows the reference image in the same geo-coordinates as the
reprojection. Visual observation of several points on the building indicate that, for this
example, points from the original video data would be correctly geolocated to within
1 m in latitude and longitude. Height coordinates may also be estimated when the local
topography is available, but it is not known for this data how accurately that could be
achieved. Further work on registration in 3D (e.g. to existing CAD models) is to be
described in a later report [20].

7 Error analysis

The previous sections describe a method by which raw video data with a metadata
stream may be automatically registered to accurately geo-referenced survey imagery. This
allows the geolocation of individual points within the video stream. The accuracy of this
geolocation will depend on a number of factors. The quality of the video, will affect the
accuracy with which consistent points within the scene can be detected, and the ease with
which they are tracked between frames. The scheduling of the sensor and the airborne
platform will change the effective angle of view over which the scene is imaged, which
will in turn affect the accuracy with which depth can be estimated. Also, accuracy of the
metadata will affect the amount of rotation, translation and scaling still present in the
model reprojection, which will again affect the geolocation. This resulting accuracy will
affect the ability with which the information can be exploited, and so it is important that
some estimate for this accuracy be determined.

Two separate reports [19],[6] have dealt with the estimation of errors in the system
described by the previous sections. The error estimation in both reports focuses on the
factorisation and geolocation using Monte-Carlo-like simulations. The second report also
provides a framework by which the errors may be propagated through the other steps to
provide an overall system measure for the error. A brief summary of this framework was
also published as part of a conference paper [5].

Figure 13 shows a flow diagram, as it appeared in one of the reports [6], of the errors
in the measurements and derived quantities as they are processed. The errors in corner
measurement were not explicitly modelled, but were empirically estimated from the dif-
ferences between the observed corner positions, and those estimated from the relative 3D
point model produced by the factorisation step. One hundred different instances of the
measurement matrix were then produced, and fed into the factorisation stage to produce
one hundred relative 3D point models. The variability between these models allowed es-
timates for the errors in camera poses and relative structure to be determined. Errors
within the fully oriented model were similarly obtained by perturbation of the incoming
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Figure 13: Flow diagram showing the errors throughout the video registration process
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metadata (based either on known sensor error characteristics, or estimated errors in zoom
factor and view angle by comparison with the poses estimated from factorization). This
Monte-Carlo-like simulation, illustrated in Figure 14, results in estimates for the error in
3D position for each of the tracked corner points in the video sequence. The error to this
point has been shown to give close to the expected results in some numerical simulations
based on tracked data points from an airborne video sequence.

Following from the geolocation is dense matching. As a result of the strong dependence
on the imagery and the scene, for which there are no general models, this stage does not
seem amenable to any form of error analysis. Therefore, a heuristic for incorporating the
error from this stage is to extend the range of the errors in depth until it encloses the dense
match surface. After reprojection of the model, and the associated errors, comes the final
2D registration. Although Section 6 described a method which has produced accurate
registration on some imagery, it has not been fully tested and may need modifications,
or even a completely different method, to deal automatically and robustly with different
scenarios. Therefore a concrete method for dealing with errors in this module has not yet
been developed. The report [6] provided some general ideas that may prove of use in the
error analysis when a robust registration method is eventually selected.

8 Summary and Conclusions

This report has described a system for the accurate geolocation of points on an object
in a video sequence. Each of the individual steps comprising the system have been tested
on at least one fly-over sequence of Parafield control tower, which gives a proof of concept.
The system as a whole has not, as yet, been comprehensively tested end to end, nor tested
on a wide set of data. As such, there are likely to be many implementation issues to be
addressed, and also some potential research problems which might need to be solved for
certain types of imagery.

The complete algorithm consists of five main stages. The first, the detection and
tracking of feature points, is mature and not expected to cause any problems in general
video imagery. The next step is to determine a set of camera poses and 3D point positions
which are consistent with the observed feature locations. Firstly, in situations where the
object being imaged is large compared to the distance from the camera (e.g. terrain), the
scaled orthographic camera model will not be sufficiently accurate, and full perspective
must be used. This will affect practically all of the remaining steps. Also, there are
potential difficulties for long video sequences, where the object of interest may not be
in the field of view for the entire sequence. This may be partially handled by the track
joining algorithm, but it is not certain to produce robust results.

The fourth stage creates a dense 3D model of the scene, and reprojects it so that it
appears to be taken from the same angle as the sensor taking the reference image. The
dense matching has been successfully tested on synthetic imagery, infrared data from the
MX20 camera, and HDTV data from project Crystal View. Frequently, dense matching
algorithms appear to be strongly dependent on a choice of parameters, and although this
was not a problem with the tested data, it is possible that difficulties may appear when a
wider range of imagery is considered. There is also a difficulty with choice of video images,
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since the method is based on two images chosen from the entire sequence. Currently, these
are selected to be the start and end frames of the sequence, as these generally have the
widest baseline, which improves accuracy. There are, however, other factors that come
into play, such as the size of the object within the image and the fraction of the building
that can be seen in both images. Also, due to obscuration, different parts of the building
might benefit from using different frames to perform the reconstruction. The general topic
of combining more than just two images also needs to be addressed. In addition, since
dense matching is an area of ongoing research, it is possible that a method better than
graph-cuts might be available. Scharstein and Szeliski [11] describe and evaluate a large
number of these, some of which have been considered for the airborne video problem in a
DSTO report (DSTO-TR-2064) [7]. The authors also update a website for the comparison
of new algorithms, and it is clear that there are many possibilities in this regard that have
not yet been considered for the current application.

The final stage of the process takes the reprojected imagery, which should now resemble
the reference imagery, and registers the two to accurately geolocate the model extracted
from the video imagery. A line-based feature matching algorithm has been shown to give
good registration on some imagery, but further effort may be required to produce a more
robust solution. Research into registration methods related to 3D CAD models is ongoing.

Finally, a framework for the evaluation of errors in the complete video registration
system has been defined. The estimated errors to the end of the georegistration stage
have been shown to be similar to the known errors in some simulations based on real data.
An assessment of the final georegistration error awaits more comprehensive study of the
2D registration stage and more complete integration of the individual subsystems.
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