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Abstract:  
Steady plastic shocks generated by planar impact on metal-polymer laminate composites, are 

analyzed in the framework of gradient plasticity theories. The laminate material has a periodic 
structure with unit cell composed of two layers of different materials. First and second order 
gradient plasticity theories are used to model the structure of steady plastic shocks. In both 
theories, the effect of the internal structure is accounted for at the macroscopic level by two 
material parameters depending upon the layer’s thickness and the properties of constituents.  
Those two structure-parameters are shown to be uniquely determined from experimental data. 
Theoretical predictions are compared with experiments for different cell sizes and for various 
shock intensities. In particular, the following experimental features are well reproduced by the 
modeling: 

- the shock width is proportional to the cell size; 
- the magnitude of strain rate is inversely proportional to cell size and increases with the 

amplitude of applied stress following a power law. 
While these results are equally described by both the plasticity theories, the first gradient 
plasticity approach seems to be favored when comparing the structure of the shock front to 
experimental data.   
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
1) Introduction 

The visco-plastic response of metals and polymers at high loading rates can be investigated 
using shock wave experiments. Plate impact experiments have provided a large quantity of 
experimental data on steady plastic shocks, especially for polycrystalline metals, Rice et al 
(1958), Johnson and Barker (1969), Swegle and Grady (1985). By analyzing a stationary plastic 
shock, the following data can be obtained: (i) stress amplitude, (ii) particle velocity versus time 

at a given point, (iii) plastic-shock velocity C, (iv) particle velocity −v  behind the shock front 

and (v) maximum strain rate within the shock front layer. The Hugoniot curve is an important 
material characteristic obtained from shock analysis. From data (iii) and (iv), a linear relationship 

between C and −v is obtained from which the Hugoniot can be deduced (see for example, 

Molinari and Ravichandran (2004)).  
The problem of relating shock experimental data to material properties is a problem of 

fundamental importance which was studied in detail for certain classes of materials; see for 
example, Clifton (1971), Swegle and Grady (1985), Molinari and Ravichandran (2004). The 
shock front is a thin layer where particle velocity, stress and strain sustain a rapid variation. The 
spatial distribution of those quantities within the shock front, which is usually referred to as the 
shock structure, is in many cases controlled by viscous effects. For polycrystalline metals, 
viscous effects can be related to dislocation gliding. For more details and references, it is referred 
to Molinari and Ravichandran (2004), where a detailed analysis is given for moderate shocks in 
metals, with a specific application to aluminum. As mentioned before, the maximum of the strain 
rate within the plastic shock layer can be measured for a given stress amplitude σΔ  (stress 

jump across the shock front). A particular definition of the maximum strain rate ( SGε ) was 

proposed by Swegle and Grady (1985) as being the ratio of the maximum time derivative of the 
particle velocity to the steady shock velocity. Experimental data were found by Swegle and 

Grady (1985) to follow closely the relationship ( ) SGh
SG B σε Δ= with the exponent 4SGh =  

being nearly the same for all materials considered. These authors related SGh  to the material 

strain rate sensitivity m  through the relationship, 2SGh m= . Thus, it was concluded that 

materials exhibit nearly the same strain rate sensitivity 0.5m =  for the deformation (strain rate) 
regime encountered in the shock experiments considered. Molinari and Ravichandran (2004) 
have obtained an analytical solution for steady state shocks of moderate intensity in metals. From 



their analysis it was found that the maximum strain rate within the shock can be related to the 

stress jump by a power law ( )hB σε Δ=
max

 with 62.0)1(87.1 += mh for aluminum. Therefore, 

for aluminum, the value 4=h  providing a good fit of experimental data, according to the 
analysis of Molinari and Ravichandran (2004), to the value  m= 0.561 of the strain rate 
sensitivity for the high loading rates generated in shock experiments. Therefore, having a unique 
value of the strain rate sensitivity ( 0.5m =  according to Swegle and Grady (1985)) for all 
metallic materials, is debatable.  

In any case, those findings are related to the particular form of the constitutive law chosen for 
the modeling and more particularly to the specific form of the “nonlinear-viscous” response 
within the shock layer. Indeed, it is frequently assumed that the shock structure is controlled by 
the dissipative effects associated to the material constitutive response. However, it is well known 
that shocks can also be structured by dispersive effects. A good illustration is given by the 
Korteweg-Devries equation governing shallow water waves. In general, dispersive effects result 
from wave interaction with, 

(i) external boundaries of the body (e.g. dispersion of elastic waves in a circular rod, 
Pochhammer (1876) and Chree (1889) ); 
(ii) inner boundaries due to material heterogeneities (inclusions, layers).  

In this paper, the primary faocus is on plane waves propagating in unbounded media, and 
therefore interactions of type (i) shall not be considered.   

In the last four decades, nonlocal linear elastic laws (in particular gradient deformation 
theories) were formulated with the purpose of describing, within a phenomenological approach, 
wave dispersion related to the internal structure of heterogeneous materials, Green and Rivlin 
(1964), Eringen (1972, 1976), Mindlin (1964), Kunin (1982,1983), Luciano and Willis (2001).  

For particular composite materials such as elastic multilayer periodic media or fiber 
composites, wave dispersion can be directly analyzed without using macroscopic nonlocal 
formulations. By considering the basic principles of continuum mechanics, wave dispersion of 
harmonic waves can be treated by analytical means. From the dispersion curve, the effects of 
elastic properties of constituents can be characterized as well as those of the geometry of the 
internal structure (e.g., layer's thickness of laminates), Sun et al. (1968), Achenbach (1973), 
Christensen (1979), Boutin (1996). 

 Analyses of wave dispersion in nonlinear materials accounting for the effects of internal 
structure are less advanced. Recently, Grady (1998) analyzed steady shock waves in 
polycrystalline materials and considered the possibility for shocks to be structured by dispersive 
effects due to wave scattering on grain boundaries. These dispersive effects were viewed as an 
alternative to visco-plasticity for structuring steady shock profiles. A comprehensive review of 
experimental work and numerical analysis of shocks in laminated materials can be found in 
Nesterenko (2001), Chapter 3, with a detailed discussion of transient shock waves. It is shown 
how the leading wave is attenuated by wave reflection at the layer’s interfaces. However, as for 
the Korteweg-Devries equation is considered, the main signal appears finally to be the result of 
the competition between non-linear effects and dispersion effects, Whitham (1974).  



 The aim of the present work is to analyze the effects of wave dispersion on steady shock 
propagating in layered periodic media with nonlinear elastic or plastic properties. The direction 
of propagation is assumed to be perpendicular to the layers. Dispersive effects are due to wave 
reflection and refraction at the layer's interfaces. A detailed analysis of these interactions, which 
was feasible for linear elastic materials, is hard to achieve for nonlinear responses by pure 
analytical means, but insight can be gained through numerical simulations, Benson and 
Nesterenko (2001). The framework adopted here is based on a simplified constitutive assumption 
allowing exploring by simple calculations the structure of plastic steady shocks. It is assumed 
that the effect of the layered structure can be accounted for at the macroscopic level by a 
non-local constitutive model.  

Many efforts have been recently devoted to the development of gradient plasticity theories. 
These approaches are aimed at accounting for the effects of the internal structure on the overall 
effective mechanical response, Aifantis (2003), Fleck and Hutchinson (1993, 2001), Gao et al. 
(1999), Huang et al. (2000). Among the different formulations developed in the literature, two 
gradient plasticity approaches are considered and their applicability in modeling the propagation 
of steady shock waves in laminates is evaluated.  

The modeling of shock wave experiments, recently performed by Zhuang et al. (2002, 2003) 
on laminated materials, is considered here. In these experiments, the stress jump σΔ  across the 

shock and the maximum strain rate within the shock 
max

ε , are found to be related by a power 

law, ( ) LhB σε Δ=
max

, as for  polycrystalline metals. However, the value of the exponent is now 

in the range 4.28.1 << Lh  depending on the specific laminate considered. These results are 

noticeably different from the value 4=h  found in shock experiments on single phase 
polycrystalline metals by Swegle and Grady (1985). The modeling proposed in this paper 

provides a quite good representation of the experimental results of Zhuang et al (2002, 2003). 
 
2) Plastic shocks in laminates 
Shock waves generated in laminate composites by planar impact, have been studied 
experimentally, see for example, Lundergan and Drumheller (1971) and Zhuang et al (2002, 
2003). These waves propagate in the impact direction perpendicular to layers as shown in Fig. 1. 
The laminates considered in this paper are constituted by alternate layers of materials (1) and (2) 

of thickness L1 and L2 respectively. The elementary cell, of total thickness, 21 LLL += , is made of 

the two layers of dissimilar materials. 
Beyond a certain propagation distance, quasi-steady plastic shocks are formed (the meaning 

of “quasi-steady” will be discussed later). The shock structure should depend on the properties of 
the constituents and also on the layer's thickness. Dispersion effects due to wave reflection and 
refraction at the layer’s interfaces, are thought to play a significant role in structuring the shock 



front together with nonlinear effects. 
The propagation distance for having steady plastic shocks depends intimately on the 

properties of the laminate constituents. In the experiments by Lundergan and Drumheller (1971) 
on steel-PMMA laminates, it was observed that, after a propagation distance 2L of two cell sizes, 
the the particle velocity versus time was almost identical at. In general, at two homologous 
points distant by a multiple of L (periodicity of the internal structure) recordings of the particle 
velocity should be identical (up to a time shift). Observations similar to those of Lundergan and 
Drumheller (1971) were reported by Zhuang et al (2002, 2003) in their study of 
polycarbonate-steel laminates. In the experiments made by Nesterenko et al. (1983) on 
aluminum-copper laminates, it was shown that after a distance of 6L no stationary wave profile 
was found. The higher impendence mismatch between constituents realized in metal-polymer 
laminates is probably a reason for having stationary shocks after a short traveling distance.    

Zhuang et al. (2002, 2003) have measured the stationary propagation speed C of the main 
shock in polycarbonate-steel laminates. Let us consider now an observer moving at the constant 
velocity C. For this observer, the wave profile (spatial distribution of the particle velocity) 
fluctuates with a time periodicity equal to L/C, and a steady wave profile can be defined by time 
averaging over the period L/C of the time-fluctuating profile. 

The aim of this paper is to analyze these steady shock fronts. The details of wave reflection 
and refraction at layer's interfaces are not analyzed. Rather the steady shock defined above by 
time averaging, is supposed to be representative of the dynamic response of the laminate 
structure after a certain propagation distance. This steady shock moves with the constant 
velocity C and maintains a constant shape.  

Assuming periodicity, a steady profile can be defined in a different way. For the observer 
moving with the constant speed C, material properties are seen in average. It is thought that the 
average material response experienced by the observer can be identified with the macroscopic 
effective response of the laminate. In this paper, a phenomenological gradient plasticity 
approach is used to describe the effective response of the laminate, and steady shock waves are 
analyzed in this framework. 

The constant wave profile in a steady shock is the result of the balance between steepening 
effects related to the non-linearity of the material response and smoothing of the wave front due 
to dissipative and/or dispersion effects. The dispersion effects are expected to be important in 
case of a large contrast between the mechanical properties of constituents. 

For large impact velocities, the material undergoes compressive stresses beyond the initial 
yield limit of the constituents and a plastic shock wave is formed. Plastic shock waves have been 
studied in the experimental work of Zhuang et al. (2002, 2003). For a given shock strength 
(stress amplitude), the particle velocity was recorded in terms of time at different locations and 
the velocity C of the stationary plastic shock was measured. It was shown that the shock velocity 

C varies linearly with the particle velocity −ν  measured at the rear of the plastic shock front. In 

addition, the maximum strain rate ( εmax ) within the shock layer was measured and the 



following power law was obtained,  

( ) LhB −= σεmax          (1) 

where −σ  is the compressive stress at the rear of the plastic shock. The exponent was shown to 

be in the range, 2.25.1 << Lh , for the different laminates tested.  

The power law (1) for a two phase laminate is similar to that of a single phase metal which, 
according to Swegle and Grady (1985), can be written as, 

     ( )hB σε Δ=max         (2) 

where, +− −=Δ σσσ  is the stress jump across the plastic shock ( +σ  is the compression stress 

ahead of the plastic shock). Note that for the polymer-metal laminates considered here, +σ  is 

small or zero and thus −≈Δ σσ . For single phase metals, the value of the exponent h in the 

power law (2) was found to be close to 4≈h  which is noticeably larger than values of Lh  for 

laminates. Dispersion effects due to wave reflection and refraction at the laminate material 
interfaces may explain this difference. Indeed, the scope of this paper is to analyze how the 
shock profile can be affected by dispersion effects. In an initial analysis, dissipative effects are 
neglected so as to analyze the role of dispersion separately.   

Laminar composites are considered, which are made of two dissimilar materials with “soft” 
(e.g., polymer such as polycarbonate (PC)) and “hard” (e.g., metal such as stainless steel (SS)) 
layers with volume fractions being respectively,  

          LLf /11= ,  LLf /22= .          (3)   

   
Material characteristics of the constituents considered in the modeling are given in Table 1. 

Two different composites are obtained by varying the layer’s thickness.  The PC37/SS19 

laminate corresponds to mmL 37.01 =  and mmL 19.02 =  and PC74/SS37 is obtained by 

doubling the width of layers. 
Experimental data (Zhuang et al. (2002, 2003)) plotted in Fig. 2 show that the Lagrangian 

shock speed is related to the particle velocity −v  at the rear of the shock by a linear relationship. 

For plastic shocks of moderate amplitude, this linear relationship can be written as: 

   )( +−+ −+= vvScC             (4) 



where the subscript (+) refers to the state ahead of the plastic shock; +v is the particle velocity 

ahead of the shock front and +c is the sound velocity corresponding to state (+).  

Note that the experimental data shown in Fig. 2 provide identical linear relationships for 
both composites, showing no sensitivity to the cell size. The sensitivity of the shock wave profile 
to the cell size is analyzed in Nesterenko (2001). For solid teflon-paraffin laminates, Nesterenko 
et al. (1983) report that the amplitude of the particle velocity, at a distance of 2L or 4L from the 
impact plane, is nearly insensitive to the cell size. It is believed that this independence with 
respect to cell size, as in the experiments of Zhuang et al. (2002, 2003), is a feature of steady 
shocks. For transient shock profiles there is a strong effect of the cell size on the amplitude of the 
leading signal, see Nesterenko (2001) Fig. 3.6 for aluminum-copper laminate.   

 The slope of the best fit lines for the experimental data in Fig. 2 is given by, 
   1.2=S                (5) 

The relationship (4) with S=2.1, sm /2.18=+ν (value determined later) and smc /600,1=+  

shows a good fit with the experimental data. Note that the Hugoniot curve of the laminate can be 
obtained from (4), for further discussion, see section 4.  
 
3) Basic equations 

A Lagrangian formulation is used to account for the large uniaxial deformations occurring in 
shock wave experiments. The direction of propagation of the plane wave is denoted by Ox, Fig. 1; 
u is the component of the displacement in this direction, other components along directions y and 

z being equal to zero. The orthogonal frame Oxyz has unit vectors 1e , 2e  and 3e . Note that the 

stresses and deformations considered in the following are defined at the macroscopic level of the 
composite. 
 The present position x of a particle is given by: 

  )(XuXx +=              (6) 

where X is the initial position prior to any deformation. The deformation gradient has the form, 

  3322111 eeeeeeF ⊗+⊗+⊗= λ          (7) 

where the longitudinal stretch is, 

  
X
u

X
x

∂
∂

+=
∂
∂

= 11λ            (8) 

The standard multiplicative decomposition of F  into elastic (e) and plastic parts (p) , see Fig. 3, 

can be written as, 

  pe FFF =              (9) 



with 

  332222111 eeeeeeF eeee ⊗+⊗+⊗= λλλ       (10) 

  332222111 eeeeeeF pppp ⊗+⊗+⊗= λλλ       (11) 

Note that ee
32 λλ =  and  pp

32 λλ =  due to the rotational symmetry around the direction 1e .  

 The condition of plastic incompressibility: 

  1)( 2
21 =pp λλ              (12) 

and the multiplicative decomposition (9) provide three independent relations relating the 

stretches 1λ , e
1λ , e

2λ , p
1λ  and p

2λ . Therefore all stretches can be expressed in terms of 1λ  

and p
1λ , 

  pe
111 λλλ = ,    2/1

12 )( pe λλ = ,  2/1
12 )( −= pp λλ .     (13) 

 Denoting by T  the nominal stress tensor with respect to the initial configuration 0C , one 

has, Clifton (1971), Lubarda (2002): 

  ep TFT .)( 1−=             (14) 

The elastic constitutive law is expressed in the intermediate configuration rC , Fig. 3, as: 

  e

e
e

F
T

∂
∂

=
ψ              (15) 

where eψ  is the macroscopic elastic strain energy (volume average of the layer’s strain energy). 

From (11) and (14),  

  p

eTT
1

11
11 λ
=               (16) 

To represent the nonlinear elastic response for compressive loading, the elastic law (15) should 
include higher order elastic coefficients. Second order elastic coefficients can be characterized by 
ultrasonic measurements; however this information is not available for the laminates studied here. 
Therefore second order elastic constants will be introduced as parameters, and a parametric 
analysis will be performed to quantify how results are affected by second order elastic constants.  

The following nonlinear constitutive law is adopted, 

    ))2.0(1)(2( 21211221111111
eeeee bCCT εεεε +−+=       (17) 



where 1111C  and 1122C  are components of the overall (effective) linear elastic moduli of the 

laminate. For both laminates PC37/SS19 and PC74/SS37, one has the same values: 

  GPaC 84.61111 = ,   GPaC 60.31122 = .     (18) 

Second order elastic properties are scaled by, 7.66=b . This value will be varied in the 
parametric analysis. 

Elastic deformations e
1ε  and e

2ε  are expressed in terms of 1λ  and p
1λ  by, 

  )/log()log( 1111
pee λλλε ==               

     )log(
2
1)log( 122

pee λλε ==            (19) 

Combining (16), (17) and (19), the stress component 11T , denoted henceforth for simplicity as 

T , can be written in terms of 1λ  and p
1λ , 

   ),( 11
pTT λλ= .             (20)  

The compressive stress (with positive sign) is defined as follows, 
  T−=σ .               (21) 
 
4) Steady plastic shocks and the Hugoniot 
 Plate impact experiments are consdiered, where stationary plastic shocks are formed beyond 
a certain propagation distance. These shocks move with constant speed and constant shape. Two 
cases are considered, 
(i) the stress amplitude exceeds the elastic limit of the composite so as to form a plastic shock 
preceded by an elastic precursor with higher propagation speed; 
(ii) the stress amplitude is sufficiently large to form a single elasto-plastic shock.  
 The analysis is restricted to weak shocks, i.e., temperature effects are neglected and the 
process is considered as isentropic, see Clifton (1971) and Molinari and Ravichandran (2004) for 
further comments.  
 
4.1) Plastic shock with elastic precursor 
 For moderate impact velocities, the plastic shock is preceded by an elastic precursor where 
the material is compressed from the initial state (0) to state (+) corresponding to first plastic 
yielding. The values of stress, particle velocity and stretches associated to state (+) are denoted 

by ++ −= Tσ , +v , +λ  and +pλ , where the subscript (1) has been dropped to simplify the 

notation. In the plastic shock, the material is further compressed to state (-) with stress 



−− −= Tσ  reached at the rear of the plastic front, see Fig. 4. The transition between states (+) 

and (-) occurs within the plastic shock front, a thin layer where the material sustains high strain 
rates.  
The equation of conservation of momentum is, 

   
t
v

X
T

∂
∂

=
∂
∂

0ρ             (22) 

where t is time, ttXuv ∂∂= /),(  is the particle velocity and 0ρ  is the mass density in the 

reference configuration, 0C . The compatibility equation has the form, 

  
tX

v
∂
∂

=
∂
∂ λ .             (23) 

For an observer moving with the plastic shock velocity C, the problem is steady and all 
variables can be expressed in terms of the parameter, 

  Ctx −=ξ              (24) 

with states (+) and (-) corresponding respectively to +∞=ξ  and −∞=ξ .  

Using (24), the equations (22) and (23) are written as, 

  
ξ

ρ
ξ ∂

∂
−=

∂
∂ vCT

0             (25) 

  
ξ
λ

ξ ∂
∂

−=
∂
∂ Cv .            (26) 

Upon integration, it can be shown that any state within the plastic shock layer has to satisfy the 
following relationships, 

  )(0
++ −−=− ννρ CTT           (27) 

  )( ++ −−=− λλCvv            (28) 

By combining (27) and (28) the equation defining the Rayleigh line is obtained (see Fig.  4), 

  )(2
0

++ −=− λλρ CTT           (29) 

In particular, state (-) is related to state (+) by, 

   )(0
+−+− −−=− ννρ CTT          (30) 

   )( +−+− −−=− λλCvv           (31) 



  )(2
0

+−+− −=− λλρ CTT .          (32) 

 The Hugoniot is the curve defined by the ensemble of points ( −σ , −λ ) obtained by varying 

the stress amplitude −σ , Fig. 4.  The intercept of the elastic-loading curve )1,( =→ pT λλλ  

with the Hugoniot is the state (+), see Fig. 4. Thus, the compressive stress +σ at state (+) follows 

the following relationship, 

  )1,( ++ −= λσ T .            (33) 

The state (+) is also defined as being the initial yield limit of the composite. It will be shown that 
the precise characterization of state (+) is not a crucial point. This is related to the fact that, for 
the metal-polymer composite studied here, the value of the initial yield limit is small and does 
not affect the results. Therefore, a conventional definition of state (+) can be adopted by 

setting 99.0=+λ , see Fig. 4. The corresponding stress is GPa115.0=+σ . The particle velocity at 

state (+) is given by (see for instance Molinari and Ravichandran (2004)), 

    )1( ++ −= λelcv           (34) 

where  

)1(0
+

+

−
=

λρ
σ

elc           (35) 

is the velocity of the elastic precursor. 0ρ  is the average mass density of the composite in the 

reference configuration: 

    22110 ρρρ ff += .          (36) 

The two PC-SS laminates differ only by a factor two in the layer's thickness; therefore they have 

same mass density 3
0 /468,3 mkg=ρ . The elastic compression curve is also identical and the 

initial yield limit is reached for the same value of the nominal stress denoted by +T . Both 

composites have the same state (+). The particle velocity at the rear of the elastic shock is 

sm /2.18=+ν . The velocity of the elastic shock precursor is smcel /820,1= .  

By substituting (31) into (4),  
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which upon substitution into (32) provides, 
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The Hugoniot curve gives the value of the "equilibrium" compressive stress Hσ  reached behind 

the plastic shock in terms of the stretchλ , 
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The value of the equilibrium stress can be maintained under static compression by keeping fixed 

values of the state variables (λ , pλ  and temperature). The Hugoniot curve is displayed in Fig. 5 

for 99.0=+λ  and smc /1600=+ , for stress amplitudes up to 9 GPa. From the experimental data 

shown in Fig. 2, +c is determined using (4) by setting Cc =+  at +− =νν . The values of 

parameters S , 0ρ  and +c  entering into the expression (39) of the Hugoniot, are given in 

Table 2.  

For a given stress amplitude −σ , the corresponding point on the Hugoniot is associated to 

the stretch −λ  defined by, 

   )( −− = λσσ H .            (40) 

The configuration of a plastic shock with an elastic precursor is physically realizable if the 

velocity elc  of the elastic precursor is larger than the plastic shock velocity C, 
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The case where this condition is not satisfied (shocks of larger amplitude) is studied in the next 
section.  
 Note that the analytical form (39) of the Hugoniot was derived by considering shocks of 
weak enough stress amplitude. It is assumed in the following that the Hugoniot can be described 
in first approximation by the same expression (39) extrapolated to a larger range of stress 
amplitude. The consistency of this hypothesis will be validated by comparing the prediction of 
the theory with a different set of experimental data.  
 
4.2) Case of a single elastic-plastic shock  



When the condition (41) is not satisfied, an unique shock is formed, relating the initial state 

(0) to the state (-) as shown in Fig. 6 for the stress amplitude, GPa2=−σ . The Rayleigh line is 

given by (29) where the state (+) is replaced by state (0), 

  )1(2
0 −= λρ CT .           (42) 

The intercept of the Rayleigh line with the elastic loading path )1,( =−=→ pT λλσλ  defines 

the state (*). States (0) and (*) are related by a pure elastic path. Plastic flow occurs between 
states (*) and (-).  

The shock velocity is given by (42), 

)1(0
−

−

−
=

λρ
σC .       (43) 

  Figure 2 shows the shock velocity C in terms of the particle velocity −v  at the rear of the 

shock. Experimental data are represented by stars for PC37/SS19 and by squares for PC74/SS37. 
The modeling prediction corresponds to the solid line with dots representing different levels of 

the applied stress −σ ( from 1 GPa to 9 GPa). For given values of −σ , the theoretical results have 

been obtained by calculating −λ  with (39) and (40). The values of material characteristics in (39) 

are given in Table 2. The shock velocity C is obtained with (43) and −v with (31) where state (+) 

is replaced by the initial state (0), )1( −−= −− λCv . Good quantitative agreement is found in Fig. 

2 with respect to experimental data (given in Table 3). The relationship (4), with smv /2.18=+  

and smc /600,1=+ provides results (dashed line) which are very close to those predicted by 

using the expression (39) of the Hugoniot extrapolated to large stresses (up to 10 GPa). This 
comparison provides a first validation of the foregoing extrapolation. 
 
5) Structure of plastic shocks in laminates 

 For stress amplitude −σ  larger than 1 GPa, the relationship (41) is not satisfied, and states 

(0) and (-) are related by a single shock as shown in Fig. 6, composed of an elastic jump from 

state (0) to (*) and plastic shock from state (*) to (-). The value of the stretch *λ at state (*) 

corresponds to the intercept of the Rayleigh line (42) with the elastic path )1,(λσλ T−=→  



emanating from state (0). 

  )1,(
1

)1( *
*

λ
λ
λσ T−=
−
−

−

−

           (44) 

For the amplitude MPa2=−σ , the following values are found, 981.0* =λ  

MPa28.0* =σ . 

Consider now any point on the Rayleigh line between states (*) and (-) i.e., for *λλλ ≤≤− . 

For each point there is a one-to-one correspondence between λ  and the plastic stretch pλ  in 

the interval 1≤≤− pp λλ . This correspondence is given by,  

  )1(),( 2
01 −= λρλλ CT p .           (45) 

which can be resolved into, 

  )( p
Rg λλ = .             (46) 

Similarly, on the Hugoniot, there is a one-to-one correspondence between λ and pλ  denoted 

as, 

  )( p
Hg λλ =              (47) 

For a given value of the plastic stretch pλ , consider the intersections ( RI ) and ( HI ) of the 

elastic path ),( pT λλσλ −=→  with the Rayleigh line and the Hugoniot, respectively, see Fig. 

7. Note that the same value of the plastic stretch pλ is associated with HI  and RI , and that 

)( p
Hg λλ = for HI  and )( p

Rg λλ =  for RI .              

The compressive stress )),(( pp
HI gT

H
λλσ −=  associated with HI  is the yield stress 

obtained at the rear of the plastic front in a plate impact experiment with stress amplitude 
HIσ . 

Therefore, this yield stress can be associated to a state of homogeneous plastic deformation 
defined by the plateau behind the plastic shock. However, within the shock structure the plastic 
deformation is highly non-uniform. For these high plastic deformation gradients, conventional 
plasticity laws are not able to restitute properly the overall material response, in particular when 
the shock-width is comparable to the characteristic lengths of the composite internal structure. To 



account for the interaction between the internal structure and the propagating wave, it is 
appealing to consider a nonlocal plasticity theory.  

Nonlocal theories of plasticity have been developed in the last two decades to formulate 
macroscopic phenomenological laws taking into account the effects of the material internal 
structure, see for example, Aifantis (2003), Fleck and Hutchinson (1993, 2001), Gao et al. (1999), 
Huang et al. (2000). Our aim here is to model geometrical dispersion in laminate media by using 
nonlocal plasticity models. Two gradient plasticity formulations and their predictions are 
compared.  

Dissipation of mechanical work into heat by viscosity can also contribute together with 
dispersion effects to the build-up of the shock structure. To separate these effects, viscous 
dissipation will not be considered here.  

 
5.1) First order gradient plasticity approach 

 In this section, a first order gradient plasticity approach is considered. Such theories have 
been recently developed in the context of polycrystalline materials, the internal characteristic 

length being of the order of the grain size (about mμ10 ), Fleck and Hutchinson (1993,2001), Gao 

et al. (1999), Huang et al (2000). For the laminated media considered here, the internal length is 
expected to be scaled by the layer widths.  

In the first order gradient plasticity theory used here, the yield stress Yσ  is a function of the 

accumulated plastic strain pε and of the first gradient of this strain. It is assumed that, 

  
β

εκεσσ xpp
YY ∂∂+= /)(0            (48) 

In the compression tests under consideration pε  can be identified to the opposite of the 

longitudinal plastic strain. 

  )log( ppp λεε −=−=            (49) 

κ  and β are positive material parameters which are related to the internal structure of the 

laminate (geometry of the layers, material characteristics of the constituents, including the mass 
densities since the impedance mismatch between layers plays a role in wave reflection and 
refraction).  

The yield stress Yσ  corresponding to the state RI  differs from the yield stress 

0Yσ associated with the state HI  on the Hugoniot, the latter being related to a state of 

homogeneous deformation. In the present modeling, the gap between these yield stresses is 



attributed to the high level of heterogeneity of plastic deformation in the shock front. The yield 
stress is assumed to be affected by the plastic strain gradient as in (48), 
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εκσσ xp
II HR
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with,  
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Defining the function, 

  βλλλλ
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where )exp()exp( ppp εελ −== , (50 ) can be rewritten as, 

)(ˆ p
p

f
x

εε
−=

∂
∂ .            (53) 

The sign (-) comes from the fact that pε is a decreasing function of x for a wave moving to the 

right. Note that the plastic deformation varies within the shock from 0*=pε  (state *) to 

)log( −− −= pp λε  (state -) and that )(ˆ pf ε  vanishes for state (-). 

Upon integration of (53) between state (*) and state (-), the shock profile can be obtained for the 

particle velocity, the total strain )log(λε =  and the cumulated plastic strain )log( pp λε −= .  

 All numerical calculations in the following are made for a linear dependence of the yield 

stress upon the plastic strain gradient, i.e., for 1=β , and a good correspondence with 

experimental results is found for that value ofβ . However, in general β  can have any positive 

value and the effect obtained by varying the value of β  will be considered later when 

discussing second gradient plasticity approaches.  

Figure 8 shows the profile of pε  within the shock and the variation of )(̂ pf ε . Calculation 

were made for the stress amplitude GPa2=−σ  and MPa m 7.1=κ , 1=β . A smooth 

transition is observed when −∞→ξ . On the contrary the value 0=pε  corresponding to state 

(*) is reached at a finite value of ξ  and for a non-zero value of the slope ξε ∂∂ /p .  

Note that according to the present modeling, there is no elastic precursor. This is in 



agreement with experimental observations of Zhuang et al (2003). 
 An important role in structuring the shock is played by the parameter κ  which accounts for 
the internal structure of the laminate. From (48) it follows that κ  has the dimension of 

(stress)x (length)β . Considering that κ is a function of the layer's geometry (specified by 1L  

and 21 LLL += ) and its material properties, and using dimensional analysis (Vaschy-Buckingham 

theorem), it is easily found that, 
 

)parameters material ldimensiona-non ,/()( 1
1 LLFL ref =−σκ β     (54) 

F is a non-dimensional quantity and refσ is any characteristic stress, for instance the elastic shear 

modulus of phase 1. Non-dimensional material parameters are of the form: refσλ /1 , refσμ /1 , 

refσλ /2 , refσμ /2 , refY σσ /1 , 1n , refY σσ /2 , 2n , 21 / ρρ , where iλ , iμ , iYσ , in  are for 

phase (i) respectively: the two Lamé constants, the initial yield stress and the hardening exponent 
( if a power law of Hollomon or Ramberg-Osgood type is assumed to describe strain hardening 

of a given constituent). Note that mass densities 1ρ and 2ρ of constituents are involved through 

the effect of the impedance mismatch in reflection and refraction of waves at interfaces beteen 

different phases. Mass densities are combined in the ratio 21 /ρρ . Therefore, for a given volume 

fraction LLf /11 =  of phase 1, κ  appears to be proportional to βL  based on (54). 

 For the stress amplitude GPa2=−σ  and for Mpa m 7.1=κ , 1=β , the shock width can 

be evaluated approximately as 0.5 mm from Fig. 8. A direct estimate of the shock width is 
obtained from the relationship, 
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where 
max

pε is the maximum plastic strain rate within the shock layer . From (53), 

)(̂(max/
0max

pp f
pp

εξε
εε −≤≤

=∂∂ . Note also that 
maxmax

/ ξεε ∂∂= pp C . For GPa2=−σ  the shock 

width in PC37/SS19 is estimated using (55) as w=0.49 mm in agreement with the shock profile 
shown in Fig. 8. Note that w is comparable to the cell size L=0.56 mm.  

For a given volume fraction of constituents, the following relationships between the internal 
structure of the composite material and the shock structure can be demonstrated: 



 βκ L∝ ,    L
p 1

max
∝ε ,  Lw∝          (56) 

The proportionality of κ  with respect to βL  results from (54). By using (53) one obtains 

)(̂ p
pp fCC εξ

εε −=∂
∂= , and from the dependence βκ L∝ , it follows with (52) that 

L
p 1/1

max
∝∝ − βκε . Finally, with (55), the width of the shock layer appears to be proportional to 

L, irrespective of the value of the exponent β . 

In Fig. 9 the stress amplitude is displayed in terms of 
max

pε  in a log-log diagram, for 

1=β . Results of the model, given by the solid line for PC37/SS19 and by the dashed line for 

PC74/SS37, reproduce quite well the experimental data. Theoretical predictions are obtained by 
using material characteristics given in Tables 2 and 4.  

PC37/SS19 and PC74/SS37 laminates have same proportion of constituents, i.e., same 
volume fractions. The only difference between those laminates is the layer's total thickness 
which is double for PC74/SS37 in comparison to PC37/SS19. The cell size has the value 

mmL 56.0=  for PC37/SS19 and mmL 12.1≅  for PC74/SS37. For a fixed value of the volume 

fraction 1f and for 1=β , κ is proportional to L, according to (54). Therefore, the value  

Pamx .104.3 6=κ  for PC74/SS37 is taken to be twice the value Pamx .107.1 6=κ for 

PC37/SS19. Since by (56), Lp 11
max

∝∝ κε , the strain rate 
max

pε for a given stress amplitude 

−σ , has a value twice larger for PC37/SS19 than for PC74/SS37. This is in agreement with 

experimental data shown in Fig. 9. 
Results in Fig. 9 can be used to represent both laminates through the following power law: 

  ( ) Lhp B −= σε
max

            (57) 

with 82.1=Lh . It can be shown that the slope Lh/1  of the lines in Fig. 9 does not depend upon 

κ  but is a function of β  (this will be further discussed when considering second gradient 

plasticity theories). However, for a given value of β , the position of those lines does depend on 

κ . Note that the first gradient theory with a linear dependence of the yield stress upon the plastic 



strain gradient ( 1=β ) provides a good prediction of Lh/1 together with the appropriate effect of 

the cell size on strain rates. The value of κ  for the PC37/SS19 laminate was calibrated so as to 

get the best fit with experimental results ( MPam.7.1=κ ). The comparison with experimental 

results for PC74/SS37, Fig. 9, shows a quite good agreement and furnish an additional check of 
the pertinence of the present modelling. Indeed, it is worth mentioning that experimental results 
in Fig. 9, obtained for two laminates subjected to various shock intensities, have been described 

for 1=β , with a single calibration of the parameter κ  for one of the laminates, the value of 

κ  for the second laminate being deduced from the theory ( MPam.4.3=κ for PC74/SS37which 

is twice larger than for PC37/SS19).  
The total strain rate within the shock can be estimated as the ratio of the total strain variation 

across the shock −ε  by the rise time, Cw/ , 

  wC /~
−= εε                 (58) 

Using the estimate (54) of the shock width,  

max

~ p
p ε

ε
ε

ε −

−
=              (59) 

In Fig. 10 the dependence of the stress amplitude −σ  upon 
max

pε  and ε~  is shown 

in a log-log diagram. A small shift towards larger strain rate is obtained when considering 

ε~ . However the value 82.1=Lh , which characterizes the slope, is essentially left unchanged. 

The small difference between the results of Fig. 10, presented either in terms of the total 
strain rate or in terms of the plastic strain rate, justify that no distinction is made in the 
discussion between the representations (1) and (57). 

Figure 11 shows the evolution of the shock width w  in terms of the stress amplitude 

−σ  for PC37/SS19 and PC74/SS37 laminates. Since the volume fraction of constituents is 

identical for the two laminates, w  is proportional to L  (0.56 mm for PC37/SS19, twice 
larger for PC74/SS37). Thus for a given stress amplitude, w  is twice larger for PC74/SS37. 

The use of a nonlocal constitutive law such as the one proposed in (50) is of interest 
when the characteristic length of stress (or strain) heterogeneity (which can be identified 

here with the width of the shock layer w ) is of the order of the characteristic lengths 1L  and 

2L defining the laminate’s internal structure. Considering for instance the PC37/SS19 



laminate, values of w (from 0.984 mm at GPa1=−σ  to 0.091 mm at GPa10=−σ ) are 

comparable to mmL 37.01 =  and mmL 19.02 = .  

The effect of second order elastic constants is on the results is shown in Fig. 12(a) where 

the stress amplitude −σ  is reported in terms of the maximum of the plastic strain rate 

max
pε (log-log diagram). In the elastic law (17), second order elastic constants are scaled by 

the parameter b. Previous results obtained for the value 7.66=b  (solid line) are compared 
with those for 100=b (dashed line). A little shift and a small change in the slope are obtained 
between the two lines representing results for b=66.7 and b=100. Similar trends were 
obtained when analyzing shock waves in polycrystalline metals, see Fig. 15 in Molinari and 
Ravichandran (2004). 

The effect of +λ  (defining the state (+)) is shown in Fig. 12(b).  The solid line 

corresponds to the previous results of Fig. 9 ( −σ  versus 
max

pε  with 99.0=+λ ).  Two 

different curves are shown for 97.0=+λ . The solid line with dots represents −σ  in terms of 

max
pε  The dashed line shows the variation of the stress jump +− −=Δ σσσ  with respect 

to 
max

pε . This result indicates that the effect of +λ  is almost negligible when considering 

variations of σΔ  in terms of 
max

pε . Note that for 99.0=+λ , GPa115.0=+σ  is negligible 

with respect to −σ  for the range of stress amplitudes considered here; thus σσ Δ≈− . 

However, this is not the case for 97.0=+λ , for which GPa631.0=+σ . From this 

discussion, it can be concluded that results presented in Fig. 9 would only be slightly 

affected by considering values of +λ smaller than 0.99. 

 
 5.2) Second order gradient plasticity approach 

Second order gradient plasticity approaches are frequently used in the literature to analyze 
strain localization phenomena, for example, Aifantis (2003). In this section the pertinence of 
such constitutive modeling with respect to shock wave analysis in laminate media is evaluated.  

The yield stress Yσ  which was given by (48) for the first order gradient approach is 

presently assumed to be dependent upon the second gradient of the accumulated plastic strain, 
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where 1κ and 1β are positive material parameters accounting for the laminate internal structure. 

The relationships (50) and (53) are replaced by, 
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and 
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with 
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First quadrature of (62) can be obtained by multiplying both sides by 
x

p

∂
∂ε . Upon integration 

from state (*) to the present state, and assuming a smooth transition at state (*), i.e., 0
*

=∂
∂
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pε
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and a negative slope 0<
∂
∂

x

pε  elsewhere in the shock layer,  one obtains, 
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 For the stress amplitude GPa2=−σ , Fig. 13 shows how shock profiles compare for the 

first gradient and second gradient plasticity theories, defined by (48) and (60),respectively with 

parameters ( MPa.m7.1=κ , 1=β ) and ( Pa.m750 2
1 =κ , 11 =β ). For the second gradient model, 



a smooth transition to 0=pε  is observed when ξ  increases. On the contrary the value 

118.0=−pε  corresponding to state (-) is reached at a finite value of ξ  beyond which an 

homogeneous state is obtained. The reverse situation is observed for the first gradient theory; the 

state (-) being reached asymptotically when ∞−→ ξ , while the state (*) corresponds to a finite 

value of ξ  with a slope different from zero. 

In Fig. 14 the profiles of plastic strain pε  and the magnitude of total strain )log(λε =  are 

shown for the second gradient approach ( Pa.m750 2
1 =κ , 11 =β ). The stress amplitude is 

GPa2=−σ . At the shock front, there is an elastic jump from state (0) to state (*), see Fig. 6. 

Thus, the total strain is discontinuous at the shock front, while the plastic strain is continuous and 
equal to zero. 

 The parameter 1κ  in (60), accounting for the effect of the laminate’s internal structure on 

the constitutive response, follows the following relationship obtained from dimensional analysis,  

)parameters material ldimensiona-non ,/()( 1
12

1
1 LLFL ref =−σκ β   (66) 

It appears that, for a given volume fraction of constituents, 1κ is proportional to 12βL . Note that 

for the first gradient model, κ was found to be proportional to βL .  

  The shock width 1w can be estimated by using (55) and (64). Thus, it is found that,  
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For the PC37/SS19 laminate with Pa.m750 2
1  =κ  and 11 =β , the shock width w1=0.385 

mm is obtained from (68) for GPa2=−σ .  



For a given volume fraction of constituents, it follows immediately from the definition (65) 

of ĝ  and from the dependence 12βκ L∝ that, 

 Lw ∝1 , L
p 1

max
∝ε            (69) 

 The scaling of the shock width and of the magnitude of plastic strain rate by the laminate 
cell size L , is similar to the scaling obtained in (56) with the first gradient theory.  

The major difference between the two gradient plasticity approaches appears when looking 

at the dependence of the stress amplitude −σ upon 
max

pε shown Fig. 15. Compared to 

experimental results of PC37/SS19, it appears that the slope Lh/1  is not adequate for the second 

gradient model with 11 =β  (linear dependence of the yield stress upon the second gradient of 

the plastic deformation).  

Figure16 illustrates the effects of parameters 1β and 1κ  on the relationship between stress 

amplitude and magnitude of the plastic strain rate. For a given value of ( 1β , 1κ ) this relationship 

is fairly well represented in the log-log diagram of Fig. 16 by a straight line denoted by 

),( 11 κβL  with slope Lh/1 . Calculations show that this slope depends on the value of 1β but is 

nearly independent of 1κ , see lines A, B and C, D in Fig. 16. For 1β fixed, ),( 11 κβL  is shifted 

horizontally by changing the value of 1κ . Thus, there is a one-to-one correspondence between 

couples ( 1β , 1κ ) ( 01 >β , 01 >κ ) and straight lines ),( 11 κβL of positive slope in the log-log 

diagram of Fig. 16. The material parameters ( 1β , 1κ ) defining nonlocal plasticity can be 

uniquely defined from the best fit of ),( 11 κβL  with experimental data.  

From (66) and (69) it follows that, for given value of 1β and of the stress amplitude −σ  , 

12/1
1max

βκε ∝p . Thus, for two different values A1κ  and B1κ the magnitudes of plastic strain rate 

corresponding to a given −σ are related by the following relationship, 
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Note that this quantity is not dependent on the stress amplitude −σ . 

Therefore, considering the lines A and B in Fig. 16, respectively, associated with 

( 11 =β , 1031 =Aκ ) and ( 11 =β , 4121 =Bκ ) , one has 
maxmax

2 p
B

p
A εε =  for any value of −σ . 

Similarly, between lines C ( 5.01 =β , NxC
5

1 105.7=κ ) and D ( 5.01 =β , NxD
5

1 1015=κ ) one 

has 
maxmax

2 p
D

p
C εε = .  

For a given characteristic length *L and stress Σ , consider the family of lines defined as, 

 { ),(  (L 11
* κβL ), F =Σ   such that }12*

1
βκ −=Σ L     (71) 

 
It can be motivated from scaling arguments and verified numerically that all the lines of 

), F Σ*(L  have an unique intersection point. Let us denote by IF and JF  the families with 

intersection points respectively I and J. Examples are shown in Fig. 16 of families IF ( JF ) with 

lines A and C converging at I (lines D and B converging at J). In the example shown in Fig. 16 

the characteristic length associated to IF  has the value mm137.0L*
I = and the value of *

JL is 

double that of the above value (0.274 mm).  

 Consider in general the family JF  obtained by horizontal translation of IF with 

magnitude defined by p
J

p
I εεδ /= , as illustrated in Fig. 16 for 2=δ . Defining by ), I IΣ

*(L  

( ), JI JΣ
*(L ) the characteristic length and stress associated to IF ( JF ), it is proven in Appendix 

A that δ=** / IJ LL  and JI Σ=Σ . 

Similar considerations could be developed for the first gradient plasticity model (48). A 

one-to-one correspondence can also be found between the parameters ( β ,κ ) defining 

non-local plasticity and straight lines with positive slope in the diagrams of Fig. 15 or Fig. 16. 

Figure17 shows the variation of the stress amplitude −σ  in terms of the maximum of the 

plastic strain rate for the two laminates PC37/SS19 and PC74/SS37. Experimental results are 

well described by the second gradient plasticity model (60) with 5.01 =β and N10x5.7 5
1 =κ  



for PC37/SS19, and N10x15 5
1 =κ  for PC74/SS37. As for the first gradient model, 1κ is 

scaled by the cell size (the value of 1κ  is doubled for PC74/SS37). 

Results obtained for the PC37/SS19 laminate are summarized in Table 5 for the two gradient 

plasticity theories, and different values of the structure parameters β  andκ . It is shown in Fig. 

18 (see also Table 5) that values of structure parameters can be chosen so as to provide almost 

identical results for the first gradient ( 88.0=β , 55.3=κ  MPa) and the second gradient 

approaches ( 5.01 =β , 5
1 10x5.7=κ  N). Therefore, the relationship between stress amplitude 

and maximum plastic strain rate is enough to characterize the structure parameters for a given 
gradient plasticity approach but is not sufficient to discriminate between the two plasticity 
theories considered here. The shape of the shock front provides additional information allowing 
favoring one of the theories. The smooth transition towards state (-) shown in Fig. 13 for the first 
gradient theory seems to be in better agreement with experimental shock profiles, Zhuang (2002, 
2003).  
 
6) Summary and conclusions 
 First and second gradient plasticity theories were used to describe steady shock waves 
propagating through laminates in the direction perpendicular to layers. The aim of this 
investigation was to analyze and model experimental results obtained for two laminates made of 
the same constituents. The only difference being that the layer’s widths in the laminate 
PC74/SS37 are doubled when compared to those of PC37/SS19. The maximum strain rate within 
the shock layer was measured to be twice smaller for PC74/SS37. Experimental results could be 

represented by the power law (57), ( ) Lhp B −= σε
max

 where 
max

pε is the maximum plastic 

strain rate and −σ  is the stress amplitude. The exponent Lh  has the same value for both 

laminates (close to 1.8) , however B is twice larger for PC37/SS19 in comparion to the value for 
PC74/SS37. 

 These experimental results could be well described by using the first gradient plasticity 

model (48). In this approach, structure parameters κ  and β  are introduced to account for the 

internal structure of the laminate (layer's thickness and material properties of constituents).  
Since the volume fractions of phases are identical for both laminates, the difference in the 
material response can be related to the laminate cell size, L . The present modeling shows 

that L
p 1

max
∝ε . The experimental finding that the strain rate within the shock layer is twice larger 

in PC37/SS19 than in PC74/SS37 is then rationalized. 



Similar results were found by using the second order gradient plasticity approach (60). 
Experimental results are well described by taking a non-linear dependence of the flow stress with 

respect to the second gradient of plastic deformation, with exponent 5.01 =β  in (60).  

Non-local effects are described in these gradient plasticity theories by two material 

parameters, β  and κ . It was shown, that for a given plasticity theory, these parameters (β ,κ ) 

could be uniquely determined from experimental results. However, both plasticity theories 
provide results of comparable quality when compared to experimental data relating the stress 
amplitude to the maximum of the plastic strain rate. Nevertheless, the first gradient plasticity 
approach can be favored when comparing the shape of the shock front to experimental data.   

Viscous effects, which have been neglected in the present modeling, have sometimes a major 
role in structuring shock fronts as for example in polycrystalline metals. In the latter case, 
experimental results show a power law dependence between the stress jump across the plastic 
shock and the maximum strain rate, with exponent 4=h , Swegle and Grady (1985), a value 

much larger than those of Lh  for laminates (of the order of 2). 

 The present theory can be augmented to account for viscous effects. However, the 
experiments performed on laminates indicate that the scaling of the shock layer is mostly related 
to the laminate internal structure (in particular to the cell size). Viscous effects, which, for metals 
and polymers, can be related to basic mechanisms of visco-plastic deformation, are not able to 
account for such scaling. Dispersion effects due to heterogeneities of the laminate structure are 
thought to be all the more important, as the contrast between the mechanical properties of 
constituents is larger. In the case of a large contrast, wave dispersion appears to be the dominant 
factor structuring the shock front and viscosity is believed to play a minor role.     
  
 
 
Table 1: Material characteristics of polycarbonate and stainless steel 
 
                   Poisson ratio         Elastic shear modulus          Mass density 
PC (Polycarbonate)      0.37                0.94 Gpa                  1190 kg/m3 

SS (Stainless steel)      0.29                 77 Gpa                   7890 kg/m3 
 
 
Table 2: Overall material characteristics of the laminates PC37/SS19 and PC74/SS37  

                            1111c      1122c      b       0ρ         S       +c  

PC37/SS19 and PC74/SS37    6.84 Gpa  3.60 Gpa  66.7    3468 kg/m3   2.1    1600m/s 
 
 



Table 3: Experimental data for the shock velocity C and the particle velocity −v  

PC37/SS19 
C (km/s) 1.96 1.89 2.39 2.32 2.33 2.53 3.12 
−v (km/s) 0.254 0.254 0.454 0.454 0.485 0.485 0.699 

PC74/SS37 
C (km/s) 1.94 2.39      
−v (km/s) 0.257 0.527      

 
 
Table 4: Parameters related to the laminate internal structure 
 

                        1L               2L             κ  

PC37/SS19             0.37 mm          0.19 mm       1.7  m.MPa 
PC74/SS37             0.74 mm          0.37 mm       3.4  m.MPa 
 
Table 5: Theoretical results for the PC37/SS19 laminate using the values of material parameters given in  
Table 2. 
 First gradient 

MPa m 7.1=κ  
 
 

Second gradient 

MPa m 750 2
1 =κ  

 

)(GPa−σ  )/( smv−  C(m/s) 
max

pε (s-1x106) (mm) w  
max

pε (s-1x106) (mm) 1w  

8 748 3084 6.15 0.117 3.93 0.183 
6 615 2811 3.69 0.160 2.75 0.215 
4 461 2497 1.79 0.246 1.64 0.268 
2 273 2112 0.51 0.490 0.648 0.385 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1: Schematic of the geometry of a periodically layered composite with layer's thicknesses 1 L  and 2 L  
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Fig.2: Shock velocity C versus particle velocity −v  at the rear of the plastic shock. Experimental data are 

represented by stars and squares respectively for PC37/SS19 and PC74//SS37 laminates. The dashed line is 

given by equ. (4) with slope 1.2=S , sm/2.18=+ν  and smc /1600=+ . The solid line with dots 

corresponds to calculations made in section 4.2 by using the Hugoniot defined by (39) 
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Fig.3: Decomposition of the deformation gradient F  into plastic part p F  and elastic part e F . 
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Fig.4: Plastic shock for the stress amplitude GPa5.0=−σ . The material is first compressed from the initial 

state to the state (+) by an elastic shock (elastic precursor), and is further compressed by a plastic shock from 
state (+) to state (-). These two distinct shocks exist if the condition (41) on shock velocities is satisfied. 
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Fig.5: Hugoniot curve (solid line) and elastic loading path )1,(11 λσλ T−=→   (dashed line) for the laminate 

PC37/SS19. Results are identical for PC74/SS37. A zoom  is shown for 197.0 ≤≤λ  in the upper part of the 
figure. 
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Fig.6: Elasto-plastic shock generated for a large enough stress amplitude such that condition (41) is not 
satisfied. 
 
 
 
 
 
 
 
 
 

State (0)

State ( )

State (+)

Hugoniot

Rayleigh 
Elastic loading

State (*)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7:  The elastic loading path corresponding to the fixed value of the plastic stretch 96.0=pλ intercepts the 

Hugoniot at HI  and the Rayleigh line at RI . The shock stress amplitude is GPa2=−σ  . 
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Fig.8: Structure of the plastic shock for GPa2=−σ :  

(a) distribution of the cumulated plastic deformation pε  in terms of the position ξ  

(b) variation of the function )(̂ pf ε  defined by (52) 

The first order gradient plasticity theory is used here with Mpam  7.1=κ , 1=β . 
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Fig.9:  Stress amplitude −σ  in terms of the maximum of the plastic strain rate within the shock layer. 

Experimental results for the laminates PC37/SS19 and PC74/SS37 are respectively represented by stars and 

squares . Results of the first gradient modelling are obtained for 1=β ;  Mpam  7.1=κ  is used for 

PC37/SS19 and MPam.4.3=κ  for PC74/SS37. Note that doubling the value of κ  for PC74/SS37 is the 
direct consequence of  the layer's thicknesses of PC74/SS37 being twice those of PC37/SS19. 
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Fig10: Stress amplitude −σ  in terms respectively of : 

- the maximum of the plastic strain rate 
max

pε  within the shock layer  

- an estimate of the maximum of the strain rate within the shock layer ε~  . 

Stars represent experimental data for the laminates PC37/SS19. Results of the modelling are obtained for the 

first gradient theory with MPam.7.1=κ  and 1=β .  
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Fig.11: Shock width  w estimated with (55). Note that the shock width for PC74/SS37 is twice that for 
PC37/SS19. Dots correspond to the following stress amplitudes (Gpa): 1, 1.5, 2, 3, 4, 6, 8, 9, 10. 
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Fig.12: Effects of second order elastic constants (a) and of +λ  (b)  

(a) Stress amplitude −σ  in terms of the plastic strain rate  
max

pε for two values of the parameter b 

which scales second order elastic constants. Results with  b=100  are compared with the previous 
results of  Fig.9 obtained with b=66.7. Stars are experimental data for the PC37/SS19 laminate. 

(b)  Effect of +λ  (defining the state (+)). The solid line corresponds  to the previous results of Fig.9 

( −σ  versus  
max

pε  with 99.0=+λ ).  Two different curves are shown for 97.0=+λ . The solid 

line with dots  represents −σ  in terms of  
max

pε  The dashed line shows the variation of the 

stress jump +−−=Δ σσσ  with respect to  
max

pε .  
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Fig.13: Distribution within the shock structure of the cumulated plastic deformation pε  in terms of the 

position. The first gradient plasticity theory defined by (48) with ( 1=β , MPam.7.1=κ ) is compared to the 

second gradient theory (60) with ( 11 =β , N7501 =κ ). The stress amplitude is GPa2=−σ . 
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Fig.14: Shock wave profiles calculated for GPa2=−σ with the second gradient approach 

( 11 =β , N7501 =κ ). The dashed and the solid lines correspond respectively to distributions of the plastic 

strain pε  and of the absolute value of the total strain )log(λε = .  
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Fig.15: Compared to the first gradient model, the slope of the (dashed) line associated to the second gradient 

model (with 11 =β ) is not adequate to account for experimental results of PC37/SS19 (stars) 
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Fig.16: Second gradient approach: effects of parameters 1β and 1κ  on the relationship between stress 

amplitude and magnitude of plastic strain rate. The slope depends on the value of 1β but is not dependent 

upon 1κ . For a given value of 1β , the lines are shifted horizontally  by changing the value of 1κ .  
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Fig.17 : Stress amplitude −σ  in terms of the maximum of the plastic strain rate within the shock layer. 

Experimental results for the laminates PC37/SS19 and PC74/SS37 are respectively represented by stars and 

squares. Results of the second gradient modelling (60) are obtained for 5.01 =β  and Nx 5
1 105.7=κ  

(PC37/SS19), Nx 5
1 1015=κ  (PC74/SS37). As for the first gradient model, 1κ is scaled by the cell size 

which is multiplied by two for PC74/SS37. 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.18 : First gradient approach  ( 88.0=β , 55.3=κ  MPa) compared to second gradient approach 

( 5.01 =β , 5
1 105.7 x=κ  N), respectively dashed and solid lines. Stars represent experimental data for 

PC37/SS19. 
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Appendix A 

The family ), F I IΣ
*(L  of lines intersecting at point I, is translated horizontally as shown in 

Fig. 16 into the family ), F J JΣ
*(L  of lines intersecting at point J. Considering in ), F I IΣ

*(L  

the lines ),( 11A AκβL and ),( 11C CκβL , denoted for simplicity as A and C, one obtains, from (71), 

  CA
ICIAI LL 11 2*

1
2*

1
ββ κκ −− ==Σ .         (A1) 

The lines B and D are obtained by horizontal translation of A and C and intersect at J, 

therefore they are in ), F J JΣ
*(L  and from (71), 

  CA
IDJBJ LL 11 2*

1
2*

1
ββ κκ −− ==Σ          (A2) 

where the following relationship has been used, 

   BA 11 ββ = ,   DC 11 ββ = .          (A3) 

 The magnitude of the translation  →Σ  (L* ), F I I ), F J JΣ
*(L  is characterized by the ratio 

p
J

p
Ia εε /= . Since lines A and C intersect at I and B and D intersect at J, for any stress amplitude 

−σ  one obtains, 
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From (70), it follows that, 
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and from (A1) and (A2), 
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Combining (A5) and (A6), it is found that, 
 

  **
IJ aLL =               (A7) 

and from (A1) and (A2), 
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